WorldWideScience

Sample records for three-body coulomb effects

  1. Coulomb effects in deuteron stripping reactions as a three-body problem

    International Nuclear Information System (INIS)

    Osman, A.

    1981-08-01

    Deuteron stripping nuclear reactions are reconsidered as a three-body problem. The Coulomb effects between the proton and the target nucleus are investigated. The mathematical formalism introduces three-body integral equations which can be exactly calculated for such simple models. These coupled integral equations suitably include the Coulomb effects due to replusive or attractive Coulomb potential. Numerical calculations of the differential cross-sections of the reactions 28 Si(d,p) 29 Si and 40 Ca(d,p) 41 Ca are carried out showing the importance of the Coulomb effects. The angular distributions of these reactions are theoretically calculated and fitted to the experimental data. From this fitting, reasonable spectroscopic factors are obtained. Inclusion of Coulomb force in the three-body model are found to improve the results by a percentage of about 6.826%. (author)

  2. Approximate Coulomb effects in the three-body scattering problem

    International Nuclear Information System (INIS)

    Haftel, M.I.; Zankel, H.

    1981-01-01

    From the momentum space Faddeev equations we derive approximate expressions which describe the Coulomb-nuclear interference in the three-body elastic scattering, rearrangement, and breakup problems and apply the formalism to p-d elastic scattering. The approximations treat the Coulomb interference as mainly a two-body effect, but we allow for the charge distribution of the deuteron in the p-d calculations. Real and imaginary parts of the Coulomb correction to the elastic scattering phase shifts are described in terms of on-shell quantities only. In the case of pure Coulomb breakup we recover the distorted-wave Born approximation result. Comparing the derived approximation with the full Faddeev p-d elastic scattering calculation, which includes the Coulomb force, we obtain good qualitative agreement in S and P waves, but disagreement in repulsive higher partial waves. The on-shell approximation investigated is found to be superior to other current approximations. The calculated differential cross sections at 10 MeV raise the question of whether there is a significant Coulomb-nuclear interference at backward angles

  3. Hyperspherical Coulomb spheroidal basis in the Coulomb three-body problem

    International Nuclear Information System (INIS)

    Abramov, D. I.

    2013-01-01

    A hyperspherical Coulomb spheroidal (HSCS) representation is proposed for the Coulomb three-body problem. This is a new expansion in the set of well-known Coulomb spheroidal functions. The orthogonality of Coulomb spheroidal functions on a constant-hyperradius surface ρ = const rather than on a constant-internuclear-distance surface R = const, as in the traditional Born-Oppenheimer approach, is a distinguishing feature of the proposed approach. Owing to this, the HSCS representation proves to be consistent with the asymptotic conditions for the scattering problem at energies below the threshold for three-body breakup: only a finite number of radial functions do not vanish in the limit of ρ→∞, with the result that the formulation of the scattering problem becomes substantially simpler. In the proposed approach, the HSCS basis functions are considerably simpler than those in the well-known adiabatic hyperspherical representation, which is also consistent with the asymptotic conditions. Specifically, the HSCS basis functions are completely factorized. Therefore, there arise no problems associated with avoided crossings of adiabatic hyperspherical terms.

  4. Coulomb-Sturmian separable expansion approach: Three-body Faddeev calculations for Coulomb-like interactions

    International Nuclear Information System (INIS)

    Papp, Z.; Plessas, W.

    1996-01-01

    We demonstrate the feasibility and efficiency of the Coulomb-Sturmian separable expansion method for generating accurate solutions of the Faddeev equations. Results obtained with this method are reported for several benchmark cases of bosonic and fermionic three-body systems. Correct bound-state results in agreement with the ones established in the literature are achieved for short-range interactions. We outline the formalism for the treatment of three-body Coulomb systems and present a bound-state calculation for a three-boson system interacting via Coulomb plus short-range forces. The corresponding result is in good agreement with the answer from a recent stochastic-variational-method calculation. copyright 1996 The American Physical Society

  5. Three-body Coulomb systems using generalized angular-momentum S states

    Science.gov (United States)

    Whitten, R. C.; Sims, J. S.

    1974-01-01

    An expansion of the three-body Coulomb potential in generalized angular-momentum eigenfunctions developed earlier by one of the authors is used to compute energy eigenvalues and eigenfunctions of bound S states of three-body Coulomb systems. The results for He, H(-), e(-)e(+)e(-), and pmu(-)p are compared with the results of other computational approaches.

  6. Coulomb Fourier transformation: A novel approach to three-body scattering with charged particles

    International Nuclear Information System (INIS)

    Alt, E.O.; Levin, S.B.; Yakovlev, S.L.

    2004-01-01

    A unitary transformation of the three-body Hamiltonian which describes a system of two charged and one neutral particles is constructed such that the Coulomb potential which acts between the charged particles is explicitly eliminated. The transformed Hamiltonian and, in particular, the transformed short-range pair interactions are worked out in detail. Thereby it is found that, after transformation, the short-range potentials acting between the neutral and either one of the charged particles become simply Fourier transformed but, in addition, multiplied by a function that represents the Coulombic three-body correlations originating from the action of the other charged particle on the considered pair. This function which is universal as it does not depend on any property of the short-range interaction is evaluated explicitly and its singularity structure is described in detail. In contrast, the short-range potential between the charged particles remains of two-body type but occurs now in the 'Coulomb representation'. Specific applications to Yukawa and Gaussian potentials are given. Since the Coulomb-Fourier-transformed Hamiltonian does no longer contain the Coulomb potential or any other effective interaction of long range, standard methods of short-range few-body scattering theory are applicable

  7. Coulomb Effects in Few-Body Reactions

    Directory of Open Access Journals (Sweden)

    Deltuva A.

    2010-04-01

    Full Text Available The method of screening and renormalization is used to include the Coulomb interaction between the charged particles in the momentum-space description of three- and four-body nuclear reactions. The necessity for the renormalization of the scattering amplitudes and the reliability of the method is demonstrated. The Coulomb effect on observables is discussed.

  8. Incorporation of threshold phenomena in the three-body Coulomb continuum wavefunctions

    International Nuclear Information System (INIS)

    Berakdar, J.

    1996-01-01

    In this work a three-body Coulomb wavefunction for the description of two continuum electrons moving in the field of a nucleus is constructed such that the Wannier threshold law for double escape is reproduced and the asymptotic Coulomb boundary conditions as well as the Kato cusp conditions are satisfied. It is shown that the absolute value of the total cross section, as well as the spin asymmetry, are well described by the present approach. Further, the excess-energy sharing between the two escaping electrons is calculated and analysed in light of the Wannier theory predictions. This is the first time an analytical three-body wavefunction is presented which is asymptotically exact and capable of describing threshold phenomena. 37 refs., 3 figs

  9. Three-body Coulomb breakup of 11Li in the complex scaling method

    International Nuclear Information System (INIS)

    Myo, Takayuki; Aoyama, Shigeyoshi; Kato, Kiyoshi; Ikeda, Kiyomi

    2003-01-01

    Coulomb breakup strengths of 11 Li into a three-body 9 Li+n+n system are studied in the complex scaling method. We decompose the transition strengths into the contributions from three-body resonances, two-body '' 10 Li+n'' and three-body '' 9 Li+n+n'' continuum states. In the calculated results, we cannot find the dipole resonances with a sharp decay width in 11 Li. There is a low energy enhancement in the breakup strength, which is produced by both the two- and three-body continuum states. The enhancement given by the three-body continuum states is found to have a strong connection to the halo structure of 11 Li. The calculated breakup strength distribution is compared with the experimental data from MSU, RIKEN and GSI

  10. Stability of the three-body Coulomb systems with J=1 in the oscillator representation

    International Nuclear Information System (INIS)

    Dinejkhan, M.D.; Efimov, G.V.

    1995-01-01

    The oscillator representation is applied to calculate the energy spectrum of three-body Coulomb systems with J total angular momentum. For the three-body Coulomb systems with J=1 and arbitrary masses the region of stability is determined. For the systems (A + A - e - ), (pe - C + ), (pB - e - ) and (D + e - e + ), the values for the critical masses of A-, B-, C- and D-particles are obtained: m A =2.22m e , m B =1.49m e , m C =2.11m e and m D =4.15m e . 18 refs., 1 fig., 3 tabs

  11. Muonic molecules as three-body Coulomb problem in adiabatic approximation

    International Nuclear Information System (INIS)

    Decker, M.

    1994-04-01

    The three-body Coulomb problem is treated within the framework of the hyperspherical adiabatic approach. The surface functions are expanded into Faddeev-type components in order to ensure the equivalent representation of all possible two-body contributions. It is shown that this decomposition reduces the numerical effort considerably. The remaining radial equations are solved both in the extreme and the uncoupled adiabatic approximation to determine the binding energies of the systems (dtμ) and (d 3 Heμ). Whereas the ground state is described very well in the uncoupled adiabatic approximation, the excited states should be treated within the coupled adiabatic approximation to obtain good agreement with variational calculations. (orig.)

  12. CTBC. A program to solve the collinear three-body Coulomb problem. Bound states and scattering below the three-body disintegration threshold

    International Nuclear Information System (INIS)

    Tolstikhin, Oleg I.; Namba, Chusei

    2003-08-01

    A program to solve the quantum-mechanical collinear three-body Coulomb problem is described and illustrated by calculations for a number of representative systems and processes. In the internal region, the Schroedinger equation is solved in hyperspherical coordinates using the slow/smooth variable discretization method. In asymptotic regions, the solution is obtained in Jacobi coordinates using the asymptotic package GAILIT from the CPC library. Only bound states and scattering processes below the three-body disintegration threshold are considered here; resonances and fragmentation processes will be discussed in subsequent parts of this series. (author)

  13. Solving the three-body Coulomb breakup problem using exterior complex scaling

    Energy Technology Data Exchange (ETDEWEB)

    McCurdy, C.W.; Baertschy, M.; Rescigno, T.N.

    2004-05-17

    Electron-impact ionization of the hydrogen atom is the prototypical three-body Coulomb breakup problem in quantum mechanics. The combination of subtle correlation effects and the difficult boundary conditions required to describe two electrons in the continuum have made this one of the outstanding challenges of atomic physics. A complete solution of this problem in the form of a ''reduction to computation'' of all aspects of the physics is given by the application of exterior complex scaling, a modern variant of the mathematical tool of analytic continuation of the electronic coordinates into the complex plane that was used historically to establish the formal analytic properties of the scattering matrix. This review first discusses the essential difficulties of the three-body Coulomb breakup problem in quantum mechanics. It then describes the formal basis of exterior complex scaling of electronic coordinates as well as the details of its numerical implementation using a variety of methods including finite difference, finite elements, discrete variable representations, and B-splines. Given these numerical implementations of exterior complex scaling, the scattering wave function can be generated with arbitrary accuracy on any finite volume in the space of electronic coordinates, but there remains the fundamental problem of extracting the breakup amplitudes from it. Methods are described for evaluating these amplitudes. The question of the volume-dependent overall phase that appears in the formal theory of ionization is resolved. A summary is presented of accurate results that have been obtained for the case of electron-impact ionization of hydrogen as well as a discussion of applications to the double photoionization of helium.

  14. Representation of the three-body Coulomb Green's function in parabolic coordinates: paths of integration

    International Nuclear Information System (INIS)

    Zaytsev, S A

    2010-01-01

    The possibility of using straight-line paths of integration in computing the integral representation of the three-body Coulomb Green's function is discussed. In our numerical examples two different kinds of integration contours in the complex energy planes are considered. It is demonstrated that straight-line paths, which cross the positive real axis, are suitable for numerical computation.

  15. Three-body unitary transformations, three-body forces, and trinucleon bound state properties

    International Nuclear Information System (INIS)

    Haftel, M.I.

    1976-01-01

    A three-body unitary transformation method for the study of three-body forces is presented. Starting with a three-body Hamiltonian with two-body forces, unitary transformations are introduced to generate Hamiltonians that have both two- and three-body forces. For cases of physical interest, the two-body forces of the altered Hamiltonians are phase equivalent (for two-body scattering) to the original and the three-body force vanishes when any interparticle distance is large. Specific examples are presented. Applications for studying the possible role of three-body forces in accounting for trinucleon bound state properties are examined. Calculations of the 3 He and 3 H charge form factors and Coulomb energy difference with hyperspherical radial transformations and with conventional N-N potentials are performed. The form factor calculations demonstrate how the proposed method can help obtain improved agreement with experiment by the introduction of appropriate three-body forces. Calculations of the Coulomb energy difference confirm previous estimates concerning charge symmetry breaking in the N-N interaction

  16. The role of three-body coulomb fields versus final state interactions in the decay of 12C-α-12C

    International Nuclear Information System (INIS)

    Quebert, J.L.; Bertault, D.; Scheurer, J.N.; Fouan, J.P.

    1980-01-01

    The alpha emission in 16 O + 12 C→ 12 C + α + 12 C has been thoroughly studied in the region of the rapidity plot: Ysub(α)=Ysub(c.m.). The three-body coulomb fields, as well as configurations close to alignment, account for the alpha yield which is observed. The apparent competition between direct and sequential decays is well explained by the coulomb break-up

  17. Quadratic and coulomb terms for the spectrum of a three-electron quantum dot

    International Nuclear Information System (INIS)

    Hassanabadi, H.; Hamzavi, M.; Zarrinkamar, S.; Rajabi, A.A.

    2010-01-01

    We consider the Hamiltonian of a three-electron quantum dot composed of quadratic plus Coulomb terms and calculate the system's spectra. We next apply the hyperradius to reduce the three-body Schroedinger equation into a one-variable differential equation that is solvable. To avoid the complexity, the Taylor expansion of the effective potential is enters the problem and thereby a solution is found for the eigenvalues of the corresponding three-body Schroedinger equation in terms of the Wigner parameter. Using a quasi-analytical approach, we have calculated the energy eigenvalues of the Schroedinger equation corresponding to a three-electron quantum dot. In addition to the hyperspherical coordinates, much of mathematical complexity has been avoided using the idea of Taylor expansion for the potential. For the potential, we have considered quadratic plus Coulomb terms. The obtained energy eigenvalues in terms of the Wigner parameter are given in tabular form. (author)

  18. D-wave resonances in three-body system Ps- with pure Coulomb and screened Coulomb (Yukawa) potentials

    International Nuclear Information System (INIS)

    Kar, S.; Ho, Y.K.

    2009-01-01

    We have investigated the doubly excited 1 D e resonance states of Ps - interacting with pure Coulomb and screened Coulomb (Yukawa) potentials employing highly correlated wave functions. For pure Coulomb interaction, in the framework of stabilization method and complex coordinate rotation method we have obtained two resonances below the n = 2 threshold of the Ps atom. For screened Coulomb interaction, we employ the stabilization method to extract resonance parameters. Resonance energies and widths for the 1 D e resonance states of Ps - for different screening parameter ranging from infinity (pure Coulomb case) to a small value are also reported. (author)

  19. Eikonal representation of N-body Coulomb scattering amplitudes

    International Nuclear Information System (INIS)

    Fried, H.M.; Kang, K.; McKellar, B.H.J.

    1983-01-01

    A new technique for the construction of N-body Coulomb scattering amplitudes is proposed, suggested by the simplest case of N = 2: Calculate the scattering amplitude in eikonal approximation, discard the infinite phase factors which appear upon taking the limit of a Coulomb potential, and treat the remainder as an amplitude whose absolute value squared produces the exact, Coulomb differential cross section. The method easily generalizes to the N-body Coulomb problem for elastic scattering, and for inelastic rearrangement scattering of Coulomb bound states. We give explicit results for N = 3 and 4; in the N = 3 case we extract amplitudes for the processes (12)+3->1+2+3 (breakup), (12)+3->1+(23) (rearrangement), and (12)+3→(12)'+3 (inelastic scattering) as residues at the appropriate poles in the free-free amplitude. The method produces scattering amplitudes f/sub N/ given in terms of explicit quadratures over (N-2) 2 distinct integrands

  20. Explicit demonstration of the convergence of the close-coupling method for a Coulomb three-body problem

    International Nuclear Information System (INIS)

    Bray, I.; Stelbovics, A.T.

    1992-01-01

    Convergence as a function of the number of states is studied and demonstrated for the Poet-Temkin model of electron-hydrogen scattering. In this Coulomb three-body problem only the l=0 partial waves are treated. By taking as many as thirty target states, obtained by diagonalizing the target Hamiltonian in a Laguerre basis, complete agreement with the smooth results of Poet is obtained at all energies. We show that the often-encountered pseudoresonance features in the cross sections are simply an indication of an inadequate target state representation

  1. Many-Body Coulomb Gauge Exotic and Charmed Hybrids

    OpenAIRE

    Llanes-Estrada, Felipe J.; Cotanch, Stephen R.

    2000-01-01

    Utilizing a QCD Coulomb gauge Hamiltonian with linear confinement specified by lattice, we report a relativistic many-body calculation for the light exotic and charmed hybrid mesons. The Hamiltonian successfully describes both quark and gluon sectors, with vacuum and quasiparticle properties generated by a BCS transformation and more elaborate TDA and RPA diagonalizations for the meson ($q\\bar{q}$) and glueball ($gg$) masses. Hybrids entail a computationally intense relativistic three quasipa...

  2. Coulomb oscillations in three-layer graphene nanostructures

    International Nuclear Information System (INIS)

    Guettinger, J; Stampfer, C; Molitor, F; Graf, D; Ihn, T; Ensslin, K

    2008-01-01

    We present transport measurements on a tunable three-layer graphene single electron transistor (SET). The device consists of an etched three-layer graphene flake with two narrow constrictions separating the island from source and drain contacts. Three lateral graphene gates are used to electrostatically tune the device. An individual three-layer graphene constriction has been investigated separately showing a transport gap near the charge neutrality point. The graphene tunneling barriers show a strongly nonmonotonic coupling as a function of gate voltage indicating the presence of localized states in the constrictions. We show Coulomb oscillations and Coulomb diamond measurements proving the functionality of the graphene SET. A charging energy of ∼0.6 meV is extracted.

  3. Diffusion Monte Carlo calculation of three-body systems

    International Nuclear Information System (INIS)

    Lu Mengjiao; Lin Qihu; Ren Zhongzhou

    2012-01-01

    The application of the diffusion Monte Carlo algorithm in three-body systems is studied. We develop a program and use it to calculate the property of various three-body systems. Regular Coulomb systems such as atoms, molecules, and ions are investigated. The calculation is then extended to exotic systems where electrons are replaced by muons. Some nuclei with neutron halos are also calculated as three-body systems consisting of a core and two external nucleons. Our results agree well with experiments and others' work. (authors)

  4. Higher-order dynamical effects in Coulomb dissociation

    International Nuclear Information System (INIS)

    Esbensen, H.

    1994-06-01

    We study the effect of higher-order processes in Coulomb dissociation of 11 Li by numerically solving the three-dimensional time-dependent Schroedinger equation for the relative motion of a di-neutron and the 9 Li core. Comparisons are made to first-order perturbation theory and to measurements. The calculated Coulomb reacceleration effects improve the agreement with experiment, but some discrepancy remains. The effects are much smaller in the dissociation of 11 Be, and they decrease with increasing beam energy. (orig.)

  5. Three-dimensional oscillator and Coulomb systems reduced from Kaehler spaces

    International Nuclear Information System (INIS)

    Nersessian, Armen; Yeranyan, Armen

    2004-01-01

    We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kaehler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kaehler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid originate. Then we construct the superintegrable oscillator system on three-dimensional sphere and hyperboloid, coupled to a monopole, and find their four-dimensional origins. In the latter case the metric of configuration space is a non-Kaehler one. Finally, we extend these results to the family of Kaehler spaces with conic singularities

  6. Coulomb two-body problem with internal structure

    International Nuclear Information System (INIS)

    Kuperin, Yu.A.; Makarov, K.A.; Mel'nikov, Yu.B.

    1988-01-01

    The methods of the theory of extensions to an enlarged Hilbert space are used to construct a model of the interaction of the external (Coulomb) and internal (quark) channels in the two-body problem. The mutual influence of the spectra of the corresponding channel Hamiltonians is studied: it leads, in particular, to a rearrangement of the spectra of hadronic atoms. An explicit representation is obtained for the S matrix, and its singularities on the energy shell are studied

  7. Taking into account the Coulomb effects in the four-body model in reactions of simultaneous two-neutron transfer induced by heavy ions

    International Nuclear Information System (INIS)

    Kayumov, S.S.; Mukhamedzhanov, A.M.; Yarmukhamedov, R.

    1988-01-01

    In the four-body model for partial amplitudes of two-neutron transfer induced by heavy ions we derive in the approximation of the mechanism of simultaneous transfer the expression for the senior term for l→∞ taking into account the Coulomb effects. The senior singular term of the amplitude at z = zeta is singled out explicitly (z = cos θ, θ is the scattering angle in the c.m.s. and zeta is the singularity closest to the physical region which corresponds to the mechanism of simultaneous transfer). We calculate differential cross sections for the transfer of two neutrons between heavy ions and estimate the accuracy of taking into account the Coulomb effects in the traditional method of distorted waves

  8. Extended Kepler–Coulomb quantum superintegrable systems in three dimensions

    International Nuclear Information System (INIS)

    Kalnins, E G; Kress, J M; Miller, W Jr

    2013-01-01

    The quantum Kepler–Coulomb system in three dimensions is well known to be second order superintegrable, with a symmetry algebra that closes polynomially under commutators. This polynomial closure is also typical for second order superintegrable systems in 2D and for second order systems in 3D with nondegenerate (four-parameter) potentials. However, the degenerate three-parameter potential for the 3D Kepler–Coulomb system (also second order superintegrable) is an exception, as its symmetry algebra does not close polynomially. The 3D four-parameter potential for the extended Kepler–Coulomb system is not even second order superintegrable, but Verrier and Evans (2008 J. Math. Phys. 49 022902) showed it was fourth order superintegrable, and Tanoudis and Daskaloyannis (2011 arXiv:11020397v1) showed that, if a second fourth order symmetry is added to the generators, the symmetry algebra closes polynomially. Here, based on the Tremblay, Turbiner and Winternitz construction, we consider an infinite class of quantum extended Kepler–Coulomb three- and four-parameter systems indexed by a pair of rational numbers (k 1 , k 2 ) and reducing to the usual systems when k 1 = k 2 = 1. We show these systems to be superintegrable of arbitrarily high order and determine the structure of their symmetry algebras. We demonstrate that the symmetry algebras close algebraically; only for systems admitting extra discrete symmetries is polynomial closure achieved. Underlying the structure theory is the existence of raising and lowering operators, not themselves symmetry operators or even defined independent of basis, that can be employed to construct the symmetry operators and their structure relations. (paper)

  9. Coulomb effects in relativistic laser-assisted Mott scattering

    International Nuclear Information System (INIS)

    Ngoko Djiokap, J.M.; Kwato Njock, M.G.; Tetchou Nganso, H.M.

    2004-09-01

    We reconsider the influence of the Coulomb interaction on the process of relativistic Mott scattering in a powerful electromagnetic plane wave for which the ponderomotive energy is of the order of the magnitude of the electron's rest mass. Coulomb effects of the bare nucleus on the laser-dressed electron are treated more completely than in the previous work of Li et al. [J. Phys. B: At. Mol. Opt. Phys. 37 (2004) 653]. To this end we use Coulomb-Dirac-Volkov functions to describe the initial and the final states of the electron. First-order Born differential cross sections of induced and inverse bremsstrahlung are obtained for circularly and linearly polarized laser light. Numerical calculations are carried out from both polarizations, for various nucleus charge values, three angular configurations and an incident energy in the MeV range. It is found that for parameters used in the present work, incorporating Coulomb effects of the target nucleus either in the initial state or in the final state yields cross sections which are quite similar whatever the scattering geometry and polarization considered. When Coulomb distortions are included in both states, the cross sections are strongly modified with the increase of Z, as compared to the outcome of the prior form of the T-matrix treatment. (author)

  10. The time-dependent Hartree-Fock equations with Coulomb two-body interaction

    International Nuclear Information System (INIS)

    Chadam, J.M.; Glassey, R.T.

    1975-06-01

    The existence and uniqueness of global solutions to the Cauchy problem is proved in the space of ''smooth'' density matrices for the time-dependent Hartree-Fock equations describing the motion of finite Fermi systems interacting via a Coulomb two-body potential [fr

  11. Isospin effect of coulomb interaction on momentum dissipation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Liu Jianye; Guo Wenjun; Li Xiguo; Xing Yongzhong

    2004-01-01

    The authors investigate the isospin effect of Coulomb interaction on the momentum dissipation or nuclear stopping in the intermediate energy heavy ion collisions by using the isospin-dependent quantum molecular dynamics model. The calculated results show that the Coulomb interaction induces obviously the reductions of the momentum dissipation. The authors also find that the variation amplitude of momentum dissipation induced by the Coulomb interaction depends sensitively on the form and strength of symmetry potential. However, the isospin effect of Coulomb interaction on the momentum dissipation is less than that induced by the in-medium nucleon-nucleon cross section. In this case, Coulomb interaction does not changes obviously the isospin effect of momentum dissipation induced by the in-medium two-body collision. In particular, the Coulomb interaction is preferable for standing up the isospin effect of in-medium nucleon-nucleon cross section on the momentum dissipation and reducing the isospin effect of symmetry potential on it, which is important for obtaining the feature about the sensitive dependence of momentum dissipation on the in-medium nucleon-nucleon cross section and weakly on the symmetry potential. (author)

  12. Coulomb-Fourier representation approach to three-body scattering with charged particles

    International Nuclear Information System (INIS)

    Alt, E.O.; Levin, S.B.; Yakovlev, S.L.

    2004-01-01

    We present a novel approach for calculating charged-composite particle scattering. It consists in eliminating by means of a suitably chosen representation that part of the interaction which is of longest range and, hence, gives rise to all the troublesome features which plague charged particle scattering theories. In this paper only the simplest case is considered, namely that of two charged and one neutral particles which interact via pairwise strong potentials, and a repulsive Coulomb potential between the charged particles

  13. Trinucleon asymptotic normalization constants including Coulomb effects

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Lehman, D.R.; Payne, G.L.

    1982-01-01

    Exact theoretical expressions for calculating the trinucleon S- and D-wave asymptotic normalization constants, with and without Coulomb effects, are presented. Coordinate-space Faddeev-type equations are used to generate the trinucleon wave functions, and integral relations for the asymptotic norms are derived within this framework. The definition of the asymptotic norms in the presence of the Coulomb interaction is emphasized. Numerical calculations are carried out for the s-wave NN interaction models of Malfliet and Tjon and the tensor force model of Reid. Comparison with previously published results is made. The first estimate of Coulomb effects for the D-wave asymptotic norm is given. All theoretical values are carefully compared with experiment and suggestions are made for improving the experimental situation. We find that Coulomb effects increase the 3 He S-wave asymptotic norm by less than 1% relative to that of 3 H, that Coulomb effects decrease the 3 He D-wave asymptotic norm by approximately 8% relative to that of 3 H, and that the distorted-wave Born approximation D-state parameter, D 2 , is only 1% smaller in magnitude for 3 He than for 3 H due to compensating Coulomb effects

  14. pd Scattering Using a Rigorous Coulomb Treatment: Reliability of the Renormalization Method for Screened-Coulomb Potentials

    International Nuclear Information System (INIS)

    Hiratsuka, Y.; Oryu, S.; Gojuki, S.

    2011-01-01

    Reliability of the screened Coulomb renormalization method, which was proposed in an elegant way by Alt-Sandhas-Zankel-Ziegelmann (ASZZ), is discussed on the basis of 'two-potential theory' for the three-body AGS equations with the Coulomb potential. In order to obtain ASZZ's formula, we define the on-shell Moller function, and calculate it by using the Haeringen criterion, i. e. 'the half-shell Coulomb amplitude is zero'. By these two steps, we can finally obtain the ASZZ formula for a small Coulomb phase shift. Furthermore, the reliability of the Haeringen criterion is thoroughly checked by a numerically rigorous calculation for the Coulomb LS-type equation. We find that the Haeringen criterion can be satisfied only in the higher energy region. We conclude that the ASZZ method can be verified in the case that the on-shell approximation to the Moller function is reasonable, and the Haeringen criterion is reliable. (author)

  15. Local Momenta and a Three-Body Gauge

    Science.gov (United States)

    Schillaci, Michael Jay

    2000-06-01

    Here I discuss position-dependent, phlocal momentum which depend upon the logarithmic gradient of a continuum Coulomb pair. These momenta have become increasingly important in the modeling of three-body scattering phenomena, while their precise mathematical and physical nature has remained unexplored. These momenta are analytic at all values of the radial separation, except possibly at zero, and can be used to illustrate why the reigning 3C wavefunction works so well in describing many phlight-atom ion processes. I calculate the contributions for several subsystems, and explain the schillaci/threebody/ momentum.html>asymmetric results achieved by Wiese(L.M. Wiese phet al.), PRL 25, 4982 (1997)., on the breakup of the (H_3^+) ion - a massive three-body system. I propose that the local momentum herein formulated become part of a three-body gauge constraint. When applied, a non-vanishing, position-dependent phase will modulate the resulting transition amplitude. The size of this modulation depends critically upon the system.

  16. Nonunique and nonuniform mapping in few-body Coulomb-explosion imaging

    Science.gov (United States)

    Sayler, A. M.; Eckner, E.; McKenna, J.; Esry, B. D.; Carnes, K. D.; Ben-Itzhak, I.; Paulus, G. G.

    2018-03-01

    Much of our knowledge of molecular geometry and interaction dynamics comes from indirect measurements of the molecular fragments following breakup. This technique—Coulomb-explosion imaging (CEI), i.e., determining the initial molecular configuration of a system from the momenta of the resulting fragments using knowledge of the particle interactions—is one of the fundamental tools of molecular physics. Moreover, CEI has been a staple of molecular studies for decades. Here we show that one often cannot assign a unique initial configuration to the few-body breakup of a polyatomic molecule given the measurement of the resulting fragments' momenta. Specifically, multiple initial configurations can result in identical momenta for a molecule breaking into three or more parts. Further, the nonunique and nonuniform mapping from the initial configuration to the measured momenta also significantly complicates the determination of molecular alignment at the time of breakup.

  17. Three-body interactions in many-body effective field theory

    International Nuclear Information System (INIS)

    Furnstahl, R.J.

    2004-01-01

    This contribution is an advertisement for applying effective field theory (EFT) to many-body problems, including nuclei and cold atomic gases. Examples involving three-body interactions are used to illustrate how EFT's quantify and systematically eliminate model dependence, and how they make many-body calculations simpler and more powerful

  18. The exact solution of a four-body Coulomb problem

    Science.gov (United States)

    Ray, Hasi

    2018-03-01

    The elastic collision between two H-like atoms utilizing an ab initio static-exchange model (SEM) in the center of mass (CM) frame considering the system as a four-body Coulomb problem where all the Coulomb interaction terms in the direct and exchange channels are treated exactly, is studied thoroughly. A coupled-channel methodology in momentum space is used to solve Lippman-Schwinger equation following the integral approach. The new SEM code [Ray, Pramana 83, 907 (2014)] in which the Born-Oppenheimer (BO) scattering amplitude acts as input to derive the SEM amplitude using partial wave analysis, is utilized to study the s-, p-, d-wave elastic phase shifts and the corresponding partial cross sections. An augmented-Born approximation is used to include the contribution of higher partial waves more accurately to determine the total/integrated elastic cross sections. The effective range theory is used to determine the scattering lengths and effective ranges in the s-wave elastic scattering. The systems studied are Ps-Ps, Ps-Mu, Ps-H, Ps-D, Ps-T, Mu-Mu, Mu-H, Mu-D, Mu-T, H-H, H-D, H-T, D-D, D-T, T-T. The SEM includes the non-adiabatic short-range effects due to exchange. The MSEM code [Ray, Pramana 83, 907 (2014)] is used to study the effect of the long-range van der Waals interaction due to induced dipole polarizabilities of the atoms in H(1s)-H(1s) elastic collision. The dependence of scattering length on the reduced mass of the system and the dependence of scattering length on the strength of long-range van der Waals interaction that varies with the minimum interatomic distance are observed. Contribution to the Topical Issue "Low Energy Positron and Electron Interactions", edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.

  19. Coulomb effects in particle distributions inclusive

    International Nuclear Information System (INIS)

    Erazmus, B.; Martin, L.; Pluta, J.; Stavinky, A.

    1997-01-01

    Single pion distributions from central 158 A.GeV/c Pb + Pb collisions measured by the NA44 experiment show the effect of Coulomb interaction with the net charge produced during the reaction. Coulomb effects are analyzed with the help of the microscopic model RQMD and a model including the Coulomb interaction. Different sets of kinematical characteristics of the net charge have been used to reproduce the experimental data and a strong sensitivity to the charge value has been found. This study has evidenced the non-negligible influence of a Coulomb charge, present in the region of the central rapidity in heavy ion collisions on the inclusive distributions of the produced particles. A more thorough analysis of the data obtained from the experiment NA44 is now under way to take into account the hyperon decay that can modify the fraction of different particles, particularly at low transverse momenta

  20. Four-body effects in the 6He+58Ni scattering

    International Nuclear Information System (INIS)

    Morcelle, V.; Pires, K.C.C.; Rodríguez-Gallardo, M.; Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Faria, P.N. de; Mendes Junior, D.R.; Moro, A.M.; Gasques, L.R.; Leistenschneider, E.; Pampa Condori, R.; Scarduelli, V.; Morais, M.C.

    2014-01-01

    We present angular distributions of the 6 He+ 58 Ni scattering measured at three bombarding energies above the Coulomb barrier: E lab =12.2 MeV,16.5 MeV,and 21.7 MeV. The angular distributions have been analysed in terms of three- and four-body Continuum-Discretized Coupled-Channels calculations considering the effect of the 6 He breakup. A behaviour in the cross section at large angles has been observed which was reproduced only by the four-body Continuum-Discretized Coupled-Channels calculation.

  1. A non-orthogonal harmonic-oscillator basis for three-body problems

    International Nuclear Information System (INIS)

    Agrello, D.A.; Aguilera-Navarro, V.C.; Chacon, E.

    1979-01-01

    A set of harmonic-oscillator states suitable for the representation of the wave function of the bound states of a system of three identical particles, is presented. As an illustration of the possibilities of the states defined in this paper, they are applied in a variational determination of the lowest symmetric S state of 12 C, in the model of three structureless α particles interacting through the Coulomb force plus a phenomenological two-body force. (author) [pt

  2. Coulomb interaction in atomic and nuclear physics: Inner-Shell excitation, Coulomb dissociation of nuclei, and nuclear polarizability in electronic atoms

    International Nuclear Information System (INIS)

    Hoffmann, B.

    1984-07-01

    In three chapters different physical situations are described which have commonly the Coulomb interaction as driving force. The first two chapters study the Coulomb interactions in connection with the excitation of inner electron shells and the Coulomb excitation of nuclei in first order. In the third part on effect ofthe Coulomb interaction between electronic shell and nucleus is treated in second order (nuclear polarization), and its effect on the isotopic and isomeric shift is studied. (orig./HSI) [de

  3. Fermi Surface of Sr_{2}RuO_{4}: Spin-Orbit and Anisotropic Coulomb Interaction Effects.

    Science.gov (United States)

    Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva

    2016-03-11

    The topology of the Fermi surface of Sr_{2}RuO_{4} is well described by local-density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction alone worsens or does not correct this discrepancy. In order to reproduce experiments, it is essential to account for the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and the isotropic Coulomb term in determining the Fermi surface shape. Its effects are likely sizable in other correlated multiorbital systems. In addition, we find that the low-energy self-energy matrix-responsible for the reshaping of the Fermi surface-sizably differs from the static Hartree-Fock limit. Finally, we find a strong spin-orbital entanglement; this supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr_{2}RuO_{4}.

  4. Three-body Coulomb bound states

    Science.gov (United States)

    Bhatia, A. K.; Drachman, Richard J.

    1987-01-01

    The binding energies of three-particle systems containing two electrons and one positive particle of mass M are reexamined in an attempt to understand the approximate proportionality of the 1Se ground-state binding energies of the reduced masses, as pointed out by Botero and Green (1986). The contribution to the energy of the mass-polarization term is evaluated. No fundamental principle is involved, since the mass polarization merely decreases somewhat as the mass of the positive particle is reduced below the proton mass. In the case of the excited 3Pe state, this reduction is not sufficient to allow binding when M approaches the electron mass. Some properties of the recently observed negative muonium ion (e/-/ mu/+/ e/-/) are also computed.

  5. Three-body calculation of two-body threshold electrodisintegration of 3He and 3H

    International Nuclear Information System (INIS)

    Heimbach, C.R.; Lehman, D.R.; O'Connell, J.S.

    1977-01-01

    Threshold two-body electrodisintegration of 3 He and 3 H is investigated within the context of exact three-body theory. The calculations performed are based on the formalism of Gibson and Lehman. Careful consideration is given to the singularities of the disintegration Born amplitude for this case, since the momentum transfer is not zero, to assure validity of the numerical methods. Calculated results are compared with all the latest threshold 3 He electrodisintegration data which samples a range of scattered-electron angles, 92.6 0 0 , and incident electron energies, 40 MeV 0 3 H electrodisintegration for some of the same kinematics. The mechanism for the sharp rise as a function of excitation energy in the (e,e') cross section for theta/sub e/ approx. 90 0 due to the 2 S → 2 S monopole transition from Coulomb scattering is singled out by examination of the contributions to the Coulomb doublet amplitude. A similar analysis is carried out for the doublet and quartet transverse amplitudes where the 2 S → 4 P magnetic quadrupole transition dominates for excitation energies less than 20 MeV

  6. Asymptotic three-particle approach to the Coulomb breakup process {sup 6}Li + {sup 208}Pb → {sup 208}Pb + α + d

    Energy Technology Data Exchange (ETDEWEB)

    Igamov, S. B., E-mail: igamov@inp.uz [Uzbek Academy of Sciences, Institute of Nuclear Physics (Uzbekistan)

    2017-03-15

    On the basis of the distorted-wave method, experimental data on the triple-differential cross section for the Coulomb breakup reaction {sup 208}Pb({sup 6}Li, αd){sup 208}Pb are analyzed by employing a correct expression for the final-state {sup 208}Pb–α–d three-particle Coulomb wave function. It is shown that the effect of final-state three-particle Coulomb dynamics can be used to assess the kinematical condition of clean Coulomb breakup processes. New values of the astrophysical S factor for the direct-radiative-capture reaction d(α, γ){sup 6}Li at ultralow energies in the range of 70 ≤ E{sub dα} ≤ 600 keV were extracted from experimental data. The value of S(0) = 1.60 ± 0.17 MeV nb was obtained.

  7. Some studies in scatering by Coulomb modified nuclear potentials

    International Nuclear Information System (INIS)

    Laha, U.

    1988-01-01

    Recently, there has been a surge of interest in theoretical questions concerning the Coulomb nuclear problems with the main emphasis on their off-shell behaviour. Earlier approaches to the problem made use of a version of the two-potential formula as used by Bajzer. A slightly different point of view is presented here. An expression for the interacting Green's function for motion in the Coulomb plus Graz potential is constructed and used to obtain the half-off-shell T matrix in the ''maximal reduced form''. Similar results were also derived for the off-shell Jost functions. It is explicitly demonstrated that Coulomb and Coulomb-like potentials the half-off-shell T matrix can be expressed in terms of on-and off-shell Jost functions in the same way as one does for a purely short range interaction. In presenting the results for T matrix and other related quantities, the Coulomb effect is included rigorously. Results clearly delineate the branch point singularities originating from the long range nature of the Coulomb interaction and thus provide a better understanding of the off-shell two-body Coulomb-like T matrices. It is hoped that these results will form an adequate starting point for rigorous calculations on few-body systems with charges. (author). 16 refs

  8. The Fermi surface of Sr{sub 2}RuO{sub 4}: spin-orbit and anisotropic Coulomb interaction effects

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva [Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2016-07-01

    The topology of the Fermi surface of Sr{sub 2}RuO{sub 4} is well described by local density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction worsen or does not correct this discrepancy. In order to reproduce experiments, it is essential to include the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and with the isotropic Coulomb term. This mechanism is likely to be at work in other multi-orbital systems. Finally, we find a strong spin-orbital entanglement. This supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr{sub 2}RuO{sub 4}.

  9. Diffusion in Coulomb crystals.

    Science.gov (United States)

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  10. Calculation of proton-deuteron phase parameters including the Coulomb force

    International Nuclear Information System (INIS)

    Alt, E.O.; Sandhas, W.; Ziegelmann, H.

    1985-04-01

    A previously proposed exact method for including the Coulomb force in three-body collisions is applied to proton-deuteron scattering. We present phase shifts for angular momenta up to L=9, from elastic threshold to 50 MeV proton laboratory energy. Separable rank-one potentials are taken for the nuclear interactions. A charge-independent and a charge-symmetric choise, while leading to different neutron-deuteron and proton-deuteron phase parameters, nevertheless yields practically the same Coulomb corrections. We, moreover, investigate the question of P-wave resonances.A critical comparison of our results with those obtained in a co-ordinate space formalism is performed. Furthermore, proposals for an approximate inclusion of the Coulomb potential are tested, and found unsatisfactory. (orig.)

  11. Coulomb singularity effects in tunnelling spectroscopy of individual impurities

    OpenAIRE

    Arseyev, P. I.; Maslova, N. S.; Panov, V. I.; Savinov, S. V.

    2002-01-01

    Non-equilibrium Coulomb effects in resonant tunnelling processes through deep impurity states are analyzed. It is shown that Coulomb vertex corrections to the tunnelling transfer amplitude lead to a power-law singularity in current- voltage characteristics

  12. Coulomb corrections to scattering length and effective radius

    International Nuclear Information System (INIS)

    Mur, V.D.; Kudryavtsev, A.E.; Popov, V.S.

    1983-01-01

    The problem considered is extraction of the ''purely nuclear'' scattering length asub(s) (corresponding to the strong potential Vsub(s) at the Coulomb interaction switched off) from the Coulomb-nuclear scattering length asub(cs), which is an object of experimental measurement. The difference between asub(s) and asub(cs) is especially large if the potential Vsub(s) has a level (real or virtual) with an energy close to zero. For this case formulae are obtained relating the scattering lengths asub(s) and asub(cs), as well as the effective radii rsub(s) and rsub(cs). The results are extended to states with arbitrary angular momenta l. It is shown that the Coulomb correction is especially large for the coefficient with ksup(2l) in the expansion of the effective radius; in this case the correction contains a large logarithm ln(asub(B)/rsub(0)). The Coulomb renormalization of other terms in the effective radius espansion is of order (rsub(0)/asub(B)), where r 0 is the nuclear force radius, asub(B) is the Bohr radius. The obtained formulae are tried on a number of model potentials Vsub(s), used in nuclear physics

  13. Influence of effective three-body force on the spectroscopy of 19O

    International Nuclear Information System (INIS)

    Haung, W.; Song, H.; Wang, Z.; Kuo, T.T.S.

    1983-01-01

    The purpose of the present paper is to investigate the influence of effective three-body force on the spectroscopy of 19 O. The model space was chosen as the configuration space which consists of the j-j coupling states of three valence neutrons in the s-d shell. The effective interaction including two- and three-body forces was then derived in the framework of the folded diagram method (FDM). Besides two traditional three-body terms, there is another kind of three-body force, the folded one constructed with two two-body diagrams, in FDM. The G-matrix elements of soft core Reid force were used in the numerical calculations. In the case of lacking the G-matrix elements, we adopted the matrix elements of M-3Y force as the equivalents. The results show that the influence of the effective three-body forces on the spectrum of 19 O is not of importance, but the part coming from the folded three-body term is worth noting

  14. The baryonic spectrum in a constituent quark model including a three-body force

    International Nuclear Information System (INIS)

    Desplanques, B.; Gignoux, C.; Silvestre-Brac, B.; Gonzalez, P.; Navarro, J.; Noguera, S.

    1992-01-01

    We analyze, within a non-relativistic quark model, the low energy part of the baryonic spectrum in the octet and decuplet flavour representations. The relevance of a strong Coulomb potential is emphasized in order to explain its general features. The addition of a three-body force allows to solve the 'Roper puzzle', giving a consistent explanation to its relative position in the spectrum. (orig.)

  15. Representation of the Coulomb Matrix Elements by Means of Appell Hypergeometric Function F 2

    Science.gov (United States)

    Bentalha, Zine el abidine

    2018-06-01

    Exact analytical representation for the Coulomb matrix elements by means of Appell's double series F 2 is derived. The finite sum obtained for the Appell function F 2 allows us to evaluate explicitly the matrix elements of the two-body Coulomb interaction in the lowest Landau level. An application requiring the matrix elements of Coulomb potential in quantum Hall effect regime is presented.

  16. Exclusion of nuclear forces in heavy-ion Coulomb excitation and Coulomb fission experiments

    International Nuclear Information System (INIS)

    Neese, R.E.; Guidry, M.W.

    1982-01-01

    A simple prescription for estimating the energy at which nuclear forces begin to play a role in heavy-ion Coulomb excitation and Coulomb fission experiments is presented. The method differs from most commonly used recipes in accounting for projectile and target nucleus deformation effects. Using a single adjustable parameter the formula reproduces the energy for the onset of Coulomb-nuclear interference effects for a broad range of heavy-ion systems. It is suggested that most Coulomb fission experiments which have been done involve both Coulomb and nuclear excitation processes and should more properly be termed Coulomb-nuclear fission experiments

  17. Ginzburg criterion for ionic fluids: the effect of Coulomb interactions.

    Science.gov (United States)

    Patsahan, O

    2013-08-01

    The effect of the Coulomb interactions on the crossover between mean-field and Ising critical behavior in ionic fluids is studied using the Ginzburg criterion. We consider the charge-asymmetric primitive model supplemented by short-range attractive interactions in the vicinity of the gas-liquid critical point. The model without Coulomb interactions exhibiting typical Ising critical behavior is used to calibrate the Ginzburg temperature of the systems comprising electrostatic interactions. Using the collective variables method, we derive a microscopic-based effective Hamiltonian for the full model. We obtain explicit expressions for all the relevant Hamiltonian coefficients within the framework of the same approximation, i.e., the one-loop approximation. Then we consistently calculate the reduced Ginzburg temperature t(G) for both the purely Coulombic model (a restricted primitive model) and the purely nonionic model (a hard-sphere square-well model) as well as for the model parameters ranging between these two limiting cases. Contrary to the previous theoretical estimates, we obtain the reduced Ginzburg temperature for the purely Coulombic model to be about 20 times smaller than for the nonionic model. For the full model including both short-range and long-range interactions, we show that t(G) approaches the value found for the purely Coulombic model when the strength of the Coulomb interactions becomes sufficiently large. Our results suggest a key role of Coulomb interactions in the crossover behavior observed experimentally in ionic fluids as well as confirm the Ising-like criticality in the Coulomb-dominated ionic systems.

  18. Highly accurate bound state calculations of the two-center molecular ions by using the universal variational expansion for three-body systems

    Science.gov (United States)

    Frolov, Alexei M.

    2018-03-01

    The universal variational expansion for the non-relativistic three-body systems is explicitly constructed. This universal expansion can be used to perform highly accurate numerical computations of the bound state spectra in various three-body systems, including Coulomb three-body systems with arbitrary particle masses and electric charges. Our main interest is related to the adiabatic three-body systems which contain one bound electron and two heavy nuclei of hydrogen isotopes: the protium p, deuterium d and tritium t. We also consider the analogous (model) hydrogen ion ∞H2+ with the two infinitely heavy nuclei.

  19. Study of the 17Ne Coulomb dissociation process and its role for the rp process of nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Marganiec, Justyna [TU Darmstadt (Germany); EMMI, GSI Darmstadt (Germany); Wamers, Felix [EMMI, GSI Darmstadt (Germany); TU Darmstadt (Germany); GSI Darmstadt (Germany); FIAS, Frankfurt am Main (Germany); Aumann, Thomas [TU Darmstadt (Germany); GSI Darmstadt (Germany); Egorova, Irina [BLTP JINR Dubna (Russian Federation); Grigorenko, Leonid [FLNR JINR Dubna (Russian Federation); RRC KI, Moscow (Russian Federation); Heil, Michael [GSI Darmstadt (Germany); Perfenova, Yuliya [FLNR JINR Dubna (Russian Federation); INP, Moscow (Russian Federation); Plag, Ralf [GSI Darmstadt (Germany); Goethe-Universitaet, Frankfurt am Main (Germany); Collaboration: R3B-Collaboration

    2014-07-01

    The study of {sup 17}Ne Coulomb dissociation process gives us a possibility to study the time-reversed reaction {sup 15}O(2p,γ){sup 17}Ne, with the detailed balance theorem. This reaction could serve as a bypass of {sup 15}O waiting point during the rp process, and move the initial CNO material towards heavier nuclei. The two-proton capture can proceed sequentially or directly from the three-body continuum. And the reaction rate can be enhanced by a few orders of magnitude by taking the three-body continuum into account. The Coulomb dissociation method is the one way to experimentally determine the three-body radiative capture cross section, which is needed to verify theoretical calculations, and which was not experimentally determined yet. The experiment has been performed at the LAND/R3B setup at GSI.

  20. Coulomb corrections to nuclear scattering lengths and effective ranges for weakly bound systems

    International Nuclear Information System (INIS)

    Mur, V.D.; Popov, V.S.; Sergeev, A.V.

    1996-01-01

    A procedure is considered for extracting the purely nuclear scattering length as and effective range rs (which correspond to a strong-interaction potential Vs with disregarded Coulomb interaction) from the experimentally determined nuclear quantities acs and rcs, which are modified by Coulomb interaction. The Coulomb renormalization of as and rs is especially strong if the system under study involves a level with energy close to zero (on the nuclear scale). This applies to formulas that determine the Coulomb renormalization of the low-energy parameters of s scattering (l=0). Detailed numerical calculations are performed for coefficients appearing in the equations that determine Coulomb corrections for various models of the potential Vs(r). This makes it possible to draw qualitative conclusions that the dependence of Coulomb corrections on the form of the strong-interaction potential and, in particular, on its small-distance behavior. A considerable enhancement of Coulomb corrections to the effective range rs is found for potentials with a barrier

  1. Mirror symmetry and Coulomb effects in light N ≅ Z nuclei

    International Nuclear Information System (INIS)

    Bentley, M.A.; Williams, S.J.; Joss, D.T.

    2002-01-01

    Some latest results from gamma-ray spectroscopic studies of high spin states of isobaric multiplets are presented. An experimental programme is underway to examine exited states of isobaric multiplets of total isospin T 1/2 and T = 1 and the comparison of energies of excited states can be interpreted in terms of Coulomb effects. Through a systematic study of these Coulomb effects, and through examination of the calculated Coulomb energies from full pf-shell model calculations, it is now becoming clear that measurement of Coulomb energies can yield very detailed information on the evolution of nuclear structure phenomena as a function of energy and angular momentum. In this contribution, latest results of studies of isobaric analogue states at high spin in the A = 50, 51 and 53 systems are presented. (author)

  2. Effects of screened Coulomb (Yukawa) and exponential-cosine-screened Coulomb potentials on photoionization of H and He+

    International Nuclear Information System (INIS)

    Lin, C.Y.; Ho, Y.K.

    2010-01-01

    The screening effects due to the exponential-cosine-screened Coulomb and screened Coulomb (Yukawa) potentials on photoionization processes are explored within the framework of complex coordinate rotation method. The energy levels of H and He + in both screened potentials shifted with various Debye screening lengths are presented. The photoionization cross sections illustrate the considerable screening effects on photoionization processes in low energy region. The shape resonances can be found near ionization thresholds for certain of Debye screening lengths. The relations between the appearance of resonances and the existence of quasi-bound states under shielding conditions are discussed. (authors)

  3. 11Li Breakup on 208 at energies around the Coulomb barrier.

    Science.gov (United States)

    Fernández-García, J P; Cubero, M; Rodríguez-Gallardo, M; Acosta, L; Alcorta, M; Alvarez, M A G; Borge, M J G; Buchmann, L; Diget, C A; Falou, H A; Fulton, B R; Fynbo, H O U; Galaviz, D; Gómez-Camacho, J; Kanungo, R; Lay, J A; Madurga, M; Martel, I; Moro, A M; Mukha, I; Nilsson, T; Sánchez-Benítez, A M; Shotter, A; Tengblad, O; Walden, P

    2013-04-05

    The inclusive breakup for the (11)Li + (208)Pb reaction at energies around the Coulomb barrier has been measured for the first time. A sizable yield of (9)Li following the (11)Li dissociation has been observed, even at energies well below the Coulomb barrier. Using the first-order semiclassical perturbation theory of Coulomb excitation it is shown that the breakup probability data measured at small angles can be used to extract effective breakup energy as well as the slope of B(E1) distribution close to the threshold. Four-body continuum-discretized coupled-channels calculations, including both nuclear and Coulomb couplings between the target and projectile to all orders, reproduce the measured inclusive breakup cross sections and support the presence of a dipole resonance in the (11)Li continuum at low excitation energy.

  4. The three-point function in split dimensional regularization in the Coulomb gauge

    CERN Document Server

    Leibbrandt, G

    1998-01-01

    We use a gauge-invariant regularization procedure, called ``split dimensional regularization'', to evaluate the quark self-energy $\\Sigma (p)$ and quark-quark-gluon vertex function $\\Lambda_\\mu (p^\\prime,p)$ in the Coulomb gauge, $\\vec{\\bigtriangledown}\\cdot\\vec{A}^a = 0$. The technique of split dimensional regularization was designed to regulate Coulomb-gauge Feynman integrals in non-Abelian theories. The technique which is based on two complex regulating parameters, $\\omega$ and $\\sigma$, is shown to generate a well-defined set of Coulomb-gauge integrals. A major component of this project deals with the evaluation of four-propagator and five-propagator Coulomb integrals, some of which are nonlocal. It is further argued that the standard one-loop BRST identity relating $\\Sigma$ and $\\Lambda_\\mu$, should by rights be replaced by a more general BRST identity which contains two additional contributions from ghost vertex diagrams. Despite the appearance of nonlocal Coulomb integrals, both $\\Sigma$ and $\\Lambda_\\...

  5. Three-body continuum states on a Lagrange mesh

    International Nuclear Information System (INIS)

    Descouvemont, P.; Tursunov, E.; Baye, D.

    2006-01-01

    Three-body continuum states are investigated with the hyperspherical method on a Lagrange mesh. The R-matrix theory is used to treat the asymptotic behaviour of scattering wave functions. The formalism is developed for neutral as well as for charged systems. We point out some specificities of continuum states in the hyperspherical method. The collision matrix can be determined with a good accuracy by using propagation techniques. The method is applied to the 6 He (=α+n+n) and 6 Be (=α+p+p) systems, as well as to 14 Be (=Be12+n+n). For 6 He, we essentially recover results of the literature. Application to 14 Be suggests the existence of an excited 2 + state below threshold. The calculated B(E2) value should make this state observable with Coulomb excitation experiments

  6. The three-point function in split dimensional regularization in the Coulomb gauge

    International Nuclear Information System (INIS)

    Leibbrandt, G.

    1998-01-01

    We use a gauge-invariant regularization procedure, called split dimensional regularization, to evaluate the quark self-energy Σ(p) and quark-quark-gluon vertex function Λ μ (p',p) in the Coulomb gauge, ∇-vector.A - vectora=0. The technique of split dimensional regularization was designed to regulate Coulomb-gauge Feynman integrals in non-Abelian theories. The technique which is based on two complex regulating parameters, ω and σ, is shown to generate a well-defined set of Coulomb-gauge integrals. A major component of this project deals with the evaluation of four-propagator and five-propagator Coulomb integrals, some of which are non-local. It is further argued that the standard one-loop BRST identity relating Σ and Λ μ , should by rights be replaced by a more general BRST identity which contains two additional contributions from ghost vertex diagrams. Despite the appearance of non-local Coulomb integrals, both Σ and Λ μ are local functions which satisfy the appropriate BRST identity. Application of split dimensional regularization to two-loop energy integrals is briefly discussed. (orig.)

  7. Application of the three-body model to the reactions 6Li(3He,t 3He)3He and 6Li(3He,3He3He)3H

    International Nuclear Information System (INIS)

    Haftel, M.I.; Allas, R.G.; Beach, L.A.; Bondelid, R.O.; Petersen, E.L.; Slaus, I.; Lambert, J.M.; Treado, P.A.

    1977-01-01

    Experimental and theoretical cross sections are presented for the 6 Li( 3 He, 3 He 3 He) 3 H and 6 Li( 3 He,t 3 He) 3 He reactions for the symmetric angle pairs 20 0 -20 0 , 28.3 0 -28.3 0 , and 35 0 -35 0 . The theoretical cross sections are calculated in a three-body model where the trions (i.e., mass-3 nuclei) are treated as elementary particles with 6 Li being a 3 He- 3 H bound state. The trion-trion interaction is represented by S wave separable potentials with the breakup cross sections calculated with the tree-body Haftel-Ebenhoeh code. the Coulomb interaction is taken into account by fitting the separable potential parameters to the trion-trion scattering data and is included approximately in the breakup code. The experimental cross sections are compared with both the plane-wave impulse approximation and the three-body model predictions. The plane-wave impulse approximation predicts both the shapes and magnitudes poorly (10 to 20 times experiment). Without Coulomb corrections the three-body model gives good agreement with experiment for the shapes of the spectra with the magnitudes generally being about 40% of experiment for 6 Li( 3 He, 3 He 3 He) 3 H and about 80% for 6 Li( 3 He,t 3 He) 3 He. The Coulomb corrections improve the magnitudes predicted by the three-body model but not the shapes. It is observed that for these reactions S wave separable potentials describe the breakup data much better than they do the two-body trion-trion scattering data. This result should encourage further three-body treatment of these and similar reactions

  8. Dynamics in few body Coulomb problems

    International Nuclear Information System (INIS)

    Ovchinnikov, S.Y.; Macek, J.H.; Tantawi, R.S.; Sabbah, A.S.

    1999-01-01

    We develop the 'positive energy Sturmian technique' for the solution of time-dependent Schroedinger equations which describe few Coulomb centers with scattering initial conditions. The 'positive energy Sturmian technique' is based on the following main steps: (i) time-dependent scaled transformation; (ii) Fourier transformation into the frequency domain; (iii) outgoing wave Sturmian expansions; and (iv) solution of coupled equations. The technique has been applied in electron-atom and ion-atom collisions for calculations of energy and angular distributions of emitted electrons and excitations of atoms. Refs. 2 (author)

  9. Fermi-edge transmission resonance in graphene driven by a single Coulomb impurity.

    Science.gov (United States)

    Karnatak, Paritosh; Goswami, Srijit; Kochat, Vidya; Pal, Atindra Nath; Ghosh, Arindam

    2014-07-11

    The interaction between the Fermi sea of conduction electrons and a nonadiabatic attractive impurity potential can lead to a power-law divergence in the tunneling probability of charge through the impurity. The resulting effect, known as the Fermi edge singularity (FES), constitutes one of the most fundamental many-body phenomena in quantum solid state physics. Here we report the first observation of FES for Dirac fermions in graphene driven by isolated Coulomb impurities in the conduction channel. In high-mobility graphene devices on hexagonal boron nitride substrates, the FES manifests in abrupt changes in conductance with a large magnitude ≈e(2)/h at resonance, indicating total many-body screening of a local Coulomb impurity with fluctuating charge occupancy. Furthermore, we exploit the extreme sensitivity of graphene to individual Coulomb impurities and demonstrate a new defect-spectroscopy tool to investigate strongly correlated phases in graphene in the quantum Hall regime.

  10. Coulomb effect in the tri nucleon system in an optical potential model

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Delfino, A.; Maryland Univ., College Park, MD

    1993-02-01

    A Saxon-Woods type nucleon-deuteron optical potential in suggested and applied numerically to the study of the static Coulomb effect in the low-energy tri nucleon system. In particular, the observed correlations between the static Coulomb energy of 3 He and the triton binding energy, and that between the neutron-deuteron and the proton-deuteron scattering lengths are simulated with this optical potential. In view of this study and a previous one employing two other effective potentials its is unlikely that a a study of the usual static Coulomb effect in the tri nucleon system will reveal new and meaningful physics. (author). 12 refs, 2 figs

  11. 11Li Breakup on 208Pb at Energies Around the Coulomb Barrier

    DEFF Research Database (Denmark)

    Fernández-García, J.P.; Cubero, M.; Rodríguez-Gallardo, M.

    2013-01-01

    The inclusive breakup for the 11Li+208Pb reaction at energies around the Coulomb barrier has been measured for the first time. A sizable yield of 9Li following the 11Li dissociation has been observed, even at energies well below the Coulomb barrier. Using the first-order semiclassical perturbation...... theory of Coulomb excitation it is shown that the breakup probability data measured at small angles can be used to extract effective breakup energy as well as the slope of B(E1) distribution close to the threshold. Four-body continuum-discretized coupled-channels calculations, including both nuclear...... and Coulomb couplings between the target and projectile to all orders, reproduce the measured inclusive breakup cross sections and support the presence of a dipole resonance in the 11Li continuum at low excitation energy....

  12. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Anne Myers [Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States)

    2016-06-07

    Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ~2.8 and ~5.2 nm (~410 and ~2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies for the strongly Raman-active “longitudinal optical” phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.

  13. Three-body calculations at Los Alamos

    International Nuclear Information System (INIS)

    Friar, J.L.

    1986-01-01

    This work was motivated by four goals: (1) by working in configuration space, where intuition is greatest, investigate graphically those trinucleon properties which are determined by specific features of wave functions; (2) produce benchmark calculations against which new techniques and numerical methods can be measured; (3) investigate the effect of the Coulomb interaction between the two protons in 3 He and in the p-d system; (4) systematically investigate the various trinucleon observables. Configuration space is particularly well-suited for investigating the Coulomb problem. The singularity and discontinuity problems associated with the Coulomb (momentum space) t-matrix are transformed into boundary condition problems in configuration space. One simply adds the Coulomb potential to the strong interaction. In order to produce accurate numerical solutions powerful techniques were adopted which have not frequently been used in nuclear physics. These spline methods together with collocation techniques combine the power of Gaussian quadrature procedures with the flexibility and strength of finite element approaches to solving partial differential equations. The union of these methods allows one to calculate wavefunctions at the same qualitative level of accuracy as the eigenvalues. Observables can therefore be calculated with considerable confidence. 30 refs., 6 figs

  14. Coulomb correction calculations of pp Bremsstrahlung

    International Nuclear Information System (INIS)

    Katsogiannis, A.; Amos, K.; Jetter, M.; von Geramb, H.V.

    1994-01-01

    The effects of the Coulomb interaction upon the photon cross section and analyzing power from pp Bremsstrahlung have been studied in detail. Off-shell properties of the Coulomb T matrices have been considered but the associated, Coulomb modified, hadronic T matrices are important elements in any analyses of low energy, forward proton scattering data. At the lowest energy considered (5 MeV), the full calculations gave cross sections that were half the size of those found without Coulomb effects or with a simple model approximation to them. With increasing energy, the cross sections varied to those characteristic of magnetic interaction dominance and the specific differences due to Coulomb effects diminished. 47 refs., 7 figs

  15. Analytic structure of many-body Coulombic wave functions

    DEFF Research Database (Denmark)

    Fournais, Søren; Hoffmann-Ostenhof, Maria; Hoffmann-Ostenhof, Thomas

    2009-01-01

    We investigate the analytic structure of solutions of non-relativistic Schrödinger equations describing Coulombic many-particle systems. We prove the following: Let ψ(x) with denote an N-electron wavefunction of such a system with one nucleus fixed at the origin. Then in a neighbourhood of a coal...

  16. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics.

    Science.gov (United States)

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-06-03

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.

  17. Heat Coulomb blockade of one ballistic channel

    Science.gov (United States)

    Sivre, E.; Anthore, A.; Parmentier, F. D.; Cavanna, A.; Gennser, U.; Ouerghi, A.; Jin, Y.; Pierre, F.

    2018-02-01

    Quantum mechanics and Coulomb interaction dictate the behaviour of small circuits. The thermal implications cover fundamental topics from quantum control of heat to quantum thermodynamics, with prospects of novel thermal machines and an ineluctably growing influence on nanocircuit engineering. Experimentally, the rare observations thus far include the universal thermal conductance quantum and heat interferometry. However, evidence for many-body thermal effects paving the way to markedly different heat and electrical behaviours in quantum circuits remains wanting. Here we report on the observation of the Coulomb blockade of electronic heat flow from a small metallic circuit node, beyond the widespread Wiedemann-Franz law paradigm. We demonstrate this thermal many-body phenomenon for perfect (ballistic) conduction channels to the node, where it amounts to the universal suppression of precisely one quantum of conductance for the transport of heat, but none for electricity. The inter-channel correlations that give rise to such selective heat current reduction emerge from local charge conservation, in the floating node over the full thermal frequency range (laws for thermal transport in nanocircuits.

  18. Charge-carrier dynamics and Coulomb effects in semiconductor tetrapods

    International Nuclear Information System (INIS)

    Mauser, Christian

    2011-01-01

    In this thesis the Coulomb interaction and its influence on localization effects and dynamics of charge carriers in semiconductor nanocrystals were studied. In the studied nanostructures it deals with colloidal tetrapod heterostructures, which consist of a cadmium selenide (CdSe) core and four tetraedrical grown cadmium sulfide (CdS) respectively cadmium telluride (CdTe) legs, which exhibit a type-I respectively type-II band transition. The dynamics and interactions were studied by means of photoluminescence (PL) and absorption measurements both on the ensemble and on single nanoparticles, as well as time-resolved PL and transient absorption spectroscopy. Additionally theoretical simulations of the wave-function distributions were performed, which are based on the effective-mass approximation. The special band structure of the CdSe/CdS tetrapods offers a unique possibility to study the Coulomb interaction. The flat conduction band in these heterostructures makes the electron via the Coulomb interaction sensitive to the localization position of the hole within the structure. The valence band has instead a potential maximum in the CdSe, which leads to a directed localization of the hole and the photoluminescence of the core. Polarization-resolved measurements showed hereby an anisotropy of the photoluminescence, which could be explained by means of simulations of the wave-function distribution with an asymmetry at the branching point. Charge-carrier localization occur mainly both in longer structures and in trap states in the CdS leg and can be demonstrated in form of a dual emission from a nanocrystal. The charge-carrier dynamics of electron and hole in tetrapods is indeed coupled by the Coulomb interaction, however it cannot be completely described in an exciton picture. The coupled dynamics and the Coulomb interaction were studied concerning a possible influence of the geometry in CdSe/CdS nanorods and compared with those of the tetrapods. The interactions of the

  19. Coulomb systems seen as critical systems: Finite-size effects in two dimensions

    International Nuclear Information System (INIS)

    Jancovici, B.; Manificat, G.; Pisani, C.

    1994-01-01

    It is known that the free energy at criticality of a finite two-dimensional system of characteristic size L has in general a term which behaves like log L as L → ∞; the coefficient of this term is universal. There are solvable models of two-dimensional classical Coulomb systems which exhibit the same finite-size correction (except for its sign) although the particle correlations are short-ranged, i.e., noncritical. Actually, the electrical potential and electrical field correlations are critical at all temperatures (as long as the Coulomb system is a conductor), as a consequence of the perfect screening property of Coulomb systems. This is why Coulomb systems have to exhibit critical finite-size effects

  20. Simulation of Coulomb interaction effects in electron sources

    International Nuclear Information System (INIS)

    Rouse, John; Zhu Xieqing; Liu Haoning; Munro, Eric

    2011-01-01

    Over many years, we have developed electron source simulation software that has been used widely in the electron optics community to aid the development of rotationally symmetric electron and ion guns. The simulation includes the modelling of cathode emission and the effects of volumetric space charge. In the present paper we describe the existing software and explain how we have extended this software to include the effects of discrete Coulomb interactions between the electrons as they travel from the cathode surface to the exit of the gun. In the paper, we will describe the numerical models we have employed, the techniques we have used to maximize the speed of the Coulomb force computation and present several illustrative examples of cases analyzed using the new software, including thermal field emitters, LaB 6 guns and flat dispenser-type cathodes.

  1. Electron induced break-up of helium. Benchmark experiments on a dynamical four-body Coulomb system

    International Nuclear Information System (INIS)

    Duerr, M.

    2006-01-01

    This work presents an experimental study of fragmentation of helium by electron impact, in which absolute fully differential cross sections for single ionization, ionization-excitation and double ionization were determined. By applying a charged-particle imaging technique, the so-called 'reaction microscope', a large fraction of the final-state momentum space is covered, and the major limitations of previous experimental methods applied in this field could be overcome. Decisive modifications of the previous reaction microscope were undertaken, the most important one being the arrangement of the projectile beam parallel to the imaging-fields. For single ionization on helium an enhanced electron emission outside the projectile scattering plane is observed at both considered impact energies (102 eV and 1 keV), which is similar to the result found for ion-impact (M. Schulz et al., Nature (London) 422, 48 (2003)). The angle resolved cross sections obtained for double ionization at 105 eV impact energy reveal, that the process is dominated by the mutual repulsion of the three final-state continuum electrons. However, signatures of more complex dynamics are also observed. The data provide an ultimate benchmark for recently developed theories treating the dynamical three- and four-body Coulomb problem. (orig.)

  2. Electron induced break-up of helium. Benchmark experiments on a dynamical four-body Coulomb system

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, M.

    2006-07-05

    This work presents an experimental study of fragmentation of helium by electron impact, in which absolute fully differential cross sections for single ionization, ionization-excitation and double ionization were determined. By applying a charged-particle imaging technique, the so-called 'reaction microscope', a large fraction of the final-state momentum space is covered, and the major limitations of previous experimental methods applied in this field could be overcome. Decisive modifications of the previous reaction microscope were undertaken, the most important one being the arrangement of the projectile beam parallel to the imaging-fields. For single ionization on helium an enhanced electron emission outside the projectile scattering plane is observed at both considered impact energies (102 eV and 1 keV), which is similar to the result found for ion-impact (M. Schulz et al., Nature (London) 422, 48 (2003)). The angle resolved cross sections obtained for double ionization at 105 eV impact energy reveal, that the process is dominated by the mutual repulsion of the three final-state continuum electrons. However, signatures of more complex dynamics are also observed. The data provide an ultimate benchmark for recently developed theories treating the dynamical three- and four-body Coulomb problem. (orig.)

  3. Electron capture by alpha particles from helium atoms in a Coulomb-Born distorted-wave approximation

    International Nuclear Information System (INIS)

    Ghanbari-Adivi, E; Ghavaminia, H

    2012-01-01

    A three-body Coulomb-Born continuum distorted-wave approximation is applied to calculate the differential and total cross sections for single-electron exchange in the collision of fast alpha particles with helium atoms in their ground states. The applied first-order distorted wave theory satisfies correct Coulomb boundary conditions. Both post and prior forms of the transition amplitude are calculated. The nuclear-screening effect of the passive electron on the differential and total cross sections is investigated. The results are compared with those of other theories and with the available experimental data. For differential cross sections, the comparisons show a reasonable agreement with empirical measurements at higher impact energies. The agreement between experimental data and the present calculations for total cross sections with the average of the post and prior forms of the transition amplitude is reasonable at all the specified energies.

  4. Identification of absolute geometries of cis and trans molecular isomers by Coulomb Explosion Imaging.

    Science.gov (United States)

    Ablikim, Utuq; Bomme, Cédric; Xiong, Hui; Savelyev, Evgeny; Obaid, Razib; Kaderiya, Balram; Augustin, Sven; Schnorr, Kirsten; Dumitriu, Ileana; Osipov, Timur; Bilodeau, René; Kilcoyne, David; Kumarappan, Vinod; Rudenko, Artem; Berrah, Nora; Rolles, Daniel

    2016-12-02

    An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C 2 H 2 Br 2 ). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. The experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model.

  5. Coulomb interaction in multiple scattering theory

    International Nuclear Information System (INIS)

    Ray, L.; Hoffmann, G.W.; Thaler, R.M.

    1980-01-01

    The treatment of the Coulomb interaction in the multiple scattering theories of Kerman-McManus-Thaler and Watson is examined in detail. By neglecting virtual Coulomb excitations, the lowest order Coulomb term in the Watson optical potential is shown to be a convolution of the point Coulomb interaction with the distributed nuclear charge, while the equivalent Kerman-McManus-Thaler Coulomb potential is obtained from an averaged, single-particle Coulombic T matrix. The Kerman-McManus-Thaler Coulomb potential is expressed as the Watson Coulomb term plus additional Coulomb-nuclear and Coulomb-Coulomb cross terms, and the omission of the extra terms in usual Kerman-McManus-Thaler applications leads to negative infinite total reaction cross section predictions and incorrect pure Coulomb scattering limits. Approximations are presented which eliminate these anomalies. Using the two-potential formula, the full projectile-nucleus T matrix is separated into two terms, one resulting from the distributed nuclear charge and the other being a Coulomb distorted nuclear T matrix. It is shown that the error resulting from the omission of the Kerman-McManus-Thaler Coulomb terms is effectively removed when the pure Coulomb T matrix in Kerman-McManus-Thaler is replaced by the analogous quantity in the Watson approach. Using the various approximations, theoretical angular distributions are obtained for 800 MeV p+ 208 Pb elastic scattering and compared with experimental data

  6. Multivariable hypergeometric solutions for three charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Gasaneo, G.; Colavecchia, F.D.; Garibotti, C.R. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche]|[Consejo Nacional de Investigaciones Cientificas y Tecnicas, San Carlos de Bariloche (Argentina); Miraglia, J.E.; Macri, P. [IAFE, Consejo de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina)

    1997-04-28

    We present a new wavefunction which describes the ion-atom problem above the ionization threshold. This is an approximate solution of the Schrodinger equation for the three-body Coulomb problem that can be expressed in terms of a confluent hypergeometric function of two variables. The proposed wavefunction includes correlation among the motions of the three particles and verifies the correct Coulombic asymptotic behaviours. (author).

  7. Effect of three-body forces on the phase behavior of charged colloids

    International Nuclear Information System (INIS)

    Wu, J. Z.; Bratko, D.; Blanch, H. W.; Prausnitz, J. M.

    2000-01-01

    Statistical-thermodynamic theory for predicting the phase behavior of a colloidal solution requires the pair interaction potential between colloidal particles in solution. In practice, it is necessary to assume pairwise additivity for the potential of mean force between colloidal particles, but little is known concerning the validity of this assumption. This paper concerns interaction between small charged colloids, such as surfactant micelles or globular proteins, in electrolyte solutions and the multibody effect on phase behavior. Monte Carlo simulations for isolated colloidal triplets in equilateral configurations show that, while the three-body force is repulsive when the three particles are near contact, it becomes short-ranged attractive at further separations, contrary to a previous study where the triplet force is attractive at all separations. The three-body force arises mainly from hard-sphere collisions between colloids and small ions; it is most significant in solutions of monovalent salt at low concentration where charged colloids experience strong electrostatic interactions. To illustrate the effect of three-body forces on the phase behavior of charged colloids, we calculated the densities of coexisting phases using van der Waals-type theories for colloidal solutions and for crystals. For the conditions investigated in this work, even though the magnitude of the three-body force may be as large as 10% of the total force at small separations, three-body forces do not have a major effect on the densities of binary coexisting phases. However, coexisting densities calculated using Derjaguin-Landau-Verwey-Overbeek theory are much different from those calculated using our simulated potential of mean force. (c) 2000 American Institute of Physics

  8. Three-body forces: a status report

    International Nuclear Information System (INIS)

    Coon, S.A.

    1976-01-01

    Real three-body forces due to meson exchange are distinguished from effective three-body interactions of a nuclear Hamiltonian. The long-range part of the real three-body force is proportional to the off-mass-shell sup(PI)N scattering amplitude. Its contribution to the binding energy of nuclear matter is quite dependent upon the treatment of correlations (due to the two-body potential) in the three-body wave function. A recent improvemrnt in the amplitude implies a very small contribution. But, a recent improvement in the treatment of correlations implies a large contribution. Work towards including both these improvements in a single calculation is in progress. (author)

  9. Coulomb effects in three-nucleon scattering versus charge-symmetry breaking in the 3P nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Tornow, W.; Howell, C.R.; Walter, R.L.; Slaus, I.

    1992-01-01

    Comparison of data for neutron-deuteron and proton-deuteron analyzing power A y for elastic scattering has become crucial for investigating charge-symmetry breaking in the 3 P nucleon-nucleon interactions. We extended this comparison down to 5 MeV and find that the relative difference between n-d and p-d scattering at the A y maximum near 120 degree increases with decreasing energy. By applying a straightforward Coulomb ''correction'' to the p-d data, we account for most of the difference, suggesting that the Coulomb force, rather than charge-symmetry breaking, is responsible for most of the observed difference

  10. A nonlinear boundary integral equations method for the solving of quasistatic elastic contact problem with Coulomb friction

    Directory of Open Access Journals (Sweden)

    Yurii M. Streliaiev

    2016-06-01

    Full Text Available Three-dimensional quasistatic contact problem of two linearly elastic bodies' interaction with Coulomb friction taken into account is considered. The boundary conditions of the problem have been simplified by the modification of the Coulomb's law of friction. This modification is based on the introducing of a delay in normal contact tractions that bound tangent contact tractions in the Coulomb's law of friction expressions. At this statement the problem is reduced to a sequence of similar systems of nonlinear integral equations describing bodies' interaction at each step of loading. A method for an approximate solution of the integral equations system corresponded to each step of loading is applied. This method consists of system regularization, discretization of regularized system and iterative process application for solving the discretized system. A numerical solution of a contact problem of an elastic sphere with an elastic half-space interaction under increasing and subsequently decreasing normal compressive force has been obtained.

  11. Coulomb gap triptych in a periodic array of metal nanocrystals.

    Science.gov (United States)

    Chen, Tianran; Skinner, Brian; Shklovskii, B I

    2012-09-21

    The Coulomb gap in the single-particle density of states (DOS) is a universal consequence of electron-electron interaction in disordered systems with localized electron states. Here we show that in arrays of monodisperse metallic nanocrystals, there is not one but three identical adjacent Coulomb gaps, which together form a structure that we call a "Coulomb gap triptych." We calculate the DOS and the conductivity in two- and three-dimensional arrays using a computer simulation. Unlike in the conventional Coulomb glass models, in nanocrystal arrays the DOS has a fixed width in the limit of large disorder. The Coulomb gap triptych can be studied via tunneling experiments.

  12. Semiclassical treatment of nuclear effects in Coulomb excitation

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L F; Donangelo, R [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Rasmussen, J O; Ring, P; Stoyer, M A [Lawrence Berkeley Lab., CA (USA). Nuclear Science Div.

    1990-09-27

    We introduce the effects of the nuclear potential in the semiclassical Alder-Winther-de Boer method, both in the coupling matrix elements and as corrections to the Rutherford orbit. We compare our results to those of pure Coulomb excitation and to coupled-channel calculations. (orig.).

  13. Coulomb blockade induced by magnetic field

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-01-01

    In this paper, the authors found that a Coulomb blockade can be induced by magnetic field. The authors illustrated this effect on the example of a ring consisting of two and many Josephson junctions. For the ring with two junctions we present an exact solution. The transition into Coulomb blockade state on a ring transforms into a linear array of Josephson junctions, although in latter case the effect of magnetic field disappears. In the state of Coulomb blockade the magnetization may be both diamagnetic and paramagnetic. The Coulomb blockade may also be removed by external magnetic field

  14. Three-body halo nuclei in an effective theory framework

    Energy Technology Data Exchange (ETDEWEB)

    Canham, David L.

    2009-05-20

    The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system, which to leading order is described by the large S-wave scattering lengths in the underlying two-body subsystems. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, {sup 20}C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of {sup 20}C and other 2n halo nuclei. In particular, we calculate their matter density form factors, radii, and two-neutron opening angles. We then make a systematic improvement upon these calculations by extending the effective potential to the next-to-leading order. To this order, we require an additional two-body parameter, which we tune to the effective range of the interaction. In addition to range corrections to the 2n halo nuclei results, we show corrections to the Efimov effect in the three-boson system. Furthermore, we explore universality in the linear range corrections to the Efimov spectrum. Finally, we study the scattering of D{sup 0} and D{sup *0} mesons and their antiparticles off the X(3872) in an effective field theory for short-range interactions. We present results for the S-wave scattering amplitude, total interaction cross section and S-wave scattering length. (orig.)

  15. Three-body halo nuclei in an effective theory framework

    International Nuclear Information System (INIS)

    Canham, David L.

    2009-01-01

    The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system, which to leading order is described by the large S-wave scattering lengths in the underlying two-body subsystems. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, 20 C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of 20 C and other 2n halo nuclei. In particular, we calculate their matter density form factors, radii, and two-neutron opening angles. We then make a systematic improvement upon these calculations by extending the effective potential to the next-to-leading order. To this order, we require an additional two-body parameter, which we tune to the effective range of the interaction. In addition to range corrections to the 2n halo nuclei results, we show corrections to the Efimov effect in the three-boson system. Furthermore, we explore universality in the linear range corrections to the Efimov spectrum. Finally, we study the scattering of D 0 and D *0 mesons and their antiparticles off the X(3872) in an effective field theory for short-range interactions. We present results for the S-wave scattering amplitude, total interaction cross section and S-wave scattering length. (orig.)

  16. 3D Oscillator and Coulomb Systems reduced from Kahler spaces

    OpenAIRE

    Nersessian, Armen; Yeranyan, Armen

    2003-01-01

    We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kahler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kahler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid are originated. Then we construct the superintegrable oscillator system on three-dimensional sphere and ...

  17. QED effects in high-Z atoms; three-body potentials

    International Nuclear Information System (INIS)

    Zygelman, B.

    1983-01-01

    Electromagnetic three-body potentials were first studied by Primakoff and Holstein. Later, Chamugan and Schweber rederived these potentials and pointed out that they might be important in highly relativistic systems, however, their formulation was basically nonrelativistic. Mittleman, in a series of papers, constructed configuration space equations that included three-body potentials. His derivation started from first principles i.e. QED, and the resulting three-body potentials are more general than the Primakoff-Holstein potentials. In this thesis the contribution to the binding energy of a simple high-Z ion from the three-body potentials is calculated. In addition, the nature and structure of these potentials in greater detail are studied. Some ambiguities that arise when the transition from Fock to configuration space is made are studied in detail

  18. Effect of Coulomb stress on the Gutenberg-Richter law

    Science.gov (United States)

    Navas-Portella, V.; Corral, A.; Jimenez, A.

    2017-12-01

    Coulomb stress theory has been used for years in seismology to understand how earthquakes trigger each other. Whenever an earthquake occurs, the stress field changes in its neighbourhood, with places with positive values brought closer to failure, whereas negative values distance away that location from failure. Earthquake models that relate rate changes and Coulomb stress after a main event, such as the rate-and-state model, assume negative and positive stress values affect rate changes according to the same functional form. As a first order approximation, under uniform background seismicity before the main event, different values of the b-exponent in the Gutenberg-Richter law would indicate different behaviour for positive and negative stress. In this work, we study the Gutenberg-Richter law in the aftershock sequence of the Landers earthquake (California, 1992, MW=7.3). By using a statistically based fitting method, we discuss whether the sign of Coulomb stresses and the distance to the fault have a significant effect on the value of the b-exponent.

  19. Effect of the moment-of-inertia variation on Coulomb-nuclear interference in heavy ion scattering

    International Nuclear Information System (INIS)

    Bolotin, Yu.L.; Gonchar, V.Yu.; Inopin, E.V.; Chekanov, N.A.

    1987-01-01

    Effect of moment-of-inertia (MI) variation on probabilities of the Coulomb excitation of nucleus rotational states (RS) is investigated. The calculation is performed in the generalized quasiclassical approximation. Cillisions with an aimed parameter equal to 0 and recording of scattered ion at angles close to 180 deg were considered. Effect of MI dependence on angular momentum (AM) on the RS Coulomb excitation probability in the 86 Kr+ 238 U process at 400 MeV 86 Kr has been studied. For small AMs (I < 10), when the MI variation can be neglected, the Coulomb-nuclear interference leads to a marked shift of RS excitation probability maxima. However, with increasing transferred AM the convergence of probabilities conditioned with mutual compensation of phases shift related to the MI variation and Coulomb-nucleus interference, is noted. It is also noted that correct parameters of deformed nuclei extracted from experiments on the Coulomb excitation of high-spin states can be obtained only during simultaneous accountancy of both the Coulomb-nuclear interference and the MI variation of excited nuclei

  20. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals.

    Science.gov (United States)

    Przybytek, Michal; Helgaker, Trygve

    2013-08-07

    We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems

  1. Coulomb ionization of inner shells by heavy charged particles

    International Nuclear Information System (INIS)

    Lapicki, G.

    1975-01-01

    The theory of inner-shell Coulomb ionization by heavy charged particles, of atomic number small compared to the target atomic number, is developed through the extension of work by Brandt and his coworkers for K shells to L shells. In slow collisions relative to the characteristic times of the inner shell electrons, the quantum-mechanical predictions in the plane-wave Born approximation (PWBA) can exceed experimental cross sections by orders of magnitude. The effects of the perturbation of the atom by and the Coulomb deflection of the particle during collisions are included in the theory. The perturbed atomic states amount to a binding of the inner-shell electrons to the moving particle in slow collisions, and to a polarization of the inner shells by the particle passing at large impact parameters during nonadiabatic collisions. These effects, not contained in the PWBA, are treated in the framework of the perturbed stationary state (PSS) theory for slow collisions and in terms of the harmonic oscillator model of Ashley, Brandt, and Ritchie for stopping powers in fast collisions. The effect of the Coulomb deflection of the particle in the field of the target nucleus on the cross sections is incorporated in the semiclassical approximation of Bang and Hansteen. Except for the lightest target atoms, the contribution of electron capture by the particles to inner-shell ionizations is shown to be negligible. The theory as developed earlier for the K shell, and here for L shells, agrees well with the vast body of experimental data on inner-shell Coulomb ionization by heavy charged particles

  2. Super-Coulombic atom-atom interactions in hyperbolic media

    Science.gov (United States)

    Cortes, Cristian L.; Jacob, Zubin

    2017-01-01

    Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.

  3. Spectral sum for the color-Coulomb potential in SU(3) Coulomb gauge lattice Yang-Mills theory

    International Nuclear Information System (INIS)

    Nakagawa, Y.; Nakamura, A.; Saito, T.; Toki, H.

    2010-01-01

    We discuss the essential role of the low-lying eigenmodes of the Faddeev-Popov (FP) ghost operator on the confining color-Coulomb potential using SU(3) quenched lattice simulations in the Coulomb gauge. The color-Coulomb potential is expressed as a spectral sum of the FP ghost operator and has been explored by partially summing the FP eigenmodes. We take into account the Gribov copy effects that have a great impact on the FP eigenvalues and the color-Coulomb potential. We observe that the lowest eigenvalue vanishes in the thermodynamic limit much faster than that in the Landau gauge. The color-Coulomb potential at large distances is governed by the near-zero FP eigenmodes; in particular, the lowest one accounts for a substantial portion of the color-Coulomb string tension comparable to the Wilson string tension.

  4. Critical temperature of liquid-gas phase transition for hot nuclear matter and three-body force effect

    International Nuclear Information System (INIS)

    Zuo Wei; Lu Guangcheng; Li Zenghua; Luo Peiyan; Chinese Academy of Sciences, Beijing

    2005-01-01

    The finite temperature Brueckner-Hartree-Fock (FTBHF) approach is extended by introducing a microscopic three-body force. Within the extended approach, the three-body force effects on the equation of state of hot nuclear matter and its temperature dependence have been investigated. The critical properties of the liquid-gas phase transition of hot nuclear matter have been calculated. It is shown that the three-body force provides a repulsive contribution to the equation of state of hot nuclear matter. The repulsive effect of the three-body force becomes more pronounced as the density and temperature increase and consequently inclusion of the three-body force contribution in the calculation reduces the predicted critical temperature from about 16 MeV to about 13 MeV. By separating the contribution originated from the 2σ-exchange process coupled to the virtual excitation of a nucleon-antinucleon pair from the full three-body force, the connection between the three-body force effect and the relativistic correction from the Dirac-Brueckner-Hartree-Fock has been explored. It turns out that the contribution of the 2σ-N(N-bar) part is more repulsive than that of the full three-body force and the calculated critical temperature is about 11 MeV if only the 2σ-N(N-bar) component of the three-body force is included which is lower than the value obtained in the case of including the full three-body force and is close to the value predicted by the Dirac-Brueckner-Hartree-Fock (DBHF) approach. Our result provides a reasonable explanation for the discrepancy between the values of critical temperature predicted from the FTBHF approach including the three-body force and the DBHF approach. (authors)

  5. Ordering in classical Coulombic systems

    International Nuclear Information System (INIS)

    Schiffer, J. P.

    1998-01-01

    The author discusses the properties of classical Coulombic matter at low temperatures. It has been well known for some time [1,2] that infinite Coulombic matter will crystallize in body-centered cubic form when the quantity Λ (the dimensionless ratio of the average two-particle Coulomb energy to the kinetic energy per particle) is larger than approximately175. But the systems of such particles that have been produced in the laboratory in ion traps, or ion beams, are finite with surfaces defined by the boundary conditions that have to be satisfied. This results in ion clouds with sharply defined curved surfaces, and interior structures that show up as a set of concentric layers that are parallel to the outer surface. The ordering does not appear to be cubic, but the charges on each shell exhibit a ''hexatic'' pattern of equilateral triangles that is the characteristic of liquid crystals. The curvature of the surfaces prevents the structures on successive shells from interlocking in any simple fashion. This class of structures was first found in simulations [3] and later in experiments [4

  6. Effect of three-body transformed Hamiltonian (H3) using full ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 90; Issue 3 ... Research Article Volume 90 Issue 3 March 2018 Article ID 36 ... Valence universal multireference coupled cluster (VUMRCC) method via eigenvalue independent partitioning has been applied to estimate the effect of three-body transformed Hamiltonian ...

  7. Coulomb Blockade Plasmonic Switch.

    Science.gov (United States)

    Xiang, Dao; Wu, Jian; Gordon, Reuven

    2017-04-12

    Tunnel resistance can be modulated with bias via the Coulomb blockade effect, which gives a highly nonlinear response current. Here we investigate the optical response of a metal-insulator-nanoparticle-insulator-metal structure and show switching of a plasmonic gap from insulator to conductor via Coulomb blockade. By introducing a sufficiently large charging energy in the tunnelling gap, the Coulomb blockade allows for a conductor (tunneling) to insulator (capacitor) transition. The tunnelling electrons can be delocalized over the nanocapacitor again when a high energy penalty is added with bias. We demonstrate that this has a huge impact on the plasmonic resonance of a 0.51 nm tunneling gap with ∼70% change in normalized optical loss. Because this structure has a tiny capacitance, there is potential to harness the effect for high-speed switching.

  8. Three-body vertices with two-body techniques

    International Nuclear Information System (INIS)

    Mitra, A.N.; Sharma, V.K.

    1976-01-01

    It has long been recognized that vertex functions for few particle systems provide a convenient medium for the analysis of reactions in the language of Feynman diagrams, analogously to elementary particle processes. The development of three-particle theory during the last decade has provided considerably more impetus for the use of the language of three-body vertex functions through the possibility of their 'exact' evaluations with only two-body input. While three-body vertices are probably superfluous for the description of only three-body processes (for which exact amplitudes are already available) their practical usefulness often extends to reactions involving more than three-particle systems (for which 'exact' amplitudes are still a distant goal), as long as such systems can be meaningfully described in terms of not more than three particles playing the active role. This paper investigates a simplified construction of three-body vertices. This must check against their standard definition as overlap integral. Unfortunately this definition involves a non-trivial normalization of three-body wave functions with realistic NN potentials, and has little practical scope for extension beyond A=3. (Auth.)

  9. Correlated wave functions for three-particle systems with Coulomb interaction - The muonic helium atom

    Science.gov (United States)

    Huang, K.-N.

    1977-01-01

    A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.

  10. Quantum effects on the coulomb logarithm for energetic ions during the initial thermalization phase

    CERN Document Server

    Deng Bai Quan; Deng Mei Gen; Peng Li Lin

    2002-01-01

    The authors have discussed the quantum mechanical effects for the energetic charged particles produced in D-He sup 3 fusion reactions. Authors' results show that it is better to use the proper Coulomb logarithm at the high-energy end in describing the thermalization process, because the quantum mechanical effects on the Coulomb logarithm are not negligible, based on an assumption of binary collision

  11. Effective Kratzer and Coulomb potentials as limit cases of a multiparameter exponential-type potential

    Energy Technology Data Exchange (ETDEWEB)

    García-Ravelo, J., E-mail: g.ravelo@hotmail.com [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, México D.F., 07738 (Mexico); Menéndez, A.; García-Martínez, J. [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, México D.F., 07738 (Mexico); Schulze-Halberg, A. [Department of Mathematics and Actuarial Science and Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, IN 46408 (United States)

    2014-06-13

    We show that the effective Kratzer and Coulomb potentials can be obtained by taking particular limits of a multiparameter exponential potential that was studied recently. Moreover, we demonstrate that the bound state solutions of the exponential potential reduce correctly to their well-known counterparts associated with the Kratzer and Coulomb potentials. As a byproduct, we obtain a new limit relation for the hypergeometric function. - Highlights: • Kratzer and Coulomb potentials are limit cases of an exponential-type potential. • From exact s-waves, approximate solutions for l-waves are obtained. • l-waves of the potential tend to the solutions of the Kratzer and Coulomb potentials. • A non-evident identity between hypergeometric functions is demonstrated.

  12. Effective Kratzer and Coulomb potentials as limit cases of a multiparameter exponential-type potential

    International Nuclear Information System (INIS)

    García-Ravelo, J.; Menéndez, A.; García-Martínez, J.; Schulze-Halberg, A.

    2014-01-01

    We show that the effective Kratzer and Coulomb potentials can be obtained by taking particular limits of a multiparameter exponential potential that was studied recently. Moreover, we demonstrate that the bound state solutions of the exponential potential reduce correctly to their well-known counterparts associated with the Kratzer and Coulomb potentials. As a byproduct, we obtain a new limit relation for the hypergeometric function. - Highlights: • Kratzer and Coulomb potentials are limit cases of an exponential-type potential. • From exact s-waves, approximate solutions for l-waves are obtained. • l-waves of the potential tend to the solutions of the Kratzer and Coulomb potentials. • A non-evident identity between hypergeometric functions is demonstrated

  13. Effect of long-range repulsive Coulomb interactions on packing structure of adhesive particles.

    Science.gov (United States)

    Chen, Sheng; Li, Shuiqing; Liu, Wenwei; Makse, Hernán A

    2016-02-14

    The packing of charged micron-sized particles is investigated using discrete element simulations based on adhesive contact dynamic model. The formation process and the final obtained structures of ballistic packings are studied to show the effect of interparticle Coulomb force. It is found that increasing the charge on particles causes a remarkable decrease of the packing volume fraction ϕ and the average coordination number 〈Z〉, indicating a looser and chainlike structure. Force-scaling analysis shows that the long-range Coulomb interaction changes packing structures through its influence on particle inertia before they are bonded into the force networks. Once contact networks are formed, the expansion effect caused by repulsive Coulomb forces are dominated by short-range adhesion. Based on abundant results from simulations, a dimensionless adhesion parameter Ad*, which combines the effects of the particle inertia, the short-range adhesion and the long-range Coulomb interaction, is proposed and successfully scales the packing results for micron-sized particles within the latest derived adhesive loose packing (ALP) regime. The structural properties of our packings follow well the recent theoretical prediction which is described by an ensemble approach based on a coarse-grained volume function, indicating some kind of universality in the low packing density regime of the phase diagram regardless of adhesion or particle charge. Based on the comprehensive consideration of the complicated inter-particle interactions, our findings provide insight into the roles of short-range adhesion and repulsive Coulomb force during packing formation and should be useful for further design of packings.

  14. Separable expansions for local potentials with Coulomb interactions

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1976-01-01

    If two particles are interacting via a short range potential and a repulsive Coulomb potential the t matrix can be written as a sum of the Coulomb and the ''nuclear'' t matrices. In order to solve the three-nucleon problem with Coulomb interactions usually we need a separable representation of this ''nuclear'' t matrix. A recently proposed method for finding a separable expansion for local potentials is here extended to find a rapidly convergent separable expansion, with analytic form factors, for the ''nuclear'' part of the t matrix of a local potential, in the presence of Coulomb interactions. The method is illustrated for a two-term Malfliet-Tjon potential. In each rank the ''nuclear'' phase shift is close to the corresponding phase shift when the Coulomb interaction is switched off

  15. Derivation of a configuration space Hamiltonian for heavy atoms: three body potentials

    International Nuclear Information System (INIS)

    Mittleman, M.H.

    1981-01-01

    A brief history of the difficulties associated with the derivation of a configuration space Hamiltonian is presented. One of the problems encountered is the definition of the projection operators which must occur. A variational definition is obtained and, with simplifying assumptions, the optimum projection operators are those which project onto Hartree-Fock orbitals. This puts many previously performed numerical calculations on a firm footing. The form of the two body interactions is discussed in the context of the gauge freedom. The Coulomb gauge is the favored one but it is pointed out that it has never been proven to be the best one. Finally a form for the relativistic three election potential is given and the possibility of its observation is discussed

  16. Coulomb excitation

    International Nuclear Information System (INIS)

    McGowan, F.K.; Stelson, P.H.

    1974-01-01

    The theory of Coulomb excitation and a brief review of pertinent treatments of the Coulomb excitation process that are useful for the analysis of experiments are given. Examples demonstrating the scope of nuclear structure information obtainable from gamma spectroscopy are presented. Direct Elambda excitation of 232 Th is discussed in terms of the one phonon octupole vibrational spectrum. B(MI) reduced transition probabilities resulting from Coulomb excitation of odd-A deformed nuclei with heavy ions are presented as a test of the rotational model. The use of gamma ray coincidence and particle-gamma coincidence as tools for investigating Coulomb excitation is discussed. (U.S.)

  17. Coulomb Dissociation of {sup 17}Ne and its role for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Marganiec, Justyna [ExtreMe Matter Institute EMMI, GSI, Darmstadt (Germany); Aumann, Thomas; Wamers, Felix [Kernreaktion und Nuklear Astrophysik, GSI, Darmstadt (Germany); Institut fuer Kernphysik, TU, Darmstadt (Germany); Heil, Michael [Kernreaktion und Nuklear Astrophysik, GSI, Darmstadt (Germany); Plag, Ralf [Kernreaktion und Nuklear Astrophysik, GSI, Darmstadt (Germany); Goethe-Universitaet, Frankfurt am Main (Germany); Collaboration: R3B-Collaboration

    2011-07-01

    The study of the Coulomb break up of {sup 17}Ne gives us an access to information about the time-reversed reaction {sup 15}O(2p,{gamma}){sup 17}Ne, which could serve as a bypass of {sup 15}O waiting point during the rp process, and move the initial CNO material towards heavier nuclei. The three-body radiative capture can proceed sequentially (J. Goerres, et al., Phys. Rev. C 51, 392, 1995) or directly from the three-body continuum (L.V. Grigorenko, M.V. Zhukov, Phys. Rev. C 72, 015803, 2005). It has been suggested that the reaction rate can be enhanced by a few orders of magnitude by taking into account the three-body continuum. In order to verify these calculations, the {sup 15}O(2p,{gamma}){sup 17}Ne cross section has been investigated. The experiment has been performed at the LAND/R{sup 3}B setup at GSI, using the fragment separator FRS to select a {sup 17}Ne secondary beam.

  18. Fokker-type dynamics with three-body correlations

    International Nuclear Information System (INIS)

    Salas, A.; Sanchez-Ron, J.M.

    1981-01-01

    Dynamical systems of N point particles without internal degrees of freedom are studied. Their equations of motion are derived from a Fokker-type variational principle with n-body correlations (n = 2,3,...,N), with special emphasis on the case n = 3. The distinction between n-body correlation and n-body effective force is analyzed in detail, with the help of an example. Maximal sets of independent three-body Poincare-invariant scalars are given. An example of three-body correlation formally similar to the usual two-body long-range scalar correlation is given and discussed. (author)

  19. Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule.

    Science.gov (United States)

    Cloët, Ian C; Bentz, Wolfgang; Thomas, Anthony W

    2016-01-22

    In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q|≳0.5  GeV. The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei.

  20. Effect of Coulomb screening on deuterium-deuterium fusion cross-section

    International Nuclear Information System (INIS)

    Wang Shunjin

    1991-01-01

    The popular Gamow formula for the deuterium-deuterium fusion cross-section is generalized to take into account the Coulomb screening effect. The generalized formula has been used to discuss the fusion process occurring in the metal medium

  1. BEC-BCS-laser crossover in Coulomb-correlated electron-hole-photon systems

    International Nuclear Information System (INIS)

    Yamaguchi, M; Kamide, K; Ogawa, T; Yamamoto, Y

    2012-01-01

    Many-body features caused by Coulomb correlations are of great importance for understanding phenomena pertaining to polariton systems in semiconductor microcavities, i.e. electron-hole-photon systems. Remarkable many-body effects are shown to exist in both thermal-equilibrium phases and non-equilibrium lasing states. We then show a unified framework for connecting the thermal-equilibrium and the non-equilibrium steady states based on a non-equilibrium Green's function approach. Bose-Einstein condensate (BEC)-Bardeen-Cooper-Schrieffer (BCS)-laser crossovers are investigated by using this approach. (paper)

  2. Three-body ΛNN force due to Λ-Σ coupling

    International Nuclear Information System (INIS)

    Myint, Khin Swe; Akaishi, Yoshinori

    2003-01-01

    The ΛNN three - body force due to coherent Λ - Σ Coupling effect was derived from realistic Nijmegen model D potential. Repulsive and attractive three - body ΛNN forces were reconcilably accounted. For 5 He, within one - channel description, ΛNN force is largely repulsive and its origin comes from Pauli forbidden terms. Within two - channel description, attractive Pauli allowed terms exist and resulting three - body force is always attractive. Large attractive ΛNN force effect due to coherent Λ - Σ coupling effect is predicted in neutron - rich nuclei. The attractive coherent Λ - Σ coupling effect is largely enhanced at high density neutron matter. The attractive three - body ΛNN force effect is essential dynamics of Λ - Σ coupling while the repulsive Nogami three - body effect arises from Pauli forbidden diagrams. (Y. Kazumata)

  3. Bond alternation in the infinite polyene: effect of long range Coulomb interactions

    International Nuclear Information System (INIS)

    Mazumdar, S.; Campbell, D.K.

    1985-01-01

    We investigate the effects of long-range Coulomb interactions on bond and site dimerizations in a one-dimensional half-filled band. It is shown that the ground state broken symmetry is determined by two sharp inequalities involving the Coulomb parameters. Broken symmetry with periodicity 2k/sub F/ is guaranteed only if the first inequality (downward convexity of the intersite potential) is obeyed, while the second inequality gives the phase boundary between the bond-dimerized and site-dimerized phases. Application of these inequalities to the Pariser-Parr-Pople model for linear polyenes shows that the infinite polyene has enhanced bond alternation for both Ohno and Mataga-Nishimoto parametrizations of the intersite Coulomb terms. The possible role of distant neighbor interactions in photogeneration experiments is discussed. 26 refs., 3 figs

  4. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources.

    Science.gov (United States)

    Goto, I; Miyamoto, K; Nishioka, S; Mattei, S; Lettry, J; Abe, S; Hatayama, A

    2016-02-01

    To improve the H(-) ion beam optics, it is necessary to understand the energy relaxation process of surface produced H(-) ions in the extraction region of Cs seeded H(-) ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H(-) extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H(-) ions has been greatly increased. The mean kinetic energy of the surface produced H(-) ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H(-) ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  5. Effect of three-body forces on the lattice dynamics of noble metals

    Indian Academy of Sciences (India)

    A simple method to generate an effective electron–ion interaction pseudopotential from the energy wave number characteristic obtained by first principles calculations has been suggested. This effective potential has been used, in third order perturbation, to study the effect of three-body forces on the lattice dynamics of ...

  6. Coulomb-free and Coulomb-distorted recolliding quantum orbits in photoelectron holography

    Science.gov (United States)

    Maxwell, A. S.; Figueira de Morisson Faria, C.

    2018-06-01

    We perform a detailed analysis of the different types of orbits in the Coulomb quantum orbit strong-field approximation (CQSFA), ranging from direct to those undergoing hard collisions. We show that some of them exhibit clear counterparts in the standard formulations of the strong-field approximation for direct and rescattered above-threshold ionization, and show that the standard orbit classification commonly used in Coulomb-corrected models is over-simplified. We identify several types of rescattered orbits, such as those responsible for the low-energy structures reported in the literature, and determine the momentum regions in which they occur. We also find formerly overlooked interference patterns caused by backscattered Coulomb-corrected orbits and assess their effect on photoelectron angular distributions. These orbits improve the agreement of photoelectron angular distributions computed with the CQSFA with the outcome of ab initio methods for high energy phtotoelectrons perpendicular to the field polarization axis.

  7. Effects of three-body interactions in the parametric and modulational instabilities of Bose–Einstein condensates

    International Nuclear Information System (INIS)

    Wamba, Etienne; Mohamadou, Alidou; Ekogo, Thierry B.; Atangana, Jacque; Kofane, Timoleon C.

    2011-01-01

    The parametric modulational instability for a discrete nonlinear Schrödinger equation with a cubic–quintic nonlinearity is analyzed. This model describes the dynamics of BECs, with both two- and three-body interatomic interactions trapped in an optical lattice. We identify and discuss the salient features of the three-body interaction in the parametric modulational instability. It is shown that the three-body interaction term can both, shift as well as narrow the window of parametric instability, and also change the behavior of a modulationally stable and parametrically unstable BEC with attractive two-body interaction. We explore this instability through the multiple-scale analysis and identify it numerically. The effect of the three body losses have also been investigated. -- Highlights: ► The parametric MI for the 1D GPE with a cubic–quintic nonlinearity is analyzed. ► The two- and three-body recombination and time-dependent scattering length is considered. ► We generate bright matter waves soliton through MI.

  8. Intersite Coulomb interaction and Heisenberg exchange

    NARCIS (Netherlands)

    Eder, R; van den Brink, J.; Sawatzky, G.A

    1996-01-01

    Based on exact diagonalization results for small clusters we discuss the effect of intersite Coulomb repulsion in Mott-Hubbard or charge transfers insulators. Whereas the exchange constant J for direct exchange is enhanced by intersite Coulomb interaction, that for superexchange is suppressed. The

  9. Microscopic theory of the Coulomb based exchange coupling in magnetic tunnel junctions.

    Science.gov (United States)

    Udalov, O G; Beloborodov, I S

    2017-05-04

    We study interlayer exchange coupling based on the many-body Coulomb interaction between conduction electrons in magnetic tunnel junction. This mechanism complements the known interaction between magnetic layers based on virtual electron hopping (or spin currents). We find that these two mechanisms have different behavior on system parameters. The Coulomb based coupling may exceed the hopping based exchange. We show that the Coulomb based exchange interaction, in contrast to the hopping based coupling, depends strongly on the dielectric constant of the insulating layer. The dependence of the interlayer exchange interaction on the dielectric properties of the insulating layer in magnetic tunnel junction is similar to magneto-electric effect where electric and magnetic degrees of freedom are coupled. We calculate the interlayer coupling as a function of temperature and electric field for magnetic tunnel junction with ferroelectric layer and show that the exchange interaction between magnetic leads has a sharp decrease in the vicinity of the ferroelectric phase transition and varies strongly with external electric field.

  10. Three-body approach to the nucleon-nucleus optical potential

    International Nuclear Information System (INIS)

    Tandy, P.C.; Redish, E.F.; Bolle, D.

    1976-01-01

    In the Watson single scattering theory of the optical potential it is customary to approximate the propagation by two-body Green functions in order to simplify calculations. The reaction mechanism being described, however, is decidedly three-body in character. The central difficulty in building three-body models for nucleon-nucleus elastic scattering is to find the proper way of imbedding the superposed three-body reaction mechanism in the many-body problem without introducing serious overcounting effects. One would also like an explicit description of the intermediate state processes responsible for absorption. In this paper a three-body approximation to the optical potential theory is presented which overcomes the overcounting problem and is capable of including the following effects: (1) the proper kinematics of the struck nucleon, (2) its binding potential, (3) the identity of target nucleons, and (4) realistic wave functions and spectroscopic factors. The three-body model for the optical potential can be extended using unitarity methods to yield a unified three-body-like model of elastic scattering, pickup, and single nucleon knockout. (Auth.)

  11. Coherent Destruction of Tunneling of Bosons with Effective Three-Body Interactions

    International Nuclear Information System (INIS)

    Niu Zhen-Xia; Yu Zi-Fa; Xue Ju-Kui

    2015-01-01

    The tunneling dynamics of dilute boson gases with three-body interactions in a periodically driven double wells are investigated both theoretically and numerically. In our findings, when the system is with only repulsive two-body interactions or only three-body interactions, the tunneling will be suppressed; while in the case of the coupling between two- and three-body interactions, the tunneling can be either suppressed or enhanced. Particularly, when attractive three-body interactions are twice large as repulsive two-body interactions, CDT occurs at isolated points of driving force, which is similar to the linear case. Considering different interaction, the system can experience different transformation from coherent tunneling to coherent destruction of tunneling (CDT). The quasi-energy of the system as the function of the periodically driving force shows a triangular structure, which provides a deep insight into the tunneling dynamics of the system. (paper)

  12. Surface effects on ionic Coulomb blockade in nanometer-size pores.

    Science.gov (United States)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V; Ventra, Massimiliano Di

    2018-01-12

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying 'crystal-like' structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  13. Surface effects on ionic Coulomb blockade in nanometer-size pores

    Science.gov (United States)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2018-01-01

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  14. Atomic Color Superfluid via Three-Body Loss

    International Nuclear Information System (INIS)

    Kantian, A.; Diehl, S.; Zoller, P.; Daley, A. J.; Dalmonte, M.; Hofstetter, W.

    2009-01-01

    Large three-body loss rates in a three-component Fermi gas confined in an optical lattice can dynamically prevent atoms from tunneling so as to occupy a lattice site with three atoms. This effective constraint not only suppresses the occurrence of actual loss events, but stabilizes BCS-pairing phases by suppressing the formation of trions. We study the effect of the constraint on the many-body physics using bosonization and density matrix renormalization group techniques, and also investigate the full dissipative dynamics including loss for the example of 6 Li.

  15. The three-body problem

    International Nuclear Information System (INIS)

    Musielak, Z E; Quarles, B

    2014-01-01

    The three-body problem, which describes three masses interacting through Newtonian gravity without any restrictions imposed on the initial positions and velocities of these masses, has attracted the attention of many scientists for more than 300 years. In this paper, we present a review of the three-body problem in the context of both historical and modern developments. We describe the general and restricted (circular and elliptic) three-body problems, different analytical and numerical methods of finding solutions, methods for performing stability analysis and searching for periodic orbits and resonances. We apply the results to some interesting problems of celestial mechanics. We also provide a brief presentation of the general and restricted relativistic three-body problems, and discuss their astronomical applications. (review article)

  16. Selfconsistent theory of Coulomb mixing in nuclei

    International Nuclear Information System (INIS)

    Pyatov, N.I.

    1978-01-01

    The theory of isobaric states is considered according to the Coulomb mixing in nuclei. For a given form of the isovestor potential the separable residual interactions are constructed by means of the isotopic invariance principle. The strength parameter of the force is found from a selfconsistency condition. The charge dependent force is represented by the Coulomb effective potential. The theory of the isobaric states is developed using the random phase approximation. The Coulomb mixing effects in the ground and isobaric 0 + states of even-mass nuclei are investigated

  17. The Coulomb gap and low energy statistics for Coulomb glasses

    International Nuclear Information System (INIS)

    Glatz, Andreas; Vinokur, Valerii M; Bergli, Joakim; Kirkengen, Martin; Galperin, Yuri M

    2008-01-01

    We study the statistics of local energy minima in the configuration space of two-dimensional lattice Coulomb glasses with site disorder and the behavior of the Coulomb gap depending on the strength of random site energies. At intermediate disorder, i.e., when the typical strength of the disorder is of the same order as the nearest-neighbor Coulomb energy, the high energy tail of the distribution of the local minima is exponential. We furthermore analyze the structure of the local minima and show that most sites of the system have the same occupation numbers in all of these states. The density of states (DOS) shows a transition from the crystalline state at zero disorder (with a hard gap) to an intermediate, probably glassy state with a Coulomb gap. We analyze this Coulomb gap in some detail and show that the DOS deviates slightly from the traditional linear behavior in 2D. For finite systems these intermediate Coulomb gap states disappear for large disorder strengths and only a random localized state in which all electrons are in the minima of the random potential exists. Dedication: This paper is dedicated to Thomas Nattermann, our dearest friend, brilliant colleague, and outstanding teacher

  18. Evaluation of the Coulomb logarithm using cutoff and screened Coulomb interaction potentials

    International Nuclear Information System (INIS)

    Ordonez, C.A.; Molina, M.I.

    1994-01-01

    The Coulomb logarithm is a fundamental plasma parameter which is commonly derived within the framework of the binary collision approximation. The conventional formula for the Coulomb logarithm, λ=ln Λ, takes into account a pure Coulomb interaction potential for binary collisions and is not accurate at small values (λ D in place of λ D (the Debye length) in the conventional formula for the Coulomb logarithm

  19. Relativistic three-body effects in black hole coalescence

    International Nuclear Information System (INIS)

    Campanelli, Manuela; Dettwyler, Miranda; Lousto, Carlos O.; Hannam, Mark

    2006-01-01

    Three-body interactions are expected to be common in globular clusters and in galactic cores hosting supermassive black holes. We consider an equal-mass binary black hole system in the presence of a third black hole. Using numerically generated binary black hole initial data sets, and first and second-order post-Newtonian (1PN and 2PN) techniques, we find that the presence of the third black hole has non-negligible relativistic effects on the location of the binary's innermost stable circular orbit (ISCO), and that these effects arise at 2PN order. For a stellar-mass black hole binary in orbit about a supermassive black hole, the massive black hole has stabilizing effects on the orbiting binary, leading to an increase in merger time and a decrease of the terminal orbital frequency, and an amplification of the gravitational radiation emitted from the binary system by up to 6%

  20. Study of the effect of static/dynamic Coulomb friction variation at the tape-head interface of a spacecraft tape recorder by non-linear time response simulation

    Science.gov (United States)

    Mukhopadhyay, A. K.

    1978-01-01

    A description is presented of six simulation cases investigating the effect of the variation of static-dynamic Coulomb friction on servo system stability/performance. The upper and lower levels of dynamic Coulomb friction which allowed operation within requirements were determined roughly to be three times and 50% respectively of nominal values considered in a table. A useful application for the nonlinear time response simulation is the sensitivity analysis of final hardware design with respect to such system parameters as cannot be varied realistically or easily in the actual hardware. Parameters of the static/dynamic Coulomb friction fall in this category.

  1. Anomalous low-temperature Coulomb drag in graphene-GaAs heterostructures.

    Science.gov (United States)

    Gamucci, A; Spirito, D; Carrega, M; Karmakar, B; Lombardo, A; Bruna, M; Pfeiffer, L N; West, K W; Ferrari, A C; Polini, M; Pellegrini, V

    2014-12-19

    Vertical heterostructures combining different layered materials offer novel opportunities for applications and fundamental studies. Here we report a new class of heterostructures comprising a single-layer (or bilayer) graphene in close proximity to a quantum well created in GaAs and supporting a high-mobility two-dimensional electron gas. In our devices, graphene is naturally hole-doped, thereby allowing for the investigation of electron-hole interactions. We focus on the Coulomb drag transport measurements, which are sensitive to many-body effects, and find that the Coulomb drag resistivity significantly increases for temperatures law, therefore displaying a notable departure from the ordinary quadratic temperature dependence expected in a weakly correlated Fermi-liquid. This anomalous behaviour is consistent with the onset of strong interlayer correlations. Our heterostructures represent a new platform for the creation of coherent circuits and topologically protected quantum bits.

  2. Effective theories of scattering with an attractive inverse-square potential and the three-body problem

    International Nuclear Information System (INIS)

    Barford, Thomas; Birse, Michael C

    2005-01-01

    A distorted-wave version of the renormalization group is applied to scattering by an inverse-square potential and to three-body systems. In attractive three-body systems, the short-distance wavefunction satisfies a Schroedinger equation with an attractive inverse-square potential, as shown by Efimov. The resulting oscillatory behaviour controls the renormalization of the three-body interactions, with the renormalization-group flow tending to a limit cycle as the cut-off is lowered. The approach used here leads to single-valued potentials with discontinuities as the bound states are cut off. The perturbations around the cycle start with a marginal term whose effect is simply to change the phase of the short-distance oscillations, or the self-adjoint extension of the singular Hamiltonian. The full power counting in terms of the energy and two-body scattering length is constructed for short-range three-body forces

  3. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Goto, I., E-mail: goto@ppl.appi.keio.ac.jp; Nishioka, S.; Abe, S.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Mattei, S.; Lettry, J. [CERN, 1211 Geneva 23 (Switzerland)

    2016-02-15

    To improve the H{sup −} ion beam optics, it is necessary to understand the energy relaxation process of surface produced H{sup −} ions in the extraction region of Cs seeded H{sup −} ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H{sup −} extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H{sup −} ions has been greatly increased. The mean kinetic energy of the surface produced H{sup −} ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H{sup −} ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  4. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography.

    Science.gov (United States)

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.

  5. Studies of the nuclear three-body system with three dimensional Faddeev calculations

    Science.gov (United States)

    Liu, Hang

    A three-body system consists of either a bound state of three particles with definite binding energy or a beam of single particles scattered from a target, where two of the particles are bound. Of the particles are nucleons, the interactions between them are strong and short ranged. A theoretical framework for studying the dynamics of a nuclear three-body system is the Faddeev scheme. In this work the equation for three-body scattering and the bound state are formulated in momentum space, and directly solved in terms of vector variables. For three identical bosons the Faddeev equation for scattering is a three- dimensional inhomogeneous integral equation in five variables, and is solved by Padé summation. The equation for the bound state is a homogeneous one in three variables, and is solved by a Lanczos' type method. The corresponding algorithms are presented, and their numerical feasibility is demonstrated. Elastic as well as inelastic scattering processes in the intermediate energy regime up to 1 GeV incident energy are studied for the first within a Faddeev scheme. The two-body force employed is of Malfliet-Tjon type. Specific emphasis is placed on studying the convergence of the multiple scattering series given by the Faddeev equations. For the bound state, a three-body force of Fujita- Miyazawa type is incorporated in addition to the two-body force. The effects of this three-body force on the bound state properties are investigated.

  6. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  7. Coulomb Distortion in the Inelastic Regime

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Solvignon, Dave Gaskell, John Arrington

    2009-09-01

    The Coulomb distortion effects have been for a long time neglected in deep inelastic scattering for the good reason that the incident energies were very high. But for energies in the range of earlier data from SLAC or at JLab, the Coulomb distortion could have the potential consequence of affecting the A-dependence of the EMC effect and of the longitudinal to transverse virtual photon absorption cross section ratio $R(x,Q^2)$.

  8. Coulomb torque - a general theory for electrostatic forces in many-body systems

    International Nuclear Information System (INIS)

    Khachatourian, Armik V M; Wistrom, Anders O

    2003-01-01

    In static experiments that comprise three conducting spheres suspended by torsion wires and held at constant electric potential, a net angular displacement about their centres has been observed. We demonstrate that the observed rotation is consistent with Coulomb's law of electrical forces complemented by Gauss' surface integrals for electrical potential. Analysis demonstrates that electrostatic torque is the result of electrostatic forces acting on an asymmetric distribution of charges residing on the surfaces of the spheres. The asymptotic value for electrostatic torque is proportional to the inverse of the fourth power of separation distance with the rotation direction, up or down taken perpendicular to a plane passing through sphere centres, given explicitly by the equation for torque. The identification of electrostatic torque prompts further analysis of models of matter at all size scales where electrostatic forces are the dominant operative force

  9. Coulomb torque - a general theory for electrostatic forces in many-body systems

    CERN Document Server

    Khachaturian, A V M

    2003-01-01

    In static experiments that comprise three conducting spheres suspended by torsion wires and held at constant electric potential, a net angular displacement about their centres has been observed. We demonstrate that the observed rotation is consistent with Coulomb's law of electrical forces complemented by Gauss' surface integrals for electrical potential. Analysis demonstrates that electrostatic torque is the result of electrostatic forces acting on an asymmetric distribution of charges residing on the surfaces of the spheres. The asymptotic value for electrostatic torque is proportional to the inverse of the fourth power of separation distance with the rotation direction, up or down taken perpendicular to a plane passing through sphere centres, given explicitly by the equation for torque. The identification of electrostatic torque prompts further analysis of models of matter at all size scales where electrostatic forces are the dominant operative force.

  10. Screening of Coulomb interaction and many-body perturbation theory in atoms

    International Nuclear Information System (INIS)

    Dzyuba, V.A.; Flambaum, V.V.; Sil'vestrov, P.G.; Sushkov, O.P.

    1988-01-01

    Taking into account the electron Coulomb interaction screening considerably improves the convergence of perturbation theory in residual interaction. The developed technique allows to take into account screening diagrams in all orders of perturbation theory. Calculation of the correlation corrections to the thallium energy levels is carried out as an example

  11. Structure and Spectrum of Dust Coulomb Clusters

    International Nuclear Information System (INIS)

    Cheung, F.M.H.; Ford, C.; Barkby, S.; Samarian, A.A.; Vladimirov, S.V.

    2005-01-01

    In our study, the dynamics of Coulomb cluster systems were simulated for different number of particles. The spectra of energy states of dust Coulomb clusters corresponding to various packing sequences were obtained. The broadening of the spectrum due to inter-ring twist was discovered. It was found that the inter-ring twist will lead to a change in the energy spectrum of Coulomb cluster. This change was accompanied by a distortion of stable shells such that particles are able to compensate for any additional Coulomb energy (owing to the inter-ring twist) by further reducing their radial distance as much as possible. The overall effect is a change in the shape of the outer-shell from circular to elliptical

  12. Coulomb corrections in the low-energy scattering

    International Nuclear Information System (INIS)

    Mur, V.D.; Popov, V.S.

    1985-01-01

    Renormalization of the coefficients of the ''effective range expansion'' is considered for the short-range Coulomb problem. The exactly solvable model of the Coulomb plus short range potential is considered. Exact solutions are compared with approximations frequently used in the theory of hadronic atoms

  13. Coulomb effects in low-energy nuclear fragmentation

    Science.gov (United States)

    Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah

    1993-01-01

    Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.

  14. Extended random-phase approximation with three-body ground-state correlations

    International Nuclear Information System (INIS)

    Tohyama, M.; Schuck, P.

    2008-01-01

    An extended random-phase approximation (ERPA) which contains the effects of ground-state correlations up to a three-body level is applied to an extended Lipkin model which contains an additional particle-scattering term. Three-body correlations in the ground state are necessary to preserve the hermiticity of the Hamiltonian matrix of ERPA. Two approximate forms of ERPA which neglect the three-body correlations are also applied to investigate the importance of three-body correlations. It is found that the ground-state energy is little affected by the inclusion of the three-body correlations. On the contrary, three-body correlations for the excited states can become quite important. (orig.)

  15. A cluster expansion for bound three-alpha particles as a three-body problem

    International Nuclear Information System (INIS)

    Osman, A.

    1981-08-01

    A three-body model is proposed to study the nuclear bound states. The nucleus is described as a bound state of three clusters. A cluster expansion is introduced for the three cluster bound state problem. The present integral equations are treated by simple approximate solutions, which lead to effective potentials by using the present cluster expansion. The 12 C nucleus is described as a three-alpha particle bound state. The binding energy of 12 C is calculated numerically using the present cluster expansion as bound three-alpha clusters. The present three-body cluster expansion calculations are very near to the exact three-body calculations using separable potentials. The present theoretical calculations are in good agreement with the experimental measurements. (author)

  16. Triple-differential cross section of the 208Pb(6Li, αd)208 Pb Coulomb breakup and astrophysical S-factor of the d(α,γ)6 Li reaction at extremely low energies

    International Nuclear Information System (INIS)

    Igamov, S.B.; Yarmukhamedov, R.

    1999-10-01

    A method of calculation of the triple-differential cross section of the 208 Pb( 6 Li, αd) 208 Pb Coulomb breakup at astrophysically relevant energies E of the relative motion of the breakup fragments, taking into account the three-body (α - d - 208 Pb) Coulomb effects and the contributions from the E1- and E2- multipoles, including their interference, has been proposed. The new results for the astrophysical S-factor of the direct radiative capture d(α, γ) 6 Li reaction at E ≤ 250 keV have been obtained. It is shown that the experimental triple-differential cross section of the 208 Pb( 6 Li, αd) 208 Pb Coulomb breakup can also be used to give information about the value of the modulus squared of the nuclear vertex constant for the virtual 6 Li → α + d. (author)

  17. The generalized parabolic Coulomb wavefunction in spherical coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Gasaneo, G. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Departamento de Fisica, Universidad del Sur, Buenos Aires (Argentina); Colavecchia, F.D.; Garibotti, C.R. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Centro Atomico Bariloche, Rio Negro (Argentina); Otranto, S. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Departamento de Fisica, Universidad del Sur, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Centro Atomico Bariloche, Rio Negro (Argentina)

    2001-10-19

    In this work we present a detailed study of the recently introduced {delta}{sub m,n} basis for three Coulomb particles. We show that the scattering and generalized Coulomb problems as well as a {phi}{sub 2} approach can be viewed as particular cases of this basis. We derive a partial wave expansion for {delta}{sub m,n} functions and analyse the reduction to some of the precedent cases. (author)

  18. Exact calculation of three-body contact interaction to second order

    International Nuclear Information System (INIS)

    Kaiser, N.

    2012-01-01

    For a system of fermions with a three-body contact interaction the second-order contributions to the energy per particle anti E(k f ) are calculated exactly. The three-particle scattering amplitude in the medium is derived in closed analytical form from the corresponding two-loop rescattering diagram. We compare the (genuine) second-order three-body contribution to anti E(k f )∝k f 10 with the second-order term due to the density-dependent effective two-body interaction, and find that the latter term dominates. The results of the present study are of interest for nuclear many-body calculations where chiral three-nucleon forces are treated beyond leading order via a density-dependent effective two-body interaction. (orig.)

  19. Pairing from dynamically screened Coulomb repulsion in bismuth

    Science.gov (United States)

    Ruhman, Jonathan; Lee, Patrick A.

    2017-12-01

    Recently, Prakash et al. have discovered bulk superconductivity in single crystals of bismuth, which is a semimetal with extremely low carrier density. At such low density, we argue that conventional electron-phonon coupling is too weak to be responsible for the binding of electrons into Cooper pairs. We study a dynamically screened Coulomb interaction with effective attraction generated on the scale of the collective plasma modes. We model the electronic states in bismuth to include three Dirac pockets with high velocity and one hole pocket with a significantly smaller velocity. We find a weak-coupling instability, which is greatly enhanced by the presence of the hole pocket. Therefore we argue that bismuth is the first material to exhibit superconductivity driven by retardation effects of Coulomb repulsion alone. By using realistic parameters for bismuth we find that the acoustic plasma mode does not play the central role in pairing. We also discuss a matrix element effect, resulting from the Dirac nature of the conduction band, which may affect Tc in the s -wave channel without breaking time-reversal symmetry.

  20. Impact of electron-electron Coulomb interaction on the high harmonic generation process in graphene

    Science.gov (United States)

    Avetissian, H. K.; Mkrtchian, G. F.

    2018-03-01

    Generation of high harmonics in a monolayer graphene initiated by a strong coherent radiation field, taking into account electron-electron Coulomb interaction, is investigated. A microscopic theory describing the nonlinear optical response of graphene is developed. The Coulomb interaction of electrons is treated in the scope of dynamic Hartree-Fock approximation. The closed set of integrodifferential equations for the single-particle density matrix of a graphene quantum structure is solved numerically. The obtained solutions show the significance of many-body Coulomb interaction on the high harmonic generation process in graphene.

  1. Shape Optimization in Three-Dimensional Contact Problems with Coulomb Friction

    Czech Academy of Sciences Publication Activity Database

    Beremlijski, P.; Haslinger, J.; Kočvara, Michal; Kučera, R.; Outrata, Jiří

    2009-01-01

    Roč. 20, č. 1 (2009), s. 416-444 ISSN 1052-6234 R&D Projects: GA AV ČR IAA100750802; GA AV ČR IAA1075402 Grant - others:European Commision(XE) FP6 - 30717; GA ČR(CZ) GA201/07/0294 Institutional research plan: CEZ:AV0Z10750506 Keywords : shape optimization * contact problems * Coulomb friction Subject RIV: BA - General Mathematics Impact factor: 1.429, year: 2009

  2. Interplay between short-range correlated disorder and Coulomb interaction in nodal-line semimetals

    Science.gov (United States)

    Wang, Yuxuan; Nandkishore, Rahul M.

    2017-09-01

    In nodal-line semimetals, Coulomb interactions and short-range correlated disorder are both marginal perturbations to the clean noninteracting Hamiltonian. We analyze their interplay using a weak-coupling renormalization group approach. In the clean case, the Coulomb interaction has been found to be marginally irrelevant, leading to Fermi liquid behavior. We extend the analysis to incorporate the effects of disorder. The nodal line structure gives rise to kinematical constraints similar to that for a two-dimensional Fermi surface, which plays a crucial role in the one-loop renormalization of the disorder couplings. For a twofold degenerate nodal loop (Weyl loop), we show that disorder flows to strong coupling along a unique fixed trajectory in the space of symmetry inequivalent disorder couplings. Along this fixed trajectory, all symmetry inequivalent disorder strengths become equal. For a fourfold degenerate nodal loop (Dirac loop), disorder also flows to strong coupling, however, the strengths of symmetry inequivalent disorder couplings remain different. We show that feedback from disorder reverses the sign of the beta function for the Coulomb interaction, causing the Coulomb interaction to flow to strong coupling as well. However, the Coulomb interaction flows to strong coupling asymptotically more slowly than disorder. Extrapolating our results to strong coupling, we conjecture that at low energies nodal line semimetals should be described by a noninteracting nonlinear sigma model. We discuss the relation of our results with possible many-body localization at zero temperatures in such materials.

  3. Unitary Pole Approximation For 16O S12state And 40ca P32state When Coulomb Interaction Is Included

    Directory of Open Access Journals (Sweden)

    A. Acharya

    2015-08-01

    Full Text Available Abstract The form factor of a separable interaction between a pair of particles is an important input in a three body calculation for a transfer reaction. The three body equations of Alt Grassberger and Sandhas have been solved for a system of three particles viz.p n and 16Oand p n and 40Ca when coulomb interaction is included between the particle pairs. The input in this calculation i.e. the two body t-matrices representing the interaction between the pairs of particles is taken to be of a separable form conforming to the bound state of the pair. The form factors of the total interaction between the particle pairs are constructed using the prescription of Ueta and Bund.

  4. Scattering and stopping of swift diatomic molecules under Coulomb explosion

    International Nuclear Information System (INIS)

    Sigmund, P.

    1992-01-01

    The scattering and stopping of the fragments of a fast diatomic molecule under Coulomb explosion has been analysed theoretically. The central assumption in the scheme is the dominance of Coulomb explosion, while electronic stopping (including wake forces) and elastic scattering are treated as perturbations. Charge exchange has been neglected. Coulomb images of penetration phenomena are heavily distorted. For small penetrated layer thicknesses, images appear contracted in the direction of the molecular axis, and expanded perpendicular to it. This distortion is described quantitatively by a linear transformation. General expressions have been derived for the effect of continuous and stochastic forces on the distribution of fragment velocities from Coulomb explosion (the ''ring pattern''). Moreover, relations have been found that allow to scale velocity distributions valid in the absence of Coulomb explosion into distributions allowing for Coulomb explosion. Applications concern the shift in ring pattern due to electronic stopping, the lateral broadening due to multiple scattering, and the effect of zero-point motion on the Coulomb image of a molecule. (orig.)

  5. Scattering and stopping of swift diatomic molecules under Coulomb explosion

    International Nuclear Information System (INIS)

    Sigmund, P.

    1991-01-01

    The scattering and stopping of the fragments of a fast diatomic molecule under Coulomb explosion has been analyzed theoretically. The central assumption in the scheme is the dominance of Coulomb explosion, while electronic stopping (including wake forces) and elastic scattering are treated as perturbations. Charge exchange has been neglected. Coulomb images of penetration phenomena are heavily distorted. For small penetrated layer thicknesses, images appear contracted in the direction of the molecular axis, and expanded perpendicular to it. This distortion is described quantitatively by a linear transformation. General expressions have been derived for the effect of continuous and stochastic forces on the distribution of fragment velocities from Coulomb explosion (the ''ring pattern''). Moreover, relations have been found that allow to scale velocity distributions valid in the absence of Coulomb explosion into distributions allowing for Coulomb explosion. Applications concern the shift in ring pattern due to electronic stopping, the lateral broadening due to multiple scattering and the effect of zero-point motion on the Coulomb image of a molecule. 14 refs., 5 figs

  6. A simple coordinate space approach to three-body problems ...

    Indian Academy of Sciences (India)

    We show how to treat the dynamics of an asymmetric three-body system consisting of one heavy and two identical light particles in a simple coordinate space variational approach. The method is constructive and gives an efficient way of resolving a three-body system to an effective two-body system. It is illustrated by ...

  7. Coulomb drag in electron-hole bilayer: Mass-asymmetry and exchange correlation effects

    Science.gov (United States)

    Arora, Priya; Singh, Gurvinder; Moudgil, R. K.

    2018-04-01

    Motivated by a recent experiment by Zheng et al. [App. Phys. Lett. 108, 062102 (2016)] on coulomb drag in electron-hole and hole-hole bilayers based on GaAs/AlGaAs semiconductor heterostructure, we investigate theoretically the influence of mass-asymmetry and temperature-dependence of correlations on the drag rate. The correlation effects are dealt with using the Vignale-Singwi effective inter-layer interaction model which includes correlations through local-field corrections to the bare coulomb interactions. However, in this work, we have incorporated only the intra-layer correlations using the temperature-dependent Hubbard approximation. Our results display a reasonably good agreement with the experimental data. However, it is crucial to include both the electron-hole mass-asymmetry and temperature-dependence of correlations. Mass-asymmetry and correlations are found to result in a substantial enhancement of drag resistivity.

  8. Simbuca, using a graphics card to simulate Coulomb interactions in a penning trap

    CERN Document Server

    Van Gorp, S; Friedag, P; De Leebeeck, V; Tandecki, M; Weinheimer, C; Breitenfeldt, M; Traykov, E; Severijn, N; Mader, J; Soti, G; Iitaka, T; Herlert, A; Wauters, F; Zakoucky, D; Kozlov, V; Roccia, S

    2011-01-01

    In almost all cases, N-body simulations are limited by the computation time available. Coulomb interaction calculations scale with O(N(2)) with N the number of particles. Approximation methods exist already to reduce the computation time to O(NlogN) although calculating the interaction still dominates the total simulation time. We present Simbuca, a simulation package for thousands of ions moving in a Penning trap which will be applied for the WITCH experiment. Simbuca uses the output of the Cunbody-1 library, which calculates the gravitational interaction between entities on a graphics card, and adapts it for Coulomb calculations. Furthermore the program incorporates three realistic buffer gas models, the possibility of importing realistic electric and magnetic fieldmaps and different order integrators with adaptive step size and error control. The software is released under the GNU General Public License and free for use. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.

  9. Radiative capture versus Coulomb dissociation

    International Nuclear Information System (INIS)

    Esbensen, H.; Physics

    2006-01-01

    Measurements of the Coulomb dissociation of 8 B have been used to infer the rate of the inverse radiative proton capture on 7 Be. The analysis is usually based on the assumptions that the two processes are related by detailed balance and described by E1 transitions. However, there are corrections to this relation. The Coulomb form factors for the two processes, for example, are not identical. There are also E2 transitions and higher-order effects in the Coulomb dissociation, and the nuclear induced breakup cannot always be ignored. While adding first-order E2 transitions enhances the decay energy spectrum, the other mechanisms cause a suppression at low relative energies. The net result may accidentally be close to the conventional first-order E1 calculation, but there are differences which cannot be ignored if accuracies of 10% or better are needed

  10. Radiative Capture versus Coulomb Dissociation

    International Nuclear Information System (INIS)

    Esbensen, Henning

    2006-01-01

    Measurements of the Coulomb dissociation of 8B have been used to infer the rate of the inverse radiative proton capture on 7Be. The analysis is usually based on the assumptions that the two processes are related by detailed balance and described by E1 transitions. However, there are corrections to this relation. The Coulomb form factors for the two processes, for example, are not identical. There are also E2 transitions and higher-order effects in the Coulomb dissociation, and the nuclear induced breakup cannot always be ignored. While adding first-order E2 transitions enhances the decay energy spectrum, the other mechanisms cause a suppression at low relative energies. The net result may accidentally be close to the conventional first-order E1 calculation, but there are differences which cannot be ignored if accuracies of 10% or better are needed

  11. Influence of Coulomb effects on the resolving power of multireflection mass-spectrometer systems

    International Nuclear Information System (INIS)

    Skoblin, M G; Kopaev, I A; Monastyrskiy, M A; Alimpiev, S S; Greenfield, D E; Makarov, A A

    2015-01-01

    General theoretical approaches to the modelling of Coulomb effects in short ion bunches, developed previously by the authors, are applied in this paper to the calculation of multireflection mass-spectrometer systems. A separate module of the MASIM 3D applied software package is designed. An adaptive computational procedure for calculating the 'mirror potential' induced by an ion bunch on the surface of field-forming electrodes is proposed. The dynamics of ion bunches in a time-of-flight reflectron-type mass analyser is calculated and the limitations on the resolving power, caused by resonant Coulomb effects of self-bunching and coalescence in the groups of particles with close masses, are revealed on the basis of numerical experiments. (laser applications and other topics in quantum electronics)

  12. The effect of electromagnetic structure of heavy ions below the Coulomb barrier

    International Nuclear Information System (INIS)

    Menon, V.J.; Maheshwari, C.

    1978-02-01

    The scattering of two charged bodies (such as heavy ions)at energies below the Coulomb barrier is considered. By solving the radial Schroedinger equation in a simple model it is found that the phase shifts are indeed close to those due to point charges, and the cross-section is very well reproduced by the Rutherford formula. The first-order Born approximation, however, differs violently from the corresponding Born amplitude due to point charges, and achievement of the Rutherford limit in the momentum space is a difficult task. A method of summing up the Born series is indicated and its evaluation in the semiclassical limit is suggested

  13. Metal nanoparticle film-based room temperature Coulomb transistor.

    Science.gov (United States)

    Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian

    2017-07-01

    Single-electron transistors would represent an approach to developing less power-consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations.

  14. Three-body unitarity in the finite volume

    Energy Technology Data Exchange (ETDEWEB)

    Mai, M. [The George Washington University, Washington, DC (United States); Doering, M. [The George Washington University, Washington, DC (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2017-12-15

    The physical interpretation of lattice QCD simulations, performed in a small volume, requires an extrapolation to the infinite volume. A method is proposed to perform such an extrapolation for three interacting particles at energies above threshold. For this, a recently formulated relativistic 3 → 3 amplitude based on the isobar formulation is adapted to the finite volume. The guiding principle is two- and three-body unitarity that imposes the imaginary parts of the amplitude in the infinite volume. In turn, these imaginary parts dictate the leading power-law finite-volume effects. It is demonstrated that finite-volume poles arising from the singular interaction, from the external two-body sub-amplitudes, and from the disconnected topology cancel exactly leaving only the genuine three-body eigenvalues. The corresponding quantization condition is derived for the case of three identical scalar-isoscalar particles and its numerical implementation is demonstrated. (orig.)

  15. Effects of three-body interactions on the dynamics of entanglement in spin chains

    International Nuclear Information System (INIS)

    Shi Cuihua; Wu Yinzhong; Li Zhenya

    2009-01-01

    With the consideration of three-body interaction, dynamics of pairwise entanglement in spin chains is studied. The dependence of pairwise entanglement dynamics on the type of coupling, and distance between the spins is analyzed in a finite chain for different initial states. It is found that, for an Ising chain, three-body interactions are not in favor of preparing entanglement between the nearest neighbor spins, while three-body interactions are favorable for creating entanglement between remote spins from a separable initial state. For an isotropic Heisenberg chain, the pairwise concurrence will decrease when three-body interactions are considered both for a separable initial state and for a maximally entangled initial state, however, three-body interactions will retard the decay of the concurrence in an Ising chain when the initial state takes the maximally entangled state.

  16. Investigating Coulomb's Law.

    Science.gov (United States)

    Noll, Ellis; Koehlinger, Mervin; Kowalski, Ludwik; Swackhamer, Gregg

    1998-01-01

    Describes the use of a computer-linked camera to demonstrate Coulomb's law. Suggests a way of reducing the difficulties in presenting Coulomb's law by teaching the inverse square law of gravity and the inverse square law of electricity in the same unit. (AIM)

  17. Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method.

    Science.gov (United States)

    Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko

    2010-06-28

    We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.

  18. Effect of Coulomb scattering from trapped charges on the mobility in an organic field-effect transistor

    NARCIS (Netherlands)

    Sharma, A.; Janssen, N.M.A.; Matthijssen, S.J.G.; de Leeuw, D.M.; Kemerink, M.; Bobbert, P.A.

    2011-01-01

    We investigate the effect of Coulomb scattering from trapped charges on the mobility in the two-dimensional channel of an organic field-effect transistor. The number of trapped charges can be tuned by applying a prolonged gate bias. Surprisingly, after increasing the number of trapped charges to a

  19. Long-range Coulomb interaction effects on the topological phase transitions between semimetals and insulators

    Science.gov (United States)

    Han, SangEun; Moon, Eun-Gook

    2018-06-01

    Topological states may be protected by a lattice symmetry in a class of topological semimetals. In three spatial dimensions, the Berry flux around gapless excitations in momentum space concretely defines a chirality, so a protecting symmetry may be referred to as a chiral symmetry. Prime examples include a Dirac semimetal (DSM) in a distorted spinel, BiZnSiO4, protected by a mirror symmetry, and a DSM in Na3Bi , protected by a rotational symmetry. In these states, topology and chiral symmetry are intrinsically tied. In this Rapid Communication, the characteristic interplay between a chiral symmetry order parameter and an instantaneous long-range Coulomb interaction is investigated with the standard renormalization group method. We show that a topological transition associated with chiral symmetry is stable under the presence of a Coulomb interaction and the electron velocity always becomes faster than the one of a chiral symmetry order parameter. Thus, the transition must not be relativistic, which implies that supersymmetry is intrinsically forbidden by the long-range Coulomb interaction. Asymptotically exact universal ratios of physical quantities such as the energy gap ratio are obtained, and connections with experiments and recent theoretical proposals are also discussed.

  20. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of 235U

    International Nuclear Information System (INIS)

    Modesto, Montoya

    2014-01-01

    The Coulomb effects hypothesis is used to interpret even-odd effects of maximum total kinetic energy as a function of mass and charge of fragments from thermal neutron induced fission of 235 U. Assuming spherical fragments at scission, the Coulomb interaction energy between fragments (C sph ) is higher than the Q-value, the available energy. Therefore at scission the fragments must be deformed, so that the Coulomb interaction energy does not exceed the Q-value. The fact that the even-odd effects in the maximum total kinetic energy as a function of the charge and mass, respectively, are lower than the even-odd effects of Q is consistent with the assumption that odd mass fragments are softer than the even-even fragments. Even-odd effects of charge distribution in super asymmetric fragmentation also are interpreted with the Coulomb effect hypothesis. Because the difference between C sph and Q increases with asymmetry, fragmentations require higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break pairs of nucleons. This explains why in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number increases with asymmetry. (author).

  1. Electron stereodynamics in coulomb explosion of molecules by slow highly charged ions

    International Nuclear Information System (INIS)

    Ichimura, Atsushi; Ohyama-Yamaguchi, Tomoko

    2008-01-01

    The three-center Coulombic over-the-barrier model is developed for Coulomb explosion of a homonuclear diatomic molecule in collisions with a slow (∼10 eV/amu) highly charged ion. A conventional two-step picture of multiple electron transfer followed by Coulomb explosion is far from appropriate because the molecule sets out to dissociate before the incident ion approaches the closest distance. We treat the formation of a quasi-molecule and its decay into the three moving atomic ions. Charge-asymmetric population between fragment ions observed in a triple-coincidence measurement is suggested to reflect the bond elongation during a collision. Collisions of Kr 8+ + N 2 are analyzed. (author)

  2. Three-body calculation of Be double-hypernuclei

    Indian Academy of Sciences (India)

    Energy levels and bond energy of the double- hypernucleus are calculated by considering two- and three-cluster interactions. Interactions between constituent particles are contact interactions for reproducing the low binding energy of nuclei. The effective action is constructed to involve three-body forces. In this paper ...

  3. Three-body dynamics in one dimension: a test model for the three-nucleon system with irreducible pionic diagrams

    International Nuclear Information System (INIS)

    Melde, T.; Canton, L.; Svenne, J.P.

    2002-01-01

    We formulate the three-body problem in one dimension in terms of the (Faddeev-type) integral equation approach. As an application, we develop a spinless, one-dimensional (1-D) model that mimics three-nucleon dynamics in one dimension. Using simple two-body potentials that reproduce the deuteron binding, we obtain that the three-body system binds at about 7.5 MeV. We then consider two types of residual pionic corrections in the dynamical equation; one related to the 2π-exchange three-body diagram, the other to the 1π-exchange three-body diagram. We find that the first contribution can produce an additional binding effect of about 0.9 MeV. The second term produces smaller binding effects, which are, however, dependent on the uncertainty in the off-shell extrapolation of the two-body t-matrix. This presents interesting analogies with what occurs in three dimensions. The paper also discusses the general three-particle quantum scattering problem, for motion restricted to the fall line. (author)

  4. Metal nanoparticle film–based room temperature Coulomb transistor

    Science.gov (United States)

    Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian

    2017-01-01

    Single-electron transistors would represent an approach to developing less power–consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations. PMID:28740864

  5. Three-body force in the three-nucleon system

    International Nuclear Information System (INIS)

    Gibson, B.F.

    1986-01-01

    A brief summary of the symposium is presented. Three-nucleon force models are discussed, including the two-pion exchange potential, NN-ΔN coupled-channels model, and phenomenological parametrization. Relevant experimental data and model calculations are discussed including form factors, binding energies, charge radii, and charge density for 3 H and 3 He. A calculation of the EMC effect for 3 He is also made using Sasakawa's wave function and compared to experimental data obtained at SLAC. The paper ends with discussions of proton-deuteron scattering, investigations at intermediate energies, and QCD efforts to understand the three-body problem

  6. Efimov three-body states on top of a Fermi sea

    International Nuclear Information System (INIS)

    Nygaard, Nicolai Gayle; Zinner, Nikolaj Thomas

    2014-01-01

    The stabilization of Cooper pairs of bound electrons in the background of a Fermi sea is the origin of superconductivity and the paradigmatic example of the striking influence of many-body physics on few-body properties. In the quantum-mechanical three-body problem the famous Efimov effect yields unexpected scaling relations among a tower of universal states. These seemingly unrelated problems can now be studied in the same setup thanks to the success of ultracold atomic gas experiments. In light of the tremendous effect of a background Fermi sea on two-body properties, a natural question is whether a background can modify or even destroy the Efimov effect. Here we demonstrate how the generic problem of three interacting particles changes when one particle is embedded in a background Fermi sea, and show that Efimov scaling persists. It is found in a scaling that relates the three-body physics to the background density of fermionic particles

  7. Integral equation for Coulomb problem

    International Nuclear Information System (INIS)

    Sasakawa, T.

    1986-01-01

    For short range potentials an inhomogeneous (homogeneous) Lippmann-Schwinger integral equation of the Fredholm type yields the wave function of scattering (bound) state. For the Coulomb potential, this statement is no more valid. It has been felt difficult to express the Coulomb wave function in a form of an integral equation with the Coulomb potential as the perturbation. In the present paper, the author shows that an inhomogeneous integral equation of a Volterra type with the Coulomb potential as the perturbation can be constructed both for the scattering and the bound states. The equation yielding the binding energy is given in an integral form. The present treatment is easily extended to the coupled Coulomb problems

  8. Parametric optimization designs of a thermoelectric refrigeration device existing Zeeman and Coulomb effects

    International Nuclear Information System (INIS)

    Zhang, Guangping; Lin, Bihong; Wu, Guocan

    2017-01-01

    Highlights: • A new model of the quantum dot refrigeration devices is established. • The effects of the Zeeman and Coulomb effects on performance are discussed. • Maximum cooling rate and coefficient of performance are calculated. • Upper boundary of the optimal region of the device is discussed. • Optimum choice criteria of some important parameters are provided. - Abstract: A general class of quantum dot refrigeration devices, which is consisting of a single orbital interacting quantum dot and two metal leads with different temperatures and chemical potentials, is established. In the model, not only the Zeeman splitting of energy levels resulting from an external magnetic field but also the effect of a linear fade of the Coulomb energy caused by the splitting are taken into account simultaneously. Based on the quantum master equation, the occupation probabilities of quantum states for the electron are determined under the steady state condition. The general expressions of the particle fluxes, heat flows, power input, cooling rate and the coefficient of performance (COP) are derived. The influences of the energy level and external magnetic field on the performance of the refrigerator are discussed in detail. By applying numerical simulations, three-dimensional diagrams of the cooling rate and COP varying with the magnetic field and energy level are given. The maximum COP and the optimal values of corresponding parameters as well as the maximum cooling rate are obtained. The optimal regions of the magnetic field and the energy level are determined. The optimized scopes of the COP and cooling rate are provided. Some important conclusions in the previous literatures can be directly deduced from the current model under the different extreme conditions.

  9. Covariant equations for the three-body bound state

    International Nuclear Information System (INIS)

    Stadler, A.; Gross, F.; Frank, M.

    1997-01-01

    The covariant spectator (or Gross) equations for the bound state of three identical spin 1/2 particles, in which two of the three interacting particles are always on shell, are developed and reduced to a form suitable for numerical solution. The equations are first written in operator form and compared to the Bethe-Salpeter equation, then expanded into plane wave momentum states, and finally expanded into partial waves using the three-body helicity formalism first introduced by Wick. In order to solve the equations, the two-body scattering amplitudes must be boosted from the overall three-body rest frame to their individual two-body rest frames, and all effects which arise from these boosts, including Wigner rotations and p-spin decomposition of the shell-particle, are treated exactly. In their final form, the equations reduce to a coupled set of Faddeev-like double integral equations with additional channels arising from the negative p-spin states of the off-shell particle

  10. On Coulomb disintegration of relativistic nuclei and hypernuclei

    International Nuclear Information System (INIS)

    Lyuboshits, V.L.

    1989-01-01

    The dependence of the total cross-section of excitation and disintegration of a relativistic nucleus in the Coulomb field on the energy and parameters characterizing nuclear dimensions is investigated. The analogy with the problem of atomic ionization at the passage of charged particles through matter is used. The results are applied to the description of the Coulomb dissociation of nuclei with small binding energies. An explicit expression for the effective cross-section of the Coulomb disintegration of the hypernucleus-Λ 3 H into a deuteron and Λ-particle. 12 refs

  11. Three-body forces, relativistic effects, isobars, and pions in nuclear systems

    International Nuclear Information System (INIS)

    Wiringa, R.B.

    1983-01-01

    Conventional microscopic calculations in nuclear physics start from a nonrelativistic Hamiltonian. The many-body Schroedinger equation is then solved to obtain the ground state energy, wave function, and expectation values of other quantities of interest. Such a procedure gives a qualitative description of nuclear saturation properties, but it is now well established that the simple H is quantitatively inadequate. For example, the light nuclei are underbound with too large a charge radius, while nuclear matter is overbound at far too high a density. This note reviews recent studies that go beyond the simple H. These include 1) the introduction of three-nucleon potentials, 2) estimates of relativistic effects, 3) the introduction of isobar degrees of freedom in the two-body potential, and 4) probing the influence of pion degrees of freedom on nuclear systems

  12. Gauge orbits and the Coulomb potential

    International Nuclear Information System (INIS)

    Greensite, J.

    2009-01-01

    If the color Coulomb potential is confining, then the Coulomb field energy of an isolated color charge is infinite on an infinite lattice, even if the usual UV divergence is lattice regulated. A simple criterion for Coulomb confinement is that the expectation value of timelike link variables vanishes in the Coulomb gauge, but it is unclear how this criterion is related to the spectrum of the corresponding Faddeev-Popov operator, which can be used to formulate a quite different criterion for Coulomb confinement. The purpose of this article is to connect the two seemingly different Coulomb confinement criteria, and explain the geometrical basis of the connection.

  13. Study of Coulomb effects using the comparison of positrons and electrons elastic scattering on nuclei

    International Nuclear Information System (INIS)

    Breton, Vincent

    1990-01-01

    We have studied Coulomb effects in the electron-nucleus interaction by measuring electron and positron elastic scattering. The Coulomb field of the nucleus acts differently on theses particles because of their opposite charges. The experiment took place at the Accelerateur Lineaire de Saclay, with 450 MeV electrons and positrons. We measured the emittance of the positron and electron beams. We compared electron and positron beams having the same energy, the same emittance and the same intensity. This way, we measured positron scattering cross sections with 2 % systematic error. By comparing positron and electron elastic scattering cross sections for momentum transfers between 1 and 2 fm -1 , on a Lead 208 target, we showed that the calculations of Coulomb effects in elastic scattering are in perfect agreement with experimental results. The comparison of positron and electron elastic scattering cross sections on Carbon showed that dispersive effects are smaller than 2 % outside the diffraction minima. These two results demonstrate in a definitive way that electron scattering allows to measure charge densities in the center of nuclei with an accuracy of the order of 1 %. (author) [fr

  14. Structures of two-dimensional three-body systems

    International Nuclear Information System (INIS)

    Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.

    1996-01-01

    Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)

  15. Expansions for Coulomb wave functions

    NARCIS (Netherlands)

    Boersma, J.

    1969-01-01

    In this paper we derive a number of expansions for Whittaker functions, regular and irregular Coulomb wave functions. The main result consists of a new expansion for the irregular Coulomb wave functions of orders zero and one in terms of regular Coulomb wave functions. The latter expansions are

  16. Fabricating a silicon nanowire by using the proximity effect in electron beam lithography for investigation of the Coulomb blockade effect

    International Nuclear Information System (INIS)

    Zhang Xiangao; Fang Zhonghui; Chen Kunji; Xu Jun; Huang Xinfan

    2011-01-01

    We present an approach to fabricate a silicon nanowire relying on the proximity effect in electron beam lithography with a low acceleration voltage system by designing the exposure patterns with a rhombus sandwiched between two symmetric wedges. The reproducibility is investigated by changing the number of rhombuses. A device with a silicon nanowire is constructed on a highly doped silicon-on-insulator wafer to measure the electronic transport characteristics. Significant nonlinear behavior of current-voltage curves is observed at up to 150 K. The dependence of current on the drain voltage and back-gate voltage shows Coulomb blockade oscillations at 5.4 K, revealing a Coulomb island naturally formed in the nanowire. The mechanism of formation of the Coulomb island is discussed.

  17. Effective temperature in relaxation of Coulomb glasses.

    Science.gov (United States)

    Somoza, A M; Ortuño, M; Caravaca, M; Pollak, M

    2008-08-01

    We study relaxation in two-dimensional Coulomb glasses up to macroscopic times. We use a kinetic Monte Carlo algorithm especially designed to escape efficiently from deep valleys around metastable states. We find that, during the relaxation process, the site occupancy follows a Fermi-Dirac distribution with an effective temperature much higher than the real temperature T. Long electron-hole excitations are characterized by T(eff), while short ones are thermalized at T. We argue that the density of states at the Fermi level is proportional to T(eff) and is a good thermometer to measure it. T(eff) decreases extremely slowly, roughly as the inverse of the logarithm of time, and it should affect hopping conductance in many experimental circumstances.

  18. Unified approach to probing Coulomb effects in tunnel ionization for any ellipticity of laser light.

    Science.gov (United States)

    Landsman, A S; Hofmann, C; Pfeiffer, A N; Cirelli, C; Keller, U

    2013-12-27

    We present experimental data that show significant deviations from theoretical predictions for the location of the center of the electron momenta distribution at low values of ellipticity ε of laser light. We show that these deviations are caused by significant Coulomb focusing along the minor axis of polarization, something that is normally neglected in the analysis of electron dynamics, even in cases where the Coulomb correction is otherwise taken into account. By investigating ellipticity-resolved electron momenta distributions in the plane of polarization, we show that Coulomb focusing predominates at lower values of ellipticity of laser light, while Coulomb asymmetry becomes important at higher values, showing that these two complementary phenomena can be used to probe long-range Coulomb interaction at all polarizations of laser light. Our results suggest that both the breakdown of Coulomb focusing and the onset of Coulomb asymmetry are linked to the disappearance of Rydberg states with increasing ellipticity.

  19. Measuring the effects of Coulomb repulsion via signal decay in an atmospheric pressure laser ionization ion mobility spectrometer.

    Science.gov (United States)

    Ihlenborg, Marvin; Schuster, Ann-Kathrin; Grotemeyer, Juergen; Gunzer, Frank

    2018-01-01

    Using lasers in ion mobility spectrometry offers a lot of advantages compared to standard ionization sources. Especially, the ion yield can be drastically increased. It can, however, reach levels where the Coulomb repulsion leads to unwanted side effects. Here, we investigate how the Coulomb repulsion can be detected apart from the typical signal broadening by measuring effects created already in the reaction region and comparing them with corresponding finite element method simulations.

  20. Coulomb potentials between spherical heavy ions

    International Nuclear Information System (INIS)

    Iwe, H.

    1982-01-01

    The Coulomb interaction between spherical nuclei having arbitrary radial nuclear charge distributions is calculated. All these realistic Coulomb potentials are given in terms of analytical expressions and are available for immediate application. So in no case a numerical computation of the Coulomb integral is required. The parameters of the charge distributions are taken from electron scattering analysis. The Coulomb self-energies of the charge distributions used are also calculated analytically in a closed form. For a number of nucleus-nucleus pairs, the Coulomb potentials derived from realistic charge distributions are compared with those normally used in various nucleus-nucleus optical model calculations. In this connection a detailed discussion of the problem how to choose consistently Coulomb parameters for different approximations is given. (orig.)

  1. Coulomb displacement energies in nuclei: a new approach

    International Nuclear Information System (INIS)

    Auerbach, N.; Tel Aviv Univ.; Bernard, V.; Nguyen, V.G.

    1978-04-01

    The neutron core polarization gives rise to an important correction to the direct Coulomb contribution when one calculates the Coulomb displacement energies. In the Hartree-Fock model it is shown that this correction is about 2% to 4.5% in medium and heavy nuclei. The core polarization as well as other higher order effects can be included by using a selfconsistent description of the analog state in a complete proton particle-neutron hole space. The Coulomb displacement energies in 48 Ca, 88 Sr and 208 Pb have been calculated using Skyrme interactions SIII and SIV. A good agreement with experiment is obtained

  2. Coulomb corrections for interferometry analysis of expanding hadron systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinyukov, Yu.M.; Lednicky, R.; Pluta, J.; Erazmus, B. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Akkelin, S.V. [ITP, Kiev (Ukraine)

    1997-09-01

    The problem of the Coulomb corrections to the two-boson correlation functions for the systems formed in ultra-relativistic heavy ion collisions is considered for large effective system volumes. The modification of the standard zero-distance correction (so called Gamow or Coulomb factor) has been proposed for such a kind of systems. For the {pi}{sup +}{pi}{sup +} and K{sup +}K{sup +} correlation functions the analytical calculations of the Coulomb correction are compared with the exact numerical results. (author). 20 refs.

  3. Observation of the Borromean Three-Body Förster Resonances for Three Interacting Rb Rydberg Atoms.

    Science.gov (United States)

    Tretyakov, D B; Beterov, I I; Yakshina, E A; Entin, V M; Ryabtsev, I I; Cheinet, P; Pillet, P

    2017-10-27

    Three-body Förster resonances at long-range interactions of Rydberg atoms were first predicted and observed in Cs Rydberg atoms by Faoro et al. [Nat. Commun. 6, 8173 (2015)NCAOBW2041-172310.1038/ncomms9173]. In these resonances, one of the atoms carries away an energy excess preventing the two-body resonance, leading thus to a Borromean type of Förster energy transfer. But they were in fact observed as the average signal for the large number of atoms N≫1. In this Letter, we report on the first experimental observation of the three-body Förster resonances 3×nP_{3/2}(|M|)→nS_{1/2}+(n+1)S_{1/2}+nP_{3/2}(|M^{*}|) in a few Rb Rydberg atoms with n=36, 37. We have found here clear evidence that there is no signature of the three-body Förster resonance for exactly two interacting Rydberg atoms, while it is present for N=3-5 atoms. This demonstrates the assumption that three-body resonances can generalize to any Rydberg atom. As such resonance represents an effective three-body operator, it can be used to directly control the three-body interactions in quantum simulations and quantum information processing with Rydberg atoms.

  4. Coulomb Stress Accumulation along the San Andreas Fault System

    Science.gov (United States)

    Smith, Bridget; Sandwell, David

    2003-01-01

    Stress accumulation rates along the primary segments of the San Andreas Fault system are computed using a three-dimensional (3-D) elastic half-space model with realistic fault geometry. The model is developed in the Fourier domain by solving for the response of an elastic half-space due to a point vector body force and analytically integrating the force from a locking depth to infinite depth. This approach is then applied to the San Andreas Fault system using published slip rates along 18 major fault strands of the fault zone. GPS-derived horizontal velocity measurements spanning the entire 1700 x 200 km region are then used to solve for apparent locking depth along each primary fault segment. This simple model fits remarkably well (2.43 mm/yr RMS misfit), although some discrepancies occur in the Eastern California Shear Zone. The model also predicts vertical uplift and subsidence rates that are in agreement with independent geologic and geodetic estimates. In addition, shear and normal stresses along the major fault strands are used to compute Coulomb stress accumulation rate. As a result, we find earthquake recurrence intervals along the San Andreas Fault system to be inversely proportional to Coulomb stress accumulation rate, in agreement with typical coseismic stress drops of 1 - 10 MPa. This 3-D deformation model can ultimately be extended to include both time-dependent forcing and viscoelastic response.

  5. A Coulomb-Like Off-Shell T-Matrix with the Correct Coulomb Phase Shift

    International Nuclear Information System (INIS)

    Oryu, Shinsho; Watanabe, Takashi; Hiratsuka, Yasuhisa; Togawa, Yoshio

    2017-01-01

    We confirm the reliability of the well-known Coulomb renormalization method (CRM). It is found that the CRM is only available for a very-long-range screened Coulomb potential (SCP). However, such an SCP calculation in momentum space is considerably difficult because of the cancellation of significant digits. In contrast to the CRM, we propose a new method by using an on-shell equivalent SCP and the rest term. The two-potential theory with r-space is introduced, which defines fully the off-shell Coulomb amplitude. (author)

  6. Modelling of three-body effects in a double continuum

    International Nuclear Information System (INIS)

    Tweed, R.J.; Tannous, C.; Marchalant, P.

    1993-01-01

    Theoretical calculations of double ionisation by electron or photon impact require a final state wavefunction which takes account both of the Coulomb repulsion between the pair of free electrons and of their interaction with the residual ionic core. It is desirable that this should be separable so as to facilitate the introduction of electron-pair correlations in the initial state wavefunction for the collision system. We propose a method for calculating coupled classical trajectories for the free electrons and deducing from these potentials from which their quantum mechanical wavefunctions may be obtained. Test calculations are reported for electron impact single ionisation of hydrogen. (orig.)

  7. Single-photon Coulomb explosion of methanol using broad bandwidth ultrafast EUV pulses.

    Science.gov (United States)

    Luzon, Itamar; Jagtap, Krishna; Livshits, Ester; Lioubashevski, Oleg; Baer, Roi; Strasser, Daniel

    2017-05-31

    Single-photon Coulomb explosion of methanol is instigated using the broad bandwidth pulse achieved through high-order harmonics generation. Using 3D coincidence fragment imaging of one molecule at a time, the kinetic energy release (KER) and angular distributions of the products are measured in different Coulomb explosion (CE) channels. Two-body CE channels breaking either the C-O or the C-H bonds are described as well as a proton migration channel forming H 2 O + , which is shown to exhibit higher KER. The results are compared to intense-field Coulomb explosion measurements in the literature. The interpretation of broad bandwidth single-photon CE data is discussed and supported by ab initio calculations of the predominant C-O bond breaking CE channel. We discuss the importance of these findings for achieving time resolved imaging of ultrafast dynamics.

  8. Coulomb Logarithm in Nonideal and Degenerate Plasmas

    Science.gov (United States)

    Filippov, A. V.; Starostin, A. N.; Gryaznov, V. K.

    2018-03-01

    Various methods for determining the Coulomb logarithm in the kinetic theory of transport and various variants of the choice of the plasma screening constant, taking into account and disregarding the contribution of the ion component and the boundary value of the electron wavevector are considered. The correlation of ions is taken into account using the Ornstein-Zernike integral equation in the hypernetted-chain approximation. It is found that the effect of ion correlation in a nondegenerate plasma is weak, while in a degenerate plasma, this effect must be taken into account when screening is determined by the electron component alone. The calculated values of the electrical conductivity of a hydrogen plasma are compared with the values determined experimentally in the megabar pressure range. It is shown that the values of the Coulomb logarithm can indeed be smaller than unity. Special experiments are proposed for a more exact determination of the Coulomb logarithm in a magnetic field for extremely high pressures, for which electron scattering by ions prevails.

  9. The three-body problem

    CERN Document Server

    Marchal, Christian

    1990-01-01

    Recent research on the theory of perturbations, the analytical approach and the quantitative analysis of the three-body problem have reached a high degree of perfection. The use of electronics has aided developments in quantitative analysis and has helped to disclose the extreme complexity of the set of solutions. This accelerated progress has given new orientation and impetus to the qualitative analysis that is so complementary to the quantitative analysis. The book begins with the various formulations of the three-body problem, the main classical results and the important questions and conje

  10. Coulomb energy, vortices, and confinement

    International Nuclear Information System (INIS)

    Greensite, Jeff; Olejnik, Stefan

    2003-01-01

    We estimate the Coulomb energy of static quarks from a Monte Carlo calculation of the correlator of timelike link variables in the Coulomb gauge. We find, in agreement with Cucchieri and Zwanziger, that this energy grows linearly with distance at large quark separations. The corresponding string tension, however, is several times greater than the accepted asymptotic string tension, indicating that a state containing only static sources, with no constituent gluons, is not the lowest energy flux tube state. The Coulomb energy is also measured on thermalized lattices with center vortices removed by the de Forcrand-D'Elia procedure. We find that when vortices are removed, the Coulomb string tension vanishes

  11. Investigation of effective impact parameters in electron-ion temperature relaxation via Particle-Particle Coulombic molecular dynamics

    Science.gov (United States)

    Zhao, Yinjian

    2017-09-01

    Aiming at a high simulation accuracy, a Particle-Particle (PP) Coulombic molecular dynamics model is implemented to study the electron-ion temperature relaxation. In this model, the Coulomb's law is directly applied in a bounded system with two cutoffs at both short and long length scales. By increasing the range between the two cutoffs, it is found that the relaxation rate deviates from the BPS theory and approaches the LS theory and the GMS theory. Also, the effective minimum and maximum impact parameters (bmin* and bmax*) are obtained. For the simulated plasma condition, bmin* is about 6.352 times smaller than the Landau length (bC), and bmax* is about 2 times larger than the Debye length (λD), where bC and λD are used in the LS theory. Surprisingly, the effective relaxation time obtained from the PP model is very close to the LS theory and the GMS theory, even though the effective Coulomb logarithm is two times greater than the one used in the LS theory. Besides, this work shows that the PP model (commonly known as computationally expensive) is becoming practicable via GPU parallel computing techniques.

  12. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    International Nuclear Information System (INIS)

    Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan

    2015-01-01

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials

  13. Existence for viscoplastic contact with Coulomb friction problems

    Directory of Open Access Journals (Sweden)

    Amina Amassad

    2002-01-01

    frictional contact between an elastic-viscoplastic body and a rigid obstacle. We model the frictional contact both by a Tresca's friction law and a regularized Coulomb's law. We assume, in a first part, that the contact is bilateral and that no separation takes place. In a second part, we consider the Signorini unilateral contact conditions. Proofs are based on a time-discretization method, Banach and Schauder fixed point theorems.

  14. Coulomb Dissociation as a Tool of Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Utsunomiya, H.

    2000-01-01

    My talk will begin with an introduction of the Coulomb dissociation method, proceed to discussions on Coulomb breakup of 7 Li with respect to the big-bang nucleosynthesis and end with the revision of astrophysical S-factors. The methodology based on the virtual photon source will be introduced in view of experimental techniques. The discussion will include the quantum tunnelling effect in non-resonant breakup, the lifetime of continuum states, and Coulomb distortion of relevant cross sections. Roles of multi-step processes and different multipolarities will also be discussed on the basis of solving a time-dependent Schroedinger equation. My talk will present quantitative results. The theoretical framework of the Coulomb dissociation method and a broad scope of its applications are given by G. Baur. Applications to radioactive nuclei which have quickly become vogue are discussed in the related lecture of J. Kiener. (author)

  15. FaCE: a tool for Three Body Faddeev calculations with core excitation

    OpenAIRE

    Thompson, I. J.; Nunes, F. M.; Danilin, B. V.

    2004-01-01

    FaCE is a self contained programme, with namelist input, that solves the three body Faddeev equations. It enables the inclusion of excitation of one of the three bodies, whilst the other two remain inert. It is particularly useful for obtaining the binding energies and bound state structure compositions of light exotic nuclei treated as three-body systems, given the three effective two body interactions. A large variety of forms for these interactions may be defined, and supersymmetric transf...

  16. Folding model analysis of Λ binding energies and three-body ΛNN force

    International Nuclear Information System (INIS)

    Mian, M.; Rahman Khan, M.Z.

    1988-02-01

    Working within the framework of the folding model, we analyze the Λ binding energy data of light hypernuclei with effective two-body ΛN plus three-body ΛNN interaction. The two-body density for the core nucleus required for evaluating the three-body force contribution is obtained in terms of the centre of mass pair correlation. It is found that except for Λ 5 He the data are fairly well explained. The three-body force seems to account for the density dependence of the effective two-body ΛN interaction proposed earlier. (author). 13 refs, 2 tabs

  17. Spin-dependent electron many-body effects in GaAs

    Science.gov (United States)

    Nemec, P.; Kerachian, Y.; van Driel, H. M.; Smirl, Arthur L.

    2005-12-01

    Time- and polarization-resolved differential transmission measurements employing same and oppositely circularly polarized 150fs optical pulses are used to investigate spin characteristics of conduction band electrons in bulk GaAs at 295K . Electrons and holes with densities in the 2×1016cm-3-1018cm-3 range are generated and probed with pulses whose center wavelength is between 865 and 775nm . The transmissivity results can be explained in terms of the spin sensitivity of both phase-space filling and many-body effects (band-gap renormalization and screening of the Coulomb enhancement factor). For excitation and probing at 865nm , just above the band-gap edge, the transmissivity changes mainly reflect spin-dependent phase-space filling which is dominated by the electron Fermi factors. However, for 775nm probing, the influence of many-body effects on the induced transmission change are comparable with those from reduced phase space filling, exposing the spin dependence of the many-body effects. If one does not take account of these spin-dependent effects one can misinterpret both the magnitude and time evolution of the electron spin polarization. For suitable measurements we find that the electron spin relaxation time is 130ps .

  18. "Body Practices--Exposure and Effect of a Sporting Culture?" "Stories from Three Australian Swimmers"

    Science.gov (United States)

    McMahon, Jenny; Penney, Dawn; Dinan-Thompson, Maree

    2012-01-01

    This paper contributes to sport, sociology and the body literature by exploring the "exposure and effect" of culture, in particular bodily practices placed on three adolescent swimmers immersed in the Australian swimming culture using an ethnographic framework. The research reported is particularly notable as it addresses two distinct…

  19. Universality in low energy three-body systems

    International Nuclear Information System (INIS)

    Amorim, A.E.A.; Tomio, L; Frederico, T.

    1997-01-01

    The renormalizability of the quantum theory of non-relativistic three-body system with zero range interaction, warranties that all the low-energy three-body properties are well defined and the low-energy two-body and only one three-body physical information are known. Considering this observation, we have shown that the conditions for the occurrence of Efimov states can be easily reached with any model of short range potential where the three-body ground state and the corresponding binding energy of the subsystems are kept fixed. This approach was applied to the recently discovered halo nuclei. (author)

  20. Phase diagram, correlation gap, and critical properties of the Coulomb glass

    Science.gov (United States)

    Palassini, Matteo; Goethe, Martin

    2009-03-01

    We investigate the lattice Coulomb glass model in three dimensions via extensive Monte Carlo simulations. 1. No evidence for an equilibrium glass phase is found down to very low temperatures, contrary to mean-field predictions, although the correlation length increases rapidly near T=0. 2. The single-particle density of states near the Coulomb gap satisfies the scaling law g(e,T)=T^λf(e/T) with λ 2.2. 3. A charge-ordered phase exists at low disorder. The phase transition from the fluid to the charge ordered phase is consistent with the Random Field Ising universality class, which shows that the interaction is effectively screened at moderate temperature. Results from nonequilibrium simulations will also be briefly discussed. Reference: M.Goethe and M.Palassini, arXiv:0810.1047

  1. Analytical equation of state with three-body forces: Application to noble gases

    International Nuclear Information System (INIS)

    Río, Fernando del; Díaz-Herrera, Enrique; Guzmán, Orlando; Moreno-Razo, José Antonio; Ramos, J. Eloy

    2013-01-01

    We developed an explicit equation of state (EOS) for small non polar molecules by means of an effective two-body potential. The average effect of three-body forces was incorporated as a perturbation, which results in rescaled values for the parameters of the two-body potential. These values replace the original ones in the EOS corresponding to the two-body interaction. We applied this procedure to the heavier noble gases and used a modified Kihara function with an effective Axilrod-Teller-Muto (ATM) term to represent the two- and three-body forces. We also performed molecular dynamics simulations with two- and three-body forces. There was good agreement between predicted, simulated, and experimental thermodynamic properties of neon, argon, krypton, and xenon, up to twice the critical density and up to five times the critical temperature. In order to achieve 1% accuracy of the pressure at liquid densities, the EOS must incorporate the effect of ATM forces. The ATM factor in the rescaled two-body energy is most important at temperatures around and lower than the critical one. Nonetheless, the rescaling of two-body diameter cannot be neglected at liquid-like densities even at high temperature. This methodology can be extended straightforwardly to deal with other two- and three-body potentials. It could also be used for other nonpolar substances where a spherical two-body potential is still a reasonable coarse-grain approximation

  2. Three-Body Antikaon-Nucleon Systems

    Czech Academy of Sciences Publication Activity Database

    Shevchenko, Nina V.

    2017-01-01

    Roč. 58, č. 1 (2017), č. článku UNSP 6. ISSN 0177-7963 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : three-body * antikaon-nucleon * K p interactions Subject RIV: BE - Theoretical Physics OBOR OECD: Atom ic, molecular and chemical physics (physics of atom s and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 0.877, year: 2016

  3. The giant-dipole-resonance effect in coulomb excitation of 10B

    International Nuclear Information System (INIS)

    Vermeer, W.J.; Zabel, T.H.; Esat, M.T.; Kuehner, J.A.; Spear, R.H.; Baxter, A.M.

    1982-04-01

    Coulomb excitation of the 0.718-MeV, Jsup(π) = 1 + , first excited state of 10 B has been studied using projectile excitation by 208 Pb and observing the backward scattered particles. The results give a clear indication of the virtual excitation of the giant dipole resonance as a second-order effect. The observed magnitude is consistent with the usual hydrodynamic model estimate and with a recent shell-model calculation

  4. Accurate alpha sticking fractions from improved three-body calculations relevant for muon catalyzed fusion. Progress report, September 1, 1985-August 31, 1986

    International Nuclear Information System (INIS)

    Szalewicz, K.; Monkhorst, H.J.

    1986-04-01

    A solution of the Coulomb three-body problem is the beginning point for calculations of sticking fractions in muon catalyzed fusion. The basis set is constructed from the following functions xi/sup r/n/sup s/e/sup - αxi - β n/R/sup -3 /2//H/sub eta/(x)exp(-x 2 /2), where xi and eta are elliptic coordinates of muon, R is the internuclear distance, H/sub eta/ is the nth Hermite polynomial, and x = γ (R-R/sub e/). The nonlinear parameters α, β, γ, and R/sub e/ are to be optimized. 21 refs., 1 tab

  5. Generalized second-order Coulomb phase shift functions

    International Nuclear Information System (INIS)

    Rosendorff, S.

    1982-01-01

    Some specific properties and the evaluation of the generalized second-order Coulomb phase shift functions (two-dimensional integrals of four spherical cylinder functions) are discussed. The dependence on the three momenta k 1 ,k-bar,k 2 , corresponding to the final, intermediate, and initial states is illustrated

  6. Influence of Three-square-well Interaction Potential on Isotope Effect Coefficient of High-TC Superconductors

    International Nuclear Information System (INIS)

    Udomsamuthirun, P.; Dokkaemklang, S.; Kumvongsa, C.; Maneeratanakul, S.

    2005-10-01

    In this research, the exact formula of the isotope effect coefficient of s wave and d-wave superconductor in weak-coupling limit are derived by using a three square- well interaction potential that pairing interaction consists of 3 parts : an attractive electron-phonon interaction, an attractive non-electron-phonon interaction , and a repulsive Coulomb interaction . op ac , w w and c w is the characteristic energy cutoff of the Debye phonon , non-phonon ,and Coulomb respectively and 2 / 1 ac M- a w , and c op , w w do not depend on isotope mass(M). We find that, in all case of consideration, the isotope coefficient converges to 0.5 at lower value of Coulomb coupling constant and larger values of phonon and non-phonon coupling constant

  7. Towards a First-Principles Determination of Effective Coulomb Interactions in Correlated Electron Materials: Role of Intershell Interactions.

    Science.gov (United States)

    Seth, Priyanka; Hansmann, Philipp; van Roekeghem, Ambroise; Vaugier, Loig; Biermann, Silke

    2017-08-04

    The determination of the effective Coulomb interactions to be used in low-energy Hamiltonians for materials with strong electronic correlations remains one of the bottlenecks for parameter-free electronic structure calculations. We propose and benchmark a scheme for determining the effective local Coulomb interactions for charge-transfer oxides and related compounds. Intershell interactions between electrons in the correlated shell and ligand orbitals are taken into account in an effective manner, leading to a reduction of the effective local interactions on the correlated shell. Our scheme resolves inconsistencies in the determination of effective interactions as obtained by standard methods for a wide range of materials, and allows for a conceptual understanding of the relation of cluster model and dynamical mean field-based electronic structure calculations.

  8. Enhanced Bulk-Edge Coulomb Coupling in Fractional Fabry-Perot Interferometers.

    Science.gov (United States)

    von Keyserlingk, C W; Simon, S H; Rosenow, Bernd

    2015-09-18

    Recent experiments use Fabry-Perot (FP) interferometry to claim that the ν=5/2 quantum Hall state exhibits non-Abelian topological order. We note that the experiments appear inconsistent with a model neglecting bulk-edge Coulomb coupling and Majorana tunneling, so we reexamine the theory of FP devices. Even a moderate Coulomb coupling may strongly affect some fractional plateaus, but very weakly affect others, allowing us to model the data over a wide range of plateaus. While experiments are consistent with the ν=5/2 state harboring Moore-Read topological order, they may have measured Coulomb effects rather than an "even-odd effect" due to non-Abelian braiding.

  9. Three-body unitarity with isobars revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mai, M.; Hu, B. [The George Washington University, Washington, DC (United States); Doering, M. [The George Washington University, Washington, DC (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Pilloni, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Szczepaniak, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Indiana University, Center for Exploration of Energy and Matter, Bloomington, IN (United States); Indiana University, Physics Department, Bloomington, IN (United States)

    2017-09-15

    The particle exchange model of hadron interactions can be used to describe three-body scattering under the isobar assumption. In this study we start from the 3 → 3 scattering amplitude for spinless particles, which contains an isobar-spectator scattering amplitude. Using a Bethe-Salpeter Ansatz for the latter, we derive a relativistic three-dimensional scattering equation that manifestly fulfills three-body unitarity and two-body unitarity for the sub-amplitudes. This property holds for energies above breakup and also in the presence of resonances in the sub-amplitudes. (orig.)

  10. Effects of angular dependence of surface diffuseness in deformed nuclei on Coulomb barrier

    International Nuclear Information System (INIS)

    Adamian, G.G.; Antonenko, N.V.; Malov, L.A.; Scamps, G.; Lacroix, D.

    2014-01-01

    The angular dependence of surface diffuseness is further discussed. The results of self-consistent calculations are compared with those obtained with the phenomenological mean-field potential. The rather simple parametrizations are suggested. The effects of surface polarization and hexadecapole deformation on the height of the Coulomb barrier are revealed. (authors)

  11. Three-body and four-body photodisintegrations of the 4He nuclei in the Δ region

    International Nuclear Information System (INIS)

    Niki, Kazuaki

    1991-01-01

    The differential and total cross sections were measured for the three-body (pnd) and four-body (ppnn) final states in photodisintegration of 4 He in an energy range between 125 and 445 MeV. The kinematic variables were determined in an almost complete way, using a large acceptance spectrometer together with the use of tagged photons of an energy resolution of 10 MeV. We have found that the three-body reaction 4 He(γ, pn)d makes a dominant contribution among various processes which lead to non-mesonic final states. The behavior of the 4 He(γ, pn)d cross section is well described by the quasi-deuteron model (QDM). On the other hand, the four-body breakup cross sections are not consistent with the prediction of the QDM. For these four-body reactions, photon absorption by three-nucleon clusters seems to give a dominant effect. The four-body cross sections also show a broad enhancement around 300 to 400 MeV, indicating a possible participation of the Δ to the reactions. (author)

  12. Coulomb Final State Interactions for Gaussian Wave Packets

    CERN Document Server

    Wiedemann, Urs Achim; Heinz, Ulrich W

    1999-01-01

    Two-particle like-sign and unlike-sign correlations including Coulomb final state interactions are calculated for Gaussian wave packets emitted from a Gaussian source. We show that the width of the wave packets can be fully absorbed into the spatial and momentum space widths of an effective emission function for plane wave states, and that Coulomb final state interaction effects are sensitive only to the latter, but not to the wave packet width itself. Results from analytical and numerical calculations are compared with recently published work by other authors.

  13. Effect of Coulomb friction on orientational correlation and velocity distribution functions in a sheared dilute granular gas.

    Science.gov (United States)

    Gayen, Bishakhdatta; Alam, Meheboob

    2011-08-01

    From particle simulations of a sheared frictional granular gas, we show that the Coulomb friction can have dramatic effects on orientational correlation as well as on both the translational and angular velocity distribution functions even in the Boltzmann (dilute) limit. The dependence of orientational correlation on friction coefficient (μ) is found to be nonmonotonic, and the Coulomb friction plays a dual role of enhancing or diminishing the orientational correlation, depending on the value of the tangential restitution coefficient (which characterizes the roughness of particles). From the sticking limit (i.e., with no sliding contact) of rough particles, decreasing the Coulomb friction is found to reduce the density and spatial velocity correlations which, together with diminished orientational correlation for small enough μ, are responsible for the transition from non-gaussian to gaussian distribution functions in the double limit of small friction (μ→0) and nearly elastic particles (e→1). This double limit in fact corresponds to perfectly smooth particles, and hence the maxwellian (gaussian) is indeed a solution of the Boltzmann equation for a frictional granular gas in the limit of elastic collisions and zero Coulomb friction at any roughness. The high-velocity tails of both distribution functions seem to follow stretched exponentials even in the presence of Coulomb friction, and the related velocity exponents deviate strongly from a gaussian with increasing friction.

  14. Efimov three-body states on top of a Fermi sea

    DEFF Research Database (Denmark)

    Nygaard, Nicolai Gayle; Zinner, Nikolaj Thomas

    2014-01-01

    The stabilization of Cooper pairs of bound electrons in the background of a Fermi sea is the origin of superconductivity and the paradigmatic example of the striking influence of many-body physics on few-body properties. In the quantum-mechanical three-body problem the famous Efimov effect yields...

  15. Tunable Mobility in Double-Gated MoTe2 Field-Effect Transistor: Effect of Coulomb Screening and Trap Sites.

    Science.gov (United States)

    Ji, Hyunjin; Joo, Min-Kyu; Yi, Hojoon; Choi, Homin; Gul, Hamza Zad; Ghimire, Mohan Kumar; Lim, Seong Chu

    2017-08-30

    There is a general consensus that the carrier mobility in a field-effect transistor (FET) made of semiconducting transition-metal dichalcogenides (s-TMDs) is severely degraded by the trapping/detrapping and Coulomb scattering of carriers by ionic charges in the gate oxides. Using a double-gated (DG) MoTe 2 FET, we modulated and enhanced the carrier mobility by adjusting the top- and bottom-gate biases. The relevant mechanism for mobility tuning in this device was explored using static DC and low-frequency (LF) noise characterizations. In the investigations, LF-noise analysis revealed that for a strong back-gate bias the Coulomb scattering of carriers by ionized traps in the gate dielectrics is strongly screened by accumulation charges. This significantly reduces the electrostatic scattering of channel carriers by the interface trap sites, resulting in increased mobility. The reduction of the number of effective trap sites also depends on the gate bias, implying that owing to the gate bias, the carriers are shifted inside the channel. Thus, the number of active trap sites decreases as the carriers are repelled from the interface by the gate bias. The gate-controlled Coulomb-scattering parameter and the trap-site density provide new handles for improving the carrier mobility in TMDs, in a fundamentally different way from dielectric screening observed in previous studies.

  16. Heat flux dropouts in the solar wind and Coulomb scattering effects

    International Nuclear Information System (INIS)

    Fitzenreiter, R.J.; Ogilvie, K.W.

    1992-01-01

    Measurements of solar wind electrons at ISEE 3 located 0.01 AU upstream from the Earth indicate periods of time when the flux of antisunward suprathermal electrons decreases suddenly, leaving the velocity distribution nearly isotropic and causing the solar wind heat flux to drop. These heat flux dropouts (HFDs) are usually found in regions of increased plasma density and decreased electron temperature, and they are associated with sector boundaries. It has been suggested that HFDs may be due either to disconnection from the Sun of the magnetic flux tube in which they are found, or to enhanced Coulomb scattering of halo electrons in transit from the Sun to the Earth. Using the vector electron spectrometer on ISEE 1, the authors have found eight intervals of greatly reduced heat flux which appear to be associated with HFDs at ISEE 3. Five of the eight events were delayed by an appropriate convection time and had approximately the same duration as the corresponding ISEE 3 event. Velocity distributions during HFDs at ISEE 1 show that the depletion of halo electrons traveling away from the Sun is most pronounced in the 100-eV range, while there is essentially no depletion in the 1-keV range, and that in four cases the magnitude of the halo depletion and its upper velocity limit both depend on the density increase in the HFD. These results are shown to be in agreement with the υ -3 dependence of the Coulomb collision frequency. Thus the authors conclude that Coulomb scattering effects play a substantial role in at least some heat flux dropout events

  17. Efimov Physics and the Three-Body Parameter within a Two-Channel Framework

    DEFF Research Database (Denmark)

    Sørensen, Peder Klokmose; V. Fedorov, D.; S. Jensen, A.

    2012-01-01

    scaling laws. We recover known results for broad Feshbach resonances with small effective range, whereas in the case of narrow resonances we find a distinct non-monotonic behavior of the threshold at which the lowest Efimov trimer merges with the three-body continuum. To address the issue of the physical...... origin of the three-body parameter we provide a physically clear model for the relation between three-body physics and typical two-body atom-atom interactions. Our results demonstrate that experimental information from narrow Feshbach resonances and/or mixed systems are of vital importance to pin down...... the relation of two- and three-body physics in atomic systems....

  18. Three-body forces in p-shell nuclei

    International Nuclear Information System (INIS)

    Hees, A.G.M. van; Booten, J.G.L.; Glaudemans, P.W.M.

    1990-01-01

    Within the (0 + 1)ℎω shell-model space for p-shell nuclei we found that a schematic three-body interaction in addition to a translationally invariant two-body interaction leads to a strongly improved description of energy levels. The present three-body interaction is related to the Δ-isobar intermediate-state model of the two-pion exchange three-nucleon interaction. (orig.)

  19. Unstable system with Coulomb interaction distorted near the origin

    International Nuclear Information System (INIS)

    Kerbikov, B.O.

    1981-01-01

    An unstable system with Coulomb interaction distorted at small distances is considered. The results are applicable to hadronic atoms analysis. A detailed investigation of the model which can be solved exactly is presented. This model contains the separable short-range potential with the Yamaguchi form factor. Closed expressions for the modified effective range function and the Coulomb-modified scattering length ase obtained [ru

  20. Engineering drag currents in Coulomb coupled quantum dots

    Science.gov (United States)

    Lim, Jong Soo; Sánchez, David; López, Rosa

    2018-02-01

    The Coulomb drag phenomenon in a Coulomb-coupled double quantum dot system is revisited with a simple model that highlights the importance of simultaneous tunneling of electrons. Previously, cotunneling effects on the drag current in mesoscopic setups have been reported both theoretically and experimentally. However, in both cases the sequential tunneling contribution to the drag current was always present unless the drag level position were too far away from resonance. Here, we consider the case of very large Coulomb interaction between the dots, whereby the drag current needs to be assisted by cotunneling events. As a consequence, a quantum coherent drag effect takes place. Further, we demonstrate that by properly engineering the tunneling probabilities using band tailoring it is possible to control the sign of the drag and drive currents, allowing them to flow in parallel or antiparallel directions. We also show that the drag current can be manipulated by varying the drag gate potential and is thus governed by electron- or hole-like transport.

  1. Coulomb collisions in the solar wind

    Science.gov (United States)

    Klein, L. W.; Ogilvie, K. W.; Burlaga, L. F.

    1985-01-01

    A major improvement of the present investigation over previous studies of the subject is related to the use of helium temperatures obtained from helium ion measurements uncontaminated by the high-velocity tail of the proton distribution. More observations, covering a large parameter range, were employed, and the effects of interspecies drift were taken into account. It is shown in a more definite way than has been done previously, that Coulomb collisions provide the most important mechanism bringing about equilibrium between helium and protons in the solar wind. Other mechanisms may play some part in restricted regions, but Coulomb collisions are dominant on the macroscale.

  2. Analytical treatment of Coriolis coupling for three-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Bill

    2005-01-31

    In a previous article [J. Chem. Phys. 108 (1998) 5216], an efficient method was presented for performing 'exact' quantum calculations for the three-body rovibrational Hamiltonian, within the helicity-conserving approximation. This approach makes use of a certain three-body ''effective potential,'' enabling the same bend angle basis set to be employed for all values of the rotational quantum numbers, J, K and M. In the present work, the method is extended to incorporate Coriolis coupling, for which the relevant matrix elements are derived exactly. These can be used to solve the full three-body rovibrational problem, in the standard Jacobi coordinate vector embedding. Generalization of the method for coupled kinetic energy operators arising from other coordinate systems, embeddings, and/or system sizes, is also discussed.

  3. Computational assignment of redox states to Coulomb blockade diamonds.

    Science.gov (United States)

    Olsen, Stine T; Arcisauskaite, Vaida; Hansen, Thorsten; Kongsted, Jacob; Mikkelsen, Kurt V

    2014-09-07

    With the advent of molecular transistors, electrochemistry can now be studied at the single-molecule level. Experimentally, the redox chemistry of the molecule manifests itself as features in the observed Coulomb blockade diamonds. We present a simple theoretical method for explicit construction of the Coulomb blockade diamonds of a molecule. A combined quantum mechanical/molecular mechanical method is invoked to calculate redox energies and polarizabilities of the molecules, including the screening effect of the metal leads. This direct approach circumvents the need for explicit modelling of the gate electrode. From the calculated parameters the Coulomb blockade diamonds are constructed using simple theory. We offer a theoretical tool for assignment of Coulomb blockade diamonds to specific redox states in particular, and a study of chemical details in the diamonds in general. With the ongoing experimental developments in molecular transistor experiments, our tool could find use in molecular electronics, electrochemistry, and electrocatalysis.

  4. Nuclear reactions of the system 6 Li on 58 Ni near the Coulomb barrier

    International Nuclear Information System (INIS)

    Lizcano, D.; Aguilera, E.F.; Garcia M, H.; Martinez Q, E.

    2004-01-01

    Protons, alpha particles and deuterons coming from the reactions 6 Li + 58 Ni are detected to three different energy around the Coulomb barrier. The possible effects of the weakly bound character of the projectile are studied and the results are compared with previous data for the system 6 Li + 59 Co. (Author)

  5. Scaling laws governing the multiple scattering of diatomic molecules under Coulomb explosion

    International Nuclear Information System (INIS)

    Sigmund, P.

    1992-01-01

    The trajectories of fast molecules during and after penetration through foils are governed by Coulomb explosion and distorted by multiple scattering and other penetration phenomena. A scattering event may cause the energy available for Coulomb explosion to increase or decrease, and angular momentum may be transferred to the molecule. Because of continuing Coulomb explosion inside and outside the target foil, the transmission pattern recorded at a detector far away from the target is not just a linear superposition of Coulomb explosion and multiple scattering. The velocity distribution of an initially monochromatic and well-collimated, but randomly oriented, beam of molecular ions is governed by a generalization of the standard Bothe-Landau integral that governs the multiple scattering of atomic ions. Emphasis has been laid on the distribution in relative velocity and, in particular, relative energy. The statistical distributions governing the longitudinal motion (i.e., the relative motion along the molecular axis) and the rotational motion can be scaled into standard multiple-scattering distributions of atomic ions. The two scaling laws are very different. For thin target foils, the significance of rotational energy transfer is enhanced by an order of magnitude compared to switched-off Coulomb explosion. A distribution for the total relative energy (i.e., longitudinal plus rotational motion) has also been found, but its scaling behavior is more complex. Explicit examples given for all three distributions refer to power-law scattering. As a first approximation, scattering events undergone by the two atoms in the molecule were assumed uncorrelated. A separate section has been devoted to an estimate of the effect of impact-parameter correlation on the multiple scattering of penetrating molecules

  6. Regularization of the Coulomb scattering problem

    International Nuclear Information System (INIS)

    Baryshevskii, V.G.; Feranchuk, I.D.; Kats, P.B.

    2004-01-01

    The exact solution of the Schroedinger equation for the Coulomb potential is used within the scope of both stationary and time-dependent scattering theories in order to find the parameters which determine the regularization of the Rutherford cross section when the scattering angle tends to zero but the distance r from the center remains finite. The angular distribution of the particles scattered in the Coulomb field is studied on rather a large but finite distance r from the center. It is shown that the standard asymptotic representation of the wave functions is inapplicable in the case when small scattering angles are considered. The unitary property of the scattering matrix is analyzed and the 'optical' theorem for this case is discussed. The total and transport cross sections for scattering the particle by the Coulomb center proved to be finite values and are calculated in the analytical form. It is shown that the effects under consideration can be important for the observed characteristics of the transport processes in semiconductors which are determined by the electron and hole scattering by the field of charged impurity centers

  7. Ionization of atoms or ions by electron or proton impact; calculations with the classical three-body theory. ch. 3

    International Nuclear Information System (INIS)

    Boesten, L.G.J.

    1978-01-01

    Calculations on the threshold ionization of H, He + and Li 2+ by electrons have been performed to study the so-called 'post-collision interaction' (P.C.I.) effects which appear to affect the threshold ionization process significantly. These effects are caused by the long range Coulomb interactions between the two electrons as they move away from the nucleus. The long range interactions are fully taken into account in the classical three-body collision theory. In quantum mechanical theories, however, it is difficult to account for these interactions. This theory has been used to study the ionization of He + -ions by electron impact up to much higher energies (up till ten times the threshold energy). The results are compared with experimental results of Dolder et al. (1961) and with results of quantum mechanical calculations. Results are given for ionization of helium atoms by electron or proton impact. This collision process, in which four particles are involved, can under certain circumstances be treated as a collision process in which only three particles are involved. Calculations are performed concerning: a) cross sections for ionization of metastable helium atoms by electron impact, b) cross sections for ionization of ground-state helium atoms by fast proton impact (energy and angular distributions of ejected electrons), c) generalized oscillator strengths for ionization of helium by fast proton impact

  8. Coulomb Repulsion Effect in Two-electron Non-adiabatic Tunneling through a One-level redox Molecule

    DEFF Research Database (Denmark)

    Medvedev, Igor M.; Kuznetsov, Alexander M.; Ulstrup, Jens

    2009-01-01

    We investigated Coulomb repulsion effects in nonadiabatic (diabatic) two-electron tunneling through a redox molecule with a single electronic level in a symmetric electrochemical contact under ambient conditions, i.e., room temperature and condensed matter environment. The electrochemical contact...

  9. Elastic scattering study of three 4n nuclei systems above the Coulomb barrier

    International Nuclear Information System (INIS)

    Ashok Kumar; Sarita Kumar; Sunita Kumar

    2000-01-01

    A comprehensive study of elastic scattering of 4n nuclei, namely 16 O + 40 Ca, 24 Mg + 24 Mg and 32 S + 28 Si is carried out at various incident energies near and above the Coulomb barrier using a semi microscopic approach. In the present work real part of the nucleus-nucleus interaction is microscopically calculated using equivalence relation between RGM and GCM

  10. Two-body and three-body correlations in Os-shell nuclei

    International Nuclear Information System (INIS)

    Halderson, D.W.

    1974-01-01

    It is well known that conventional Brueckner calculations with modern nucleon-nucleon potentials have failed to reproduce experimental saturation properties of finite nuclei. The intent was to determine whether the discrepancies are due to the methods of calculation or the nucleon-nucleon potentials. Brueckner procedures which include only two-body correlations were applied to Os-shell nuclei. Calculations were performed with and without the Hartree-Fock condition, with and without partial occupation probabilities, and with various propagators and Pauli correction techniques. Then the entire class of three-body correlations was calculated by matrix solution of the Bethe-Faddeev equations. The convergence necessary to validate this technique was achieved by constructing a set of basic functions which contain no center of mass excitations and yet are still properly antisymmetrized. The two-body calculations yielded typical Brueckner results. The nuclei were underbound or the radii were too small. However, the three-body calculations yielded reasonable radii and moderate overbinding for the Reid soft core and Hamada-Johnston potentials. Therefore, the Bethe-Faddeev formalism has been shown to be a reasonable approach to calculation of the three-body correlations in finite nuclei; and the results of []these calculations demonstrate that the underbinding and collapsed radii of two-body calculations were largely due to the uncalculated correlations. (auth)

  11. On the Zeeman Effect in highly excited atoms: 2. Three-dimensional case

    International Nuclear Information System (INIS)

    Baseia, B.; Medeiros e Silva Filho, J.

    1984-01-01

    A previous result, found in two-dimensional hydrogen-atoms, is extended to the three-dimensional case. A mapping of a four-dimensional space R 4 onto R 3 , that establishes an equivalence between Coulomb and harmonic potentials, is used to show that the exact solution of the Zeeman effect in highly excited atoms, cannot be reached. (Author) [pt

  12. Adventures in Coulomb Gauge

    International Nuclear Information System (INIS)

    Greensite, J.; Olejnik, S.

    2003-01-01

    We study the phase structure of SU(2) gauge theories at zero and high temperature, with and without scalar matter fields, in terms of the symmetric/broken realization of the remnant gauge symmetry which exists after fixing to Coulomb gauge. The symmetric realization is associated with a linearly rising color Coulomb potential (which we compute numerically), and is a necessary but not sufficient condition for confinement.

  13. Three-body interactions and the elastic constants of hcp solid 4He

    Science.gov (United States)

    Barnes, Ashleigh L.; Hinde, Robert J.

    2017-09-01

    The effect of three-body interactions on the elastic properties of hexagonal close packed solid 4He is investigated using variational path integral (VPI) Monte Carlo simulations. The solid's nonzero elastic constants are calculated, at T = 0 K and for a range of molar volumes from 7.88 cm3/mol to 20.78 cm3/mol, from the bulk modulus and the three pure shear constants C0, C66, and C44. Three-body interactions are accounted for using our recently reported perturbative treatment based on the nonadditive three-body potential of Cencek et al. Previous studies have attempted to account for the effect of three-body interactions on the elastic properties of solid 4He; however, these calculations have treated zero point motions using either the Einstein or Debye approximations, which are insufficient in the molar volume range where solid 4He is characterized as a quantum solid. Our VPI calculations allow for a more accurate treatment of the zero point motions which include atomic correlation. From these calculations, we find that agreement with the experimental bulk modulus is significantly improved when three-body interactions are considered. In addition, three-body interactions result in non-negligible differences in the calculated pure shear constants and nonzero elastic constants, particularly at higher densities, where differences of up to 26.5% are observed when three-body interactions are included. We compare to the available experimental data and find that our results are generally in as good or better agreement with experiment as previous theoretical investigations.

  14. Reply to "Comment on 'Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit' ".

    Science.gov (United States)

    Gebremedhin, Daniel H; Weatherford, Charles A

    2015-02-01

    This is a response to the comment we received on our recent paper "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit." In that paper, we introduced a computational algorithm that is appropriate for solving stiff initial value problems, and which we applied to the one-dimensional time-independent Schrödinger equation with a soft Coulomb potential. We solved for the eigenpairs using a shooting method and hence turned it into an initial value problem. In particular, we examined the behavior of the eigenpairs as the softening parameter approached zero (hard Coulomb limit). The commenters question the existence of the ground state of the hard Coulomb potential, which we inferred by extrapolation of the softening parameter to zero. A key distinction between the commenters' approach and ours is that they consider only the half-line while we considered the entire x axis. Based on mathematical considerations, the commenters consider only a vanishing solution function at the origin, and they question our conclusion that the ground state of the hard Coulomb potential exists. The ground state we inferred resembles a δ(x), and hence it cannot even be addressed based on their argument. For the excited states, there is agreement with the fact that the particle is always excluded from the origin. Our discussion with regard to the symmetry of the excited states is an extrapolation of the soft Coulomb case and is further explained herein.

  15. Coulomb effects in the deuteron-nucleus interaction

    International Nuclear Information System (INIS)

    Kuz'michev, V.E.; Peresypkin, V.V.

    1990-01-01

    The authors develop a consistent theory for calculation of the potential of the deuteron interaction with the Coulomb field of a nucleus. They study the properties of this potential at large distances and give its explicit form at the deuteron-breakup threshold. In the limit of low energies they derive the potential, which includes intermediate off-energy-shell states, and explain the physical nature of its constants. The accuracy of the transition to the polarization interaction is estimated

  16. The self-consistent field model for Fermi systems with account of three-body interactions

    Directory of Open Access Journals (Sweden)

    Yu.M. Poluektov

    2015-12-01

    Full Text Available On the basis of a microscopic model of self-consistent field, the thermodynamics of the many-particle Fermi system at finite temperatures with account of three-body interactions is built and the quasiparticle equations of motion are obtained. It is shown that the delta-like three-body interaction gives no contribution into the self-consistent field, and the description of three-body forces requires their nonlocality to be taken into account. The spatially uniform system is considered in detail, and on the basis of the developed microscopic approach general formulas are derived for the fermion's effective mass and the system's equation of state with account of contribution from three-body forces. The effective mass and pressure are numerically calculated for the potential of "semi-transparent sphere" type at zero temperature. Expansions of the effective mass and pressure in powers of density are obtained. It is shown that, with account of only pair forces, the interaction of repulsive character reduces the quasiparticle effective mass relative to the mass of a free particle, and the attractive interaction raises the effective mass. The question of thermodynamic stability of the Fermi system is considered and the three-body repulsive interaction is shown to extend the region of stability of the system with the interparticle pair attraction. The quasiparticle energy spectrum is calculated with account of three-body forces.

  17. Comment on "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit".

    Science.gov (United States)

    Carrillo-Bernal, M A; Núñez-Yépez, H N; Salas-Brito, A L; Solis, Didier A

    2015-02-01

    In the referred paper, the authors use a numerical method for solving ordinary differential equations and a softened Coulomb potential -1/√[x(2)+β(2)] to study the one-dimensional Coulomb problem by approaching the parameter β to zero. We note that even though their numerical findings in the soft potential scenario are correct, their conclusions do not extend to the one-dimensional Coulomb problem (β=0). Their claims regarding the possible existence of an even ground state with energy -∞ with a Dirac-δ eigenfunction and of well-defined parity eigenfunctions in the one-dimensional hydrogen atom are questioned.

  18. The three body problem with energy dependent potentials

    International Nuclear Information System (INIS)

    Kim, Y.E.; McKay, C.M.; McKellar, B.H.J.

    1975-10-01

    It is shown how to generalize the three body equations of Faddeev, and of Karlsson and Zeiger, to include the case when the two body potential is energy dependent. Such generalizations will prove useful in the three nucleon problem and in three body models of nuclear reactions. (author)

  19. Multiple Coulomb excitation effects in heavy ion compound and fusion cross sections

    International Nuclear Information System (INIS)

    Carlson, B.V.; Hussein, M.S.

    1981-11-01

    A simple model for the average S-matrix that describes heavy ion direct processes in the presence of absorption due to compound nucleus formation is developed. The fluctuation cross section and the fusion cross section are then calculated for deformed heavy ion systems where multiple Coulomb excitation is important. A simple expression for the fusion cross section valid for above-barrier energies is then obtained. The formula clearly displays the modification, due to Coulomb excitation, in the usual geometrical expression. (Author) [pt

  20. Classical- and quantum mechanical Coulomb scattering

    International Nuclear Information System (INIS)

    Gratzl, W.

    1987-01-01

    Because in textbooks the quantum mechanical Coulomb scattering is either ignored or treated unsatisfactory, the present work attempts to present a physically plausible, mathematically correct but elementary treatment in a way that it can be used in textbooks and lectures on quantum mechanics. Coulomb scattering is derived as a limiting case of a screened Coulomb potential (finite range) within a time dependent quantum scattering theory. The difference in the asymptotic conditions for potentials of finite versus infinite range leads back to the classical Coulomb scattering. In the classical framework many concepts of the quantum theory can be introduced and are useful in an intuitive understanding of the quantum theory. The differences between classical and quantum scattering theory are likewise useful for didactic purposes. (qui)

  1. Treating Coulomb exchange contributions in relativistic mean field calculations: why and how

    International Nuclear Information System (INIS)

    Giai, Nguyen Van; Liang, Haozhao; Gu, Huai-Qiang; Long, Wenhui; Meng, Jie

    2014-01-01

    The energy density functional (EDF) method is very widely used in nuclear physics, and among the various existing functionals those based on the relativistic Hartree (RH) approximation are very popular because the exchange contributions (Fock terms) are numerically rather onerous to calculate. Although it is possible to somehow ‘mock up’ the effects of meson-induced exchange terms by adjusting the meson–nucleon couplings, the lack of Coulomb exchange contributions hampers the accuracy of predictions. In this work, we show that the Coulomb exchange effects can be easily included with good accuracy in a perturbative approach. Therefore, it would be desirable for future relativistic EDF models to incorporate Coulomb exchange effects, at least to some order of perturbation

  2. Three-body forces in nuclear matter from intermediate Δ-states in three-nucleon clusters

    International Nuclear Information System (INIS)

    Kouki, T.; Smulter, L.E.W.; Green, A.M.

    1976-10-01

    The three-body force contribution in nuclear matter is treated as a three-nucleon cluster, in which one of the nucleons becomes, in an intermediate state, a Δ(1236). All exchange diagrams are calculated and found to significantly reduce the energy per particle from the direct graph. This is contrary to earlier estimates of the exchanges, using more approximate approaches. The resulting attractive contribution is rather small, -1.1 MeV at ksub(F)=1.4 fm -1 , but the roughly linear density dependence has a crucial effect on the saturation properties. The sensitivity of the results to the correlations used, and to the two-body force spin structure, is displayed. The energy per particle from clusters with three intermediate Δ's is also estimated. (author)

  3. Effective Coulomb interaction in multiorbital system

    International Nuclear Information System (INIS)

    Hase, Izumi; Yanagisawa, Takashi

    2013-01-01

    Transition metal atom generally takes various valences, and sometimes there are some 'missing valences', for example Fe usually takes 2+, 3+ and 5+, but does not take other valences so often. We have calculated the atomic multiplet energies for the high-spin and lowspin configurations within the ligand-field theory and the Hartree-Fock approximation, and found that the Coulomb interaction energy (U eff ) becomes small when the valence is 'missing'. In case U eff B /Fe only when U eff increased in most cases, but in some special cases U eff decreases and falls below the value U − 3J, which is the least value of the undistorted system.

  4. Precise numerical results for limit cycles in the quantum three-body problem

    International Nuclear Information System (INIS)

    Mohr, R.F.; Furnstahl, R.J.; Hammer, H.-W.; Perry, R.J.; Wilson, K.G.

    2006-01-01

    The study of the three-body problem with short-range attractive two-body forces has a rich history going back to the 1930s. Recent applications of effective field theory methods to atomic and nuclear physics have produced a much improved understanding of this problem, and we elucidate some of the issues using renormalization group ideas applied to precise nonperturbative calculations. These calculations provide 11-12 digits of precision for the binding energies in the infinite cutoff limit. The method starts with this limit as an approximation to an effective theory and allows cutoff dependence to be systematically computed as an expansion in powers of inverse cutoffs and logarithms of the cutoff. Renormalization of three-body bound states requires a short range three-body interaction, with a coupling that is governed by a precisely mapped limit cycle of the renormalization group. Additional three-body irrelevant interactions must be determined to control subleading dependence on the cutoff and this control is essential for an effective field theory since the continuum limit is not likely to match physical systems (e.g., few-nucleon bound and scattering states at low energy). Leading order calculations precise to 11-12 digits allow clear identification of subleading corrections, but these corrections have not been computed

  5. Frictional Magneto-Coulomb Drag in Graphene Double-Layer Heterostructures.

    Science.gov (United States)

    Liu, Xiaomeng; Wang, Lei; Fong, Kin Chung; Gao, Yuanda; Maher, Patrick; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Dean, Cory; Kim, Philip

    2017-08-04

    Coulomb interaction between two closely spaced parallel layers of conductors can generate the frictional drag effect by interlayer Coulomb scattering. Employing graphene double layers separated by few-layer hexagonal boron nitride, we investigate density tunable magneto- and Hall drag under strong magnetic fields. The observed large magnetodrag and Hall-drag signals can be related with Laudau level filling status of the drive and drag layers. We find that the sign and magnitude of the drag resistivity tensor can be quantitatively correlated to the variation of magnetoresistivity tensors in the drive and drag layers, confirming a theoretical formula for magnetodrag in the quantum Hall regime. The observed weak temperature dependence and ∼B^{2} dependence of the magnetodrag are qualitatively explained by Coulomb scattering phase-space argument.

  6. [Clinical effect of three dimensional human body scanning system BurnCalc in the evaluation of burn wound area].

    Science.gov (United States)

    Lu, J; Wang, L; Zhang, Y C; Tang, H T; Xia, Z F

    2017-10-20

    Objective: To validate the clinical effect of three dimensional human body scanning system BurnCalc developed by our research team in the evaluation of burn wound area. Methods: A total of 48 burn patients treated in the outpatient department of our unit from January to June 2015, conforming to the study criteria, were enrolled in. For the first 12 patients, one wound on the limbs or torso was selected from each patient. The stability of the system was tested by 3 attending physicians using three dimensional human body scanning system BurnCalc to measure the area of wounds individually. For the following 36 patients, one wound was selected from each patient, including 12 wounds on limbs, front torso, and side torso, respectively. The area of wounds was measured by the same attending physician using transparency tracing method, National Institutes of Health (NIH) Image J method, and three dimensional human body scanning system BurnCalc, respectively. The time for getting information of 36 wounds by three methods was recorded by stopwatch. The stability among the testers was evaluated by the intra-class correlation coefficient (ICC). Data were processed with randomized blocks analysis of variance and Bonferroni test. Results: (1) Wound area of patients measured by three physicians using three dimensional human body scanning system BurnCalc was (122±95), (121±95), and (123±96) cm(2,) respectively, and there was no statistically significant difference among them ( F =1.55, P >0.05). The ICC among 3 physicians was 0.999. (2) The wound area of limbs of patients measured by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc was (84±50), (76±46), and (84±49) cm(2,) respectively. There was no statistically significant difference in the wound area of limbs of patients measured by transparency tracing method and three dimensional human body scanning system BurnCalc ( P >0.05). The wound area of limbs of patients

  7. Instanton Effects in Three-Dimensional Supersymmetric Gauge Theories with Matter

    OpenAIRE

    Dorey, N.; Tong, D.; Vandoren, S.

    1998-01-01

    Using standard field theory techniques we compute perturbative and instanton contributions to the Coulomb branch of three-dimensional supersymmetric QCD with N = 2 and N = 4 supersymmetry and gauge group SU(2). For the N = 4 theory with one massless flavor, we confirm the proposal of Seiberg and Witten that the Coulomb branch is the double-cover of the centered moduli space of two BPS monopoles constructed by Atiyah and Hitchin. Introducing a hypermultiplet mass term, we show that the asympto...

  8. Canonical three-body angular basis

    International Nuclear Information System (INIS)

    Matveenko, A.V.

    2001-01-01

    Three-body problems are basic for the quantum mechanics of molecular, atomic, or nuclear systems. We demonstrate that their variational solution for rotational states can be greatly simplified. A special choice of coordinates (hyperspherical) and of the kinematics (body-fixed coordinate frame) allows one to choose basis functions in a form that makes the angular coupling trivial. (author)

  9. Core polarization and Coulomb displacement energies

    International Nuclear Information System (INIS)

    Shlomo, S.; Love, W.G.

    1982-01-01

    The contributions of core polarization terms (other than the Auerbach-Kahana-Weneser (AKW) effect) to Coulomb displacement energies of mirror nuclei near A = 16 and A = 40 are examined within the particle-vibration coupling model. The parameters of the model are determined using updated data on the locations and strengths of multipole core excitations. In the absence of relevant data an energy-weighted sum rule (EWSR) is exploited. Taking into account multipole excitations up to L = 5 and subtracting the contributions which are due to short-range correlations, significant contributions (1-3%) to ΔEsub(c) are found. These corrections arise from particle coupling to low-lying collective states (long-range correlations). The implications of these results on the Coulomb energy problem are discussed. (Auth.)

  10. The influence of the Coulomb-distortion effect on proton-proton observables

    International Nuclear Information System (INIS)

    Plessas, W.; Mathelitsch, L.

    1980-01-01

    The effect of the Coulomb distortion of the strong interaction is studied on the basis of nucleon-nucleon observables. In particular, cross sections, polarizations, spin-correlation parameters, and spin-transfer coefficients are considered for proton-proton as well as neutron-neutron scattering at laboratory kinetic energies Esub(Lab) = 10, 20, and 50 MeV. The calculations are performed for the meson-theoretical PARIS potential, the nonlocal separable GRAZ potential and also using the Arndt-Hackman-Roper parametrization of proton-proton scattering phase shifts. Important conclusions are drawn with respect to phenomenological phase-shift analyses. (Auth.)

  11. Effect of three-body interactions on the zero-temperature equation of state of HCP solid 4He

    Science.gov (United States)

    Barnes, Ashleigh L.; Hinde, Robert J.

    2017-03-01

    Previous studies have pointed to the importance of three-body interactions in high density 4He solids. However the computational cost often makes it unfeasible to incorporate these interactions into the simulation of large systems. We report the implementation and evaluation of a computationally efficient perturbative treatment of three-body interactions in hexagonal close packed solid 4He utilizing the recently developed nonadditive three-body potential of Cencek et al. This study represents the first application of the Cencek three-body potential to condensed phase 4He systems. Ground state energies from quantum Monte Carlo simulations, with either fully incorporated or perturbatively treated three-body interactions, are calculated in systems with molar volumes ranging from 21.3 cm3/mol down to 2.5 cm3/mol. These energies are used to derive the zero-temperature equation of state for comparison against existing experimental and theoretical data. The equations of state derived from both perturbative and fully incorporated three-body interactions are found to be in very good agreement with one another, and reproduce the experimental pressure-volume data with significantly better accuracy than is obtained when only two-body interactions are considered. At molar volumes below approximately 4.0 cm3/mol, neither two-body nor three-body equations of state are able to accurately reproduce the experimental pressure-volume data, suggesting that below this molar volume four-body and higher many-body interactions are becoming important.

  12. Ultrafast dynamics of Coulomb correlated excitons in GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Mycek, M.A. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1995-12-01

    The author measures the transient nonlinear optical response of room temperature excitons in gallium arsenide quantum wells via multi-wave mixing experiments. The dynamics of the resonantly excited excitons is directly reflected by the ultrafast decay of the induced nonlinear polarization, which radiates the detected multi-wave mixing signal. She characterizes this ultrafast coherent emission in both amplitude and phase, using time- and frequency-domain measurement techniques, to better understand the role of Coulomb correlation in these systems. To interpret the experimental results, the nonlinear optical response of a dense medium is calculated using a model including Coulomb interaction. She contributes three new elements to previous theoretical and experimental studies of these systems. First, surpassing traditional time-integrated measurements, she temporally resolves the amplitude of the ultrafast coherent emission. Second, in addition to measuring the third-order four-wave mixing signal, she also investigates the fifth-order six-wave mixing response. Third, she characterizes the ultrafast phase dynamics of the nonlinear emission using interferometric techniques with an unprecedented resolution of approximately 140 attoseconds. The author finds that effects arising from Coulomb correlation dominate the nonlinear optical response when the density of excitons falls below 3 {times} 10{sup 11} cm{sup {minus}2}, the saturation density. These signatures of Coulomb correlation are investigated for increasing excitation density to gradually screen the interactions and test the validity of the model for dense media. The results are found to be qualitatively consistent with both the predictions of the model and with numerical solutions to the semiconductor Bloch equations. Importantly, the results also indicate current experimental and theoretical limitations, which should be addressed in future research.

  13. Coulomb and nuclear excitations of narrow resonances in 17Ne

    Directory of Open Access Journals (Sweden)

    J. Marganiec

    2016-08-01

    Full Text Available New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the O15+p+p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.

  14. From optics to superconductivity. Many body effects in transition metal dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Roesner, Malte; Schoenhoff, Gunnar; Wehling, Tim [Institute for Theoretical Physics, University of Bremen (Germany); Bremen Center for Computational Material Sciences, University of Bremen (Germany); Steinhoff, Alexander; Jahnke, Frank; Gies, Christopher [Institute for Theoretical Physics, University of Bremen (Germany); Haas, Stephan [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA (United States)

    2015-07-01

    We discuss many body effects in MoS{sub 2} ranging from optical properties to the emergence superconductivity (SC) and charge density wave phases (CDW). Combining ab-initio theory and semiconductor Bloch equations we show that excited carriers cause a redshift of the excitonic ground-state absorption line, while higher excitonic lines disappear successively due to a huge Coulomb-induced band gap shrinkage of more than 500 meV and concomitant exciton binding-energy reductions. Upon strong charge doping, we observe a succession of semiconducting, metallic, SC, and CDW regimes. Both, the SC and the CDW instabilities trace back to a Kohn anomaly and related softening of Brillouin zone boundary phonons.

  15. Coulomb interaction in the supermultiplet basis

    International Nuclear Information System (INIS)

    Ruzha, Ya.Kh.; Guseva, T.V.; Tamberg, Yu.Ya.; Vanagas, V.V.

    1989-01-01

    An approximate expression for the matrix elements of the Coulomb interaction operator in the supermultiplet basis has been derived with the account for the orbitally-nonsymmetric terms. From the general expression a simplified formula for the Coulomb interaction energy has been proposed. On the basis of the expression obtained the contribution of the Coulomb interaction to the framework of a strongly restricted dynamic model in the light (4≤A≤40) and heavy (158≤A≤196) nuclei region has been studied. 19 refs.; 4 tabs

  16. Energy transfer between two vacuum-gapped metal plates: Coulomb fluctuations and electron tunneling

    Science.gov (United States)

    Zhang, Zu-Quan; Lü, Jing-Tao; Wang, Jian-Sheng

    2018-05-01

    Recent experimental measurements for near-field radiative heat transfer between two bodies have been able to approach the gap distance within 2 nm , where the contributions of Coulomb fluctuation and electron tunneling are comparable. Using the nonequilibrium Green's function method in the G0W0 approximation, based on a tight-binding model, we obtain for the energy current a Caroli formula from the Meir-Wingreen formula in the local equilibrium approximation. Also, the Caroli formula is consistent with the evanescent part of the heat transfer from the theory of fluctuational electrodynamics. We go beyond the local equilibrium approximation to study the energy transfer in the crossover region from electron tunneling to Coulomb fluctuation based on a numerical calculation.

  17. Beyond mean-field approach to heavy-ion reactions around the Coulomb barrier

    Directory of Open Access Journals (Sweden)

    Ayik Sakir

    2011-10-01

    Full Text Available Dissipation and fluctuations of one-body observables in heavy-ion reactions around the Coulomb barrier are investigated with a microscopic stochastic mean-field approach. By projecting the stochastic meanfield dynamics on a suitable collective path, transport coefficients associated with the relative distance between colliding nuclei and a fragment mass are extracted. Although microscopic mean-field approach is know to underestimate the variance of fragment mass distribution, the description of the variance is much improved by the stochastic mean-field method. While fluctuations are consistent with the empirical (semiclassical analysis of the experimental data, concerning mean values of macroscopic variables the semiclassical description breaks down below the Coulomb barrier.

  18. Coulomb explosion of large penetrating molecular clusters

    International Nuclear Information System (INIS)

    Wegner, H.E.; Thieberger, P.

    1981-01-01

    The main purpose of these Coulomb explosion measurements is to determine what kind of structure these and other complex molecules may have and also to determine what other special phenomena may come into play as these complex molecules pass through matter. Although the first preliminary measurements involving the Coulomb explosion of these molecules was reported at this workshop last year, the results are briefly summarized before going on to the more recent measurements obtained with a completely new kind of detector system. This new image intensifier detector system, coupled with a microcomputer, has proven to be a valuable tool in the study of the Coulomb explosion of complex molecules that penetrate matter. In the future, with some additional improvements in the system, and much better statistics for most of the molecules studied to date, it is expected that much new information will be gained about the structure of many kinds of complex molecular ions including the special effects that may be encountered when these fast molecular ions penetrate matter

  19. Coulomb-Driven Relativistic Electron Beam Compression.

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-26

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  20. Coulomb-Driven Relativistic Electron Beam Compression

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-01

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  1. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...

  2. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...

  3. Slow Noncollinear Coulomb Scattering in the Vicinity of the Dirac Point in Graphene.

    Science.gov (United States)

    König-Otto, J C; Mittendorff, M; Winzer, T; Kadi, F; Malic, E; Knorr, A; Berger, C; de Heer, W A; Pashkin, A; Schneider, H; Helm, M; Winnerl, S

    2016-08-19

    The Coulomb scattering dynamics in graphene in energetic proximity to the Dirac point is investigated by polarization resolved pump-probe spectroscopy and microscopic theory. Collinear Coulomb scattering rapidly thermalizes the carrier distribution in k directions pointing radially away from the Dirac point. Our study reveals, however, that, in almost intrinsic graphene, full thermalization in all directions relying on noncollinear scattering is much slower. For low photon energies, carrier-optical-phonon processes are strongly suppressed and Coulomb mediated noncollinear scattering is remarkably slow, namely on a ps time scale. This effect is very promising for infrared and THz devices based on hot carrier effects.

  4. Conductance through a redox system in the Coulomb blockade regime: Many-particle effects and influence of electronic correlations

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, Sabine; Zwicknagl, Gertrud [Institut fuer Mathematische Physik, TU Braunschweig (Germany)

    2010-02-15

    We investigate the transport characteristics of a redox system weakly coupled to leads in the Coulomb blockade regime. The redox system comprises a donor and acceptor separated by an insulating bridge in a solution. It is modeled by a two-site extended Hubbard model which includes on-site and inter-site Coulomb interactions and the coupling to a bosonic bath. The current-voltage characteristics is calculated at high temperatures using a rate equation approach. For high voltages exceeding the Coulomb repulsion at the donor site the calculated transport characteristics exhibit pronounced deviations from the behavior expected from single-electron transport. Depending on the relative sizes of the effective on-site and inter-site Coulomb interactions on one side and the reorganization energy on the other side we find either negative differential resistance or current enhancement. Schematic view of the redox system with donor (D) and acceptor (A) coupled to the leads L and R. The electronic degrees of freedom of the DA system are coupled to the environment comprising internal vibrations and the solvent dynamics. The current is calculated as a function of the bias voltage V{sub b} and gate voltage V{sub g}. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Scattering Length Scaling Laws for Ultracold Three-Body Collisions

    International Nuclear Information System (INIS)

    D'Incao, J.P.; Esry, B.D.

    2005-01-01

    We present a simple and unifying picture that provides the energy and scattering length dependence for all inelastic three-body collision rates in the ultracold regime for three-body systems with short-range two-body interactions. Here, we present the scaling laws for vibrational relaxation, three-body recombination, and collision-induced dissociation for systems that support s-wave two-body collisions. These systems include three identical bosons, two identical bosons, and two identical fermions. Our approach reproduces all previous results, predicts several others, and gives the general form of the scaling laws in all cases

  6. Dynamics of Three-Body Correlations in Quenched Unitary Bose Gases

    Science.gov (United States)

    Colussi, V. E.; Corson, J. P.; D'Incao, J. P.

    2018-03-01

    We investigate dynamical three-body correlations in the Bose gas during the earliest stages of evolution after a quench to the unitary regime. The development of few-body correlations is theoretically observed by determining the two- and three-body contacts. We find that the growth of three-body correlations is gradual compared to two-body correlations. The three-body contact oscillates coherently, and we identify this as a signature of Efimov trimers. We show that the growth of three-body correlations depends nontrivially on parameters derived from both the density and Efimov physics. These results demonstrate the violation of scaling invariance of unitary bosonic systems via the appearance of log-periodic modulation of three-body correlations.

  7. Coulomb branches with complex singularities

    Science.gov (United States)

    Argyres, Philip C.; Martone, Mario

    2018-06-01

    We construct 4d superconformal field theories (SCFTs) whose Coulomb branches have singular complex structures. This implies, in particular, that their Coulomb branch coordinate rings are not freely generated. Our construction also gives examples of distinct SCFTs which have identical moduli space (Coulomb, Higgs, and mixed branch) geometries. These SCFTs thus provide an interesting arena in which to test the relationship between moduli space geometries and conformal field theory data. We construct these SCFTs by gauging certain discrete global symmetries of N = 4 superYang-Mills (sYM) theories. In the simplest cases, these discrete symmetries are outer automorphisms of the sYM gauge group, and so these theories have lagrangian descriptions as N = 4 sYM theories with disconnected gauge groups.

  8. Investigations of direct and sequential Coulomb break-up of light ions

    International Nuclear Information System (INIS)

    Srivastava, D.K.; Basu, D.N.; Rebel, H.

    1988-07-01

    Coulomb dissociation of 6 Li in the field of 208 Pb at different energies via resonance and continuum levels is discussed in detail. Relations are given which can be used to directly relate the Coulomb break-up cross section to the astrophysical S-factor. Predictions for energy dependence and angular-distributions are given. The direct Coulomb break-up of 6 Li is found to be of the same order of magnitude as the sequential break-up at higher projectile energies. The effect to eleastic scattering can be accounted for by introducing a dynamic polarization potential. Predictions are given for the direct Coulomb dissociation of 26 MeV/nucleon 7 Li and 16 O incident on 208 Pb through dipole transitions to the continuum, and for 20 Ne via quadrupole transitions in similar experimental situations. (orig.) [de

  9. Effect of increasing disorder on domains of the 2d Coulomb glass.

    Science.gov (United States)

    Bhandari, Preeti; Malik, Vikas

    2017-12-06

    We have studied a two dimensional lattice model of Coulomb glass for a wide range of disorders at [Formula: see text]. The system was first annealed using Monte Carlo simulation. Further minimization of the total energy of the system was done using an algorithm developed by Baranovskii et al, followed by cluster flipping to obtain the pseudo-ground states. We have shown that the energy required to create a domain of linear size L in d dimensions is proportional to [Formula: see text]. Using Imry-Ma arguments given for random field Ising model, one gets critical dimension [Formula: see text] for Coulomb glass. The investigation of domains in the transition region shows a discontinuity in staggered magnetization which is an indication of a first-order type transition from charge-ordered phase to disordered phase. The structure and nature of random field fluctuations of the second largest domain in Coulomb glass are inconsistent with the assumptions of Imry and Ma, as was also reported for random field Ising model. The study of domains showed that in the transition region there were mostly two large domains, and that as disorder was increased the two large domains remained, but a large number of small domains also opened up. We have also studied the properties of the second largest domain as a function of disorder. We furthermore analysed the effect of disorder on the density of states, and showed a transition from hard gap at low disorders to a soft gap at higher disorders. At [Formula: see text], we have analysed the soft gap in detail, and found that the density of states deviates slightly ([Formula: see text]) from the linear behaviour in two dimensions. Analysis of local minima show that the pseudo-ground states have similar structure.

  10. Asymptotic freedom in the axial and Coulomb gauges

    International Nuclear Information System (INIS)

    Frenkel, J.; Taylor, J.C.

    1976-01-01

    The sources of the negative contribution to the charge renormalization factor gsup(B)/g-1 in Yang-Mills theories are investigated in the axial and Coulomb gauges. In the axial gauge, a Kaellen dispersion relation exists but the spectral function is not positive definite because of the prescription that is used to integrate the singular polarization vectors. In the Coulomb gauge, the negative contributions are (to the lowest order) isolated in the Coulomb self-energy corrections to the Coulomb field. (Auth.)

  11. Phases and amplitudes for a modified repulsive Coulomb field

    International Nuclear Information System (INIS)

    Chidichimo, M.C.; Davison, T.S.

    1990-01-01

    The asymptotic form of the radial wave function for positive-energy states is calculated for the case of a repulsive Coulomb field. The cases of a pure Coulomb potential and a modified Coulomb potential are considered. Second-order analytic solutions for the amplitudes and phases are obtained when the modifications to the pure Coulombic potential take the form αr -2 +βr -3 +γr -4 , using the Jeffreys or WKB method. For the case of a pure Coulomb field, numerical results obtained from this method were compared with ''exact'' numerical results that were obtained using the analytic properties of the Coulomb wave functions. Tables are presented to show the conditions under which the method is accurate

  12. Poisson equation in the Kohn-Sham Coulomb problem

    OpenAIRE

    Manby, F. R.; Knowles, Peter James

    2001-01-01

    We apply the Poisson equation to the quantum mechanical Coulomb problem for many-particle systems. By introducing a suitable basis set, the two-electron Coulomb integrals become simple overlaps. This offers the possibility of very rapid linear-scaling treatment of the Coulomb contribution to Kohn-Sham theory.

  13. Influence of the Coulomb interaction on the exchange coupling in granular magnets.

    Science.gov (United States)

    Udalov, O G; Beloborodov, I S

    2017-04-20

    We develop a theory of the exchange interaction between ferromagnetic (FM) metallic grains embedded into insulating matrix by taking into account the Coulomb blockade effects. For bulk ferromagnets separated by the insulating layer the exchange interaction strongly depends on the height and thickness of the tunneling barrier created by the insulator. We show that for FM grains embedded into insulating matrix the exchange coupling additionally depends on the dielectric properties of this matrix due to the Coulomb blockade effects. In particular, the FM coupling decreases with decreasing the dielectric permittivity of insulating matrix. We find that the change in the exchange interaction due to the Coulomb blockade effects can be a few tens of percent. Also, we study dependence of the intergrain exchange interaction on the grain size and other parameters of the system.

  14. Coulomb string tension, asymptotic string tension, and the gluon chain

    OpenAIRE

    Greensite, Jeff; Szczepaniak, Adam P.

    2014-01-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  15. Counting statistics of transport through Coulomb blockade nanostructures: High-order cumulants and non-Markovian effects

    DEFF Research Database (Denmark)

    Flindt, Christian; Novotny, Tomás; Braggio, Alessandro

    2010-01-01

    Recent experimental progress has made it possible to detect in real-time single electrons tunneling through Coulomb blockade nanostructures, thereby allowing for precise measurements of the statistical distribution of the number of transferred charges, the so-called full counting statistics...... interactions. Our recursive method can treat systems with many states as well as non-Markovian dynamics. We illustrate our approach with three examples of current experimental relevance: bunching transport through a two-level quantum dot, transport through a nanoelectromechanical system with dynamical Franck...

  16. Evolution of collectivity in the 78Ni region: Coulomb excitation of 74Ni at intermediate energies.

    Directory of Open Access Journals (Sweden)

    Marchi T.

    2014-03-01

    Full Text Available The study of the collective properties of nuclear excitations far from stability provides information about the shell structure at extreme conditions. Spectroscopic observables such as the energy or the transition probabilities of the lowest states, in nuclei with large neutron excess, allow to probe the density and isospin dependence of the effective interaction. Indeed, it was recently shown that tensor and three-body forces play an important role in breaking and creating magic numbers. Emblematic is the case of the evolution of the Ni isotopic chain where several features showed up moving from the most neutron rich stable isotope (64Ni towards the 78Ni nucleus where the large neutron excess coincides with a double shell closure. In this framework, we have recently performed an experiment with the goal to extract the B(E2; 0+ → 2+ value for the 74Ni nucleus in an intermediate-energy Coulomb excitation experiment: preliminary results are discussed.

  17. Generalized separable expansion method of the two-body and the three-body scattering amplitudes

    International Nuclear Information System (INIS)

    Oryu, S.; Ishihara, T.

    1976-01-01

    A systematic method is proposed for obtaining new N-rank separable amplitudes of the two-body and the three-body equations. First of all, the authors start from the Amado equation which is modified from the three-body Faddeev equation by using the two-body Yamaguchi potential for the nucleon-nucleon interaction. It is well known that the Amado equation can be integrated on the real axis because the kernel has a logarithmic cut on the real axis. However, a separable three-body form factor which is regular on the real axis except for the cut has been found. (Auth.)

  18. Tur\\'an type inequalities for regular Coulomb wave functions

    OpenAIRE

    Baricz, Árpád

    2015-01-01

    Tur\\'an, Mitrinovi\\'c-Adamovi\\'c and Wilker type inequalities are deduced for regular Coulomb wave functions. The proofs are based on a Mittag-Leffler expansion for the regular Coulomb wave function, which may be of independent interest. Moreover, some complete monotonicity results concerning the Coulomb zeta functions and some interlacing properties of the zeros of Coulomb wave functions are given.

  19. Poincaré and the three body problem

    CERN Document Server

    Barrow-Green, June

    1997-01-01

    The idea of chaos figures prominently in mathematics today. It arose in the work of one of the greatest mathematicians of the late 19th century, Henri Poincaré, on a problem in celestial mechanics: the three body problem. This ancient problem-to describe the paths of three bodies in mutual gravitational interaction-is one of those which is simple to pose but impossible to solve precisely. Poincaré's famous memoir on the three body problem arose from his entry in the competition celebrating the 60th birthday of King Oscar of Sweden and Norway. His essay won the prize and was set up in print as a paper in Acta Mathematica when it was found to contain a deep and critical error. In correcting this error Poincaré discovered mathematical chaos, as is now clear from Barrow-Green's pioneering study of a copy of the original memoir annotated by Poincaré himself, recently discovered in the Institut Mittag-Leffler in Stockholm. Poincaré and the Three Body Problem opens with a discussion of the development of the th...

  20. Long-range Coulomb interactions in low energy (e,2e) data

    International Nuclear Information System (INIS)

    Waterhouse, D.

    2000-01-01

    Full text: Proper treatment of long-range Coulomb interactions has confounded atomic collision theory since Schrodinger first presented a quantum-mechanical model for atomic interactions. The long-range Coulomb interactions are difficult to include in models in a way that treats the interaction sufficiently well but at the same time ensures the calculation remains tractable. An innovative application of an existing multi-parameter (e,2e) data acquisition system will be described. To clarify the effects of long-range Coulomb interactions, we will report the correlations and interactions that occur at low energy, observed by studying the energy sharing between outgoing electrons in the electron-impact ionisation of krypton

  1. Study of the nuclear-coulomb low-energy scattering parameters on the basis of the p-matrix approach

    International Nuclear Information System (INIS)

    Babenko, V.A.; Petrov, N.M.

    1993-01-01

    The P-matrix approach application to the description of two charged strongly interacting particles nuclear-Coulomb scattering parameters is considered. The nuclear-Coulomb scattering length and effective range explicit expressions in terms of the P-matrix parameters are found. The nuclear-Coulomb low-energy parameters expansions in powers of small parameter β ≡ R/a b , involving terms with big logarithms, are obtained. The nuclear-Coulomb scattering length and effective range for the square-well and the delta-shell short range potentials are found in an explicit form. (author). 21 refs

  2. Effect of Coulomb Correlation on the Magnetic Properties of Mn Clusters.

    Science.gov (United States)

    Huang, Chengxi; Zhou, Jian; Deng, Kaiming; Kan, Erjun; Jena, Puru

    2018-05-03

    In spite of decades of research, a fundamental understanding of the unusual magnetic behavior of small Mn clusters remains a challenge. Experiments show that Mn 2 is antiferromagnetic while small clusters containing up to five Mn atoms are ferromagnetic with magnetic moments of 5 μ B /atom and become ferrimagnetic as they grow further. Theoretical studies based on density functional theory (DFT), however, find Mn 2 to be ferromagnetic, with ferrimagnetic order setting in at different sizes that depend upon the computational methods used. While quantum chemical techniques correctly account for the antiferromagnetic ground state of Mn 2 , they are computationally too demanding to treat larger clusters, making it difficult to understand the evolution of magnetism. These studies clearly point to the importance of correlation and the need to find ways to treat it effectively for larger clusters and nanostructures. Here, we show that the DFT+ U method can be used to account for strong correlation. We determine the on-site Coulomb correlation, Hubbard U self-consistently by using the linear response theory and study its effect on the magnetic coupling of Mn clusters containing up to five atoms. With a calculated U value of 4.8 eV, we show that the ground state of Mn 2 is antiferromagnetic with a Mn-Mn distance of 3.34 Å, which agrees well with the electron spin resonance experiment. Equally important, we show that on-site Coulomb correlation also plays an important role in the evolution of magnetic coupling in larger clusters, as the results differ significantly from standard DFT calculations. We conclude that for a proper understanding of magnetism of Mn nanostructures (clusters, chains, and layers) one must take into account the effect of strong correlation.

  3. Experiments on Coulomb ionization by charged particles

    International Nuclear Information System (INIS)

    Andersen, J.U.; Laegsgaard, E.; Lund, M.

    1978-01-01

    Inner-shell ionization by light projectiles, i.e., in very asymmetric collisions, is often denoted 'Coulomb ionization' because it is caused by the Coulomb interaction between the electron and the projectile. Although with little justification, the term is also used to distinquish such processes, in which the projectile Coulomb field is a small perturbation, from ionization in more violent, nearly symmetric ion-atom collisions. A discussion of Coulomb ionization of atomic K shells is given, with emphasis on experimental methods and results. The discussion is not intended as a review of the field but rather as a progress report on the anthor's work on the subject. A more detailed account was recently presented at the ICPEAC meeting in Paris. (Auth.)

  4. Effects of large-angle Coulomb collisions on inertial confinement fusion plasmas.

    Science.gov (United States)

    Turrell, A E; Sherlock, M; Rose, S J

    2014-06-20

    Large-angle Coulomb collisions affect the rates of energy and momentum exchange in a plasma, and it is expected that their effects will be important in many plasmas of current research interest, including in inertial confinement fusion. Their inclusion is a long-standing problem, and the first fully self-consistent method for calculating their effects is presented. This method is applied to "burn" in the hot fuel in inertial confinement fusion capsules and finds that the yield increases due to an increase in the rate of temperature equilibration between electrons and ions which is not predicted by small-angle collision theories. The equilibration rate increases are 50%-100% for number densities of 10(30)  m(-3) and temperatures around 1 keV.

  5. Gravitational waves from periodic three-body systems.

    Science.gov (United States)

    Dmitrašinović, V; Suvakov, Milovan; Hudomal, Ana

    2014-09-05

    Three bodies moving in a periodic orbit under the influence of Newtonian gravity ought to emit gravitational waves. We have calculated the gravitational radiation quadrupolar waveforms and the corresponding luminosities for the 13+11 recently discovered three-body periodic orbits in Newtonian gravity. These waves clearly allow one to distinguish between their sources: all 13+11 orbits have different waveforms and their luminosities (evaluated at the same orbit energy and body mass) vary by up to 13 orders of magnitude in the mean, and up to 20 orders of magnitude for the peak values.

  6. Coulomb Blockade of Tunnel-Coupled Quantum Dots

    National Research Council Canada - National Science Library

    Golden, John

    1997-01-01

    .... Though classical charging models can explain the Coulomb blockade of an isolated dot, they must be modified to explain the Coulomb blockade of dots coupled through the quantum mechanical tunneling of electrons...

  7. The Tucson-Melbourne Three-Body Force in a Translationally-Invariant Harmonic Oscillator Basis

    Science.gov (United States)

    Marsden, David; Navratil, Petr; Barrett, Bruce

    2000-09-01

    A translationally-invariant three-body basis set has been employed in shell model calculations on ^3H and ^3He including the Tucson-Melbourne form of the real nuclear three-body force. The basis consists of harmonic oscillators in Jacobi coordinates, explicitly avoiding the centre of mass drift problem in the calculations. The derivation of the three-body matrix elements and the results of large basis effective interaction shell model calculations will be presented. J. L. Friar, B. F. Gibson, G. L. Payne and S. A. Coon; Few Body Systems 5, 13 (1988) P. Navratil, G.P. Kamuntavicius and B.R. Barrett; Phys. Rev. C. 61, 044001 (2000)

  8. Coulomb double helical structure

    Science.gov (United States)

    Kamimura, Tetsuo; Ishihara, Osamu

    2012-01-01

    Structures of Coulomb clusters formed by dust particles in a plasma are studied by numerical simulation. Our study reveals the presence of various types of self-organized structures of a cluster confined in a prolate spheroidal electrostatic potential. The stable configurations depend on a prolateness parameter for the confining potential as well as on the number of dust particles in a cluster. One-dimensional string, two-dimensional zigzag structure and three-dimensional double helical structure are found as a result of the transition controlled by the prolateness parameter. The formation of stable double helical structures resulted from the transition associated with the instability of angular perturbations on double strings. Analytical perturbation study supports the findings of numerical simulations.

  9. Three-body forces and the trinucleons

    International Nuclear Information System (INIS)

    Friar, J.L.

    1987-01-01

    Three-body forces are discussed in the context of classical, atomic, solid-state and nuclear physics. The basic theoretical ingredients used in the construction of such forces are reviewed. Experimental evidence for three-nucleon forces and an overview of the three-nucleon bound states are presented. 53 refs., 9 figs

  10. Three-body interactions in sociophysics and their role in coalition forming

    Science.gov (United States)

    Naumis, Gerardo G.; Samaniego-Steta, F.; del Castillo-Mussot, M.; Vázquez, G. J.

    2007-06-01

    An study of the effects of three-body interactions in the process of coalition formation is presented. In particular, we modify a spin glass model of bimodal propensities and also a Potts model in order to include a particular three-body Hamiltonian that reproduces the main features of the required interactions. The model can be used to study conflicts, political struggles, political parties, social networks, wars and organizational structures. As an application, we analyze a simplified model of the Iraq war.

  11. Nuclear structure with unitarily transformed two-body plus phenomenological three-body interactions

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Anneke

    2011-02-02

    The importance of three-nucleon forces for a variety of nuclear structure phenomena is apparent in various investigations. This thesis provides a first step towards the inclusion of realistic three-nucleon forces by studying simple phenomenological threebody interactions. The Unitary Correlation Operator Method (UCOM) and the Similarity Renormalization Group (SRG) provide two different approaches to derive soft phase-shift equivalent nucleon-nucleon (NN) interactions via unitary transformations. Although their motivations are quite different the NN interactions obtained with the two methods exhibit some similarities. The application of the UCOM- or SRG-transformed Argonne V18 potential in the Hartree-Fock (HF) approximation and including the second-order energy corrections emerging from many-body perturbation theory (MBPT) reveals that the systematics of experimental ground-state energies can be reproduced by some of the interactions considering a series of closed-shell nuclei across the whole nuclear chart. However, charge radii are systematically underestimated, especially for intermediate and heavy nuclei. This discrepancy to experimental data is expected to result from neglected three-nucleon interactions. As first ansatz for a three-nucleon force, we consider a finite-range three-body interaction of Gaussian shape. Its influence on ground-state energies and charge radii is discussed in detail on the basis of HF plus MBPT calculations and shows a significant improvement in the description of experimental data. As the handling of the Gaussian three-body interaction is time-extensive, we show that it can be replaced by a regularized three-body contact interaction exhibiting a very similar behavior. An extensive study characterizes its properties in detail and confirms the improvements with respect to nuclear properties. To take into account information of an exact numerical solution of the nuclear eigenvalue problem, the No-Core Shell Model is applied to

  12. Three-Body Nuclear Forces from a Matrix Model

    CERN Document Server

    Hashimoto, Koji

    2010-01-01

    We compute three-body nuclear forces at short distances by using the nuclear matrix model of holographic QCD proposed in our previous paper with P. Yi. We find that the three-body forces at short distances are repulsive for (a) aligned three neutrons with averaged spins, and (b) aligned proton-proton-neutron / proton-neutron-neutron. These indicate that in dense states of neutrons such as cores of neutron stars, or in Helium-3 / tritium nucleus, the repulsive forces are larger than the ones estimated from two-body forces only.

  13. Three-body molecular description of 9Be

    International Nuclear Information System (INIS)

    Revai, J.; Matveenko, A.V.

    1979-01-01

    The low lying spectrum of the 9 Be nucleus is calculated in the α+α+n three-body model. The molecular approach to this three-body problem based on the exact evalution of the two-center wave functions for separable n-α potentials is considered in detail. The numerical results are obtained in the generalized Born-Oppenheimer approximation which preserves total angular momentum and parity

  14. Density functional approach to many-body effects in the optical response of atoms

    International Nuclear Information System (INIS)

    Zangwill, A.

    1981-01-01

    The purpose of this work is to present a new method for calculating the optical response of finite electronic system which is accurate, computationally simple, and lends itself to a ready physical interpretation of the results. This work is concerned with the so-called many-body effects which render an independent particle calculation inappropriate for comparison with experimental photoabsorption and photoemission cross sections. Polarization effects are included which describe the response of the system to an external probe and self-energy effects, which describe the dynamics and decay of a single particle state. This work, which essentially reintroduces the residual Coulomb interactions among the electrons, is confined to atoms. The method is a time-dependent local density approximation (TDLDA) and represents a natural generalization of the usual local density approximation to the ground state properties of a many electron system. Using standard first-order time-dependent perturbation theory, a self-consistent mean field theory is derived for an effective field which replaces the external field in the dipole matrix elements of the Golden Rule for photoabsorption. This effective field includes a contribution from an induced classical Coulomb field as well as an induced exchange-correlation field. This work successfully demonstrates the applicability of time-dependent generalization of the local density approximation to the practical calculation of the photo-response of atoms. For the rare gases, barium, cerium and copper are obtained cross sections in quantitative agreement with recent experiments

  15. The three-body problem from Pythagoras to Hawking

    CERN Document Server

    Valtonen, Mauri; Kholshevnikov, Konstantin; Mylläri, Aleksandr; Orlov, Victor; Tanikawa, Kiyotaka

    2016-01-01

    This book, written for a general readership, reviews and explains the three-body problem in historical context reaching to latest developments in computational physics and gravitation theory. The three-body problem is one of the oldest problems in science and it is most relevant even in today’s physics and astronomy. The long history of the problem from Pythagoras to Hawking parallels the evolution of ideas about our physical universe, with a particular emphasis on understanding gravity and how it operates between astronomical bodies. The oldest astronomical three-body problem is the question how and when the moon and the sun line up with the earth to produce eclipses. Once the universal gravitation was discovered by Newton, it became immediately a problem to understand why these three-bodies form a stable system, in spite of the pull exerted from one to the other. In fact, it was a big question whether this system is stable at all in the long run. Leading mathematicians attacked this problem over more than...

  16. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of {sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M. [Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima (Peru)

    2016-07-07

    Even-odd effects of the maximal total kinetic energy (K{sub max}) as a function of charge (Z) and mass (A) of fragments from thermal neutron induced fission of actinides are questioned by other authors. In this work, visiting old results on thermal neutron induced fission of {sup 235}U, those even-odd effects are reconfirmed. The cases seeming to contradict even-odd effects are interpreted with the Coulomb effect hypothesis. According to Coulomb effect hypothesis, K{sub max} is equal to the Coulomb interaction energy of the most compact scission configuration. As a consequence, between two isobaric charge splits with similar Q-values, the more asymmetrical one will get the more compact scission configuration and then it will reach the higher K{sub max}-value. In some cases, the more asymmetrical charge split corresponds, by coincidence, to an odd charge split; consequently its higher K{sub max}-value may be misinterpreted as anti-even-odd effect. Another experimental result reported in the literature is the increasing of even-odd effects on charge distribution on the more asymmetrical fragmentations region. In this region, the difference between K{sub max} and Q-values increases with asymmetry, which means that the corresponding scission configuration needs higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break nucleon pairs. Consequently, in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number must increase with asymmetry.

  17. Three-Body Potentials in α-Particle Model of Light Nuclei

    International Nuclear Information System (INIS)

    Ishikawa, Souichi

    2017-01-01

    In three-body model calculations of atomic nuclei, e.g., the "1"2C nucleus as α-α-α system and the "9Be nucleus as α-α-n system, the Hamiltonians of the systems consisting of two- and three-body potentials are important inputs. However, our knowledge of three-body potentials is quite restricted. In this paper, I will examine a relation between α-α-α and α-α-n three-body potentials that is obtained in a simple cluster model picture, which gives a phenomenological constraint condition on the three-body potential models to be used. (author)

  18. Role amplification of the coulomb interaction in nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashok; Soni, S K; Pancholi, S K; Gupta, S L [AN SSSR, Moscow. Radiotekhnicheskij Inst.

    1976-10-01

    The genarally adopted estimate of coulomb interaction in nuclear reactions based on the comparison of relative energies of real particles participating in the reaction with the coulomb barrier has been shown to provide wrong presentation of the role of coulomb interaction in the reaction mechanism. The relative energy of particles participating in virtual processes forming the reaction mechanism and its relation to the coulomb barrier turn out to be tens of per cent less than for the particles in an inlet channel. This is the main reason of increasing the role of coulomb interaction in the reaction mechanism. This increase is particularly significant for nuclei with large charges, in particular, in heavy ion reaction.

  19. Lavine method applied to three body problems

    International Nuclear Information System (INIS)

    Mourre, Eric.

    1975-09-01

    The methods presently proposed for the three body problem in quantum mechanics, using the Faddeev approach for proving the asymptotic completeness, come up against the presence of new singularities when the potentials considered v(α)(x(α)) for two-particle interactions decay less rapidly than /x(α)/ -2 ; and also when trials are made for solving the problem with a representation space whose dimension for a particle is lower than three. A method is given that allows the mathematical approach to be extended to three body problem, in spite of singularities. Applications are given [fr

  20. Coulomb sums for 7Li nucleus at 3-momentum transfers q=1,250...1,625 fm-1

    International Nuclear Information System (INIS)

    Buki, A.Yu.; Shevchenko, N.G.; Timchenko, I.S.

    2009-01-01

    The experimental response functions of 7 Li nucleus at effective 3-momentum transfers q = 1.250; 1.375; 1.500 and 1.625 fm -1 are presented. The longitudinal response functions were used to evaluate the Coulomb sum values. The Coulomb sums for 6 Li obtained by us earlier were applied to analyze these data. The Coulomb sums of lithium isotopes were compared with the well-known Coulomb sums values of the other nuclei

  1. The eikonal phase of supersymmetric Coulomb partners

    CERN Document Server

    Lassaut, M; Lombard, R J

    1998-01-01

    We investigate the eikonal phase and its systematic corrections for the two supersymmetric Coulomb partners V sub 1 and V sub 2 derived by Amado. Apart from a constant shift of -pi for V sub 1 and -2 pi for V sub 2 , the eikonal phase decay to the eikonal phase of the Coulomb potential as 1/kb. For the potential V sub 2 , which is phase equivalent to the Coulomb potential, this result is only valid at b approx =0 and asymptotically; in the intermediate range, it constitutes a lower limit. (author)

  2. Coulomb Damping

    Science.gov (United States)

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  3. Properties of magnetized Coulomb crystals of ions with polarizable electron background

    Science.gov (United States)

    Kozhberov, A. A.

    2018-06-01

    We have studied phonon and thermodynamic properties of a body-centered cubic (bcc) Coulomb crystal of ions with weakly polarized electron background in a uniform magnetic field B. At B = 0, the difference between phonon moments calculated using the Thomas-Fermi (TF) and random phase approximations is always less than 1% and for description of phonon properties of a crystal, TF formalism was used. This formalism was successfully applied to investigate thermodynamic properties of magnetized Coulomb crystals. It was shown that the influence of the polarization of the electron background is significant only at κ TF a > 0.1 and T ≪ T p ( 1 + h2 ) - 1 / 2 , where κTF is the Thomas-Fermi wavenumber, a is the ion sphere radius, T p ≡ ℏ ω p is the ion plasma temperature, h ≡ ω B / ω p , ωB is the ion cyclotron frequency, and ωp is the ion plasma frequency.

  4. Coulomb Impurity Problem of Graphene in Strong Coupling Regime in Magnetic Fields.

    Science.gov (United States)

    Kim, S C; Yang, S-R Eric

    2015-10-01

    We investigate the Coulomb impurity problem of graphene in strong coupling limit in the presence of magnetic fields. When the strength of the Coulomb potential is sufficiently strong the electron of the lowest energy boundstate of the n = 0 Landau level may fall to the center of the potential. To prevent this spurious effect the Coulomb potential must be regularized. The scaling function for the inverse probability density of this state at the center of the impurity potential is computed in the strong coupling regime. The dependence of the computed scaling function on the regularization parameter changes significantly as the strong coupling regime is approached.

  5. Bound and resonant states in Coulomb-like potentials

    International Nuclear Information System (INIS)

    Papp, Z.

    1985-12-01

    The potential separable expansion method was generalized for calculating bound and resonant states in Coulomb-like potentials. The complete set of Coulomb-Sturmian functions was taken as the basis to expand the short-range potential. On this basis the matrix elements of the Coulomb-Green functions were given in closed form as functions of the (complex) energy. The feasibility of the method is demonstrated by a numerical example. (author)

  6. The effects of coulomb distortion on the first, second, and third sturcture functions for (e, e'p) reactions

    International Nuclear Information System (INIS)

    Kim, K. S.; Cheoun, Myung Ki; Cheon, Il Tong; Chung, Yeun Gun

    1998-01-01

    In this paper, we study the electron Coulomb distortion effects on the first, second, and third structure functions for the exclusive reaction (e, e'p) in the quasielastic region. For a heavy target ( 208 Pb) or a light nucleus ( 16 O), these structure functions calculated using the distorted wave Born approximation for the electron Coulomb distortion have shapes similar to those calculated using the plane wave Born approximation, but the effects are changed in magnitude. We use the approximate Moeller potential which has a 'plane-wave-like' form and hence permits the separation of the cross section into five structure functions. We investigate the dependence of the azimuthal angle for the outgoing proton on each structure functions. In this calculation, we use the Dirac-Hartree single particle wave functions for the ground state and the relativistic optical wave functions for the continuum proton

  7. The Coulomb potential in quantum mechanics and related topics

    International Nuclear Information System (INIS)

    Haeringen, H. van.

    1978-01-01

    This dissertation consists of an analytic study of the Coulomb interaction in nonrelativistic quantum mechanics and some related topics. The author investigates in a number of self-contained articles various interesting and important properties of the Coulomb potential. Some of these properties are shared by other potentials which also play a role in quantum mechanics. For such related interactions a comparative study is made. The principal difficulties in the description of proton-deuteron scattering and break-up reactions, due to the Coulomb interaction, are studied by working out a simple model. The bound states are studied for the Coulomb plus Yamaguchi potential, for the symmetric shifted Coulomb potential, and for local potentials with an inverse-distance-squared asymptotic behaviour. (Auth.)

  8. On rate-state and Coulomb failure models

    Science.gov (United States)

    Gomberg, J.; Beeler, N.; Blanpied, M.

    2000-01-01

    We examine the predictions of Coulomb failure stress and rate-state frictional models. We study the change in failure time (clock advance) Δt due to stress step perturbations (i.e., coseismic static stress increases) added to "background" stressing at a constant rate (i.e., tectonic loading) at time t0. The predictability of Δt implies a predictable change in seismicity rate r(t)/r0, testable using earthquake catalogs, where r0 is the constant rate resulting from tectonic stressing. Models of r(t)/r0, consistent with general properties of aftershock sequences, must predict an Omori law seismicity decay rate, a sequence duration that is less than a few percent of the mainshock cycle time and a return directly to the background rate. A Coulomb model requires that a fault remains locked during loading, that failure occur instantaneously, and that Δt is independent of t0. These characteristics imply an instantaneous infinite seismicity rate increase of zero duration. Numerical calculations of r(t)/r0 for different state evolution laws show that aftershocks occur on faults extremely close to failure at the mainshock origin time, that these faults must be "Coulomb-like," and that the slip evolution law can be precluded. Real aftershock population characteristics also may constrain rate-state constitutive parameters; a may be lower than laboratory values, the stiffness may be high, and/or normal stress may be lower than lithostatic. We also compare Coulomb and rate-state models theoretically. Rate-state model fault behavior becomes more Coulomb-like as constitutive parameter a decreases relative to parameter b. This is because the slip initially decelerates, representing an initial healing of fault contacts. The deceleration is more pronounced for smaller a, more closely simulating a locked fault. Even when the rate-state Δt has Coulomb characteristics, its magnitude may differ by some constant dependent on b. In this case, a rate-state model behaves like a modified

  9. Meson spectra from two-body dirac equations with minimal interactions

    International Nuclear Information System (INIS)

    Crater, H.W.; Becker, R.L.; Wong, C.Y.

    1991-01-01

    Many authors have used two-body relativistic wave equations with spin in nonperturbative numerical quark model calculations of the meson spectrum. Usually, they adopt a truncation of the Bethe-Salpeter equation of QED and/or scalar. QED and replace the static Coulomb interactions of those field theories with a semiphenomenological Q bar Q potential whose insertion in the Breit terms give the corresponding spin corrections. However, the successes of these wave equations in QED have invariably depended on perturbative treatment of the terms in each beyond the Coulomb terms. There have been no successful nonperturbative numerical test of two-body quantum wave equations in QED, because in most equations the effective potentials beyond the Coulomb are singular and can only be treated perturbatively. This is a glaring omission that we rectify here for the case of the two-body Dirac equations of constraint dynamics. We show in this paper that a nonperturbative numerical treatment of these equations for QED yields the same spectral results as a perturbative treatment of them which in turn agrees with the standard spectral results for positronium and muonium. This establishes that the vector and scalar interaction structures of our equations accurately incorporate field theoretic interactions in a bone fide relativistic wave equation. The last portion of this work will report recent quark model calculations using these equations with the Adler-Piran static Q bar Q potential

  10. The Effect of a Three-Month Intensive Intermittent Training on Plasma Chemerin and some Factors Related to Body Composition on Overweight Males

    Directory of Open Access Journals (Sweden)

    MJ pourvaghar

    2015-08-01

    Results: Results showed that three-month of high-intensity interval training of running had a significant effect on decreasing the plasma chemerin levels, body weight, body fat percentage, BMI (P=0/0001, and WHR (P=0/012 in the experimental group compared to control group. Significant differences were observed for within group (P≤0/05. Conclusion: It seemed that three-month of high-intensity interval training as a non-invasive and non-pharmaceutical way could have a positive effect on reducing the levels of chemerin and some anthropometric indicators associated with obesity and overweight.

  11. Coulomb systems distorted at short distances in atomic and nuclear physics

    International Nuclear Information System (INIS)

    Popov, V.S.

    1987-01-01

    In systems bound by the Coulomb interaction distorted at short distances there may appear, under certain conditions, a rearrangment of atomic spectrum (or the Zel'dovich effect). Specific features of this effect are discussed for states with an arbitrary angular momentum l (both with and without the absorption). The equation is studied which connects nuclear level shifts with the low-energy scattering parameters a l , r l . The conditions have been found under which the rearrangement of spectrum is replaced by oscillations of atomic levels. The Coulomb renormalization of scattering lengths and that of effective ranges is discussed. Some manifestations of the Zel'dovich effect in the physics of hadronic atoms and mesomolecules are considered

  12. Imaging of Coulomb-Driven Quantum Hall Edge States

    KAUST Repository

    Lai, Keji; Kundhikanjana, Worasom; Kelly, Michael A.; Shen, Zhi-Xun; Shabani, Javad; Shayegan, Mansour

    2011-01-01

    The edges of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime are divided into alternating metallic and insulating strips, with their widths determined by the energy gaps of the QHE states and the electrostatic Coulomb

  13. A realistic solvable model for the Coulomb dissociation of neutron halo nuclei

    International Nuclear Information System (INIS)

    Baur, G.; Hencken, K.; Trautmann, D.

    2003-01-01

    As a model of a neutron halo nucleus we consider a neutron bound to an inert core by a zero range force. We study the breakup of this simple nucleus in the Coulomb field of a target nucleus. In the post-form DWBA (or, in our simple model CWBA (''Coulomb wave born approximation'')) an analytic solution for the T-matrix is known. We study limiting cases of this T-matrix. As it should be, we recover the Born approximation for weak Coulomb fields (i.e., for the relevant Coulomb parameters much smaller than 1). For strong Coulomb fields, high beam energies, and scattering to the forward region we find a result which is very similar to the Born result. It is only modified by a relative phase (close to 0) between the two terms and a prefactor (close to 1). A similar situation exists for bremsstrahlung emission. This formula can be related to the first order semiclassical treatment of the electromagnetic dissociation. Since our CWBA model contains the electromagnetic interaction between the core and the target nucleus to all orders, this means that higher order effects (including postacceleration effects) are small in the case of high beam energies and forward scattering. Our model also predicts a scaling behavior of the differential cross section, that is, different systems (with different binding energies, beam energies and scattering angles) show the same dependence on two variables x and y. (orig.)

  14. Hamiltonian approach to 1 + 1 dimensional Yang-Mills theory in Coulomb gauge

    International Nuclear Information System (INIS)

    Reinhardt, H.; Schleifenbaum, W.

    2009-01-01

    We study the Hamiltonian approach to 1 + 1 dimensional Yang-Mills theory in Coulomb gauge, considering both the pure Coulomb gauge and the gauge where in addition the remaining constant gauge field is restricted to the Cartan algebra. We evaluate the corresponding Faddeev-Popov determinants, resolve Gauss' law and derive the Hamiltonians, which differ in both gauges due to additional zero modes of the Faddeev-Popov kernel in the pure Coulomb gauge. By Gauss' law the zero modes of the Faddeev-Popov kernel constrain the physical wave functionals to zero colour charge states. We solve the Schroedinger equation in the pure Coulomb gauge and determine the vacuum wave functional. The gluon and ghost propagators and the static colour Coulomb potential are calculated in the first Gribov region as well as in the fundamental modular region, and Gribov copy effects are studied. We explicitly demonstrate that the Dyson-Schwinger equations do not specify the Gribov region while the propagators and vertices do depend on the Gribov region chosen. In this sense, the Dyson-Schwinger equations alone do not provide the full non-abelian quantum gauge theory, but subsidiary conditions must be required. Implications of Gribov copy effects for lattice calculations of the infrared behaviour of gauge-fixed propagators are discussed. We compute the ghost-gluon vertex and provide a sensible truncation of Dyson-Schwinger equations. Approximations of the variational approach to the 3 + 1 dimensional theory are checked by comparison to the 1 + 1 dimensional case

  15. Spectral sum rules for the three-body problem

    International Nuclear Information System (INIS)

    Bolle, D.; Osborn, T.A.

    1982-01-01

    This paper derives a number of sum rules for nonrelativistic three-body scattering. These rules are valid for any finite region μ in the six-dimensional coordinate space. They relate energy moments of the trace of the onshell time-delay operator to the energy-weighted probability for finding the three-body bound-state wave functions in the region μ. If μ is all of the six-dimensional space, the global form of the sum rules is obtained. In this form the rules constitute higher-order Levinson's theorems for the three-body problem. Finally, the sum rules are extended to allow the energy momtns have complex powers

  16. Role of many-body effects in the coherent dynamics of excitons in low-temperature-grown GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Webber, D.; Hacquebard, L.; Hall, K. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Liu, X.; Dobrowolska, M.; Furdyna, J. K. [Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-10-05

    Femtosecond four-wave mixing experiments on low-temperature-grown (LT-) GaAs indicate a polarization-dependent nonlinear optical response at the exciton, which we attribute to Coulomb-mediated coupling between excitons and electron-hole pairs simultaneously excited by the broad-bandwidth laser pulses. Strong suppression of the exciton response through screening by carriers injected by a third pump pulse was observed, an effect that is transient due to rapid carrier trapping. Our findings highlight the need to account for the complex interplay of disorder and many-body effects in the design of ultrafast optoelectronic devices using this material.

  17. Intergrain Coupling in Dusty-Plasma Coulomb Crystals

    International Nuclear Information System (INIS)

    Mohideen, U.; Smith, M.A.; Rahman, H.U.; Rosenberg, M.; Mendis, D.A.

    1998-01-01

    We have studied the lattice structure of dusty-plasma Coulomb crystals formed in rectangular conductive grooves as a function of plasma temperature and density. The crystal appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. A simple phenomenological model wherein the intergrain spacing results from an attractive electric-field-induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal. copyright 1998 The American Physical Society

  18. Examining the role of Coulomb static stress transfer in injection-induced seismicity: a generic modeling approach

    Science.gov (United States)

    Brown, M. R. M.; Ge, S.

    2017-12-01

    Increased pore pressure decreasing the effective stress on a critically stressed fault has been the accepted mechanism for injection-induced seismicity. This, however, is an over simplified approach that does not take into account the coupled hydro-mechanical effects. In addition, this approach leaves out a possible key stressor in the system, the earthquakes. Earthquakes are known to interact with each other by Coulomb static stress transfer, the process of permanent stress change caused by movement on a fault. In areas of induced seismicity, many small to moderate earthquakes can occur adding to the stress in the system via Coulomb static stress transfer. Here we ask: Is the Coulomb static stress transfer from the earthquakes as important as the pore pressure increase or stress changes caused by coupled hydro-mechanical processes? Is there a point where the Coulomb static stress transfer from the earthquakes becomes the controlling process for inducing future earthquakes? How does the effect of many small earthquakes compare to a few larger events in terms of Coulomb static stress transfer? In this study, we use hydrologic and coupled hydro-mechanical models and USGS Coulomb 3 to assess the importance of induced earthquakes in terms of the stress change in the system. Realistic scenarios of wastewater injection and earthquake magnitude-frequency distributions are used to develop generic models. Model variables and data are varied to evaluate the range of possible outcomes. Preliminary results show that the stress change associated with injection is of the same order of magnitude as the cumulative Coulomb static stress change of a series of small (1

  19. Coulomb states in atoms and solids

    International Nuclear Information System (INIS)

    Ortalano, D.M.

    1988-05-01

    In this dissertation, an empirical quantum defect approach to describe the valence excitons of the rare gas solids is developed. These Coulomb states are of s-symmetry and form a hydrogen-like series which converges to the bottom of the lowest conduction band. A non-zero quantum defect is found for all of the excitons of neon, argon and xenon. For these systems, then, there exists, in addition to the screened Coulombic component, a non-Coulombic component to the total exciton binding energy. The Wannier formalism is, therefore, inappropriate for the excitons of Ne, Ar and Xe. From the sign of the quantum defect, the non-Coulombic potential is repulsive for Ne and Ar, attractive for Xe, and nearly zero for Kr. This is opposite to that for the Rydberg states of the corresponding rare gas atoms, where the non-Coulombic potential between the electron and the cation is attractive for all of the atoms. The excitons then, are not simply perturbed Rydberg states of the corresponding rare gas atoms (i.e., the excitons do not possess atomic parentage). Interatomic term value/band gap energy correlations and reduced term value/reduced band gap correlations were performed. These correlations were exploited to provide further evidence against both the Wannier formalism and the atomic parentage view point. From these correlations, it was also discovered that the non-Coulombic potential varies smoothly across the valence isoelectronic series of solids, and that it becomes more attractive (or less repulsive) in going from neon to xenon. In order to address the atomic parentage controversy, it was necessary to compare the excitons to the low-n Rydberg states of the rare gas atoms. A review of the quantum defect description of the atomic Rydberg states is, therefore, presented. Also, Rydberg term value/ionization energy correlations are discussed and compared with the analogous exciton correlations. 7 refs., 10 figs., 5 tabs

  20. On low-energy effective action in three-dimensional = 2 and = 4 supersymmetric electrodynamics

    Science.gov (United States)

    Buchbinder, I. L.; Merzlikin, B. S.; Samsonov, I. B.

    2013-11-01

    We discuss general structure of low-energy effective actions in = 2 and = 4 three-dimensional supersymmetric electrodynamics (SQED) in gauge superfield sector. There are specific terms in the effective action having no four-dimensional analogs. Some of these terms are responsible for the moduli space metric in the Coulomb branch of the theory. We find two-loop quantum corrections to the moduli space metric in the = 2 SQED and show that in the = 4 SQED the moduli space does not receive two-loop quantum corrections.

  1. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.

  2. Coulomb disintegration as an information source for relevant processes in nuclear astrophysics

    International Nuclear Information System (INIS)

    Bertulani, C.A.

    1989-01-01

    The possibility of obtaining the photodisintegration cross section using the equivalent-photon number method first deduced and employed for the Coulomb disintegration processes has been suggested. This is very interesting because there exist radioactive capture processes, related to the photodisintegration through time reversal, that are relevant in astrophysics. In this paper, the recent results of the Karlsruhe and the Texas A and M groups on the Coulomb disintegration of 6 Li and 7 Li and the problems of the method are discussed. The ideas developed in a previous paper (Nucl. Phys. A458 (1986) 188) are confirmed qualitatively. To understand the process quantitatively it is necessary to use a quantum treatment that would imply the introduction of Coulomb excitation effects of higher orders. The Coulomb disintegration of exotic secondary beams is also studied. It is particularly interesting the question about what kind of nuclear structure information, as binding energies of momentum distributions, may be obtained. (Author) [es

  3. Coulomb drag in multiwall armchair carbon nanotubes

    DEFF Research Database (Denmark)

    Lunde, A.M.; Jauho, Antti-Pekka

    2004-01-01

    surface. The cylindrical geometry of the nanotubes and the different parities of the Bloch states are accounted for in the evaluation of the effective Coulomb interaction between charges in the concentric nanotubes. We find a broad peak in rho(21) as a function of temperature at roughly T similar to 0.4T...

  4. Coulomb explosion of “hot spot”

    Energy Technology Data Exchange (ETDEWEB)

    Oreshkin, V. I., E-mail: oreshkin@ovpe.hcei.tsc.ru [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); Tomsk Polytechnic University, Tomsk (Russian Federation); Oreshkin, E. V. [P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Chaikovsky, S. A. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Institute of Electrophysics, UD, RAS, Ekaterinburg (Russian Federation); Artyomov, A. P. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation)

    2016-09-15

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  5. Coulomb explosion of “hot spot”

    International Nuclear Information System (INIS)

    Oreshkin, V. I.; Oreshkin, E. V.; Chaikovsky, S. A.; Artyomov, A. P.

    2016-01-01

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  6. Subcycle dynamics of Coulomb asymmetry in strong elliptical laser fields.

    Science.gov (United States)

    Li, Min; Liu, Yunquan; Liu, Hong; Ning, Qicheng; Fu, Libin; Liu, Jie; Deng, Yongkai; Wu, Chengyin; Peng, Liang-You; Peng, Liangyou; Gong, Qihuang

    2013-07-12

    We measure photoelectron angular distributions of noble gases in intense elliptically polarized laser fields, which indicate strong structure-dependent Coulomb asymmetry. Using a dedicated semiclassical model, we have disentangled the contribution of direct ionization and multiple forward scattering on Coulomb asymmetry in elliptical laser fields. Our theory quantifies the roles of the ionic potential and initial transverse momentum on Coulomb asymmetry, proving that the small lobes of asymmetry are induced by direct ionization and the strong asymmetry is induced by multiple forward scattering in the ionic potential. Both processes are distorted by the Coulomb force acting on the electrons after tunneling. Lowering the ionization potential, the relative contribution of direct ionization on Coulomb asymmetry substantially decreases and Coulomb focusing on multiple rescattering is more important. We do not observe evident initial longitudinal momentum spread at the tunnel exit according to our simulation.

  7. Scaling laws and higher-order effects in Coulomb excitation of neutron halo nuclei

    International Nuclear Information System (INIS)

    Typel, S.; Baur, G.

    2008-01-01

    Essential properties of halo nuclei can be described in terms of a few low-energy constants. For neutron halo nuclei, analytical results can be found for wave functions and electromagnetic transition matrix elements in simple but well-adapted models. These wave functions can be used to study nuclear reactions; an especially simple and instructive example is Coulomb excitation. A systematic expansion in terms of small parameters can be given. We present scaling laws for excitation amplitudes and cross-sections. The results can be used to analyze experiments like 11 Be Coulomb excitation. They also serve as benchmark tests for more involved reaction theories. (orig.)

  8. Correlated Coulomb drag in capacitively coupled quantum-dot structures

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-01-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling......) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multi-electron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters...... on Coulomb drag in CQD systems....

  9. Coulomb excitation of 189Os

    International Nuclear Information System (INIS)

    Brandao, S.B.

    1987-01-01

    The level structure of 189 Os has been studied by Coulomb excitation using 35 Cl, 28 Si, 16 O beams. GOSIA, a code written to analyze multiple Coulomb excitation, was used to obtain the reduced probabilities of transition B(E2). The results for interband and intraband turned out possible the classification of the states following Nilsson levels. Gamma-rays originating from deexcitation of 216.7 and 219.4 keV have been separated and the reduced probability of transition has been measured. (A.C.A.S.) [pt

  10. Coulomb scatter of diamagnetic dust particles in a cusp magnetic trap under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Myasnikov, M. I., E-mail: miasnikovmi@mail.ru; D’yachkov, L. G.; Petrov, O. F.; Vasiliev, M. M., E-mail: mixxy@mail.ru; Fortov, V. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Savin, S. F.; Serova, E. O. [Korolev Rocket and Space Corporation Energia, ul. Lenina 4A (Russian Federation)

    2017-02-15

    The effect of a dc electric field on strongly nonideal Coulomb systems consisting of a large number (~10{sup 4}) of charged diamagnetic dust particles in a cusp magnetic trap are carried out aboard the Russian segment of the International Space Station (ISS) within the Coulomb Crystal experiment. Graphite particles of 100–400 μm in size are used in the experiments. Coulomb scatter of a dust cluster and the formation of threadlike chains of dust particles are observed experimentally. The processes observed are simulated by the molecular dynamics (MD) method.

  11. Coulomb corrections for interferometry analysis of expanding hadron systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinyukov, Yu.M. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees]|[Institute for Theoretical Physics of National Acad. Sci., Kiev (Ukraine); Lednicky, R. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees]|[Institute of Physics, Prague (Czech Republic); Akkelin, S.V. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Teoreticheskoj Fiziki; Pluta, J. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees]|[Warsaw Univ. (Poland). Inst. of Physics; Erazmus, B. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees

    1998-10-01

    The problem of the Coulomb corrections to the two-boson correlation functions for the systems formed in ultra-relativistic heavy ion collisions is considered for large effective volumes predicted in the realistic evolution scenarios taking into account the collective flows. A simple modification of the standard zero-distance correction (so called Gamow or Coulomb factor) has been proposed for such a kind of systems. For {pi}{sup +}{pi}{sup +} and K{sup +}K{sup +} correlation functions this approximate analytical approach is compared with the exact numerical results and a good agreement is found for typical conditions at SPS, RHIC and even LHC energies. (author) 21 refs.

  12. Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Kalpana, P.; Merwyn, A.; Nithiananthi, P.; Jayakumar, K., E-mail: kjkumar-gri@rediffmail.com [Nanostructure Lab, Department of Physics, Gandhigram Rural University, Gandhigram-624302 (India); Reuben, Jasper D. [Department of Physics, School of Engineering, Saveetha University, Thandalam, Chennai- 600104 (India)

    2015-06-24

    The Coulomb interaction of holes in a Semimagnetic Cd{sub 1-x}Mn{sub x}Te / CdTe Spherical and Cubical Quantum Dot (SMQD) in a magnetic field is studied using variational approach in the effective mass approximation. Since these holes in QD show a pronounced collective behavior, while distinct single particle phenomena is suppressed, their interaction in confined potential becomes very significant. It has been observed that acceptor-acceptor interaction is more in cubical QD than in spherical QD which can be controlled by the magnetic field. The results are presented and discussed.

  13. Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot

    Science.gov (United States)

    Kalpana, P.; Merwyn, A.; Reuben, Jasper D.; Nithiananthi, P.; Jayakumar, K.

    2015-06-01

    The Coulomb interaction of holes in a Semimagnetic Cd1-xMnxTe / CdTe Spherical and Cubical Quantum Dot (SMQD) in a magnetic field is studied using variational approach in the effective mass approximation. Since these holes in QD show a pronounced collective behavior, while distinct single particle phenomena is suppressed, their interaction in confined potential becomes very significant. It has been observed that acceptor-acceptor interaction is more in cubical QD than in spherical QD which can be controlled by the magnetic field. The results are presented and discussed.

  14. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  15. Effective two-body equations for the four-body problem with exact treatment of (2+2)-subsystem contributions

    International Nuclear Information System (INIS)

    Haberzettl, H.; Sandhas, W.

    1981-01-01

    Noclear reactions: Four-body problem. Effective two-body equations with exact (2+2)-subsystem contributions. Relation to field-theoretical model by Fonseca and Shanley. Three-body propagator with exchange effects. (orig.)

  16. The role played by the Coulombic traction for an interface crack in dissimilar piezoelectric materials

    International Nuclear Information System (INIS)

    Li Qun; Chen Yiheng

    2008-01-01

    The role played by the Coulombic traction for an interface crack in dissimilar piezoelectric materials is clarified. Based on the extended Stroh theory, the Coulombic traction, usually neglected in piezoelectric fracture, is imposed on the interface crack surfaces. It is found that the low-capacitance medium (air or vacuum) inside the crack gap yields some large Coulombic traction as compared to the applied mechanical loading whether the remanent polarization of piezoelectric material is considered or not. Thus, previous investigations based on the traction-free condition underestimate the role of the Coulombic traction and in turn may yield unexpected errors for the effective stress intensity factor (SIF) and energy release rate (ERR) at the crack tip. (technical note)

  17. Coulomb dissociation of N-20,N-21

    NARCIS (Netherlands)

    Roeder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J. G.; Burgunder, G.; Caamano, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Chakraborty, S.; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Pramanik, Ushasi Datta; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A.; Farinon, F.; Fraile, Luis M.; Freer, Martin; Freudenberger, M.; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhaeuser, Roman; Goebel, Kathrin; Kalantar-Nayestanaki, Nasser; Najafi, Mohammad Ali; Rigollet, Catherine; Stoica, V.; Streicher, Branislav; Van de Walle, J.

    2016-01-01

    Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N-20,N-21 are reported. Relativistic N-20,N-21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a

  18. Generalized coherent states for the Coulomb problem in one dimension

    International Nuclear Information System (INIS)

    Nouri, S.

    2002-01-01

    A set of generalized coherent states for the one-dimensional Coulomb problem in coordinate representation is constructed. At first, we obtain a mapping for proper transformation of the one-dimensional Coulomb problem into a nonrotating four-dimensional isotropic harmonic oscillator in the hyperspherical space, and the generalized coherent states for the one-dimensional Coulomb problem is then obtained in exact closed form. This exactly soluble model can provide an adequate means for a quantum coherency description of the Coulomb problem in one dimension, sample for coherent aspects of the exciton model in one-dimension example in high-temperature superconductivity, semiconductors, and polymers. Also, it can be useful for investigating the coherent scattering of the Coulomb particles in one dimension

  19. AN ACCURATE ORBITAL INTEGRATOR FOR THE RESTRICTED THREE-BODY PROBLEM AS A SPECIAL CASE OF THE DISCRETE-TIME GENERAL THREE-BODY PROBLEM

    International Nuclear Information System (INIS)

    Minesaki, Yukitaka

    2013-01-01

    For the restricted three-body problem, we propose an accurate orbital integration scheme that retains all conserved quantities of the two-body problem with two primaries and approximately preserves the Jacobi integral. The scheme is obtained by taking the limit as mass approaches zero in the discrete-time general three-body problem. For a long time interval, the proposed scheme precisely reproduces various periodic orbits that cannot be accurately computed by other generic integrators

  20. Coulomb excitations for a short linear chain of metallic shells

    Energy Technology Data Exchange (ETDEWEB)

    Zhemchuzhna, Liubov, E-mail: lzhemchuzhna@unm.edu [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Donostia International Physics Center (DIPC), P de Manuel Lardizabal, 4, 20018 San Sebastian, Basque Country (Spain); Iurov, Andrii [Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Gao, Bo [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States)

    2015-03-15

    A self-consistent-field theory is given for the electronic collective modes of a chain containing a finite number, N, of Coulomb-coupled spherical two-dimensional electron gases arranged with their centers along a straight line, for simulating electromagnetic response of a narrow-ribbon of metallic shells. The separation between nearest-neighbor shells is arbitrary and because of the quantization of the electron energy levels due to their confinement to the spherical surface, all angular momenta L of the Coulomb excitations, as well as their projections M on the quantization axis, are coupled. However, for incoming light with a given polarization, only one angular momentum quantum number is usually required. Therefore, the electromagnetic response of the narrow-ribbon of metallic shells is expected to be controlled externally by selecting different polarizations for incident light. We show that, when N = 3, the next-nearest-neighbor Coulomb coupling is larger than its value if they are located at opposite ends of a right-angle triangle forming the triad. Additionally, the frequencies of the plasma excitations are found to depend on the orientation of the line joining them with respect to the axis of quantization since the magnetic field generated from the induced oscillating electric dipole moment on one sphere can couple to the induced magnetic dipole moment on another. Although the transverse inter-shell electromagnetic coupling can be modeled by an effective dynamic medium, the longitudinal inter-shell Coulomb coupling, on the other hand, can still significantly modify the electromagnetic property of this effective medium between shells.

  1. A conceivable lattice structure of the Coulomb law

    International Nuclear Information System (INIS)

    Papp, E.; Santilli, R.M.

    1983-01-01

    A few heuristic remarks on recent extensions of the Coulomb law via effective potentials and other means, which appear to admit a lattice structure in time and space whose spacing are given by the characteristic period of the elctron and its Compton wave-length, respectively, are presented

  2. Three stage Kondo effect in a three quantum dot system

    Science.gov (United States)

    Chiappe, Guillermo; Costa Ribeiro, Laercio; Hamad, Ignacio; Victoriano Anda, Enrique

    2014-03-01

    In this work we study the transport properties of a series connected three quantum dot (QD) system with local strong Coulomb interaction and with one of the extremity QD connected to two metallic leads. We evaluate the local density of states (LDOS) in the QDs and the conductance between the metallic leads considering different magnitudes for the coupling between the central and the extremity QD which is not connected to the leads (side QDs). For small magnitudes of this coupling the LDOS of the QD coupled to the leads present a Kondo resonance with a dip and a very tiny peak at the Fermi level. The widths of these structures are associated to three energy scales, or three Kondo temperatures, which characterizes the three stage Kondo regime. Increasing the coupling between the side QDs we observe a transition to the conventional Kondo regime. We use the multi-configuration Lanczos calculations and the finite U slave-boson mean-field theory. The results present qualitative and quantitative agreement.

  3. Two-center Coulomb problem with Calogero interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hakobyan, T., E-mail: tigran.hakobyan@ysu.am; Nersessian, A., E-mail: arnerses@ysu.am [Armenia Tomsk Polytechnic University, Yerevan State University (Russian Federation)

    2017-03-15

    We show that the Calogero-type perturbation preserves the integrability and partial separation of variables for the Stark–Coulomb and two-center Coulomb problems, and present the explicit expressions of their constants of motion. We reveal that this perturbation preserves the spectra of initial systems, but leads to the change of degree of degeneracy.

  4. Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study

    DEFF Research Database (Denmark)

    Lunde, Anders Mathias; Flensborg, Karsten; Jauho, Antti-Pekka

    2005-01-01

    We calculate the intershell resistance R-21 in a multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F) (e.g., a gate voltage), varying the chirality of the inner and outer tubes. This is done in a so-called Coulomb drag setup, where a current I-1 in one shell induces...... a voltage drop V-2 in another shell by the screened Coulomb interaction between the shells neglecting the intershell tunneling. We provide benchmark results for R-21 = V2/I-1 within the Fermi liquid theory using Boltzmann equations. The band structure gives rise to strongly chirality-dependent suppression...... effects for the Coulomb drag between different tubes due to selection rules combined with mismatching of wave vector and crystal angular momentum conservation near the Fermi level. This gives rise to orders of magnitude changes in R-21 and even the sign of R-21 can change depending on the chirality...

  5. Sine-Gordon mean field theory of a Coulomb gas

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Alexandre; Barbosa, Marcia C.; Levin, Yan

    1997-12-31

    Full text. The Coulomb gas provides a paradigm for the study of various models of critical phenomena. In particular, it is well known that the two dimensional (2 D). Coulomb gas can be directly used to study the superfluidity transition in {sup 4} He films, arrays of Josephson junctions, roughening transition, etc. Not withstanding its versatility, our full understanding of the most basic model of Coulomb gas, namely an ensemble of hard spheres carrying either positive or negative charges at their center, is still lacking. It is now well accepted that at low density the two dimensional plasma of equal number of positive and negative particles undergoes a Kosterlitz-Thouless (KT) metal insulator transition. This transition is of an infinite order and is characterized by a diverging Debye screening length. As the density of particles increases, the validity of the KT theory becomes questionable and the possibility of the KT transition being replaced by some kind of first order discontinuity has been speculated for a long time. In this work sine-Gordon field theory is used to investigate the phase diagram of a neutral Coulomb gas. A variational mean-field free energy is constructed and the corresponding phase diagrams in two and three dimensions are obtained. When analyzed in terms of chemical potential, the sine-Gordon theory predicts the phase diagram topologically identical to the Monte Carlo simulations and a recently developed Debye-Huckel-Bjerrum theory. In 2D, we find that the infinite-order Kosterlitz-Thouless line terminates in a tricritical point, after which the metal-insulator transition becomes first order. However, when the transformation from chemical potential to the density is made the whole insulating phase is mapped onto zero density. (author)

  6. Focusing effects by one and two Coulomb centers in the autoionization of He

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, S; Otranto, S [CONICET and Dto. de Fisica, Universidad Nacional del Sur, 8000 Bahia Blanca (Argentina); Suarez, S; Garibotti, C R, E-mail: smartine@criba.edu.a, E-mail: sotranto@uns.edu.a [CONICET and Centro Atomico Bariloche, 8400 S. C. de Bariloche (Argentina)

    2009-11-01

    In this work we consider the autoionization of He following double electron capture in He{sup 2+} + H{sub 2} collisions at an impact energy of 14 keV/amu. The post-collisional interaction with the two Coulomb centers is treated within the Barrachina-Macek model by employing the {Phi}{sub 2} correlated wave function introduced by Gasaneo et al to represent the continuum of the emitted electron in the field of two Coulomb centers. We compare the angular profiles in the electron spectrum with those obtained following double electron capture for the collision system He{sup 2+}+ He. Clear differences are observed in the spectra obtained for the atomic and molecular targets.

  7. Coulomb displacement energies in relativistic and non-relativistic self-consistent models

    International Nuclear Information System (INIS)

    Marcos, S.; Savushkin, L.N.; Giai, N. van.

    1992-03-01

    Coulomb displacement energies in mirror nuclei are comparatively analyzed in Dirac-Hartree and Skyrme-Hartree-Fock models. Using a non-linear effective Lagrangian fitted on ground state properties of finite nuclei, it is found that the predictions of relativistic models are lower than those of Hartree-Fock calculations with Skyrme force. The main sources of reduction are the kinetic energy and the Coulomb-nuclear interference potential. The discrepancy with the data is larger than in the Skyrme-Hartree-Fock case. (author) 24 refs., 3 tabs

  8. Review of stopping power and Coulomb explosion for molecular ion in plasmas

    Directory of Open Access Journals (Sweden)

    Guiqiu Wang

    2018-03-01

    Full Text Available We summarize our theoretical studies for stopping power of energetic heavy ion, diatomic molecular ions and small clusters penetrating through plasmas. As a relevant research field for the heavy ion inertial confinement fusion (HICF, we lay the emphasis on the dynamic polarization and correlation effects of the constituent ion within the molecular ion and cluster for stopping power in order to disclose the role of the vicinage effect on the Coulomb explosion and energy deposition of molecules and clusters in plasma. On the other hand, as a promising scheme for ICF, both a strong laser field and an intense ion beam are used to irradiate a plasma target. So the influence of a strong laser field on stopping power is significant. We discussed a large range of laser and plasma parameters on the coulomb explosion and stopping power for correlated-ion cluster and C60 cluster. Furthermore, in order to indicate the effects of different cluster types and sizes on the stopping power, a comparison is made for hydrogen and carbon clusters. In addition, the deflection of molecular axis for diatomic molecules during the Coulomb explosion is also given for the cases both in the presence of a laser field and laser free. Finally, a future experimental scheme is put forward to measure molecular ion stopping power in plasmas in Xi'an Jiaotong University of China. Keywords: Molecules, Stopping power, Coulomb explosion, Vicinage effect, Laser, PACS Codes: 34.50.Bw, 52.40.Mj, 61.85.+p, 34.50.Dy

  9. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo.

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. Maximal superintegrability of the generalized Kepler-Coulomb system on N-dimensional curved spaces

    International Nuclear Information System (INIS)

    Ballesteros, Angel; Herranz, Francisco J

    2009-01-01

    The superposition of the Kepler-Coulomb potential on the 3D Euclidean space with three centrifugal terms has recently been shown to be maximally superintegrable (Verrier and Evans 2008 J. Math. Phys. 49 022902) by finding an additional (hidden) integral of motion which is quartic in the momenta. In this paper, we present the generalization of this result to the N-dimensional spherical, hyperbolic and Euclidean spaces by making use of a unified symmetry approach that makes use of the curvature parameter. The resulting Hamiltonian, formed by the (curved) Kepler-Coulomb potential together with N centrifugal terms, is shown to be endowed with 2N - 1 functionally independent integrals of the motion: one of them is quartic and the remaining ones are quadratic. The transition from the proper Kepler-Coulomb potential, with its associated quadratic Laplace-Runge-Lenz N-vector, to the generalized system is fully described. The role of spherical, nonlinear (cubic) and coalgebra symmetries in all these systems is highlighted

  11. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means, such as th......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means......, such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states. which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance...

  12. Large anomalous magnetic moment in three-dimensional Dirac and Weyl semimetals

    NARCIS (Netherlands)

    Van Der Wurff, E. C I; Stoof, H. T C

    2016-01-01

    We investigate the effect of Coulomb interactions on the electromagnetic response of three-dimensional Dirac and Weyl semimetals. In a calculation reminiscent of Schwinger's seminal work on quantum electrodynamics, we find three physically distinct effects for the anomalous magnetic moment of the

  13. Empirical Coulomb matrix elements and the mass of 22Al

    International Nuclear Information System (INIS)

    Whitehead, R.R.; Watt, A.; Kelvin, D.; Rutherford, H.J.

    1976-01-01

    An attempt has been made to obtain a set of Coulomb matrix elements which fit the known Coulomb energy shifts in the nuclei of mass 18 to 22. The interaction obtained fits the data well with only a few exceptions, one of these being the Coulomb shift of the notorious third 0 + state in 18 Ne. These Coulomb matrix elements are used together with the Chung-Wildenthal interaction to obtain a new prediction for the mass excess of 22 Al. The results indicate that 22 Al should be bound against proton emission. (Auth.)

  14. Resonances in the two centers Coulomb system

    International Nuclear Information System (INIS)

    Seri, Marcello

    2012-01-01

    In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schroedinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.

  15. Resonances in the two centers Coulomb system

    Energy Technology Data Exchange (ETDEWEB)

    Seri, Marcello

    2012-09-14

    In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schroedinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.

  16. The influence of the s-d(f) Coulomb interaction on the transition element compound superconductive critical temperature

    International Nuclear Information System (INIS)

    Kravtsov, V.E.; Mal'shukov, A.G.

    1978-01-01

    The influence of s-d Coulomb interaction on the superconductive critical temperature Tsub(c) of transition element compounds and their dilute alloys was investigated in the frame of Anderson model. Coulomb interaction of electrons with opposite spins on the same atom was considered in a ladder approximation valid when hybridization is sufficiently small while s-d Coulomb interaction has led to the 'parquet' summation. It is shown that s-d Coulomb interaction results in the decrease of Tsub(c) and hence the electron mechanism of superconductivity seems to be non-effective in systems under consideration. (author)

  17. Measurement of the {sup 15}O(2p,{gamma}){sup 17}Ne cross section by Coulomb dissociation of {sup 17}Ne

    Energy Technology Data Exchange (ETDEWEB)

    Marganiec, Justyna [ExtreMe Matter Institute EMMI, GSI Darmstadt, Darmstadt (Germany); Aumann, Thomas; Heil, Michael; Plag, Ralf; Wamers, Felix [Kernreaktionen und Nuklear Astrophysik, GSI Darmstadt, Darmstadt (Germany)

    2010-07-01

    For the production of proton-rich nuclei during the rp process two-proton capture plays an important role. This process can bridge long-lived waiting points which otherwise hamper the mass flow between CNO material and the FeNi mass region. One of these waiting points is {sup 15}O. The three-body radiative capture can proceed sequentially or directly from the three-body continuum. The rate of the {sup 15}O(2p,{gamma}){sup 17}Ne reaction obtained using the two-successive-proton-capture model has been discussed in J. Goerres et al. (Phys. Rev. C 51, 392, 1995). The role of continuum states ({sup 15}O+2p) for the rate calculation has been demonstrated in L.V Grigorenko, M.V. Zhukov (Phys. Rev. C 72, 015803, 2005). It has been suggested that the reaction rate can be enhanced by a few orders of magnitude by taking into account the three-body continuum. In order to verify these calculations, we have deduced the {sup 15}O(2p,{gamma}){sup 17}Ne cross section by studying the time-reversed process, the Coulomb dissociation of {sup 17}Ne, at the LAND/R{sup 3}B setup at GSI, using a {sup 17}Ne secondary beam from the fragment separator FRS.

  18. Role of three-body forces in lattice dynamics of neodymium antimonide

    International Nuclear Information System (INIS)

    Gupta, H.N.; Kanti Chandra

    1979-01-01

    Recently the experimental phonon-dispersion curves of neodymium antimonide (NdSb) have been reported by Wakabayashi and Furrer (1976). These results have been analysed using an extended three-body force shell model (ESTM) in its nearest-neighbour version which provides a very good agreement for acoustic- and a reasonably good agreement for optical-branches of dispersion curves. This shows clearly the effect of three-body forces in this solid. The lack in degree of agreement in the optical branches may be ascribed to the presence of (i) zero Lyddane-Sachs-Teller (LST) splitting of zone-centre optical vibration frequencies (ωsub(Lo) and ωsub(To)) (ii) some anomalous wiggles in those branches. While the former is explained by setting Lundquist's effective charge parameter (esub(L)) equal to zero in the theory of ESTM, the later is expected to be explained satisfactorily by including free-electron screening effects in the theoretical framework of ESTM. (auth.)

  19. Sensitivity of Coulomb stress changes to slip models of source faults: A case study for the 2011 Mw 9.0 Tohoku-oki earthquake

    Science.gov (United States)

    Wang, J.; Xu, C.; Furlong, K.; Zhong, B.; Xiao, Z.; Yi, L.; Chen, T.

    2017-12-01

    Although Coulomb stress changes induced by earthquake events have been used to quantify stress transfers and to retrospectively explain stress triggering among earthquake sequences, realistic reliable prospective earthquake forecasting remains scarce. To generate a robust Coulomb stress map for earthquake forecasting, uncertainties in Coulomb stress changes associated with the source fault, receiver fault and friction coefficient and Skempton's coefficient need to be exhaustively considered. In this paper, we specifically explore the uncertainty in slip models of the source fault of the 2011 Mw 9.0 Tohoku-oki earthquake as a case study. This earthquake was chosen because of its wealth of finite-fault slip models. Based on the wealth of those slip models, we compute the coseismic Coulomb stress changes induced by this mainshock. Our results indicate that nearby Coulomb stress changes for each slip model can be quite different, both for the Coulomb stress map at a given depth and on the Pacific subducting slab. The triggering rates for three months of aftershocks of the mainshock, with and without considering the uncertainty in slip models, differ significantly, decreasing from 70% to 18%. Reliable Coulomb stress changes in the three seismogenic zones of Nanki, Tonankai and Tokai are insignificant, approximately only 0.04 bar. By contrast, the portions of the Pacific subducting slab at a depth of 80 km and beneath Tokyo received a positive Coulomb stress change of approximately 0.2 bar. The standard errors of the seismicity rate and earthquake probability based on the Coulomb rate-and-state model (CRS) decay much faster with elapsed time in stress triggering zones than in stress shadows, meaning that the uncertainties in Coulomb stress changes in stress triggering zones would not drastically affect assessments of the seismicity rate and earthquake probability based on the CRS in the intermediate to long term.

  20. Coulomb sum rules in the relativistic Fermi gas model

    International Nuclear Information System (INIS)

    Do Dang, G.; L'Huillier, M.; Nguyen Giai, Van.

    1986-11-01

    Coulomb sum rules are studied in the framework of the Fermi gas model. A distinction is made between mathematical and observable sum rules. Differences between non-relativistic and relativistic Fermi gas predictions are stressed. A method to deduce a Coulomb response function from the longitudinal response is proposed and tested numerically. This method is applied to the 40 Ca data to obtain the experimental Coulomb sum rule as a function of momentum transfer

  1. Many-body effects in transport through a quantum-dot cavity system

    Science.gov (United States)

    Dinu, I. V.; Moldoveanu, V.; Gartner, P.

    2018-05-01

    We theoretically describe electric transport through an optically active quantum dot embedded in a single-mode cavity, and coupled to source-drain particle reservoirs. The populations of various many-body configurations (e.g., excitons, trions, biexciton) and the photon-number occupancies are calculated from a master equation which is derived in the basis of dressed states. These take into account both the Coulomb and the light-matter interaction. The former is essential in the description of the transport, while for the latter we identify situations in which it can be neglected in the expression of tunneling rates. The fermionic nature of the particle reservoirs plays an important role in the argument. The master equation is numerically solved for the s -shell many-body configurations of disk-shaped quantum dots. If the cavity is tuned to the biexciton-exciton transition, the most efficient optical processes take place in a three-level Λ system. The alternative exciton-ground-state route is inhibited as nonresonant due to the biexciton binding energy. The steady-state current is analyzed as a function of the photon frequency and the coupling to the leads. An unexpected feature appears in its dependence on the cavity loss rate, which turns out to be nonmonotonic.

  2. Quasi-Three Body Systems: Properties and Scattering

    International Nuclear Information System (INIS)

    Amusia, M. Ya.

    2017-01-01

    We investigate systems of three mutually interacting particles with masses m e , m μ , M that obey the following inequality m e ≪ m μ ≪ M. Then the three-body problem reduces to the two-body scattering or structure of m e in the field of the pseudo-nucleus m μ M. We calculate analytically the properties of considered systems, such as the scattering cross-sections, hyperfine splitting, Auger decay of exited states and Lamb shifts, presenting them as expansions in powers of the parameter β=m e /m μ ≪1. (author)

  3. Divergence of the total cross section for three body rearrangement collisions with coulomb interactions

    Science.gov (United States)

    Omidvar, K.

    1972-01-01

    Three charged particles 1, 2, 3 collide according to the reaction 1+(2+3) yields (1+3)+2, where (2+3) and (1+3) are hydrogenlike bound states. It is shown when (1+3) is in a highly excited state n, due to the repulsive potential, the cross section in the first Born approximation behaves as 1/n which makes the total cross section to diverge like ln n. The total cross sections in the higher orders of the Born approximation are similarly divergent logarithmically.

  4. Instanton effects in three-dimensional supersymmetric gauge theories with matter

    NARCIS (Netherlands)

    Dorey, N.; Tong, D.; Vandoren, S.

    1998-01-01

    Using standard field theory techniques we compute perturbative and instanton contributions to the Coulomb branch of three-dimensional supersymmetric QCD with N = 2 and N = 4 supersymmetry and gauge group SU(2). For the N = 4 theory with one massless flavor, we confirm the proposal of Seiberg and

  5. Interplay of Coulomb interactions and disorder in three-dimensional quadratic band crossings without time-reversal symmetry and with unequal masses for conduction and valence bands

    Science.gov (United States)

    Mandal, Ipsita; Nandkishore, Rahul M.

    2018-03-01

    Coulomb interactions famously drive three-dimensional quadratic band crossing semimetals into a non-Fermi liquid phase of matter. In a previous work [Nandkishore and Parameswaran, Phys. Rev. B 95, 205106 (2017), 10.1103/PhysRevB.95.205106], the effect of disorder on this non-Fermi liquid phase was investigated, assuming that the band structure was isotropic, assuming that the conduction and valence bands had the same band mass, and assuming that the disorder preserved exact time-reversal symmetry and statistical isotropy. It was shown that the non-Fermi liquid fixed point is unstable to disorder and that a runaway flow to strong disorder occurs. In this paper, we extend that analysis by relaxing the assumption of time-reversal symmetry and allowing the electron and hole masses to differ (but continuing to assume isotropy of the low energy band structure). We first incorporate time-reversal symmetry breaking disorder and demonstrate that there do not appear any new fixed points. Moreover, while the system continues to flow to strong disorder, time-reversal-symmetry-breaking disorder grows asymptotically more slowly than time-reversal-symmetry-preserving disorder, which we therefore expect should dominate the strong-coupling phase. We then allow for unequal electron and hole masses. We show that whereas asymmetry in the two masses is irrelevant in the clean system, it is relevant in the presence of disorder, such that the `effective masses' of the conduction and valence bands should become sharply distinct in the low-energy limit. We calculate the RG flow equations for the disordered interacting system with unequal band masses and demonstrate that the problem exhibits a runaway flow to strong disorder. Along the runaway flow, time-reversal-symmetry-preserving disorder grows asymptotically more rapidly than both time-reversal-symmetry-breaking disorder and the Coulomb interaction.

  6. Finite pt contribution to relativistic Coulomb excitation: A possible explanation for the clean fission puzzle

    International Nuclear Information System (INIS)

    Galetti, D.; Kodama, T.; Nemes, M.C.

    1986-10-01

    The quantum relativistic Coulomb excitation process including reccil effects is studied in the plane wave Born approximation. Quantum and relativistic recoil effects allow for relatively large transverse momentum transfers, usually neglected. This specific feature is shown to modify the angular distribution of Coulomb induced fission fragmentation in an essential manner. In contrast with usual treatments it is found that these results compare favourably with recent data. (Authors) [pt

  7. Assessment of mechanical and three-body abrasive wear peculiarity ...

    Indian Academy of Sciences (India)

    The three-body abrasive wear characteristic of fabricated composites has been assessed under different operating conditions. For this, the three-body abrasion test is done on dry abrasion test rig (TR-50)and analysed using Taguchi's experimental design scheme and analysis of variance. The results obtained from these ...

  8. Coulomb Friction Damper

    Science.gov (United States)

    Appleberry, W. T.

    1983-01-01

    Standard hydraulic shock absorber modified to form coulomb (linear friction) damper. Device damps very small velocities and is well suited for use with large masses mounted on soft springs. Damping force is easily adjusted for different loads. Dampers are more reliable than fluid dampers and also more economical to build and to maintain.

  9. The three-body forces with two δ excitation and N+d scattering

    International Nuclear Information System (INIS)

    Uzu, Eizo; Koike, Yasuro; Yamaguchi, Masahiro; Kamada, Hiroyuki

    2005-01-01

    The differential cross section of 250 MeV N+d scattering was different from the results of Faddeev calculation. The possibility of δ excitation of two nucleons of deuteron in the initial state is considered and the degree of freedom of δδ excitation is applied to improve the three-body force effects. The system consisted of two nucleons, nucleon and δ particle, and two δparticles is called by NN, Nδ and δδ system, respectively. The first calculation was carried out by using AV14 potential as ordinary nuclear force and AV28 as interaction with Nδ and δδ as three-body. The results of calculation for 250 and 135 MeV N+d scattering showed no effect on the differential cross section but the large effect on the tensor resolving power. (S.Y.)

  10. Coulomb artifacts and bottomonium hyperfine splitting in lattice NRQCD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T. [Department of Physics, University of Alberta,11455 Saskatchewan Drive, Edmonton, Alberta T6G 2J1 (Canada); Penin, A.A. [Department of Physics, University of Alberta,11455 Saskatchewan Drive, Edmonton, Alberta T6G 2J1 (Canada); Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology,Wolfgang-Gaede-Strasse 1, 76128 Karlsruhe (Germany); Rayyan, A. [Department of Physics, University of Alberta,11455 Saskatchewan Drive, Edmonton, Alberta T6G 2J1 (Canada)

    2017-02-16

    We study the role of the lattice artifacts associated with the Coulomb binding effects in the analysis of the heavy quarkonium within lattice NRQCD. We find that a “naïve” perturbative matching generates spurious linear Coulomb artifacts, which result in a large systematic error in the lattice predictions for the heavy quarkonium spectrum. This effect is responsible, in particular, for the discrepancy between the recent determinations of the bottomonium hyperfine splitting in the radiatively improved lattice NRQCD (DOI: 10.1103/PhysRevD.92.054502; Arxiv:1309.5797). We show that the correct matching procedure which provides full control over discretization errors is based on the asymptotic expansion of the lattice theory about the continuum limit, which gives M{sub Υ(1S)}−M{sub η{sub b(1S)}}=52.9±5.5 MeV (DOI: 10.1103/PhysRevD.92.054502).

  11. Renormalizable Non-Covariant Gauges and Coulomb Gauge Limit

    CERN Document Server

    Baulieu, L

    1999-01-01

    To study ``physical'' gauges such as the Coulomb, light-cone, axial or temporal gauge, we consider ``interpolating'' gauges which interpolate linearly between a covariant gauge, such as the Feynman or Landau gauge, and a physical gauge. Lorentz breaking by the gauge-fixing term of interpolating gauges is controlled by extending the BRST method to include not only the local gauge group, but also the global Lorentz group. We enumerate the possible divergences of interpolating gauges, and show that they are renormalizable, and we show that the expectation value of physical observables is the same as in a covariant gauge. In the second part of the article we study the Coulomb-gauge as the singular limit of the Landau-Coulomb interpolating gauge. We find that unrenormalized and renormalized correlation functions are finite in this limit. We also find that there are finite two-loop diagrams of ``unphysical'' particles that are not present in formal canonical quantization in the Coulomb gauge. We verify that in the ...

  12. Three-body interactions and the Landau levels using Nikiforov ...

    Indian Academy of Sciences (India)

    In this article, the eigenvalues for the three-body interactions on the line and the Landau levels in the presence of topological defects have been regenerated by the Nikiforov–Uvarov (NU) method. Two exhaustive lists of such exactly solvable potentials are given. Keywords. Nikiforov–Uvarov (NU) method; three-body ...

  13. Observation of a Coulomb flux tube

    Science.gov (United States)

    Greensite, Jeff; Chung, Kristian

    2018-03-01

    In Coulomb gauge there is a longitudinal color electric field associated with a static quark-antiquark pair. We have measured the spatial distribution of this field, and find that it falls off exponentially with transverse distance from a line joining the two quarks. In other words there is a Coulomb flux tube, with a width that is somewhat smaller than that of the minimal energy flux tube associated with the asymptotic string tension. A confinement criterion for gauge theories with matter fields is also proposed.

  14. Efimov resonances in atomic three-body systems

    International Nuclear Information System (INIS)

    Mezei, J. Zs.; Papp, Z.

    2006-01-01

    In a recent work [Phys. Rev. Lett. 94, 143201 (2005)], we reported an accumulation of three-body resonant states attached to n=2 and higher two-body thresholds. A more careful investigation revealed that there are resonances of the same kind above the n=1 threshold as well. This suggests that the resonances attached to the thresholds are Efimov resonances

  15. Coulomb displacement energies of the T=1, J=0 states of A=42 nuclei

    International Nuclear Information System (INIS)

    Sato, H.

    1978-01-01

    Coulomb displacement energies of the T=1, J=0 + and 6 1 + states of A=42 nuclei are analyzed with previously known charge dependent forces and effects, and with the available Hartree-Fock single-particle wave functions. From the study of the Coulomb displacement energies of the 6 1 + states it is found that the present knowledge on the charge dependence, including a phenomenological charge symmetry breaking force previously introduced so as to help explain the Nolen-Schiffer anomaly, gives a sufficient and consistent explanation for both single-particle and two-particle systems. From the study of the 0 + states, it is found that the Coulomb displacement energies of the second 0 2 + states can be explained with a compensation between the smaller Coulomb energies of the second lowest two-particle state and larger ones of the deformed 4p-2h state. (Auth.)

  16. Dimensional regularization and renormalization of Coulomb gauge quantum electrodynamics

    International Nuclear Information System (INIS)

    Heckathorn, D.

    1979-01-01

    Quantum electrodynamics is renormalized in the Coulomb gauge with covariant counter terms and without momentum-dependent wave-function renormalization constants. It is shown how to dimensionally regularize non-covariant integrals occurring in this guage, and prove that the 'minimal' subtraction prescription excludes non-covariant counter terms. Motivated by the need for a renormalized Coulomb gauge formalism in certain practical calculations, the author introduces a convenient prescription with physical parameters. The renormalization group equations for the Coulomb gauge are derived. (Auth.)

  17. Stability of Dirac Liquids with Strong Coulomb Interaction.

    Science.gov (United States)

    Tupitsyn, Igor S; Prokof'ev, Nikolay V

    2017-01-13

    We develop and apply the diagrammatic Monte Carlo technique to address the problem of the stability of the Dirac liquid state (in a graphene-type system) against the strong long-range part of the Coulomb interaction. So far, all attempts to deal with this problem in the field-theoretical framework were limited either to perturbative or random phase approximation and functional renormalization group treatments, with diametrically opposite conclusions. Our calculations aim at the approximation-free solution with controlled accuracy by computing vertex corrections from higher-order skeleton diagrams and establishing the renormalization group flow of the effective Coulomb coupling constant. We unambiguously show that with increasing the system size L (up to ln(L)∼40), the coupling constant always flows towards zero; i.e., the two-dimensional Dirac liquid is an asymptotically free T=0 state with divergent Fermi velocity.

  18. Coulomb and nuclear components of the breakup, their interference and effect on the fusion process

    International Nuclear Information System (INIS)

    Gomes, P R S; Lubian, J; Canto, L F; Otomar, D R; Hussein, M S

    2015-01-01

    We discuss reaction mechanisms involving weakly bound nuclei, at near barrier energies, and the couplings between different reaction channels. This paper may be thought as a brief description of state of the art of this field, particularly on breakup reactions and their influence on the fusion cross section. Recent experimental and theoretical results are presented, including the interference between Coulomb and nuclear components of the breakup and the systematics so far reached on the static effects due to the characteristic of weakly bound nuclei, especially halo-nuclei and the dynamic effects of the breakup coupling on the fusion cross section. (paper)

  19. Reproductive success in a natural population of male three-spined stickleback Gasterosteus aculeatus: effects of nuptial colour, parasites and body size.

    Science.gov (United States)

    Sparkes, T C; Rush, V; Kopp, D A; Foster, S A

    2013-05-01

    The effects of nuptial colour, parasites and body size on reproductive success were examined in a natural population of three-spined stickleback Gasterosteus aculeatus. Reproductive males were collected, with the contents of their nests, during the embryo-guarding stage from Lynne Lake (Cook Inlet, Alaska, U.S.A.), and nuptial colour, infection status and body size were recorded. Regression analysis revealed that male body size was the only predictor, of those measured, of reproductive success in nature. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  20. Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots.

    Science.gov (United States)

    Ardelt, P-L; Gawarecki, K; Müller, K; Waeber, A M; Bechtold, A; Oberhofer, K; Daniels, J M; Klotz, F; Bichler, M; Kuhn, T; Krenner, H J; Machnikowski, P; Finley, J J

    2016-02-19

    We report Coulomb mediated hybridization of excitonic states in optically active InGaAs quantum dot molecules. By probing the optical response of an individual quantum dot molecule as a function of the static electric field applied along the molecular axis, we observe unexpected avoided level crossings that do not arise from the dominant single-particle tunnel coupling. We identify a new few-particle coupling mechanism stemming from Coulomb interactions between different neutral exciton states. Such Coulomb resonances hybridize the exciton wave function over four different electron and hole single-particle orbitals. Comparisons of experimental observations with microscopic eight-band k·p calculations taking into account a realistic quantum dot geometry show good agreement and reveal that the Coulomb resonances arise from broken symmetry in the artificial semiconductor molecule.

  1. Adaptive time-stepping Monte Carlo integration of Coulomb collisions

    Science.gov (United States)

    Särkimäki, K.; Hirvijoki, E.; Terävä, J.

    2018-01-01

    We report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell-Jüttner statistics. The implementation is based on the Beliaev-Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space. Detailed description is provided for both the physics and implementation of the operator. The focus is in adaptive integration of stochastic differential equations, which is an overlooked aspect among existing Monte Carlo implementations of Coulomb collision operators. We verify that our operator converges to known analytical results and demonstrate that careless implementation of the adaptive time step can lead to severely erroneous results. The operator is provided as a self-contained Fortran 95 module and can be included into existing orbit-following tools that trace either the full Larmor motion or the guiding center dynamics. The adaptive time-stepping algorithm is expected to be useful in situations where the collision frequencies vary greatly over the course of a simulation. Examples include the slowing-down of fusion products or other fast ions, and the Dreicer generation of runaway electrons as well as the generation of fast ions or electrons with ion or electron cyclotron resonance heating.

  2. Coulomb matrix elements in multi-orbital Hubbard models.

    Science.gov (United States)

    Bünemann, Jörg; Gebhard, Florian

    2017-04-26

    Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.

  3. Planar density of vacuum charge induced by a supercritical Coulomb potential

    Directory of Open Access Journals (Sweden)

    V.R. Khalilov

    2017-06-01

    Full Text Available Analytical expressions for the planar density of an induced vacuum charge are obtained in a strong Coulomb potential in coordinate space. Treatment is based on a self-adjoint extension approach for constructing of the Green's function of a charged fermion in an external electromagnetic field. Induced vacuum charge density is calculated and analyzed in subcritical and supercritical Coulomb potentials for massless and massive fermions. We argue that the virtual and so-called real vacuum polarizations contribute in an induced vacuum charge in a supercritical Coulomb potential. The behavior of the polarization vacuum charge density is investigated at long and short distances from the Coulomb center. The induced vacuum charge has a screening sign. Screening of a Coulomb impurity in graphene is briefly discussed. The real vacuum polarization charge density that acquires the quantum electrodynamics vacuum in a supercritical Coulomb potential due to the real vacuum polarization is calculated. It is shown that the vacuum charge densities essentially differ in massive and massless cases. We expect that our results can, as a matter of principle, be tested in graphene with a supercritical Coulomb impurity.

  4. Planar density of vacuum charge induced by a supercritical Coulomb potential

    Energy Technology Data Exchange (ETDEWEB)

    Khalilov, V.R., E-mail: khalilov@phys.msu.ru; Mamsurov, I.V.

    2017-06-10

    Analytical expressions for the planar density of an induced vacuum charge are obtained in a strong Coulomb potential in coordinate space. Treatment is based on a self-adjoint extension approach for constructing of the Green's function of a charged fermion in an external electromagnetic field. Induced vacuum charge density is calculated and analyzed in subcritical and supercritical Coulomb potentials for massless and massive fermions. We argue that the virtual and so-called real vacuum polarizations contribute in an induced vacuum charge in a supercritical Coulomb potential. The behavior of the polarization vacuum charge density is investigated at long and short distances from the Coulomb center. The induced vacuum charge has a screening sign. Screening of a Coulomb impurity in graphene is briefly discussed. The real vacuum polarization charge density that acquires the quantum electrodynamics vacuum in a supercritical Coulomb potential due to the real vacuum polarization is calculated. It is shown that the vacuum charge densities essentially differ in massive and massless cases. We expect that our results can, as a matter of principle, be tested in graphene with a supercritical Coulomb impurity.

  5. Coulomb effects on the transport properties of quantum dots in strong magnetic field

    International Nuclear Information System (INIS)

    Moldoveanu, V.; Aldea, A.; Manolescu, A.; Nita, M.

    2000-08-01

    We investigate the transport properties of quantum dots placed in strong magnetic field using a quantum-mechanical approach based on the 2D tight-binding Hamiltonian with direct Coulomb interaction and the Landauer-Buettiker (LB) formalism. The electronic transmittance and the Hall resistance show Coulomb oscillations and also prove multiple addition processes. We identify this feature as the 'bunching' of electrons observed in recent experiments and give an elementary explanation in terms of spectral characteristics of the dot. The spatial distribution of the added electrons may distinguish between edge and bulk states and it has specific features for bunched electrons. The dependence of the charging energy on the number of electrons is discussed for strong magnetic field. The crossover from the tunneling to quantum Hall regime is analyzed in terms of dot-lead coupling. (author)

  6. Effects of Coulomb repulsion in the inner-shell ionization cross-section by protons, deuterons and alpha-particles

    International Nuclear Information System (INIS)

    Magno, C.; Milazzo, M.; Pizzi, C.; Porro, F.; Rota, A.; Riccobono, G.

    1979-01-01

    A critical survey has been made of the currently accepted BEA theory for inner-shell atomic-ionization processes. This review has led to the introduction of an effective ion energy which accounts for the slowing-down of the ion in the nuclear Coulomb field. The effect of the ion deflection, also due to the nuclear Coulomb field, is analyzed. Relativistic effects in the collision of ions with K-shell electrons have been taken into account. A tentative qualitative explanation for the experimentally observed nonexistence of a threshold energy for ionization is given in the framework of the BEA theory. Ionization cross-sections for Rb, Sr, Zr, Cd, In, Sb, W by protons in the energy range from 500 keV to 3 MeV have been measured. Also measurements of ionization cross-sections by deuterons in the energy range from 800 keV to 2.6 MeV on Rb, Sr, Zr, Cd, Sb and by He ions in the energy range from 1.4 MeV to 2.8 MeV on Cd and Sb have been performed. Results are compared with those of other authors and in the context of the corrections introduced in the BEA theory. (author)

  7. The statistical mechanics of the classical two-dimensional Coulomb gas is exactly solved

    International Nuclear Information System (INIS)

    Samaj, L

    2003-01-01

    The model under consideration is a classical 2D Coulomb gas of pointlike positive and negative unit charges, interacting via a logarithmic potential. In the whole stability range of temperatures, the equilibrium statistical mechanics of this fluid model is exactly solvable via an equivalence with the integrable 2D sine-Gordon field theory. The exact solution includes the bulk thermodynamics, special cases of the surface thermodynamics and the large-distance asymptotic behaviour of the two-body correlation functions

  8. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  9. LAGRANGE SOLUTIONS TO THE DISCRETE-TIME GENERAL THREE-BODY PROBLEM

    International Nuclear Information System (INIS)

    Minesaki, Yukitaka

    2013-01-01

    There is no known integrator that yields exact orbits for the general three-body problem (G3BP). It is difficult to verify whether a numerical procedure yields the correct solutions to the G3BP because doing so requires knowledge of all 11 conserved quantities, whereas only six are known. Without tracking all of the conserved quantities, it is possible to show that the discrete general three-body problem (d-G3BP) yields the correct orbits corresponding to Lagrange solutions of the G3BP. We show that the d-G3BP yields the correct solutions to the G3BP for two special cases: the equilateral triangle and collinear configurations. For the triangular solution, we use the fact that the solution to the three-body case is a superposition of the solutions to the three two-body cases, and we show that the three bodies maintain the same relative distances at all times. To obtain the collinear solution, we assume a specific permutation of the three bodies arranged along a straight rotating line, and we show that the d-G3BP maintains the same distance ratio between two bodies as in the G3BP. Proving that the d-G3BP solutions for these cases are equivalent to those of the G3BP makes it likely that the d-G3BP and G3BP solutions are equivalent in other cases. To our knowledge, this is the first work that proves the equivalence of the discrete solutions and the Lagrange orbits.

  10. Perturbative ambiguities in Coulomb gauge QCD

    International Nuclear Information System (INIS)

    Doust, P.

    1987-01-01

    The naive Coulomb gauge Feynman rules in non-abelian gauge theory give rise to ambiguous integrals, in addition to the usual ultraviolet divergences. Generalizing the work of Cheng and Tsai, these ambiguities are resolved to all orders in perturbation theory, by defining a gauge that interpolates smoothly between the Feynman gauge and the Coulomb gauge. The extra terms V 1 +V 2 of Christ and Lee are identified with certain two-loop ambiguous terms. However, there still seem to be unsolved problems connected with renormalisation. copyright 1987 Academic Press, Inc

  11. Coulomb dissociation of N 20,21

    OpenAIRE

    Röder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos

    2016-01-01

    Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N20,21 are reported. Relativistic N20,21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the N19(n,γ)N20 and N20(n,γ)N21 excitation functions and thermonuclear reaction rates have been determined. The N19(n,γ)N20 rate is...

  12. Investigations of the structure and electromagnetic interactions of few-body systems. Progress report, 1 January 1980-1 October 1980

    International Nuclear Information System (INIS)

    1980-01-01

    Considerable progress has been made on the long-range problems described in the original proposal document (1 February 1979 to 31 January 1980) and on the shorter-range problems described in the last renewal proposal (1 February 1980 to 31 January 1981). This progress concerns few-body structure problems (e.g., the existence of isobar components in 3 H, predictions of few-body-hypernuclei properties as a test of hyperon-nucleon interactions, investigation of the A = 6 ground states with exact three-body calculations, and the relation of triton D-state properties to the deuteron's D-state percentage) and electromagnetic properties and interactions of few-body nuclei (e.g., Coulomb effects in calculating and measuring asymptotic normalization constants, and γ + 3 He breakup reaction mechanisms at intermediate energies). Descriptions of the progress made indicate where each subject stands at present, and emphasize the significant results obtained. A publication list is attached

  13. Monopole operators and Hilbert series of Coulomb branches of 3 d = 4 gauge theories

    Science.gov (United States)

    Cremonesi, Stefano; Hanany, Amihay; Zaffaroni, Alberto

    2014-01-01

    This paper addresses a long standing problem - to identify the chiral ring and moduli space (i.e. as an algebraic variety) on the Coulomb branch of an = 4 superconformal field theory in 2+1 dimensions. Previous techniques involved a computation of the metric on the moduli space and/or mirror symmetry. These methods are limited to sufficiently small moduli spaces, with enough symmetry, or to Higgs branches of sufficiently small gauge theories. We introduce a simple formula for the Hilbert series of the Coulomb branch, which applies to any good or ugly three-dimensional = 4 gauge theory. The formula counts monopole operators which are dressed by classical operators, the Casimir invariants of the residual gauge group that is left unbroken by the magnetic flux. We apply our formula to several classes of gauge theories. Along the way we make various tests of mirror symmetry, successfully comparing the Hilbert series of the Coulomb branch with the Hilbert series of the Higgs branch of the mirror theory.

  14. Coulomb correlations in many-electron systems on the level of self-consistent fields

    International Nuclear Information System (INIS)

    Warken, M.

    1991-06-01

    It was the aim of this thesis to show means and ways, in order to regard Coulomb correlation already on the SCF level. As mean to facilitate this general averaged fields should serve. For this first in chapter I was shown, how by means of suitable gauge fixings terms into effective potentials of the Hartree-Fock or g-Hartree type are introduced, which permit an interpretation as correlation density or as effective coupling constant. The following considerations were exemplarily performed on the cases g-Hartree (in Coulomb gauge) and on f-Hartree-Fock. (orig./HSI) [de

  15. The Coulomb Branch of 3d N= 4 Theories

    Science.gov (United States)

    Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide

    2017-09-01

    We propose a construction for the quantum-corrected Coulomb branch of a general 3d gauge theory with N=4 supersymmetry, in terms of local coordinates associated with an abelianized theory. In a fixed complex structure, the holomorphic functions on the Coulomb branch are given by expectation values of chiral monopole operators. We construct the chiral ring of such operators, using equivariant integration over BPS moduli spaces. We also quantize the chiral ring, which corresponds to placing the 3d theory in a 2d Omega background. Then, by unifying all complex structures in a twistor space, we encode the full hyperkähler metric on the Coulomb branch. We verify our proposals in a multitude of examples, including SQCD and linear quiver gauge theories, whose Coulomb branches have alternative descriptions as solutions to Bogomolnyi and/or Nahm equations.

  16. Critical opalescence in the pure Coulomb system

    Energy Technology Data Exchange (ETDEWEB)

    Bobrov, V.B., E-mail: vic5907@mail.r [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaia St., 13, Bd. 2. Moscow 125412 (Russian Federation); Trigger, S.A., E-mail: satron@mail.r [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaia St., 13, Bd. 2. Moscow 125412 (Russian Federation); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin (Germany)

    2011-04-18

    Highlights: The review of the critical opalescence problem is presented. Light scattering in a two-component electron-nuclear system is studied. The exact relations between the structure factors and compressibility are found. The obtained relations are valid for strong interaction for the Coulomb systems. The experimental verification of these relations is possible for various elements. - Abstract: Based on the dielectric formalism and quantum field theory methods, the phenomenon of critical opalescence is explained for light scattering in pure matter as a two-component electron-nuclear system with Coulomb interaction. A similar phenomenon is shown to occur in the case of neutron scattering in pure substances as well. The obtained results are valid for quantum case and arbitrary strong Coulomb interaction. Thus, the relations between structure factors derived for the electron-nuclear system are the exact result of the quantum statistical mechanics.

  17. The three-body problem in quantum mechanics

    International Nuclear Information System (INIS)

    Antunes, A.C.B.

    1973-01-01

    Different methods used in the analysis of the scattering of an elementary particle by a system of two bound particles are compared. All particles are considered spinless and distinguishable from each other. Two approaches are used in the treatment of the problem. In the first method we build an effective - potential which accounts for the interaction of the incident particle with the bound system. The second approach consists in treating the target as a system of two particles, whose momentum distribution is given by the bound state wavefunction. The three body system is then treated by the techniques of the multiple scattering series and of Glauber theory. (author)

  18. Resolution of identity approximation for the Coulomb term in molecular and periodic systems

    Science.gov (United States)

    Burow, Asbjörn M.; Sierka, Marek; Mohamed, Fawzi

    2009-12-01

    A new formulation of resolution of identity approximation for the Coulomb term is presented, which uses atom-centered basis and auxiliary basis functions and treats molecular and periodic systems of any dimensionality on an equal footing. It relies on the decomposition of an auxiliary charge density into charged and chargeless components. Applying the Coulomb metric under periodic boundary conditions constrains the explicit form of the charged part. The chargeless component is determined variationally and converged Coulomb lattice sums needed for its determination are obtained using chargeless linear combinations of auxiliary basis functions. The lattice sums are partitioned in near- and far-field portions which are treated through an analytical integration scheme employing two- and three-center electron repulsion integrals and multipole expansions, respectively, operating exclusively in real space. Our preliminary implementation within the TURBOMOLE program package demonstrates consistent accuracy of the method across molecular and periodic systems. Using common auxiliary basis sets the errors of the approximation are small, in average about 20 μhartree per atom, for both molecular and periodic systems.

  19. Comparison study for multiple ionization of carbonyl sulfide by linearly and circularly polarized intense femtosecond laser fields using Coulomb explosion imaging

    Science.gov (United States)

    Ma, Pan; Wang, Chuncheng; Luo, Sizuo; Yu, Xitao; Li, Xiaokai; Wang, Zhenzhen; Hu, Wenhui; Yu, Jiaqi; Yang, Yizhang; Tian, Xu; Cui, Zhonghua; Ding, Dajun

    2018-05-01

    We studied the relative yields and dissociation dynamics for two- and three-body Coulomb explosion (CE) channels from highly charged carbonyl sulfide molecules in intense laser fields using the CE imaging technique. The electron recollision contributions are evaluated by comparing the relative yields for the multiple ionization process in linearly polarized and circularly polarized (LP and CP) laser fields. The nonsequential multiple ionization is only confirmed for the charge states of 2 to 4 because the energy for further ionization from the inner orbital is much larger than the maximum recollision energy, 3.2U p . The novel deviations of kinetic energy releases distributions between LP and CP pulses are observed for the charge states higher than 4. It can be attributed to the stronger molecular bending in highly charged states before three-body CE with CP light, in which the bending wave packet is initialed by the triple or quartic ionization and spread along their potential curves. Compared to LP light, CP light ionizes a larger fraction of bending molecules in the polarization plane.

  20. Coulomb energy of uniformly charged spheroidal shell systems.

    Science.gov (United States)

    Jadhao, Vikram; Yao, Zhenwei; Thomas, Creighton K; de la Cruz, Monica Olvera

    2015-03-01

    We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy as a function of the shell's aspect ratio for both area-constrained and volume-constrained cases. Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values of shell volume fractions.

  1. Relativistic Dirac-Fock and many-body perturbation calculations on He, He-like ions, Ne, and Ar

    International Nuclear Information System (INIS)

    Ishikawa, Y.

    1990-01-01

    Relativistic Dirac-Fock and diagrammatic many-body perturbation-theory calculations have been performed on He, several He-like ions, Ne, and Ar. The no-pair Dirac-Coulomb Hamiltonian is taken as the starting point. A solution of the Dirac-Fock equations is obtained by analytic expansion in basis sets of Gaussian-type functions. Many-body perturbation improvements of Coulomb correlation are done to third order

  2. Coulomb excitation of {sup 8}Li

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Marlete; Britos, Tatiane Nassar [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Ciencias Exatas e da Terra; Descouvemont, Pierre [Universite Libre de Bruxelles (ULB), Brussels (Belgium). Physique Nucleaire Theorique et Physique Mathematique; Lepine-Szily, Alinka; Lichtenthaler Filho, Rubens; Barioni, Adriana; Silva, Diego Medeiros da; Pereira, Dirceu; Mendes Junior, Djalma Rosa; Pires, Kelly Cristina Cezaretto; Gasques, Leandro Romero; Morais, Maria Carmen; Added, Nemitala; Neto Faria, Pedro; Rec, Rafael [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Dept. de Fisica Nuclear

    2012-07-01

    Full text: This work shows the Coulomb Excitation of {sup 8}Li on targets that have effectively behavior of Rutherford in angles and energies of interest for determining the value of the B(E2) electromagnetic transition. Theoretical aspects involved in this type of measure, known as COULEX [1], and some results in the literature [2-3] will be presented. Some problems with the targets and measurement system while performing an experiment on Coulomb Excitation of {sup 8}Li will be discussed: the energy resolution, background, possible contributions of the primary beam and also the excited states of the target near the region of elastic and inelastic peaks. They will be illustrated by measurements of the Coulomb Excitation of {sup 8}Li on targets of {sup 197}Au and {sup 208}Pb using the system RIBRAS(Brazilian Radioactive Ion Beam). In this case, the {sup 8}Li beam(T{sub 1/2} = 838 ms)is produced by {sup 9}Be({sup 7}Li;{sup 8} Li){sup 8}Be reaction from RIBRAS system which is installed at Instituto de Fisica of the Universidade de Sao Paulo. The primary {sup 7L}i beam is provided by Pelletron Accelerator. [1] K. Alder and A. Winther, Electromagnetic Excitation, North-Holland, New York, 1975; [2] P. Descouvemont and D. Baye, Phys. Letts. B 292, 235-238, 1992; [3] J. A. Brown, F. D. Becchetti, J. W. Jaenecke, K, Ashktorab, and D. A. Roberts, J. J. Kolata, R. J. Smith, and K. Lamkin, R. E. Warner, Phys. Rev. Letts., 66, 19, 1991; [4] R. J. Smith, J. J Kolata, K. Lamkin and A. Morsard, F. D. Becchetti, J. A. Brown, W. Z. Liu, J. W. Jaenecke, and D. A. Roberts, R. E. Warner, Phys. Rev. C, 43, 5, 1991. (author)

  3. Characterization of ion Coulomb crystals in a linear Paul trap

    International Nuclear Information System (INIS)

    Okada, K.; Takayanagi, T.; Wada, M.; Ohtani, S.; Schuessler, H. A.

    2010-01-01

    We describe a simple and fast method for simulating observed images of ion Coulomb crystals. In doing so, cold elastic collisions between Coulomb crystals and virtual very light atoms are implemented in a molecular dynamics (MD) simulation code. Such an approach reproduces the observed images of Coulomb crystals by obtaining density plots of the statistics of existence of each ion. The simple method has the advantage of short computing time in comparison with previous calculation methods. As a demonstration of the simulation, the formation of a planar Coulomb crystal with a small number of ions has been investigated in detail in a linear ion trap both experimentally and by simulation. However, also large Coulomb crystals including up to 1400 ions have been photographed and simulated to extract the secular temperature and the number of ions. For medium-sized crystals, a comparison between experiments and calculations has been performed. Moreover, an MD simulation of the sympathetic cooling of small molecular ions was performed in order to test the possibility of extracting the temperature and the number of refrigerated molecular ions from crystal images of laser-cooled ions. Such information is basic to studying ultracold ion-molecule reactions using ion Coulomb crystals including sympathetically cooled molecular ions.

  4. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    Science.gov (United States)

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  5. Shakeoff Ionization near the Coulomb Barrier Energy

    Science.gov (United States)

    Sharma, Prashant; Nandi, T.

    2017-11-01

    We measure the projectile K x-ray spectra as a function of the beam energies around the Coulomb barrier in different collision systems. The energy is scanned in small steps around the barrier aiming to explore the nuclear effects on the elastically scattered projectile ions. The variation of the projectile x-ray energy with the ion-beam energies exhibits an unusual increase in between the interaction barrier and fusion barrier energies. This additional contribution to the projectile ionization can be attributed to the shakeoff of outer-shell electrons of the projectile ions due to the sudden nuclear recoil (˜10-21 sec ) caused by the attractive nuclear potential, which gets switched on near the interaction barrier energy. In the sudden approximation limit, the theoretical shakeoff probability calculation due to the nuclear recoil explains the observed data well. In addition to its fundamental interest, such processes can play a significant role in dark matter detection through the possible mechanism of x-ray emissions, where the weakly interacting massive particle-nucleus elastic scattering can lead to the nuclear-recoil-induced inner-shell vacancy creations. Furthermore, the present work may provide new prospects for atomic physics research at barrier energies as well as provide a novel technique to perform barrier distribution studies for two-body systems.

  6. Selected results on strong and coulomb-induced correlations from the STAR experiment

    International Nuclear Information System (INIS)

    Sumbera, M.

    2007-01-01

    Using recent high-statistics STAR data from Au + Au and Cu + Cu collisions at full RHIC energy I discuss strong and Coulomb-induced final state interaction effects on identical (pi-pi) and non-identical (pi-XI) particle correlations. Analysis of pi-XI correlations reveals the strong and Coulomb-induced FSI effects, allowing for the first time to estimate spatial extension of pi and XI sources and the average shift between them. Source imaging techniques provide clean separation of details of the source function and are applied to the one-dimensional relative momentum correlation function of identical pions. For low momentum pions, and/or non-central collisions, a large departure from a single-Gaussian shape is observed. (author)

  7. Entanglement manipulation via Coulomb interaction in an optomechanical cavity assisted by two-level cold atoms

    Science.gov (United States)

    Wang, Jing; Tian, Xue-Dong; Liu, Yi-Mou; Cui, Cui-Li; Wu, Jin-Hui

    2018-06-01

    We investigate the stationary entanglement properties in a hybrid system consisting of an optical cavity, a mechanical resonator, a charged object, and an atomic ensemble. Numerical results show that this hybrid system exhibits three kinds of controllable bipartite entanglements in an experimentally accessible parameter regime with the help of the charged object. More importantly, it is viable to enhance on demand each bipartite entanglement at the expense of reducing others by modulating the Coulomb coupling strength. Last but not least, these bipartite entanglements seem more robust against on the environmental temperature for the positive Coulomb interaction.

  8. Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.

    Science.gov (United States)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-05-13

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.

  9. Contact parameters in two dimensions for general three-body systems

    DEFF Research Database (Denmark)

    F. Bellotti, F.; Frederico, T.; T. Yamashita, M.

    2014-01-01

    a subsystem is composed of two identical non-interacting particles. We also show that the three-body contact parameter is negligible in the case of one non-interacting subsystem compared to the situation where all subsystem are bound. As example, we present results for mixtures of Lithium with two Cesium......We study the two dimensional three-body problem in the general case of three distinguishable particles interacting through zero-range potentials. The Faddeev decomposition is used to write the momentum-space wave function. We show that the large-momentum asymptotic spectator function has the same...... to obtain two- and three-body contact parameters. We specialize from the general cases to examples of two identical, interacting or non-interacting, particles. We find that the two-body contact parameter is not a universal constant in the general case and show that the universality is recovered when...

  10. Coulomb interactions in charged fluids.

    Science.gov (United States)

    Vernizzi, Graziano; Guerrero-García, Guillermo Iván; de la Cruz, Monica Olvera

    2011-07-01

    The use of Ewald summation schemes for calculating long-range Coulomb interactions, originally applied to ionic crystalline solids, is a very common practice in molecular simulations of charged fluids at present. Such a choice imposes an artificial periodicity which is generally absent in the liquid state. In this paper we propose a simple analytical O(N(2)) method which is based on Gauss's law for computing exactly the Coulomb interaction between charged particles in a simulation box, when it is averaged over all possible orientations of a surrounding infinite lattice. This method mitigates the periodicity typical of crystalline systems and it is suitable for numerical studies of ionic liquids, charged molecular fluids, and colloidal systems with Monte Carlo and molecular dynamics simulations.

  11. Non-perturbative RPA-method implemented in the Coulomb gauge QCD Hamiltonian: From quarks and gluons to baryons and mesons

    Science.gov (United States)

    Yepez-Martinez, Tochtli; Civitarese, Osvaldo; Hess, Peter O.

    2018-02-01

    Starting from an algebraic model based on the QCD-Hamiltonian and previously applied to study meson states, we have developed an extension of it in order to explore the structure of baryon states. In developing our approach we have adapted concepts taken from group theory and non-perturbative many-body methods to describe states built from effective quarks and anti-quarks degrees of freedom. As a Hamiltonian we have used the QCD Hamiltonian written in the Coulomb Gauge, and expressed it in terms of effective quark-antiquark, di-quarks and di-antiquark excitations. To gain some insights about the relevant interactions of quarks in hadronic states, the Hamiltonian was approximately diagonalized by mapping quark-antiquark pairs and di-quarks (di-antiquarks) onto phonon states. In dealing with the structure of the vacuum of the theory, color-scalar and color-vector states are introduced to account for ground-state correlations. While the use of a purely color-scalar ground state is an obvious choice, so that colorless hadrons contain at least three quarks, the presence of coupled color-vector pairs in the ground state allows for colorless excitations resulting from the action of color objects upon it.

  12. Comparison of the effect of soft-core potentials and Coulombic potentials on bremsstrahlung during laser matter interaction

    Science.gov (United States)

    Pandit, Rishi R.; Becker, Valerie R.; Barrington, Kasey; Thurston, Jeremy; Ramunno, Lora; Ackad, Edward

    2018-04-01

    An intense, short laser pulse incident on rare-gas clusters can produce nano-plasmas containing energetic electrons. As these electrons undergo scattering, from both phonons and ions, they emit bremsstrahlung radiation. Here, we compare a theory of bremsstrahlung emission appropriate for the interaction of intense lasers with matter using soft-core potentials and Coulombic potentials. A new scaling for the radiation cross-section and the radiated power via bremsstrahlung is derived for a soft-core potential (which depends on the potential depth) and compared with the Coulomb potential. Calculations using the new scaling are performed for electrons in vacuum ultraviolet, infrared and mid-infrared laser pulses. The radiation cross-section and the radiation power via bremsstrahlung are found to increase rapidly with increases in the potential depth of up to around 200 eV and then become mostly saturated for larger depths while remaining constant for the Coulomb potential. In both cases, the radiation cross-section and the radiation power of bremsstrahlung decrease with increases in the laser wavelength. The ratio of the scattering amplitude for the soft-core potential and that for the Coulombic potential decreases exponentially with an increase in momentum transfer. The bremsstrahlung emission by electrons in plasmas may provide a broadband light source for diagnostics.

  13. Monotonicity of energy eigenvalues for Coulomb systems

    International Nuclear Information System (INIS)

    Englisch, R.

    1983-01-01

    Generalising results by earlier workers for a large class of Hamiltonians (among others, Hamiltonians of Coulomb systems) which can be written in the form H(α) = H 0 + αH' the present works shows that their eigenvalues decrease with increasing α. This result is applied to Coulomb systems in which the distances between the infinitely heavy particles are varying and also is used to obtain a completion and simplification of proof for the stability of the biexciton. (author)

  14. Critical opalescence in the pure Coulomb system

    International Nuclear Information System (INIS)

    Bobrov, V.B.; Trigger, S.A.

    2011-01-01

    Highlights: → The review of the critical opalescence problem is presented. → Light scattering in a two-component electron-nuclear system is studied. → The exact relations between the structure factors and compressibility are found. → The obtained relations are valid for strong interaction for the Coulomb systems. → The experimental verification of these relations is possible for various elements. - Abstract: Based on the dielectric formalism and quantum field theory methods, the phenomenon of critical opalescence is explained for light scattering in pure matter as a two-component electron-nuclear system with Coulomb interaction. A similar phenomenon is shown to occur in the case of neutron scattering in pure substances as well. The obtained results are valid for quantum case and arbitrary strong Coulomb interaction. Thus, the relations between structure factors derived for the electron-nuclear system are the exact result of the quantum statistical mechanics.

  15. Coulomb Interactions in Hanbury Brown-Twiss Experiments with Electrons

    Science.gov (United States)

    Shen, Kan

    2009-01-01

    This dissertation examines the effect of Coulomb interactions in Hanbury Brown-Twiss (HBT) type experiments with electrons. HBT experiments deal with intensity interference, which is related to the second-order correlation function of the particle field. This is an extension of the usual amplitude interference experiment, such as Young's…

  16. 4-center STO interelectron repulsion integrals with Coulomb Sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2018-01-01

    Abstract We present a method for evaluating 4-center electron repulsion integrals (ERI) for Slater-type orbitals by way of expansions in terms of Coulomb Sturmians. The ERIs can then be evaluated using our previously published methods for rapid evaluation of Coulomb Sturmians through hyperspherical...

  17. Controllability of the Coulomb charging energy in close-packed nanoparticle arrays.

    Science.gov (United States)

    Duan, Chao; Wang, Ying; Sun, Jinling; Guan, Changrong; Grunder, Sergio; Mayor, Marcel; Peng, Lianmao; Liao, Jianhui

    2013-11-07

    We studied the electronic transport properties of metal nanoparticle arrays, particularly focused on the Coulomb charging energy. By comparison, we confirmed that it is more reasonable to estimate the Coulomb charging energy using the activation energy from the temperature-dependent zero-voltage conductance. Based on this, we systematically and comprehensively investigated the parameters that could be used to tune the Coulomb charging energy in nanoparticle arrays. We found that four parameters, including the particle core size, the inter-particle distance, the nearest neighboring number, and the dielectric constant of ligand molecules, could significantly tune the Coulomb charging energy.

  18. Coulomb reacceleration as a clock for nuclear reactions -- II

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Bertsch, G.F.

    1994-01-01

    Reacceleration effects in the Coulomb breakup of nuclei are modeled with the two-dimensional time-dependent Schroedinger equation, extending a previous one-dimensional study. The present model better describes the individual contributions of longitudinal and transverse forces to the breakup and reacceleration. Reacceleration effects are found to preserve a strong memory of the pre-breakup phase of the reaction, as was concluded with the one-dimensional model

  19. On-shell and half-shell effects of the coulomb potential in quantum mechanics

    NARCIS (Netherlands)

    Maag, Jan Willem de

    1984-01-01

    In dit proefschrift wordt de Coulomb potentiaal in de nietrelativistische quantummechanica bestudeerd. Met gebruik van een streng wiskundige beschrijving onderzoeken we, in het bijzonder, on-shell en off-shell eigenschappen. De overeenkomsten en de verschillen met het geval van een glad afgeschermde

  20. Known-to-Unknown Approach to Teach about Coulomb's Law

    Science.gov (United States)

    Thamburaj, P. K.

    2007-01-01

    Analogies from life experiences help students understand various relationships presented in an introductory chemistry course. Coulomb's law is a complex relationship encountered in introductory general chemistry. A proper understanding of the relationships between the quantities involved in Coulomb's law is necessary in order for students to…

  1. Antilocalization of Coulomb Blockade in a Ge-Si Nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew P.; Kuemmeth, Ferdinand; Larsen, Thorvald Wadum

    2014-01-01

    The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak...

  2. 9Be+120Sn scattering at near-barrier energies within a four-body model

    Science.gov (United States)

    Arazi, A.; Casal, J.; Rodríguez-Gallardo, M.; Arias, J. M.; Lichtenthäler Filho, R.; Abriola, D.; Capurro, O. A.; Cardona, M. A.; Carnelli, P. F. F.; de Barbará, E.; Fernández Niello, J.; Figueira, J. M.; Fimiani, L.; Hojman, D.; Martí, G. V.; Martínez Heimman, D.; Pacheco, A. J.

    2018-04-01

    Cross sections for elastic and inelastic scattering of the weakly bound 9Be nucleus on a 120Sn target have been measured at seven bombarding energies around and above the Coulomb barrier. The elastic angular distributions are analyzed with a four-body continuum-discretized coupled-channels (CDCC) calculation, which considers 9Be as a three-body projectile (α +α +n ). An optical model analysis using the São Paulo potential is also shown for comparison. The CDCC analysis shows that the coupling to the continuum part of the spectrum is important for the agreement with experimental data even at energies around the Coulomb barrier, suggesting that breakup is an important process at low energies. At the highest incident energies, two inelastic peaks are observed at 1.19(5) and 2.41(5) MeV. Coupled-channels (CC) calculations using a rotational model confirm that the first inelastic peak corresponds to the excitation of the 21+ state in 120Sn, while the second one likely corresponds to the excitation of the 31- state.

  3. Coulombic charge ice

    Science.gov (United States)

    McClarty, P. A.; O'Brien, A.; Pollmann, F.

    2014-05-01

    We consider a classical model of charges ±q on a pyrochlore lattice in the presence of long-range Coulomb interactions. This model first appeared in the early literature on charge order in magnetite [P. W. Anderson, Phys. Rev. 102, 1008 (1956), 10.1103/PhysRev.102.1008]. In the limit where the interactions become short ranged, the model has a ground state with an extensive entropy and dipolar charge-charge correlations. When long-range interactions are introduced, the exact degeneracy is broken. We study the thermodynamics of the model and show the presence of a correlated charge liquid within a temperature window in which the physics is well described as a liquid of screened charged defects. The structure factor in this phase, which has smeared pinch points at the reciprocal lattice points, may be used to detect charge ice experimentally. In addition, the model exhibits fractionally charged excitations ±q/2 which are shown to interact via a 1/r potential. At lower temperatures, the model exhibits a transition to a long-range ordered phase. We are able to treat the Coulombic charge ice model and the dipolar spin ice model on an equal footing by mapping both to a constrained charge model on the diamond lattice. We find that states of the two ice models are related by a staggering field which is reflected in the energetics of these two models. From this perspective, we can understand the origin of the spin ice and charge ice ground states as coming from a dipolar model on a diamond lattice. We study the properties of charge ice in an external electric field, finding that the correlated liquid is robust to the presence of a field in contrast to the case of spin ice in a magnetic field. Finally, we comment on the transport properties of Coulombic charge ice in the correlated liquid phase.

  4. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21...

  5. Physics of the Non-Abelian Coulomb Phase

    DEFF Research Database (Denmark)

    Ryttov, Thomas A.; Shrock, Robert

    2018-01-01

    are applied to obtain further estimates of $\\gamma_{\\bar\\psi\\psi,IR}$ and $\\beta'_{IR}$ for several SU($N_c$) groups and representations $R$, and comparisons are made with lattice measurements. We apply our results to obtain new estimates of the extent of the respective non-Abelian Coulomb phases in several....... It is shown that an expansion of $\\gamma_{\\bar\\psi\\psi,IR}$ to $O(\\Delta_f^4)$ is quite accurate throughout the entire non-Abelian Coulomb phase of this supersymmetric theory....

  6. Instantons, three-dimensional gauge theory, and the Atiyah-Hitchin manifold

    NARCIS (Netherlands)

    Dorey, N.; Khoze, V.V.; Mattis, M.P.; Tong, D.; Vandoren, S.

    1997-01-01

    We investigate quantum effects on the Coulomb branch of three-dimensional N = 4 supersymmetric gauge theory with gauge group SU(2). We calculate perturbative and one-instanton contributions to the Wilsonian effective action using standard weakcoupling methods. Unlike the four-dimensional case,

  7. Coulomb blockade based field-effect transistors exploiting stripe-shaped channel geometries of self-assembled metal nanoparticles.

    Science.gov (United States)

    Lehmann, Hauke; Willing, Svenja; Möller, Sandra; Volkmann, Mirjam; Klinke, Christian

    2016-08-14

    Metallic nanoparticles offer possibilities to build basic electric devices with new functionality and improved performance. Due to the small volume and the resulting low self-capacitance, each single nanoparticle exhibits a high charging energy. Thus, a Coulomb-energy gap emerges during transport experiments that can be shifted by electric fields, allowing for charge transport whenever energy levels of neighboring particles match. Hence, the state of the device changes sequentially between conducting and non-conducting instead of just one transition from conducting to pinch-off as in semiconductors. To exploit this behavior for field-effect transistors, it is necessary to use uniform nanoparticles in ordered arrays separated by well-defined tunnel barriers. In this work, CoPt nanoparticles with a narrow size distribution are synthesized by colloidal chemistry. These particles are deposited via the scalable Langmuir-Blodgett technique as ordered, homogeneous monolayers onto Si/SiO2 substrates with pre-patterned gold electrodes. The resulting nanoparticle arrays are limited to stripes of adjustable lengths and widths. In such a defined channel with a limited number of conduction paths the current can be controlled precisely by a gate voltage. Clearly pronounced Coulomb oscillations are observed up to temperatures of 150 K. Using such systems as field-effect transistors yields unprecedented oscillating current modulations with on/off-ratios of around 70%.

  8. A method for solving a three-body problem with energy-dependent interactions

    International Nuclear Information System (INIS)

    Safronov, A.N.

    1994-01-01

    A method is proposed for solving a three-body problem with energy-dependent interactions. This method is based on introducing the dependence of scattering operators and state vectors on an additional external parameter. Effects caused by the energy dependence of the interaction operator are investigated by using the unitary condition for the amplitude of the 2 → 2 and 2 → 3 transitions. It is shown, in particular, that taking this dependence into account leads to a change in the relation between the asymptotic normalization factor of the wave function of the three-body bound state and the vertex constant of virtual dissociation (synthesis) of the system into two fragments. 15 refs

  9. Investigations of the structure and electromagnetic interactions of few-body systems. Progress report, 1 January 1980-1 October 1980

    Energy Technology Data Exchange (ETDEWEB)

    Harper, E P; Lehman, D R; Prats, F

    1980-11-07

    Considerable progress has been made on the long-range problems described in the original proposal document (1 February 1979 to 31 January 1980) and on the shorter-range problems described in the last renewal proposal (1 February 1980 to 31 January 1981). This progress concerns few-body structure problems (e.g., the existence of isobar components in /sup 3/H, predictions of few-body-hypernuclei properties as a test of hyperon-nucleon interactions, investigation of the A = 6 ground states with exact three-body calculations, and the relation of triton D-state properties to the deuteron's D-state percentage) and electromagnetic properties and interactions of few-body nuclei (e.g., Coulomb effects in calculating and measuring asymptotic normalization constants, and ..gamma.. + /sup 3/He breakup reaction mechanisms at intermediate energies). Descriptions of the progress made indicate where each subject stands at present, and emphasize the significant results obtained. A publication list is attached.

  10. The scattering matrix element of the three body reactive collision

    International Nuclear Information System (INIS)

    Morsy, M.W.; Hilal, A.A.; El-Sabagh, M.A.

    1980-08-01

    The optical model approximation has been applied to a previously derived set of coupled equations representing the dynamics of the three-body reactive scattering. The Schroedinger equation obtained describing the scattering problem has then been solved by inserting the effective mass approximation. The asymptotic requirements for both the entrance and exit channels, respectively, have been supplied to give the scattering matrix element of the reactive collision. (author)

  11. Charge independence and charge symmetry breaking interactions and the Coulomb energy anomaly in isobaric analog states

    International Nuclear Information System (INIS)

    Suzuki, Toshio; Sagawa, H.; Giai, N. van.

    1992-01-01

    Effects of CIB (charge independence breaking) and CSB (charge symmetry breaking) interactions on the Coulomb displacement energies of isobaric analog states are investigated for 48 Ca, 90 Zr and 208 Pb. Mass number dependence of the Coulomb energy anomalies is well explained when CIB and CSB interactions are used which reproduce the differences of the scattering lengths as well as those of the effective ranges of low energy nucleon-nucleon scattering. (author) 17 refs., 3 figs., 3 tabs

  12. Localizing gauge fields on a topological Abelian string and the Coulomb law

    International Nuclear Information System (INIS)

    Torrealba S, Rafael S.

    2010-01-01

    The confinement of electromagnetic field is studied in axial symmetrical, warped, six-dimensional brane world, using a recently proposed topological Abelian string-vortex solution as background. It was found, that the massless gauge field fluctuations follow four-dimensional Maxwell equations in the Lorenz gauge. The massless zero mode is localized when the thickness of the string vortex is less than 5β/4πe 2 v 2 and there are no other localized massless modes. There is also an infinite of nonlocalized massive Fourier modes, that follow four-dimensional Proca equations with a continuous spectrum. To compute the corrections to the Coulomb potential, a radial cutoff was introduced, in order to achieve a discrete mass spectrum. As a main result, a (R o /βR 2 ) correction was found for the four-dimensional effective Coulomb law; the result is in correspondence with the observed behavior of the Coulomb potential at today's measurable distances.

  13. Three-month-old human infants use vocal cues of body size.

    Science.gov (United States)

    Pietraszewski, David; Wertz, Annie E; Bryant, Gregory A; Wynn, Karen

    2017-06-14

    Differences in vocal fundamental ( F 0 ) and average formant ( F n ) frequencies covary with body size in most terrestrial mammals, such that larger organisms tend to produce lower frequency sounds than smaller organisms, both between species and also across different sex and life-stage morphs within species. Here we examined whether three-month-old human infants are sensitive to the relationship between body size and sound frequencies. Using a violation-of-expectation paradigm, we found that infants looked longer at stimuli inconsistent with the relationship-that is, a smaller organism producing lower frequency sounds, and a larger organism producing higher frequency sounds-than at stimuli that were consistent with it. This effect was stronger for fundamental frequency than it was for average formant frequency. These results suggest that by three months of age, human infants are already sensitive to the biologically relevant covariation between vocalization frequencies and visual cues to body size. This ability may be a consequence of developmental adaptations for building a phenotype capable of identifying and representing an organism's size, sex and life-stage. © 2017 The Author(s).

  14. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. IV. Coulomb explosion of molecular heteroclusters.

    Science.gov (United States)

    Last, Isidore; Jortner, Joshua

    2004-11-01

    In this paper we present a theoretical and computational study of the temporal dynamics and energetics of Coulomb explosion of (CD4)(n) and (CH4)(n) (n=55-4213) molecular heteroclusters in ultraintense (I=10(16)-10(19) W cm(-2)) laser fields, addressing the manifestation of electron dynamics, together with nuclear energetic and kinematic effects on the heterocluster Coulomb instability. The manifestations of the coupling between electron and nuclear dynamics were explored by molecular dynamics simulations for these heteroclusters coupled to Gaussian laser fields (pulse width tau=25 fs), elucidating outer ionization dynamics, nanoplasma screening effects (being significant for Icharges and masses. Nonuniform heterocluster Coulomb explosion (eta >1) manifests an overrun effect of the light ions relative to the heavy ions, exhibiting the expansion of two spatially separated subclusters, with the light ions forming the outer subcluster at the outer edge of the spatial distribution. Important features of the energetics of heterocluster Coulomb explosion originate from energetic triggering effects of the driving of the light ions by the heavy ions (C(4+) for I=10(17)-10(18) W cm(-2) and C(6+) for I=10(19) W cm(-2)), as well as for kinematic effects. Based on the CVI assumption, scaling laws for the cluster size (radius R(0)) dependence of the energetics of uniform Coulomb explosion of heteroclusters (eta=1) were derived, with the size dependence of the average (E(j,av)) and maximal (E(j,M)) ion energies being E(j,av)=aR(0) (2) and E(j,M)=(5a/3)R(0) (2), as well as for the ion energy distributions P(E(j)) proportional to E(j) (1/2); E(j)1) result in an isotope effect, predicting the enhancement (by 9%-11%) of E(H,av) for Coulomb explosion of (C(4+)H(4) (+))(eta) (eta=3) relative to E(D,av) for Coulomb explosion of (C(4+)D(4) (+))(eta) (eta=1.5), with the isotope effect being determined by the ratio of the kinematic parameters for the pair of Coulomb exploding clusters

  15. Three-body recombination of cold fermionic atoms

    International Nuclear Information System (INIS)

    Suno, H; Esry, B D; Greene, Chris H

    2003-01-01

    Recombination of identical, spin-polarized fermions in cold three-body collisions is investigated. We parametrize the mechanisms for recombination in terms of the 'scattering volume' V p and another length scale r 0 . Model two-body interactions were used within the framework of the adiabatic hyperspherical representation. We examine the recombination rate K 3 as a function of the collision energy E for various values of V p . Not only do we consider the dominant J Π = 1 + case, but also the next-leading order contributions from J Π = 1 - and 3 - . We discuss the behaviour near a two-body resonance and the expected universality of fermionic recombination. Comparisons with boson recombination are considered in detail

  16. Fast Electron Repulsion Integrals for Molecular Coulomb Sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil

    2013-01-01

    A new method is presented for calculating interelectron repulsion integrals for molecular Coulomb Sturmian basis sets. This makes use of an expansion of densities in terms of 2k-Sturmians, and the interelectron repulsion integrals are then calculated by a method based on the theory of hyperspheri......A new method is presented for calculating interelectron repulsion integrals for molecular Coulomb Sturmian basis sets. This makes use of an expansion of densities in terms of 2k-Sturmians, and the interelectron repulsion integrals are then calculated by a method based on the theory...... of hyperspherical harmonics. A rudimentary software library has been implemented and preliminary benchmarks indicate very good performance: On average 40 ns, or approximately 80 clock cycles, per electron repulsion integral. This makes molecular Coulomb Sturmians competitive with Gaussian type orbitals in terms...

  17. Critical opalescence in the pure Coulomb system

    Science.gov (United States)

    Bobrov, V. B.; Trigger, S. A.

    2011-04-01

    Based on the dielectric formalism and quantum field theory methods, the phenomenon of critical opalescence is explained for light scattering in pure matter as a two-component electron-nuclear system with Coulomb interaction. A similar phenomenon is shown to occur in the case of neutron scattering in pure substances as well. The obtained results are valid for quantum case and arbitrary strong Coulomb interaction. Thus, the relations between structure factors derived for the electron-nuclear system are the exact result of the quantum statistical mechanics.

  18. RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Naoz, Smadar; Kocsis, Bence; Loeb, Abraham [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Yunes, Nicolas, E-mail: snaoz@cfa.harvard.edu [Department of Physics, Montana State University, Bozeman, MT 59718 (United States)

    2013-08-20

    We study the secular, hierarchical three-body problem to first-order in a post-Newtonian expansion of general relativity (GR). We expand the first-order post-Newtonian Hamiltonian to leading-order in the ratio of the semi-major axis of the two orbits. In addition to the well-known terms that correspond to the GR precession of the inner and outer orbits, we find a new secular post-Newtonian interaction term that can affect the long-term evolution of the triple. We explore the parameter space for highly inclined and eccentric systems, where the Kozai-Lidov mechanism can produce large-amplitude oscillations in the eccentricities. The standard lore, i.e., that GR effects suppress eccentricity, is only consistent with the parts of phase space where the GR timescales are several orders of magnitude shorter than the secular Newtonian one. In other parts of phase space, however, post-Newtonian corrections combined with the three-body ones can excite eccentricities. In particular, for systems where the GR timescale is comparable to the secular Newtonian timescales, the three-body interactions give rise to a resonant-like eccentricity excitation. Furthermore, for triples with a comparable-mass inner binary, where the eccentric Kozai-Lidov mechanism is suppressed, post-Newtonian corrections can further increase the eccentricity and lead to orbital flips even when the timescale of the former is much longer than the timescale of the secular Kozai-Lidov quadrupole perturbations.

  19. Dirac Coulomb Green's function and its application to relativistic Rayleigh scattering

    International Nuclear Information System (INIS)

    Wong, M.K.F.; Yeh, E.H.Y.

    1985-01-01

    The Dirac Coulomb Green's function is obtained in both coordinate and momentum space. The Green's function in coordinate space is obtained by the eigenfunction expansion method in terms of the wave functions obtained by Wong and Yeh. The result is simpler than those obtained previously by other authors, in that the radial part for each component contains one term only instead of four terms. Our Green's function reduces to the Schroedinger Green's function upon some simple conditions, chiefly by neglecting the spin and replacing lambda by l. The Green's function in momentum space is obtained as the Fourier transform of the coordinate space Green's function, and is expressed in terms of basically three types of functions: (1) F/sub A/ (α; β 1 β 2 β 3 ; γ 1 γ 2 γ 3 ; z 1 z 2 z 3 ), (2) the hypergeometric function, and (3) spherical harmonics. The matrix element for Rayleigh scattering, or elastic Compton scattering, from relativistically bound electrons is then obtained in analytically closed form. The matrix element is written basically in terms of the coordinate space Dirac Coulomb Green's function. The technique used in the evaluation of the matrix element is based on the calculation of the momentum space Dirac Coulomb Green's function. Finally the relativistic result is compared with the nonrelativistic result

  20. Exact solution of the N-dimensional generalized Dirac-Coulomb equation

    International Nuclear Information System (INIS)

    Tutik, R.S.

    1992-01-01

    An exact solution to the bound state problem for the N-dimensional generalized Dirac-Coulomb equation, whose potential contains both the Lorentz-vector and Lorentz-scalar terms of the Coulomb form, is obtained. 24 refs. (author)

  1. Coulomb dissociation of 8B at 254 MeV/u

    International Nuclear Information System (INIS)

    Surowka, G.; Iwasa, N.; Boue, F.

    1999-01-01

    As an alternative method to determine the cross section of 7 Be (p, γ) 8 B, the Coulomb dissociation reaction 8 B → 7 Be + p at E inc = 254 MeV/u was measured. Our preliminary results show the dominant role of the dipole excitation in the Coulomb break-up process. The extracted astrophysical S 17 factor is consistent with the lower-value results both of the direct-capture studies, and the RIKEN Coulomb-dissociation experiment at ∼ 50 MeV/u. (author)

  2. Three-body scattering problem in the fixed center approximation: The case of attraction

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, Alexander E. [National Research Center Kurchatov Institute, Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Gani, Vakhid A. [National Research Center Kurchatov Institute, Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Romanov, Alexander I. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2016-12-15

    We study the scattering of a light particle on a bound pair of heavy particles (e.g., the deuteron) within the fixed center approximation in the case of light-heavy attraction, solving the integral equation for the three-body Green's function both in the coordinate and in the momentum space. The results for the three-body scattering amplitude appear to be ambiguous -they depend on a single real parameter. This parameter may be fixed by a three-body input, e.g., the three-body scattering length. We also solve the integral equation for the three-body Green function in the momentum space, introducing a finite cut-off. We show that all three approaches are equivalent. We also discuss how our approach to the problem matches with the introduction of three-body contact interaction as done by other authors. (orig.)

  3. Calculation of effective Coulomb interaction in PrCoO3

    Science.gov (United States)

    Dutta, Paromita; Lal, Sohan; Pandey, Sudhir K.

    2018-04-01

    It is very essential to know the suitable value of effective coulomb interaction (Ueff) which will be material specific, if one wants to learn about various physical features of strongly correlated systems in an extensive manner. In present work, the constrained density function theory (DFT) method has been used to evaluate the suitable Ueff value between the localized electrons for 3d and 4f orbitals in strongly correlated system. For the evaluation of suitable Ueff, the d/f-linearization energy (Ed/f) is very important and is found to be >= 44 eV above Fermi level. The Ueff is predicted by local density approximation (LDA) functional for both the impurity atoms separately are found to be Co (3d electrons) ˜ 6.3 eV and Pr (4f electrons) ˜ 7.0 eV for Ed/f ˜ 44 eV above Fermi level. The Ueff value for Pr (4f electrons) is higher than Co (3d electrons). This indicates that Pr 4f electrons is more localized than Co 3d electrons in PrCoO3 compound.

  4. Coulomb excitation of radioactive 20, 21Na

    Science.gov (United States)

    Schumaker, M. A.; Cline, D.; Hackman, G.; Pearson, C.; Svensson, C. E.; Wu, C. Y.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Buchmann, L.; Churchman, R.; Cifarelli, F.; Cooper, R. J.; Cross, D. S.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gallant, A. T.; Garrett, P. E.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Lisetskiy, A. F.; Leach, K. G.; Lee, G.; Maharaj, R.; Martin, J.-P.; Moisan, F.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Orce, J. N.; Padilla-Rodal, E.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Sarazin, F.; Scraggs, D. P.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.

    2009-12-01

    The low-energy structures of the radioactive nuclei 20, 21Na have been examined using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. Beams of ˜ 5×106 ions/s were accelerated to 1.7MeV/A and Coulomb excited in a 0.5mg/cm^2 natTi target. Two TIGRESS HPGe clover detectors perpendicular to the beam axis were used for γ -ray detection, while scattered nuclei were observed by the Si detector BAMBINO. For 21Na , Coulomb excitation from the 3/2+ ground state to the first excited 5/2+ state was observed, while for 20Na , Coulomb excitation was observed from the 2+ ground state to the first excited 3+ and 4+ states. For both beams, B ( λ L) values were determined using the 2+ rightarrow 0+ de-excitation in 48Ti as a reference. The resulting B( E2) ↓ value for 21Na is 137±9 e^2fm^4, while the resulting B( λ L) ↓ values for 20Na are 55±6 e^2fm^4 for the 3+ rightarrow 2+ , 35.7±5.7 e^2 fm^4 for the 4+ rightarrow 2+ , and 0.154±0.030 μ_ N^2 for the 4+ rightarrow 3+ transitions. This analysis significantly improves the measurement of the 21Na B( E2) value, and provides the first experimental determination of B( λ L) values for the proton dripline nucleus 20Na .-1

  5. Coulomb-gas scaling, superfluid films, and the XY model

    International Nuclear Information System (INIS)

    Minnhagen, P.; Nylen, M.

    1985-01-01

    Coulomb-gas-scaling ideas are invoked as a link between the superfluid density of two-dimensional 4 He films and the XY model; the Coulomb-gas-scaling function epsilon(X) is extracted from experiments and is compared with Monte Carlo simulations of the XY model. The agreement is found to be excellent

  6. The Yang-Mills vacuum wave functional in Coulomb gauge

    International Nuclear Information System (INIS)

    Campagnari, Davide R.

    2011-01-01

    Yang-Mills theories are the building blocks of today's Standard Model of elementary particle physics. Besides methods based on a discretization of space-time (lattice gauge theory), also analytic methods are feasible, either in the Lagrangian or in the Hamiltonian formulation of the theory. This thesis focuses on the Hamiltonian approach to Yang-Mills theories in Coulomb gauge. The thesis is presented in cumulative form. After an introduction into the general formulation of Yang-Mills theories, the Hamilton operator in Coulomb gauge is derived. Chap. 1 deals with the heat-kernel expansion of the Faddeev-Popov determinant. In Chapters 2 and 3, the high-energy behaviour of the theory is investigated. To this purpose, perturbative methods are applied, and the results are compared with the ones stemming from functional methods in Coulomb and Landau gauge. Chap. 4 is devoted to the variational approach. Variational ansatzes going beyond the Gaussian form for the vacuum wave functional are considered and treated using Dyson-Schwinger techniques. Equations for the higher-order variational kernels are derived and their effects are estimated. Chap. 5 presents an application of the previously obtained propagators, namely the evaluation of the topological susceptibility, which is related to the mass of the η meson. Finally, a short overview of the perturbative treatment of dynamical fermion fields is presented.

  7. Critical opalescence and the true dielectric state in a Coulomb system

    Science.gov (United States)

    Bobrov, V. B.; Trigger, S. A.

    2015-04-01

    To study the critical opalescence effect in a two-component Coulomb system consisting of single-type electrons and nuclei, we consider the limit relations for static structure factors and analyze the singularities of the dielectric permittivity. We show that the critical opalescence effect can be observed not only at the critical point corresponding to the gas-liquid phase transition but also near the true dielectric state with zero static conductivity. With the available experimental data taken into account, we assume that the true dielectric state is the limit state of the liquid-liquid phase transition accompanied by sharp variations in the electrical conduction of the substances. We find that if the thermodynamic parameters correspond to the true dielectric state, then the critical opalescence effect can arise in the case where the squared fluctuation in the total number of electrons and nuclei in a two-component Coulomb system becomes infinite, as this occurs at the critical point corresponding to the gas-liquid phase transition.

  8. On the Emergence of the Coulomb Forces in Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Jan Naudts

    2017-01-01

    Full Text Available A simple transformation of field variables eliminates Coulomb forces from the theory of quantum electrodynamics. This suggests that Coulomb forces may be an emergent phenomenon rather than being fundamental. This possibility is investigated in the context of reducible quantum electrodynamics. It is shown that states exist which bind free photon and free electron fields. The binding energy peaks in the long-wavelength limit. This makes it plausible that Coulomb forces result from the interaction of the electron/positron field with long-wavelength transversely polarized photons.

  9. Critical behavior in graphene with Coulomb interactions.

    Science.gov (United States)

    Wang, Jianhui; Fertig, H A; Murthy, Ganpathy

    2010-05-07

    We demonstrate that, in the presence of Coulomb interactions, electrons in graphene behave like a critical system, supporting power law correlations with interaction-dependent exponents. An asymptotic analysis shows that the origin of this behavior lies in particle-hole scattering, for which the Coulomb interaction induces anomalously close approaches. With increasing interaction strength the relevant power law changes from real to complex, leading to an unusual instability characterized by a complex-valued susceptibility in the thermodynamic limit. Measurable quantities, as well as the connection to classical two-dimensional systems, are discussed.

  10. Collisional scattering for binary Coulomb interactions that are cut off at a distance different than the Debye length

    International Nuclear Information System (INIS)

    Correa, J.R.; Chang Yongbin; Ordonez, C.A.

    2005-01-01

    Collisional scattering is considered within a system of charged particles experiencing binary Coulomb interactions when the scale length for the range of each interaction is not isotropic and is not necessarily equal to the Debye length. For example, one or more dimensions of the system could be smaller than the Debye length. The effect is assessed by evaluating integrals over the impact cross section. Cutoffs on both the impact parameter and the Coulomb interaction potential are employed, and no assumption is made regarding the value of the Coulomb logarithm. Two expressions are found that have a dependence on the cutoff lengths, with one of the expressions being associated with the Coulomb logarithm. Collisional scattering within an electrostatic ion trap is considered by way of example

  11. Coulomb fission and transfer fission at heavy ion collisions

    International Nuclear Information System (INIS)

    Himmele, G.

    1981-01-01

    In the present thesis the first direct evidence of nuclear fission after inelastic scattering of heavy ions (sup(183,184)W, 152 Sm → 238 U; 184 W → 232 Th; 184 W, 232 Th → 248 Cm) is reported. Experiments which were performed at the UNILAC of the Gesellschaft fuer Schwerionenforschung in Darmstadt show the observed heavy ion induced fission possesses significant properties of the Coulomb fission. The observed dependence of the fission probability for inelastic scattering on the projectile charge proves that the nuclear fission is mediated by the electromagnetic interaction between heavy ions. This result suggests moreover a multiple Coulomb-excitation preceding the fission. Model calculations give a first indication, that the Coulomb fission proceeds mainly from the higher β phonons. In the irradiation with 184 W the fission probability of 232 Th is for all incident energies about 40% smaller that at 238 U. The target dependence of the Coulomb fission however doesn't allow, to give quantitative statements about the position and B(E2)-values of higher lying β phonons. (orig./HSI) [de

  12. Many-body effects in the gain spectra of highly excited quantum-dot lasers

    International Nuclear Information System (INIS)

    Schneider, H. C.; Chow, W. W.; Koch, S. W.

    2001-01-01

    Optical gain spectra are computed for quantum dots under high excitation conditions, where there is a non-negligible two-dimensional carrier density surrounding the dots. Using a screened Hartree-Fock theory to describe the influence of the Coulomb interaction, we find different self-energy shifts for the dot and quantum-well transitions. Furthermore, in contrast to the result for quantum-well and bulk systems, the peak gain at the quantum-dot transition computed including Coulomb effects is reduced from its free carrier value

  13. An infinite family of superintegrable deformations of the Coulomb potential

    International Nuclear Information System (INIS)

    Post, Sarah; Winternitz, Pavel

    2010-01-01

    We introduce a new family of Hamiltonians with a deformed Kepler-Coulomb potential dependent on an indexing parameter k. We show that this family is superintegrable for all rational k and compute the classical trajectories and quantum wavefunctions. We show that this system is related, via coupling constant metamorphosis, to a family of superintegrable deformations of the harmonic oscillator given by Tremblay, Turbiner and Winternitz. In doing so, we prove that all Hamiltonians with an oscillator term are related by coupling constant metamorphosis to systems with a Kepler-Coulomb term, both on Euclidean space. We also look at the effect of the transformation on the integrals of the motion, the classical trajectories and the wavefunctions, and give the transformed integrals explicitly for the classical system. (fast track communication)

  14. An infinite family of superintegrable deformations of the Coulomb potential

    Energy Technology Data Exchange (ETDEWEB)

    Post, Sarah [Centre de recherches mathematiques, CP 6128 succ. Centre-Ville, Montreal, QC H3C 3J7 (Canada); Winternitz, Pavel, E-mail: post@CRM.UMontreal.C, E-mail: wintern@CRM.UMontreal.C [Centre de recherches mathematiques and Departement de mathematiques et de statistique, CP 6128 succ. Centre-Ville, Montreal, QC H3C 3J7 (Canada)

    2010-06-04

    We introduce a new family of Hamiltonians with a deformed Kepler-Coulomb potential dependent on an indexing parameter k. We show that this family is superintegrable for all rational k and compute the classical trajectories and quantum wavefunctions. We show that this system is related, via coupling constant metamorphosis, to a family of superintegrable deformations of the harmonic oscillator given by Tremblay, Turbiner and Winternitz. In doing so, we prove that all Hamiltonians with an oscillator term are related by coupling constant metamorphosis to systems with a Kepler-Coulomb term, both on Euclidean space. We also look at the effect of the transformation on the integrals of the motion, the classical trajectories and the wavefunctions, and give the transformed integrals explicitly for the classical system. (fast track communication)

  15. Third-order non-Coulomb correction to the S-wave quarkonium wave functions at the origin

    International Nuclear Information System (INIS)

    Beneke, M.; Kiyo, Y.; Schuller, K.

    2008-01-01

    We compute the third-order correction to the S-wave quarkonium wave functions |ψ n (0)| 2 at the origin from non-Coulomb potentials in the effective non-relativistic Lagrangian. Together with previous results on the Coulomb correction and the ultrasoft correction computed in a companion paper, this completes the third-order calculation up to a few unknown matching coefficients. Numerical estimates of the new correction for bottomonium and toponium are given

  16. Effect of on-chip filter on Coulomb blockade thermometer

    International Nuclear Information System (INIS)

    Roschier, L; Penttilä, J S; Gunnarsson, D; Prunnila, M; Meschke, M; Savin, A

    2012-01-01

    Coulomb Blockade Thermometer (CBT) is a primary thermometer based on electric conductance of normal tunnel junction arrays. One limitation for CBT use at the lowest temperatures has been due to environmental noise heating. To improve on this limitation, we have done measurements on CBT sensors fabricated with different on-chip filtering structures in a dilution refrigerator with a base temperature of 10 mK. The CBT sensors were produced with a wafer scale tunnel junction process. We present how the different on-chip filtering schemes affect the limiting saturation temperatures and show that CBT sensors with proper on-chip filtering work at temperatures below 20 mK and are tolerant to noisy environment.

  17. Controlling the reproducibility of Coulomb blockade phenomena for gold nanoparticles on an organic monolayer/silicon system.

    Science.gov (United States)

    Caillard, L; Sattayaporn, S; Lamic-Humblot, A-F; Casale, S; Campbell, P; Chabal, Y J; Pluchery, O

    2015-02-13

    Two types of highly ordered organic layers were prepared on silicon modified with an amine termination for binding gold nanoparticles (AuNPs). These two grafted organic monolayers (GOMs), consisting of alkyl chains with seven or 11 carbon atoms, were grafted on oxide-free Si(111) surfaces as tunnel barriers between the silicon electrode and the AuNPs. Three kinds of colloidal AuNPs were prepared by reducing HAuCl4 with three different reactants: citrate (Turkevich synthesis, diameter ∼16 nm), ascorbic acid (diameter ∼9 nm), or NaBH4 (Natan synthesis, diameter ∼7 nm). Scanning tunnel spectroscopy (STS) was performed in a UHV STM at 40 K, and Coulomb blockade behaviour was observed. The reproducibility of the Coulomb behavior was analysed as a function of several chemical and physical parameters: size, crystallinity of the AuNPs, influence of surrounding surfactant molecules, and quality of the GOM/Si interface (degree of oxidation after the full processing). Samples were characterized with scanning tunneling microscope, STS, atomic force microscope, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy (XPS), and high resolution transmission electronic microscope. We show that the reproducibility in observing Coulomb behavior can be as high as ∼80% with the Natan synthesis of AuNPs and GOMs with short alkyl chains.

  18. Three-body forces for electrons by the S-matrix method

    International Nuclear Information System (INIS)

    Margaritelli, R.

    1989-01-01

    A electromagnetic three-body potential between eletrons is derived by the S-matrix method. This potential can be compared up to a certain point with other electromagnetic potentials (obtained by other methods) encountered in the literature. However, since the potential derived here is far more complete than others, this turns direct comparison with the potentials found in the literature somewhat difficult. These calculations allow a better understanding of the S-matrix method as applied to problems which involve the calculations of three-body nuclear forces (these calculations are performed in order to understand the 3 He form factor). Furthermore, these results enable us to decide between two discrepant works which derive the two-pion exchange three-body potential, both by the S-matrix method. (author) [pt

  19. Testing the Predictive Power of Coulomb Stress on Aftershock Sequences

    Science.gov (United States)

    Woessner, J.; Lombardi, A.; Werner, M. J.; Marzocchi, W.

    2009-12-01

    Empirical and statistical models of clustered seismicity are usually strongly stochastic and perceived to be uninformative in their forecasts, since only marginal distributions are used, such as the Omori-Utsu and Gutenberg-Richter laws. In contrast, so-called physics-based aftershock models, based on seismic rate changes calculated from Coulomb stress changes and rate-and-state friction, make more specific predictions: anisotropic stress shadows and multiplicative rate changes. We test the predictive power of models based on Coulomb stress changes against statistical models, including the popular Short Term Earthquake Probabilities and Epidemic-Type Aftershock Sequences models: We score and compare retrospective forecasts on the aftershock sequences of the 1992 Landers, USA, the 1997 Colfiorito, Italy, and the 2008 Selfoss, Iceland, earthquakes. To quantify predictability, we use likelihood-based metrics that test the consistency of the forecasts with the data, including modified and existing tests used in prospective forecast experiments within the Collaboratory for the Study of Earthquake Predictability (CSEP). Our results indicate that a statistical model performs best. Moreover, two Coulomb model classes seem unable to compete: Models based on deterministic Coulomb stress changes calculated from a given fault-slip model, and those based on fixed receiver faults. One model of Coulomb stress changes does perform well and sometimes outperforms the statistical models, but its predictive information is diluted, because of uncertainties included in the fault-slip model. Our results suggest that models based on Coulomb stress changes need to incorporate stochastic features that represent model and data uncertainty.

  20. Single heavy flavour baryons using Coulomb plus a power law interquark potential

    International Nuclear Information System (INIS)

    Majethiya, A.; Patel, B.; Vinodkumar, P.C.

    2008-01-01

    Properties of single heavy flavor baryons in a non-relativistic potential model with colour Coulomb plus a power law confinement potential have been studied using a simple variational method. The ground-state masses of single heavy baryons and the mass difference between the J P =3/2 + and J P =1/2 + states are computed using a spin-dependent two-body potential. Using the spin-flavour structure of the constituting quarks and by defining an effective confined mass of the constituent quarks within the baryons, the magnetic moments are computed. The masses and magnetic moments of the single heavy baryons are found to be in accordance with the existing experimental values and with other theoretical predictions. It is found that an additional attractive interaction of the order of -200 MeV is required for the antisymmetric states of Λ Q (Q element of c,b). It is also found that the spin-hyperfine interaction parameters play a decisive role in hadron spectroscopy. (orig.)

  1. Effective collision frequency method in the theory of the conductivity of Coulomb systems. II. Strong interion interaction and plasma structure

    International Nuclear Information System (INIS)

    Bobrov, V.B.; Triger, S.A.

    1994-01-01

    The effective collision frequency method developed earlier by the authors for Coulomb systems characterized by strong interion interaction is developed further. An explicit expression is obtained for the effective electron collision frequency on the basis of the exact diagram representation obtained in Part I and the use of the model of a one-component plasma as initial approximation. The description of plasma structure in the corresponding approximation is considered. 25 refs

  2. Room-temperature Coulomb staircase in semiconducting InP nanowires modulated with light illumination.

    Science.gov (United States)

    Yamada, Toshishige; Yamada, Hidenori; Lohn, Andrew J; Kobayashi, Nobuhiko P

    2011-02-04

    Detailed electron transport analysis is performed for an ensemble of conical indium phosphide nanowires bridging two hydrogenated n(+)-silicon electrodes. The current-voltage (I-V) characteristics exhibit a Coulomb staircase in the dark with a period of ∼ 1 V at room temperature. The staircase is found to disappear under light illumination. This observation can be explained by assuming the presence of a tiny Coulomb island, and its existence is possible due to the large surface depletion region created within contributing nanowires. Electrons tunnel in and out of the Coulomb island, resulting in the Coulomb staircase I-V. Applying light illumination raises the electron quasi-Fermi level and the tunneling barriers are buried, causing the Coulomb staircase to disappear.

  3. The singularity structure of scale-invariant rank-2 Coulomb branches

    Science.gov (United States)

    Argyres, Philip C.; Long, Cody; Martone, Mario

    2018-05-01

    We compute the spectrum of scaling dimensions of Coulomb branch operators in 4d rank-2 N=2 superconformal field theories. Only a finite rational set of scaling dimensions is allowed. It is determined by using information about the global topology of the locus of metric singularities on the Coulomb branch, the special Kähler geometry near those singularities, and electric-magnetic duality monodromies along orbits of the U(1) R symmetry. A set of novel topological and geometric results are developed which promise to be useful for the study and classification of Coulomb branch geometries at all ranks.

  4. Energy Distributions from Three-Body Decaying Many-Body Resonances

    International Nuclear Information System (INIS)

    Alvarez-Rodriguez, R.; Jensen, A. S.; Fedorov, D. V.; Fynbo, H. O. U.; Garrido, E.

    2007-01-01

    We compute energy distributions of three particles emerging from decaying many-body resonances. We reproduce the measured energy distributions from decays of two archetypal states chosen as the lowest 0 + and 1 + resonances in 12 C populated in β decays. These states are dominated by sequential, through the 8 Be ground state, and direct decays, respectively. These decay mechanisms are reflected in the ''dynamic'' evolution from small, cluster or shell-model states, to large distances, where the coordinate or momentum space continuum wave functions are accurately computed

  5. Grain dynamics and inter-grain coupling in dusty plasma Coulomb crystals

    International Nuclear Information System (INIS)

    Rahman, H.U.; Mohideen, U.; Smith, M.A.; Rosenberg, M.; Mendis, D.A.

    2001-01-01

    We review our results on the lattice structure and the lattice dynamics of dusty plasma Coulomb crystals formed in rectangular conductive grooves. The basic structure appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. Inter-grain coupling as a function of plasma temperature and density were investigated by measurement of these parameters. A simple phenomenological model wherein the inter-grain spacing along the column results from an attractive electric field induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal. In addition, here we present some preliminary measurements of the vibration and rotation dynamics of the individual grains in the Coulomb crystal. The thermal energy of the dust grain thus calculated is much less than the inter-grain Coulomb potential energy as required for the formation of stable structures. Also the observed rotational frequency is consistent with the assumption of thermal equilibrium between the dust grains and the neutral gas. (orig.)

  6. Cycling capacity recovery effect: A coulombic efficiency and post-mortem study

    Science.gov (United States)

    Wilhelm, Jörn; Seidlmayer, Stefan; Keil, Peter; Schuster, Jörg; Kriele, Armin; Gilles, Ralph; Jossen, Andreas

    2017-10-01

    The analysis of lithium-ion battery aging relies on correct differentiation between irreversible and reversible capacity changes. Anode overhang regions have been observed to influence Coulombic Efficiency (CE) measurements through lithium diffusion into and out of these areas, complicating precise capacity determination. This work presents an analysis of the extent of graphite anode overhang lithiation after calendar storage by means of local X-ray diffraction (XRD), CE measurements, and color change analysis. We found LiC12 lithiation of the anode overhang area after 20 month storage at 40 °C at high state of charge (SoC) and partial lithiation (LiC18) at medium SoC storage at 40 °C and 25 °C. Graphite color changes in the overhang areas are observed and consistent with the state of lithiation measured by XRD. Coulombic efficiencies greater than unity and increasing capacity during 1200 h of cycling are detected for high SoC storage cells. The capacity difference between high and low storage SoC batteries decreases by up to 40 mAh (3.6% of nominal capacity) after cycling compared to tests directly after storage. Consequently, the size of the anode overhang areas as well as the battery storage temperature and duration need to be considered in CE analysis and state of health assessment.

  7. A comparison of Coulomb and pseudo-Coulomb friction implementations: Application to the table contact phase of gymnastics vaulting.

    Science.gov (United States)

    Jackson, M I; Hiley, M J; Yeadon, M R

    2011-10-13

    In the table contact phase of gymnastics vaulting both dynamic and static friction act. The purpose of this study was to develop a method of simulating Coulomb friction that incorporated both dynamic and static phases and to compare the results with those obtained using a pseudo-Coulomb implementation of friction when applied to the table contact phase of gymnastics vaulting. Kinematic data were obtained from an elite level gymnast performing handspring straight somersault vaults using a Vicon optoelectronic motion capture system. An angle-driven computer model of vaulting that simulated the interaction between a seven segment gymnast and a single segment vaulting table during the table contact phase of the vault was developed. Both dynamic and static friction were incorporated within the model by switching between two implementations of the tangential frictional force. Two vaulting trials were used to determine the model parameters using a genetic algorithm to match simulations to recorded performances. A third independent trial was used to evaluate the model and close agreement was found between the simulation and the recorded performance with an overall difference of 13.5%. The two-state simulation model was found to be capable of replicating performance at take-off and also of replicating key contact phase features such as the normal and tangential motion of the hands. The results of the two-state model were compared to those using a pseudo-Coulomb friction implementation within the simulation model. The two-state model achieved similar overall results to those of the pseudo-Coulomb model but obtained solutions more rapidly. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Coulomb Sturmians as a basis for molecular calculations

    DEFF Research Database (Denmark)

    Avery, John Scales; Avery, James Emil

    2012-01-01

    mathematical difficulty of evaluating interelectron repulsion integrals when exponential-type orbitals (ETOs) are used. In this paper we show that when many-centre Coulomb Sturmian ETOs are used as a basis, the most important integrals can be evaluated rapidly and accurately by means of the theory...... of hyperspherical harmonics. For the remaining many-centre integrals, Coulomb Sturmians are shown to have advantages over other ETOs. Pilot calculations are performed on N-electron molecules using the Generalized Sturmian Method....

  9. Regularized friction and continuation: Comparison with Coulomb's law

    OpenAIRE

    Vigué, Pierre; Vergez, Christophe; Karkar, Sami; Cochelin, Bruno

    2016-01-01

    International audience; Periodic solutions of systems with friction are difficult to investigate because of the irregular nature of friction laws. This paper examines periodic solutions and most notably stick-slip, on a simple one-degre-of-freedom system (mass, spring, damper, belt), with Coulomb's friction law, and with a regularized friction law (i.e. the friction coefficient becomes a function of relative speed, with a stiffness parameter). With Coulomb's law, the stick-slip solution is co...

  10. Coulomb interference and bending slope in hadron-hadron scattering

    International Nuclear Information System (INIS)

    Pereira, Flavio I.; Ferreira, Erasmo

    1994-01-01

    With the purpose of testing the results of QCD calculations on the structure of the forward elastic scattering cross-section, we analyse the coulombic-nuclear interference occurring at small values of the momentum transfer. We emphasize the influence of the hadronic structures on the determination of the Coulomb phase and consequently on the t-dependence of the strong interaction slope parameter. (author)

  11. Conductance Through a Redox System in the Coulomb Blockade Regime: Many-Particle Effects and Influence of Electronic Correlations

    OpenAIRE

    Tornow, Sabine; Zwicknagl, Gertrud

    2009-01-01

    We investigate the transport characteristics of a redox system weakly coupled to leads in the Coulomb blockade regime. The redox system comprises a donor and acceptor separated by an insulating bridge in a solution. It is modeled by a two-site extended Hubbard model which includes on-site and inter-site Coulomb interactions and the coupling to a bosonic bath. The current voltage characteristics is calculated at high temperatures using a rate equation approach. For high voltages exceeding the ...

  12. Two-dimensional QCD in the Coulomb gauge

    International Nuclear Information System (INIS)

    Kalashnikova, Yu.S.; Nefed'ev, A.V.

    2002-01-01

    Various aspects of the 't Hooft model for two-dimensional QCD in the limit of infinite number of colours in the Coulomb gauge are discussed. The properties of mesonic excitations are studied, with special emphasis on the pion. Attention is paid to the dual role of the pion. which, while a genuine qq-bar state, is a Goldstone boson of two-dimensional QCD as well. In particular, the validity of the soft-pion theorems is demonstrated. It is shown that the Coulomb gauge is the most suitable choice for the study of hadronic observables involving pions [ru

  13. Coulombic Fluids Bulk and Interfaces

    CERN Document Server

    Freyland, Werner

    2011-01-01

    Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.

  14. A set-valued force law for spatial Coulomb-Contensou friction

    NARCIS (Netherlands)

    Leine, R.I.; Glocker, C.

    2003-01-01

    The aim of this paper is to develop a set-valued contact law for combined spatial Coulomb-Contensou friction, taking into account a normal friction torque (drilling friction) and spin. The set-valued Coulomb-Contensou friction law is derived from a non-smooth velocity pseudo potential. A

  15. Topics in three body problems

    International Nuclear Information System (INIS)

    Amado, R.D.

    1975-01-01

    An overview of the formal theory of the three-body problem as it has developed in the past twelve years is given. The formal structure of the theory, some of the techniques that have developed for handling the theory, and some results on how general quantum mechanical principles structure the results, are presented. The discussion is held entirely in the context of non-relativistic quantum mechanics with short-range forces. In this presentation the main outline of the theory is stressed, often at the expense of mathematical rigour [pt

  16. Body Composition Changes after Weight-Loss Interventions among Obese Females: A Comparison of Three Protocols

    Directory of Open Access Journals (Sweden)

    Nayera E. Hassan

    2014-12-01

    Full Text Available AIM: To evaluate body composition changes after use of three different types of obesity management protocols: dietary measures and physical activity; acupuncture or laser acupuncture with healthy diet; aiming at achieving stable weight loss among obese Egyptian females. METHODS:  A randomized longitudinal prospective study included 76 obese adult females; aged 26 up to 55 years. Anthropometric, body composition, ultrasonographic and biochemical assessments were done. RESULTS: The three types of obesity management protocols showed significant improvement in body composition (decrease in fat% and increases in FFM and TBW and visceral fat by US. However, nutritional intervention showed highly significant improvement in the skin fold thickness at triceps and biceps sites and peripheral adiposity index.  Acupuncture intervention showed highly significant improvement in fasting blood glucose (decreased and lipid profile (decreased triglycerides, total cholesterol and LDL, and increased HDL. Laser intervention showed highly significant improvement in all the skin fold thickness and some parameters of lipid profile (decreased total cholesterol and LDL. CONCLUSIONS: The three obesity management protocols have significant effect on body composition, but acupuncture has the best effect in improving the lipid profile and fasting blood sugar. In addition, Laser intervention was recommended to improve skin fold thickness and subcutaneous fat.

  17. Sub-Coulomb heavy ion neutron transfer reactions and neutron orbit sizes

    International Nuclear Information System (INIS)

    Phillips, W.R.

    1976-01-01

    Direct transfer reactions below the Coulomb barrier offer the best means of determining neutron densities near the nuclear surface. This paper describes how heavy ion sub-Coulomb transfer can be used to determine the rms radii of neutron orbits in certain nuclei. The theoretical background is outlined and problems associated with the comparison of experiment and theory are discussed. Experiments performed to calibrate sub-Coulomb heavy ion transfer reactions are presented, and some comments are made on the relative roles of light and heavy ion reactions. Preliminary values for the rms radii of neutron orbits and neutron excesses extracted from recent experiments are given, and some remarks are made concerning the implications of these results for the triton wave function and for the Coulomb energy difference anomaly. (author)

  18. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries

    International Nuclear Information System (INIS)

    Ng, Kong Soon; Moo, Chin-Sien; Chen, Yi-Ping; Hsieh, Yao-Ching

    2009-01-01

    The coulomb counting method is expedient for state-of-charge (SOC) estimation of lithium-ion batteries with high charging and discharging efficiencies. The charging and discharging characteristics are investigated and reveal that the coulomb counting method is convenient and accurate for estimating the SOC of lithium-ion batteries. A smart estimation method based on coulomb counting is proposed to improve the estimation accuracy. The corrections are made by considering the charging and operating efficiencies. Furthermore, the state-of-health (SOH) is evaluated by the maximum releasable capacity. Through the experiments that emulate practical operations, the SOC estimation method is verified to demonstrate the effectiveness and accuracy.

  19. Space charge-limited emission studies using Coulomb's Law

    OpenAIRE

    Carr, Christopher G.

    2004-01-01

    Approved for Public Release; Distribution is Unlimited Child and Langmuir introduced a solution to space charge limited emission in an infinite area planar diode. The solution follows from starting with Poisson's equation, and requires solving a non-linear differential equation. This approach can also be applied to cylindrical and spherical geometries, but only for one-dimensional cases. By approaching the problem from Coulomb's law and applying the effect of an assumed charge distribution...

  20. Bose-Einstein correlations of three charged pions in hadronic $Z^{0}$ decays

    CERN Document Server

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bobinski, M; Bock, P; Böhme, J; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; de Roeck, A; Desch, Klaus; Dienes, B; Dixit, M S; Doucet, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Evans, H G; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Höcker, Andreas; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schöning, A; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Van Kooten, R; Vannerem, P; Verzocchi, M; Vikas, P; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1998-01-01

    Bose-Einstein Correlations (BEC) of three identical charged pions were studied in 4 x 10^6 hadronic Z^0 decays recorded with the OPAL detector at LEP. The genuine three-pion correlations, corrected for the Coulomb effect, were separated from the known two-pion correlations by a new subtraction procedure. A significant genuine three-pion BEC enhancement near threshold was observed having an emitter source radius of r_3 = 0.580 +/- 0.004 (stat.) +/- 0.029 (syst.) fm and a strength of \\lambda_3 = 0.504 +/- 0.010 (stat.) +/- 0.041 (syst.). The Coulomb correction was found to increase the \\lambda_3 value by 0.707 +/- 0.014 (stat.) +/- 0.078 (syst.) when one takes into account the three-pion sample purity. A relation between the two-pion and the three-pion source parameters is discussed.