WorldWideScience

Sample records for thorium-uranium dioxide fuel

  1. Mass spectrometric determination of burnup of thorium-uranium dioxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Green, L.W.; Knight, C.H.; Longhurst, T.H.; Cassidy, R.M

    1984-07-01

    The isotopes {sup 148}Nd and {sup 145+146}Nd were investigated for use as fission monitors. A two-column anion-exchange procedure was used to separate these and U and Th from the fuel matrix, and the purified fractions were analyzed by thermal ionization mass spectrometry. Relative standard deviations of Nd, U, and Th determinations by isotope dilution were {approx}0.7%. A computer-generated simulation of the irradiation was used to estimate the effective fission yields for {sup 148}Nd and {sup 145+146}Nd. Burnup results with {sup 145+146}Nd as the fission monitor showed excellent agreement with results obtained by a high-performance liquid chromatographic method that used {sup 139}La as the fission monitor; the average difference between the two methods was 0.02%. The {sup 148}Nd results were biased high by up to 4%; this was attributed to a {sup 147}Nd neutron capture effect. Results obtained with the initial heavy element content estimated from the weight and initial composition of the fuel, instead of from analyses for the actinides, showed excellent agreement (average difference = 0.2 %) with the conventional method. (author)

  2. Mass spectrometric determination of burnup of thorium-uranium dioxide fuel

    International Nuclear Information System (INIS)

    Green, L.W.; Knight, C.H.; Longhurst, T.H.; Cassidy, R.M.

    1984-01-01

    The isotopes 148 Nd and 145+146 Nd were investigated for use as fission monitors. A two-column anion-exchange procedure was used to separate these and U and Th from the fuel matrix, and the purified fractions were analyzed by thermal ionization mass spectrometry. Relative standard deviations of Nd, U, and Th determinations by isotope dilution were ∼0.7%. A computer-generated simulation of the irradiation was used to estimate the effective fission yields for 148 Nd and 145+146 Nd. Burnup results with 145+146 Nd as the fission monitor showed excellent agreement with results obtained by a high-performance liquid chromatographic method that used 139 La as the fission monitor; the average difference between the two methods was 0.02%. The 148 Nd results were biased high by up to 4%; this was attributed to a 147 Nd neutron capture effect. Results obtained with the initial heavy element content estimated from the weight and initial composition of the fuel, instead of from analyses for the actinides, showed excellent agreement (average difference = 0.2 %) with the conventional method. (author)

  3. Separation and mass spectrometry of nanogram quantities of uranium and thorium from thorium-uranium dioxide fuels

    International Nuclear Information System (INIS)

    Green, L.W.; Elliot, N.L.; Longhurst, T.H.

    1983-01-01

    A microchemical procedure was developed for the separation and isotopic analysis of U and Th from irradiated (Th,U)O 2 fuel. The separation procedure consisted of two stages; in the first a tributyl phosphate impregnated resin bead was equilibrated with the dissolved fuel in 0.08 M HF/6 M HNO 3 solution. The bead sorbed approximately 1.7 μg of U and 4.8μg of Th and provided good separation of these from the fission products. In the second stage, the U and Th were back-extracted into 0.025 M HF/8 M HNO 3 solution, which contained a small anion-exchange membrane disk. The disk adsorbed approximately 14 ng of U and 45 ng of Th, and subsequently was transferred to the ionizing filament of a thermal-ionization mass spectrometer and covered with a starch deposit. Sensitivities were sufficiently high for sequential analysis of these quantities of Th and U from a single disk. Isotopic data obtained for a combined U and Th standard showed excellent agreement with certified values: overall bias and precision were < 0.03% and 0.2% relative standard deviation, respectively, for both elements. The applicability of the procedure to uranium fuels was also demonstrated. 6 figures, 2 tables

  4. Separation and mass spectrometry of nanogram quantities of uranium and thorium from thorium-uranium dioxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Green, L.W.; Elliot, N.L.; Longhurst, T.H

    1983-07-01

    A convenient and sensitive microchemical procedure was developed for the separation and isotopic analysis of U and Th from irradiated (Th,U)O{sub 2} fuel. The separation procedure consisted of two stages; in the first a tributyl phosphate impregnated resin bead was equilibrated with the dissolved fuel in 0.08 M HF/6 M HNO{sub 3} solution. The bead sorbed approximately 1.7 {mu}g of U and 4.8 {mu}g of Th and provided good separation of these from the fission products. In the second stage, the U and Th were back-extracted into 0.025 M HF/8 M HNO{sub 3} solution, which contained a small anion-exchange membrane disk. The disk adsorbed approximately 14 ng of U and 45 ng of Th, and subsequently was transferred to the ionizing filament of a thermal-ionization mass spectrometer and covered with a starch deposit. Sensitivities were sufficiently high for sequential analysis of these quantities of Th and U from a single disk. Isotopic data obtained for a combined U and Th standard showed excellent agreement with certified values: overall bias and precision were < -0.03% and 0.2% relative standard deviation, respectively, for both elements. The applicability of the procedure to uranium fuels was also demonstrated. (author)

  5. Economic analysis of thorium-uranium fuel cycle introduced into PWRs

    International Nuclear Information System (INIS)

    Fan Li; Sun Qian

    2014-01-01

    Using PWR of Daya Bay Unit l as the reference reactor, a validated computer code was used to calculate the fuel cycle costs for uranium fuel cycle and thorium-uranium fuel cycle over the following 20 0perational years respectively. The calculation results show that the thorium-uranium fuel cycle is economically competitive with the uranium fuel cycle when reprocessing mode is adopted. For thorium-uranium fuel cycle, if the price of natural uranium is higher than 120 $ /pound U_3O_8, the fuel cycle cost of the direct disposal mode is greater than that of the reprocessing mode. Therefore, when the uranium price may maintain a high level long-termly, adopting reprocessing mode will benefit the economic advantage for the thorium-uranium fuel cycle introduced into PWRs. (authors)

  6. Preliminary concepts: coordinated safeguards for materials management in a thorium--uranium fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Barnes, J.W.; Dayem, H.A.; Dietz, R.J.; Shipley, J.P.

    1978-10-01

    This report addresses preliminary concepts for coordinated safeguards materials management in a typical generic thorium--uranium-fueled light-water reactor (LWR) fuels reprocessing plant. The reference facility is designed to recover thorium and uranium from first-generation (denatured 235 U) startup fuels, first-recycle and equilibrium (denatured 233 U) thorium--uranium LWR fuels, and to recover the plutonium generated in the 238 U denaturant as well. 12 figures, 3 tables

  7. Critical review of analytical techniques for safeguarding the thorium-uranium fuel cycle

    International Nuclear Information System (INIS)

    Hakkila, E.A.

    1978-10-01

    Conventional analytical methods applicable to the determination of thorium, uranium, and plutonium in feed, product, and waste streams from reprocessing thorium-based nuclear reactor fuels are reviewed. Separations methods of interest for these analyses are discussed. Recommendations concerning the applicability of various techniques to reprocessing samples are included. 15 tables, 218 references

  8. Method to evaluate covariance data for the thorium-uranium fuel cycle

    International Nuclear Information System (INIS)

    Kawano, T.; Chadwick, M.B.

    2003-01-01

    This power point presentation gives an overview about the evaluation strategy for the experimental data for the thorium-uranium fuel cycle. Uncertainties, error propagation and calculation methods are outlined. Covariance evaluation tools and computer codes have been developed and results are presented

  9. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    International Nuclear Information System (INIS)

    Bi, G.; Liu, C.; Si, S.

    2012-01-01

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade 233 U-Thorium (U 3 ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade 233 U extracted from burnt PuThOX fuel was used to fabrication of U 3 ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U 3 ThOX mixed core, the well designed U 3 ThOX FAs with 1.94 w/o fissile uranium (mainly 233 U) were located on the periphery of core as a blanket region. U 3 ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U 3 ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U 3 ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U 3 ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U 3 ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared

  10. Radiotoxicity study of a boiling water reactor core design based on a thorium-uranium fuel concept

    International Nuclear Information System (INIS)

    Nunez C, A.; Espinosa P, G.

    2007-01-01

    Full text: The innovative design of a Boiling Water Reactor (BWR) equilibrium core using the thorium-uranium (blanket-seed) concept in the same integrated fuel assembly is presented in this paper. The lattice design uses the thorium conversion capability to 233 U in a BWR spectrum. A core design was developed to achieve an equilibrium cycle of one effective full power year in a standard BWR. A comparison of the toxicity of the spent fuel showed that toxicity is lower in the thorium cycle than other commercial fuels as UO 2 and MOX (uranium and plutonium) in case of the one-through cycle for LWR. (Author)

  11. Natural Transmutation of Actinides via the Fission Reaction in the Closed Thorium-Uranium-Plutonium Fuel Cycle

    Science.gov (United States)

    Marshalkin, V. Ye.; Povyshev, V. M.

    2017-12-01

    It is shown for a closed thorium-uranium-plutonium fuel cycle that, upon processing of one metric ton of irradiated fuel after each four-year campaign, the radioactive wastes contain 54 kg of fission products, 0.8 kg of thorium, 0.10 kg of uranium isotopes, 0.005 kg of plutonium isotopes, 0.002 kg of neptunium, and "trace" amounts of americium and curium isotopes. This qualitatively simplifies the handling of high-level wastes in nuclear power engineering.

  12. Design of an equilibrium nucleus of a BWR type reactor based in a Thorium-Uranium fuel

    International Nuclear Information System (INIS)

    Francois, J.L.; Nunez C, A.

    2003-01-01

    In this work the design of the reactor nucleus of boiling water using fuel of thorium-uranium is presented. Starting from an integral concept based in a type cover-seed assemble is carried out the design of an equilibrium reload for the nucleus of a reactor like that of the Laguna Verde Central and its are analyzed some of the main design variables like the cycle length, the reload fraction, the burnt fuel, the vacuum distribution, the generation of lineal heat, the margin of shutdown, as well as a first estimation of the fuel cost. The results show that it is feasible to obtain an equilibrium reload, comparable to those that are carried out in the Laguna Verde reactors, with a good behavior of those analyzed variables. The cost of the equilibrium reload designed with the thorium-uranium fuel is approximately 2% high that the uranium reload producing the same energy. It is concluded that it is convenient to include burnable poisons, type gadolinium, in the fuel with the end of improving the reload design, the fuel costs and the margin of shutdown. (Author)

  13. Comparison of the Environment, Health, And Safety Characteristics of Advanced Thorium- Uranium and Uranium-Plutonium Fuel Cycles

    Science.gov (United States)

    Ault, Timothy M.

    The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low

  14. Research of natural resources saving by design studies of Pressurized Light Water Reactors and High Conversion PWR cores with mixed oxide fuels composed of thorium/uranium/plutonium

    International Nuclear Information System (INIS)

    Vallet, V.

    2012-01-01

    Within the framework of innovative neutronic conception of Pressurized Light Water Reactors (PWR) of 3. generation, saving of natural resources is of paramount importance for sustainable nuclear energy production. This study consists in the one hand to design high Conversion Reactors exploiting mixed oxide fuels composed of thorium/uranium/plutonium, and in the other hand, to elaborate multi-recycling strategies of both plutonium and 233 U, in order to maximize natural resources economy. This study has two main objectives: first the design of High Conversion PWR (HCPWR) with mixed oxide fuels composed of thorium/uranium/plutonium, and secondly the setting up of multi-recycling strategies of both plutonium and 233 U, to better natural resources economy. The approach took place in four stages. Two ways of introducing thorium into PWR have been identified: the first is with low moderator to fuel volume ratios (MR) and ThPuO 2 fuel, and the second is with standard or high MR and ThUO 2 fuel. The first way led to the design of under-moderated HCPWR following the criteria of high 233 U production and low plutonium consumption. This second step came up with two specific concepts, from which multi-recycling strategies have been elaborated. The exclusive production and recycling of 233 U inside HCPWR limits the annual economy of natural uranium to approximately 30%. It was brought to light that the strong need in plutonium in the HCPWR dedicated to 233 U production is the limiting factor. That is why it was eventually proposed to study how the production of 233 U within PWR (with standard MR), from 2020. It was shown that the anticipated production of 233 U in dedicated PWR relaxes the constraint on plutonium inventories and favours the transition toward a symbiotic reactor fleet composed of both PWR and HCPWR loaded with thorium fuel. This strategy is more adapted and leads to an annual economy of natural uranium of about 65%. (author) [fr

  15. The development of the production process for the thorium/uranium dicarbide fuel kernels for the first charge of the Dragon Reactor

    International Nuclear Information System (INIS)

    Burnett, R.C.; Hankart, L.J.; Horsley, G.W.

    1965-05-01

    The development of methods of producing spheroidal sintered porous kernels of hyperstoichiometric thorium/uranium dicarbide solid solution from thorium/uranium monocarbide/carbon and thoria/urania/carbon powder mixes is described. The work has involved study of (i) Methods of preparing green kernels from UC/Th/C powder mixes using the rotary sieve technique. (ii) Methods of producing green kernels from UO2/Th02/C powder mixes using the planetary mill technique. (iii) The conversion by appropriate heat treatment of green kernels produced by both routes to sintered porous kernels of thorium/uranium carbide. (iv) The efficiency of the processes. (author)

  16. Road-map design for thorium-uranium breeding recycle in PWR - 031

    International Nuclear Information System (INIS)

    Shengyi, Si

    2010-01-01

    The paper was focused on designing a road-map to finally approach sustainable Thorium-Uranium ( 232 Th- 233 U) Breeding Recycle in current PWR, without any other change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. At first, the paper presented some insights to the inherence of Thorium-Uranium fuel conversion or breeding in PWR based on the neutronics theory and revealed the prerequisites for Thorium-Uranium fuel in PWR to achieve sustainable Breeding Recycle; And then, various Thorium-based fuels were designed and examined, and the calculation results further validated the above theoretical deductions; Based on the above theoretical analysis and calculation results, a road-map for sustainable Thorium-Uranium breeding recycle in PWR was outlined finally. (authors)

  17. Design of an equilibrium nucleus of a BWR type reactor based in a Thorium-Uranium fuel; Diseno de un nucleo de equilibrio de un reactor tipo BWR basado en un combustible de Torio-Uranio

    Energy Technology Data Exchange (ETDEWEB)

    Francois, J.L.; Nunez C, A. [Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Facultad de Ingenieria-UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)

    2003-07-01

    In this work the design of the reactor nucleus of boiling water using fuel of thorium-uranium is presented. Starting from an integral concept based in a type cover-seed assemble is carried out the design of an equilibrium reload for the nucleus of a reactor like that of the Laguna Verde Central and its are analyzed some of the main design variables like the cycle length, the reload fraction, the burnt fuel, the vacuum distribution, the generation of lineal heat, the margin of shutdown, as well as a first estimation of the fuel cost. The results show that it is feasible to obtain an equilibrium reload, comparable to those that are carried out in the Laguna Verde reactors, with a good behavior of those analyzed variables. The cost of the equilibrium reload designed with the thorium-uranium fuel is approximately 2% high that the uranium reload producing the same energy. It is concluded that it is convenient to include burnable poisons, type gadolinium, in the fuel with the end of improving the reload design, the fuel costs and the margin of shutdown. (Author)

  18. Profileration-proof uranium/plutonium and thorium/uranium fuel cycles. Safeguards and non-profileration. 2. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, G.

    2017-07-01

    A brief outline of the historical development of the proliferation problem is followed by a description of the uranium-plutonium nuclear fuel cycle with uranium enrichment, fuel fabrication, the light-water reactors mainly in operation, and the breeder reactors still under development. The next item discussed is reprocessing of spent fuel with plutonium recycling and the future possibility to incinerate plutonium and the minor actinides: neptunium, americium, and curium. Much attention is devoted to the technical and scientific treatment of the IAEA surveillance concept of the uranium-plutonium fuel cycle. In this context, especially the physically possible accuracy of measuring U/Pu flow in the fuel cycle, and the criticism expressed of the accuracy in measuring the plutonium balance in large reprocessing plants of non-nuclear weapon states are analyzed. The second part of the book initially examines the assertion that reactor-grade plutonium could be used to build nuclear weapons whose explosive yield cannot be predicted accurately, but whose minimum explosive yield is still far above that of chemical explosive charges. Methods employed in reactor physics are used to show that such hypothetical nuclear explosive devices (HNEDs) would attain too high temperatures in the required implosion lenses as a result of the heat generated by the Pu-238 isotope always present in reactor plutonium of current light-water reactors. These lenses would either melt or tend to undergo chemical auto-explosion. Limits to the content of the Pu-238 isotope are determined above which such hypothetical nuclear weapons are not feasible on technical grounds. This situation is analyzed for various possibilities of the technical state of the art of making implosion lenses and various ways of cooling up to the use of liquid helium. The outcome is that, depending on the existing state of the art, reactor-grade plutonium from spent fuel elements of light-water reactors with a burnup of 35 to 58

  19. Criticality analysis for mixed thorium-uranium fuel in the Angra-2 PWR reactor using KENO-VI

    Energy Technology Data Exchange (ETDEWEB)

    Wichrowski, Caio C.; Gonçalves, Isadora C.; Oliveira, Claudio L.; Vellozo, Sergio O.; Baptista, Camila O., E-mail: wichrowski@ime.eb.br, E-mail: isadora.goncalves@ime.eb.br, E-mail: d7luiz@yahoo.com.br, E-mail: vellozo@ime.eb.br, E-mail: camila.oliv.baptista@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Seção de Engenharia Nuclear

    2017-07-01

    The increasing energy demand associated to the current sustainability challenges have given the thorium nuclear fuel cycle renewed interest in the scientific community. Studies have focused on energy production in different reactor designs through the fission of uranium 233, the product of thorium fertilization by neutrons. In order to make it possible for near future applications a strategy based on the adaptation of current nuclear reactors for the use of thorium fuels is being considered. In this work, bearing in mind these limitations, a code was used to evaluate the effect on criticality (k{sub inf}) of the mixing of thorium and uranium in different proportions in the fuel of a PWR, the German designed Angra-2 Brazilian reactor in order to scrutinise its behaviour and determine the feasibility of an adapted ThO{sub 2}-UO{sub 2} mixed fuel cycle using current PWR technology. The analysis is performed using the KENO-VI module in the SCALE 6.1 nuclear safety analysis simulation code and the information is taken from the Angra-2 FSAR (Final Security Analysis Report). (author)

  20. On the radiology of thorium-uranium electro breeding

    International Nuclear Information System (INIS)

    Gai, E.V.; Rabotnov, N.S.; Shubin, Y.N.

    1995-01-01

    Radiological problems arising in thorium-uranium electro-breeding with thorium accelerator target are discussed. Following radiological problems are discussed and evaluated in simplified model calculations: U-232 formation, accumulation of light Th isotopes in (n, xn) reactions on thorium target: accumulation of the same nuclides in final repository after alpha-decay of uranium isotopes. The qualitative comparison of U-Pu and U-Th fuel cycles is performed. The problems seem to be serious enough to justify detailed quantitative investigation. (authors)

  1. Thermal diffusivity and conductivity of thorium- uranium mixed oxides

    Science.gov (United States)

    Saoudi, M.; Staicu, D.; Mouris, J.; Bergeron, A.; Hamilton, H.; Naji, M.; Freis, D.; Cologna, M.

    2018-03-01

    Thorium-uranium oxide pellets with high densities were prepared at the Canadian Nuclear Laboratories (CNL) by co-milling, pressing, and sintering at 2023 K, with UO2 mass contents of 0, 1.5, 3, 8, 13, 30, 60 and 100%. At the Joint Research Centre, Karlsruhe (JRC-Karlsruhe), thorium-uranium oxide pellets were prepared using the spark plasma sintering (SPS) technique with 79 and 93 wt. % UO2. The thermal diffusivity of (Th1-xUx)O2 (0 ≤ x ≤ 1) was measured at CNL and at JRC-Karlsruhe using the laser flash technique. ThO2 and (Th,U)O2 with 1.5, 3, 8 and 13 wt. % UO2 were found to be semi-transparent to the infrared wavelength of the laser and were coated with graphite for the thermal diffusivity measurements. This semi-transparency decreased with the addition of UO2 and was lost at about 30 wt. % of UO2 in ThO2. The thermal conductivity was deduced using the measured density and literature data for the specific heat capacity. The thermal conductivity for ThO2 is significantly higher than for UO2. The thermal conductivity of (Th,U)O2 decreases rapidly with increasing UO2 content, and for UO2 contents of 60% and higher, the conductivity of the thorium-uranium oxide fuel is close to UO2. As the mass difference between the Th and U atoms is small, the thermal conductivity decrease is attributed to the phonon scattering enhanced by lattice strain due to the introduction of uranium in ThO2 lattice. The new results were compared to the data available in the literature and were evaluated using the classical phonon transport model for oxide systems.

  2. Rapid non-destructive quantitative estimation of urania/ thoria in mixed thorium uranium di-oxide pellets by high-resolution gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Shriwastwa, B.B.; Kumar, Anil; Raghunath, B.; Nair, M.R.; Abani, M.C.; Ramachandran, R.; Majumdar, S.; Ghosh, J.K.

    2001-01-01

    A non-destructive technique using high-resolution gamma-ray spectrometry has been standardised for quantitative estimation of uranium/thorium in mixed (ThO 2 -UO 2 ) fuel pellets of varying composition. Four gamma energies were selected; two each from the uranium and thorium series and the time of counting has been optimised. This technique can be used for rapid estimation of U/Th percentage in a large number of mixed fuel pellets from a production campaign

  3. Rapid non-destructive quantitative estimation of urania/ thoria in mixed thorium uranium di-oxide pellets by high-resolution gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shriwastwa, B.B.; Kumar, Anil; Raghunath, B.; Nair, M.R.; Abani, M.C.; Ramachandran, R.; Majumdar, S.; Ghosh, J.K

    2001-06-01

    A non-destructive technique using high-resolution gamma-ray spectrometry has been standardised for quantitative estimation of uranium/thorium in mixed (ThO{sub 2}-UO{sub 2}) fuel pellets of varying composition. Four gamma energies were selected; two each from the uranium and thorium series and the time of counting has been optimised. This technique can be used for rapid estimation of U/Th percentage in a large number of mixed fuel pellets from a production campaign.

  4. Feasibility study of the design of homogeneously mixed thorium-uranium oxide and all-uranium fueled reactor cores for civil nuclear marine propulsion - 15082

    International Nuclear Information System (INIS)

    Alam, S.B.; Lindley, B.A.; Parks, G.T.

    2015-01-01

    In this reactor physics study, we attempt to design a civil marine reactor core that can operate over a 10 effective-full-power-years life at 333 MWth using ThUO 2 and all-UO 2 fuel. We use WIMS to develop subassembly designs and PANTHER to examine whole-core arrangements, optimizing: subassembly and core geometry; fuel enrichment; burnable and moveable poison design; and whole-core loading patterns. We compare designs with a 14% fissile loading for ThUO 2 and all-UO 2 fuel in 13*13 assemblies with ZrB 2 integral fuel burnable absorber pins for reactivity control. Taking advantage of self-shielding effects, the ThUO 2 option shows greater promise in the final burnable poison design while maintaining low, stable reactivity with minimal burnup penalty. For the final poisoning design with ZrB 2 , ThUO 2 contributes 2.5% more initial reactivity suppression, although the all-UO 2 design exhibits lower reactivity swing. All the candidate materials show greater rod worth for the ThUO 2 design. For both fuels, B 4 C has the highest reactivity worth, providing 10% higher control rod worth for ThUO 2 fuel than all-UO 2 . Finally, optimized assemblies were loaded into a 3D reactor model in PANTHER. The PANTHER results show that after 10 years, the core is on the border of criticality, confirming the fissile loading is well-designed. (authors)

  5. Estimates of naturally occurring pools of thorium, uranium and iodine in boreal forests of southeast Sweden

    International Nuclear Information System (INIS)

    Loefgren, A.; Kautsky, U.

    2009-01-01

    The distribution patterns of naturally occurring radionuclides or their stable isotopes have been used to study the long-term behaviour of the radionuclides that may originate from nuclear waste. The Swedish Nuclear Fuel and Waste Management Company is performing investigations at two potential sites for nuclear waste disposal in southern Sweden. Here is the distribution and total content of the three naturally occurring radionuclides/stable isotopes, thorium, uranium and iodine, described for six forest localities at those sites. (LN)

  6. Group cross sections in the resolved resonance region calculated for a CANDU-PHW reactor operating on closed thorium-uranium and thorium-plutonium-uranium fuel cycles

    International Nuclear Information System (INIS)

    Hamel, D.; Wilkin, G.B.

    1979-09-01

    Group cross sections in the resolved resonance region are commonly computed for each nuclide independently of other resonance nuclides present in the fuel mixture. While this technique is usually entirely adequate for uranium fuel cycles, it is necessary to establish its legitimacy for closed thorium fuel cycles topped with fissile uranium or plutonium by analysis of a number of representative cases. At the same time cross sections originating from WIMS (Winfrith Improved Multigroup Scheme) calculations are compared with values computed in this study. In this context, particular attention is paid to the adequacy of the lower boundary for the WIMS resonance treatment. All calculations are based on heavy nuclide cross sections from the ENDF/B-IV data compilaton (Evaluated Nuclear Data File). Appreciable interaction effects have been determined for all nuclides except for 232 Th. In most cases, these are due to the strong 232 Th resonance doublet at 21.8 eV and 23.5 eV but some effects also result from resonances of 234 U (5.19 eV, 48.75 eV), 236 U (5.45 eV), 242 Pu (2.67 eV) and others. The influence of mutual interaction on the infinite lattice multiplicaton factor is very small in comparison to the effects of self-shielding. WIMS cross sections do not always compare well with the values computed in the study, but discrepancies are in most cases related to the different sources of data. Interaction effects are not explicitly taken into account in WIMS. Several nuclides ( 233 Pa, 233 U, 240 Pu, 242 Pu) show appreciable self-shielding below the WIMS resonance region and are therefore not treated adequately. The impact of these discrepancies on the multiplication factor is relatively small, however, because of error cancellation. (author)

  7. Photon attenuation properties of some thorium, uranium and plutonium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Singh, V. P.; Badiger, N. M. [Karnatak University, Department of Physics, Dharwad-580003, Karnataka (India); Vega C, H. R., E-mail: kudphyvps@rediffmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-10-15

    Mass attenuation coefficients, effective atomic numbers, effective electron densities for nuclear materials; thorium, uranium and plutonium compounds have been studied. The photon attenuation properties for the compounds have been investigated for partial photon interaction processes by photoelectric effect, Compton scattering and pair production. The values of these parameters have been found to change with photon energy and interaction process. The variations of mass attenuation coefficients, effective atomic number and electron density with energy are shown graphically. Moreover, results have shown that these compounds are better shielding and suggesting smaller dimensions. The study would be useful for applications of these materials for gamma ray shielding requirement. (Author)

  8. Thorium--uranium cycle ICF hybrid concept

    International Nuclear Information System (INIS)

    Frank, T.G.

    1978-01-01

    The results of preliminary studies of a laser-driven fusion-fission hybrid concept utilizing the 232 Th- 233 U breeding cycle are reported. Neutron multiplication in the breeding blanket is provided by a region containing 238 UO 2 and the equilibrium concentration of 239 PuO 2 . Established fission reactor technology is utilized to determine limits on operating conditions for high-temperature fuels and structures. The implications of nonproliferation policies for the operation of fusion-fission hybrid reactors are discussed

  9. Comparison of open cycles of uranium and mixed oxides of thorium-uranium using advanced reactors

    International Nuclear Information System (INIS)

    Gonçalves, Letícia C.; Maiorino, José R.

    2017-01-01

    A comparative study of the mass balance and production costs of uranium oxide fuels was carried out for an AP1000 reactor and thorium-uranium mixed oxide in a reactor proposal using thorium called AP-Th1000. Assuming the input mass values for a fuel load the average enrichment for both reactors as well as their feed mass was determined. With these parameters, the costs were calculated in each fuel preparation process, assuming the prices provided by the World Nuclear Association. The total fuel costs for the two reactors were quantitatively compared with 18-month open cycle. Considering enrichment of 20% for the open cycle of mixed U-Th oxide fuel, the total uranium consumption of this option was 50% higher and the cost due to the enrichment was 70% higher. The results show that the use of U-Th mixed oxide fuels can be advantageous considering sustainability issues. In this case other parameters and conditions should be investigated, especially those related to fuel recycling, spent fuel storage and reduction of the amount of transuranic radioactive waste

  10. Uranium dioxide Caramel fuel

    International Nuclear Information System (INIS)

    Schwartz, J.P.

    The work performed in France on Caramel fuels for research reactors reflects the reality of a program based on non proliferation criteria, as they have already appeared several years ago. This work actually includes the following different aspects: identification of the non proliferation criterion defining this action; determination of the economical and technical goals to be reached; realization of research and development studies finalized in a full scale demonstration; transposition to an industrial and commercial level

  11. Advanced Proliferation Resistant, Lower Cost, Uranium-Thorium Dioxide Fuels for Light Water Reactors (Progress report for work through June 2002, 12th quarterly report)

    International Nuclear Information System (INIS)

    Mac Donald, Philip Elsworth

    2002-01-01

    The overall objective of this NERI project is to evaluate the potential advantages and disadvantages of an optimized thorium-uranium dioxide (ThO2/UO2) fuel design for light water reactors (LWRs). The project is led by the Idaho National Engineering and Environmental Laboratory (INEEL), with the collaboration of three universities, the University of Florida, Massachusetts Institute of Technology (MIT), and Purdue University; Argonne National Laboratory; and all of the Pressurized Water Reactor (PWR) fuel vendors in the United States (Framatome, Siemens, and Westinghouse). In addition, a number of researchers at the Korean Atomic Energy Research Institute and Professor Kwangheon Park at Kyunghee University are active collaborators with Korean Ministry of Science and Technology funding. The project has been organized into five tasks: Task 1 consists of fuel cycle neutronics and economics analysis to determine the economic viability of various ThO2/UO2 fuel designs in PWRs; Task 2 will determine whether or not ThO2/UO2 fuel can be manufactured economically; Task 3 will evaluate the behavior of ThO2/UO2 fuel during normal, off-normal, and accident conditions and compare the results with the results of previous UO2 fuel evaluations and U.S. Nuclear Regulatory Commission (NRC) licensing standards; Task 4 will determine the long-term stability of ThO2/UO2 high-level waste; and Task 5 consists of the Korean work on core design, fuel performance analysis, and xenon diffusivity measurements

  12. Thorium, uranium and plutonium in human tissues of world-wide general population

    International Nuclear Information System (INIS)

    Singh, N.P.

    1990-01-01

    The results on the concentrations of thorium, uranium and plutonium in human tissues of world-wide general populations are summarized. The majority of thorium and uranium are accumulated in the skeleton, whereas, plutonium is divided between two major organs: the liver and skeleton. However, there is a wide variation in the fractions of plutonium in the liver and the skeleton of the different populations. (author) 44 refs.; 15 figs

  13. Thorium/uranium mixed oxide nano-crystals: Synthesis, structural characterization and magnetic properties

    International Nuclear Information System (INIS)

    Hudry, Damien; Griveau, Jean-Christophe; Apostolidis, Christos; Colineau, Eric; Rasmussen, Gert; Walter, Olaf; Wang, Di; Venkata Sai Kiran Chakravadhaluna; Courtois, Eglantine; Kubel, Christian

    2014-01-01

    One of the primary aims of the actinide community within nano-science is to develop a good understanding similar to what is currently the case for stable elements. As a consequence, efficient, reliable and versatile synthesis techniques dedicated to the formation of new actinide-based nano-objects (e.g., nano-crystals) are necessary. Hence, a 'library' dedicated to the preparation of various actinide based nano-scale building blocks is currently being developed. Nano-scale building blocks with tunable sizes, shapes and compositions are of prime importance. So far, the non-aqueous synthesis method in highly coordinating organic media is the only approach which has demonstrated the capability to provide size and shape control of actinide-based nano-crystals (both for thorium and uranium, and recently extended to neptunium and plutonium). In this paper, we demonstrate that the non-aqueous approach is also well adapted to control the chemical composition of the nano-crystals obtained when mixing two different actinides. Indeed, the controlled hot co-injection of thorium acetylacetonate and uranyl acetate (together with additional capping agents) into benzyl ether can be used to synthesize thorium/uranium mixed oxide nano-crystals covering the full compositional spectrum. Additionally, we found that both size and shape are modified as a function of the thorium/uranium ratio. Finally, the magnetic properties of the different thorium/uranium mixed oxide nano-crystals were investigated. Contrary to several reports, we did not observe any ferromagnetic behavior. As a consequence, ferromagnetism cannot be described as a universal feature of nano-crystals of non-magnetic oxides as recently claimed in the literature. (authors)

  14. Extraction of Uranium Using Nitrogen Dioxide and Carbon Dioxide for Spent Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kayo Sawada; Daisuke Hirabayashi; Youichi Enokida [EcoTopia Science Institute, Nagoya University, Nagoya, 464-8603 (Japan)

    2008-07-01

    For the reprocessing of spent nuclear fuels, a new method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. Uranium extraction from broken pieces, whose average grain size was 5 mm, of uranium dioxide pellet with nitrogen dioxide and carbon dioxide was demonstrated in the present study. (authors)

  15. Advanced Proliferation Resistant, Lower Cost, Uranium-Thorium Dioxide Fuels for Light Water Reactors (Progress report for work through June 2002, 12th quarterly report)

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth

    2002-09-01

    The overall objective of this NERI project is to evaluate the potential advantages and disadvantages of an optimized thorium-uranium dioxide (ThO2/UO2) fuel design for light water reactors (LWRs). The project is led by the Idaho National Engineering and Environmental Laboratory (INEEL), with the collaboration of three universities, the University of Florida, Massachusetts Institute of Technology (MIT), and Purdue University; Argonne National Laboratory; and all of the Pressurized Water Reactor (PWR) fuel vendors in the United States (Framatome, Siemens, and Westinghouse). In addition, a number of researchers at the Korean Atomic Energy Research Institute and Professor Kwangheon Park at Kyunghee University are active collaborators with Korean Ministry of Science and Technology funding. The project has been organized into five tasks: · Task 1 consists of fuel cycle neutronics and economics analysis to determine the economic viability of various ThO2/UO2 fuel designs in PWRs, · Task 2 will determine whether or not ThO2/UO2 fuel can be manufactured economically, · Task 3 will evaluate the behavior of ThO2/UO2 fuel during normal, off-normal, and accident conditions and compare the results with the results of previous UO2 fuel evaluations and U.S. Nuclear Regulatory Commission (NRC) licensing standards, · Task 4 will determine the long-term stability of ThO2/UO2 high-level waste, and · Task 5 consists of the Korean work on core design, fuel performance analysis, and xenon diffusivity measurements.

  16. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

  17. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    International Nuclear Information System (INIS)

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers

  18. Phase relations, crystal structures and physical properties of nuclear fuels

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki; Fujino, Takeo; Tateno, Jun

    1975-07-01

    Phase relations, crystal structures and physical properties of the compounds for nuclear fuels are presented, including melting point, thermal expansion, diffusion and magnetic and electric properties. Emphasis is on oxides, carbides and nitrides of thorium, uranium and plutonium. (auth.)

  19. Tables of thermodynamic functions for gaseous thorium, uranium, and plutonium oxides

    International Nuclear Information System (INIS)

    Green, D.W.

    1980-03-01

    Measured and estimated spectroscopic data for thorium, uranium, and plutonium oxide vapor species have been used with the methods of statistical mechanics to calculate thermodynamic functions. Some inconsistencies between spectroscopic data and some thermodynamic data have been resolved by recalculating ΔH 0 /sub f/ (298.15 0 K) values for the vapor species of these oxides. Evaluation of the uncertainties in data, methods of estimating molecular parameters, and effects of assumptions have been discussed elsewhere. The tables of thermodynamic functions that were reported earlier have been revised principally because the low-frequency vibrational modes of UO 2 and UO 3 have now been measured. These new empirical data resulted in changes in the electronic contributions to the calculated thermodynamic functions of UO 2 and the estimated vibrational contributions for PuO 2 . In addition, some minor changes have been made in the methods of calculation of the electronic contributions for all molecules

  20. High-temperature vaporization of thorium-uranium mixed monocarbide (Th1-y, Uy)C

    International Nuclear Information System (INIS)

    Koyama, Tadafumi; Yamawaki, Michio

    1989-01-01

    Vaporization thermodynamics of thorium-uranium mixed monocarbide phase (Th 1-y , U y )C was studied by mass spectrometric Knudsen effusion method for the compositions of (Th 0.9 , U 0.1 )C 0.855 , (Th 0.8 , U 0.2 )C 0.973 and (Th 0.6 , U 0.4 )C 0.973 . The partial vapor pressures of Th(g) and U(g) and activities of Th and U of these mixed monocarbides were determined at temperatures ranging from about 2000 to 2200 K. Further, the partial pressures of Th(g) and U(g) and activities of Th and U of the stoichiometric mixed monocarbides (Th 1-y , U y )C 1.00 were evaluated by compensating for the effect of carbon content. The Gibbs energies of formation of stoichiometric (Th 1-y , U y )C 1.00 were also evaluated. (orig.)

  1. Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus

    International Nuclear Information System (INIS)

    Tzortzis, Michalis; Tsertos, Haralabos

    2004-01-01

    A comprehensive study was conducted to determine thorium, uranium and potassium elemental concentrations in surface soils throughout the accessible area of Cyprus using high-resolution γ-ray spectrometry. A total of 115 soil samples was collected from all over the bedrock surface of the island based on the different lithological units of the study area. The soil samples were air-dried, sieved through a fine mesh, sealed in 1000-ml plastic Marinelli beakers, and measured in the laboratory in terms of their gamma radioactivity for a counting time of 18 h each. From the measured γ-ray spectra, elemental concentrations were determined for thorium (range from 2.5x10 -3 to 9.8 μg g -1 ), uranium (from 8.1x10 -4 to 3.2 μg g -1 ) and potassium (from 1.3x10 -4 to 1.9%). The arithmetic mean values (A.M.±S.D.) calculated from all samples are: (1.2±1.7) μg g -1 , (0.6±0.7) μg g -1 and (0.4±0.3)%, for thorium, uranium and potassium, respectively, which are by a factor of three-six lower than the world average values of 7.4 μg g -1 (Th), 2.8 μg g -1 (U) and 1.3% (K) derived from all data available worldwide. The best-fitting relation between the concentrations of Th and K versus U and also of K versus Th, is essentially of linear type with a correlation coefficient of 0.93, 0.84 and 0.90, respectively. The Th/U, K/U and K/Th ratios (slopes) extracted are equal to 2.0, 2.8x10 3 and 1.4x10 3 , respectively

  2. Thorium, uranium and rare earth elements concentration in weathered Japanese soil samples

    International Nuclear Information System (INIS)

    Sahoo, Sarata Kumar; Hosoda, Masahiro; Kamagata, Sadatoshi; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Tokonami, Shinji; Uchida, Shigeo

    2011-01-01

    The geochemical behavior of thorium, uranium and rare earth elements (REEs) are relatively close to one another while compared to other elements in a geological environment. Radioactive elements like 232 Th and 238 U along with their decay products (e.g. 226 Ra) are present in most environmental matrices and can be transferred to living bodies by different pathways which can lead to the sources of exposure to man. For these reasons, it has been necessary to monitor those natural radionuclides in weathered soil samples to assess the possible hazards. It has been observed that granitic rocks contain higher amounts of U, Th and light REEs compared to other igneous rocks such as basalt and andesites. To better understand the interaction between REEs and soils, the nature of soils must be considered. In this paper, we discussed the distribution pattern of 232 Th and 238 U along with REEs in soil samples of weathered acid rock (granite and ryolite) collected from two prefectures of Japan: (1) Kobe city in Hyogo prefecture and (2) Mutsu city and Higashidori village in Aomori prefecture. (author)

  3. Physicochemical aspects of extraction of uranium concentrate from the wastes and thermodynamic characteristics of thorium-uranium compounds

    International Nuclear Information System (INIS)

    Khamidov, F.A.

    2017-01-01

    The purpose of present work is elaboration of physicochemical aspects of extraction of uranium concentrate from the wastes and study of thermodynamic characteristics of thorium-uranium compounds. Therefore, the radiological monitoring of tailing dumps of Tajikistan has been conducted; the obtaining of uranium concentrate from the tailing dumps of uranium production has been studied; the obtaining of uranium concentrate from the tailing dumps of uranium production with application of local sorbents has been studied as well; thermal stability and thermodynamic characteristics of uranium-thorium compounds has been investigated; the flowsheets of extraction of uranium concentrate from the wastes have been elaborated.

  4. Direct quantification of thorium, uranium and rare earth element concentration in natural waters by ICP-MS

    International Nuclear Information System (INIS)

    Palmieri, Helena E.L.; Knupp, Eliana A.N.; Auler, Lucia M.L.A.; Gomes, Luiza M.F.; Windmoeller, Claudia C.

    2011-01-01

    A direct quantification of the thorium, uranium and rare earth elements in natural water samples using inductively coupled plasma mass spectrometry (ICP-MS) was evaluated with respect to selection of isotopes, detection limits, accuracy, precision, matrix effects for each isotope and spectral interferences. Accuracy of the method was evaluated by analysis of Spectra pure Standards (SPS-SW1 Batch 116-Norway) for the rare earth elements (REEs), thorium, uranium, scandium and yttrium. The measurements were carried out for each of the following analytical isotopes: 139 La, 140 Ce, 141 Pr, 143 Nd, 147 Sm, 151 Eu, 160 Gd, 159 Tb, 163 Dy, 165 Ho, 167 Er, 16 9Tm, 174 Yb, 175 Lu, 45 Sc, 89 Y, 232 Th and 238 U. Recovery percentage values found in these certified samples varied between 95 and 107%. The method was applied to the analysis of spring water samples collected in fountains spread throughout the historical towns of Ouro Preto, Mariana, Sabara and Diamantina in the state of Minas Gerais, Brazil. In the past these fountains played an essential and strategic role in supplying these towns with potable water. Until today this water is used by both the local population and tourists who believe in its quality. REE were quantified at levels comparable to those found in estuarine waters, which are characterized by low REE concentrations. In two fountains analyzed the concentration of REEs presented high levels and thus possible health risks for humans may not be excluded. (author)

  5. Carbon dioxide from fossil fuels: adapting to uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K; Winter, R C; Bergman, M K

    1980-12-01

    If present scientific information is reasonable, the world is likely to experience noticeable global warming by the beginning of the next century if high annual growth rates of fossil-fuel energy use continue. Only with optimistic assumptions and low growth rates will carbon-dioxide-induced temperature increases be held below 2/sup 0/C or so over the next century. Conservation, flexible energy choices, and control options could lessen the potential effects of carbon dioxide. Though perhaps impractical from the standpoint of costs and efficiency losses, large coastal centralized facilities would be the most amenable to carbon dioxide control and disposal. Yet no country can control carbon dioxide levels unilaterally. The USA, however, which currently contributes over a quarter of all fossil-fuel carbon dioxide emissions and possesses a quarter of the world's coal resources, could provide a much needed role in leadership, research and education. 70 references.

  6. Process for preparing sintered uranium dioxide nuclear fuel

    International Nuclear Information System (INIS)

    Carter, R.E.

    1975-01-01

    Uranium dioxide is prepared for use as fuel in nuclear reactors by sintering it to the desired density at a temperature less than 1300 0 C in a chemically controlled gas atmosphere comprised of at least two gases which in equilibrium provide an oxygen partial pressure sufficient to maintain the uranium dioxide composition at an oxygen/uranium ratio of at least 2.005 at the sintering temperature. 7 Claims, No Drawings

  7. Production of Solar Fuels by Photoelectrochemical Conversion of Carbon Dioxide

    OpenAIRE

    Irtem, Ibrahim Erdem

    2017-01-01

    Growing global emission of carbon dioxide gas (CO2) reflects the world’s energy dependence on fossil fuels. The conversion of CO2 emission into value-added products, like fuels completes a circular CO2 economy which requires a renewable energy conversion and storage system. Amongst a few, photo/electrochemistry has been particularly appealing thanks to its energy efficiency and enormous potential for industrial applications. Formic acid (HCOOH) production from CO2 reduction appears as an al...

  8. CANDU-6 fuel optimization for advanced cycles

    Energy Technology Data Exchange (ETDEWEB)

    St-Aubin, Emmanuel, E-mail: emmanuel.st-aubin@polymtl.ca; Marleau, Guy, E-mail: guy.marleau@polymtl.ca

    2015-11-15

    Highlights: • New fuel selection process proposed for advanced CANDU cycles. • Full core time-average CANDU modeling with independent refueling and burnup zones. • New time-average fuel optimization method used for discrete on-power refueling. • Performance metrics evaluated for thorium-uranium and thorium-DUPIC cycles. - Abstract: We implement a selection process based on DRAGON and DONJON simulations to identify interesting thorium fuel cycles driven by low-enriched uranium or DUPIC dioxide fuels for CANDU-6 reactors. We also develop a fuel management optimization method based on the physics of discrete on-power refueling and the time-average approach to maximize the economical advantages of the candidates that have been pre-selected using a corrected infinite lattice model. Credible instantaneous states are also defined using a channel age model and simulated to quantify the hot spots amplitude and the departure from criticality with fixed reactivity devices. For the most promising fuels identified using coarse models, optimized 2D cell and 3D reactivity device supercell DRAGON models are then used to generate accurate reactor databases at low computational cost. The application of the selection process to different cycles demonstrates the efficiency of our procedure in identifying the most interesting fuel compositions and refueling options for a CANDU reactor. The results show that using our optimization method one can obtain fuels that achieve a high average exit burnup while respecting the reference cycle safety limits.

  9. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    DEFF Research Database (Denmark)

    Andres, R.J.; Gregg, Jay Sterling; Losey, L.

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950–2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80......% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly...

  10. Indoor concentrations of nitrogen dioxide and sulfur dioxide from burning solid fuels for cooking and heating in Yunnan Province, China

    NARCIS (Netherlands)

    Seow, Wei Jie; Downward, George S; Wei, Hu; Rothman, Nathaniel; Reiss, Boris; Xu, Jun; Bassig, Bryan A; Li, Jihua; He, Jun; Hosgood, H Dean; Wu, Guoping; Chapman, Robert S; Tian, Linwei; Wei, Fusheng; Caporaso, Neil E; Vermeulen, Roel; Lan, Qing

    2016-01-01

    The Chinese national pollution census has indicated that the domestic burning of solid fuels is an important contributor to nitrogen dioxide (NO2 ) and sulfur dioxide (SO2 ) emissions in China. To characterize indoor NO2 and SO2 air concentrations in relation to solid fuel use and stove ventilation

  11. Sustainability of thorium-uranium in pebble-bed fluoride salt-cooled high temperature reactor

    International Nuclear Information System (INIS)

    Zhu, G.; Zou, Y.; Xu, H.

    2016-01-01

    Sustainability of thorium fuel in a Pebble-Bed Fluoride salt-cooled High temperature Reactor (PBFHR) is investigated to find the feasible region of high discharge burnup and negative Flibe (2LiF-BeF_2) salt Temperature Reactivity Coefficient (TRC). Dispersion fuel or pellet fuel with SiC cladding and SiC matrix is used to replace the tri-structural-isotropic (TRISO) coated particle system for increasing fuel loading and decreasing excessive moderation. To analyze the neutronic characteristics, an equilibrium calculation method of thorium fuel self-sustainability is developed. We have compared two refueling schemes (mixing flow pattern and directional flow pattern) and two kinds of reflector materials (SiC and graphite). This method found that the feasible region of breeding and negative Flibe TRC is between 20 vol% and 62 vol% fuel loading in the fuel. A discharge burnup could be achieved up to about 200 MWd/kgHM. The case with directional flow pattern and SiC reflector showed superior burnup characteristics but the worst radial power peak factor, while the case with mixing flow pattern and SiC reflector, which was the best tradeoff between discharge burnup and radial power peak factor, could provide burnup of 140 MWd/kgHM and about 1.4 radial power peak factor with 50 vol% dispersion fuel. In addition, Flibe salt displays good neutron properties as a coolant of quasi-fast reactors due to the strong "9Be(n,2n) reaction and low neutron absorption of "6Li (even at 1000 ppm) in fast spectrum. Preliminary thermal hydraulic calculation shows a good safety margin. The greatest challenge of this reactor may be the decades irradiation time of the pebble fuel. (A.C)

  12. Results of fuel elements fabrication on the basis of increased concentration dioxide fuel for research reactors

    International Nuclear Information System (INIS)

    Alexandrov, A.B.; Afanasiev, V.L.; Enin, A.A.; Suprun, V.B.

    1996-01-01

    According to the Russian Reduced Enrichment for Research and Test Reactors (RERTR) program, that were constructed under the Russian projects, at the Novosibirsk Chemical Concentrates Plant the pilot series of different configuration (WR-M2, MR, IRT-4M) fuel elements, based on increased concentration uranium dioxide fuel, have been fabricated for reactor tests. Comprehensive fabricated fuel elements quality estimation has been carried out. (author)

  13. Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends report is the authoritative reference for carbon dioxide (CO2) emissions,...

  14. Irradiation of TZM: Uranium dioxide fuel pin at 1700 K

    Science.gov (United States)

    Mcdonald, G. E.

    1973-01-01

    A fuel pin clad with TZM and containing solid pellets of uranium dioxide was fission heated in a static helium-cooled capsule at a maximum surface temperature of 1700 K for approximately 1000 hr and to a total burnup of 2.0 percent of the uranium-235. The results of the postirradiation examination indicated: (1) A transverse, intergranular failure of the fuel pin occurred when the fuel pin reached 2.0-percent burnup. This corresponds to 1330 kW-hr/cu cm, where the volume is the sum of the fuel, clad, and void volumes in the fuel region. (2) The maximum swelling of the fuel pin was less than 1.5 percent on the fuel-pin diameter. (3) There was no visible interaction between the TZM clad and the UO2. (4) Irradiation at 1700 K produced a course-grained structure, with an average grain diameter of 0.02 centimeter and with some of the grains extending one-half of the thickness of the clad. (5) Below approximately 1500 K, the irradiation of the clad produced a moderately fine-grained structure, with an average grain diameter of 0.004 centimeter.

  15. Dissolution study of thorium-uranium oxides in aqueous triflic acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bulemela, E.; Bergeron, A.; Stoddard, T. [Canadian Nuclear Laboratories - CNL, 286 Plant Rd., Chalk River, Ontario, K0J 1J0 (Canada)

    2016-07-01

    The dissolution of sintered mixed oxides of thorium with uranium in various concentrations of trifluoromethanesulfonic (triflic) acid solutions was investigated under reflux conditions to evaluate the suitability of the method. Various fragment sizes (1.00 mm < x < 7.30 mm) of sintered (Th,U)O{sub 2} and simulated high-burnup nuclear fuel (SIMFUEL) were almost completely dissolved in a few hours, which implies that triflic acid could be used as an alternative to the common dissolution method, involving nitric acid-hydrofluoric acid mixture. The influence of acid concentration, composition of the solids, and reaction time on the dissolution yield of Th and U ions was studied using Inductively Coupled Plasma - Mass Spectrometry (ICP-MS). The dissolution rate was found to depend upon the triflic acid concentration and size of the solid fragments, with near complete dissolution for the smallest fragments occurring in boiling 87% w/w triflic acid. The formation of Th and U ions in solution appears to occur at the same rate as the triflic acid simultaneously reacts with the constituent oxides as evidenced by the results of a constant U/Th concentration ratio with the progress of the dissolution. (authors)

  16. Carbon dioxide from fossil fuels. Adapting to uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K; Winter, R C; Bergman, M K

    1980-12-01

    The world is likely to experience noticeable carbon dioxide induced global warming by the beginning of the next century if high annual growth rates of fossil fuel energy use continue. This article proposes some ideas about what can be done from a policy-making perspective if the CO$SUB$2 effects occur, and how, in addition, we can deal now with the uncertainties. It also considers questions concerning the potential for control of CO$SUB$2 emissions drawing up on current work in long range coal-based energy technology assessment. (70 refs.)

  17. Dissolution of thorium/uranium mixed oxide in nitric acid-hydrofluoric acid solution

    International Nuclear Information System (INIS)

    Filgueiras, S.A.C.

    1984-01-01

    The dissolution process of thorium oxide and mixed uranium-thorium oxide is studied, as a step of the head-end of the fuel reprocessing. An extensive bibliography was analysed, concerning the main aspects of the system, specially the most important process variables. Proposed mechanisms and models for the thorium oxide dissolution are presented. The laboratory tests were performed in two phases: at first, powdered thoria was used as the material to be dissolved. The objective was to know how changes in he concentrations of the dissolvent solution components HNO 3 , HF and Al(NO 3 ) 3 affect the dissolution rate. The tests were planned according to the fractional factorial method. Thes results showed that it is advantageous to work with powdered material, since the reaction occurs rapidly. And, if the Thorex solution (HNO 3 13M, HF 0.05M and Al(NO 3 ) 3 0.10M) is a suitable dissolvent, it was verified that it is possible to reduce the concentration of either nitric or fluoridric acid, without reducing the reaction rate to an undesirable value. It was also observed significant interaction between the components of the dissolvent solution. In the second phase of the tests, (Th, 5%U)O 2 sintered pellets were used. The main goals were to know the pellets dissolution behaviour and to compare the results for different pellets among themselves. It was observed that the metallurgical history of the material strongly influences its dissolution, specially the density and the microstructure. It was also studied how the (Th,U)O 2 mass/Thorex solution volume ratio affects the time needed to obtain an 1 M Th/liter solution. The activation energy for the reaction was obtained. (Author) [pt

  18. Fuel cycle parameters for strategy studies

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1979-05-01

    This report summarizes seven fuel cycle parameters (efficiency, specific power, burnup, equilibrium net fissile feed, equilibrium net fissile surplus, first charge fissile content, and whether or not fuel reprocessing is required) to be used in long-term strategy analyses of fuel cycles based on natural UO 2 , low enriched uranium, mixed oxides, plutonium topped thorium, uranium topped thorium, and the fast breeder oxide cycle. (LL)

  19. Comparison of open cycles of uranium and mixed oxides of thorium-uranium using advanced reactors; Comparação de ciclos abertos de urânio e óxidos mistos de tório-urânio utilizando reatores avançados

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Letícia C.; Maiorino, José R., E-mail: goncalves.leticiac@gmail.com [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil). Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas

    2017-07-01

    A comparative study of the mass balance and production costs of uranium oxide fuels was carried out for an AP1000 reactor and thorium-uranium mixed oxide in a reactor proposal using thorium called AP-Th1000. Assuming the input mass values for a fuel load the average enrichment for both reactors as well as their feed mass was determined. With these parameters, the costs were calculated in each fuel preparation process, assuming the prices provided by the World Nuclear Association. The total fuel costs for the two reactors were quantitatively compared with 18-month open cycle. Considering enrichment of 20% for the open cycle of mixed U-Th oxide fuel, the total uranium consumption of this option was 50% higher and the cost due to the enrichment was 70% higher. The results show that the use of U-Th mixed oxide fuels can be advantageous considering sustainability issues. In this case other parameters and conditions should be investigated, especially those related to fuel recycling, spent fuel storage and reduction of the amount of transuranic radioactive waste.

  20. Uranium dioxide and beryllium oxide enhanced thermal conductivity nuclear fuel development

    International Nuclear Information System (INIS)

    Andrade, Antonio Santos; Ferreira, Ricardo Alberto Neto

    2007-01-01

    The uranium dioxide is the most used substance as nuclear reactor fuel for presenting many advantages such as: high stability even when it is in contact with water in high temperatures, high fusion point, and high capacity to retain fission products. The conventional fuel is made with ceramic sintered pellets of uranium dioxide stacked inside fuel rods, and presents disadvantages because its low thermal conductivity causes large and dangerous temperature gradients. Besides, the thermal conductivity decreases further as the fuel burns, what limits a pellet operational lifetime. This research developed a new kind of fuel pellets fabricated with uranium dioxide kernels and beryllium oxide filling the empty spaces between them. This fuel has a great advantage because of its higher thermal conductivity in relation to the conventional fuel. Pellets of this kind were produced, and had their thermophysical properties measured by the flash laser method, to compare with the thermal conductivity of the conventional uranium dioxide nuclear fuel. (author) (author)

  1. Biomass fuels - effects on the carbon dioxide budget

    International Nuclear Information System (INIS)

    Eriksson, H.; Hallsby, G.

    1992-02-01

    It is highly desirable that the effects on the carbon dioxide balance of alternative energy sources are evaluated. Two important alternatives studied in Sweden are the extraction of logging residues left in the forest and willow production on farmland. Considered in isolation, a conversion from stem-wood harvest to whole-tree harvest has a negative effect on the carbon dioxide balance, because the amount of soil organic matter decreases. With the assumption that it takes 20 years for the logging residues to decompose, the net decrease in emissions that would result from the replacement of fossil fuels by logging residues appear moderate after 20 years. However, it will grow significantly as time passes. After 100 years with an annual combustion of logging residues the emissions are 12% of those associated with the production of an equivalent amount of energy through oil combustion. Corresponding values for 300 and 500 years are 4% and 2.5% respectively. In less than 100 years there should be a considerable reduction in the Swedish CO 2 -C emissions even if only every second new logging residue-produced TWH replaces a fossil-fuel-produced TWh. From a long-term perspective, effects on carbon reservoirs in Sweden, caused by conversions to whole-tree harvesting in forestry and to willow production on redundant farmland, can be considered negligible in terms of their influence on the carbon dioxide budget of Sweden. The orders of magnitude of influencing fluxes is exemplified in the following: The annual production of 50 TWh, whereof 40 TWh from logging residues, 8 TWh from willow and 2 TWh from annual crops is estimated to cause a total net decrease of the carbon reservoirs within Sweden corresponding to 32 Tg CO 2 -C, whereas the annual production of 50 TWh from oil combustion should emit 1200 Tg CO 2 -C in 300 years, 2000 Tg CO 2 -C in 500 years and so on. (au). 17 refs., 4 tabs

  2. Estimating diesel fuel consumption and carbon dioxide emissions from forest road construction

    Science.gov (United States)

    Dan Loeffler; Greg Jones; Nikolaus Vonessen; Sean Healey; Woodam Chung

    2009-01-01

    Forest access road construction is a necessary component of many on-the-ground forest vegetation treatment projects. However, the fuel energy requirements and associated carbon dioxide emissions from forest road construction are unknown. We present a method for estimating diesel fuel consumed and related carbon dioxide emissions from constructing forest roads using...

  3. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    Energy Technology Data Exchange (ETDEWEB)

    Andres, R. J.; Marland, G.; Boden, T. A. (Environmental Sciences Div., Oak Ridge National Laboratory, Oak Ridge, TN (United States)), e-mail: andresrj@ornl.gov; Gregg, J. S. (Risoe DTU National Laboratory for Sustainable Energy, Roskilde (Denmark)); Losey, L. (Dept. of Space Studies, Univ. of North Dakota, Grand Forks, ND (United States))

    2011-07-15

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950-2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models

  4. Separation of thorium, uranium and rare-earth elements with 2-[(2-arsenophenyl)-azo]-1,8-dihydroxy-7-[(2,4,6-tribromophenyl)azo]-naphthalene-3,6-disulfonic acid by capillary electrophoresis

    International Nuclear Information System (INIS)

    Liu, Bi-feng; Liu, Liang-bin; Cheng, Jie-ke

    1998-01-01

    The separation of thorium, uranium and rare-earth elements (RE) as their 2-[(2-arsenophenyl)-azo]-1,8-dihydroxy-7-[(2,4,6-tribromophenyl)azo]-naphthalene-3,6-disulfonic acid complexes by capillary electrophoresis with direct UV-Vis detection is presented in this paper. The influences of pH value and concentration of electrolyte, voltage and surfactant on separation were investigated and optimized. Under the selected conditions (30mM NaAc-HCl buffer containing 0.5mM cetyltrimethylammonium bromide and 0.2mM chelating reagent, pH 4.30, 12KV, 635nm as detection wavelength), the coexisted ions were separated within 4min, and limits of detection of 37, 39, 199μgl -1 for RE, thorium, uranium with a linear dynamic range of over 2 orders of magnitude were achieved, respectively

  5. Carbon dioxide emissions from fossil fuel use: Recent performance and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, Michael

    1998-12-01

    This publication gives an overview and discusses carbon dioxide emissions from fossil fuel use worldwide. Main themes discussed in this connection cover recent performance and future prospects. Some proposals on the reduction of CO{sub 2} emissions are given

  6. Micromechanical approach of behavior of uranium dioxide nuclear fuel

    International Nuclear Information System (INIS)

    Soulacroix, Julian

    2014-01-01

    Uranium dioxide (UO 2 ) is the reference fuel for pressurized water nuclear reactors. Our study deals with understanding and modeling of mechanical behavior at the microstructure scale at low temperatures (brittle fracture) and high temperature (viscoplastic strain). We have first studied the geometrical properties of polycrystals at large and of UO 2 polycrystal more specifically. As of now, knowledge of this behavior in the brittle fracture range is limited. Consequently, we developed an experimental method which allows better understanding of brittle fracture phenomenon at grain scale. We show that fracture is fully intra-granular and {100} planes seem to be the most preferential cleavage planes. Experimental results are directly used to deduce constitutive equations of intra-granular brittle fracture at crystal scale. This behavior is then used in 3D polycrystal simulation of brittle fracture. The full field calculation gives access to the initiation of fracture and propagation of the crack through the grains. Finally, we developed a mechanical behavior model of UO 2 in the viscoplastic range. We first present constitutive equations at macroscopic scale which accounts for an ageing process caused by migration of defects towards dislocations. Secondly, we have developed a crystal plasticity model which was fitted to UO 2 . This model includes the rotation of the crystal lattice. We present examples of polycrystalline simulations. (author) [fr

  7. Integral benchmarks with reference to thorium fuel cycle

    International Nuclear Information System (INIS)

    Ganesan, S.

    2003-01-01

    This is a power point presentation about the Indian participation in the CRP 'Evaluated Data for the Thorium-Uranium fuel cycle'. The plans and scope of the Indian participation are to provide selected integral experimental benchmarks for nuclear data validation, including Indian Thorium burn up benchmarks, post-irradiation examination studies, comparison of basic evaluated data files and analysis of selected benchmarks for Th-U fuel cycle

  8. Recycling Carbon Dioxide into Sustainable Hydrocarbon Fuels: Electrolysis of Carbon Dioxide and Water

    Science.gov (United States)

    Graves, Christopher Ronald

    Great quantities of hydrocarbon fuels will be needed for the foreseeable future, even if electricity based energy carriers begin to partially replace liquid hydrocarbons in the transportation sector. Fossil fuels and biomass are the most common feedstocks for production of hydrocarbon fuels. However, using renewable or nuclear energy, carbon dioxide and water can be recycled into sustainable hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. The purpose of this work was to develop critical components of a system that recycles CO2 into liquid hydrocarbon fuels. The concept is examined at several scales, beginning with a broad scope analysis of large-scale sustainable energy systems and ultimately studying electrolysis of CO 2 and H2O in high temperature solid oxide cells as the heart of the energy conversion, in the form of three experimental studies. The contributions of these studies include discoveries about electrochemistry and materials that could significantly improve the overall energy use and economics of the CO2-to-fuels system. The broad scale study begins by assessing the sustainability and practicality of the various energy carriers that could replace petroleum-derived hydrocarbon fuels, including other hydrocarbons, hydrogen, and storage of electricity on-board vehicles in batteries, ultracapacitors, and flywheels. Any energy carrier can store the energy of any energy source. This sets the context for CO2 recycling -- sustainable energy sources like solar and wind power can be used to provide the most energy-dense, convenient fuels which can be readily used in the existing infrastructure. The many ways to recycle CO2 into hydrocarbons, based on thermolysis, thermochemical loops, electrolysis, and photoelectrolysis of CO2 and/or H 2O, are critically reviewed. A process based on high temperature co

  9. Removal of carbon dioxide in reprocessing spent nuclear fuel off gas by adsorption

    International Nuclear Information System (INIS)

    Fukumatsu, Teruki; Munakata, Kenzo; Tanaka, Kenji; Yamatsuki, Satoshi; Nishikawa, Masabumi

    1998-01-01

    The off gas produced by reprocessing spent nuclear fuel includes various radioactivities and these nuclei should be removed. In particular, 14 C mainly released as the form of carbon dioxide is one of the most required gaseous radioactivities to be removed because it has long a half-life. One of the methods to remove gaseous nuclei is the use of adsorption technique. The off gas contains water vapor which influences adsorption process of carbon dioxide. In this report, behavior of adsorption of carbon dioxide on various adsorbent and influence on adsorption behavior of carbon dioxide by containing water vapor are discussed. (author)

  10. Residential carbon dioxide emissions in Canada. Impact of efficiency improvements and fuel substitution

    International Nuclear Information System (INIS)

    Ugursal, V.I.; FUng, A.S.

    1998-01-01

    The effect of improving house envelope, heating system and appliance efficiencies, and fuel substitution on the atmospheric emissions of carbon dioxide in the Canadian residential sector is studied based on simulation studies. The findings clearly indicate that improving appliance efficiency reduces the overall end-use energy consumption in the residential sector as well as the associated carbon dioxide emissions. However, the magnitude of the reduction in carbon dioxide emissions as a result of improving only appliance efficiencies is quite small. Significantly larger reductions can be obtained by improving house envelopes and heating/cooling systems in addition to improving appliance efficiencies. Fuel substitution for space and domestic hot water heating can also present a potential to reduce carbon dioxide emissions depending on the fuel substitution scenario adopted. (author)

  11. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide.

    Science.gov (United States)

    Walker, J C; Kasting, J F

    1992-01-01

    We develop a numerical simulation of the global biogeochemical cycles of carbon that works over time scales extending from years to millions of years. The ocean is represented by warm and cold shallow water reservoirs, a thermocline reservoir, and deep Atlantic, Indian, and Pacific reservoirs. The atmosphere is characterized by a single carbon reservoir and the global biota by a single biomass reservoir. The simulation includes the rock cycle, distinguishing between shelf carbonate and pelagic carbonate precipitation, with distinct lysocline depths in the three deep ocean reservoirs. Dissolution of pelagic carbonates in response to decrease in lysocline depth is included. The simulation is tuned to reproduce the observed radiocarbon record resulting from atomic weapon testing. It is tuned also to reproduce the distribution of dissolved phosphate and total dissolved carbon between the ocean reservoirs as well as the carbon isotope ratios for both 13C and 14C in ocean and atmosphere. The simulation reproduces reasonably well the historical record of carbon dioxide partial pressure as well as the atmospheric isotope ratios for 13C and 14C over the last 200 yr as these have changed in response to fossil fuel burning and land use changes, principally forest clearance. The agreements between observation and calculation involves the assumption of a carbon dioxide fertilization effect in which the rate of production of biomass increases with increasing carbon dioxide partial pressure. At present the fertilization effect of increased carbon dioxide outweighs the effects of forest clearance, so the biota comprises an overall sink of atmospheric carbon dioxide sufficiently large to bring the budget approximately into balance. This simulation is used to examine the future evolution of carbon dioxide and its sensitivity to assumptions about the rate of fossil fuel burning and of forest clearance. Over times extending up to thousands of years, the results are insensitive to the

  12. Thermal Cycling of Uranium Dioxide - Tungsten Cermet Fuel Specimens

    Energy Technology Data Exchange (ETDEWEB)

    Gripshover, P.J.; Peterson, J.H.

    1969-12-08

    In phase I tungsten clad cermet fuel specimens were thermal cycled, to study the effects of fuel loading, fuel particle size, stablized fuel, duplex coatings, and fabrication techniques on dimensional stability during thermal cycling. In phase II the best combination of the factors studies in phase I were combined in one specimen for evaluation.

  13. Minimization of the fission product waste by using thorium based fuel instead of uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, A. Abdelghafar, E-mail: Agalahom@yahoo.com

    2017-04-01

    This research discusses the neutronic characteristics of VVER-1200 assembly fueled with five different fuel types based on thorium. These types of fuel based on mixing thorium as a fertile material with different fissile materials. The neutronic characteristics of these fuels are investigated by comparing their neutronic characteristics with the conventional uranium dioxide fuel using the MCNPX code. The objective of this study is to reduce the production of long-lived actinides, get rid of plutonium component and to improve the fuel cycle economy while maintaining acceptable values of the neutronic safety parameters such as moderator temperature coefficient, Doppler coefficient and effective delayed neutrons (β). The thorium based fuel has a more negative Doppler coefficient than uranium dioxide fuel. The moderator temperature coefficient (MTC) has been calculated for the different proposed fuels. Also, the fissile inventory ratio has been calculated at different burnup step. The use of Th-232 as a fertile material instead of U-238 in a nuclear fuel is the most promising fuel in VVER-1200 as it is the ideal solution to avoid the production of more plutonium components and long-lived minor actinides. The reactor grade plutonium accumulated in light water reactor with burnup can be recycled by mixing it with Th-232 to fuel the VVER-1200 assembly. The concentrations of Xe-135 and Sm-151 have been investigated, due to their high thermal neutron absorption cross section.

  14. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    Directory of Open Access Journals (Sweden)

    R. J. Andres

    2012-05-01

    Full Text Available This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e., maps; how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10 % uncertainty (95 % confidence interval. Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. This manuscript concludes that carbon dioxide emissions from fossil-fuel combustion continue to increase with time and that while much is known about the overall characteristics of these emissions, much is still to be learned about the detailed characteristics of these emissions.

  15. Boron nitride coated uranium dioxide and uranium dioxide-gadolinium oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gunduz, G [Department of Chemical Engineering, Middle East Technical Univ., Ankara (Turkey); Uslu, I; Tore, C; Tanker, E [Turkiye Atom Enerjisi Kurumu, Ankara (Turkey)

    1997-08-01

    Pure Urania and Urania-gadolinia (5 and 10%) fuels were produced by sol-gel technique. The sintered fuel pellets were then coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron trichloride and ammonia. The coated samples were sintered at 1600 K. The analyses under scanning electron microscope (SEM) showed a variety of BN structures, mainly platelike and rodlike structures were observed. Burnup calculations by using WIMSD4 showed that BN coated and gadolinia containing fuels have larger burnups than other fuels. The calculations were repeated at different pitch distances. The change of the radius of the fuel pellet or the moderator/fuel ratio showed that BN coated fuel gives the highest burnups at the present design values of a PWR. Key words: burnable absorber, boron nitride, gadolinia, CVT, nuclear fuel. (author). 32 refs, 14 figs.

  16. Boron nitride coated uranium dioxide and uranium dioxide-gadolinium oxide fuels

    International Nuclear Information System (INIS)

    Gunduz, G.; Uslu, I.; Tore, C.; Tanker, E.

    1997-01-01

    Pure Urania and Urania-gadolinia (5 and 10%) fuels were produced by sol-gel technique. The sintered fuel pellets were then coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron trichloride and ammonia. The coated samples were sintered at 1600 K. The analyses under scanning electron microscope (SEM) showed a variety of BN structures, mainly platelike and rodlike structures were observed. Burnup calculations by using WIMSD4 showed that BN coated and gadolinia containing fuels have larger burnups than other fuels. The calculations were repeated at different pitch distances. The change of the radius of the fuel pellet or the moderator/fuel ratio showed that BN coated fuel gives the highest burnups at the present design values of a PWR. Key words: burnable absorber, boron nitride, gadolinia, CVT, nuclear fuel. (author). 32 refs, 14 figs

  17. Sustainability of thorium-uranium in pebble-bed fluoride salt-cooled High Temperature Reactor - 15171

    International Nuclear Information System (INIS)

    Zhu, G.; Zou, Y.; Xu, Hongjie

    2015-01-01

    Sustainability of thorium fuel in a pebble-bed fluoride salt-cooled high temperature reactor (PB-FHR) is investigated to find the feasible region of high discharge burnup and negative FLiBe (2LiF-BeF 2 ) salt temperature reactivity coefficient (TRC). Dispersion fuel or pellet fuel with SiC cladding and SiC matrix is used to replace the tri-structural-isotropic (TRISO) coated particle system for increasing heavy metal loading and decreasing excessive moderation. In order to analyze the neutronic characteristics, an equilibrium calculation method of thorium fuel self-sustainability is developed. We have compared 2 refueling schemes (mixing flow pattern and directional flow pattern) and 2 kinds of reflector materials (SiC and graphite). This method has found that the feasible regions of breeding and negative FLiBe TRC is between 20 vol% and 62 vol% heavy metal loading in the fuel. A discharge burnup could be achieved up to about 200 MWd/kgHM. The case with directional flow pattern and SiC reflector showed superior burnup characteristics but the worst radial power peak factor, while the case with mixing flow pattern and SiC reflector, which was the best tradeoff between discharge burnup and radial power peak factor, could provide burnup of 140 MWd/kgHM and about 1.4 radial power peak factor with 50 vol% dispersion fuel. In addition, FLiBe salt displays good neutron properties as a coolant of quasi-fast reactors due to the strong 9 Be(n,2n) reaction and low neutron absorption of 6 Li (even at 1000 ppm) in fast spectrum. Preliminary thermal hydraulic calculation shows good safety margins. The greatest challenge of this reactor may be the very long irradiation time of the pebble fuel. (authors)

  18. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    DEFF Research Database (Denmark)

    Andres, R.J.; Boden, T.A.; Bréon, F.-M.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms......; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions......, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossilfuel carbon dioxide emissions are known to within 10% uncertainty (95% confidence interval). Uncertainty on individual national total fossil-fuel carbon...

  19. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    This chapter explains the distinction between fissile and fertile materials, examines briefly the processes involved in fuel manufacture and management, describes the alternative nuclear fuel cycles and considers their advantages and disadvantages. Fuel management is usually divided into three stages; the front end stage of production and fabrication, the back end stage which deals with the fuel after it is removed from the reactor (including reprocessing and waste treatment) and the stage in between when the fuel is actually in the reactor. These stages are illustrated and explained in detail. The plutonium fuel cycle and thorium-uranium-233 fuel cycle are explained. The differences between fuels for thermal reactors and fast reactors are explained. (U.K.)

  20. Safety analysis report of uranium dioxide fuel laboratory, Nuclear Research Centre Inchas, Egypt

    International Nuclear Information System (INIS)

    Abdel-Azim, M.S.; Abdel-Halim, A.

    1987-07-01

    In the Nuclear Research Center Inchas a uranium dioxide fuel laboratory is planned and built by the AEA Cairo (Atomic Energy Authority). The layout of this fuel lab and the programmatical contents are subject to the bilaterial cooperation between Egypt and the Federal Republic of Germany. In this report the safety analysis as basic items for the approval procedure are started in detail. (orig.) [de

  1. A study of the use of seeded ultrafiltration for the treatment of Thorium-uranium mining waste streams

    International Nuclear Information System (INIS)

    El-Sourougy, M.R.; Hooper, E.W.

    1994-01-01

    The use of seeded ultrafiltration for the treatment of radioactive waste streams arising from the nuclear industry has demonstrated its high potential as an efficient process for the removal of radionuclides present in the radwaste streams. The experimental data on simulated mining streams has given indications on the suitability of this technique for the treatment of mining waste streams. The results also show that the proper choice of absorbers can reduce not only the radioactivity level but also remove most of the products of both the thorium and uranium decay series. Decontamination factor (DF) for the system using manganese dioxide (MnO 2 ) are only slightly affected by the preparation method. On the contrary, the DF achieved using titanium hydroxide (HTiO) absorber was found to be dependent on the preparation method. The experimental data shows that total activity levels can be reduced to below detection limit (3E-3Bq/ml). The extent of decontamination of thorium containing waste streams was found to be dependent on the absorber used; in the order Diuranate > HTiO > Fe(OH) 3 > MnO 2 . The use of HTiO reduced the decay product activity of almost all the thorium daughters to nearly background levels. A DF of the order of 300 can easily be achieved using diuranate floc

  2. Method and device for the dry preparation of ceramic uranium dioxide nuclear fuel wastes

    International Nuclear Information System (INIS)

    Pirk, H.; Roepenack, H.; Goeldner, U.

    1977-01-01

    Reprocessing of waste, resulting from the production of ceramic sintered bodies from uranium dioxide for use as nuclear fuel, in a dry process into very finely dispersed pure U 3 O 8 powder may be improved by applying vibrating screening during oxidation. An appropriate device is described. (UWI) [de

  3. Design of a boiling water reactor core based on an integrated blanket-seed thorium-uranium concept

    International Nuclear Information System (INIS)

    Nunez-Carrera, Alejandro; Francois, Juan Luis; Martin-del-Campo, Cecilia; Espinosa-Paredes, Gilberto

    2005-01-01

    This paper is concerned with the design of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material in an integrated blanket-seed (BS) assembly. The integrated BS concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned out in a once-through cycle. The idea behind the lattice design is to use the thorium conversion capability in a BWR spectrum, taking advantage of the 233 U build-up. A core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average 235 U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the fuel assembly

  4. Characterisation and final disposal behaviour of theoria-based fuel kernels in aqueous phases

    International Nuclear Information System (INIS)

    Titov, M.

    2005-08-01

    Two high-temperature reactors (AVR and THTR) operated in Germany have produced about 1 million spent fuel elements. The nuclear fuel in these reactors consists mainly of thorium-uranium mixed oxides, but also pure uranium dioxide and carbide fuels were tested. One of the possible solutions of utilising spent HTR fuel is the direct disposal in deep geological formations. Under such circumstances, the properties of fuel kernels, and especially their leaching behaviour in aqueous phases, have to be investigated for safety assessments of the final repository. In the present work, unirradiated ThO 2 , (Th 0.906 ,U 0.094 )O 2 , (Th 0.834 ,U 0.166 )O 2 and UO 2 fuel kernels were investigated. The composition, crystal structure and surface of the kernels were investigated by traditional methods. Furthermore, a new method was developed for testing the mechanical properties of ceramic kernels. The method was successfully used for the examination of mechanical properties of oxide kernels and for monitoring their evolution during contact with aqueous phases. The leaching behaviour of thoria-based oxide kernels and powders was investigated in repository-relevant salt solutions, as well as in artificial leachates. The influence of different experimental parameters on the kernel leaching stability was investigated. It was shown that thoria-based fuel kernels possess high chemical stability and are indifferent to presence of oxidative and radiolytic species in solution. The dissolution rate of thoria-based materials is typically several orders of magnitude lower than of conventional UO 2 fuel kernels. The life time of a single intact (Th,U)O 2 kernel under aggressive conditions of salt repository was estimated as about hundred thousand years. The importance of grain boundary quality on the leaching stability was demonstrated. Numerical Monte Carlo simulations were performed in order to explain the results of leaching experiments. (orig.)

  5. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels

    DEFF Research Database (Denmark)

    Shaffer, G.; Olsen, S.M.; Pedersen, Jens Olaf Pepke

    2009-01-01

    Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion and assoc......Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion...... solubility from surface-layer warming accounts for most of the enhanced oxygen depletion in the upper 500 m of the ocean. Possible weakening of ocean overturning and convection lead to further oxygen depletion, also in the deep ocean. We conclude that substantial reductions in fossil-fuel use over the next...

  6. Automobiles and global warming: Alternative fuels and other options for carbon dioxide emissions reduction

    International Nuclear Information System (INIS)

    Sagar, A.D.

    1995-01-01

    Automobiles are a source of considerable pollution at the global level, including a significant fraction of the total greenhouse gas emissions. Alternative fuels have received some attention as potential options to curtail the carbon dioxide emissions from motor vehicles. This article discusses the feasibility and desirability (from a technical as well as a broader environmental perspective) of the large-scale production and use of alternative fuels as a strategy to mitigate automotive carbon dioxide emissions. Other options such as improving vehicle efficiency and switching to more efficient modes of passenger transportation are also discussed. These latter options offer an effective and immediate way to tackle the greenhouse and other pollutant emission from automobiles, especially as the limitations of currently available alternative fuels and the technological and other constraints for potential future alternatives are revealed

  7. Improving the neutronic characteristics of a boiling water reactor by using uranium zirconium hydride fuel instead of uranium dioxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, Ahmed Abdelghafar [Higher Technological Institute, Ramadan (Egypt)

    2016-06-15

    The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide (UO{sub 2}) and uranium zirconium hydride (UZrH{sub 1.6}) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with UO{sub 2} contains 8 × 8 fuel rods while that fueled with UZrH{sub 1.6} contains 9 × 9 fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. UZrH{sub 1.6} fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.

  8. The Seasonal and Spatial Distribution of Carbon Dioxide Emissions from Fossil Fuels in Asia

    Science.gov (United States)

    Gregg, J. S.; Andres, R. J.

    2006-12-01

    Carbon dioxide emissions from fossil-fuel consumption are presented for the five Asian countries that are among the global leaders in anthropogenic carbon emissions: China (13% of global total), Japan (5% of global total), India (5% of global total), South Korea (2% of global total), and Indonesia (1% of global total). Together, these five countries represent over a quarter of the world's fossil-fuel based carbon emissions. Moreover, these countries are rapidly developing and energy demand has grown dramatically in the last two decades. A method is developed to estimate the spatial and seasonal flux of fossil-fuel consumption, thereby greatly improving the temporal and spatial resolution of anthropogenic carbon dioxide emissions. Currently, only national annual data for anthropogenic carbon emissions are available, and as such, no understanding of seasonal or sub-national patterns of emissions are possible. This methodology employs fuel distribution data from representative sectors of the fossil-fuel market to determine the temporal and spatial patterns of fuel consumption. These patterns of fuel consumption are then converted to patterns of carbon emissions. The annual total emissions estimates produced by this method are consistent to those maintained by the United Nations. Improved estimates of temporal and spatial resolution of the human based carbon emissions allows for better projections about future energy demands, carbon emissions, and ultimately the global carbon cycle.

  9. Assessment of uranium dioxide fuel performance with the addition of beryllium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Muniz, Rafael O.R.; Abe, Alfredo; Gomes, Daniel S.; Silva, Antonio T., E-mail: romuniz@usp.br, E-mail: ayabe@ipen.br, E-mail: danieldesouza@gmail.com, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (LabRisco/USP), Sao Paulo, SP (Brazil). Lab. de Análise, Avaliação e Gerenciamento de Risco; Aguiar, Amanda A., E-mail: amanda.abati.aguiar@gmail.com [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil)

    2017-07-01

    The Fukushima Daiichi accident in 2011 pointed the problem related to the hydrogen generation under accident scenarios due to the oxidation of zirconium-based alloys widely used as fuel rod cladding in water-cooled reactors. This problem promoted research programs aiming the development of accident tolerant fuels (ATF) which are fuels that under accident conditions could keep longer its integrity enabling the mitigation of the accident effects. In the framework of the ATF program, different materials have been studied to be applied as cladding to replace zirconium-based alloy; also efforts have been made to improve the uranium dioxide thermal conductivity doping the fuel pellet. This paper evaluates the addition of beryllium oxide (BeO) to the uranium dioxide in order to enhance the thermal conductivity of the fuel pellet. Investigations performed in this area considering the addition of 10% in volume of BeO, resulting in the UO{sub 2}-BeO fuel, have shown good results with the improvement of the fuel thermal conductivity and the consequent reduction of the fuel temperatures under irradiation. In this paper, two models obtained from open literature for the thermal conductivity of UO{sub 2}- BeO fuel were implemented in the FRAPCON 3.5 code and the results obtained using the modified code versions were compared. The simulations were carried out using a case available in the code documentation related to a typical pressurized water reactor (PWR) fuel rod irradiated under steady state condition. The results show that the fuel centerline temperatures decrease with the addition of BeO, when compared to the conventional UO{sub 2} pellet, independent of the model applied. (author)

  10. Study on the production of alternative fuels by carbon dioxide hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Kyu Sung; Han, Sang Do; Kim, Jong Won; Kim, Youn Soon; Seo, Ji Mi [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The technologies of the fuel production from carbon dioxide by catalytic hydrogenation were surveyed. For the catalytic hydrogenation we made the lab-scale reaction apparatus and carried out some experiments with various catalysts like CuO/ZnO/Al{sub 2}O{sub 3}, Raney nickel and other commercial catalysts. In this year, the third year of the project, the experiments to find optimum catalysts and obtain the good conditions of carbon dioxide were performed followed by second year. And also the processes of the methanol synthesis was investigated simultaneously. (author). 58 refs., 58 figs., 28 tabs.

  11. Carbon dioxide emission index as a mean for assessing fuel quality

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. [IMAF Group, Ottawa, ON (Canada)

    2008-07-01

    Carbon dioxide emission index, defined as the amount of CO{sub 2} released per unit of energy value, was used to rate gaseous, liquid and solid fuels. The direct utilization of natural gas is the most efficient option. The conversion of natural gas to synthesis gas for production of liquid fuels represents a significant decrease in fuel value of the former. The fuel value of liquids, such as gasoline, diesel oil, etc. is lower than that of natural gas. Blending gasoline with ethanol obtained either from bio-mass or via synthesis may decrease fuel value of the blend when CO{sub 2} emissions produced during the production of ethanol are included in total emissions. The introduction of liquid fuels produced by pyrolysis and liquefaction of biomass would result in the increase in the CO{sub 2} emissions. The CO{sub 2} emissions from the utilization of coal and petroleum coke are much higher than those from gaseous and liquid fuels. However, for petroleum coke, this is offset by the high value gaseous and liquid fuels that are simultaneously produced during coking. Conversion of low value fuels such as coal and petroleum coke to a high value chemicals via synthesis gas should be assessed as means for replacing natural gas and making it available for fuel applications.

  12. A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission

    Directory of Open Access Journals (Sweden)

    Robert J. Andres

    2014-07-01

    Full Text Available Three uncertainty assessments associated with the global total of carbon dioxide emitted from fossil fuel use and cement production are presented. Each assessment has its own strengths and weaknesses and none give a full uncertainty assessment of the emission estimates. This approach grew out of the lack of independent measurements at the spatial and temporal scales of interest. Issues of dependent and independent data are considered as well as the temporal and spatial relationships of the data. The result is a multifaceted examination of the uncertainty associated with fossil fuel carbon dioxide emission estimates. The three assessments collectively give a range that spans from 1.0 to 13% (2 σ. Greatly simplifying the assessments give a global fossil fuel carbon dioxide uncertainty value of 8.4% (2 σ. In the largest context presented, the determination of fossil fuel emission uncertainty is important for a better understanding of the global carbon cycle and its implications for the physical, economic and political world.

  13. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31

    This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter

  14. Fracture toughness of WWER Uranium dioxide fuel pellets with various grain size

    International Nuclear Information System (INIS)

    Sivov, R.; Novikov, V.; Mikheev, E.; Fedotov, A.

    2015-01-01

    Uranium dioxide fuel pellets with grain sizes 13, 26, and 33 μm for WWER were investigated in the present work in order to determine crack formation and the fracture toughness.The investigation of crack formation in uranium oxide fuel pellets of the WWER-types showed that Young’s modulus and the microhardness of polycrystalline samples increase with increasing grain size, while the fracture toughness decreases. Characteristically, radial Palmqvist cracks form on the surface of uranium dioxide pellets for loads up to 1 kg. Transgranular propagation of cracks over distances several-fold larger than the length of the imprint diagonal is observed in pellets with large grains and small intragrain pores. Intergranular propagation of cracks along grain boundaries with branching occurs in pellets with small grains and low pore concentration on the grain boundaries. Blunting on large pores and at breaks in direction does not permit the cracks to reach a significant length

  15. An oxyde mixture fuel containing uranium and plutonium dioxides and process to obtain this oxyde mixture

    International Nuclear Information System (INIS)

    Hannerz, K.

    1976-01-01

    An oxide-mixture fuel containing uranium and plutonium dioxides having the slage of spherical, or nearly spherical, oxide-mixture particles with a diameter within the range of from 0.2 to 2 mn charactarized in that each oxide-mixture particles is provided with an outer layer comprising mainly UO2, the thickness of which is at least 0.05; whereas the inner portion of the oxide-mixture particles comprises mainly PUO 2

  16. Thorium-uranium fission radiography

    Science.gov (United States)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  17. Proceedings of the 9. international conference on health effects of incorporated radionuclides emphasis on radium, thorium, uranium and their daughter products - HEIR 2004

    Energy Technology Data Exchange (ETDEWEB)

    Oeh, U.; Roth, P.; Paretzke, H.G. (eds.) [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany)

    2005-07-01

    The ninth international conference on 'Health Effects of Incorporated Radionuclides - Emphasis on Radium, Thorium, Uranium and their Daughter Products' HEIR 2004 was held at GSF-National Research Center for Environment and Health, Neuherberg, Germany, from November 29 until December 1, 2004. The growing popularity of this topic among the scientific community, especially the radiation protection community, was demonstrated by the largest number of participants in comparison to the earlier conferences. In all, there were 157 participants from 20 different countries of the world. In the conference 62 scientific and 12 poster presentations were included in 13 sessions. The scope of the conference covered studies related to the long-term follow-up of thorotrast subjects in Japan, Germany and Portugal, and also of the subjects exposed to Ra-224 for the treatment of bone tuberculosis and ankylosing spondylitis. The studies and discussions on these topics are important in view of the large number of liver cancers observed in the thorotrast patients and the number of bone cancers in the cases treated with Ra-224. A growth stunting was also observed for the subjects who received the Ra-224 injections early in their lives. Besides atom bomb survivors, the data from thorotrast patients could well help towards a better understanding of the health effects of irradiations. In addition to the scientific presentations on the above topics, there were a number of presentations on the incidence of lung cancer from radon exposure of miners and plutonium exposures causing lung cancer among the Mayak workers in the Russian Federation. Other stimulating presentations were on the tissue damaging mechanisms of alpha particles, having very high L.E.T., and also the related radiation weighting factor in comparison to beta and gamma radiations. There were also interesting presentations on the topics of uncertainties involved in the internal dose assessment from radiation exposure and

  18. Proceedings of the 9. international conference on health effects of incorporated radionuclides emphasis on radium, thorium, uranium and their daughter products - HEIR 2004

    International Nuclear Information System (INIS)

    Oeh, U.; Roth, P.; Paretzke, H.G.

    2005-01-01

    The ninth international conference on 'Health Effects of Incorporated Radionuclides - Emphasis on Radium, Thorium, Uranium and their Daughter Products' HEIR 2004 was held at GSF-National Research Center for Environment and Health, Neuherberg, Germany, from November 29 until December 1, 2004. The growing popularity of this topic among the scientific community, especially the radiation protection community, was demonstrated by the largest number of participants in comparison to the earlier conferences. In all, there were 157 participants from 20 different countries of the world. In the conference 62 scientific and 12 poster presentations were included in 13 sessions. The scope of the conference covered studies related to the long-term follow-up of thorotrast subjects in Japan, Germany and Portugal, and also of the subjects exposed to Ra-224 for the treatment of bone tuberculosis and ankylosing spondylitis. The studies and discussions on these topics are important in view of the large number of liver cancers observed in the thorotrast patients and the number of bone cancers in the cases treated with Ra-224. A growth stunting was also observed for the subjects who received the Ra-224 injections early in their lives. Besides atom bomb survivors, the data from thorotrast patients could well help towards a better understanding of the health effects of irradiations. In addition to the scientific presentations on the above topics, there were a number of presentations on the incidence of lung cancer from radon exposure of miners and plutonium exposures causing lung cancer among the Mayak workers in the Russian Federation. Other stimulating presentations were on the tissue damaging mechanisms of alpha particles, having very high L.E.T., and also the related radiation weighting factor in comparison to beta and gamma radiations. There were also interesting presentations on the topics of uncertainties involved in the internal dose assessment from radiation exposure and the

  19. Proceedings of the 9. international conference on health effects of incorporated radionuclides emphasis on radium, thorium, uranium and their daughter products - HEIR 2004

    Energy Technology Data Exchange (ETDEWEB)

    Oeh, U; Roth, P; Paretzke, H G [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany)

    2005-07-01

    The ninth international conference on 'Health Effects of Incorporated Radionuclides - Emphasis on Radium, Thorium, Uranium and their Daughter Products' HEIR 2004 was held at GSF-National Research Center for Environment and Health, Neuherberg, Germany, from November 29 until December 1, 2004. The growing popularity of this topic among the scientific community, especially the radiation protection community, was demonstrated by the largest number of participants in comparison to the earlier conferences. In all, there were 157 participants from 20 different countries of the world. In the conference 62 scientific and 12 poster presentations were included in 13 sessions. The scope of the conference covered studies related to the long-term follow-up of thorotrast subjects in Japan, Germany and Portugal, and also of the subjects exposed to Ra-224 for the treatment of bone tuberculosis and ankylosing spondylitis. The studies and discussions on these topics are important in view of the large number of liver cancers observed in the thorotrast patients and the number of bone cancers in the cases treated with Ra-224. A growth stunting was also observed for the subjects who received the Ra-224 injections early in their lives. Besides atom bomb survivors, the data from thorotrast patients could well help towards a better understanding of the health effects of irradiations. In addition to the scientific presentations on the above topics, there were a number of presentations on the incidence of lung cancer from radon exposure of miners and plutonium exposures causing lung cancer among the Mayak workers in the Russian Federation. Other stimulating presentations were on the tissue damaging mechanisms of alpha particles, having very high L.E.T., and also the related radiation weighting factor in comparison to beta and gamma radiations. There were also interesting presentations on the topics of uncertainties involved in the internal dose assessment from radiation exposure and the

  20. A new mechanistic and engineering fission gas release model for a uranium dioxide fuel

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Yang, Yong Sik; Kim, Dae Ho; Kim, Sun Ki; Bang, Je Geun

    2008-01-01

    A mechanistic and engineering fission gas release model (MEGA) for uranium dioxide (UO 2 ) fuel was developed. It was based upon the diffusional release of fission gases from inside the grain to the grain boundary and the release of fission gases from the grain boundary to the external surface by the interconnection of the fission gas bubbles in the grain boundary. The capability of the MEGA model was validated by a comparison with the fission gas release data base and the sensitivity analyses of the parameters. It was found that the MEGA model correctly predicts the fission gas release in the broad range of fuel burnups up to 98 MWd/kgU. Especially, the enhancement of fission gas release in a high-burnup fuel, and the reduction of fission gas release at a high burnup by increasing the UO 2 grain size were found to be correctly predicted by the MEGA model without using any artificial factor. (author)

  1. Critical experiments simulating accidental water immersion of highly enriched uranium dioxide fuel elements

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Glushkov, L.S.

    2003-01-01

    The paper focuses on experimental analysis of nuclear criticality safety at accidental water immersion of fuel elements of the Russian TOPAZ-2 space nuclear power system reactor. The structure of water-moderated heterogeneous critical assemblies at the NARCISS facility is described in detail, including sizes, compositions, densities of materials of the main assembly components for various core configurations. Critical parameters of the assemblies measured for varying number of fuel elements, height of fuel material in fuel elements and their arrangement in the water moderator with a uniform or variable spacing are presented. It has been found from the experiments that at accidental water immersion of fuel elements involved, the minimum critical mass equal to approximately 20 kg of uranium dioxide is achieved at 31-37 fuel elements. The paper gives an example of a physical model of the water-moderated heterogeneous critical assembly with a detailed characterization of its main components that can be used for calculations using different neutronic codes, including Monte Carlo ones. (author)

  2. The potential role of alcohol fuels in reducing carbon dioxide emissions

    International Nuclear Information System (INIS)

    Duff, S.J.B.

    1991-01-01

    Atmospheric concentrations of CO 2 have increased from 280 to 350 mg/l over the past two hundred years. One of the principal causes has been the increased reliance on combustion of fossil fuels to generate energy. Higher CO 2 levels have been historically correlated with warming of the earth. While attempts have been made to quantify and model the relationships between carbon dioxide emissions, atmospheric CO 2 concentrations, and global climate changes, the state of the current knowledge base is such that large uncertainties persist. It is precisely these uncertainties which has evoked justifiable concern among the scientific community. The use of biomass fuels such as alcohols can provide a partial solution to the problem of increasing emissions of CO 2 . Combustion of biomass fuels releases carbon previously sequestered from the atmosphere during growth. There is a cycling of carbon, with net additions to the atmosphere resulting only from losses, or the use of fossil fuels for process energy. Alcohol fuels can make their biggest impact in the transportation sector, which, in industrial nations, contributes up to 32% of CO 2 emissions. While not the complete answer, alcohol fuels can make a significant impact, and will no doubt be one factor in a multidimensional approach to reducing CO 2 emissions. 17 refs., 4 figs., 10 tabs

  3. Particle and carbon dioxide emissions from passenger vehicles operating on unleaded petrol and LPG fuel

    International Nuclear Information System (INIS)

    Ristovski, Z.D.; Jayaratne, E.R.; Morawska, L.; Ayoko, G.A.; Lim, M.

    2005-01-01

    A comprehensive study of the particle and carbon dioxide emissions from a fleet of six dedicated liquefied petroleum gas (LPG) powered and five unleaded petrol (ULP) powered new Ford Falcon Forte passenger vehicles was carried out on a chassis dynamometer at four different vehicle speeds-0 (idle), 40, 60, 80 and 100 km h -1 . Emission factors and their relative values between the two fuel types together with a statistical significance for any difference were estimated for each parameter. In general, LPG was found to be a 'cleaner' fuel, although in most cases, the differences were not statistically significant owing to the large variations between emissions from different vehicles. The particle number emission factors ranged from 10 11 to 10 13 km -1 and was over 70% less with LPG compared to ULP. Corresponding differences in particle mass emission factor between the two fuels were small and ranged from the order of 10 μg km -1 at 40 to about 1000 μg km -1 at 100 km h -1 . The count median particle diameter (CMD) ranged from 20 to 35 nm and was larger with LPG than with ULP in all modes except the idle mode. Carbon dioxide emission factors ranged from about 300 to 400 g km -1 at 40 km h -1 , falling with increasing speed to about 200 g km -1 at 100 km h -1 . At all speeds, the values were 10% to 18% greater with ULP than with LPG

  4. Reducing the rate of carbon dioxide buildup with biomass fuel under climate change

    International Nuclear Information System (INIS)

    Peart, R.; Curry, R.; Jones, J.; Boote, K.; Allen, L.

    1993-01-01

    The authors have been working for several years on estimating, through crop simulation and crop growth chamber experiments, the changes in yield and in irrigation demand which would be brought about by a doubling of atmospheric greenhouse gases, given the results of three General Circulation Models (GCM) that simulate the climate change that would be expected. They are now beginning to study the impact this might have in relation to biomass fuels. An important question is the effect of the changed climate on crop production, would the increased carbon dioxide concentration outweigh the negative climate change effects on crop yields? Results are quite variable due to different climate change effects at different locations and the differences in historical weather and in soils in different locations. However, on balance, climate change would result in reduced yields of the crops we studied, soybean, maize and peanut. However, US production of these crops could be maintained or increased by the use of irrigation on more acres. Irrigated crops, in general, would have increased yields under climate change because of the increased photosynthetic efficiency with higher carbon dioxide levels. Results on net remediation of carbon dioxide buildup by the use of biomass fuel rather than fossil fuel are not completed, but previous work has shown that Midwest non-irrigated maize production provides much more equivalent biomass energy than is required for its production. The studies with soybean show a ratio of equivalent energy output in the seed to energy used in producing the crop ranging from 4 to almost 9 under climate change

  5. FAST: a combined NOC and transient fuel performance model using a commercial FEM environment

    Energy Technology Data Exchange (ETDEWEB)

    Prudil, A.; Bell, J.; Oussoren, A.; Chan, P. [Royal Military College of Canada, Kingston, ON (Canada); Lewis, B. [Univ. of Ontario Inst. of Tech., Oshawa, ON (Canada)

    2014-07-01

    The Fuel And Sheath modelling Tool (FAST) is a combined normal operating conditions (NOC) and transient fuel performance code developed on the COMSOL Multiphysics finite-element platform. The FAST code has demonstrated excellent performance in proof of concept validation tests against experimental data and comparison to the ELESIM, ELESTRES and ELOCA fuel performance codes. In this paper we discuss ongoing efforts to expand the capabilities of the code to include multiple pellet geometries, model stress-corrosion cracking phenomena and modelling of advanced fuels composed of mixed oxides of thorium, uranium, and plutonium for the Canadian Supercritical Water Reactor (SCWR). (author)

  6. Sinusoidal potential cycling operation of a direct ethanol fuel cell to improving carbon dioxide yields

    Science.gov (United States)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    A direct ethanol fuel cell has been operated under sinusoidal (AC) potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At 80 °C, faradaic yields of CO2 as high as 25% have been achieved with a PtRu anode catalyst, while the maximum CO2 production at constant potential was 13%. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO. These results will be important in the optimization of operating conditions for direct ethanol fuel cells, where the benefits of potential cycling are projected to increase as catalysts that produce CO2 more efficiently are implemented.

  7. Carbon dioxide emissions from fossil-fuel use, 1751-1950

    Energy Technology Data Exchange (ETDEWEB)

    Andres, R.J.; Fielding, D.J.; Marland, G.; Boden, T.A.; Kumar, N.; Kearney, A.T. [University of Alaska, Fairbanks, AK (US). Inst. of Northern Engineering

    1999-09-01

    Newly compiled energy statistics allow the complete time series of carbon dioxide (CO{sub 2}) emissions from fossil-fuel use for the years 1751 to the present to be estimated. The time series begins with 3 x 10{sup 6} metric tonnes carbon (C). The CO{sub 2} flux increased exponentially until World War I. The time series derived here seamlessly joins the modern 1950 to present time series. Total cumulative CO{sub 2} emissions through 1949 were 61.0 x 10{sup 9} tonne C from fossil-fuel use, virtually all since the beginning of the Industrial Revolution around 1860. The rate of growth continues to grow during present times, generating debate on the probability of enhanced greenhouse warming. In addition to global totals, national totals and 1 degree global distributions of the data have been calculated.

  8. Chemical processing of HTR fuels applying either THOREX or PUREX flow sheets

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, E; Merz, E [Kernforschungsanlage, Juelich GmbH, Institut fuer Chemische Technologie der Nuklearen Entsorgung, Juelich (Germany)

    1985-07-01

    Two fuel cycles are considered for utilization in high temperature gas-cooled reactors (HTRs): the high-enriched thorium-uranium (HEU 93% U-235) and the low-enriched uranium (LEU 8-12% U-235) fuel concept. For both fuel compositions suitable reprocessing procedures are required which are capable to separate the actinides thorium, uranium and plutonium from fission products and from each other. In any case, the processes under consideration utilize Tri-n-butylphosphate (TBP) together with a straight-chain paraffinic diluent (C{sub 8}-C{sub 14}, to day usually dodecane) as extractant in an aqueous nitrate system; most commonly, the related processes are known by the acronyms PUREX and THOREX. The PUREX process has become the reprocessing procedure quite generally used for all fuel types containing natural, slightly or highly enriched uranium together with lower or higher contents of plutonium. The THOREX process on the other hand has been developed to separate thorium, uranium and fission products from thorium based irradiated fuel. Generally, the utilization of the thorium fuel cycle is most attractive for High Temperature Reactors. On the other hand, the strong recommendation of INFCE to abandon the use of high-enriched uranium for nuclear energy applications virtually rules out the thorium fuel cycle, since economic utilization of thorium as a fertile material requires the use of high-enriched U-235. Thus, it was decided in the Federal Republic of Germany to switch over, at least for the foreseeable future, to the low enrichment uranium-plutonium fuel cycle, well aware of its economic shortcomings. In this paper various THOREX flowsheets as well as a PUREX variant suitable for LEU fuel reprocessing are described. Both processes have in common that the main stream is always presented by the fertile material, that means thorium and U-238, respectively.

  9. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    Science.gov (United States)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-11-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  10. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels.

    Science.gov (United States)

    Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T

    2015-11-10

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  11. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    Science.gov (United States)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-01-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215

  12. The Effect of Fuel Quality on Carbon Dioxide and Nitrogen Oxide Emissions, While Burning Biomass and RDF

    Science.gov (United States)

    Kalnacs, J.; Bendere, R.; Murasovs, A.; Arina, D.; Antipovs, A.; Kalnacs, A.; Sprince, L.

    2018-02-01

    The article analyses the variations in carbon dioxide emission factor depending on parameters characterising biomass and RDF (refuse-derived fuel). The influence of moisture, ash content, heat of combustion, carbon and nitrogen content on the amount of emission factors has been reviewed, by determining their average values. The options for the improvement of the fuel to result in reduced emissions of carbon dioxide and nitrogen oxide have been analysed. Systematic measurements of biomass parameters have been performed, by determining their average values, seasonal limits of variations in these parameters and their mutual relations. Typical average values of RDF parameters and limits of variations have been determined.

  13. Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses

    International Nuclear Information System (INIS)

    Lajunen, Antti; Lipman, Timothy

    2016-01-01

    This paper evaluates the lifecycle costs and carbon dioxide emissions of different types of city buses. The simulation models of the different powertrains were developed in the Autonomie vehicle simulation software. The carbon dioxide emissions were calculated both for the bus operation and for the fuel and energy pathways from well to tank. Two different operating environment case scenarios were used for the primary energy sources, which were Finland and California (USA). The fuel and energy pathways were selected appropriately in relation to the operating environment. The lifecycle costs take into account the purchase, operating, maintenance, and possible carbon emission costs. Based on the simulation results, the energy efficiency of city buses can be significantly improved by the alternative powertrain technologies. Hybrid buses have moderately lower carbon dioxide emissions during the service life than diesel buses whereas fully-electric buses have potential to significantly reduce carbon dioxide emissions, by up to 75%. The lifecycle cost analysis indicates that diesel hybrid buses are already competitive with diesel and natural gas buses. The high costs of fuel cell and battery systems are the major challenges for the fuel cell hybrid buses in order to reduce lifecycle costs to more competitive levels. - Highlights: • Alternative powertrains can significantly improve energy efficiency of transit buses. • Operating environment has an important impact on the lifecycle costs of buses. • Diesel hybrid buses are already cost effective solution for public transportation. • The cost of fuel cell technology is the major challenge for fuel cell hybrid buses. • Fully-electric buses have potential to significantly reduce carbon dioxide emissions.

  14. Carbon dioxide emissions from fossil-fuel use, 1751-1950

    Energy Technology Data Exchange (ETDEWEB)

    Andres, R.J.; Fielding, D.J. [Alaska Fairbanks Univ., Fairbanks AK (United States). Inst. of Northern Engineering; Marland, G.; Boden, T.A. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Kumar, N.; Kearney, A.T. [153 East 53rd Street, New York, NY (United States)

    1999-09-01

    Newly compiled energy statistics allow for an estimation of the complete time series of carbon dioxide (CO{sub 2}) emissions from fossil-fuel use for the years 1751 to the present. The time series begins with 3 x 10{sup 6} metric tonnes carbon (C). This initial flux represents the early stages of the fossil-fuel era. The CO{sub 2} flux increased exponentially until World War I. The time series derived here seamlessly joins the modern 1950 to present time series. Total cumulative CO{sub 2} emissions through 1949 were 61.0 x 10{sup 9} tonnes C from fossil-fuel use, virtually all since the beginning of the Industrial Revolution around 1860. The rate of growth continues to grow during present times, generating debate on the probability of enhanced greenhouse warming. In addition to global totals, national totals and 1 deg global distributions of the data have been calculated 18 refs, 4 figs, 2 tabs

  15. Effects of ultra-low sulphur diesel fuel and diesel oxidation catalysts on nitrogen dioxide emissions

    International Nuclear Information System (INIS)

    Stachulak, J.S.; Zarling, D.

    2010-01-01

    Diesel oxidation catalysts (DOCs) are used on diesel equipment in underground mines to reduce exhaust emissions of carbon monoxide (CO), hydrocarbons (C) and odour that are associated with gaseous HCs. New catalysts have also been formulated to minimize sulphate production, but little is know about their effects on nitrogen dioxide (NO 2 ) emissions. DOCs are known to oxidize nitric oxide (NO) to NO 2 , which is more toxic than NO at low levels. Vale Inco uses ultra-low sulphur diesel (ULSD) fuel for its underground diesel equipment. Although ULSD is a cleaner burning fuel, its impact on the emissions performance of DOCs is not fully known. Technical material gathered during a literature review suggested that ULSD fuel may increase NO 2 production if DOCs are used, but that the increase would be small. This paper presented the results of a laboratory evaluation of DOCs with varying amounts of time-in service in Vale Inco mines. The 4 Vale Inco DOCs were found to produce excess NO 2 during some test conditions. In both steady-state and transient testing, there were no obvious trends in NO 2 increases with increasing DOC age. Two possibilities for these observations are that the DOCs may have been well within their useful life or their initial compositions differed. Future studies will make use of improved instrumentation, notably NO 2 analyzers, to definitely determine the influence of DOCs on NO 2 formation. 13 refs., 1 tab., 8 figs.

  16. Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example

    Directory of Open Access Journals (Sweden)

    R. J. Andres

    2016-12-01

    Full Text Available Due to a current lack of physical measurements at appropriate spatial and temporal scales, all current global maps and distributions of fossil fuel carbon dioxide (FFCO2 emissions use one or more proxies to distribute those emissions. These proxies and distribution schemes introduce additional uncertainty into these maps. This paper examines the uncertainty associated with the magnitude of gridded FFCO2 emissions. This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty. The results of the uncertainty analysis reveal a range of 4–190 %, with an average of 120 % (2σ for populated and FFCO2-emitting grid spaces over annual timescales. This paper also describes a methodological change specific to the creation of the Carbon Dioxide Information Analysis Center (CDIAC FFCO2 emission maps: the change from a temporally fixed population proxy to a temporally varying population proxy.

  17. Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example

    Science.gov (United States)

    Andres, Robert J.; Boden, Thomas A.; Higdon, David M.

    2016-12-01

    Due to a current lack of physical measurements at appropriate spatial and temporal scales, all current global maps and distributions of fossil fuel carbon dioxide (FFCO2) emissions use one or more proxies to distribute those emissions. These proxies and distribution schemes introduce additional uncertainty into these maps. This paper examines the uncertainty associated with the magnitude of gridded FFCO2 emissions. This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty. The results of the uncertainty analysis reveal a range of 4-190 %, with an average of 120 % (2σ) for populated and FFCO2-emitting grid spaces over annual timescales. This paper also describes a methodological change specific to the creation of the Carbon Dioxide Information Analysis Center (CDIAC) FFCO2 emission maps: the change from a temporally fixed population proxy to a temporally varying population proxy.

  18. Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals.

    Science.gov (United States)

    Hawkins, Aaron S; McTernan, Patrick M; Lian, Hong; Kelly, Robert M; Adams, Michael W W

    2013-06-01

    Non-photosynthetic routes for biological fixation of carbon dioxide into valuable industrial chemical precursors and fuels are moving from concept to reality. The development of 'electrofuel'-producing microorganisms leverages techniques in synthetic biology, genetic and metabolic engineering, as well as systems-level multi-omic analysis, directed evolution, and in silico modeling. Electrofuel processes are being developed for a range of microorganisms and energy sources (e.g. hydrogen, formate, electricity) to produce a variety of target molecules (e.g. alcohols, terpenes, alkenes). This review examines the current landscape of electrofuel projects with a focus on hydrogen-utilizing organisms covering the biochemistry of hydrogenases and carbonic anhydrases, kinetic and energetic analyses of the known carbon fixation pathways, and the state of genetic systems for current and prospective electrofuel-producing microorganisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels.

    Science.gov (United States)

    Qiao, Jinli; Liu, Yuyu; Hong, Feng; Zhang, Jiujun

    2014-01-21

    This paper reviews recent progress made in identifying electrocatalysts for carbon dioxide (CO2) reduction to produce low-carbon fuels, including CO, HCOOH/HCOO(-), CH2O, CH4, H2C2O4/HC2O4(-), C2H4, CH3OH, CH3CH2OH and others. The electrocatalysts are classified into several categories, including metals, metal alloys, metal oxides, metal complexes, polymers/clusters, enzymes and organic molecules. The catalyts' activity, product selectivity, Faradaic efficiency, catalytic stability and reduction mechanisms during CO2 electroreduction have received detailed treatment. In particular, we review the effects of electrode potential, solution-electrolyte type and composition, temperature, pressure, and other conditions on these catalyst properties. The challenges in achieving highly active and stable CO2 reduction electrocatalysts are analyzed, and several research directions for practical applications are proposed, with the aim of mitigating performance degradation, overcoming additional challenges, and facilitating research and development in this area.

  20. Fluorine and chlorine determination in mixed uranium-plutonium oxide fuel and plutonium dioxide

    International Nuclear Information System (INIS)

    Elinson, S.V.; Zemlyanukhina, N.A.; Pavlova, I.V.; Filatkina, V.P.; Tsvetkova, V.T.

    1981-01-01

    A technique of fluorine and chlorine determination in the mixed uranium-plutonium oxide fuel and plutonium dioxide, based on their simultaneous separation by means of pyrohydrolysis, is developed. Subsequently, fluorine is determined by photometry with alizarincomplexonate of lanthanum or according to the weakening of zirconium colouring with zylenol orange. Chlorine is determined using the photonephelometric method according to the reaction of chloride-ion interaction with silver nitrate or by spectrophotometric method according to the reaction with mercury rhodanide. The lower limit of fluorine determination is -6x10 -5 %, of chlorine- 1x10 -4 % in the sample of 1g. The relative mean quadratic deviation of the determination result (Ssub(r)), depends on the character of the material analyzed and at the content of nx10 -4 - nx10 -3 mass % is equal to from 0.05 to 0.32 for fluorine and from 0.11 to 0.35 for chlorine [ru

  1. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Meenesh R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis, Material Science Division; Clark, Ezra L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis, Material Science Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical & Biomolecular Engineering; Bell, Alexis T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis, Material Science Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical & Biomolecular Engineering

    2015-10-26

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. Finally, we show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  2. Preparation of Ceramic-Grade Thorium-Uranium Oxide; Preparation d'un melange d'oxydes de thorium et d'uranium propre a la fabrication de combustible ceramique; Izgotovlenie keramicheskogo torievo-uranovogo okisla; Preparacion de mezclas de oxidos de uranio y torio, de tipo ceramico

    Energy Technology Data Exchange (ETDEWEB)

    Cogliati, G.; De Leone, R.; Ferrari, S.; Gabaglio, M.; Liscia, A. [Centro Studi Nucleari della Casaccia, Rome (Italy)

    1963-11-15

    A method for the preparation of sintered bodies of thorium-uranium mixed oxide starting from a solution of thorium nitrate and uranyl nitrate was investigated. This method can be useful both in the fabrication of fuel elements and in the reprocessing of such type of materials. In the first step of the method, uranyl nitrate is reduced to uranium (IV) nitrate. As reducing agent, both gaseous hydrogen and formic acid are employed; urea is added to prevent the formation of nitrous acid, which catalyses the reoxidation of uranium (IV). As catalyst, both platinum and palladium can be employed. Data are given for a continuous process, in which formic acid and urea are added to the solution, which is then pre-heated and passed in a column packed with 1/8 in x 1/8 in alumina pellets, carrying 0.5 wt.% of platinum. The influence of flow rate, temperature, formic acid and urea concentration, as well as catalyst life and poisoning are studied. The second step in the method is the precipitation of an oxalate of thorium and uranium (IV). The influence of oxalic acid to thorium-uranium ratio, temperature, aging time on settling and filtering characteristics of the precipitate and on the ceramic properties of the obtained powders is reported. Firing was carried out both in reducing and oxidizing atmosphere. After preliminary tests, two standard procedures were set up for the fabrication of ceramic bodies, namely by cold pressing and sintering and by extrusion and sintering. The ability of the different powders to sinter was tested by both of the two standard methods. With some of the powders, densities higher than 95% of theoretical density were obtained; reproducibility tests were successfully carried out. (author) [French] Les auteurs etudient une methode de preparation de melanges frittes d'oxydes de thorium et d'uranium a partir d'une solution de nitrate de thorium et de nitrate d'uranyle. Cette methode peut etre utile auessi bien pour la fabrication d'elements combustibles

  3. Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming

    International Nuclear Information System (INIS)

    Ni, Meng

    2013-01-01

    Highlights: ► A 2D model is developed for solid oxide fuel cells (SOFCs). ► CH 4 reforming by CO 2 (MCDR) is included. ► SOFC with MCDR shows comparable performance with methane steam reforming SOFC. ► Increasing CO electrochemical oxidation greatly enhances the SOFC performance. ► Effects of potential and temperature on SOFC performance are also discussed. - Abstract: A two-dimensional model is developed to simulate the performance of solid oxide fuel cells (SOFCs) fed with CO 2 and CH 4 mixture. The electrochemical oxidations of both CO and H 2 are included. Important chemical reactions are considered in the model, including methane carbon dioxide reforming (MCDR), reversible water gas shift reaction (WGSR), and methane steam reforming (MSR). It’s found that at a CH 4 /CO 2 molar ratio of 50/50, MCDR and reversible WGSR significantly influence the cell performance while MSR is negligibly small. The performance of SOFC fed with CO 2 /CH 4 mixture is comparable to SOFC running on CH 4 /H 2 O mixtures. The electric output of SOFC can be enhanced by operating the cell at a low operating potential or at a high temperature. In addition, the development of anode catalyst with high activity towards CO electrochemical oxidation is important for SOFC performance enhancement. The model can serve as a useful tool for optimization of the SOFC system running on CH 4 /CO 2 mixtures

  4. Household consumption, associated fossil fuel demand and carbon dioxide emissions: The case of Greece between 1990 and 2006

    International Nuclear Information System (INIS)

    Papathanasopoulou, Eleni

    2010-01-01

    This paper explores how Greece's household consumption has changed between 1990 and 2006 and its environmental implications in terms of fossil fuel demand and carbon dioxide (CO 2 ) emissions. The results show that the 44% increase in Greece's household expenditure between 1990 and 2006 was accompanied by a 67% increase in fossil fuel demand. Of this total, indirect demand accounted for approximately 60% throughout the 16-year period, increasing by 56% overall, whereas direct fossil fuel demand grew by 80%. The results also show that associated CO 2 emissions increased by 60%, resulting in a 'relative decoupling' from energy demand. This relative decoupling is shown to be due to fossil fuel mix changes from the supply side rather than action from consumers. These insights highlight the opportunities for demand-side policies to further reduce fossil fuel demand and CO 2 emissions, allowing Greece to set more proactive and ambitious post-Kyoto targets.

  5. An evaluation of once-through homogeneous thorium fuel cycle for light water reactors

    International Nuclear Information System (INIS)

    Joo, H. K.; Noh, J. M.; Yoo, J. W.

    2002-01-01

    The other ways enhancing the economic potential of thorium fuel has been assessed ; the utilization of lower enriched uranium in thorium-uranium fuel, duplex thorium fuel concept, thorium utilization in the mixed core with uranium fuel assembly and thorium blanket utilization in the uranium core. The fuel economics of the proposed ways of thorium fuel increased compared to the previous homogeneous thorium fuel cycle. Compared to uranium fuel cycle, however, they do not show any economic incentives. From the view of proliferation resistance potential, thorium fuel option has the advantage to reduce the inventory of plutonium production. Any of proposed thorium options are less economical than uranium fuel option, the thorium fuel option has the potential to be utilized in the future for the sake of the effective consumption of excessive plutonium and the preparation against the using up of uranium resource

  6. Beryllium Project: developing in CDTN of uranium dioxide fuel pellets with addition of beryllium oxide to increase the thermal conductivity

    International Nuclear Information System (INIS)

    Ferreira, Ricardo Alberto Neto; Camarano, Denise das Merces; Miranda, Odair; Grossi, Pablo Andrade; Andrade, Antonio Santos; Queiroz, Carolinne Mol; Gonzaga, Mariana de Carvalho Leal

    2013-01-01

    Although the nuclear fuel currently based on pellets of uranium dioxide be very safe and stable, the biggest problem is that this material is not a good conductor of heat. This results in an elevated temperature gradient between the center and its lateral surface, which leads to a premature degradation of the fuel, which restricts the performance of the reactor, being necessary to change the fuel before its full utilization. An increase of only 5 to 10 percent in its thermal conductivity, would be a significant increase. An increase of 50 percent would be a great improvement. A project entitled 'Beryllium Project' was developed in CDTN - Centro de Desenvolvimento da Tecnologia Nuclear, which aimed to develop fuel pellets made from a mixture of uranium dioxide microspheres and beryllium oxide powder to obtain a better heat conductor phase, filling the voids between the microspheres to increase the thermal conductivity of the pellet. Increases in the thermal conductivity in the range of 8.6% to 125%, depending on the level of addition employed in the range of 1% to 14% by weight of beryllium oxide, were obtained. This type of fuel promises to be safer than current fuels, improving the performance of the reactor, in addition to last longer, resulting in great savings. (author)

  7. Irradiation performance of HTGR fuel rods in HFIR experiments HRB-7 and -8

    International Nuclear Information System (INIS)

    Valentine, K.H.; Homan, F.J.; Long, E.L. Jr.; Tiegs, T.N.; Montgomery, B.H.; Hamner, R.L.; Beatty, R.L.

    1977-05-01

    The HRB-7 and -8 experiments were designed as a comprehensive test of mixed thorium-uranium oxide fissile particles with Th:U ratios from 0 to 8 for HTGR recycle application. In addition, fissile particles derived from Weak-Acid Resin (WAR) were tested as a potential backup type of fissile particle for HTGR recycle. These experiments were conducted at two temperatures (1250 and 1500 0 C) to determine the influence of operating temperature on the performance parameters studied. The minor objectives were comparison of advanced coating designs where ZrC replaced SiC in the Triso design, testing of fuel coated in laboratory-scale equipment with fuel coated in production-scale coaters, comparison of the performance of 233 U-bearing particles with that of 235 U-bearing particles, comparison of the performance of Biso coatings with Triso coatings for particles containing the same type of kernel, and testing of multijunction tungsten-rhenium thermocouples. All objectives were accomplished. As a result of these experiments the mixed thorium-uranium oxide fissile kernel was replaced by a WAR-derived particle in the reference recycle design. A tentative decision to make this change had been reached before the HRB-7 and -8 capsules were examined, and the results of the examination confirmed the accuracy of the previous decision. Even maximum dilution (Th/U approximately equal to 8) of the mixed thorium-uranium oxide kernel was insufficient to prevent amoeba of the kernels at rates that are unacceptable in a large HTGR. Other results showed the performance of 233 U-bearing particles to be identical to that of 235 U-bearing particles, the performance of fuel coated in production-scale equipment to be at least as good as that of fuel coated in laboratory-scale coaters, the performance of ZrC coatings to be very promising, and Biso coatings to be inferior to Triso coatings relative to fission product retention

  8. Gridded Uncertainty Maps of Fossil Fuel Carbon Dioxide Emissions: A New Data Product

    Science.gov (United States)

    Andres, R. J.; Boden, T.

    2014-12-01

    With the publication of a new assessment of the uncertainty associated with the mass of fossil fuel carbon dioxide (FFCO2) emissions (2014, Tellus B, 66, 23616, doi:10.3402/tellusb.v66.23616), it is now possible to extend that work with a gridded map of fossil fuel emission uncertainties. The new data product was created to be paired with the long-used, Carbon Dioxide Information Analysis Center (CDIAC), emission year 1751-present, one degree latitude by one degree longitude (1x1) mass of emissions data product (http://cdiac.ornl.gov/epubs/ndp/ndp058/ndp058_v2013.html). Now, for the first time, data users will have FFCO2 emission information that represents both mass and uncertainty, each of which varies in both time and space. The new data product was constructed by examining the individual uncertainties in each of the input data sets to the gridded mass maps and then combining these individual uncertainties into an overall uncertainty for the mass maps. The input data sets include a table of the mass of FFCO2 emissions by country and year, the one degree geographic map of emissions which includes changing borders on an annual time scale and ties the mass of emissions to location, and the one degree population proxy used to distribute the mass of emissions within each country. As the three input data sets are independent of each other, their combination for the overall uncertainty is accomplished by a simple square root of the sum of the squares procedure. The resulting uncertainty data product is gridded at 1x1 and exactly overlays the 1x1 mass emission maps. The default temporal resolution is annual, but a companion product is also available at monthly time scales. The monthly uncertainty product uses the same input data sets, but the mass uncertainty is scaled as described in the monthly mass product description paper (2011, Tellus B, 63:309-327, doi: 10.1111/j.1600-0889.2011.00530.x). The gridded uncertainty maps cover emission year 1950 to 2010. The start

  9. Inventory of aerosol and sulphur dioxide emissions from India. Part 1 - Fossil fuel combustion

    International Nuclear Information System (INIS)

    Shekar Reddy, M.; Venkataraman, C.

    2002-01-01

    A comprehensive, spatially resolved (0.25 o x 0.25 o ) fossil fuel consumption database and emissions inventory was constructed, for India, for the first time. Emissions of sulphur dioxide and aerosol chemical constituents were estimated for 1996-1997 and extrapolated to the Indian Ocean Experiment (INDOEX) study period (1998-1999). District level consumption of coal/lignite, petroleum and natural gas in power plants, industrial, transportation and domestic sectors was 9411 PJ, with major contributions from coal (54%) followed by diesel (18%). Emission factors for various pollutants were derived using India specific fuel characteristics and information on combustion/air pollution control technologies for the power and industrial sectors. Domestic and transportation emission factors, appropriate for Indian source characteristics, were compiled from literature. SO 2 emissions from fossil fuel combustion for 1996-1997 were 4.0Tg SO 2 yr -1 , with 756 large point sources (e.g. utilities, iron and steel, fertilisers, cement, refineries and petrochemicals and non-ferrous metals), accounting for 62%. PM 2.5 emitted was 0.5 and 2.0Tgyr -1 for the 100% and the 50% control scenario, respectively, applied to coal burning in the power and industrial sectors. Coal combustion was the major source of PM 2.5 (92%) primarily consisting of fly ash, accounting for 98% of the 'inorganic fraction' emissions (difference between PM 2.5 and black carbon + organic matter) of 1.6Tgyr -1 . Black carbon emissions were estimated at 0.1Tgyr -1 , with 58% from diesel transport, and organic matter emissions at 0.3Tgyr -1 , with 48% from brick-kilns. Fossil fuel consumption and emissions peaked at the large point industrial sources and 22 cities, with elevated area fluxes in northern and western India. The spatial resolution of this inventory makes it suitable for regional-scale aerosol-climate studies. These results are compared to previous studies and differences discussed. Measurements of

  10. Carbon dioxide conversion to fuels and chemicals using a hybrid green process

    International Nuclear Information System (INIS)

    Ramachandriya, Karthikeyan D.; Kundiyana, Dimple K.; Wilkins, Mark R.; Terrill, Jennine B.; Atiyeh, Hasan K.; Huhnke, Raymond L.

    2013-01-01

    Highlights: • A unique CO 2 conversion technology using microorganisms was demonstrated. • Corn steep liquor medium enhanced production of n-butanol and n-hexanol. • Cotton seed extract (CSE) medium promoted ethanol formation. • CSE medium without morpholinoethanesulfonic acid buffer reduced the cost by 99%. - Abstract: A unique hybrid technology that uses renewable hydrogen (H 2 ) and carbon dioxide (CO 2 ) sequestered from large point sources, to produce fuels and chemicals has been proposed and tested. The primary objective of this research was to determine the feasibility of using two acetogenic bacteria to metabolize H 2 and CO 2 for the production of ethanol. Three experiments were conducted in small scale reactors to select a bacterium, feed gas composition and nutrient medium source to produce ethanol. The results indicated that Clostridium carboxidivorans produced 33% more ethanol and 66% less acetic acid compared to Clostridium ragsdalei, making C. carboxidivorans the better candidate for ethanol production. Furthermore, the removal of morpholinoethanesulfonic acid (MES) buffer from cotton seed extract (CSE) medium offered a low-cost medium for fermentations. Additionally, we observed that corn steep liquor (CSL) in the medium diversified the product range with both bacteria. Maximum concentrations of ethanol, n-butanol, n-hexanol, acetic acid, butyric acid, and hexanoic acid from different fermentation treatments were 2.78 g L −1 , 0.70 g L −1 , 0.52 g L −1 , 4.06 g L −1 , 0.13 g L −1 and 0.42 g L −1 , respectively. This study highlights the important role that acetogenic microbes can offer for CO 2 conversion into valuable fuels and chemicals

  11. Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw.

    Science.gov (United States)

    Drake, Travis W; Wickland, Kimberly P; Spencer, Robert G M; McKnight, Diane M; Striegl, Robert G

    2015-11-10

    Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high-temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low-molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters.

  12. Ancient low–molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw

    Science.gov (United States)

    Drake, Travis W.; Wickland, Kimberly P.; Spencer, Robert G. M.; McKnight, Diane M.; Striegl, Robert G.

    2015-01-01

    Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high–temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low–molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters.

  13. Fuel Retention Improvement at High Temperatures in Tungsten-Uranium Dioxide Dispersion Fuel Elements by Plasma-Spray Cladding

    Science.gov (United States)

    Grisaffe, Salvatore J.; Caves, Robert M.

    1964-01-01

    An investigation was undertaken to determine the feasibility of depositing integrally bonded plasma-sprayed tungsten coatings onto 80-volume-percent tungsten - 20-volume-percent uranium dioxide composites. These composites were face clad with thin tungsten foil to inhibit uranium dioxide loss at elevated temperatures, but loss at the unclad edges was still significant. By preheating the composite substrates to approximately 3700 degrees F in a nitrogen environment, metallurgically bonded tungsten coatings could be obtained directly by plasma spraying. Furthermore, even though these coatings were thin and somewhat porous, they greatly inhibited the loss of uranium dioxide. For example, a specimen that was face clad but had no edge cladding lost 5.8 percent uranium dioxide after 2 hours at 4750 dgrees F in flowing hydrogen. A similar specimen with plasma-spray-coated edges, however, lost only 0.75 percent uranium dioxide under the same testing conditions.

  14. Fracture of Zircaloy cladding by interactions with uranium dioxide pellets in LWR fuel rods. Technical report 10

    International Nuclear Information System (INIS)

    Smith, E.; Ranjan, G.V.; Cipolla, R.C.

    1976-11-01

    Power reactor fuel rod failures can be caused by uranium dioxide fuel pellet-Zircaloy cladding interactions. The report summarizes the current position attained in a detailed theoretical study of Zircaloy cladding fracture caused by the growth of stress corrosion cracks which form near fuel pellet cracks as a consequence of a power increase after a sufficiently high burn-up. It is shown that stress corrosion crack growth in irradiated Zircaloy must be able to proceed at very low stress intensifications if uniform friction effects are operative at the fuel-cladding interface, when the interfacial friction coefficient is less than unity, when a symmetric distribution of fuel cracks exists, and when symmetric interfacial slippage occurs (i.e., ''uniform'' conditions). Otherwise, the observed fuel rod failures must be due to departures from ''uniform'' conditions, and a very high interfacial friction coefficient and particularly fuel-cladding bonding, are means of providing sufficient stess intensification at a cladding crack tip to explain the occurrence of cladding fractures. The results of the investigation focus attention on the necessity for reliable experimental data on the stress corrosion crack growth behavior of irradiated Zircaloy, and for further investigations on the correlation between local fuel-cladding bonding and stress corrosion cracking

  15. A New Data Product: Gridded Uncertainty Maps of Fossil Fuel Carbon Dioxide Emissions

    Science.gov (United States)

    Andres, R. J.; Boden, T.

    2015-12-01

    Gridded uncertainty maps of fossil fuel carbon dioxide (FFCO2) emissions are a new data product that is currently in the process of being completed and published. This work is based on the relatively new assessment of the uncertainty associated with the mass of FFCO2 emissions (2014, Tellus B, 66, 23616, doi:10.3402/tellusb.v66.23616). The new data product was created to be paired with the long-used, Carbon Dioxide Information Analysis Center (CDIAC), emission year 1751-present, one degree latitude by one degree longitude (1x1) mass of emissions data product (http://cdiac.ornl.gov/epubs/ndp/ndp058/ndp058_v2013.html). Now, data users will have FFCO2 emission information that represents both mass and uncertainty, each of which varies in both time and space. The new data product was constructed by examining the individual uncertainties in each of the input data sets to the gridded mass maps and then combining these individual uncertainties into an overall uncertainty for the mass maps. The input data sets include a table of the mass of FFCO2 emissions by country and year, the one degree geographic map of emissions which includes changing borders on an annual time scale and ties the mass of emissions to location, and the one degree population proxy used to distribute the mass of emissions within each country. As the three input data sets are independent of each other, their combination for the overall uncertainty is accomplished by a simple square root of the sum of the squares procedure. The resulting uncertainty data product is gridded at 1x1 and exactly overlays the 1x1 mass emission maps. The default temporal resolution is annual, but a companion product is also available at monthly time scales. The monthly uncertainty product uses the same input data sets, but the mass uncertainty is scaled as described in the monthly mass product description paper (2011, Tellus B, 63:309-327, doi: 10.1111/j.1600-0889.2011.00530.x). The gridded uncertainty maps cover emission year

  16. Analysis on specific nuclear data for reactors physics computations applied to CANDU reactors using thorium-based fuels

    International Nuclear Information System (INIS)

    Visan, Iuliana E.

    2010-01-01

    The purpose of this work is to analyze the evaluated nuclear data from ENDF libraries IAEA69 (69 energy groups library) and IAEA172 (172 energy groups library), respectively, in WIMS library format and to represent neutron fission yield, absorption and fission cross-section dependence for 233 Uranium, 232 Thorium isotopes and some actinides of interest on the incident energy. Our interest for these two isotopes is mainly based on the importance of 233 Uranium as 'fissile nucleus' in Thorium-Uranium fuel cycle. Nowadays, nuclear data evaluation for the actinides generated in Thorium-Uranium fuel cycle is seen as a world-wide priority. The fissile nucleus, 233 Uranium 'plays' the same function in Thorium-Uranium fuel cycle as the 235 Uranium in 'the classic' Uranium-Plutonium fuel cycle. As opposed to natural Uranium which contains 0.7 % of the fissile isotope 235 Uranium, natural Thorium doesn't contain fissile isotopes, being composed entirely by the fertile isotope 232 Thorium. Graphical evolutions of interest parameters versus the incident energy are presented. Our interest was also to observe the behavior of these nuclear data for fast, resonance and thermal energy groups, respectively. The ENDF nuclear data libraries are constantly up-dated, so that we can observe an improvement of the IAEA172 library, which disposes of evaluated nuclear data at higher energies (about 20 MeV), as opposed to IAEA69 library (which includes evaluated nuclear data below 10 MeV). Based on our graphical representation, a good agreement between the considered libraries has been observed, sustaining nuclear data validity. (authors)

  17. boron nitride coating of uranium dioxide and uranium dioxide-gadolinium oxide fuels by chemical precipitation method

    International Nuclear Information System (INIS)

    Uslu, I.; Tanker, E.; Guenduez, G.

    1997-01-01

    In this research pure urania and urania-gadolinia (5 and 10 %) fuels were coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron tricloride BCl 3 ) and ammonia (NH 3 ) at 600 C.Boron tricloride and ammonia are carried to tubular furnace using hydrogen as carrier gas. The coated samples were sintered at 1600 K. The properties of the coated samples were observed using BET surface area analysis, infrared spectra (IR), X-Ray Diffraction and Scanning Electron Microscope (SEM) techniques

  18. Assessment of current atomic scale modelling methods for the investigation of nuclear fuels under irradiation: Example of uranium dioxide

    International Nuclear Information System (INIS)

    Bertolus, M.; Freyss, M.; Krack, M.; Devanathan, R.

    2015-01-01

    We focus here on the assessment of the description of interatomic interactions in uranium dioxide using, on the one hand, electronic structure methods, in particular in the Density Functional Theory (DFT) framework, and on the other hand, empirical potential methods. These two types of methods are complementary, the former enabling results to be obtained from a minimal amount of input data and further insight into the electronic and magnetic properties to be achieved, while the latter are irreplaceable for studies where a large number of atoms need to be considered. We consider basic properties as well as specific ones, which are important for the description of nuclear fuel under irradiation. These are especially energies, which are the main data passed on to higher scale models. For this exercise, we limit ourselves to uranium dioxide (UO 2 ) because of the extensive amount of studies available on this system. (authors)

  19. Method for the absorptive removal of carbon dioxide from gases. [especially alkaline fuel cell gases

    Energy Technology Data Exchange (ETDEWEB)

    Henkel, H J; Stamm, H; Szabo de Bucs, E

    1976-03-25

    The use of butanol instead of water as a solvent for carbon dioxide-absorbing alkanolamines has the advantage of a higher absorption rate and a lower energy expenditure for the regeneration of the absorbing agent.

  20. Drying characteristics of thorium fuel corrosion products

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.-E. E-mail: rzl@inel.gov

    2004-07-01

    The open literature and accessible US Department of Energy-sponsored reports were reviewed for the dehydration and rehydration characteristics of potential corrosion products from thorium metal and thorium oxide nuclear fuels. Mixed oxides were not specifically examined unless data were given for performance of mixed thorium-uranium fuels. Thorium metal generally corrodes to thorium oxide. Physisorbed water is readily removed by heating to approximately 200 deg. C. Complete removal of chemisorbed water requires heating above 1000 deg. C. Thorium oxide adsorbs water well in excess of the amount needed to cover the oxide surface by chemisorption. The adsorption of water appears to be a surface phenomenon; it does not lead to bulk conversion of the solid oxide to the hydroxide. Adsorptive capacity depends on both the specific surface area and the porosity of the thorium oxide. Heat treatment by calcination or sintering reduces the adsorption capacity substantially from the thorium oxide produced by metal corrosion.

  1. Thorium-Based Fuel Cycles in the Modular High Temperature Reactor

    Institute of Scientific and Technical Information of China (English)

    CHANG Hong; YANG Yongwei; JING Xingqing; XU Yunlin

    2006-01-01

    Large stockpiles of civil-grade as well as weapons-grade plutonium have been accumulated in the world from nuclear power or other programs of different countries. One alternative for the management of the plutonium is to incinerate it in the high temperature reactor (HTR). The thorium-based fuel cycle was studied in the modular HTR to reduce weapons-grade plutonium stockpiles, while producing no additional plutonium or other transuranic elements. Three thorium-uranium fuel cycles were also investigated. The thorium absorption cross sections of the resolved and unresolved resonances were generated using the ZUT-DGL code based on existing resonance data. The equilibrium core of the modular HTR was calculated and analyzed by means of the code VSOP'94. The results show that the modular HTR can incinerate most of the initially loaded plutonium amounting to about 95.3% net 239Pu for weapons-grade plutonium and can effectively utilize the uranium and thorium in the thorium-uranium fuel cycles.

  2. Is Fuel-Switching a No-Regrets Environmental Policy? VAR Evidence on Carbon Dioxide Emissions, Energy Consumption and Economic Performance in Portugal

    OpenAIRE

    Alfredo M. Pereira; Rui Manuel Marvão Pereira

    2009-01-01

    The objective of this paper is to estimate the impact of carbon dioxide emissions from fossil fuel combustion activities on economic activity in Portugal in order to evaluate the economic costs of policies designed to reduce carbon dioxide emissions. We find that energy consumption has a significant impact on macroeconomic activity. In fact, a one ton of oil equivalent permanent reduction in aggregate energy consumption reduces output by €6,340 over the long term, an aggregate impact which hi...

  3. NARCISS critical stand experiments for studying the nuclear safety in accident water immersion of highly enriched uranium dioxide fuel elements

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoj, N.N.; Glushkov, E.S.; Bubelev, V.G.

    2005-01-01

    A brief description of the Topaz-2 SNPS designed under scientific supervision of RRC KI in Russia, and of the NARCISS critical facility, is given. At the NARCISS critical facility, neutronic peculiarities and nuclear safety issues of the Topaz-2 system reactor were studied experimentally. This work is devoted to a detailed description of experiments on investigation of criticality safety in accident water immersion og highly enriched uranium dioxide fuel elements, performed at the NARCISS facility. The experiments were carried out at water-moderated critical assemblies with varying height, number, and spacing of fuel elements. The results obtained in the critical experiments, computational models of the investigated critical configurations, and comparison of the computational and experimental results are given [ru

  4. Tin Dioxide as an Effective Antioxidant for Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Nørgaard, Casper Frydendal; Larsen, Mikkel Juul

    2015-01-01

    Tin dioxide (SnO2) containing electrodes showed significantly lower radical induced polymer degradation under single cell open circuit voltage (OCV) treatment than SnO2 free electrodes. A backbone related segment was detected under 100%RH, and an oxygen containing side chain segment was detected ...

  5. Process and reactor for the production of hydrogen and carbon dioxide and a fuel cell system

    NARCIS (Netherlands)

    2006-01-01

    The invention relates to a process for the production of hydrogen and carbon dioxide from a hydrocarbonaceous feedstock, comprising: a) supplying a gaseous hydrocarbonaceous feedstock and steam to a reaction zone comprising a steam reforming catalyst and catalytically reforming the hydrocarbonaceous

  6. Reforming fossil fuel use : the merits, costs and risks of carbon dioxide capture and storage

    NARCIS (Netherlands)

    Damen, Kay J.

    2007-01-01

    The sense of urgency in achieving large reductions in anthropogenic CO2 emissions has increased the interest in carbon dioxide capture and storage (CCS). CCS can be defined as the separation and capture of CO2 produced at large stationary sources, followed by transport and storage in geological

  7. Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city

    International Nuclear Information System (INIS)

    Zhang, Shaojun; Wu, Ye; Un, Puikei; Fu, Lixin; Hao, Jiming

    2016-01-01

    Modeling fuel consumption of light-duty passenger vehicles has created substantial concerns due to the uncertainty from real-world operating conditions. Macao is world-renowned for its tourism industry and high population density. An empirical model is developed to estimate real-world fuel consumption and carbon dioxide emissions for gasoline-powered light-duty passenger vehicles in Macao by considering local fleet configuration and operating conditions. Thanks to increasingly stringent fuel consumption limits in vehicle manufacturing countries, estimated type-approval fuel consumption for light-duty passenger vehicles in Macao by model year was reduced from 7.4 L/100 km in 1995 to 5.9 L/100 km in 2012, although a significant upsizing trend has considerably offset potential energy-saving benefit. However, lower driving speed and the air-conditioning usage tend to raise fleet-average fuel consumption and carbon dioxide emission factors, which are estimated to be 10.1 L/100 km and 240 g/km in 2010. Fleet-total fuel consumption and carbon dioxide emissions are modeled through registered vehicle population-based and link-level traffic demand approaches and the results satisfactorily coincide with the historical record of fuel sales in Macao. Temporal and spatial variations in fuel consumption and carbon dioxide emissions from light-duty passenger vehicles further highlight the importance of effective traffic management in congested areas of Macao. - Highlights: • A fuel consumption model is developed for Macao's light-duty passenger cars. • Increased vehicle size partially offset energy benefit from tightened fuel consumption standard. • Lower speed and use of air-conditioning greatly increase fuel use of Macao light-duty passenger cars. • A high resolution inventory of fuel use and carbon dioxide emissions is built with link-level traffic data. • Policy suggestions are provided to mitigate fuel use in a traffic populated city.

  8. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels

    DEFF Research Database (Denmark)

    Peterson, Andrew; Abild-Pedersen, Frank; Studt, Felix

    2010-01-01

    Density functional theory calculations explain copper's unique ability to convert CO2 into hydrocarbons, which may open up (photo-)electrochemical routes to fuels.......Density functional theory calculations explain copper's unique ability to convert CO2 into hydrocarbons, which may open up (photo-)electrochemical routes to fuels....

  9. Co-deposition of Pt and ceria anode catalyst in supercritical carbon dioxide for direct methanol fuel cell applications

    International Nuclear Information System (INIS)

    You, Eunyoung; Guzmán-Blas, Rolando; Nicolau, Eduardo; Aulice Scibioh, M.; Karanikas, Christos F.; Watkins, James J.; Cabrera, Carlos R.

    2012-01-01

    Pt and mixed Pt-ceria catalysts were deposited onto gas diffusion layers using supercritical fluid deposition (SFD) to fabricate thin layer electrodes for direct methanol fuel cells. Dimethyl (1,5-cyclooctadiene) platinum (II) (CODPtMe 2 ) and tetrakis (2,2,6,6-tetramethyl 3,5-heptanedionato) cerium (IV) (Ce(tmhd) 4 ) were used as precursors. Hydrogen-assisted Pt deposition was performed in compressed carbon dioxide at 60 °C and 17.2 MPa to yield high purity Pt on carbon-black based gas diffusion layers. During the preparation of the mixed Pt-ceria catalyst, hydrogen reduction of CODPtMe 2 to yield Pt catalyzed the deposition of ceria from Ce(tmhd) 4 enabling co-deposition at 150 °C. The catalyst layers were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope-energy dispersive spectral (SEM-EDS) analyses. Their electrochemical performance toward methanol oxidation was examined in half cell mode using a three electrode assembly as well as in fuel cell mode. The thin layer electrodes formed via SFD exhibited higher performance in fuel cell operations compared to those prepared by the conventional brush-paint method. Furthermore, the Pt-ceria catalyst with an optimized composition exhibited greater methanol oxidation activity than pure platinum.

  10. Fast reactor fuel reprocessing. An Indian perspective

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2005-01-01

    The Department of Atomic Energy (DAE) envisioned the introduction of Plutonium fuelled fast reactors as the intermediate stage, between Pressurized Heavy Water Reactors and Thorium-Uranium-233 based reactors for the Indian Nuclear Power Programme. This necessitated the closing of the fast reactor fuel cycle with Plutonium rich fuel. Aiming to develop a Fast Reactor Fuel Reprocessing (FRFR) technology with low out of pile inventory, the DAE, with over four decades of operating experience in Thermal Reactor Fuel Reprocessing (TRFR), had set up at the India Gandhi Center for Atomic Research (IGCAR), Kalpakkam, R and D facilities for fast reactor fuel reprocessing. After two decades of R and D in all the facets, a Pilot Plant for demonstrating FRFR had been set up for reprocessing the FBTR (Fast Breeder Test Reactor) spent mixed carbide fuel. Recently in this plant, mixed carbide fuel with 100 GWd/t burnup fuel with short cooling period had been successfully reprocessed for the first time in the world. All the challenging problems encountered had been successfully overcome. This experience helped in fine tuning the designs of various equipments and processes for the future plants which are under construction and design, namely, the DFRP (Demonstration Fast reactor fuel Reprocessing Plant) and the FRP (Fast reactor fuel Reprocessing Plant). In this paper, a comprehensive review of the experiences in reprocessing the fast reactor fuel of different burnup is presented. Also a brief account of the various developmental activities and strategies for the DFRP and FRP are given. (author)

  11. Non-energy use of fossil fuels and resulting carbon dioxide emissions: bottom-up estimates for the world as a whole and for major developing countries

    NARCIS (Netherlands)

    Weiss, M.; Neelis, M.L.; Blok, K.; Patel, M.K.

    2009-01-01

    We present and apply a simple bottom–up model for estimating non-energy use of fossil fuels and resulting CO2 (carbon dioxide) emissions.We apply this model for the year 2000: (1) to the world as a whole, (2) to the aggregate of Annex I countries and non-Annex I countries, and (3) to the ten

  12. ISLSCP II Carbon Dioxide Emissions from Fossil Fuels, Cement, and Gas Flaring

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains decadal (1950, 1960, 1970, 1980, 1990 and 1995) estimates of gridded fossil-fuel emissions, expressed in 1,000 metric tons C per...

  13. ISLSCP II Carbon Dioxide Emissions from Fossil Fuels, Cement, and Gas Flaring

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains decadal (1950, 1960, 1970, 1980, 1990 and 1995) estimates of gridded fossil-fuel emissions, expressed in 1,000 metric tons C per year per one...

  14. Comparison of uranium dissolution rates from spent fuel and uranium dioxide

    International Nuclear Information System (INIS)

    Steward, S.A.; Gray, W.J.

    1994-01-01

    Two similar sets of dissolution experiments, resulting from a statistical experimental design were performed in order to examine systematically the effects of temperature (25--75 degree C), dissolved oxygen (0.002-0.2 atm overpressure), pH (8--10) and carbonate concentrations (2--200 x 10 -4 molar) on aqueous dissolution of UO 2 and spent fuel. The average dissolution rate was 8.6 mg/m 2 ·day for UO 2 and 3.1 mg/m 2 ·day for spent fuel. This is considered to be an insignificant difference; thus, unirradiated UO 2 and irradiated spent fuel dissolved at about the same rate. Moreover, regression analyses indicated that the dissolution rates of UO 2 and spent fuel responded similarly to changes in pH, temperature, and carbonate concentration. However, the two materials responded very differently to dissolved oxygen concentration. Approximately half-order reaction rates with respect to oxygen concentration were found for UO 2 at all conditions tested. At room temperature, spent fuel dissolution (reaction) rates were nearly independent of oxygen concentration. At 75 degree C, reaction orders of 0.35 and 0.73 were observed for spent fuel, and there was some indication that the reaction order with respect to oxygen concentration might be dependent on pH and/or carbonate concentration as well as on temperature

  15. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.

    Science.gov (United States)

    Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-11-03

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.

  16. Development of numerical models for Monte Carlo simulations of Th-Pb fuel assembly

    Directory of Open Access Journals (Sweden)

    Oettingen Mikołaj

    2017-01-01

    Full Text Available The thorium-uranium fuel cycle is a promising alternative against uranium-plutonium fuel cycle, but it demands many advanced research before starting its industrial application in commercial nuclear reactors. The paper presents the development of the thorium-lead (Th-Pb fuel assembly numerical models for the integral irradiation experiments. The Th-Pb assembly consists of a hexagonal array of ThO2 fuel rods and metallic Pb rods. The design of the assembly allows different combinations of rods for various types of irradiations and experimental measurements. The numerical model of the Th-Pb assembly was designed for the numerical simulations with the continuous energy Monte Carlo Burnup code (MCB implemented on the supercomputer Prometheus of the Academic Computer Centre Cyfronet AGH.

  17. Hybrid-Electric Passenger Car Carbon Dioxide and Fuel Consumption Benefits Based on Real-World Driving.

    Science.gov (United States)

    Holmén, Britt A; Sentoff, Karen M

    2015-08-18

    Hybrid-electric vehicles (HEVs) have lower fuel consumption and carbon dioxide (CO2) emissions than conventional vehicles (CVs), on average, based on laboratory tests, but there is a paucity of real-world, on-road HEV emissions and performance data needed to assess energy use and emissions associated with real-world driving, including the effects of road grade. This need is especially great as the electrification of the passenger vehicle fleet (from HEVs to PHEVs to BEVs) increases in response to climate and energy concerns. We compared tailpipe CO2 emissions and fuel consumption of an HEV passenger car to a CV of the same make and model during real-world, on-the-road network driving to quantify the in-use benefit of one popular full HEV technology. Using vehicle specific power (VSP) assignments that account for measured road grade, the mean CV/HEV ratios of CO2 tailpipe emissions or fuel consumption defined the corresponding HEV "benefit" factor for each VSP class (1 kW/ton resolution). Averaging over all VSP classes for driving in all seasons, including temperatures from -13 to +35 °C in relatively steep (-13.2 to +11.5% grade), hilly terrain, mean (±SD) CO2 emission benefit factors were 4.5 ± 3.6, 2.5 ± 1.7, and 1.4 ± 0.5 for city, exurban/suburban arterial and highway driving, respectively. Benefit factor magnitude corresponded to the frequency of electric-drive-only (EDO) operation, which was modeled as a logarithmic function of VSP. A combined model explained 95% of the variance in HEV benefit for city, 75% for arterial and 57% for highway driving. Benefit factors consistently exceeded 2 for VSP classes with greater than 50% EDO (i.e., only city and arterial driving). The reported HEV benefits account for real-world road grade that is often neglected in regulatory emissions and fuel economy tests. Fuel use HEV benefit factors were 1.3 and 2 for the regulatory highway (HWFET) and city (FTP) cycles, respectively, 18% and 31% higher than the EPA adjusted

  18. Second law comparison of oxy-fuel combustion and post-combustion carbon dioxide separation

    International Nuclear Information System (INIS)

    Simpson, Adam P.; Simon, A.J.

    2007-01-01

    To define 2nd law efficiency targets for novel separation technologies, a simplified model of a power plant with two forms of CO 2 capture was developed. In this investigation, oxy-fuel combustion and post-combustion CO 2 separation were compared on an exergetic basis. Using exergy balances and black-box models of power plant components, multiple scenarios were run to determine the impact of plant configuration and separation unit efficiency on overall plant performance. Second law efficiency values from the literature were used to set the baseline performance of various CO 2 separation configurations. Assumed advances in 2nd law efficiency were used to determine the potential for overall system performance improvement. It was found that the 2nd law efficiency of air separation must reach a critical value before the thermodynamics of oxy-fuel combustion become favorable. Changes in operating equivalence ratio significantly move the tipping-point between post-combustion and oxy-fuel strategies

  19. Atomic-scale effects of chromium-doping on defect behaviour in uranium dioxide fuel

    International Nuclear Information System (INIS)

    Guo, Zhexi; Ngayam-Happy, Raoul; Krack, Matthias; Pautz, Andreas

    2017-01-01

    The effects of doping conventional UO 2 fuel with chromium are studied through atomistic simulations using empirical force field methods. We first analyse the stable structures of unirradiated doped fuel by determining the preferred lattice configuration of chromium ions and oxygen vacancies within the matrix. In order to understand the physical effects of the dopants, we investigate the energy change upon inserting isolated defects and Frenkel pairs in the vicinity of chromium. The behaviour of point defects is then studied with collision cascade simulations and relaxation of doped simulation cells containing Frenkel pairs. The defective structures are analysed using an in-house tool named ASTRAM. Results indicate definite effects of chromium-doping on the ease with which defects are formed. Moreover, the extent of Cr effects on the residual damage following a displacement cascade is dependent on the dopant distribution and concentration in the fuel matrix.

  20. Atomic-scale effects of chromium-doping on defect behaviour in uranium dioxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhexi; Ngayam-Happy, Raoul, E-mail: raoul.ngayam-happy@psi.ch; Krack, Matthias; Pautz, Andreas

    2017-05-15

    The effects of doping conventional UO{sub 2} fuel with chromium are studied through atomistic simulations using empirical force field methods. We first analyse the stable structures of unirradiated doped fuel by determining the preferred lattice configuration of chromium ions and oxygen vacancies within the matrix. In order to understand the physical effects of the dopants, we investigate the energy change upon inserting isolated defects and Frenkel pairs in the vicinity of chromium. The behaviour of point defects is then studied with collision cascade simulations and relaxation of doped simulation cells containing Frenkel pairs. The defective structures are analysed using an in-house tool named ASTRAM. Results indicate definite effects of chromium-doping on the ease with which defects are formed. Moreover, the extent of Cr effects on the residual damage following a displacement cascade is dependent on the dopant distribution and concentration in the fuel matrix.

  1. Analysis of burnup of Angra 2 PWR nuclear with addition of thorium dioxide fuel using ORIGEN-ARP

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Isadora C.; Wichrowski, Caio C.; Oliveira, Claudio L. de; Vellozo, Sergio O.; Baptista, Camila O., E-mail: isadora.goncalves@ime.eb.br, E-mail: wichrowski@ime.eb.br, E-mail: d7luiz@yahoo.com.br, E-mail: vellozo@ime.eb.br, E-mail: camila.oliv.baptista@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear

    2017-11-01

    It is known that isotope {sup 232}thorium is a fertile nuclide with the ability to convert into {sup 233}uranium, a potentially fissile isotope, after absorbing a neutron. As there is a large stock of available thorium in the world, this element shows great promise in mitigate the world energy crisis, more particularly in the problem of uranium scarcity, besides being an alternative nuclear fuel for those currently used in reactors, and yet presenting advantages as an option for the non-proliferation movement, among others. In this study, the analysis of the remaining nuclides of burnup was carried out for the core configuration of a PWR (pressurized water reactor) reactor, specifically the Angra 2 reactor, using only uranium dioxide, its current configuration, and in different configurations including a mixed oxide of uranium and thorium in three concentrations, allowing a preliminary assessment of the feasibility of the modification of the fuel, the resulting production of {sup 233}uranium, the emergence of {sup 231}protactinium (an isotope that only occurs as a fission product of {sup 232}Th) resulting from burning. The study was carried out using data obtained from FSAR (Final Safety Analysis Report) of Angra 2, using the SCALE 6.1, a modeling and simulation nuclear code, especially its ORIGEN-ARP module, which analyzes the depletion of isotopes presents in a reactor. (author)

  2. Analysis of burnup of Angra 2 PWR nuclear with addition of thorium dioxide fuel using ORIGEN-ARP

    International Nuclear Information System (INIS)

    Goncalves, Isadora C.; Wichrowski, Caio C.; Oliveira, Claudio L. de; Vellozo, Sergio O.; Baptista, Camila O.

    2017-01-01

    It is known that isotope "2"3"2thorium is a fertile nuclide with the ability to convert into "2"3"3uranium, a potentially fissile isotope, after absorbing a neutron. As there is a large stock of available thorium in the world, this element shows great promise in mitigate the world energy crisis, more particularly in the problem of uranium scarcity, besides being an alternative nuclear fuel for those currently used in reactors, and yet presenting advantages as an option for the non-proliferation movement, among others. In this study, the analysis of the remaining nuclides of burnup was carried out for the core configuration of a PWR (pressurized water reactor) reactor, specifically the Angra 2 reactor, using only uranium dioxide, its current configuration, and in different configurations including a mixed oxide of uranium and thorium in three concentrations, allowing a preliminary assessment of the feasibility of the modification of the fuel, the resulting production of "2"3"3uranium, the emergence of "2"3"1protactinium (an isotope that only occurs as a fission product of "2"3"2Th) resulting from burning. The study was carried out using data obtained from FSAR (Final Safety Analysis Report) of Angra 2, using the SCALE 6.1, a modeling and simulation nuclear code, especially its ORIGEN-ARP module, which analyzes the depletion of isotopes presents in a reactor. (author)

  3. Carbon Tolerant Fuel Electrodes for Reversible Sofc Operating on Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Papazisi Kalliopi Maria

    2017-01-01

    Full Text Available A challenging barrier for the broad, successful implementation of Reversible Solid Oxide Fuel Cell (RSOFC technology for Mars application utilizing CO2 from the Martian atmosphere as primary reactant, remains the long term stability by the effective control and minimization of degradation resulting from carbon built up. The perovskitic type oxide material La0.75Sr0.25Cr0.9Fe0.1O3-δ (LSCF has been developed and studied for its performance and tolerance to carbon deposition, employed as bi-functional fuel electrode in a Reversible SOFC operating on the CO2 cycle (Solid Oxide Electrolysis Cell/SOEC: CO2 electrolysis, Solid Oxide Fuel Cell/SOFC: power generation through the electrochemical reaction of CO and oxygen. A commercial state-of-the-art NiO-YSZ (8% mol Y2O3 stabilized ZrO2 cermet was used as reference material. CO2 electrolysis and fuel cell operation in 70% CO/CO2 were studied in the temperature range of 900-1000°C. YSZ was used as electrolyte while LSM-YSZ/LSM (La0.2Sr0.8MnO3 as oxygen electrode. Results showed that LSCF had high and stable performance under RSOFC operation.

  4. Fracture toughness and fracture surface energy of sintered uranium dioxide fuel pellets

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Chandrasekharan, K.N.; Panakkal, J.P.; Ghosh, J.K.

    1987-01-01

    The paper concerns the variation of fracture toughness Ksub(ic) and fracture surface energy γsub(s) in sintered uranium dioxide pellets in the density range 9.86 to 10.41 g cm -3 , using Vickers indentation technique. A minimum of four indentations were made on each pellet sample and the average crack length of each indentation and the hardness values were determined. The overall average crack-length datra and the data on volume fraction porosity in the pellets fitted a straight line, from which Ksub(ic) and γsub(s) were calculated. The fracture parameters of nonporous polycrystalline UO 2 , calculated from the experimental data, are presented in tabular form. (U.K.)

  5. Decontamination of irradiated-fuel processing waste using manganese dioxide hydrate

    International Nuclear Information System (INIS)

    Auchapt, J.M.; Gaudier, J.F.

    1969-01-01

    The 'manganese dioxide' process is designed to replace the 'calcium carbonate' treatment for low and medium activity wastes. The objective to attain during the research for a new process was the diminution of the volume of the sludge without decreasing the decontamination factor of the wastes. The new process involves addition in series of twice over 100 ppm of Mn 2+ in the waste which has previously been made basic and oxidizing; the precipitate formed in situ is separated after each addition. The process has the advantage of increasing the decontamination of strontium. The treatment can be used in a plant including two decantation units and has given effective results when applied in such a plant. (author) [fr

  6. Swelling of uranium dioxide and deformation behavior of the fuel element at high temperature irradiation

    International Nuclear Information System (INIS)

    Gontar, A.S.; Gutnik, V.S.; Nelidov, M.V.; Nikolaev, Yu.V.

    1993-01-01

    As post-reactor investigations showed, significant difference of swelling rates is connected with the fact that swelling of UO 2 with the equiaxial structure is mainly the result of fission gas bubbles accumulation along grain boundaries, and, in the case of the column structure, with formation of fine bubbles inside grains. The data given testify to usefulness of such investigations to predict TFE lifetime. As proven in this study one can see rates of radial deformation of fuel element cladding of a multi-cell TFE as a result of UO 2 swelling. They were calculated using the code SDS. Typical sizes were taken for calculation: cladding diameter--20 mm, cladding temperature at the central section of the fuel element--1,900 K, energy generation rate--145 W/cm 3 . These parameters provide output electric power of the TFE 600 W at the active zone length--400 mm

  7. Method and apparatus for capturing carbon dioxide during combustion of carbon containing fuel

    Science.gov (United States)

    Axelbaum, Richard L.; Kumfer, Benjamin M.; Xia, Fei; Gopan, Akshay; Dhungel, Bhupesh

    2018-04-10

    A boiler system having a series of boilers. Each boiler includes a shell having an upstream end, a downstream end, and a hollow interior. The boilers also have an oxidizer inlet entering the hollow interior adjacent the upstream end of the shell and a fuel nozzle positioned adjacent the upstream end of the shell for introducing fuel into the hollow interior of the shell. Each boiler includes a flue duct connected to the shell adjacent the downstream end for transporting flue gas from the hollow interior. Oxygen is delivered to the oxidizer inlet of the first boiler in the series. Flue gas from the immediately preceding boiler in the series is delivered through the oxidizer inlet of each boiler subsequent to the first boiler in the series.

  8. Development of uranium dioxide fuel pellets with addition of beryllium oxide for increasing of thermal conductivity

    International Nuclear Information System (INIS)

    Queiroz, Carolinne Mol; Ferreira, Ricardo Alberto Neto

    2011-01-01

    The CDTN - Centro de Desenvolvimento de Tecnologia Nuclear presents a project named 'Beryllium Project' viewing to increasing the thermal conductivity of UO 2 fuel pellets, increasing the lifetime of those pellets in the reactor, generating a greater economy. This increase of conductivity is obtained by means of Be O addition to the UO 2 fuel pellets, which is very used for the production of nuclear energy. The UO 2 pellets however present a thermal conductivity relatively low, generating a high temperature gradient between the center and his side surface. The addition of beryllium oxide, with higher thermal conductivity gives pellets which will present lower temperature gradient and, consequently, more durability and better utilization of energy potential of the pellet in the reactor. (author)

  9. Advances in simulating non-congruent phase transitions of hyperstoichiometric uranium dioxide fuel

    International Nuclear Information System (INIS)

    Welland, M.J.; Thompson, W.T.; Lewis, B.J.

    2007-01-01

    A model is being developed to simulate UO 2 at very high temperatures incorporating the effects of non-congruent phase transitions. In particular, the melting transformation and the possible 'Λ-transition' is being investigated to help support the design and analysis of experimental work being conducted as part of nuclear safety research. This work includes the interpretation of the behaviour of operating CANDU fuel under upset conditions, where centerline melting may potentially occur (particularly if the fuel is oxidized). The model presented here numerically solves a system of coupled nonlinear differential equations as derived from fundamental principles. The results of the model present here compare well against laser flash experiments in recently published literature. (author)

  10. Increase of thermal conductivity of uranium dioxide nuclear fuel pellets with beryllium oxide addition

    International Nuclear Information System (INIS)

    Camarano, D.M.; Mansur, F.A.; Santos, A.M.M. dos; Ferraz, W.B.

    2016-01-01

    The UO_2 fuel is one of the most used nuclear fuel in thermal reactors and has many advantages such as high melting point, chemical compatibility with cladding, etc. However, its thermal conductivity is relatively low, which leads to a premature degradation of the fuel pellets due to a high radial temperature gradient during reactor operation. An alternative to avoid this problem is to increase the thermal conductivity of the fuel pellets, by adding beryllium oxide (BeO). Pellets of UO_2 and UO_2-BeO were obtained from a homogenized mixture of powders of UO_2 and BeO, containing 2% and 3% by weight of BeO and sintering at 1750 °C for 3 h under H_2 atmosphere after uniaxial pressing at 400 MPa. The pellet densities were obtained by xylol penetration-immersion method and the thermal diffusivity, specific heat and thermal conductivity were determined according to ASTM E-1461 at room temperature (25 deg C) and 100 deg C. The thermal diffusivity measurements were carried out employing the laser flash method. The thermal conductivity obtained at 25 deg C showed an increase with the addition of 2% and 3% of BeO corresponding to 19% and 28%, respectively. As for the measurements carried out at 100 deg C, there was an increase in the thermal conductivity for the same BeO contents of 20% and 31%. These values as a percentage of increased conductivity were obtained in relation to the UO_2 pellets. (author)

  11. Assessing Uncertainties in Gridded Emissions: A Case Study for Fossil Fuel Carbon Dioxide (FFCO2) Emission Data

    Science.gov (United States)

    Oda, T.; Ott, L.; Lauvaux, T.; Feng, S.; Bun, R.; Roman, M.; Baker, D. F.; Pawson, S.

    2017-01-01

    Fossil fuel carbon dioxide (CO2) emissions (FFCO2) are the largest input to the global carbon cycle on a decadal time scale. Because total emissions are assumed to be reasonably well constrained by fuel statistics, FFCO2 often serves as a reference in order to deduce carbon uptake by poorly understood terrestrial and ocean sinks. Conventional atmospheric CO2 flux inversions solve for spatially explicit regional sources and sinks and estimate land and ocean fluxes by subtracting FFCO2. Thus, errors in FFCO2 can propagate into the final inferred flux estimates. Gridded emissions are often based on disaggregation of emissions estimated at national or regional level. Although national and regional total FFCO2 are well known, gridded emission fields are subject to additional uncertainties due to the emission disaggregation. Assessing such uncertainties is often challenging because of the lack of physical measurements for evaluation. We first review difficulties in assessing uncertainties associated with gridded FFCO2 emission data and present several approaches for evaluation of such uncertainties at multiple scales. Given known limitations, inter-emission data differences are often used as a proxy for the uncertainty. The popular approach allows us to characterize differences in emissions, but does not allow us to fully quantify emission disaggregation biases. Our work aims to vicariously evaluate FFCO2 emission data using atmospheric models and measurements. We show a global simulation experiment where uncertainty estimates are propagated as an atmospheric tracer (uncertainty tracer) alongside CO2 in NASA's GEOS model and discuss implications of FFCO2 uncertainties in the context of flux inversions. We also demonstrate the use of high resolution urban CO2 simulations as a tool for objectively evaluating FFCO2 data over intense emission regions. Though this study focuses on FFCO2 emission data, the outcome of this study could also help improve the knowledge of similar

  12. Design of electrolyzer for carbon dioxide conversion to fuels and chemicals

    Science.gov (United States)

    Rosen, Jonathan S.

    The stabilization of global atmospheric CO2 levels requires a transition towards a renewable energy based economy as well as methods for handling current CO2 output from fossil fuels. Challenges with renewable energy intermittency have thus far limited the use of these alternative energy sources to only a fraction of the current energy portfolio. To enable more widespread use of renewable energy systems, methods of large scale energy storage must be developed to store excess renewable energy when demand is low and allow for combined use of energy storage and renewable systems when demand is high. To date, no one technique has demonstrated energy storage methods on the gigawatt scale needed for integration with renewable sources; therefore the development of suitable energy storage technologies, such as CO2 electrolysis to fuels is needed. In this work, research efforts have focused on two major thrusts related to electrochemical methods of CO 2 conversion to fuels. The first thrust focuses on the synthesis and design of highly efficient anode and cathode catalysts with emphasis on understanding structure-property relationships. A second thrust focuses on the design of novel electrochemical devices for CO2 conversion and integration of synthesized materials into flow cell systems. On the anode side, the synthesis of highly active catalysts using abundant transition metals is crucial to reducing capital costs and enabling widespread use of electrochemical CO2 conversion devices. Highly active mesoporous Co3O4 and metal-substituted Co3O4 water oxidation catalysts were designed to investigate the role of the spinel structure on water oxidation activity. Further analysis of metal substituted samples reveal the importance of the octahedral sites in the spinel structure, which was later used to design an Mg-Co3O4 sample with improved water oxidation activity. The design of efficient cathode materials which can selectivity reduce CO2 to fuels and chemicals is critical to

  13. Corrigendum to "Sinusoidal potential cycling operation of a direct ethanol fuel cell to improving carbon dioxide yields" [J. Power Sources 268 (5 December 2014) 439-442

    Science.gov (United States)

    Majidi, Pasha; Pickup, Peter G.

    2016-09-01

    The authors regret that Equation (5) is incorrect and has resulted in errors in Fig. 4 and the efficiencies stated on p. 442. The corrected equation, figure and text are presented below. In addition, the title should be 'Sinusoidal potential cycling operation of a direct ethanol fuel cell to improve carbon dioxide yields', and the reversible cell potential quoted on p. 441 should be 1.14 V. The authors would like to apologise for any inconvenience caused.

  14. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

    2008-08-13

    Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

  15. Manganese dioxide as a new cathode catalyst in microbial fuel cells

    Science.gov (United States)

    Li, Xiang; Hu, Boxun; Suib, Steven; Lei, Yu; Li, Baikun

    This study focused on manganese oxides with a cryptomelane-type octahedral molecular sieve (OMS-2) structure to replace platinum as a cathode catalyst in microbial fuel cells (MFCs). Undoped (ud-OSM-2) and three catalysts doped with cobalt (Co-OMS-2), copper (Cu-OMS-2), and cerium (Ce-OMS-2) to enhance their catalytic performances were investigated. The novel OMS-2 cathodes were examined in granular activated carbon MFC (GACMFC) with sodium acetate as the anode reagent and oxygen in air as the cathode reagent. The results showed that after 400 h of operation, the Co-OMS-2 and Cu-OMS-2 exhibited good catalytic performance in an oxygen reduction reaction (ORR). The voltage of the Co-OMS-2 GACMFC was 217 mV, and the power density was 180 mW m -2. The voltage of the Cu-OMS-2 GACMFC was 214 mV and the power density was 165 mW m -2. The internal resistance (R in) of the OMS-2 GACMFCs (18 ± 1 Ω) was similar to that of the platinum GACMFCs (17 Ω). Furthermore, the degradation rates of organic substrates in the OMS-2 GACMFCs were twice those in the platinum GACMFCs, which enhance their wastewater treatment efficiencies. This study indicated that using OMS-2 manganese oxides to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs.

  16. Manganese dioxide as a new cathode catalyst in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Li, Baikun [Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269 (United States); Hu, Boxun [Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Suib, Steven [Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Department of Chemistry, University of Connecticut, Storrs, CT 06269 (United States); Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269 (United States); Lei, Yu. [Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2010-05-01

    This study focused on manganese oxides with a cryptomelane-type octahedral molecular sieve (OMS-2) structure to replace platinum as a cathode catalyst in microbial fuel cells (MFCs). Undoped (ud-OSM-2) and three catalysts doped with cobalt (Co-OMS-2), copper (Cu-OMS-2), and cerium (Ce-OMS-2) to enhance their catalytic performances were investigated. The novel OMS-2 cathodes were examined in granular activated carbon MFC (GACMFC) with sodium acetate as the anode reagent and oxygen in air as the cathode reagent. The results showed that after 400 h of operation, the Co-OMS-2 and Cu-OMS-2 exhibited good catalytic performance in an oxygen reduction reaction (ORR). The voltage of the Co-OMS-2 GACMFC was 217 mV, and the power density was 180 mW m{sup -2}. The voltage of the Cu-OMS-2 GACMFC was 214 mV and the power density was 165 mW m{sup -2}. The internal resistance (R{sub in}) of the OMS-2 GACMFCs (18 {+-} 1 {omega}) was similar to that of the platinum GACMFCs (17 {omega}). Furthermore, the degradation rates of organic substrates in the OMS-2 GACMFCs were twice those in the platinum GACMFCs, which enhance their wastewater treatment efficiencies. This study indicated that using OMS-2 manganese oxides to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs. (author)

  17. Penetrate-leach dissolution of zirconium-clad uranium and uranium dioxide fuels

    International Nuclear Information System (INIS)

    Harmon, H.D.

    1975-01-01

    A new decladding-dissolution process was developed for zirconium-clad uranium metal and UO 2 fuels. The proposed penetrate-leach process consists of penetrating the zirconium cladding with Alniflex solution (2M HF--1M HNO 3 --1M Al(NO 3 ) 3 --0.1M K 2 Cr 2 O 7 ) and of leaching the exposed core with 10M HNO 3 . Undissolved cladding pieces are discarded as solid waste. Periodic HF and HNO 3 additions, efficient agitation, and in-line zirconium analyses are required for successful control of ZrF 4 and/or AlF 3 precipitation during the cladding-penetration step. Preliminary solvent extraction studies indicated complete recovery of uranium with 30 vol. percent tributyl phosphate (TBP) from both Alniflex solution and blended Alniflex-HNO 3 leach solutions. With 7.5 vol. percent TBP, high extractant/feed flow ratios and low scrub flows are required for satisfactory uranium recovery from Alniflex solution. Modified waste-handling procedures may be required for Alniflex waste, because it cannot be evaporated before neutralization and large quantities of solids are generated on neutralization. The effect of unstable UZr 3 (epsilon phase of uranium-zirconium system) on the safety of penetrate-leach dissolution was investigated

  18. Electrochemical, interfacial, and surface studies of the conversion of carbon dioxide to liquid fuels on tin electrodes

    Science.gov (United States)

    Wu, Jingjie

    The electrochemical reduction of carbon dioxide (CO2) into liquid fuels especially coupling with the intermittent renewable electricity offers a promising means of storing electricity in chemical form, which reduces the dependence on fossil fuels and mitigates the negative impact of anthropogenic CO2 emissions on the planet. Although converting CO2 to fuels is not in itself a new concept, the field has not substantially advanced in the last 30 years primarily because of the challenge of discovery of structural electrocatalysts and the development of membrane architectures for efficient collection of reactants and separation of products. An efficient catalyst for the electrochemical conversion of CO2 to fuels must be capable of mediating a proton-coupled electron transfer reaction at low overpotentials, reducing CO2 in the presence of water, selectively converting CO 2 to desirable chemicals, and sustaining long-term operations (Chapter 1). My Ph.D. research was an investigation of the electroreduction of CO2 on tin-based electrodes and development of an electrochemical cell to convert CO2 to liquid fuels. The initial study focused on understanding the CO2 reduction reaction chemistry in the electrical double layer with an emphasis on the effects of electrostatic adsorption of cations, specific adsorption of anion and electrolyte concentration on the potential and proton concentration at outer Helmholtz plane at which reduction reaction occurs. The variation of potential and proton concentration at outer Helmholtz plane accounts for the difference in activity and selectivity towards CO2 reduction when using different electrolytes (Chapter 2). Central to the highly efficient CO2 reduction is an optimum microstructure of catalyst layer in the Sn gas diffusion electrode (GDE) consisting of 100 nm Sn nanoparticles to facilitate gas diffusion and charge transfer. This microstructure in terms of the proton conductor fraction and catalyst layer thickness was optimized to

  19. Manufacturing sector carbon dioxide emissions in nine OECD countries 1973--87: A Divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities, and international structure

    International Nuclear Information System (INIS)

    Torvanger, A.

    1990-11-01

    In this paper the reduction in energy-related manufacturing carbon dioxide emissions for nine OECD countries in the period 1973 to 1987 is analyzed. Carbon dioxide emissions are estimated from energy use data. The emphasis is on carbon dioxide intensities, defined as emissions divided by value added. The overall manufacturing carbon dioxide intensity for the nine OECD countries was reduced by 42% in the period 1973--1987. Five fuels are specified together with six subsectors of manufacturing. Carbon dioxide emissions are estimated from fossil fuel consumption, employing emissions coefficients for gas, oil and solids. In addition, electricity consumption is specified. For electricity use an emission coefficient index is calculated from the shares of fossil fuels, nuclear power and hydro power used to generate electricity, and the efficiency in electricity generation from these energy sources. A Divisia index approach is used to sort out the contribution to reduced carbon dioxide intensity from different components. The major finding is that the main contribution to reduced carbon dioxide intensity is from the general reduction in manufacturing energy intensity, most likely driven by economic growth and increased energy prices, giving incentives to invest in new technology and new industrial processes. There is also a significant contribution from reduced production in the most carbon dioxide intensive subsectors, and a contribution from higher efficiency in electricity generation together with a larger nuclear power share at the expense of oil. 19 refs., 5 figs., 11 tabs

  20. Monetary assessments of carbon dioxide emissions - Comparison between biofuels and fossil fuels; Monetaera vaerderingar av koldioxidutslaepp - jaemfoerelser mellan biobraenslen och fossila braenslen

    Energy Technology Data Exchange (ETDEWEB)

    Ekstroem, C.; Kierkegaard, G. [Vattenfall Utveckling AB, Stockholm (Sweden)] Borgstroem, T. [Swedpower AB (Sweden)

    1999-10-01

    The Swedish tax and subsidy system results in that municipal heat and combined heat and power often can be produced from biofuels at the same as or at lower costs than from fossil fuels. A considerable part of the Swedish municipal district heat is nowadays produced from biofuels. It has been questioned, whether this is justifiable from a national economic point of view, considering realistic estimates of the possible future costs, caused by increased carbon dioxide emissions, that will be avoided this way. There are however large differences between the monetary assessments of carbon dioxide emissions presented in various studies. According to neoclassic national economy, various energy production options should be valued based on their total costs from a national economic point of view. Such total costs include the production costs (`private costs`) as well as `external costs`, i.e. costs that will be brought down upon other parties than the plant owners and the energy buyers. This study illustrates how such total costs for power and heat production from biofuels relative to from natural gas, oil and coal, would be affected if various monetary assessments of carbon dioxide emissions would be treated as external costs and internalised, i.a. charged upon the production costs. The calculations are made for assumed new production plants. The order of precedence (with respect to the lowest total costs) between the studied fuels is affected in favour of biofuels only for high monetary assessments of carbon dioxide emissions. For heat as well as combined heat and power production, an order of precedence corresponding to the carbon dioxide emissions for the respective fuels, will be achieved only for the highest carbon dioxide monetary assessments based on a low discount rate. For condensing power production, the calculated production costs for biofuels are so high that natural gas will get the lowest total costs for all the studied carbon dioxide monetary assessments

  1. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel

    Science.gov (United States)

    Gao, Shan; Lin, Yue; Jiao, Xingchen; Sun, Yongfu; Luo, Qiquan; Zhang, Wenhua; Li, Dianqi; Yang, Jinlong; Xie, Yi

    2016-01-01

    Electroreduction of CO2 into useful fuels, especially if driven by renewable energy, represents a potentially ‘clean’ strategy for replacing fossil feedstocks and dealing with increasing CO2 emissions and their adverse effects on climate. The critical bottleneck lies in activating CO2 into the CO2•- radical anion or other intermediates that can be converted further, as the activation usually requires impractically high overpotentials. Recently, electrocatalysts based on oxide-derived metal nanostructures have been shown to enable CO2 reduction at low overpotentials. However, it remains unclear how the electrocatalytic activity of these metals is influenced by their native oxides, mainly because microstructural features such as interfaces and defects influence CO2 reduction activity yet are difficult to control. To evaluate the role of the two different catalytic sites, here we fabricate two kinds of four-atom-thick layers: pure cobalt metal, and co-existing domains of cobalt metal and cobalt oxide. Cobalt mainly produces formate (HCOO-) during CO2 electroreduction; we find that surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production, at lower overpotentials, than do surface cobalt atoms on bulk samples. Partial oxidation of the atomic layers further increases their intrinsic activity, allowing us to realize stable current densities of about 10 milliamperes per square centimetre over 40 hours, with approximately 90 per cent formate selectivity at an overpotential of only 0.24 volts, which outperforms previously reported metal or metal oxide electrodes evaluated under comparable conditions. The correct morphology and oxidation state can thus transform a material from one considered nearly non-catalytic for the CO2 electroreduction reaction into an active catalyst. These findings point to new opportunities for manipulating and improving the CO2 electroreduction properties of metal systems

  2. Thorium-based nuclear fuel: current status and perspectives

    International Nuclear Information System (INIS)

    1987-03-01

    Until the present time considerable efforts have already been made in the area of fabrication, utilization and reprocessing of Th-based fuels for different types of reactors, namely: by FRG and USA - for HTRs; FRG and Brazil, Italy - for LWRs; India - for HWRs and FBRs. Basic research of thorium fuels and thorium fuel cycles are also being undertaken by Australia, Canada, China, France, FRG, Romania, USSR and other countries. Main emphasis has been given to the utilization of thorium fuels in once-through nuclear fuel cycles, but in some projects closed thorium-uranium or thorium-plutonium fuel cycles are also considered. The purpose of the Technical Committee on the Utilization of Thorium-Based Nuclear Fuel: Current Status and Perspective was to review the world thorium resources, incentives for further exploration, obtained experience in the utilization of Th-based fuels in different types of reactors, basic research, fabrication and reprocessing of Th-based fuels. As a result of the panel discussion the recommendations on future Agency activities and list of major worldwide activities in the area of Th-based fuel were developed. A separate abstract was prepared for each of the 9 papers in this proceedings series

  3. Evaluation of thorium based nuclear fuel. Extended summary

    International Nuclear Information System (INIS)

    Franken, W.M.P.; Bultman, J.H.; Konings, R.J.M.; Wichers, V.A.

    1995-04-01

    Application of thorium based nuclear fuels has been evaluated with emphasis on possible reduction of the actinide waste. As a result three ECN-reports are published, discussing in detail: - The reactor physics aspects, by comparing the operation characteristics of the cores of Pressurized Water Reactors and Heavy Water Reactors with different fuel types, including equilibrium thorium/uranium free, once-through uranium fuel and equilibrium uranium/plutonium fuel, - the chemical aspects of thorium based fuel cycles with emphasis on fuel (re)fabrication and fuel reprocessing, - the possible reduction in actinide waste as analysed for Heavy Water Reactors with various types of thorium based fuels in once-through operation and with reprocessing. These results are summarized in this report together with a short discussion on non-proliferation and uranium resource utilization. It has been concluded that a substantial reduction of actinide radiotoxicity of the disposed waste may be achieved by using thorium based fuels, if very efficient partitioning and multiple recycling of uranium and thorium can be realized. This will, however, require large efforts to develop the technology to the necessary industrial scale of operation. (orig.)

  4. Quantification of the effect of in-situ generated uranium metal on the experimentally determined O/U ratio of a sintered uranium dioxide fuel pellet

    International Nuclear Information System (INIS)

    Narasimha Murty, B.; Bharati Misra, U.; Yadav, R.B.; Srivastava, R.K.

    2005-01-01

    This paper describes quantitatively the effect of in-situ generated uranium metal (that could be formed due to the conducive manufacturing conditions) in a sintered uranium dioxide fuel pellet on the experimentally determined O/U ratio using analytical methods involving dissolution of the pellet material. To quantify the effect of in-situ generated uranium metal in the fuel pellet, a mathematical expression is derived for the actual O/U ratio in terms of the O/U ratio as determined by an experiment involving dissolution of the material and the quantity of uranium metal present in the uranium dioxide pellet. The utility of this derived mathematical expression is demonstrated by tabulating the calculated actual O/U ratios for varying amounts of uranium metal (from 5 to 95% in 5% intervals) and different O/U ratio values (from 2.001 to 2.015 in 0.001 intervals). This paper brings out the necessity of care to be exercised while interpreting the experimentally determined O/U ratio and emphasizes the fact that it is always safer to produce the nuclear fuel with oxygen to uranium ratios well below the specified maximum limit of 2.015. (author)

  5. Emissions of Water and Carbon Dioxide from Fossil-Fuel Combustion Contribute Directly to Ocean Mass and Volume Increases

    Science.gov (United States)

    Skuce, A. G.

    2014-12-01

    The direct, non-climate, contribution of carbon dioxide and water emissions from fossil-fuel (FF) combustion to the volume and mass of the oceans has been omitted from estimates of sea-level rise (SLR) in IPCC reports. Following the method of Gornitz et al. (1997), H2O emissions are estimated using carbon emissions from the Carbon Dioxide Information Analysis Center, along with typical carbon and hydrogen contents of FF. Historic H2O emissions from 1750 to 2010 amount to 430 ±50 PgH2O, equivalent to 1.2 ±0.2 mmSLR. Sometime in this decade the volume of H2O from historic FF combustion will exceed the volume of Lake Erie (480 km3). CO2 dissolved in the ocean increases the seawater volume by 31-33 mL mol-1 CO2. From 1750 to 2010, 370 ±70 PgCO2 from FF combustion has dissolved in the oceans, causing 0.7 ±0.2 mmSLR. Combined H2O+CO2emissions from FF have therefore added 1.9 ±0.4 mm to sea levels in the Industrial Era. Combustion of FF in 2010 resulted in emissions of 32 PgCO2 and 12 ±1 PgH2O. SLR contributions for that year from FF emissions were 0.033 ±0.005 mm from H2O and 0.011±0.003 mm from dissolved CO2, a total rate of 0.044 ±0.008 mm yr-1. Emissions incorporated in socio-economic models underlying the RCP 8.5 and 2.6 scenarios are used along with concentration-driven CMIP5 Earth System Models results to estimate future sea-level rise from FF combustion. From 2010 to 2100, RCP8.5 and 2.6 models respectively produce 9 ±2 mmSLR and 5 ±1 mmSLR from FF H2O+CO2. For perspective, these amounts are larger than the modelled contributions from loss of glaciers in the Andes. The direct contribution of FF emissions to SLR is small (1-2%) relative to current rates and projected estimates under RCP scenarios up to 2100. The magnitude is similar to SLR estimates from other minor sources such as the melting of floating ice, land-use emissions and produced water from oil operations, none of which are currently included in SLR assessments. As uncertainties in

  6. Dry syngas purification process for coal gas produced in oxy-fuel type integrated gasification combined cycle power generation with carbon dioxide capturing feature.

    Science.gov (United States)

    Kobayashi, Makoto; Akiho, Hiroyuki

    2017-12-01

    Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Proposed master-slave and automated remote handling system for high-temperature gas-cooled reactor fuel refabrication

    International Nuclear Information System (INIS)

    Grundmann, J.G.

    1974-01-01

    The Oak Ridge National Laboratory's Thorium-Uranium Recycle Facility (TURF) will be used to develop High-Temperature Gas-Cooled Reactor (HTGR) fuel recycle technology which can be applied to future HTGR commercial fuel recycling plants. To achieve recycle capabilities it is necessary to develop an effective material handling system to remotely transport equipment and materials and to perform maintenance tasks within a hot cell facility. The TURF facility includes hot cells which contain remote material handling equipment. To extend the capabilities of this equipment, the development of a master-slave manipulator and a 3D-TV system is necessary. Additional work entails the development of computer controls to provide: automatic execution of tasks, automatic traverse of material handling equipment, automatic 3D-TV camera sighting, and computer monitoring of in-cell equipment positions to prevent accidental collisions. A prototype system which will be used in the development of the above capabilities is presented. (U.S.)

  8. The uranium and thorium separation in the chemical reprocessing of the irradiated fuel of thorium and uranium mixed oxides

    International Nuclear Information System (INIS)

    Oliveira, E.F. de.

    1984-09-01

    A bibliographic research has been carried out for reprocessing techniques of irradiated thorium fuel from nuclear reactors. The Thorex/Hoechst process has been specially considered to establish a method for reprocessing thorium-uranium fuel from PWR. After a series of cold tests performed in laboratory it was possible to set the behavior of several parameters affecting the Thorex/Hoechst process. Some comments and suggestions are presented for modifications in the process flosheet conditions. A discussion is carried out for operational conditions such as the aqueous to organic flow ratio the acidity of strip and scrub solutions in the process steps for thorium and uranium recovery. The operation diagrams have been constructed using equilibrium experimental data which correspond to conditions observed in laboratory. (Author) [pt

  9. Potential to reduce emissions of sulphur dioxide through reducing sulphur levels in heavy and light fuel oils - a discussion paper

    International Nuclear Information System (INIS)

    Tushingham, M.; Bellamy, J.

    2001-01-01

    Background information on the sulphur levels in light fuel oil (used in residential heating) and heavy fuel oil (used as industrial fuel oil) is provided. In addition to the description of sulphur levels in light and heavy fuel oils, the report also provides a summary of regulatory limits in Canada and elsewhere, and a description of the emission benefits of decreasing sulphur in fuels. 4 refs., 10 tabs., 12 figs

  10. Recent IAEA activities on CANDU-PHWR fuels and fuel cycles

    International Nuclear Information System (INIS)

    Inozemtsev, V.; Ganguly, C.

    2005-01-01

    Pressurized Heavy Water Reactors (PHWR), widely known as CANDU, are in operation in Argentina, Canada, China, India, Pakistan, Republic of Korea and Romania and account for about 6% of the world's nuclear electricity production. The CANDU reactor and its fuel have several unique features, like horizontal calandria and coolant tubes, on-power fuel loading, thin-walled collapsible clad coated with graphite on the inner surface, very high density (>96%TD) natural uranium oxide fuel and amenability to slightly enriched uranium oxide, mixed uranium plutonium oxide (MOX), mixed thorium plutonium oxide, mixed thorium uranium (U-233) oxide and inert matrix fuels. Several Technical Working Groups (TWG) of IAEA periodically discuss and review CANDU reactors, its fuel and fuel cycle options. These include TWGs on water-cooled nuclear power reactor Fuel Performance and Technology (TWGFPT), on Nuclear Fuel Cycle Options and spent fuel management (TWGNFCO) and on Heavy Water Reactors (TWGHWR). In addition, IAEA-INPRO project also covers Advanced CANDU Reactors (ACR) and DUPIC fuel cycles. The present paper summarises the Agency's activities in CANDU fuel and fuel cycle, highlighting the progress during the last two years. In the past we saw HWR and LWR technologies and fuel cycles separate, but nowadays their interaction is obviously growing, and their mutual influence may have a synergetic character if we look at the world nuclear fuel cycle as at an integrated system where the both are important elements in line with fast neutron, gas cooled and other advanced reactors. As an international organization the IAEA considers this challenge and makes concrete steps to tackle it for the benefit of all Member States. (author)

  11. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sinskey, Anthony J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Worden, Robert Mark [Michigan State Univ., East Lansing, MI (United States); Brigham, Christopher [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lu, Jingnan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Quimby, John Westlake [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Gai, Claudia [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Speth, Daan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Elliott, Sean [Boston Univ., MA (United States); Fei, John Qiang [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Bernardi, Amanda [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Li, Sophia [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Grunwald, Stephan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Grousseau, Estelle [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Maiti, Soumen [Michigan State Univ., East Lansing, MI (United States); Liu, Chole [Michigan State Univ., East Lansing, MI (United States)

    2013-12-16

    This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation Calvin–Benson–Bassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide

  12. Fabrication routes for Thorium and Uranium233 based AHWR fuel

    International Nuclear Information System (INIS)

    Danny, K.M.; Saraswat, Anupam; Chakraborty, S.; Somayajulu, P.S.; Kumar, Arun

    2011-01-01

    India's economic growth is on a fast growth track. The growth in population and economy is creating huge demand for energy which has to be met with environmentally benign technologies. Nuclear Energy is best suited to meet this demand without causing undue environmental impact. Considering the large thorium reserves in India, the future nuclear power program will be based on Thorium- Uranium 233 fuel cycle. The major characteristic of thorium as the fuel of future comes from its superior fuel utilization. 233 U produced in a reactor is always contaminated with 232 U. This 232 U undergoes a decay to produce 228 Th and it is followed by decay chain including 212 Bi and 208 Tl. Both 212 Bi and 208 Tl are hard gamma emitters ranging from 0.6 MeV-1.6 MeV and 2.6 MeV respectively, which necessitates its handling in hot cell. The average concentration of 232 U is expected to exceed 1000 ppm after a burn-up of 24,000 MWD/t. Work related to developing the fuel fabrication technology including automation and remotization needed for 233 U based fuels is in progress. Various process for fuel fabrication have been developed i.e. Coated Agglomerate Pelletisation (CAP), impregnation technique (Pellet/Gel), Sol Gel Micro-sphere Pelletisation (SGMP) apart from Powder to Pellet (POP) route. This paper describes each process with respect to its advantages, disadvantages and its amenability to automation and remotisation. (author)

  13. Comparison of the radiological impacts of thorium and uranium nuclear fuel cycles

    International Nuclear Information System (INIS)

    Meyer, H.R.; Witherspoon, J.P.; McBride, J.P.; Frederick, E.J.

    1982-03-01

    This report compares the radiological impacts of a fuel cycle in which only uranium is recycled, as presented in the Final Generic Environmental Statement on the Use of Recycle Plutonium in Mixed Oxide Fuel in Light Water Cooled Reactors (GESMO), with those of the light-water breeder reactor (LWBR) thorium/uranium fuel cycle in the Final Environmental Statement, Light Water Breeder Reactor Program. The significant offsite radiological impacts from routine operation of the fuel cycles result from the mining and milling of thorium and uranium ores, reprocessing spent fuel, and reactor operations. The major difference between the impacts from the two fuel cycles is the larger dose commitments associated with current uranium mining and milling operations as compared to thorium mining and milling. Estimated dose commitments from the reprocessing of either fuel type are small and show only moderate variations for specific doses. No significant differences in environmental radiological impact are anticipated for reactors using either of the fuel cycles. Radiological impacts associated with routine releases from the operation of either the thorium or uranium fuel cycles can be held to acceptably low levels by existing regulations

  14. Microbial production of multi-carbon chemicals and fuels from water and carbon dioxide using electric current

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R; Nevin, Kelly

    2015-11-03

    The invention provides systems and methods for generating organic compounds using carbon dioxide as a source of carbon and electrical current as an energy source. In one embodiment, a reaction cell is provided having a cathode electrode and an anode electrode that are connected to a source of electrical power, and which are separated by a permeable membrane. A biological film is provided on the cathode. The biological film comprises a bacterium that can accept electrons and that can convert carbon dioxide to a carbon-bearing compound and water in a cathode half-reaction. At the anode, water is decomposed to free molecular oxygen and solvated protons in an anode half-reaction. The half-reactions are driven by the application of electrical current from an external source. Compounds that have been produced include acetate, butanol, 2-oxobutyrate, propanol, ethanol, and formate.

  15. Microbial production of multi-carbon chemicals and fuels from water and carbon dioxide using electric current

    Science.gov (United States)

    Lovley, Derek R.; Nevin, Kelly P.

    2018-01-02

    The invention provides systems and methods for generating organic compounds using carbon dioxide as a source of carbon and electrical current as an energy source. In one embodiment, a reaction cell is provided having a cathode electrode and an anode electrode that are connected to a source of electrical power, and which are separated by a permeable membrane. A biological film is provided on the cathode. The biological film comprises a bacterium that can accept electrons and that can convert carbon dioxide to a carbon-bearing compound and water in a cathode half-reaction. At the anode, water is decomposed to free molecular oxygen and solvated protons in an anode half-reaction. The half-reactions are driven by the application of electrical current from an external source. Compounds that have been produced include acetate, butanol, 2-oxobutyrate, propanol, ethanol, and formate.

  16. Literature review of thermal and radiation performance parameters for high-temperature, uranium dioxide fueled cermet materials

    International Nuclear Information System (INIS)

    Haertling, C.; Hanrahan, R.J.

    2007-01-01

    High-temperature fissile-fueled cermet literature was reviewed. Data are presented primarily for the W-UO 2 as this was the system most frequently studied; other reviewed systems include cermets with Mo, Re, or alloys as a matrix. Failure mechanisms for the cermets are typically degradation of mechanical integrity and loss of fuel. Mechanical failure can occur through stresses produced from dissimilar expansion coefficients, voids created from diffusion of dissimilar materials or formation of metal hydride and subsequent volume expansion. Fuel loss failure can occur by high temperature surface vaporization or by vaporization after loss of mechanical integrity. Techniques found to aid in retaining fuel include the use of coatings around UO 2 fuel particles, use of oxide stabilizers in the UO 2 , minimizing grain sizes in the metal matrix, minimizing impurities, controlling the cermet sintering atmosphere, and cladding around the cermet

  17. Development of a model system to study fuel autoxidation in supercritical media: decomposition kinetics of 2,2{prime}-azobis (isobutyronitrile) in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R.E.; Mera, A.E.; Brady, R.F. Jr. [Naval Research Laboratory, Washington, DC (USA)

    2000-07-01

    A high pressure reactor has been constructed and used for in situ spectroscopic measurements of reaction kinetics in supercritical fluids. The thermal decomposition of 2,2{prime}-azobis(isobutyronitrile) (AIBN) in supercritical carbon dioxide (SC-CO{sub 2}) was studied as part of an effort to characterize free-radical autoxidation of hydrocarbon fuels under supercritical conditions. The findings show that AIBN decomposes both thermally and photochemically in SC-CO{sub 2} to form the 2-cyano-2-propyl free radical which dimerizes to form tetramethylsuccinic dinitrile and dimethyl-N-(2-cyano-2-propyl) ketenimine. Examination of the decomposition kinetics of the ketenimine revealed that it was photochemically stable in the kinetic reactor, but decomposed thermally to form the dinitrile. 21 refs., 4 figs., 1 tab.

  18. Design of a Novel Voltage Controller for Conversion of Carbon Dioxide into Clean Fuels Using the Integration of a Vanadium Redox Battery with Solar Energy

    Directory of Open Access Journals (Sweden)

    Ting-Chia Ou

    2018-02-01

    Full Text Available This letter presents a design for a novel voltage controller (NVC which can exhibit three different reactions using the integration of a vanadium redox battery (VRB with solar energy, and uses only electrochemical potentials with optimal external bias voltage control to carry out hydrogen production and the conversion of carbon dioxide (CO2 into methane and methanol. This NVC is simply constructed by using dynamic switch and control strategies with a time-variant control system. In this design, the interval voltage bias solutions obtained by the proposed NVC exhibit better voltage ranges and good agreement with the practical scenarios, which will bring significant benefits to operation for continuous reduction of CO2 into value-added clean fuels using the integration of a VRB with solar energy or any other renewable energy resource for future applications.

  19. Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991; and an estimate of their isotopic composition and latitudinal distribution

    Energy Technology Data Exchange (ETDEWEB)

    Andres, R.J.; Marland, G.; Boden, T.; Bischof, S.

    1994-10-01

    This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (CO{sub 2}) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: (1) updating the 1950 to present time series of CO{sub 2} emissions from fossil fuel consumption and cement manufacture, (2) extending this time series back to 1751, (3) gridding the data at 1{sup 0} by 1{sup 0} resolution, and (4) estimating the isotopic signature of these emissions. In 1991, global emissions of CO{sub 2} from fossil fuel and cement increased 1.5% over 1990 levels to 6188 {times} 10{sup 6} metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement with two other, but shorter, energy time series. A latitudinal distribution of carbon emissions is being completed. A southward shift in the major mass of CO{sub 2} emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population and industrialization at these lower latitudes. The carbon isotopic signature of these emissions has been re-examined. The emissions of the last two decades are approximately 1{per_thousand} lighter than previously reported (Tans, 1981). This lightening of the emissions signature is due to fossil fuel gases and liquids, including a revision of their {delta}{sup 13}C isotopic signature and an increased production rate.

  20. Process development and exergy cost sensitivity analysis of a hybrid molten carbonate fuel cell power plant and carbon dioxide capturing process

    Science.gov (United States)

    Mehrpooya, Mehdi; Ansarinasab, Hojat; Moftakhari Sharifzadeh, Mohammad Mehdi; Rosen, Marc A.

    2017-10-01

    An integrated power plant with a net electrical power output of 3.71 × 105 kW is developed and investigated. The electrical efficiency of the process is found to be 60.1%. The process includes three main sub-systems: molten carbonate fuel cell system, heat recovery section and cryogenic carbon dioxide capturing process. Conventional and advanced exergoeconomic methods are used for analyzing the process. Advanced exergoeconomic analysis is a comprehensive evaluation tool which combines an exergetic approach with economic analysis procedures. With this method, investment and exergy destruction costs of the process components are divided into endogenous/exogenous and avoidable/unavoidable parts. Results of the conventional exergoeconomic analyses demonstrate that the combustion chamber has the largest exergy destruction rate (182 MW) and cost rate (13,100 /h). Also, the total process cost rate can be decreased by reducing the cost rate of the fuel cell and improving the efficiency of the combustion chamber and heat recovery steam generator. Based on the total avoidable endogenous cost rate, the priority for modification is the heat recovery steam generator, a compressor and a turbine of the power plant, in rank order. A sensitivity analysis is done to investigate the exergoeconomic factor parameters through changing the effective parameter variations.

  1. In-pile and out-of-pile testing of a molybdenum-uranium dioxide cermet fueled themionic diode

    Science.gov (United States)

    Diianni, D. C.

    1972-01-01

    The behavior of Mo-UO2 cermet fuel in a diode for thermionic reactor application was studied. The diode had a Mo-0.5 Ti emitter and niobium collector. Output power ranged from 1.4 to 2.8 W/cm squared at emitter and collector temperatures of 1500 deg and 540 C. Thermionic performance was stable within the limits of the instrumentation sensitivity. Through 1000 hours of in-pile operation the emitter was dimensionally stable. However, some fission gases (15 percent) leaked through an inner clad imperfection that occurred during fuel fabrication.

  2. CARBON DIOXIDE FIXATION.

    Energy Technology Data Exchange (ETDEWEB)

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  3. Hydrogen production by reforming of fossil and biomass fuels accompanied by carbon dioxide capture process is the energy source for the near future

    International Nuclear Information System (INIS)

    Aboudheir, Ahmed; Idem, Raphael; Tontiwachwuthikul, Paitoon; Wilson, Malcolm; Kambietz, Lionel

    2006-01-01

    Hydrogen has a significant future potential as an alternative energy source for the transportation sector as well as in residential homes and offices, H 2 in fuel cell power systems provides an alternative to direct fossil fuel and biomass combustion based technologies and offer the possibility for a significant reduction in greenhouse gas emission based on improved H 2 yield per unit of fossil fuel and biomass, compatibility with renewable energies and motivation to convert to a H 2 -based energy economy. Several practical techniques for H 2 production to service H 2 refuelling stations as well as homes and offices, all of which need to be located at the end of the energy distribution network, include: (1) the carbon dioxide reforming of natural gas; (2) reforming of gasoline; (3) reforming of crude ethanol. Locating the H 2 production at the end of the energy distribution network solves the well-known problems of metal fatigue and high cost of H 2 compression for long distance transportation if H 2 is produced in a large centralized plant. In addition, the ratification of the Kyoto Protocol and the need to reduce emissions of CO 2 to the atmosphere has prompted the capture and utilization of the CO 2 produced from the reforming process. In this research: (1) new efficient catalysts for each reforming process was developed; (2) a new efficient catalyst for our version of the water gas shift reaction to convert carbon monoxide to carbon dioxide was developed; (3) a new membrane separation process for production of high purity, fuel cell-grade H 2 was designed; (4) a numerical model for optimum process design and optimum utilization of resources both at the laboratory and industrial scales was developed; (5) various processes for CO 2 capture were investigated experimentally in order to achieve a net improvement in the absorption process; (6) the utilization of captured CO 2 for enhanced oil recovery and/or storage in an aging oil field were investigated; (7

  4. Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels

    Science.gov (United States)

    Subramanian, Vaidyanathan; Murugesan, Sankaran

    2014-04-29

    The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.

  5. Establishment of THERPRO Database and Estimation of the Effect of Fuel Burn-up on the Thermal Conductivity of Uranium Dioxide

    International Nuclear Information System (INIS)

    Lee, Hyun Seon

    2005-02-01

    Materials property data are an essential part of major disciplines in many engineering fields. To nuclear engineering, fundamental understanding of thermo-physical chemical mechanical properties of nuclear materials is very important. THERPRO data base that is re-designed and re-constructed through this study is a web-based on-line nuclear materials properties data base. For the future upgrade of the data base contemporary information technologies have been incorporated during the construction. Basically THERPRO data base has a hierarchical structure consisting of several levels: home page, element, compound, property, author, report, and bibliography level. All of data sets in each level are interconnected using network structure and thus every data can be easily retrieved including the bibliographical information by an appropriate query action. As a part of THERPRO DB utilization, the effect of fuel burn-up on the thermal conductivity of irradiated uranium dioxide is analyzed with the data contained in the data base as well as recent data published in the relevant journals. Their data are comparatively studied and the effect is estimated using FRAPCON-3 code with two in-pile data sets, BR-3 111i5 and Oconee rod 15309. The results show that the fuel center line temperature can differ 200 .deg. C∼400 .deg. C from thermal conductivity models depending on burn-up, which can significantly influence high burn-up fuel performance. In conclusion, it is demonstrated through this study that THERPRO data base can be a great utility for nuclear engineers and researchers, if appropriately utilized

  6. Energetic analysis of a syngas-fueled chemical-looping combustion combined cycle with integration of carbon dioxide sequestration

    International Nuclear Information System (INIS)

    Jiménez Álvaro, Ángel; Paniagua, Ignacio López; Fernández, Celina González; Carlier, Rafael Nieto; Martín, Javier Rodríguez

    2014-01-01

    Chemical-looping combustion for power generation has significant advantages over conventional combustion. Mainly, it allows an integration of CO 2 capture in the power plant without energy penalty; secondly, a less exergy destruction in the combustion chemical transformation is achieved, leading to a greater overall thermal efficiency. Most efforts have been devoted to systems based on methane as a fuel, although other systems for alternative fuels have can be proposed. This paper focus on the study of the energetic performance of this concept of combustion in a gas turbine combined cycle when synthesis gas is used as fuel. After optimization of some thermodynamic parameters of the cycle, the power plant performance is evaluated under diverse working conditions and compared to a conventional gas turbine system. Energy savings related with CO 2 capture and storage have been quantified. The overall efficiency increase is found to be significant, reaching values of around 5% (even more in some cases). In order to analyze the influence of syngas composition on the results, different H 2 -content fuels are considered. In a context of real urgency to reduce green house gas emissions, this work is intended to contribute to the conceptual development of highly efficient alternative power generation systems. - Highlights: • Analysis of the energetic performance of a CLC (chemical-looping combustion) gas turbine system is done. • Syngas as fuel and iron oxides as oxygen carrier are considered. • Different H 2 -content syngas are under study. • Energy savings accounting CO 2 sequestration and storage are quantified. • A significant increase on thermal efficiency of about 5–6% is found

  7. Nonproliferation and safeguards aspects of the DUPIC fuel cycle concept

    Energy Technology Data Exchange (ETDEWEB)

    Persiani, P K [Argonne National Lab., IL (United States)

    1997-07-01

    The purpose of the study is to comment on the proliferation characteristic profiles of some of the proposed fuel cycle alternatives to help ensure that nonproliferation concerns are introduced into the early stages of a fuel cycle concept development program, and to perhaps aid in the more effective implementation of the international nonproliferation regime initiative and safeguards systems. Alternative recycle concepts proposed by several countries involve the recycle of spent fuel without the separation of plutonium from uranium and fission products. The concepts are alternatives to either the direct long-term storage deposition of or the purex reprocessing of the spent fuels. The alternate fuel cycle concepts reviewed include: the dry-recycle processes such as the direct use of reconfigured PWR spent fuel assemblies into CANDU reactors(DUPIC); low-decontamination, single-cycle co-extraction of fast reactor fuels in a wet-purex type of reprocessing; and on a limited scale the thorium-uranium fuel cycle. The nonproliferation advantages usually associated with the above non-separation processes are: the highly radioactive spent fuel presents a barrier to the physical diversion of the nuclear material; avoid the need to dissolve and chemically separate the plutonium from the uranium and fission products; and that the spent fuel isotopic quality of the plutonium vector is further degraded. Although the radiation levels and the need for reprocessing may be perceived as barriers to the terrorist or the subnational level of safeguards, the international level of nonproliferation concerns is addressed primarily by material accountancy and verification activities. On the international level of nonproliferation concerns, the non-separation fuel cycle concepts involved have to be evaluated on the bases of the impact the processes may have on nuclear materials accountancy. (author).

  8. A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions

    Directory of Open Access Journals (Sweden)

    J. Ray

    2014-09-01

    Full Text Available The characterization of fossil-fuel CO2 (ffCO2 emissions is paramount to carbon cycle studies, but the use of atmospheric inverse modeling approaches for this purpose has been limited by the highly heterogeneous and non-Gaussian spatiotemporal variability of emissions. Here we explore the feasibility of capturing this variability using a low-dimensional parameterization that can be implemented within the context of atmospheric CO2 inverse problems aimed at constraining regional-scale emissions. We construct a multiresolution (i.e., wavelet-based spatial parameterization for ffCO2 emissions using the Vulcan inventory, and examine whether such a~parameterization can capture a realistic representation of the expected spatial variability of actual emissions. We then explore whether sub-selecting wavelets using two easily available proxies of human activity (images of lights at night and maps of built-up areas yields a low-dimensional alternative. We finally implement this low-dimensional parameterization within an idealized inversion, where a sparse reconstruction algorithm, an extension of stagewise orthogonal matching pursuit (StOMP, is used to identify the wavelet coefficients. We find that (i the spatial variability of fossil-fuel emission can indeed be represented using a low-dimensional wavelet-based parameterization, (ii that images of lights at night can be used as a proxy for sub-selecting wavelets for such analysis, and (iii that implementing this parameterization within the described inversion framework makes it possible to quantify fossil-fuel emissions at regional scales if fossil-fuel-only CO2 observations are available.

  9. Estimates of carbon dioxide emissions from fossil fuels combustion in the main sectors of selected countries 1971-1990

    International Nuclear Information System (INIS)

    Primio, J.C. di.

    1993-01-01

    Calculations of sectoral CO 2 emissions from fossil fuel burning in the period 1971-1990 were done for the 15 countries at the top of the list of nations ordered by decreasing contribution to global emissions, namely: United States of America, Soviet Union, People's Republic of China, Japan, Federal Republic of Germany, United Kingdom, India, Poland, Canada, France, Italy, German Democratic Republic, South Africa, Mexico and Czechoslovakia. In addition, the CO 2 emission of two groups of industrialized countries, namely the OECD and the European Economic Community (EEC) were calculated. The main recommendations of the IPCC/OECD current methodology have been adopted for the calculations, with the principal exception that CO 2 emissions from the use of bunker fuels have not been included in the national estimates. The sectors are: 1. Transformations. Total emissions and the part stemming from power plants 2. Industry (excluding Feedstocks) 3. Transportation 4. Agriculture 5. Residential 6. Commerce and Public Services 7. Non-specified Other 8. Non-Energy Use 9. Feedstocks (in Industry). Data are presented in tables and diagrams. (orig./KW)

  10. Energy upcycle in anaerobic treatment: Ammonium, methane, and carbon dioxide reformation through a hybrid electrodeionization–solid oxide fuel cell system

    International Nuclear Information System (INIS)

    Xu, Linji; Dong, Feifei; Zhuang, Huichuan; He, Wei; Ni, Meng; Feng, Shien-Ping; Lee, Po-Heng

    2017-01-01

    Highlights: • EDI-SOFC integrated with AD is introduced for energy extraction from C and N pollutants. • NH_4"+ dissociation to NH_3 and H_2 in EDI avoids C deposition in SOFC. • EDI exhibits nutrient and heavy metal recovery. • SOFCs display its adaptability with NH_3, H_2, and biogas. • Energy balance ratio boosts from 1.11 to 1.75 by EDI-SOFC in a HK landfill plant. - Abstract: To create possibilities for a more sustainable wastewater management, a novel system consisting of electrodeionization (EDI) and solid oxide fuel cells (SOFCs) is proposed in this study. This system is integrated with anaerobic digestion/landfills to capture energy from carbonaceous and nitrogenous pollutants. Both EDI and SOFCs showed good performances. EDI removed 95% and 76% ammonium-nitrogen (NH_4"+-N) from diluted (0.025 M) to concentrated (0.5 M) synthetic ammonium wastewaters, respectively, accompanied by hydrogen production. SOFCs converted the recovered fuels, biogas mixtures of methane and carbon dioxide, to electricity. Under the optimal conditions of EDI (3.0 V applied voltage and 7.5 mm internal electrode distance (IED), and SOFCs (750 °C operating temperature), the system achieved 60% higher net energy output as compared to conventional systems. The estimated energy benefit of this proposed system showed that the net energy balance ratio is enhanced from 1.11 (existing system) to 1.75 (this study) for a local Hong Kong active landfill facility with 10.0 g L"−"1 chemical oxygen demand (COD) and 0.21 M NH_4"+-N. Additionally, an average of 80% inorganic ions (heavy metals and nutrient elements) can be removed from the raw landfill leachate by EDI cell. The results are successful demonstrations of the upgrades of anaerobic processes for energy extraction from wastewater streams.

  11. Trade-off in emissions of acid gas pollutants and of carbon dioxide in fossil fuel power plants with carbon capture

    International Nuclear Information System (INIS)

    Tzimas, Evangelos; Mercier, Arnaud; Cormos, Calin-Cristian; Peteves, Stathis D.

    2007-01-01

    This paper investigates the impact of capture of carbon dioxide (CO 2 ) from fossil fuel power plants on the emissions of nitrogen oxides (NO X ) and sulphur oxides (SO X ), which are acid gas pollutants. This was done by estimating the emissions of these chemical compounds from natural gas combined cycle and pulverized coal plants, equipped with post-combustion carbon capture technology for the removal of CO 2 from their flue gases, and comparing them with the emissions of similar plants without CO 2 capture. The capture of CO 2 is not likely to increase the emissions of acid gas pollutants from individual power plants; on the contrary, some NO X and SO X will also be removed during the capture of CO 2 . The large-scale implementation of carbon capture is however likely to increase the emission levels of NO X from the power sector due to the reduced efficiency of power plants equipped with capture technologies. Furthermore, SO X emissions from coal plants should be decreased to avoid significant losses of the chemicals that are used to capture CO 2 . The increase in the quantity of NO X emissions will be however low, estimated at 5% for the natural gas power plant park and 24% for the coal plants, while the emissions of SO X from coal fired plants will be reduced by as much as 99% when at least 80% of the CO 2 generated will be captured

  12. An EKC-pattern in historical perspective. Carbon dioxide emissions, technology, fuel prices and growth in Sweden 1870-1997

    International Nuclear Information System (INIS)

    Lindmark, Magnus

    2002-01-01

    The environmental Kuznets curve (EKC) has been subject to research and debate since the early 1990s. This article examines the inverted-U trajectory of Swedish CO 2 emissions during an extended time period beginning in 1870. The basis for the investigation is a structural time series approach that utilizes a stochastic trend as an indicator of technological and structural change, and GDP growth and changes in the price of fuel and cement price as independent variables. Finally, the development of technological and structural change with respect to CO 2 emissions is interpreted within the context of growth regimes. The result suggests that the period 1920-1960, with high, sustained growth rates was associated with less technological and structural changes relating to CO 2 emissions than periods with lower growth rates, such as the late 1800s and the post-1970 period. Furthermore, it is suggested that time-specific technological clusters may affect EKC patterns

  13. A multiresolution spatial parametrization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions.

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet [Carnegie Institution for Science, Stanford, CA; Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA; van Bloemen Waanders, Bart Gustaaf [Sandia National Laboratories, Albuquerque, NM; McKenna, Sean Andrew [IBM Research, Mulhuddart, Dublin 15, Ireland

    2013-04-01

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.

  14. Carbon dioxide-krypton separation and radon removal from nuclear-fuel-reprocessing off-gas streams

    International Nuclear Information System (INIS)

    Hirsch, P.M.; Higuchi, K.Y.; Abraham, L.

    1982-07-01

    General Atomic Company (GA) is conducting pilot-plant-scale tests that simulate the treatment of radioactive and other noxious volatile and gaseous constituents of off-gas streams from nuclear reprocessing plants. This paper reports the results of engineering-scale tests performed on the CO 2 /krypton separation and radon holdup/decay subsystems of the GA integrated off-gas treatment system. Separation of CO 2 from krypton-containing gas streams is necessary to facilitate subsequent waste processing and krypton storage. Molecular sieve 5A achieved this separation in dissolver off-gas streams containing relatively low krypton and CO 2 concentrations and in krypton-rich product streams from processes such as the krypton absorption in liquid carbon dioxide (KALC) process. The CO 2 /krypton separation unit is a 30.5-cm-diameter x 1.8-m-long column containing molecular sieve 5A. The loading capacity for CO 2 was determined for gas mixtures containing 250 ppM to 2.2% CO 2 and 170 to 750 ppM krypton in either N 2 or air. Gas streams rich in CO 2 were diluted with N 2 to reduce the temperature rise from the heat of adsorption, which would otherwise affect loading capacity. The effluent CO 2 concentration prior to breakthrough was less than 10 ppM, and the adsorption capacity for krypton was negligible. Krypton was monitored on-line with a time-of-flight mass spectrometer and its concentration determined quantitatively by a method of continuous analysis, i.e., selected-ion monitoring. Radon-220 was treated by holdup and decay on a column of synthetic H-mordenite. The Rn-220 concentration was monitored on-line with flow-through diffused-junction alpha detectors. Single-channel analyzers were utilized to isolate the 6.287-MeV alpha energy band characteristic of Rn-220 decay from energy bands due to daughter products

  15. Contribution to the study of mechanical properties of nuclear fuel: atomistic modelling of the deformation of uranium dioxide

    International Nuclear Information System (INIS)

    Fossati, P.

    2012-01-01

    Mechanical properties of nuclear fuel are a complex problem, involving many coupled mechanisms occurring at different length scales. We used Molecular Dynamics models to bring some light on some of these mechanisms at the atomic scale. We devised a procedure to calculate transition pathways between some UO 2 polymorphs, and then carried out dynamics simulations of these transitions. We confirmed the stability of the cotunnite structure at high pressure using various empirical potentials, the fluorite structure being the most stable at room pressure. Moreover, we showed a reconstructive phase transition between the fluorite and cotunnite structures. We also showed the importance of the major deformation axis on the kind of transition that occur under tensile conditions. Depending on the loading direction, a scrutinyite or rutile phase can appear. We then calculated the elastic behaviour of UO 2 using different potentials. The relative agreement between them was used to produce a set of parameters to be used as input in mesoscale models. We also simulated crack propagation in UO 2 single crystals. These simulations showed secondary phases nucleation at crack tips, and hinted at the importance thereof on crack propagation at higher length-scales. We then described some properties of edge dislocations in UO 2 . The core structures were compared for various glide planes. The critical resolved shear stress was calculated for temperatures up to 2000 K. These calculations showed a link between lattice disorder at the dislocations core and the dislocations mobility. (author)

  16. Ceria-based electrospun fibers for renewable fuel production via two-step thermal redox cycles for carbon dioxide splitting.

    Science.gov (United States)

    Gibbons, William T; Venstrom, Luke J; De Smith, Robert M; Davidson, Jane H; Jackson, Gregory S

    2014-07-21

    Zirconium-doped ceria (Ce(1-x)Zr(x)O2) was synthesized through a controlled electrospinning process as a promising approach to cost-effective, sinter-resistant material structures for high-temperature, solar-driven thermochemical redox cycles. To approximate a two-step redox cycle for solar fuel production, fibrous Ce(1-x)Zr(x)O2 with relatively low levels of Zr-doping (0 rates of O2 release during reduction and CO production during reoxidation and by assessing post-cycling fiber crystallite sizes and surface areas. Sintering increases with reduction temperature but occurs primarily along the fiber axes. Even after 108 redox cycles with reduction at 1400 °C and oxidation with CO2 at 800 °C, the fibers maintain their structure with surface areas of ∼0.3 m(2) g(-1), higher than those observed in the literature for other ceria-based structures operating at similarly high temperature conditions. Total CO production and peak production rate stabilize above 3.0 mL g(-1) and 13.0 mL min(-1) g(-1), respectively. The results show the potential for electrospun oxides as sinter-resistant material structures with adequate surface area to support rapid CO2 splitting in solar thermochemical redox cycles.

  17. An EKC-pattern in historical perspective. Carbon dioxide emissions, technology, fuel prices and growth in Sweden 1870-1997

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, Magnus [Department of Economic History, Umea University, SE-901 87 Umea (Sweden)

    2002-08-01

    The environmental Kuznets curve (EKC) has been subject to research and debate since the early 1990s. This article examines the inverted-U trajectory of Swedish CO{sub 2} emissions during an extended time period beginning in 1870. The basis for the investigation is a structural time series approach that utilizes a stochastic trend as an indicator of technological and structural change, and GDP growth and changes in the price of fuel and cement price as independent variables. Finally, the development of technological and structural change with respect to CO{sub 2} emissions is interpreted within the context of growth regimes. The result suggests that the period 1920-1960, with high, sustained growth rates was associated with less technological and structural changes relating to CO{sub 2} emissions than periods with lower growth rates, such as the late 1800s and the post-1970 period. Furthermore, it is suggested that time-specific technological clusters may affect EKC patterns.

  18. High Frequency Acoustic Microscopy for the Determination of Porosity and Young's Modulus in High Burnup Uranium Dioxide Nuclear Fuel

    Science.gov (United States)

    Marchetti, Mara; Laux, Didier; Cappia, Fabiola; Laurie, M.; Van Uffelen, P.; Rondinella, V. V.; Wiss, T.; Despaux, G.

    2016-06-01

    During irradiation UO2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of both porosity and elastic properties in high burnup UO2 pellet can be investigated via high frequency acoustic microscopy. For this purpose ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A UO2 pellet with a burnup of 67 GWd/tU was characterized using the acoustic microscope installed in the hot cells of the JRC-ITU at a 90 MHz frequency, with methanol as coupling liquid. VR was measured at different radial positions. A good agreement was found, when comparing the porosity values obtained via acoustic microscopy with those determined using SEM image analysis, especially in the areas close to the centre. In addition, Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile and to the hardness radial profile data obtained by Vickers micro-indentation.

  19. The Hestia Project: High Spatial Resolution Fossil Fuel Carbon Dioxide Emissions Quantification at Hourly Scale in Indianapolis, USA

    Science.gov (United States)

    Zhou, Y.; Gurney, K. R.

    2009-12-01

    In order to advance the scientific understanding of carbon exchange with the land surface and contribute to sound, quantitatively-based U.S. climate change policy interests, quantification of greenhouse gases emissions drivers at fine spatial and temporal scales is essential. Quantification of fossil fuel CO2 emissions, the primary greenhouse gases, has become a key component to cost-effective CO2 emissions mitigation options and a carbon trading system. Called the ‘Hestia Project’, this pilot study generated CO2 emissions down to high spatial resolution and hourly scale for the greater Indianapolis region in the USA through the use of air quality and traffic monitoring data, remote sensing, GIS, and building energy modeling. The CO2 emissions were constructed from three data source categories: area, point, and mobile. For the area source emissions, we developed an energy consumption model using DOE/EIA survey data on building characteristics and energy consumption. With the Vulcan Project’s county-level CO2 emissions and simulated building energy consumption, we quantified the CO2 emissions for each individual building by allocating Vulcan emissions to roughly 50,000 structures in Indianapolis. The temporal pattern of CO2 emissions in each individual building was developed based on temporal patterns of energy consumption. The point sources emissions were derived from the EPA National Emissions Inventory data and effluent monitoring of electricity producing facilities. The mobile source CO2 emissions were estimated at the month/county scale using the Mobile6 combustion model and the National Mobile Inventory Model database. The month/county scale mobile source CO2 emissions were downscaled to the “native” spatial resolution of road segments every hour using a GIS road atlas and traffic monitoring data. The result is shown in Figure 1. The resulting urban-scale inventory can serve as a baseline of current CO2 emissions and should be of immediate use to

  20. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T.J. (Discovery Bay Marine Laboratory, Univ. of the West Indies (JM))

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  1. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T J [Discovery Bay Marine Laboratory, Univ. of the West Indies (JM)

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  2. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 2, Topical reports: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This study, identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. The research needs that have high priority in establishing the technical, environmental, and economic feasibility of large-scale capture and disposal of CO{sub 2} from electric power plants are:(1) survey and assess the capacity, cost, and location of potential depleted gas and oil wells that are suitable CO{sub 2} repositories (with the cooperation of the oil and gas industry); (2) conduct research on the feasibility of ocean disposal, with objectives of determining the cost, residence time, and environmental effects for different methods of CO{sub 2} injection; (3) perform an in-depth survey of knowledge concerning the feasibility of using deep, confined aquifers for disposal and, if feasible, identify potential disposal locations (with the cooperation of the oil and gas industry); (4) evaluate, on a common basis, system and design alternatives for integration of CO{sub 2} capture systems with emerging and advanced technologies for power generation; and prepare a conceptual design, an analysis of barrier issues, and a preliminary cost estimate for pipeline networks necessary to transport a significant portion of the CO{sub 2} to potentially feasible disposal locations.

  3. Methanation of Carbon Dioxide

    OpenAIRE

    Goodman, Daniel Jacob

    2013-01-01

    The emission of greenhouse gases into the atmosphere has been linked to global warming. Carbon dioxide's (CO2) one of the most abundant greenhouse gases. Natural gas, mainly methane, is the cleanest fossil fuel for electricity production helping meet the United States ever growing energy needs. The methanation of CO2 has the potential to address both of these problems if a catalyst can be developed that meets the activity, economic and environmental requirements to industrialize the process. ...

  4. Carbon dioxide and future climate

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J M

    1977-03-01

    The addition of carbon dioxide to the atmosphere due to burning fossil fuel is discussed. The release rate of carbon dioxide has been growing since at least 1950 at an average rate of 4.3% per year. If all known fossil fuel reserves in the world are consumed, a total of between 5 and 14 times the present amount of carbon dioxide in the atmosphere will be released. The oceans would then be unlikely to withdraw the proportion of perhaps 40% which they are believed to have withdrawn up to the present. The increase in the atmosphere would be in excess of 3 times or conceivably ten times the present amount. If the reserves are used up within a few hundred years, more than half the excess carbon dioxide would remain in the atmosphere after a thousand years. The ''greenhouse'' effect of carbon dioxide is explained. The simulation with numerical models of the effects of carbon dioxide on atmospheric radiation fluxes is discussed. An estimated increase in the average annual temperature of the earth of 2.4 to 2.9C is given for doubling the carbon dioxide content; also a 7% increase in global average precipitation. The effect of increasing carbon dioxide on global mean temperature is viewed in the perspective of the glacial-interglacial cycles. The warming effect of carbon dioxide may induce a ''super-interglacial'' on the present interglacial which is expected to decline toward a new ice age in the next several thousand years. Finally it is proposed that it may be necessary to phase out the use of fossil fuels before all the knowledge is acquired which would necessitate such an action.

  5. The future role of thorium in assuring CANDU fuel supplies

    International Nuclear Information System (INIS)

    Slater, J.B.

    1985-01-01

    Atomic Energy of Canada Limited (AECL), in partnership with Canadian industry and power utilities, has developed the CANDU reactor as a safe, reliable and economic means of transforming nuclear fuel into useable power. The use of thorium/uranium-233 recycle gives the possibility of a many-fold increase in energy yield over that which can be obtained from the use of uranium in once-through cycles. The neutronic properties of uranium-233 combine with the inherent neutron economy of the CANDU reactor to offer the possibility of near-breeder cycles in which there is no net consumption of fissile material under equilibrium fuelling conditions. Use of thorium cycles in CANDU will limit the impact of higher uranium prices. When combined with the potential for significant reductions in CANDU capital costs, then the long-term prospect is for generating costs near to current levels. Development of thorium cycles in CANDU will safeguard against possible uranium shortages in the next century, and will maintain and continue the commercial viability of CANDU as a long-term energy technology. (author)

  6. Anticipated radiological impacts from the mining and milling of thorium for the nonproliferative fuels

    International Nuclear Information System (INIS)

    Meyer, H.R.; Till, J.E.

    1978-01-01

    Recent emphasis on proliferation-resistant fuel cycles utilizing thorium--uranium-233 fuels has necessitated evaluation of the potential radiological impact of mining and milling thorium ore. Therefore, an analysis has been completed of hypothetical mine-mill complexes using population and meteorological data representative of a thorium resource site in the Lemhi Pass area of Idaho/Montana, United States of America. Source terms for the site include thorium-232 decay chain radionuclides suspended as dusts and radon-220 and daughters initially released as gas. Fifty-year dose commitments to maximally exposed individuals of 2.4 mrem to total body, 9.5 mrem to bone, and 35 mrem to lungs are calculated to result from facility operation. Radium-228, thorium-228, thorium-232 and lead-212 (daughter of radon-220) are found to be the principal contributors to dose. General population doses for a 50-mile radius surrounding the facility are estimated to be 0.05 man-rem to total body, 0.1 man-rem to bone, and 0.7 man-rem to lungs. Generally speaking, the results of this study indicate that the radiological aspects of thorium mining and milling should pose no significant problems with regard to implementation of thorium fuel cycles

  7. Carbon dioxide and climate

    International Nuclear Information System (INIS)

    1991-10-01

    Global climate change is a serious environmental concern, and the US has developed ''An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO 2 Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO 2 concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration

  8. Carbon dioxide emissions from non-energy use of fossil fuels. Summary of key issues and conclusions from the country analyses

    International Nuclear Information System (INIS)

    Patel, Martin; Neelis, Maarten; Gielen, Dolf; Olivier, Jos; Simmons, Tim; Theunis, Jan

    2005-01-01

    The non-energy use of fossil fuels is a source of carbon dioxide (CO 2 ) emissions that is not negligible and has been increasing substantially in the last three decades. Current emission estimates for this source category are subject to major uncertainties. One important reason is that non-energy use as published in energy statistics is not defined in a consistent manner, rendering calculation results based on these data incomparable across countries (concerns in particular the Intergovernmental Panel on Climate Change (IPCC) Reference Approach). Further reasons are the complexity and interlinkage of the energy and material flows in the chemical/petrochemical sector and the current use of storage fractions as default values in the IPCC Reference Approach, which are based on a different definition of storage and refer to other flows than those available from energy statistics. Several other shortcomings of the IPCC Reference Approach are identified in this paper, e.g. the fact that it neglects international trade of synthetic organic products. In order to improve emissions accounting, the Non-Energy Use and CO 2 Emissions (NEU-CO 2 ) network developed a model called Non-Energy Use Emission Accounting Tables (NEAT), which is based on Material Flow Analysis (MFA). The NEAT model and other MFA approaches have been applied to several countries. In this paper, the results for Italy, Japan, Korea, the Netherlands and the USA are compared with the values published in National Communications to the United Framework Convention on Climate Change (UNFCCC). It is shown that the international harmonisation of the data sources (energy statistics) and the methods applied would lead to substantially different emissions results for some countries, in the order of several percent. Moreover, the NEAT model and the other MFA have proved to be a valuable tool to identify errors in energy statistics. These results confirm the need for enhanced efforts to improve and harmonise energy

  9. Ionization of selected elements of interest in the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Delmore, J. E.

    1978-07-01

    Three most common methods of ionizing the actinides using thermal ionization are discussed. The first and most commonly used technique involves evaporating the oxide from a side filament and ionizing it on a hot rhenium center filament. The second method, which is used almost as frequently as the first, involves loading the sample onto a rhenium single filament and reducing the sample. This method gives excellent sensitivity for small samples using a multiplier as the detector, but is less suitable for large samples and Faraday cup detectors. The first method is well suited for large samples on instruments with Faraday cup detectors. The third technique involves loading the sample onto a single tantalum filament, flashing to red heat in the air, and analyzing the oxide or dioxide ion beam. This technique gives reasonably stable ion beams for the lighter actinides and all of the lanthanides. It is not as sensitive as the other methods and is mentioned mainly for historical interest as it was widely used 25 years ago. The suitability of these methods for thorium, uranium, plutonium and americium, as well as for the lanthanides and other fission product elements are covered in detail. Besides these three methods, the resin bead technique and the silica gel technique are mentioned. The conclusion is that there is a great deal of work which needs to be carried out before a complete understanding of these ionization processes are understood.

  10. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept

  11. Performance of Energy Multiplier Module (EM2) with long-burn thorium fuel cycle

    International Nuclear Information System (INIS)

    Choi, Hangbok; Schleicher, Robert; Gupta, Puja

    2015-01-01

    Energy Multiplier Module (EM 2 ) is a helium-cooled fast reactor being developed by General Atomics for the 21 st century grid. It is designed as a modular plant with a net electric output of 265 MWe with an evaporative heat sink and 240 MWe with an air-cooled heat sink. EM 2 core performance is examined for the baseline loading of low-enriched uranium (LEU) as fissile material with depleted uranium (DU) as fertile material and compared to the alternate LEU with thorium loading. The latter has two options: a heterogeneous loading of thorium fuel in the place of DU that produces a longer fuel cycle, and homogeneously mixed thorium-uranium fuel loading. Compared to the baseline LEU/DU core, the cycle length of both thorium options is reduced due to higher neutron absorptions by thorium. However, for both, heterogeneous and homogenous thorium loading options, the fuel cycle length is over 24 years without refueling or reshuffling of fuel assemblies. The physics properties of the EM 2 thorium core are close to those of the baseline core which constitute low excess reactivity, negative fuel temperature coefficient, and very small void reactivity. However, unlike the case of baseline EM 2 , the homogeneous thorium fuel loading provides additional advantage in reducing the power peaking of the core, which in turn reduces the cladding material neutron damage rate by 23%. It is interpreted that the relatively slow 233 U buildup as compared to 239 Pu for baseline core retards reactivity increase without the need for a complicated fuel loading pattern of the heterogeneous fuel loading, while maintaining the peak power density low. Therefore both the heterogeneous and homogeneous thorium loading options will be feasible in the EM 2

  12. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Obara, Hiroshi.

    1981-01-01

    Purpose: To suppress iodine release thereby prevent stress corrosion cracks in fuel cans by dispersing ferrous oxide at the outer periphery of sintered uranium dioxide pellets filled and sealed within zirconium alloy fuel cans of fuel elements. Constitution: Sintered uranium dioxide pellets to be filled and sealed within a zirconium alloy fuel can are prepared either by mixing ferric oxide powder in uranium dioxide powder, sintering and then reducing at low temperature or by mixing iron powder in uranium dioxide powder, sintering and then oxidizing at low temperature. In this way, ferrous oxide is dispersed on the outer periphery of the sintered uranium dioxide pellets to convert corrosive fission products iodine into iron iodide, whereby the iodine release is suppressed and the stress corrosion cracks can be prevented in the fuel can. (Moriyama, K.)

  13. Comparison of control rod effectiveness for thorium and low-enriched fuel cycles in the GA-1, 160 MW(e) design

    Energy Technology Data Exchange (ETDEWEB)

    Neef, Hans Joachim

    1974-03-15

    In an investigation of the properties of the Thorium-Uranium (Th) and the Low-Enriched Uranium (LEU) fuel cycles it is also necessary to compare the effectiveness of the control rods in a reactor system operating with these sorts of fuel. Furthermore, it is under consideration to start a reactor with LEU fuel and switch-over to a Th cycle. It is also of interest to look at the switch-over phase in respect to the control rod effectiveness. The various fuel cycles have been studied for the same fuel element and control rod design, namely the one of GA's commercially available 1,160 MW(e) reference power station. This paper gives the first results on the control rod calculations and is presented mainly in two parts. Part 1 describes spectral effects which have been investigated by cell calculations with a discrete ordinates transport code. The main result is the higher effectiveness of a rod in a Th-cycle compared with a LEU-cycle. Part 2 reports on reactor calculations with a diffusion code and shows that this advantage can partially disappear in the reactor because of the spatial flux distribution. This effect has to be studied in further investigations for a full understanding.

  14. Evaluation of refractory-metal-clad uranium nitride and uranium dioxide fuel pins after irradiation for times up to 10 450 hours at 990 C

    Science.gov (United States)

    Bowles, K. J.; Gluyas, R. E.

    1975-01-01

    The effects of some materials variables on the irradiation performance of fuel pins for a lithium-cooled space power reactor design concept were examined. The variables studied were UN fuel density, fuel composition, and cladding alloy. All pins were irradiated at about 990 C in a thermal neutron environment to the design fuel burnup. An 85-percent dense UN fuel gave the best overall results in meeting the operational goals. The T-111 cladding on all specimens was embrittled, possibly by hydrogen in the case of the UN fuel and by uranium and oxygen in the case of the UO2 fuel. Tests with Cb-1Zr cladding indicate potential use of this cladding material. The UO2 fueled specimens met the operational goals of less than 1 percent cladding strain, but other factors make UO2 less attractive than low-density UN for the contemplated space power reactor use.

  15. Preparation of graphene oxide-manganese dioxide for highly efficient adsorption and separation of Th(IV)/U(VI).

    Science.gov (United States)

    Pan, Ning; Li, Long; Ding, Jie; Li, Shengke; Wang, Ruibing; Jin, Yongdong; Wang, Xiangke; Xia, Chuanqin

    2016-05-15

    Manganese dioxide decorated graphene oxide (GOM) was prepared via fixation of crystallographic MnO2 (α, γ) on the surface of graphene oxide (GO) and was explored as an adsorbent material for simultaneous removal of thorium/uranium ions from aqueous solutions. In single component systems (Th(IV) or U(VI)), the α-GOM2 (the weight ratio of GO/α-MnO2 of 2) exhibited higher maximum adsorption capacities toward both Th(IV) (497.5mg/g) and U(VI) (185.2 mg/g) than those of GO. In the binary component system (Th(IV)/U(VI)), the saturated adsorption capacity of Th(IV) (408.8 mg/g)/U(VI) (66.8 mg/g) on α-GOM2 was also higher than those on GO. Based on the analysis of various data, it was proposed that the adsorption process may involve four types of molecular interactions including coordination, electrostatic interaction, cation-pi interaction, and Lewis acid-base interaction between Th(IV)/U(VI) and α-GOM2. Finally, the Th(IV)/U(VI) ions on α-GOM2 can be separated by a two-stage desorption process with Na2CO3/EDTA. Those results displayed that the α-GOM2 may be utilized as an potential adsorbent for removing and separating Th(IV)/U(VI) ions from aqueous solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Uranium dioxide electrolysis

    Science.gov (United States)

    Willit, James L [Batavia, IL; Ackerman, John P [Prescott, AZ; Williamson, Mark A [Naperville, IL

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  17. Production of uranium dioxide

    International Nuclear Information System (INIS)

    Hart, J.E.; Shuck, D.L.; Lyon, W.L.

    1977-01-01

    A continuous, four stage fluidized bed process for converting uranium hexafluoride (UF 6 ) to ceramic-grade uranium dioxide (UO 2 ) powder suitable for use in the manufacture of fuel pellets for nuclear reactors is disclosed. The process comprises the steps of first reacting UF 6 with steam in a first fluidized bed, preferably at about 550 0 C, to form solid intermediate reaction products UO 2 F 2 , U 3 O 8 and an off-gas including hydrogen fluoride (HF). The solid intermediate reaction products are conveyed to a second fluidized bed reactor at which the mol fraction of HF is controlled at low levels in order to prevent the formation of uranium tetrafluoride (UF 4 ). The first intermediate reaction products are reacted in the second fluidized bed with steam and hydrogen at a temperature of about 630 0 C. The second intermediate reaction product including uranium dioxide (UO 2 ) is conveyed to a third fluidized bed reactor and reacted with additional steam and hydrogen at a temperature of about 650 0 C producing a reaction product consisting essentially of uranium dioxide having an oxygen-uranium ratio of about 2 and a low residual fluoride content. This product is then conveyed to a fourth fluidized bed wherein a mixture of air and preheated nitrogen is introduced in order to further reduce the fluoride content of the UO 2 and increase the oxygen-uranium ratio to about 2.25

  18. Geographic patterns of carbon dioxide emissions from fossil-fuel burning, hydraulic cement production, and gas flaring on a one degree by one degree grid cell basis: 1950 to 1990

    Energy Technology Data Exchange (ETDEWEB)

    Brenkert, A.L. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Andres, R.J. [Univ. of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering; Marland, G. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Fung, I. [Univ. of Victoria, British Columbia (Canada)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; Matthews, E. [Columbia Univ., New York, NY (United States)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies

    1997-03-01

    Data sets of one degree latitude by one degree longitude carbon dioxide (CO{sub 2}) emissions in units of thousand metric tons of carbon (C) per year from anthropogenic sources have been produced for 1950, 1960, 1970, 1980 and 1990. Detailed geographic information on CO{sub 2} emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional and national annual estimates for 1950 through 1992 were published previously. Those national, annual CO{sub 2} emission estimates were based on statistics on fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption and trade data, using the methods of Marland and Rotty. The national annual estimates were combined with gridded one-degree data on political units and 1984 human populations to create the new gridded CO{sub 2} emission data sets. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mix is uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in emissions over time are apparent for most areas.

  19. Model for the analysis of transitories and stability of a BWR reactor with fuel of thorium

    International Nuclear Information System (INIS)

    Nunez C, A.; Espinosa P, G.; Francois L, J.L.

    2004-01-01

    In this work it is described the thermo hydraulic and neutronic pattern used to simulate the behavior of a nucleus of thorium-uranium under different conditions of operation. The analysed nucleus was designed with base to assemblies that operate under the cover-seed concept. The pattern was proven to conditions of stationary state and transitory state. Here it is only presented the simulation of the one SCRAM manual and it is compared in the behavior of a nucleus with UO 2 . Additionally one carries out an analysis of stability taking into account the four corners that define the area of stability of the map flow-power and to conditions of 100% of flow and 100% of power. The module of stability is based on the pattern of Lahey and Podowsky to estimate the drops of pressure during a perturbation. It is concludes that the behavior of this nucleus is not very different to the one shown by the nuclei loaded with the fuel of UO 2 . (Author)

  20. Amount, disposal and relative toxicity of long-lived fission products and actinides in the radioactive wastes of the nuclear fuel cycles

    International Nuclear Information System (INIS)

    Haug, H.O.

    1975-11-01

    A review is presented on the magnitude of the long-term problems of radioactive wastes from the nuclear power industry of the FRG (and Western Europe). The production of long-lived fission products and actinides has been calculated for several fuel types of the uranium-plutonium and thorium-uranium fuel cycles and related to a prediction of the development and share of LWR, FBR and HTGR. The quantities and concentrations of actinides, the radioactivity and relative toxicity index of the wastes of reprocessing (and fuel refabrication) and their changes by radioactive decay are presented. The radiotoxicity of the nuclide inventory of the solidified high-level wastes have been compared with naturally occuring uranium ores. On the long term (>10 3 years) the radiotoxicity level of the total area of the final repository in deep geological formation does not result in a significantly higher radiotoxicity level than an uranium ore deposit of low uranium content. Also discussed have been the chemical separation of the actinides from high-level wastes and recycling in fission reactors. (orig.) [de

  1. The impact of anti-congestion policies on fuel consumption, carbon dioxide emissions and urban sprawl: Application of RELU-TRAN2, a CGE model

    Science.gov (United States)

    Hiramatsu, Tomoru

    RELU-TRAN (Regional Economy and Land Use and Transportation) is a numerically solvable general equilibrium model (Anas and Liu, 2007), which treats in a unified manner the regional economy, urban land use and urban personal transportation sectors. In this dissertation, the model is extended by adding the consumer-workers' choice of private vehicle type according to the vehicle's fuel economy, by treating congestion on local roads as well as on major roads and by introducing car fuel consumption as a function of congested vehicle speed. By making the extensions, the model becomes more suitable to analyze the fuel consumption and CO2 emission consequences of urban development. The model is calibrated and simulated for the Chicago metropolitan area. By adjusting the model to the longer time span gradually, the shortand long-run price elasticities of fuel consumption are examined. As the time span becomes longer, fuel consumption becomes more elastic with respect to gasoline price, but when technological improvements in car fuel economy over comparable time spans are introduced exogenously, then the elasticity of fuel with respect to gasoline price becomes similar to that estimated in the econometric literature. Comparative statics exercises show that, if travel by auto becomes relatively more attractive in terms of travel time or travel cost than travel by public transit, then the Chicago MSA becomes more sprawled in total developed land area, whereas if public transit travel becomes relatively more attractive, then the Chicago MSA becomes more centralized. To mitigate fuel consumption and CO2 emissions, relative effectiveness of quasi-Pigouvian congestion tolls, a fuel tax on gasoline, a cordon toll around the downtown and a downtown parking fee are tested. All of these policies successfully reduce the aggregate fuel consumption and CO2. The urban growth boundary (UGB) is an alternative policy tested by the model. The UGB directly makes the Chicago MSA more

  2. Environmental impact of radioactive releases from recycle of thorium-based fuel using current containment technology

    International Nuclear Information System (INIS)

    Tennery, V.J.; Bomar, E.S.; Bond, W.D.; Morse, L.E.; Meyer, H.R.; Till, J.E.; Yalcintas, M.G.

    1980-01-01

    The analysis of thorium mining and milling suggests that the resulting doses should be similar to those from uranium operations. An absolute comparison cannot be made at this time, however, due to differences in some assumptions utilized by the various investigators and the lack in some cases of site-specific meteorology and population data at thorium resource sites in the western United States. A distinct difference resulting from the short half-life of 220 Rn (T/sub 1/2/ = 55.6 s) in the thorium decay chain compared to that for 222 Rn (T/sub 1/2/ = 3.82 d) in uranium decay was noted for emissions following mill shutdown. This effect is to make potential releases following thorium mill shutdown of lesser consequence than in the uranium case. Thorium tailings activity would also decrease relatively rapidly due to the comparatively short half-life (T/sub 1/2 = 5.75 y) of 228 Ra. Doses due to airborne releases from thorium-uranium carbide fuel refabrication are significantly less than that due to fuel reprocessing. Tritium is the principal contributor to reprocessing plant doses while carbon-14, 131 Cs, and 232 U account for most of the remaining dose. A tenfold increase in reprocessing plant CF for tritium reduces both individual and population doses by about 60%. For refabrication operations, a near linear dependence upon dose with 232 U content of the fuel was calculated between concentrations of 10 ppM and 5000 ppM. Comparison of (Th, U)C and (U, Pu)C showed little difference in dose commitment, but the presence of 232 U in the (Th, U) fuel causes a notable increase in the refabrication plant dose over that previously calculated for (U, Pu) type fuels

  3. Model for the behaviour of thorium and uranium fuels at pelletization

    International Nuclear Information System (INIS)

    Ferreira Neto, Ricardo Alberto

    2000-11-01

    In this work, a model for the behaviour of thorium-uranium-mixed oxide microspheres in the pelletizing process is presented. This model was developed in a program whose objective was to demonstrate the viability of producing fissile material through the utilization of thorium in pressurized water reactors. This is important because it allows the saving of the strategic uranium reserves, and makes it possible the nuclear utilization of the large brazilian thorium reserves. The objective was to develop a model for optimizing physical properties of the microspheres, such as density, fracture strength and specific surface, so as to produce fuel pellets with microstructure, density, open porosity and impurity content, in accordance with the fuel specification. And, therefore, to adjust the sol-gel processing parameters in order to obtain these properties, and produce pellets with an optimized microstructure, adequate to a stable behaviour under irradiation. The model made it clear that to achieve this objective, it is necessary to produce microspheres with density and specific surface as small as possible. By changing the sol-gel processing parameters, microspheres with the desired properties were produced, and the model was experimentally verified by manufacturing fuel pellets with optimized microstructures, density, open porosity and impurity content, meeting the specifications for this new nuclear fuel for pressurized water reactors. Furthermore it was possible to obtain mathematical expressions that enables to calculate from the microspheres properties and the utilized compaction pressure, the sinter density that will be obtained in the sintered pellet and the necessary compaction pressure to reach the sintered density specified for the fuel. (author)

  4. Inert matrix fuel in dispersion type fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, A.M. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)]. E-mail: sav@bochvar.ru; Vatulin, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Morozov, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Sirotin, V.L. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Dobrikova, I.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kulakov, G.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Ershov, S.A. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kostomarov, V.P. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Stelyuk, Y.I. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)

    2006-06-30

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg{sup -1} (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  5. Inert matrix fuel in dispersion type fuel elements

    Science.gov (United States)

    Savchenko, A. M.; Vatulin, A. V.; Morozov, A. V.; Sirotin, V. L.; Dobrikova, I. V.; Kulakov, G. V.; Ershov, S. A.; Kostomarov, V. P.; Stelyuk, Y. I.

    2006-06-01

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg-1 (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  6. Emission factors of fine particulate matter, organic and elemental carbon, carbon monoxide, and carbon dioxide for four solid fuels commonly used in residential heating by the U.S. Navajo Nation.

    Science.gov (United States)

    Champion, Wyatt M; Connors, Lea; Montoya, Lupita D

    2017-09-01

    Most homes in the Navajo Nation use wood as their primary heating fuel, often in combination with locally mined coal. Previous studies observed health effects linked to this solid-fuel use in several Navajo communities. Emission factors (EFs) for common fuels used by the Navajo have not been reported using a relevant stove type. In this study, two softwoods (ponderosa pine and Utah juniper) and two high-volatile bituminous coals (Black Mesa and Fruitland) were tested with an in-use residential conventional wood stove (homestove) using a modified American Society for Testing and Materials/U.S. Environmental Protection Agency (ASTM/EPA) protocol. Filter sampling quantified PM 2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) and organic (OC) and elemental (EC) carbon in the emissions. Real-time monitoring quantified carbon monoxide (CO), carbon dioxide (CO 2 ), and total suspended particles (TSP). EFs for these air pollutants were developed and normalized to both fuel mass and energy consumed. In general, coal had significantly higher mass EFs than wood for all pollutants studied. In particular, coal emitted, on average, 10 times more PM 2.5 than wood on a mass basis, and 2.4 times more on an energy basis. The EFs developed here were based on fuel types, stove design, and operating protocols relevant to the Navajo Nation, but they could be useful to other Native Nations with similar practices, such as the nearby Hopi Nation. Indoor wood and coal combustion is an important contributor to public health burdens in the Navajo Nation. Currently, there exist no emission factors representative of Navajo homestoves, fuels, and practices. This study developed emission factors for PM 2.5 , OC, EC, CO, and CO 2 using a representative Navajo homestove. These emission factors may be utilized in regional-, national-, and global-scale health and environmental models. Additionally, the protocols developed and results presented here may inform on-going stove design of

  7. Thorium dioxide: properties and nuclear applications

    International Nuclear Information System (INIS)

    Belle, J.; Berman, R.M.

    1984-01-01

    This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core

  8. Thorium dioxide: properties and nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Belle, J.; Berman, R.M. (eds.)

    1984-01-01

    This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core.

  9. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    , Bubbles and precipitates, Modeling fuel behavior); Modeling defects and fission products in UO 2 ceramic by ab initio computation (Ab initio computation, Point defects in uranium dioxide, Fission products in uranium dioxide, The indispensable coupling of modeling and experiment); Cladding and assembly materials (What is the purpose of cladding?, Zirconium alloys, Claddings: required to exhibit good mechanical strength, Mechanical behavior of irradiated Zr alloys, Claddings: required to prove corrosion resistant); Pellet-cladding interaction (The phenomena involved in pellet-cladding interaction (PCI), Experimental simulation of PCI and the lessons to be drawn from it, The requirement for an experimental basis, Numerical simulation of PCI, Towards a lifting of PCI-related operating constraints); Advanced UO 2 and MOX ceramics (Chromium oxide-doped UO 2 fuel, Novel MOX microstructures); Mechanical behavior of fuel assemblies (Assembly mechanical behavior in normal operating conditions, Assembly mechanical behavior in accident situations, Fuel in a loss of primary coolant accident (LOCA)); Introduction to LOCA-type accident transients (Overview of thermal-hydraulic and fuel-related aspects, Incidence of LOCA transients on the thermal-metallurgical-mechanical behavior of zirconium-base alloy cladding); Fuel in a reactivity insertion accident (RIA) (Safety criteria); Fuel in a severe accident (The VERCORS analytical program, The Phebus-FP global tests, Control of severe accidents in the EPR reactor); In-core fuel management (Relationships between cycle length, maximum burnup, and batch fraction Enrichment and burnable poisons, The impact of the nature of the fuel used, and its evolution, on the major parameters of core physics, and management Prospects for future trends in core management); Fuel cycle material balances (In-core evolution of materials, Decay heat and potential radiotoxicity, Plutonium management); Long-term behavior of spent fuel (The nature of spent nuclear

  10. Nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F

    2009-07-01

    irradiation, Bubbles and precipitates, Modeling fuel behavior); Modeling defects and fission products in UO{sub 2} ceramic by ab initio computation (Ab initio computation, Point defects in uranium dioxide, Fission products in uranium dioxide, The indispensable coupling of modeling and experiment); Cladding and assembly materials (What is the purpose of cladding?, Zirconium alloys, Claddings: required to exhibit good mechanical strength, Mechanical behavior of irradiated Zr alloys, Claddings: required to prove corrosion resistant); Pellet-cladding interaction (The phenomena involved in pellet-cladding interaction (PCI), Experimental simulation of PCI and the lessons to be drawn from it, The requirement for an experimental basis, Numerical simulation of PCI, Towards a lifting of PCI-related operating constraints); Advanced UO{sub 2} and MOX ceramics (Chromium oxide-doped UO{sub 2} fuel, Novel MOX microstructures); Mechanical behavior of fuel assemblies (Assembly mechanical behavior in normal operating conditions, Assembly mechanical behavior in accident situations, Fuel in a loss of primary coolant accident (LOCA)); Introduction to LOCA-type accident transients (Overview of thermal-hydraulic and fuel-related aspects, Incidence of LOCA transients on the thermal-metallurgical-mechanical behavior of zirconium-base alloy cladding); Fuel in a reactivity insertion accident (RIA) (Safety criteria); Fuel in a severe accident (The VERCORS analytical program, The Phebus-FP global tests, Control of severe accidents in the EPR reactor); In-core fuel management (Relationships between cycle length, maximum burnup, and batch fraction Enrichment and burnable poisons, The impact of the nature of the fuel used, and its evolution, on the major parameters of core physics, and management Prospects for future trends in core management); Fuel cycle material balances (In-core evolution of materials, Decay heat and potential radiotoxicity, Plutonium management); Long-term behavior of spent fuel (The

  11. Irradiation effects and micro-structural changes in large grain uranium dioxide fuel investigated by micro-beam X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Mieszczynski, C. [NES and SYN, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Kuri, G., E-mail: goutam.kuri@psi.ch [NES and SYN, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Degueldre, C.; Martin, M.; Bertsch, J.; Borca, C.N.; Grolimund, D. [NES and SYN, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Delafoy, Ch. [AREVA NP, 10 Rue Juliette Récamier, 69456 Lyon Cedex 06 (France); Simoni, E. [Institut de Physique Nucléaire, Université Paris-Sud, 91406 Orsay (France)

    2014-01-15

    Microstructural changes in a set of commercial grade UO{sub 2} fuel samples have been investigated using synchrotron based micro-focused X-ray fluorescence (μ-XRF) and X-ray diffraction (μ-XRD) techniques. The results are associated with conventional UO{sub 2} materials and relatively larger grain chromia-doped UO{sub 2} fuels, irradiated in a commercial light water reactor plant (average burn-up: 40 MW d kg{sup −1}). The lattice parameters of UO{sub 2} in fresh and irradiated specimens have been measured and compared with theoretical predictions. In the pristine state, the doped fuel has a somewhat smaller lattice parameter than the standard UO{sub 2} as a result of chromia doping. Increase in micro-strain and lattice parameter in irradiated materials is highlighted. All irradiated samples behave in a similar manner with UO{sub 2} lattice expansion occurring upon irradiation, where any Cr induced effect seems insignificant and accumulated lattice defects prevail. Elastic strain energy densities in the irradiated fuels are also evaluated based on the UO{sub 2} crystal lattice strain and non-uniform strain. The μ-XRD patterns further allow the evaluation of the crystalline domain size and sub-grain formation at different locations of the irradiated UO{sub 2} pellets.

  12. Closed ThUOX Fuel Cycle for LWRs with ADTT (ATW) Backend for the 21st Century

    International Nuclear Information System (INIS)

    Beller, D.E.; Sailor, W.C.; Venneri, F.

    1998-01-01

    A future nuclear energy scenario with a closed, thorium-uranium-oxide (ThUOX) fuel cycle and new light water reactors (TULWRs) supported by Accelerator Transmutation of Waste (ATW) systems could provide several improvements beyond today's once-through, UO 2 -fueled nuclear technology. A deployment scenario with TULWRs plus ATWs to burn the actinides produced by these LWRs and to close the back-end of the ThUOX fuel cycle was modeled to satisfy a US demand that increases linearly from 80 GWe in 2020 to 200 GWe by 2100. During the first 20 years of the scenario (2000-2020), nuclear energy production in the US declines from today's 100 GWe to about 80 GWe, in accordance with forecasts of the US DOE's Energy Information Administration. No new nuclear systems are added during this declining nuclear energy period, and all existing LWRs are shut down by 2045. Beginning in 2020, ATWs that transmute the actinides from existing LWRs are deployed, along with TULWRs and additional ATWs with a support ratio of 1 ATW to 7 TULWRs to meet the energy demand scenario. A final mix of 174 GWe from TULWRs and 26 GWe from ATWs provides the 200 GWe demand in 2100. Compared to a once-through LWR scenario that meets the same energy demand, the TULWR/ATW concept could result in the following improvements: depletion of natural uranium resources would be reduced by 50%; inventories of Pu which may result in weapons proliferation will be reduced in quantity by more than 98% and in quality because of higher neutron emissions and 50 times the alpha-decay heating of weapons-grade plutonium; actinides (and possibly fission products) for final disposal in nuclear waste would be substantially reduced; and the cost of fuel and the fuel cycle may be 20-30% less than the once-through UO 2 fuel cycle

  13. Guide to improving the performance of a manipulator system for nuclear fuel handling through computer controls. Final report

    International Nuclear Information System (INIS)

    Evans, J.M. Jr.; Albus, J.S.; Barbera, A.J.; Rosenthal, R.; Truitt, W.B.

    1975-11-01

    The Office of Developmental Automation and Control Technology of the Institute for Computer Sciences and Technology of the National Bureau of Standards provides advising services, standards and guidelines on interface and computer control systems, and performance specifications for the procurement and use of computer controlled manipulators and other computer based automation systems. These outputs help other agencies and industry apply this technology to increase productivity and improve work quality by removing men from hazardous environments. In FY 74 personnel from the Oak Ridge National Laboratory visited NBS to discuss the feasibility of using computer control techniques to improve the operation of remote control manipulators in nuclear fuel reprocessing. Subsequent discussions led to an agreement for NBS to develop a conceptual design for such a computer control system for the PaR Model 3000 manipulator in the Thorium Uranium Recycle Facility (TURF) at ORNL. This report provides the required analysis and conceptual design. Complete computer programs are included for testing of computer interfaces and for actual robot control in both point-to-point and continuous path modes

  14. Research Progress in Carbon Dioxide Storage and Enhanced Oil Recovery

    Science.gov (United States)

    Wang, Keliang; Wang, Gang; Lu, Chunjing

    2018-02-01

    With the rapid development of global economy, human beings have become highly dependent upon fossil fuel such as coal and petroleum. Much fossil fuel is consumed in industrial production and human life. As a result, carbon dioxide emissions have been increasing, and the greenhouse effects thereby generated are posing serious threats to environment of the earth. These years, increasing average global temperature, frequent extreme weather events and climatic changes cause material disasters to the world. After scientists’ long-term research, ample evidences have proven that emissions of greenhouse gas like carbon dioxide have brought about tremendous changes to global climate. To really reduce carbon dioxide emissions, governments of different countries and international organizations have invested much money and human resources in performing research related to carbon dioxide emissions. Manual underground carbon dioxide storage and carbon dioxide-enhanced oil recovery are schemes with great potential and prospect for reducing carbon dioxide emissions. Compared with other schemes for reducing carbon dioxide emissions, aforementioned two schemes exhibit high storage capacity and yield considerable economic benefits, so they have become research focuses for reducing carbon dioxide emissions. This paper introduces the research progress in underground carbon dioxide storage and enhanced oil recovery, pointing out the significance and necessity of carbon dioxide-driven enhanced oil recovery.

  15. Trends in the specific carbon dioxide emissions of the german fuel mix; Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix

    Energy Technology Data Exchange (ETDEWEB)

    Machat, Marcus; Werner, Kathrin

    2007-04-15

    The specific emission factor of the German fuel mix is calculated from the direct CO2 emissions of electric power generation and from the net electric power available for end use consumption. The emission factor was reduced between 1990 and 2005, owing to higher efficiencies of modernized power plants and to a bigger share of renewable energy sources. The brochure, published by the Federal Environmental Office, presents trends and diagrams.

  16. Photoelectrocatalytic oxidation of glucose at a ruthenium complex modified titanium dioxide electrode promoted by uric acid and ascorbic acid for photoelectrochemical fuel cells

    Science.gov (United States)

    Lu, Shuo-Jian; Ji, Shi-Bo; Liu, Jun-Chen; Li, Hong; Li, Wei-Shan

    2015-01-01

    The simultaneous presence of uric acid (UA) and ascorbic acid (AA) is first found to largely promote the photoelectrocatalytic oxidation of glucose (GLU) at an indium-tin oxide (ITO) or TiO2 nanoparticles/ITO electrode modified with [Ru(tatp)3]2+ (tatp = 1,4,8,9-tetra-aza-triphenylene) possessing good redox activity and nanoparticle size distribution. A well-defined electrocatalytic peak for GLU oxidation is shown at 0.265 V (vs. SCE) under approximate physiological conditions upon incorporation of UA and AA. The [Ru(tatp)3]2+/ITO electrode exhibits attractive amperometric oxidation responses towards GLU, UA and AA, while controlled potentiostatically at 0.3 V, 0.7 V and 1.0 V, respectively, indicating high sensitivity and excellent reproducibility. On basis of the photoelectrocatalysis of [Ru(tatp)3]2+/TiO2/ITO anode, a GLU concentration-dependent photoelectrochemical fuel cell vs. SCE is elaborately assembled. The proposed free-enzyme photoelectrochemical fuel cell employing 0.1 M GLU associated with 0.01 M UA and 0.01 M AA as fuel shows open-circuit photovoltage of 0.608 V, short-circuit photocurrent density of 124.5 μA cm-2 and maximum power density of 21.75 μW cm-2 at 0.455 V, fill factor of 0.32 and photoenergy conversion efficiency of 36.65%, respectively.

  17. Carbon dioxide: emissions and effects

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I M

    1982-01-01

    This review provides a comprehensive guide to work carried out since 1978 in the many disciplines involved in this complex issue. Possible scenarios for carbon dioxide emissions, sources and sinks in the carbon cycle and for climatic changes are examined. The current concensus (by no means unanimous) of specialists on this issue appears to be that a continuation of reduced trends in energy consumption since 1973 is likely to double the atmospheric carbon dioxide concentration to 600 ppmv during the latter part of the next century. However, a higher demand scenario, requiring an upper limit of coal production, would bring forward the doubling to about the middle of the next century. Current climatic models predict that such a concentration of carbon dioxide would cause an average global warming of from 1.0 to 4.5/sup 0/C which might be delayed by the thermal inertia of the oceans. A warming due to estimated increases in carbon dioxide should, if the model results are correct, become apparent at the end of this century. Regional climatic changes are likely to vary considerably and prove disadvantageous to some regions and beneficial to others. Different strategies for dealing with the carbon dioxide issue are considered: no response, alleviation, countermeasures and prevention. It is concluded that uncertainties do not justify either the use of carbon dioxide disposal and other technical fixes at present or a policy of no further growth in fossil fuel consumption. On the other hand, major efforts to conserve energy would give more time to adapt to changes. The alleviation of climatic impacts and other desirable dual-benefit measures are advocated in addition to continuing international, interdisciplinary research on all aspects.

  18. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W.J.; Hsueh, D.Y.; Randerson, J.T.; Fischer, M.L.; Hatch, J.G.; Pataki, D.E.; Wang, W.; Goulden, M.L.

    2008-05-01

    Characterizing flow patterns and mixing of fossil fuel-derived CO{sub 2} is important for effectively using atmospheric measurements to constrain emissions inventories. Here we used measurements and a model of atmospheric radiocarbon ({sup 14}C) to investigate the distribution and fluxes of atmospheric fossil fuel CO{sub 2} across the state of California. We sampled {sup 14}C in annual C{sub 3} grasses at 128 sites and used these measurements to test a regional model that simulated anthropogenic and ecosystem CO{sub 2} fluxes, transport in the atmosphere, and the resulting {sup 14}C of annual grasses ({Delta}{sub g}). Average measured {Delta}{sub g} in Los Angeles, San Francisco, the Central Valley, and the North Coast were 27.7 {+-} 20.0, 44.0 {+-} 10.9, 48.7 {+-} 1.9, and 59.9 {+-} 2.5{per_thousand}, respectively, during the 2004-2005 growing season. Model predictions reproduced regional patterns reasonably well, with estimates of 27.6 {+-} 2.4, 39.4 {+-} 3.9, 46.8 {+-} 3.0, and 59.3 {+-} 0.2{per_thousand} for these same regions and corresponding to fossil fuel CO{sub 2} mixing ratios (Cf) of 13.7, 6.1, 4.8, and 0.3 ppm. {Delta}{sub g} spatial heterogeneity in Los Angeles and San Francisco was higher in the measurements than in the predictions, probably from insufficient spatial resolution in the fossil fuel inventories (e.g., freeways are not explicitly included) and transport (e.g., within valleys). We used the model to predict monthly and annual transport patterns of fossil fuel-derived CO{sub 2} within and out of California. Fossil fuel CO{sub 2} emitted in Los Angeles and San Francisco was predicted to move into the Central Valley, raising Cf above that expected from local emissions alone. Annually, about 21, 39, 35, and 5% of fossil fuel emissions leave the California airspace to the north, east, south, and west, respectively, with large seasonal variations in the proportions. Positive correlations between westward fluxes and Santa Ana wind conditions were

  19. Decontamination of irradiated-fuel processing waste using manganese dioxide hydrate; Decontamination des effluents de traitement des combustibles irradies par le bioxyde de manganese hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, J M; Gaudier, J F [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1969-07-01

    The 'manganese dioxide' process is designed to replace the 'calcium carbonate' treatment for low and medium activity wastes. The objective to attain during the research for a new process was the diminution of the volume of the sludge without decreasing the decontamination factor of the wastes. The new process involves addition in series of twice over 100 ppm of Mn{sup 2+} in the waste which has previously been made basic and oxidizing; the precipitate formed in situ is separated after each addition. The process has the advantage of increasing the decontamination of strontium. The treatment can be used in a plant including two decantation units and has given effective results when applied in such a plant. (author) [French] Le procede au ''bioxyde de manganese'' est destine a remplacer le traitement ''carbonate de calcium'' dans les effluents de moyenne activite. L'objectif poursuivi lors de la recherche d'un procede nouveau etait de diminuer le volume des boues sans diminuer le facteur de decontamination des effluents. Le nouveau traitement consiste a effectuer en cascade sur les effluents rendus basiques et oxydants une double precipitation de 100 ppm de Mn{sup 2+} avec separation intermediaire du precipite. Il presente en outre l'avantage d'ameliorer la decontamination en strontium. Le traitement est utilisable dans la chaine des deux decanteurs et a donne satisfaction lors de son exploitation industrielle. Le volume des boues seches a ete reduit d'un facteur 3 a 4 par rapport au traitement carbonate. (auteur)

  20. Oxidative Treatment to Improve Coating and Electrochemical Stability of Carbon Fiber Paper with Niobium Doped Titanium Dioxide Sols for Potential Applications in Fuel Cells

    International Nuclear Information System (INIS)

    Alvar, Esmaeil Navaei; Zhou, Biao; Eichhorn, S. Holger

    2014-01-01

    Highlights: • Solution coating of metal oxide layer directly onto carbon paper. • Most uniform Metal oxide coating on functionalized carbon paper. • Highest electrochemical stability for metal oxide coated functionalized carbon paper. - Abstract: Regular hydrophobized carbon paper cannot be used for unitized regenerative fuel cell applications as it corrodes at high potentials on the oxygen electrode side. Reported here are the oxidative treatment and dip-coating of carbon paper (Spectracarb™ 2050A-0850) with Nb-doped TiO 2 sols (anatase phase) to increase the corrosion resistance of the carbon paper at the interface between catalyst layer and gas diffusion backing layer. Coating of carbon paper with Nb-doped TiO 2 sols generates a reasonably uniform layer of TiO 2 and covers the individual carbon fibers well only if the carbon paper is oxidatively functionalized prior to coating. This can be reasoned with a better wetting of the functionalized carbon paper by the sol-gel and the formation of covalent bonds between Ti and the large number of functional groups on the surface of oxidized carbon paper, which is in good agreement with previous observation for carbon nanotubes. The resistance towards oxidation of coated and uncoated samples of untreated and functionalized carbon paper was probed by cyclic voltammetry in 0.5 M aqueous H 2 SO 4 at 1.2 V versus Ag/AgCl for up to 72 hours to mimic the conditions in a unitized regenerative fuel cell. Among these four cases studied here, functionalized carbon paper coated with a layer of Nb-doped TiO 2 shows the highest stability towards electrochemical oxidation while uncoated functionalized carbon paper is the least stable due to the large number of available oxidation sites. These results clearly demonstrate that a coating of carbon fibers with TiO 2 generates a lasting protection against oxidation under conditions encountered at the oxygen electrode side of unitized regenerative fuel cells

  1. Role of analytical chemistry in the development of nuclear fuels

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2012-01-01

    quality of the fabricated fuel conforms to the chemical specifications for the fuel laid down by the fuel designer. These specifications are worked out for the major and minor constituents which affect the fuel properties and hence its performance under conditions prevailing in an operating reactor. Nuclear reactor design incorporates detailed specifications of different systems, which must be satisfied for smooth and efficient functioning of the reactor. Fuel being the heart of the reactor, its chemical characterisation is an important component of this design. Both the fuel materials and finished fuel products are to be characterised for this purpose. Each fuel batch has to be subjected to comprehensive chemical quality control for trace constituents, stoichiometry and isotopic composition. Analytical methodology for chemical quality control measurements is described below under different sections depending on the nature of measurements. These are: (1) preparation of starting materials, (2) Sampling methodologies, (3) Dissolution of samples, (4) Thorium, uranium and plutonium content, (5) Isotopic composition (for fissile and fertile content), (6) Americium content, (7) Oxygen to metal ratio, (8) Trace metals determination, (9) Trace non-metals determination,(10) Total gas content, and (11) Moisture content in the case of oxide fuels. The signal contributions of analytical chemistry for nuclear fuel fabrication are enumerated in this paper. (author)

  2. Optimization of a fuel bundle within a CANDU supercritical water reactor

    International Nuclear Information System (INIS)

    Schofield, M.E.

    2009-01-01

    simultaneously with the optimization of the fresh fuel content. The thorium-uranium fuel optimization did show significant improvement over the length of the process but to a lesser degree than the other optimization processes. (author)

  3. Radiation induced sulfur dioxide removal

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2000-01-01

    The biggest source of air pollution is the combustion of fossil fuels, were pollutants such as particulate, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and volatile organic compounds (VOC) are emitted. Among these pollutants, sulfur dioxide plays the main role in acidification of the environment. The mechanism of sulfur dioxide transformation in the environment is partly photochemical. This is not direct photooxidation, however, but oxidation through formed radicals. Heterogenic reactions play an important role in this transformation as well; therefore, observations from environmental chemistry can be used in air pollution control engineering. One of the most promising technologies for desulfurization of the flue gases (and simultaneous denitrification) is radiation technology with an electron accelerator application. Contrary to the nitrogen oxides (NO x ) removal processes, which is based on pure radiation induced reactions, sulfur dioxide removal depends on two pathways: a thermochemical reaction in the presence of ammonia/water vapor and a radiation set of radiochemical reactions. The mechanism of these reactions and the consequent technological parameters of the process are discussed in this paper. The industrial application of this radiation technology is being implemented in an industrial pilot plant operated by INCT at EPS Kaweczyn. A full-scale industrial plant is currently in operation in China, and two others are under development in Japan and Poland. (author)

  4. Gas Flaring: Carbon dioxide Contribution to Global Warming ...

    African Journals Online (AJOL)

    PROF HORSFALL

    emissions resulting from high consumption of fossil fuels. Flaring been a ... method of analysis showed that carbon dioxide from gas flaring constitute 1% of the total ... Although of these, methane is potentially the most .... in some gas plants.

  5. Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991, and an estimate of their isotopic composition and latitudinal distribution

    Energy Technology Data Exchange (ETDEWEB)

    Andres, R.J.; Marland, G.; Boden, T.; Bischof, S. [University of Alaska, Fairbanks, AK (USA). Inst. of Northern Engineering

    2000-05-01

    This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of CO{sub 2} from fossil fuel consumption, natural gas flaring, and cement manufacture. These emphases include: (1) updating the 1950 to present time series of CO{sub 2} emissions from fossil fuel consumption and cement manufacture, (2) extending this time series back to 1751, (3) gridding the data at 1 x 1{degree} resolution, and (4) estimating the isotopic signature of these emissions. A latitudinal distribution of carbon emissions is being completed. A southward shift in the major mass of CO{sub 2} emissions is occurring from European-North American latitudes toward Central-Southeast Asian latitudes, reflecting the growth of population and industrialization at these lower latitudes. The carbon isotopic signature of these CO{sub 2} emissions has been reexamined. The emissions of the past two decades were approximately 1% lighter than previously estimated. 37 refs., 5 figs., 5 tabs.

  6. More bad news about carbon dioxide emissions

    International Nuclear Information System (INIS)

    Stonehouse, D.

    2000-01-01

    The affect that increased carbon dioxide concentrations has on plants and animals was discussed. Most research focuses on the impacts that carbon dioxide concentrations has on climatic change. Recent studies, however, have shown that elevated levels of carbon dioxide in the atmosphere caused by burning fossils fuels changes the chemical structure of plants and could lead to significant disruptions in ecological food chains. High carbon dioxide levels cause plants to speed up photosynthesis, take in the gas, and use the carbon to produce more fibre and starch while giving off oxygen as a byproduct. As plants produce more carbon, their levels of nitrogen diminish making them less nutritious for the insects and animals that feed on them. This has serious implications for farmers, as pests would have to eat more of their crops to survive. In addition, farmers would have to supplement livestock with nutrients

  7. Historic and projected vehicle use and carbon dioxide emissions

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Data are presented in this chapter that show a decline in total carbon dioxide emissions per vehicle of about 20 between 1970 and 1987. However, it is also shown that the fuel economy gains of the 1970s and early 1980s in many countries have begun to erode. In the US, low fuel prices combined with a failure to strengthen fuel efficiency standards have led to recent declines in new-car fuel efficiency. Even if these trends are reversed carbon dioxide in the transport sector will not be reduced if over all motor vehicle use continues along present lines

  8. Are Solar Fuels Sustainable?

    NARCIS (Netherlands)

    Meuwese, Anne

    2012-01-01

    Summary The combined problems of too little fossil fuels to supply the world’s future energy needs and the possible negative environmental effects of carbon dioxide emissions which are coupled to their usage has led to the development of fuels based on s

  9. Nuclear fuel recycling system

    International Nuclear Information System (INIS)

    Lee, H.R.; Koch, A.K.; Krawczyk, A.

    1981-01-01

    A process is provided for recycling sintered uranium dioxide fuel pellets rejected during fuel manufacture and the swarf from pellet grinding. The scrap material is prepared mechanically by crushing and milling as a high solids content slurry, using scrap sintered UO 2 pellets as the grinding medium under an inert atmosophere

  10. Alternative fossil-based transportation fuels

    Science.gov (United States)

    2008-01-01

    "Alternative fuels derived from oil sands and from coal liquefaction can cost-effectively diversify fuel supplies, but neither type significantly reduces U.S. carbon-dioxide emissions enough to arrest long-term climate change".

  11. Carbon dioxide capture and air quality

    NARCIS (Netherlands)

    Horssen, A. van; Ramirez, C.A.; Harmelen, T. van; Koornneef, J.

    2011-01-01

    Carbon dioxide (CO2) is one of the most important greenhouse gases (GHG). The most dominant source of anthropogenic CO2 contributing to the rise in atmospheric concentration since the industrial revolution is the combustion of fossil fuels. These emissions are expected to result in global climate

  12. CARBON DIOXIDE AS A FEEDSTOCK.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  13. Electricity from fossil fuels without CO2 emissions: assessing the costs of carbon dioxide capture and sequestration in U.S. electricity markets.

    Science.gov (United States)

    Johnson, T L; Keith, D W

    2001-10-01

    The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.

  14. High frequency acoustic microscopy for the determination of porosity and Young's modulus in high burnup uranium dioxide nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, M. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); Laux, D. [University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France); Cappia, F. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); Technische Universitaet Muenchen, Department of Nuclear Engineering, Boltzmannstrasse 15, 85747 Garching bei Munchen (Germany); Laurie, M.; Van Uffelen, P.; Rondinella, V.V. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); Despaux, G. [University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France)

    2015-07-01

    During irradiation UO{sub 2} nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of the porosity and of elastic properties in high burnup UO{sub 2} pellet can be investigated via high frequency acoustic microscopy. Ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A 67 MWd/kgU UO{sub 2} pellet was characterized using the acoustic microscope installed in the hot cells of the Institute of Transuranium Elements: 90 MHz frequency was applied, methanol was used as coupling liquid and VR was measured at different radial positions. By comparing the porosity values obtained via acoustic microscopy with those determined using ceramographic image analysis a good agreement was found, especially in the areas close to the centre. In addition Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile. (authors)

  15. High frequency acoustic microscopy for the determination of porosity and Young's modulus in high burnup uranium dioxide nuclear fuel

    International Nuclear Information System (INIS)

    Marchetti, M.; Laux, D.; Cappia, F.; Laurie, M.; Van Uffelen, P.; Rondinella, V.V.; Despaux, G.

    2015-01-01

    During irradiation UO 2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of the porosity and of elastic properties in high burnup UO 2 pellet can be investigated via high frequency acoustic microscopy. Ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A 67 MWd/kgU UO 2 pellet was characterized using the acoustic microscope installed in the hot cells of the Institute of Transuranium Elements: 90 MHz frequency was applied, methanol was used as coupling liquid and VR was measured at different radial positions. By comparing the porosity values obtained via acoustic microscopy with those determined using ceramographic image analysis a good agreement was found, especially in the areas close to the centre. In addition Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile. (authors)

  16. Investigation of transformation of uranium hexafluoride into dioxide

    International Nuclear Information System (INIS)

    Galkin, N.P.; Veryatin, U.D.; Yakhonin, I.F.; Logunov, A.F.; Dymkov, Yu.M.

    1982-01-01

    The process of transformation of uranium hexafluoride into dioxide using the method of pyrohydrolysis by steam-hydrogen mixture in a boiling layer using uranium dioxide granules applicable for production of fuel elements is considered. Technological parameters and equipment of the process are described, intermediate stages and process products are considered. Physicochemical and physicomechanical properties of the obtained uranium dioxide granules are given. The results of metallographical investigations into solid products of pyrohydrolysis in phase transformations at certain stages of the process as well as test on vibration packing of the obtained granules in fuel cans are presented

  17. Chemical Engineering Division fuel cycle programs. Quarterly progress report, July-September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-01-01

    Fuel cycle work included hydraulic performance and extraction efficiency of eight-stage centrifugal contactors, flowsheet for the Aralex process, Ru and Zr extraction in a miniature centrifugal contactor, study of Zr aging in the organic phase and its effect on Zr extraction and hydraulic testing of the 9-cm-ID contactor. Work for predicting accident consequences in LWR fuel processing covered the relation between energy input (to subdivide a solid) and the modes of particle size frequency distribution. In the pyrochemical and dry processing program corrosion-testing materials for containment vessels and equipment for studying carbide reactions in bismuth is under way. Analytical studies have been made of salt-transport processes; efforts to spin tungsten crucibles 13 cm dia continue, and other information on tungsten fabrication is being assembled; the process steps of the chloride volatility process have been demonstrated and the thoria powder product used to produce oxide pellets; solubility of UO/sub 2/, PuO/sub 2/, and fission products in molten alkali nitrates is being investigated; work was continued on reprocessing actinide oxides by extracting the actinides into ammonium chloroaluminate from bismuth; the preparation of thorium-uranium carbide from the oxide is being studied as a means of improving the oxide reactivity; studies are in progress on producing uranium metal and decontaminated ThO/sub 2/ by the reaction of (Th,U)O/sub 2/ solid solution in molten salts containing ThCl/sub 4/ and thorium metal chips. In the molten tin process, no basic thermodynamic or kinetic factors have been found that may limit process development.

  18. All heavy metals closed-cycle analysis on water-cooled reactors of uranium and thorium fuel cycle systems

    International Nuclear Information System (INIS)

    Permana, Sidik; Sekimoto, Hiroshi; Waris, Abdul; Takaki, Naoyuki

    2009-01-01

    thorium, uranium, plutonium and minor actinide isotopes. Main contribution for breeding and void reactivity condition as well as criticality condition comes from the contribution of fissile material such as Pu-239 and U-233; however, some intermediate nuclides are estimated to have some contribution to main fissile nuclides for obtaining higher or lower breeding capability and positive or negative void reactivity condition. (author)

  19. Model for the behaviour of thorium and uranium fuels at pelletization; Modelo para o comportamento de microesferas combustiveis de torio e uranio na peletizacao

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira Neto, Ricardo Alberto

    2000-11-15

    In this work, a model for the behaviour of thorium-uranium-mixed oxide microspheres in the pelletizing process is presented. This model was developed in a program whose objective was to demonstrate the viability of producing fissile material through the utilization of thorium in pressurized water reactors. This is important because it allows the saving of the strategic uranium reserves, and makes it possible the nuclear utilization of the large brazilian thorium reserves. The objective was to develop a model for optimizing physical properties of the microspheres, such as density, fracture strength and specific surface, so as to produce fuel pellets with microstructure, density, open porosity and impurity content, in accordance with the fuel specification. And, therefore, to adjust the sol-gel processing parameters in order to obtain these properties, and produce pellets with an optimized microstructure, adequate to a stable behaviour under irradiation. The model made it clear that to achieve this objective, it is necessary to produce microspheres with density and specific surface as small as possible. By changing the sol-gel processing parameters, microspheres with the desired properties were produced, and the model was experimentally verified by manufacturing fuel pellets with optimized microstructures, density, open porosity and impurity content, meeting the specifications for this new nuclear fuel for pressurized water reactors. Furthermore it was possible to obtain mathematical expressions that enables to calculate from the microspheres properties and the utilized compaction pressure, the sinter density that will be obtained in the sintered pellet and the necessary compaction pressure to reach the sintered density specified for the fuel. (author)

  20. Impact of wood pellets export on the development of their production in Serbia with the effects of substituting enegry from fossil fuels and reduction of carbon dioxide emission

    Directory of Open Access Journals (Sweden)

    Glavonjić Branko

    2016-01-01

    Full Text Available The paper presents the results of researching the impact of export on the production of wood pellets as well as the situation on the market for this wood fuel in Serbia. Objective of the research was to produce scientifically and professionally founded conclusions and the related adequate recommendations to the decision makers in order to improve the situation on wood pellets market in Serbia and eliminate the existing problems which significantly burden and slow down this development. Special objective of the research was to observe the contributions of wood pellets to the mitigation of climate changes using Serbia as the example. Results of the conducted research show that the expansion of the consumption (demand increase in the European Union countries in the last fifteen years and the related increase of export from Serbia are the most significant factors which have influenced the development of wood pellets production in Serbia. Parameters of econometric model of the impact of export on the increase of production show that production increase of 1.17% can be expected with the increase of export of 1%. Thus, the number of wood pellet producers has rapidly increased in the last ten years, from 2 producers in 2006 to 52 active producers in 2016. Increase of the number of producers was also accompanied by the increase of the installed capacities. At the end of 2015, total installed capacities for wood pellet production in Serbia reached 550 thousand tons, and the realized production was 229 thousand tons, or 41.6% of the installed capacity. Consumption of wood pellets in Serbia in the last four years achieved significant increase and reached the level of 89 thousand tons in 2015. However, concerning the segment of wood pellets consumption in Serbia, the situation is still unsatisfactory despite the fact that the consumption has been increasing year after year. Average price of 1 kWh of energy from wood pellets exported from Serbia was in the

  1. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle for use in establishing ''as low as practicable'' guides: fabrication of light-water reactor fuel from enriched uranium dioxide

    International Nuclear Information System (INIS)

    Pechin, W.H.; Blanco, R.E.; Dahlman, R.C.; Finney, B.C.; Lindauer, R.B.; Witherspoon, J.P.

    1975-05-01

    A cost-benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from a model enriched-uranium, light-water reactor (LWR) fuel fabrication plant, and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist in defining the term ''as low as practicable'' in relation to limiting the release of radioactive materials from nuclear facilities. The base case model plant is representative of current plant technology and has an annual capacity of 1500 metric tons of LWR fuel. Additional radwaste treatment equipment is added to the base case plants in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The cost for the added waste treatment operations and the corresponding dose commitment are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Some of the technology used in the advanced cases is in an early stage of development and is not suitable for immediate use. The methodology used in estimating the costs and the radiological doses, detailed calculations, and tabulations are presented in Appendix A and ORNL-4992. (U.S.)

  2. Fuel performance, design and development

    International Nuclear Information System (INIS)

    Prasad, P.N.; Tripathi, Rahul Mani; Soni, Rakesh; Ravi, M.; Vijay Kumar, S.; Dwivedi, K.P.; Pandarinathan, P.R.; Neema, L.K.

    2006-01-01

    The normal fuel configurations for operating 220 MWe and 540 MWe PHWRs are natural uranium dioxide 19-element and 37- element fuel bundle types respectively. The fuel configuration for BWRs is 6 x 6 fuel. So far, about 330 thousand PHWR fuel bundles and 3500 number of BWR bundles have been irradiated in the 14 PHWRs and 2 BWRs. Improvements in fuel design, fabrication, quality control and operating practices are continuously carried out towards improving fuel utilization as well as reducing fuel failure rate. Efforts have been put to improve the fuel bundle utilization by increasing the fuel discharge burnup of the natural uranium bundles The overall fuel failure rate currently is less than 0.1 % . Presently the core discharge burnups in different reactors are around 7500 MWD/TeU. The paper gives the fuel performance experience over the years in the different power reactors and actions taken to improve fuel performance over the years. (author)

  3. Report of the Carbon Dioxide Committee II

    International Nuclear Information System (INIS)

    1994-01-01

    The Carbon Dioxide Committee was given the task of preparing a suggestion of the acts aimed at reducing the greenhouse gas emissions and increasing the sinks of carbon in Finland. Emissions of all greenhouse gases were in 1990 80 million tons. calculated as carbon dioxide. The carbon dioxide emissions were about 58 million tons of the total. The increase of forest resources binds carbon from the atmosphere and reduces thereby net emissions of Finland at present by nearly 30 million tons of carbon dioxide. Carbon dioxide emissions will grow during the next decades, unless strong measures to control them will not be taken. As a result of the Commissions examination, acts will be needed both in the production of energy and in its consumption. Emissions can be reduced by replacing fossil fuels with nuclear energy, bioenergy and other renewable energy sources. Saving of energy and improvement of energy efficiency will limit carbon dioxide emissions. The Commission has made suggestions both to change the structure of energy production and to control the consumption of energy. (orig.)

  4. Electrochemical carbon dioxide reduction on rough copper surfaces

    NARCIS (Netherlands)

    Kas, Recep

    2016-01-01

    Sustainable development and climate change is considered to be one of the top challenges of humanity. Electrochemical carbon dioxide (CO2) reduction to fuels or fuel precursor using renewable electricity is a very promising way to recycle CO2 and store the electricity. This would also provide

  5. Model for the analysis of transitories and stability of a BWR reactor with fuel of thorium; Modelo para el analisis de transitorios y de estabilidad de un reactor BWR con combustible de torio

    Energy Technology Data Exchange (ETDEWEB)

    Nunez C, A. [CNSNS, 03020 Mexico D.F. (Mexico)]. E-mail: anunezc@cnsns.gob.mx; Espinosa P, G. [UAM-I, 09340 Mexico D.F. (Mexico); Francois L, J.L. [Fac. de Ingenieria, UNAM 62550 Jiutepec, Morelos (Mexico)

    2004-07-01

    In this work it is described the thermo hydraulic and neutronic pattern used to simulate the behavior of a nucleus of thorium-uranium under different conditions of operation. The analysed nucleus was designed with base to assemblies that operate under the cover-seed concept. The pattern was proven to conditions of stationary state and transitory state. Here it is only presented the simulation of the one SCRAM manual and it is compared in the behavior of a nucleus with UO{sub 2}. Additionally one carries out an analysis of stability taking into account the four corners that define the area of stability of the map flow-power and to conditions of 100% of flow and 100% of power. The module of stability is based on the pattern of Lahey and Podowsky to estimate the drops of pressure during a perturbation. It is concludes that the behavior of this nucleus is not very different to the one shown by the nuclei loaded with the fuel of UO{sub 2}. (Author)

  6. Review of Quantitative Monitoring Methodologies for Emissions Verification and Accounting for Carbon Dioxide Capture and Storage for California’s Greenhouse Gas Cap-and-Trade and Low-Carbon Fuel Standard Programs

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Birkholzer, Jens T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2014-12-23

    The Cap-and-Trade and Low Carbon Fuel Standard (LCFS) programs being administered by the California Air Resources Board (CARB) include Carbon Dioxide Capture and Storage (CCS) as a potential means to reduce greenhouse gas (GHG) emissions. However, there is currently no universal standard approach that quantifies GHG emissions reductions for CCS and that is suitable for the quantitative needs of the Cap-and-Trade and LCFS programs. CCS involves emissions related to the capture (e.g., arising from increased energy needed to separate carbon dioxide (CO2) from a flue gas and compress it for transport), transport (e.g., by pipeline), and storage of CO2 (e.g., due to leakage to the atmosphere from geologic CO2 storage sites). In this project, we reviewed and compared monitoring, verification, and accounting (MVA) protocols for CCS from around the world by focusing on protocols specific to the geologic storage part of CCS. In addition to presenting the review of these protocols, we highlight in this report those storage-related MVA protocols that we believe are particularly appropriate for CCS in California. We find that none of the existing protocols is completely appropriate for California, but various elements of all of them could be adopted and/or augmented to develop a rigorous, defensible, and practical surface leakage MVA protocol for California. The key features of a suitable surface leakage MVA plan for California are that it: (1) informs and validates the leakage risk assessment, (2) specifies use of the most effective monitoring strategies while still being flexible enough to accommodate special or site-specific conditions, (3) quantifies stored CO2, and (4) offers defensible estimates of uncertainty in monitored properties. California’s surface leakage MVA protocol needs to be applicable to the main CO2 storage opportunities (in California and in other states with entities participating in California

  7. Carbon dioxide as chemical feedstock

    National Research Council Canada - National Science Library

    Aresta, M

    2010-01-01

    ... Dioxide as an Inert Solvent for Chemical Syntheses 15 Alessandro Galia and Giuseppe Filardo Introduction 15 Dense Carbon Dioxide as Solvent Medium for Chemical Processes 15 Enzymatic Catalysis in Dense Carbon Dioxide 18 Other Reactions in Dense Carbon Dioxide 19 Polymer Synthesis in Supercritical Carbon Dioxide 20 Chain Polymerizations: Synt...

  8. Recycling technology of emitted carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Hironori [National Inst. of Materials and Chemical Research (NIMC), Ibaraki (Japan)

    1993-12-31

    Ways to halt global warming are being discussed worldwide. Global warming is an energy problem which is mainly attributed to the large volumes of carbon dioxide (CO{sub 2}) released into the atmosphere from the rapid increase in energy consumption since the Industrial Revolution. The basic solution to the problem, therefore, is to cut consumption of fossil fuels. To this end, it is important to promote energy conservation by improving the fuel efficiency of machines, as well as shift to energy sources that do not emit carbon dioxide and develop related technologies. If current trends in economic growth continue in the devloping world as well as the developed countries, there can be no doubt that energy consumption will increase. Therefore, alongside energy conservation and the development of alternative energies, the importance of technologies to recover and fix CO{sub 2} will increase in the fight against global warming.

  9. Carbon dioxide may become a resource

    International Nuclear Information System (INIS)

    Haugneland, Petter; Areklett, Ivar

    2002-01-01

    The greenhouse gas CO 2 may become a product that the oil companies would pay for. In an extensive international resource project methods for CO 2 capture, transport and storage are being investigated. CO 2 capture means that carbon dioxide that is formed in the combustion of fossil fuels is separated out from the process, either from the fuel (decarbonization), or from the flue gas, and then stored. The article briefly describes the international joint project CO 2 Capture Project (CCP), in which eight oil companies are participating. If one can find a method for injecting CO 2 into oil reservoirs that leads to increased oil production, then part of the extra cost of removing the carbon dioxide from flue gas may be repaid

  10. Uranium dioxide pellets

    International Nuclear Information System (INIS)

    Zawidzki, T.W.

    1979-01-01

    Sintered uranium dioxide pellets composed of particles of size > 50 microns suitable for power reactor use are made by incorporating a small amount of sulphur into the uranium dioxide before sintering. The increase in grain size achieved results in an improvement in overall efficiency when such pellets are used in a power reactor. (author)

  11. Classification of titanium dioxide

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; Maya M, M.E.; Ita T, A. De; Palacios G, J.

    2002-01-01

    In this work the X-ray diffraction (XRD), Scanning Electron Microscopy (Sem) and the X-ray Dispersive Energy Spectroscopy techniques are used with the purpose to achieve a complete identification of phases and mixture of phases of a crystalline material as titanium dioxide. The problem for solving consists of being able to distinguish a sample of titanium dioxide being different than a titanium dioxide pigment. A standard sample of titanium dioxide with NIST certificate is used, which indicates a purity of 99.74% for the TiO 2 . The following way is recommended to proceed: a)To make an analysis by means of X-ray diffraction technique to the sample of titanium dioxide pigment and on the standard of titanium dioxide waiting not find differences. b) To make a chemical analysis by the X-ray Dispersive Energy Spectroscopy via in a microscope, taking advantage of the high vacuum since it is oxygen which is analysed and if it is concluded that the aluminium oxide appears in a greater proportion to 1% it is established that is a titanium dioxide pigment, but if it is lesser then it will be only titanium dioxide. This type of analysis is an application of the nuclear techniques useful for the tariff classification of merchandise which is considered as of difficult recognition. (Author)

  12. Nitrogen dioxide exposures inside ice skating rinks.

    Science.gov (United States)

    Brauer, M; Spengler, J D

    1994-01-01

    OBJECTIVES. The common operation of fuel-powered resurfacing equipment in enclosed ice skating rinks has the potential for producing high concentrations of carbon monoxide and nitrogen dioxide. Exposures to these gaseous combustion products may adversely affect the health of those inside the rink. Little information is available on pollutant concentrations under normal operating conditions. METHODS. One-week average nitrogen dioxide concentrations in 70 northeastern US rinks were measured with passive samplers during normal winter season conditions. RESULTS. The median nitrogen dioxide level inside rinks was 180 ppb, more than 10 times higher than the median outdoor concentration. One-week average nitrogen dioxide concentrations above 1000 ppb were measured in 10% of the rinks. CONCLUSIONS. Considering that short-term peak concentrations were likely to have reached two to five times the measured 1-week averages, our results suggest that nitrogen dioxide levels were well above short-term air quality guidelines and constitute a public health concern of considerable magnitude. PMID:8129060

  13. POSSIBILITIES OF CARBON DIOXIDE FIXATION BY MICROALGAE IN REFINERY

    OpenAIRE

    Šingliar, Michal; Mikulec, Jozef; Kušnir, Patrik; Polakovičova, Gabriela

    2013-01-01

    Capture and sequestration of carbon dioxide is one of the most critical challenges today for businesses and governments worldwide. Thousands of emitting power plants and industries worldwide face this costly challenge – reduce the CO2 emissions or pay penalties. One possibility for carbon dioxide sequestration is its fixation in microalgae. Microalgae can sequester CO2 from flue gases emitted from fossil fuel-fired refinery plants and units, thereby reducing emissions of a major greenhouse ga...

  14. Renewable fuels - a growing future?

    International Nuclear Information System (INIS)

    Blackledge, C.

    1997-01-01

    The production of ethanol fuels, industrial alcohol, vodka, and gasoline additives from barley and corn by Commercial Alcohols and Alberta Bioclean is reported. The reformulated gasoline market, the reduced emission with ethanol fuels, plans for a new alcohol plant, sale of byproduct high protein animal feed and carbon dioxide, and the encouragement offered by the Canadian government are discussed. (UK)

  15. 1. round table - Spent fuels composition. Back-end of the fuel cycle and reprocessing, plutonium and other nuclear materials management. 2. round table - Separation-transmutation. 3. round table - Scenarios for a long term inventory of nuclear materials and wastes

    International Nuclear Information System (INIS)

    2005-01-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the synthesis of the round table debates which took place at Paris on the reprocessing of spent fuels. Three aspects are discussed: the risks linked with the recovery of valorizable materials, the economical viability of the separation/transmutation option, and the future of the nuclear option in the French energy policy. Six presentations (transparencies) are attached with these proceedings which treat of: the reprocessing/recycling to the test, perspectives of future wastes, present day wastes/valorizable materials and future scenarios, critical analysis scenarios, why reprocessing spent fuels?, processing of spent fuels and recycling, separation and transmutation of long-lived radioactive wastes, thorium-uranium cycle. (J.S.)

  16. Nongovernmental valorization of carbon dioxide

    International Nuclear Information System (INIS)

    Petersen, Gene; Viviani, Donn; Magrini-Bair, Kim; Kelley, Stephen; Moens, Luc; Shepherd, Phil; DuBois, Dan

    2005-01-01

    Carbon dioxide (CO 2 ) is considered the largest contributor to the greenhouse gas effect. Most attempts to manage the flow of CO 2 or carbon into our environment involve reducing net emissions or sequestering the gas into long-lived sinks. Using CO 2 as a chemical feedstock has a long history, but using it on scales that might impact the net emissions of CO 2 into the atmosphere has not generally been considered seriously. There is also a growing interest in employing our natural biomes of carbon such as trees, vegetation, and soils as storage media. Some amelioration of the net carbon emissions into the atmosphere could be achieved by concomitant large withdrawals of carbon. This report surveys the potential and limitations in employing carbon as a resource for organic chemicals, fuels, inorganic materials, and in using the biome to manage carbon. The outlook for each of these opportunities is also described

  17. Fission cross sections of some thorium, uranium, neptunium and plutonium isotopes relative to /sup 235/U

    Energy Technology Data Exchange (ETDEWEB)

    Meadows, J W

    1983-10-01

    Earlier results from the measurements, at this Laboratory, of the fission cross sections of /sup 230/Th, /sup 232/Th, /sup 233/U, /sup 234/U, /sup 236/U, /sup 238/U, /sup 237/Np, /sup 239/Pu, /sup 240/Pu, and /sup 242/Pu relative to /sup 235/U are reviewed with revisions to include changes in data processing procedures, alpha half lives and thermal fission cross sections. Some new data have also been included. The current experimental methods and procedures and the sample assay methods are described in detail and the sources of error are presented in a systematic manner. 38 references.

  18. Criticality prevention specifications thorium--uranium-233 separations in the Purex Plant

    International Nuclear Information System (INIS)

    Matheison, W.E.; Oberg, G.C.; Ritter, G.L.

    1970-01-01

    The specifications in this document define the limits or restrictions required to maintain an acceptably low probability of the occurrence of a nuclear chain reaction in the Purex Plant while processing irradiated thoria targets. These criticality prevention specifications do not stipulate the system, procedures, or mechanisms to permit operation within the limits or restrictions

  19. A comparison between thorium-uranium and low enrichment uranium cycles in the high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cerles, J M

    1973-03-15

    In a previous report, it was shown that the Uranium cycle could be used as well with multi-hole block (GGA type) as with tubular elements. Now, in a F.S.V. geometry, a comparison is made between Thorium cycle and Uranium cycle. This comparison will be concerned with the physical properties of the materials, the needs of natural Uranium, the fissile material inventory and, at last, an attempt of economical considerations. In this report the cycle will be characterizd by the fertile material. So, we write ''Thorium cycle'' for Highly Enriched Uranium - Thorium cycle and ''Uranium cycle'' for low Enrichment Uranium cycle.

  20. Investigation of quantitative separation of thorium, uranium, neptunium and plutonium from complex radiochemical mixtures

    International Nuclear Information System (INIS)

    Ushatskij, V.N.; Preobrazhenskaya, L.D.; Kolychev, V.B.; Gugel', E.S.

    1979-01-01

    Quantitative separation of actinides and their radiochemical purification with the aid of TBP with subsequent separation of thorium and quantitative separation of U, Np and Pu with the aid of D2EHPA have been studied. The method has been developed for quantitative extraction-chromatographic separation and radiochemical purification of nanogram amounts of U, Pu and microgram amounts of Th and Np from complex radiochemical mixtures containing both fragment radioisotopes and non-radioactive macrocomponents ( Fe,Al,Mg,Mn, Na and others). The method calls for application of one-extraction-chromatographic column with TBP and one column with D2EHPA. Thorium is separated at the first stage since it does not form complexes in a chloride solution during washing of the sorption column with 6. OM HCl. Npsup((4)) and Pusup((3)) required for separation are stabilized with the aid of hydrazine and hydroxylamine mixture. The yield of each of the above-cited actinide elements during the complete two-stage separation and at the stage of their separation varies within the range of 98.5-99.3%

  1. Study of the 'Impatiens walleriana' for phytoremediation of chromium, thorium, uranium and zinc soil contamination

    International Nuclear Information System (INIS)

    Torrecilha, Jefferson K.; Mariano, Gabriela P.; Silva, Paulo S.C. da

    2013-01-01

    The objective of this study was to determine the Cr, Th, U and Zn transfer from soil to Impatiens walleriana and verify if this plant species is suitable for soil decontamination. Samples of small, medium and large size of the plant were collected in three different locations, University of Sao Paulo, IPEN and Cotia, as well as soil samples from the surroundings. Instrumental neutron activation analysis was applied to determine the element concentrations. Roots, stems and leaves of the plant samples were analyzed in separate in order to verify the preferential site of concentration of these elements in the plant. For the analyses, samples of the soil and the plants were dried and pulverized into a fine powder, accurately weighed and sealed in polyethylene bags, irradiated together with reference standard materials in the IEA-R1 IPEN reactor and counted in a Ge-hiperpure detector. Cr, Th, and U did not present a significant potential to be accumulated in none of the plant parts. Zinc, on the other hand, showed great capacity to be accumulated in in all parts of Impatiens walleriana and, therefore, this species is a good candidate to be used for phytoremediation purpose, in case of soil contamination with zinc. (author)

  2. Uranium dioxide. Sintering test

    International Nuclear Information System (INIS)

    Anon.

    Description of a sintering method and of the equipment devoted to uranium dioxide powder caracterization and comparison between different samples. Determination of the curve giving specific volume versus pressure and micrographic examination of a pellet at medium pressure [fr

  3. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirayama, Satoshi; Kawada, Toshiyuki; Matsuzaki, Masayoshi.

    1980-01-01

    Purpose: To provide a fuel element for reducing the mechanical interactions between a fuel-cladding tube and the fuel element and for alleviating the limits of the operating conditions of a reactor. Constitution: A fuel element having mainly uranium dioxide consists of a cylindrical outer pellet and cylindrical inner pellet inserted into the outer pellet. The outer pellet contains two or more additives selected from aluminium oxide, beryllium oxide, magnesium oxide, silicon oxide, sodium oxide, phosphorus oxide, calcium oxide and iron oxide, and the inner pellet contains nuclear fuel substance solely or one additive selected from calcium oxide, silicon oxide, aluminium oxide, magnesium oxide, zirconium oxide and iron oxide. The outer pellet of the fuel thus constituted is reduced in mechanical strength and also in the mechanical interactions with the cladding tube, and the plastic fluidity of the entire pellet is prevented by the inner pellet increased in the mechanical strength. (Kamimura, M.)

  4. Utilisation of flue gases from biofuels in greenhouses as carbon dioxide source

    International Nuclear Information System (INIS)

    Kuopanportti, H.; Rissanen, R.; Vuollet, A.; Kanniainen, T.; Tikka, A.; Ramm-Chmidt, L.; Seppaelae, R.; Piira, T.

    2006-01-01

    The objectives of the project is to develop technologies by which the flue gases from burning bio fuels and peat can be purified for used in green houses as a low cost source of carbon dioxide. Traditionally carbon dioxide has been produced by burning propane or natural gas or by injecting bottled carbon dioxide gas directly into the green house. The new methods should be more affordable than the present ones. (orig.)

  5. Inerting Aircraft Fuel Systems Using Exhaust Gases

    Science.gov (United States)

    Hehemann, David G.

    2002-01-01

    Our purpose in this proposal was to determine the feasibility of using carbon dioxide, possibly obtained from aircraft exhaust gases as a substance to inert the fuel contained in fuel tanks aboard aircraft. To do this, we decided to look at the effects carbon dioxide has upon commercial Jet-A aircraft fuel. In particular, we looked at the solubility of CO2 in Jet-A fuel, the pumpability of CO2-saturated Jet-A fuel, the flashpoint of Jet-A fuel under various mixtures of air and CO2, the static outgassing of CO2-Saturated Jet-A fuel and the dynamic outgassing of Jet-A fuel during pumping of Jet-A fuel.

  6. Greenhouse gas emissions from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Taylor, M.

    1996-01-01

    Emissions of carbon dioxide and methane from the whole fuel-cycle of nuclear power generation are discussed. The low-cost, and therefore low-energy-using, uranium resources suffice to provide a large worldwide nuclear programme with fuel without producing substantial carbon dioxide. Very lower emissions of carbon dioxide can be achieved if uranium enrichment is carried out by centrifuging. Methane emissions from uranium mining are negligible or in almost any case virtually zero. (author). 9 refs, 1 tab

  7. Synthesis, sintering and dissolution of thorium and uranium (IV) mixed oxide solid solutions: influence of the method of precursor preparation; Synthese, frittage et caracterisation de solutions solides d'oxydes mixtes de thorium et d'uranium (IV): influence de la methode de preparation du precurseur

    Energy Technology Data Exchange (ETDEWEB)

    Hingant, N

    2008-12-15

    Mixed actinide dioxides are currently considered as potential fuels for the third and fourth generations of nuclear reactors. In this context, thorium-uranium (IV) dioxide solid solutions were studied as model compounds to underline the influence of the method of preparation on their physico-chemical properties. Two methods of synthesis, both based on the initial precipitation of oxalate precursors have been developed. The first consisted in the direct precipitation ('open' system) while the second involved hydrothermal conditions ('closed' system). The second method led to a significant improvement in the crystallization of the samples especially in the field of the increase of the grain size. In these conditions, the formation of a complete solid solution Th{sub 1-x}U{sub x}(C{sub 2}O{sub 4}){sub 2}.2H{sub 2}O was prepared between both end-members. Its crystal structure was also resolved. Whatever the initial method considered, these compounds led to the final dioxides after heating above 400 C. The various steps associated to this transformation, involving the dehydration of precursors then the decomposition of oxalate groups have been clarified. Moreover, the use of wet chemistry methods allowed to reduce the sintering temperature of the final thorium-uranium (IV) dioxide solid solutions. Whatever the method of preparation considered, dense samples (95% to 97% of the calculated value) were obtained after only 3 hours of heating at 1500 C. Additionally, the use of hydrothermal conditions significantly increased the grain size, leading to the reduction of the occurrence of the grain boundaries and of the global residual porosity. The significant improvement in the homogeneity of cations distribution in the samples was also highlighted. Finally, the chemical durability of thorium-uranium (IV) dioxide solid solutions was evaluated through the development of leaching tests in nitric acid. The optimized homogeneity especially in terms of the

  8. WWER-1000 nuclear fuel manufacturing process at PJSC MSZ

    International Nuclear Information System (INIS)

    Morylev, A.; Bagdatyeva, E.; Aksenov, P.

    2015-01-01

    In this report a brief description of WWER-1000 fuel manufacturing process steps at PJSC MSZ as: uranium dioxide powder fabrication; fuel pellet manufacture fuel rod manufacture working assembly and fuel assembly manufacture is given. The implemented innovations are also presented

  9. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...... provide additional options for improvement of process economics are however likewise investigated. Of particular interest is the change of the combustion process induced by the exchange of carbon dioxide and water vapor for nitrogen as diluent. This paper reviews the published knowledge on the oxy......-fuel process and focuses particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics. Knowledge is currently available regarding both an entire oxy-fuel power plant and the combustion fundamentals. However, several...

  10. The role of renewable bioenergy in carbon dioxide sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M. [Hawaii Natural Energy Inst., Honolulu, HI (United States)

    1993-12-31

    The use of renewable resources represents a sound approach to producing clean energy and reducing the dependence on diminishing reserves of fossil fuels. Unfortunately, the widespread interest in renewable energy in the 1970s, spurred by escalating fossil fuel prices, subsided with the collapse of energy prices in the mid 1980s. Today, it is largely to reverse alarming environmental trends, particularly the buildup of atmospheric carbon dioxide, rather than to reduce the cost of energy, that renewable energy resources are being pursued. This discussion focuses on a specific class of renewable energy resources - biomass. Unlike most other classes of renewable energy touted for controlling atmospheric carbon dioxide concentrations, e.g., hydro, direct solar, wind, geothermal, and ocean thermal, which produce usable forms of energy while generating little or no carbon dioxide emissions, bioenergy almost always involves combustion and therefore generates carbon dioxide; however, if used on a sustained basis, bio-energy would not contribute to the build-up of atmospheric carbon dioxide because the amount released in combustion would be balanced by that taken up via photosynthesis. It is in that context, i.e., sustained production of biomass as a modern energy carrier, rather than reforestation for carbon sequestration, that biomass is being discussed here, since biomass can play a much greater role in controlling global warming by displacing fossil fuels than by being used strictly for carbon sequestration (partly because energy crop production can reduce fossil carbon dioxide emissions indefinitely, whereas under the reforestation strategy, carbon dioxide abatement ceases at forest maturity).

  11. Regional carbon dioxide implications of forest bioenergy production

    NARCIS (Netherlands)

    Hudiburg, Tara W.; Law, Beverly E.; Wirth, Christian; Luyssaert, Sebastiaan

    2011-01-01

    Strategies for reducing carbon dioxide emissions include substitution of fossil fuel with bioenergy from forests, where carbon emitted is expected to be recaptured in the growth of new biomass to achieve zero net emissions, and forest thinning to reduce wildfire emissions. Here, we use forest

  12. Deposition of carbon dioxide

    International Nuclear Information System (INIS)

    2001-01-01

    In Norway, there is currently a debate about whether or not to build gas power stations. To meet the possibility of reduced emission quotas for carbon dioxide in the future, current interest focuses on the incorporation of large-scale separation and deposition of carbon dioxide when such plants are planned. A group of experts concludes that this technology will become self-financing by means of environmental taxes. From the environmental point of view, taxes upon production are to be preferred over taxes on consumption

  13. Does Carbon Dioxide Predict Temperature?

    OpenAIRE

    Mytty, Tuukka

    2013-01-01

    Does carbon dioxide predict temperature? No it does not, in the time period of 1880-2004 with the carbon dioxide and temperature data used in this thesis. According to the Inter Governmental Panel on Climate Change(IPCC) carbon dioxide is the most important factor in raising the global temperature. Therefore, it is reasonable to assume that carbon dioxide truly predicts temperature. Because this paper uses observational data it has to be kept in mind that no causality interpretation can be ma...

  14. Carbon fuel cells with carbon corrosion suppression

    Science.gov (United States)

    Cooper, John F [Oakland, CA

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  15. 1. round table - Spent fuels composition. Back-end of the fuel cycle and reprocessing, plutonium and other nuclear materials management. 2. round table - Separation-transmutation. 3. round table - Scenarios for a long term inventory of nuclear materials and wastes; 1. table ronde - La composition des combustibles uses. L'aval du combustible et le retraitement, la gestion du plutonium et des autres matieres nucleaires. 2. table ronde - Separation-transmutation. 3. table ronde - Scenarii pour un inventaire des matieres et des dechets nucleaires a LT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the synthesis of the round table debates which took place at Paris on the reprocessing of spent fuels. Three aspects are discussed: the risks linked with the recovery of valorizable materials, the economical viability of the separation/transmutation option, and the future of the nuclear option in the French energy policy. Six presentations (transparencies) are attached with these proceedings which treat of: the reprocessing/recycling to the test, perspectives of future wastes, present day wastes/valorizable materials and future scenarios, critical analysis scenarios, why reprocessing spent fuels?, processing of spent fuels and recycling, separation and transmutation of long-lived radioactive wastes, thorium-uranium cycle. (J.S.)

  16. Carbon Dioxide Sensor Technology.

    Science.gov (United States)

    1983-04-01

    second gas permeable membrane separates a compartment containing the non-aqueous " solvent dimethylsulfoxide , ( DMSO ), from the aqueous solution...compartment. In DMSO carbon dioxide can be irreversibly reduced electrochemically to * non-interfering products...current due to its reduction in the DMSO solution is proportional to the partial pressure of CO2 in the gas phase. Overall, the linear response and

  17. Carbon dioxide sensor

    Science.gov (United States)

    Dutta, Prabir K [Worthington, OH; Lee, Inhee [Columbus, OH; Akbar, Sheikh A [Hilliard, OH

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  18. Nuclear power and carbon dioxide free automobiles

    International Nuclear Information System (INIS)

    Pendergast, D.R.

    1999-01-01

    Nuclear energy has been developed as a major source of electric power in Canada. Electricity from nuclear energy already avoids the emission of about 100 million tonnes of carbon dioxide to the atmosphere in Canada. This is a significant fraction of the 619 million tonnes of Canadian greenhouse gas emissions in 1995. However, the current scope of application of electricity to end use energy needs in Canada limits the contribution nuclear energy can make to carbon dioxide emission reduction. Nuclear energy can also contribute to carbon dioxide emissions reduction through expansion of the use of electricity to less traditional applications. Transportation, in particular contributed 165 million tonnes of carbon dioxide to the Canadian atmosphere in 1995. Canada's fleet of personal vehicles consisted of 16.9 million cars and light trucks. These vehicles were driven on average 21,000 km/year and generated 91 million tonnes of greenhouse gases expressed as a C02 equivalent. Technology to improve the efficiency of cars is under development which is expected to increase the energy efficiency from the 1995 level of about 10 litres/100 km of gasoline to under 3 litres/100km expressed as an equivalent referenced to the energy content of gasoline. The development of this technology, which may ultimately lead to the practical implementation of hydrogen as a portable source of energy for transportation is reviewed. Fuel supply life cycle greenhouse gas releases for several personal vehicle energy supply systems are then estimated. Very substantial reductions of greenhouse gas emissions are possible due to efficiency improvements and changing to less carbon intensive fuels such as natural gas. C02 emissions from on board natural gas fueled versions of hybrid electric cars would be decreased to approximately 25 million t/year from the current 91 million tonnes/year. The ultimate reduction identified is through the use of hydrogen fuel produced via electricity from CANDU power

  19. The carbon dioxide capture and geological storage

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the carbon dioxide capture and geological storage. One possible means of climate change mitigation consists of storing the CO 2 generated by the greenhouse gases emission in order to stabilize atmospheric concentrations. This sheet presents the CO 2 capture from lage fossil-fueled combustion installations, the three capture techniques and the CO 2 transport options, the geological storage of the CO 2 and Total commitments in the domain. (A.L.B.)

  20. Forest fuel and carbon balances

    International Nuclear Information System (INIS)

    Lundborg, A.

    1994-10-01

    Forest fuel, i.e., branches and tops that remain after felling, are not considered to give a net surplus of carbon dioxide to the atmosphere. In order to, if possible, verify this theory a survey was made of the literature concerning different carbon flows related to forest fuel. Branches and needles that are not utilised as fuel nonetheless eventually become decomposed to carbon dioxide. Branches and stem wood are broken down in occasional cases to 60-80% already within 5-6 years but the decomposition rate varies strongly. A small amount of existing data suggest that branches and stems are broken down almost completely within 60-70 years, and earlier in some cases. Lignin is the component in needles and wood that is the most resistant to decomposition. Decomposition is favoured by optimal temperature and moisture, ground contact and ground animals. Material that is mulched during soil preparation is decomposed considerably faster than material that lies on the soil surface. Felling residues that are left on the soil are a large momentary addition to the soil's reserves of organic material but after a number of years the difference in soil organic material is small between places where fuel has been removed and places where felling residues have been left. High nitrogen deposition, fire control and effective forestry are factors that contribute to the increases in the reserves of soil organic material. It appears to be a good approximation to consider the forest fuel as being a neutral fuel as regards carbon dioxide in a longer perspective. In comparison with other biofuels and fossil fuels, forest fuel appears, together with Salix, to be the fuel that results in very little extra discharge of carbon dioxide or other greenhouse gases during its production, transport and processing. 70 refs, 5 figs, tabs

  1. Carbon dioxide dangers demonstration model

    Science.gov (United States)

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  2. Pyrochemical reduction of uranium dioxide and plutonium dioxide by lithium metal

    International Nuclear Information System (INIS)

    Usami, T.; Kurata, M.; Inoue, T.; Sims, H.E.; Beetham, S.A.; Jenkins, J.A.

    2002-01-01

    The lithium reduction process has been developed to apply a pyrochemical recycle process for oxide fuels. This process uses lithium metal as a reductant to convert oxides of actinide elements to metal. Lithium oxide generated in the reduction would be dissolved in a molten lithium chloride bath to enhance reduction. In this work, the solubility of Li 2 O in LiCl was measured to be 8.8 wt% at 650 deg. C. Uranium dioxide was reduced by Li with no intermediate products and formed porous metal. Plutonium dioxide including 3% of americium dioxide was also reduced and formed molten metal. Reduction of PuO 2 to metal also occurred even when the concentration of lithium oxide was just under saturation. This result indicates that the reduction proceeds more easily than the prediction based on the Gibbs free energy of formation. Americium dioxide was also reduced at 1.8 wt% lithium oxide, but was hardly reduced at 8.8 wt%

  3. Health Endpoint Attributed to Sulfur Dioxide Air Pollutants

    Directory of Open Access Journals (Sweden)

    Geravandi

    2015-07-01

    Full Text Available Background Sulfur dioxide is a colorless gas, released from burning of coal, high-sulfur coal,s and diesel fuel. Sulfur dioxide harms human health by reacting with the moisture in the nose, nasal cavity and throat and this is the way by which it destroys the nerves in the respiratory system. Objectives The aim of this study was to focus on identifying the effects associated with sulfur dioxide on health in Ahvaz, Iran. Materials and Methods Data collections were performed by Ahvaz meteorological organization and the department of environment. Sampling was performed for 24 hours in four stations. Methods of sampling and analysis were according to US environmental protection agency (EPA guideline. Afterwards, we processed the raw data including instruction set correction of averaging, coding and filtering by Excel software and then, the impact of meteorological parameters were converted as the input file to the AirQ model. Finally, we calculated the health effects of exposure to sulfur dioxide. Results According to the findings, the concentration of sulfur dioxide in Ahvaz had an annual average of 51 μg/m3. Sum of the numbers of hospital admissions for respiratory diseases attributed to sulfur dioxide was 25 cases in 2012. Approximately, 5% of the total hospital admissions for respiratory disease and respiratory mortality happened when sulfur dioxide concentration was more than 10 mg/m3. Conclusions According to the results of this study, this increase could be due to higher fuel consumption, usage of gasoline in vehicles, oil industry, and steel and heavy industries in Ahwaz. The risk of mortality and morbidity were detected at the current concentrations of air pollutants.

  4. Measures for carbon dioxide problem and utilization of energy

    International Nuclear Information System (INIS)

    Kojima, Toshinori

    1992-01-01

    As global environment problems, there are water, expansion of deserts, weather, tropical forests, wild animals, ocean pollution, nuclear waste contamination, acid rain, ozone layer and so on, and population, foods, energy, and resources are the problems surrounding them. It is clear that these origins are attributed to the development and consumption largely dependent on the intention of developed countries and the population problem of developing countries. In this report, the discharge of carbon dioxide that causes greenhouse effect and its relation with energy are discussed. The increase of carbon dioxide concentration, its release from fossil fuel, the destruction of forests, the balance of carbon on the earth, the development of new energy such as solar energy, the transport of new energy, secondary energy system and the role of carbon dioxide, the transfer to low carbon fuel and the carbon reduction treatment of fuel, the utilization of unused energy and energy price, the efficiency of energy utilization, the heightening of efficiency of energy conversion, energy conservation and the breakaway from energy wasteful use culture, and the recovery, preservation and use of discharged carbon dioxide are described. (K.I.)

  5. Carbon isotope ratios of atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Sakai, Hitoshi; Kishima, Noriaki; Tsutaki, Yasuhiro.

    1982-01-01

    The delta 13 C values relative to PDB were measured for carbon dioxide in air samples collected at various parts of Japan and at Mauna Loa Observatory, Hawaii in the periods of 1977 and 1978. The delta 13 C values of the ''clean air'' are -7.6 % at Hawaii and -8.1 per mille Oki and Hachijo-jima islands. These values are definitely lighter than the carbon isotope ratios (-6.9 per mille) obtained by Keeling for clean airs collected at Southern California in 1955 to 1956. The increase in 12 C in atmospheric carbon dioxide is attributed to the input of the anthropogenic light carbon dioxides (combustion of fossil fuels etc.) Taking -7.6 per mille to be the isotope ratio of CO 2 in the present clean air, a simple three box model predicts that the biosphere has decreased rather than increased since 1955, implying that it is acting as the doner of carbon rather than the sink. (author)

  6. Kinetic study of coals gasification into carbon dioxide atmosphere

    Directory of Open Access Journals (Sweden)

    Korotkikh A.G.

    2015-01-01

    Full Text Available The solid fuel gasification process was investigated to define chemical reactions rate and activation energy for a gas-generator designing and regime optimizing. An experimental procedure includes coal char samples of Kuznetskiy and Kansko-Achinskiy deposits consequent argon pyrolysis into argon and oxidating into carbon dioxide with different temperatures. The thermogravimetric analysis data of coal char gasification into carbon dioxide was obtained in the temperature range 900–1200 ºC. The mass loss and gasification time dependencies from temperature were defined to calculate chemical reaction frequency factor and activation energy. Two coal char gasification physico-mathematical models were proposed and recommendations for them were formed.

  7. Method for preparing a sinterable uranium dioxide powder

    International Nuclear Information System (INIS)

    Thornton, T.A.; Holaday, V.D. Jr.

    1985-01-01

    This invention provides an improved method for preparing a sinterable uranium dioxide powder for the preparation of nuclear fuel, using microwave radiation in a microwave induction furnace. The starting compound may be uranyl nitrate hexahydrate, ammonium diuranate or ammonium uranyl carbonate. The starting compound is heated in a microwave induction furnace for a period of time sufficient for compound decomposition. The decomposed compound is heated in a microwave induction furnace in a reducing atmosphere for a period of time sufficient to reduce the decomposed compound to uranium dioxide powder

  8. Novel process designs to improve the efficiency of postcombustion carbon dioxide capture

    NARCIS (Netherlands)

    Sanchez Fernandez, E.

    2013-01-01

    The term carbon dioxide capture and storage (CCS) refers to a range of technologies that can reduce CO2 emissions from fossil fuels enabling the continued use of this fuel type without compromising the security of electricity supply. The technologies applicable to CCS differ in many key aspects; the

  9. Electronic structure of the actinides and their dioxides. Application to the defect formation energy and krypton solubility in uranium dioxide

    International Nuclear Information System (INIS)

    Petit, T.; CEA Centre d'Etudes de Grenoble, 38

    1996-01-01

    Uranium dioxide is the standard nuclear fuel used in French h power plants. During irradiation, fission products such as krypton and xenon are created inside fuel pellets. So, gas release could become, at very high burnup, a limiting factor in the reactor exploitation. To study this subject, we have realised calculations using the Density Functional Theory (DFT) into the Local Density Approximation (LDA) and the Atomic Sphere Approximation (ASA). First, we have validated our approach by calculating cohesive properties of thorium, protactinium and uranium metals. The good agreement between our results and experimental values implies that 5f electrons are itinerant. Calculated lattice parameter, cohesive energy and bulk modulus for uranium and thorium dioxides are in very good agreement with experiment. We show that binding between uranium and oxygen atoms is not completely ionic but partially covalent. The question of the electrical conductivity still remains an open problem. We have been able to calculate punctual defect formation energies in uranium dioxide. Accordingly to experimental observations, we find that it is easier to create a defect in the oxygen sublattice than in the uranium sublattice. Finally, we have been able to predict a probable site of krypton atoms in nuclear fuel: the Schottky trio. Experiences of Extended X-ray Absorption Fine structure Spectroscopy (EXAFS) and X-ray Photoelectron Spectroscopy (XPS) on uranium dioxide doped by ionic implantation will help us in the comprehension of the studied phenomena and the interpretation of our calculations. (author)

  10. Study of the changes of uranium dioxide properties resulting from sintering; Izucavanje procesa sinterovanja urandioksida sa gledista promene karakteristicnih osobina

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, M M [Institute of Nuclear Sciences Vinca, Laboratorija za reaktorske materijale, Beograd (Serbia and Montenegro)

    1962-12-15

    Uranium dioxide powder used for studying the sintering process having grain size 63 {mu}. Sintering was performed in the temperature interval from 1000 - 1300 deg C in argon atmosphere. The O/U ratio of the used uranium dioxide was 2.07. Densities obtained by sintering under the mentioned conditions were not higher than 91% TG (theoretical density). This showed that the mentioned conditions were optimal, but the uranium dioxide obtained could be used for studying the radiation damage of fuel.

  11. Adaptation to carbon dioxide tax in shipping

    International Nuclear Information System (INIS)

    Olsen, Kristian

    2000-01-01

    This note discusses the consequences for the sea transport sector between Norway and continental Europe of levying a carbon dioxide tax on international bunker. The influence of such a tax on the operational costs of various types of ship and various transport routes is calculated. The profit obtainable from the following ways of adapting to an increased tax level is assessed: (1) Reducing the speed, (2) Rebuilding the engine to decrease fuel consumption, (3) Changing the design speed for new ships. It is found that a carbon dioxide tax of NOK 200 per tonne of CO 2 will increase the transport costs by 3 - 15 percent. In the long run much of this may be transferred to the freight rates since so much of the sea transport are in segments in which the demand for the service is not sensitive to the prices. Even if the freight rates are not changed, a tax this size will not make it necessary to reduce the speed of the existing fleet. The income lost by taking fewer trips will exceed the costs saved in reducing the speed. However, the optimum design speed for new ships may be somewhat reduced (0.5 knots). Rebuilding engines to reduce the fuel consumption would pay off were it not for the fact that the remaining life of the present fleet is probably too short for this to be interesting

  12. Unconventional fossil-based fuels : economic and environmental trade-offs

    Science.gov (United States)

    2008-01-01

    Both high import payments for petroleum motor fuels and concerns regarding emissions of carbon dioxide (CO2) are motivating interest in possible fuel substitutes. In this report, RAND researchers assess the potential future production levels, product...

  13. The cohesive energy of uranium dioxide and thorium dioxide

    International Nuclear Information System (INIS)

    Childs, B.G.

    1958-08-01

    Theoretical values have been calculated of the heats of formation of uranium dioxide and thorium dioxide on the assumption that the atomic binding forces in these solids are predominantly ionic in character. The good agreement found between the theoretical and observed values shows that the ionic model may, with care, be used in calculating the energies of defects in the uranium and thorium dioxide crystal structures. (author)

  14. 78 FR 23524 - Approval and Promulgation of Implementation Plans; North Carolina: Deferral of Carbon Dioxide (CO2

    Science.gov (United States)

    2013-04-19

    ... Promulgation of Implementation Plans; North Carolina: Deferral of Carbon Dioxide (CO 2 ) Emissions From... (IBR) the federal deferral of, until July 21, 2014, PSD applicability to biogenic carbon dioxide (CO 2... decomposition of biologically-based materials other than fossil fuels and mineral sources of carbon. Examples of...

  15. Standard specification for sintered gadolinium oxide-uranium dioxide pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification is for finished sintered gadolinium oxide-uranium dioxide pellets for use in light-water reactors. It applies to gadolinium oxide-uranium dioxide pellets containing uranium of any 235U concentration and any concentration of gadolinium oxide. 1.2 This specification recognizes the presence of reprocessed uranium in the fuel cycle and consequently defines isotopic limits for gadolinium oxide-uranium dioxide pellets made from commercial grade UO2. Such commercial grade UO2 is defined so that, regarding fuel design and manufacture, the product is essentially equivalent to that made from unirradiated uranium. UO2 falling outside these limits cannot necessarily be regarded as equivalent and may thus need special provisions at the fuel fabrication plant or in the fuel design. 1.3 This specification does not include (1) provisions for preventing criticality accidents or (2) requirements for health and safety. Observance of this specification does not relieve the user of the obligation to be aw...

  16. Molybdenum dioxide-molybdenite roasting

    International Nuclear Information System (INIS)

    Sabacky, B.J.; Hepworth, M.T.

    1984-01-01

    A process is disclosed for roasting molybdenite concentrates directly to molybdenum dioxide. The process comprises establishing a roasting zone having a temperature of about 700 0 C. to about 800 0 C., introducing into the roasting zone particulate molybdenum dioxide and molybdenite in a weight ratio of at least about 2:1 along with an oxygen-containing gas in amount sufficient to oxidize the sulfur content of the molybdenite to molybdenum dioxide

  17. Total surface area change of Uranium dioxide fuel in function of burn-up and its impact on fission gas release during neutron irradiation for small, intermediate and high burn-up

    International Nuclear Information System (INIS)

    Szuta, M.

    2011-01-01

    In the early published papers it was observed that the fractional fission gas release from the specimen have a tendency to increase with the total surface area of the specimen - a fairy linear relationship was indicated. Moreover it was observed that the increase of total surface area during irradiation occurs in the result of connection the closed porosity with the open porosity what in turn causes the increase of fission gas release. These observations let us surmise that the process of knock-out release is the most significant process of fission gas release since its quantity is proportional to the total surface area. Review of the experiments related to the increase of total surface area in function of burn-up is presented in the paper. For very high burn-up the process of grain sub-division (polygonization) occurs under condition that the temperature of irradiated fuel lies below the temperature of grain re-crystallization. Simultaneously with the process of polygonization, the increase in local porosity and the decrease in local density in function of burn-up occurs, which leads to the increase of total surface area. It is suggested that the same processes take place in the transformed fuel as in the original fuel, with the difference that the total surface area is so big that the whole fuel can be treated as that affected by the knock-out process. This leads to explanation of the experimental data that for very high burn-up (>120 MWd/kgU) the concentration of xenon is constant. An explanation of the grain subdivision process in function of burn-up in the 'athermal' rim region in terms of total surface area, initial grain size and knock-out release is undertaken. Correlation of the threshold burn-up, the local fission gas concentration, local total surface area, initial and local grain size and burn-up in the rim region is expected. (author)

  18. Increase of thermal conductivity of uranium dioxide nuclear fuel pellets with beryllium oxide addition; Condutividade termica de pastilhas de combustivel nuclear de UO{sub 2}-BeO nas temperaturas de 25 deg C e 100 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Camarano, D.M.; Mansur, F.A.; Santos, A.M.M. dos; Ferraz, W.B., E-mail: dmc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTM/CNEN-MG), Belo Horizonte, MG (Brazil)

    2016-07-01

    The UO{sub 2} fuel is one of the most used nuclear fuel in thermal reactors and has many advantages such as high melting point, chemical compatibility with cladding, etc. However, its thermal conductivity is relatively low, which leads to a premature degradation of the fuel pellets due to a high radial temperature gradient during reactor operation. An alternative to avoid this problem is to increase the thermal conductivity of the fuel pellets, by adding beryllium oxide (BeO). Pellets of UO{sub 2} and UO{sub 2}-BeO were obtained from a homogenized mixture of powders of UO{sub 2} and BeO, containing 2% and 3% by weight of BeO and sintering at 1750 °C for 3 h under H{sub 2} atmosphere after uniaxial pressing at 400 MPa. The pellet densities were obtained by xylol penetration-immersion method and the thermal diffusivity, specific heat and thermal conductivity were determined according to ASTM E-1461 at room temperature (25 deg C) and 100 deg C. The thermal diffusivity measurements were carried out employing the laser flash method. The thermal conductivity obtained at 25 deg C showed an increase with the addition of 2% and 3% of BeO corresponding to 19% and 28%, respectively. As for the measurements carried out at 100 deg C, there was an increase in the thermal conductivity for the same BeO contents of 20% and 31%. These values as a percentage of increased conductivity were obtained in relation to the UO{sub 2} pellets. (author)

  19. The carbon dioxide problem - a challenge to environmental protection

    International Nuclear Information System (INIS)

    Hlubek, W.; Spalthoff, F.J.

    1989-01-01

    Over the last century, man's activities on earth have sent off trace gases into the planet's atmosphere that have been concentrating to a level posing a threat to the global climate. Since scientists particularly spotted carbon dioxide as the main contributor to what we now call the greenhouse effect, there is urgent need for measures reducing carbon dioxide emission worldwide, may be on the basis of a global convention to be signed by both the industrialised and the developing countries. The industrialised countries, which certainly are the main pollutors, also will have the technological and financial resources to respond to the challenge of global warning more directly and faster than the developing countries. The power industry's management in the FRG is taking the problem seriously and has already come out with strategies for curbing carbon dioxide emissions from fossil-fuel power plant. (orig.) [de

  20. Fuel Exhaling Fuel Cell.

    Science.gov (United States)

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  1. Phenomena in thermal transport in fuels

    International Nuclear Information System (INIS)

    Chernatynskiy, A.; Tulenko, J.S.; Phillpot, S.R.; El-Azab, A.

    2015-01-01

    Thermal transport in nuclear fuels is a key performance metric that affects not only the power output, but is also an important consideration in potential accident situations. While the fundamental theory of the thermal transport in crystalline solids was extensively developed in the 1950's and 1960's, the pertinent analytic approaches contained significant simplifications of the physical processes. While these approaches enabled estimates of the thermal conductivity in bulk materials with microstructure, they were not comprehensive enough to provide the detailed guidance needed for the in-pile fuel performance. Rather, this guidance has come from data painfully accumulated over 50 years of experiments on irradiated uranium dioxide, the most widely used nuclear fuel. At this point, a fundamental theoretical understanding of the interplay between the microstructure and thermal conductivity of irradiated uranium dioxide fuel is still lacking. In this chapter, recent advances are summarised in the modelling approaches for thermal transport of uranium dioxide fuel. Being computational in nature, these modelling approaches can, at least in principle, describe in detail virtually all mechanisms affecting thermal transport at the atomistic level, while permitting the coupling of the atomistic-level simulations to the mesoscale continuum theory and thus enable the capture of the impact of microstructural evolution in fuel on thermal transport. While the subject of current studies is uranium dioxide, potential applications of the methods described in this chapter extend to the thermal performance of other fuel forms. (authors)

  2. Process for sequestering carbon dioxide and sulfur dioxide

    Science.gov (United States)

    Maroto-Valer, M Mercedes [State College, PA; Zhang, Yinzhi [State College, PA; Kuchta, Matthew E [State College, PA; Andresen, John M [State College, PA; Fauth, Dan J [Pittsburgh, PA

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  3. Nuclear fuel rods

    International Nuclear Information System (INIS)

    Wada, Toyoji.

    1979-01-01

    Purpose: To remove failures caused from combination of fuel-cladding interactions, hydrogen absorptions, stress corrosions or the likes by setting the quantity ratio of uranium or uranium and plutonium relative to oxygen to a specific range in fuel pellets and forming a specific size of a through hole at the center of the pellets. Constitution: In a fuel rods of a structure wherein fuel pellets prepared by compacting and sintering uranium dioxide, or oxide mixture consisting of oxides of plutonium and uranium are sealed with a zirconium metal can, the ratio of uranium or uranium and plutonium to oxygen is specified as 1 : 2.01 - 1 : 2.05 in the can and a passing hole of a size in the range of 15 - 30% of the outer diameter of the fuel pellet is formed at the center of the pellet. This increases the oxygen partial pressure in the fuel rod, oxidizes and forms a protection layer on the inner surface of the can to control the hydrogen absorption and stress corrosion. Locallized stress due to fuel cladding interaction (PCMI) can also be moderated. (Horiuchi, T.)

  4. Carbon dioxide and climate

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  5. Neutron radiography for quality assurance of PHWR fuel pins

    International Nuclear Information System (INIS)

    Chandrasekharan, K.N.; Patil, B.P.; Ghosh, J.K.; Ganguly, C.

    1993-01-01

    Neutron radiography was employed for quality assurance (QA) for advanced PHWR experimental fuel pins containing mixed uranium-plutonium dioxide and thorium-plutonium dioxide pellets. Direct, transfer and track-etch techniques were utilised. The thermal neutron beam facility of APSARA research reactor at Bhabha Atomic Research Centre was used. (author). 5 refs., 16 figs., 2 tabs

  6. Carbon dioxide and the greenhouse effect: an unresolved problem

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I M

    1978-01-01

    This paper evaluates current scientific literature concerned with the accumulation of carbon dioxide in the atmosphere. The extent and possible causes of natural variations in global climate are outlined as a background to potential variations due to human activity. Estimates are given on relative contributions of carbon dioxide to the atmosphere due to fossil fuel combustion, deforestation and other land modifications. The possibility of a rise in global temperature as a result of increasing the amount of carbon dioxide in the atmosphere is discussed including model predictions, natural factors which could compensate for or emphasize a warming effect, and the implications if extensive warming actually occurred. Carbon dioxide disposal is discussed but there appears to be no practicable long-term means of accomplishing this. It is concluded that there is no evidence of a rise in global temperature due to carbon dioxide at present. Predictions, which involve a high degree of uncertainty, indicate that the global temperature could rise appreciably in the next century. An increase in precipitation rate is also expected.

  7. Carbon dioxide and the 'greenhouse effect': an unresolved problem

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I

    1978-01-01

    This executive review evaluates current scientific literature concerned with the accumulation of carbon dioxide in the atmosphere. The extent and possible causes of natural variations in global climate are outlined as a background to potential variations due to human activity. Estimates are given on relative contributions of carbon dioxide to the atmosphere due to fossil fuel combustion, deforestation and other land modifications. The possibility of a rise in global temperature as a result of increasing the amount of carbon dioxide in the atmosphere is dicusssed including model predictions, natural factors which could compensate for or emphasize a warming effect, and the implications if extensive warming actually occurred. Carbon dioxide disposal is discussed, but there appears to be no practicable long-term means of accomplishing this. It is concluded that there is no evidence of a rise in global temperature due to carbon dioxide at present. Predictions, which involve a high degree of uncertainty, indicate that the global temperature could rise appreciably in the next century. An increase in precipitation rate is also expected. If these changes result in a redistribution of climatic zones, there may be problems in adapting agricultural belts in some regions. Complete melting of all the ice sheets would take several millenia. A partial melting of continental ice sheets would not necessarily occur in view of the increase in precipitation rates, but if it did, there would be a rise in sea level of a few metres. Melting of the Arctic sea ice would affect climate, but not sea level.

  8. Light-Duty Vehicle CO2 and Fuel Economy Trends

    Science.gov (United States)

    This report provides data on the fuel economy, carbon dioxide (CO2) emissions, and technology trends of new light-duty vehicles (cars, minivans, sport utility vehicles, and pickup trucks) for model years 1975 to present in the United States.

  9. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-01-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290

  10. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  11. The Australian coal industry: now, and the future under carbon dioxide emission restrictions

    International Nuclear Information System (INIS)

    Cain, D.A.

    1990-01-01

    Coal produces more carbon dioxide per unit of combustion energy than other fossil fuels. Therefore, reducing coal consumption is commonly advocated as one way to control greenhouse gas emissions and hence predicted global warming. Australia is highly dependent on coal, both as a primary energy source and as a major export commodity. Action to reduce carbon dioxide emissions by substantially decreasing coal consumption would have a very serious impact on the Australian coal industry and the Australian economy. Australia's dependence on coal and the potential conflict between the objective of further processing Australia's mineral exports and calls to limit carbon dioxide emissions is described. The effect on coal consumption of one scenario for reducing Australia's carbon dioxide emissions from electricity generation and possible effects of global carbon dioxide emission reductions on world coal trade are discussed. 24 refs., 2 tabs., 4 figs

  12. Study of non stoichiometric uranium dioxide samples (UO2)

    International Nuclear Information System (INIS)

    Moura, Sergio C.; Lima, Nelson B. de; Bustillos, Jose O.V.

    1999-01-01

    The gravimetric and voltammetric methods for determination of non-stoichiometric O/U ratio in uranium dioxide used as nuclear fuel are discussed in this work. The oxidation of uranium oxide is very complex due to many phase changes. gravimetric and voltammetric methods do not detect phase changes. The results of this work shown that, to evaluate both methods is requiring to be done Rietveld methods by x-ray diffraction data to identify the uranium oxide phase changes. (author)

  13. Matpro--version 10: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1978-02-01

    The materials properties correlations and computer subcodes (MATPRO--Version 10) developed for use with various LWR fuel rod behavior analytical programs at the Idaho National Engineering Laboratory are described. Formulations of fuel rod material properties, which are generally semiempirical in nature, are presented for uranium dioxide and mixed uranium--plutonium dioxide fuel, zircaloy cladding, and fill gas mixtures

  14. MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior

    International Nuclear Information System (INIS)

    Hagrman, D.L.; Reymann, G.A.

    1979-02-01

    This handbook describes the materials properties correlations and computer subcodes (MATPRO-Version 11) developed for use with various LWR fuel rod behavior analytical programs at the Idaho National Engineering Laboratory. Formulations of fuel rod material properties, which are generally semiempirical in nature, are presented for uranium dioxide and mixed uranium--plutonium dioxide fuel, zircaloy cladding, and fill gas mixtures

  15. MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hagrman, D.L.; Reymann, G.A. (comps.)

    1979-02-01

    This handbook describes the materials properties correlations and computer subcodes (MATPRO-Version 11) developed for use with various LWR fuel rod behavior analytical programs at the Idaho National Engineering Laboratory. Formulations of fuel rod material properties, which are generally semiempirical in nature, are presented for uranium dioxide and mixed uranium--plutonium dioxide fuel, zircaloy cladding, and fill gas mixtures.

  16. Supercritical fluid carbon dioxide extraction of actinides

    International Nuclear Information System (INIS)

    Rao, Ankita; Tomar, B.S.

    2016-01-01

    Supercritical fluid extraction (SFE) is a process akin to liquid-liquid or solvent extraction where a Supercritical fluid (SCF) is contacted with a solid/ liquid matrix for the purpose of separating the component of interest from the original matrix. Carbon dioxide is a preferred choice as supercritical fluid (SCF) owing to its moderate critical parameter (P c = 7.38 MPa and T c = 304.1K) coupled with radiation and chemical stability, non toxic nature and low cost. Despite widespread applications for extraction of organic compounds and associated advantages especially liquid waste minimization, the SFE of metal ions was left unexplored for quite some time, as direct metal ion extraction is inefficient due charge neutralization requirement and weak solute-solvent interaction. Neutral SCF soluble metal-ligand complexation is imperative and SFE of actinides was reported only in 1994. Several studies have been carried out on SFE of uranium, thorium and plutonium from nitric acid medium employing different sets of ligands (organophosphorus, diketones, amides). Especially attractive is the possibility of direct dissolution and extraction of actinides employing ligand-acid adducts (like TBP.HNO 3 adduct) from solid matrices of different stages of nuclear fuel cycle viz. ores, spent nuclear fuels and radioactive wastes. Also, partitioning of actinides from fission products has been explored in spent nuclear fuel. These studies on supercritical fluid extraction of actinides indicate a more efficient and environmentally sustainable technology. (author)

  17. The effects of changes in the UK energy demand and environmental legislation on atmospheric pollution by carbon dioxide

    International Nuclear Information System (INIS)

    Blakemore, F.B.; Davies, C.; Isaac, J.G.

    1998-01-01

    It has been demonstrated that the combustion of fossil fuel accounts for 97% of the carbon dioxide generated in the UK. The demand for primary energy over the 1970-1994 period has only marginally increased, however the demand for natural gas, which has a significantly lower carbon content per unit of energy than other fuels, accounts largely for the lowering of carbon dioxide emissions. The enactment UK/EU Environmental Legislation coupled with World Agreements accounts for a significant lowering of carbon dioxide emissions over this period. Future predictions suggest that a further downturn in carbon dioxide emissions will take place over the 1990-2000 period, followed by a pronounced increase over the 2000-2020 period. The expansion of the use of CCGT and/or the introduction of the IGCC and the SUPC in the power generating sector provides an opportunity for a further reduction in carbon dioxide emissions. (author)

  18. Electrochemical device for syngas and liquid fuels production

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Robert J.; Becker, William L.; Penev, Michael

    2017-04-25

    The invention relates to methods for creating high value liquid fuels such as gasoline, diesel, jet and alcohols using carbon dioxide and water as the starting raw materials and a system for using the same. These methods combine a novel solid oxide electrolytic cell (SOEC) for the efficient and clean conversion of carbon dioxide and water to hydrogen and carbon monoxide, uniquely integrated with a gas-to-liquid fuels producing method.

  19. Uranium dioxide pellets

    International Nuclear Information System (INIS)

    Zawidzki, T.W.

    1982-01-01

    A process for the preparation of a sintered, high density, large crystal grain size uranium dioxide pellet is described which involves: (i) reacting a uranyl nitrate of formula UO 2 (NO 3 ) 2 .6H 2 O with a sulphur source, at a temperature of from about 300 deg. C to provide a sulphur-containing uranium trioxide; (ii) reacting the thus-obtained modified uranium trioxide with ammonium nitrate to form an insoluble sulphur-containing ammonium uranate; (iii) neutralizing the thus-formed slurry with ammonium hydroxide to precipitate out as an insoluble ammonium uranate the remaining dissolved uranium; (iv) recovering the thus-formed precipitates in a dry state; (v) reducing the dry precipitate to UO 2 , and forming it into 'green' pellets; and (vi) sintering the pellets in a hydrogen atmosphere at an elevated temperature

  20. Forecasting carbon dioxide emissions.

    Science.gov (United States)

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Uranium dioxide calcining apparatus

    International Nuclear Information System (INIS)

    Cole, E.A.; Peterson, R.S.

    1978-01-01

    This invention relates to an improved continuous calcining apparatus for consistently and controllably producing from calcinable reactive solid compounds of uranium, such as ammonium diuranate, uranium dioxide (UO 2 ) having an oxygen to uranium ratio of less than 2.2. The apparatus comprises means at the outlet end of a calciner kiln for receiving hot UO 2 , means for cooling the UO 2 to a temperature of below 100 deg C and conveying the cooled UO 2 to storage or to subsequent UO 2 processing apparatus where it finally comes into contact with air, the means for receiving cooling and conveying being sealed to the outlet end of the calciner and being maintained full of UO 2 and so operable as to exclude atmospheric oxygen from coming into contact with any UO 2 which is at elevated temperatures where it would readily oxidize, without the use of extra hydrogen gas in said means. (author)

  2. Mixed U/Pu oxide fuel fabrication facility co-processed feed, pelletized fuel

    International Nuclear Information System (INIS)

    1978-09-01

    Two conceptual MOX fuel fabrication facilities are discussed in this study. The first facility in the main body of the report is for the fabrication of LWR uranium dioxide - plutonium dioxide (MOX) fuel using co-processed feed. The second facility in the addendum is for the fabrication of co-processed MOX fuel spiked with 60 Co. Both facilities produce pellet fuel. The spiked facility uses the same basic fabrication process as the conventional MOX plant but the fuel feed incorporates a high energy gamma emitter as a safeguard measure against diversion; additional shielding is added to protect personnel from radiation exposure, all operations are automated and remote, and normal maintenance is performed remotely. The report describes the fuel fabrication process and plant layout including scrap and waste processing; and maintenance, ventilation and safety measures

  3. The nuclear fuel cycle: (2) fuel element manufacture

    International Nuclear Information System (INIS)

    Doran, J.

    1976-01-01

    Large-scale production of nuclear fuel in the United Kingdom is carried out at Springfields Works of British Nuclear Fuels Ltd., a company formed from the United Kingdom Atomic Energy Authority in 1971. The paper describes in some detail the Springfields Works processes for the conversion of uranium ore concentrate to uranium tetrafluoride, then conversion of the tetrafluoride to either uranium metal for cladding in Magnox to form fuel for the British Mk I gas-cooled reactors, or to uranium hexafluoride for enrichment of the fissile 235 U isotope content at the Capenhurst Works of BNFL. Details are given of the reconversion at Springfields Works of this enriched uranium hexafluoride to uranium dioxide, which is pelleted and then clad in either stainless steel or zircaloy containers to form the fuel assemblies for the British Mk II AGR or advanced gas-cooled reactors or for the water reactor fuels. (author)

  4. Carbon dioxide issue: A perspective for the energy research laboratories. Report No. ERL 90-46(TR)

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C J; Read, P J

    1990-01-01

    This document presents a major revision of CANMET's Energy Research Laboratories' (ERL) view on atmospheric emissions of carbon dioxide from its original policy in early 1989. The report covers ERL's mandate to deal with pollutants caused by the production, upgrading and utilization of fuels, concentrating on carbon dioxide emissions, and identifies new and improved fuel utilization and energy conversion technologies. It indicates strategies for implementing these technologies to decrease atmospheric pollution, toxic wastes and carbon dioxide emissions in an economically acceptable way; explains what ERL has already achieved; and presents proposals to expand ERL's work to lead Canada in the development of environmentally sound fuel technologies. Strategies not considered include improvement in motor vehicle efficiency and the enhancement of natural biological carbon dioxide absorbers by preserving forests and coral reefs and other crustaceans in oceans.

  5. Design of a Uranium Dioxide Spheroidization System

    Science.gov (United States)

    Cavender, Daniel P.; Mireles, Omar R.; Frendi, Abdelkader

    2013-01-01

    The plasma spheroidization system (PSS) is the first process in the development of tungsten-uranium dioxide (W-UO2) fuel cermets. The PSS process improves particle spherocity and surface morphology for coating by chemical vapor deposition (CVD) process. Angular fully dense particles melt in an argon-hydrogen plasma jet at between 32-36 kW, and become spherical due to surface tension. Surrogate CeO2 powder was used in place of UO2 for system and process parameter development. Particles range in size from 100 - 50 microns in diameter. Student s t-test and hypothesis testing of two proportions statistical methods were applied to characterize and compare the spherocity of pre and post process powders. Particle spherocity was determined by irregularity parameter. Processed powders show great than 800% increase in the number of spherical particles over the stock powder with the mean spherocity only mildly improved. It is recommended that powders be processed two-three times in order to reach the desired spherocity, and that process parameters be optimized for a more narrow particles size range. Keywords: spherocity, spheroidization, plasma, uranium-dioxide, cermet, nuclear, propulsion

  6. Influence of carbon dioxide content in the biogas to nitrogen oxides emissions

    Directory of Open Access Journals (Sweden)

    Živković Marija A.

    2010-01-01

    Full Text Available Fuels derived from biomass are an alternative solution for the fossil fuel shortage. Usually this kind of fuels is called low calorific value fuels, due to the large proportion of inert components in their composition. The most common is carbon dioxide, and its proportion in biogas can be different, from 10 up to 40%, or even more. The presence of inert component in the composition of biogas causes the problems that are related with flame blow off limits. One of the possibilities for efficient combustion of biogas is the combustion in swirling flow including a pilot burner, aimed to expand the borders of stable combustion. This paper presents an analysis of the influence of the carbon dioxide content to the nitrogen oxides emissions. Laboratory biogas was used with different content of CO2 (10, 20, 30 and 40%. Investigation was carried out for different nominal powers, coefficients of excess air and carbon dioxide content. With increasing content of carbon dioxide, emission of nitrogen oxides was reduced, and this trend was the same throughout the whole range of excess air, carried out through measurements. Still, the influence of carbon dioxide content is significantly less than the influence of excess air. The coefficient of excess air greatly affects the production of radicals which are essential for the formation of nitrogen oxides, O, OH and CH. Also, the results show that the nominal power has no impact on the emission of nitrogen oxides.

  7. Carbon dioxide neutral, integrated biofuel facility

    Energy Technology Data Exchange (ETDEWEB)

    Powell, E.E.; Hill, G.A. [Department of Chemical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9 (Canada)

    2010-12-15

    Algae are efficient biocatalysts for both capture and conversion of carbon dioxide in the environment. In earlier work, we have optimized the ability of Chlorella vulgaris to rapidly capture CO{sub 2} from man-made emission sources by varying environmental growth conditions and bioreactor design. Here we demonstrate that a coupled biodiesel-bioethanol facility, using yeast to produce ethanol and photosynthetic algae to produce biodiesel, can result in an integrated, economical, large-scale process for biofuel production. Each bioreactor acts as an electrode for a coupled complete microbial fuel cell system; the integrated cultures produce electricity that is consumed as an energy source within the process. Finally, both the produced yeast and spent algae biomass can be used as added value byproducts in the feed or food industries. Using cost and revenue estimations, an IRR of up to 25% is calculated using a 5 year project lifespan. (author)

  8. Carbon dioxide removal with inorganic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Fain, D.E. [Oak Ridge National Laboratory, TN (United States)

    1993-12-31

    The increasing concentrations of greenhouse gases, particularly carbon dioxide, in the atmosphere has sparked a great deal of interest in the removal of CO{sub 2} from flue gases of fossil fueled plants. Presently, several techniques for the removal of CO{sub 2} are considered to have potential, but are lacking in practicality. For example, amine scrubbing of flue gas streams is potential, but are lacking in practically. For example, amine scrubbing of flue gas streams is effective in removing CO{sub 2}, but costs are high; efficiency suffers; and other acid gases must be removed prior to amine stripping. Membrane systems for CO{sub 2} removal are held in high regard, and inorganic, particularly ceramic, membranes offer the potential for high temperature, thus energy saving, removal.

  9. Conversion of highly enriched uranium in thorium-232 based oxide fuel for light water reactors: MOX-T fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vapirev, E; Jordanov, T; Khristoskov, I [Sofia Univ. (Bulgaria). Fizicheski Fakultet

    1996-12-31

    The possibility of using highly enriched uranium available from military inventories for production of mixed oxide fuel (MOX) has been proposed. The fuel is based on U-235 dioxide as fissile isotope and Th-232 dioxide as a non-fissile isotope. It is shown that although the fuel conversion coefficient to U-233 is expected to be less than 1, the proposed fuel has several important advantages resulting in cost reduction of the nuclear fuel cycle. The expected properties of MOX fuel (cross-sections, generated chains, delayed neutrons) are estimated. Due to fuel generation the initial enrichment is expected to be 1% less for production of the same energy. In contrast to traditional fuel no long living actinides are generated which reduces the disposal and reprocessing cost. 7 refs.

  10. Nuclear fuel element

    International Nuclear Information System (INIS)

    Iwano, Yoshihiko.

    1993-01-01

    Microfine cracks having a depth of less than 10% of a pipe thickness are disposed radially from a central axis each at an interval of less than 100 micron over the entire inner circumferential surface of a zirconium alloy fuel cladding tube. For manufacturing such a nuclear fuel element, the inside of the cladding tube is at first filled with an electrolyte solution of potassium chloride. Then, electrolysis is conducted using the cladding tube as an anode and the electrolyte solution as a cathode, and the inner surface of the cladding tube with a zirconium dioxide layer having a predetermined thickness. Subsequently, the cladding tube is laid on a smooth steel plate and lightly compressed by other smooth steel plate to form microfine cracks in the zirconium dioxide layer on the inner surface of the cladding tube. Such a compressing operation is continuously applied to the cladding tube while rotating the cladding tube. This can inhibit progress of cracks on the inner surface of the cladding tube, thereby enabling to prevent failure of the cladding tube even if a pellet/cladding tube mechanical interaction is applied. Accordingly, reliability of the nuclear fuel elements is improved. (I.N.)

  11. Fuel saving, carbon dioxide emission avoidance, and syngas production by tri-reforming of flue gases from coal- and gas-fired power stations, and by the carbothermic reduction of iron oxide

    International Nuclear Information System (INIS)

    Halmann, M.; Steinfeld, A.

    2006-01-01

    Flue gases from coal, gas, or oil-fired power stations, as well as from several heavy industries, such as the production of iron, lime and cement, are major anthropogenic sources of global CO 2 emissions. The newly proposed process for syngas production based on the tri-reforming of such flue gases with natural gas could be an important route for CO 2 emission avoidance. In addition, by combining the carbothermic reduction of iron oxide with the partial oxidation of the carbon source, an overall thermoneutral process can be designed for the co-production of iron and syngas rich in CO. Water-gas shift (WGS) of CO to H 2 enables the production of useful syngas. The reaction process heat, or the conditions for thermoneutrality, are derived by thermochemical equilibrium calculations. The thermodynamic constraints are determined for the production of syngas suitable for methanol, hydrogen, or ammonia synthesis. The environmental and economic consequences are assessed for large-scale commercial production of these chemical commodities. Preliminary evaluations with natural gas, coke, or coal as carbon source indicate that such combined processes should be economically competitive, as well as promising significant fuel saving and CO 2 emission avoidance. The production of ammonia in the above processes seems particularly attractive, as it consumes the nitrogen in the flue gases

  12. Biofixation of Carbon dioxide by Chlamydomonas sp. in a Tubular Photobioreactor

    Directory of Open Access Journals (Sweden)

    H Hadiyanto

    2012-02-01

    Full Text Available The biogas production from anaerobic digestion is a potential fuel for power generators application, if biogas can be upgraded to the same standards as fossil natural gas by CO2, H2S, and other non-combustible component removal. Microalgae Chlamydomonas sp. has potency to biofix the carbon dioxide and can be used as an additional food ingredient. The variations of flow rate and carbon dioxide concentration in the process resulting different value of biomass production and carbon dioxide biofixation. Biomass production at 40% carbon dioxide concentration obtained 5.685 gr/dm3 at 10% carbon dioxide concentration obtained 4.892 gr/dm3. The greatest value of carbon dioxide absorption occurs at a 40% concentration amounting to 12.09%. The rate of growth and productivity of microalgae tend to rise in 10% and 20% (%v carbon dioxide concentration, but began started a constant at 30% and 40% (%v carbon dioxide concentration. Biomass production tends to increase in light conditions while a constant in dark conditions. This study used Chlamydomonas sp. as media culture and performed on bubble column and tubular reactor with 6 litres of culture medium at a temperature of 28oC and atmospheric pressure.

  13. Fuel assemblies

    International Nuclear Information System (INIS)

    Mukai, Hideyuki

    1987-01-01

    Purpose: To prevent bending of fuel rods caused by the difference of irradiation growth between coupling fuel rods and standards fuel rods thereby maintain the fuel rod integrity. Constitution: The f value for a fuel can (the ratio of pole of zirconium crystals in the entire crystals along the axial direction of the fuel can) of a coupling fuel rod secured by upper and lower tie plates is made smaller than the f value for the fuel can of a standard fuel rod not secured by the upper and the lower tie plates. This can make the irradiation growth of the fuel can of the coupling fuel rod greater than the irradiation growth of the fuel can of the standard fuel rod and, accordingly, since the elongation of the standard fuel rod can always by made greater, bending of the standard fuel rod can be prevented. (Yoshihara, M.)

  14. BIOWASTE AND HYDROGEN SULFIDE - PERSPECTIVE RENEWABLE FUELS

    OpenAIRE

    BESCHKOV V.; YANKOV D.; ANGELOV I.; RAZKAZOVA-VELKOVA E.; MARTINOV M.

    2017-01-01

    The enormous economical growth on a global scale in the last century has lead to extensive use of fossil fuels, such as coal, oil and natural gas. The result was strong emissions of carbon dioxide and greenhouse effect with consequent climate changes. The extensive use of fossil fuels that developed and stored in Earth interior for millions of years has made it no possibleto revive vegetation and process the emitted carbon dioxide with the help of photosynthesis. One of the ways to cope with ...

  15. Reducing carbon dioxide to products

    Science.gov (United States)

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  16. Development of automation and remotisation systems for fabrication of (Th-233U)O2 MOX fuel for AHWR

    International Nuclear Information System (INIS)

    Saraswat, Anupam; Danny, K.M.; Chakraborty, S.; Somayajulu, P.S.; Kumar, Arun; Mittal, R.; Prasad, R.S.; Mahule, K.N.; Panda, S.; Jayarajan, K.

    2011-01-01

    To meet the ever increasing power requirement of India, country is planning to utilize its large thorium reserves for the third stage of nuclear power program based on Thorium-Uranium 233 fuel in A.H.W.R. Although there are many advantages of (Th- 233 U)O 2 fuel cycle, presence of radiological hazards due to the presence of 1000-2000 ppm level of 232 U in the 233 U fuel and inertness of ThO 2 makes handling and fabrication of fuel difficult. The associated high alpha and gamma activity demands high level of automation and remote handling in alpha tight hot cells. To demonstrate automation and remotisation in (Th- 233 U)O 2 fuel fabrication, a mock up facility is being set up at BARC. This facility shall develop automation systems required for remote fuel fabrication in a simulated hot cell environment. There are many innovative schemes and systems being developed like integrated powder pellet system, remote viewing system for hot cell application etc. Low visibility inside the hot cell has always been a problem for the operator. To overcome this problem a remote viewing system has been developed by which entire hot cell area can be scanned with the use of a joystick and the display can be seen on a LCD monitor. The viewing system is made up of radiation resistant optics which can work even in high gamma fields. It consists of objective end assembly which is used to scan the hot cell area with the help of prism doublets and drive mechanism for capturing full 360 deg solid angle view. There is a Galilean telescope and focusing system used for focusing images of distant objects. Drive mechanism can be controlled by the joystick available to the operator. System has a high resolution CCD display and camera which gives a clear display of objects lying inside the hot cell area. Integrated powder pellet system is being developed for fabrication of MOX pellets from feed powder. This will be automated system which will take input in the form of MOX powder and convert it

  17. Method for carbon dioxide sequestration

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2017-12-05

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC-CO.sub.2) and water or bine into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation.

  18. Recuperative supercritical carbon dioxide cycle

    Science.gov (United States)

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  19. Nuclear Energy and Synthetic Liquid Transportation Fuels

    Science.gov (United States)

    McDonald, Richard

    2012-10-01

    This talk will propose a plan to combine nuclear reactors with the Fischer-Tropsch (F-T) process to produce synthetic carbon-neutral liquid transportation fuels from sea water. These fuels can be formed from the hydrogen and carbon dioxide in sea water and will burn to water and carbon dioxide in a cycle powered by nuclear reactors. The F-T process was developed nearly 100 years ago as a method of synthesizing liquid fuels from coal. This process presently provides commercial liquid fuels in South Africa, Malaysia, and Qatar, mainly using natural gas as a feedstock. Nuclear energy can be used to separate water into hydrogen and oxygen as well as to extract carbon dioxide from sea water using ion exchange technology. The carbon dioxide and hydrogen react to form synthesis gas, the mixture needed at the beginning of the F-T process. Following further refining, the products, typically diesel and Jet-A, can use existing infrastructure and can power conventional engines with little or no modification. We can then use these carbon-neutral liquid fuels conveniently long into the future with few adverse environmental impacts.

  20. [FTIR detection of unregulated emissions from a diesel engine with biodiesel fuel].

    Science.gov (United States)

    Tan, Pi-qiang; Hu, Zhi-yuan; Lou, Di-ming

    2012-02-01

    Biodiesel, as one of the most promising alternative fuels, has received more attention because of limited fossil fuels. A comparison of biodiesel and petroleum diesel fuel is discussed as regards engine unregulated exhaust emissions. A diesel fuel, a pure biodiesel fuel, and fuel with 20% V/V biodiesel blend ratio were tested without engine modification The present study examines six typical unregulated emissions by Fourier transform infrared spectroscopy (FTIR) method: formaldehyde (HCHO), acetaldehyde (C2 H4 O), acetone (C3 H6 O), toluene (C7 H8), sulfur dioxide (SO2), and carbon dioxide (CO2). The results show addition of biodiesel fuel increases the formaldehyde emission, and B20 fuel has little change, but the formaldehyde emission of pure biodiesel shows a clear trend of addition. Compared with the pure diesel fuel, the acetaldehyde of B20 fuel has a distinct decrease, and the acetaldehyde emission of pure biodiesel is lower than that of the pure diesel fuel at low and middle engine loads, but higher at high engine load. The acetone emission is very low, and increases for B20 and pure biodiesel fuels as compared to diesel fuel. Compared with the diesel fuel, the toluene and sulfur dioxide values of the engine show a distinct decrease with biodiesel blend ratio increasing. It is clear that the biodiesel could reduce aromatic compounds and emissions of diesel engines. The carbon dioxide emission of pure biodiesel has a little lower value than diesel, showing that the biodiesel benefits control of greenhouse gas.

  1. The legacy of fossil fuels.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The legacy of fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Armaroli, N.; Balzani, V. [CNR, Bologna (Italy)

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production.

  3. Solar electricity and solar fuels

    Science.gov (United States)

    Spiers, David J.

    1989-04-01

    The nature of solar radiation and its variation with location is described. The distribution of energy in the solar spectrum places immediate limits on the theoretical efficiency of conversion processes, since practical absorbers cannot convert all wavelengths received to useful energy. The principles of solar energy conversion methods are described. Absorption of solar energy can give rise to direct electrical generation, heating, or chemical change. Electrical generation from sunlight can be achieved by photovoltaic systems directly or by thermal systems which use solar heat to drive a heat engine and generator. The technology used and under research for promising ways of producing electricity or fuel from solar energy is described. Photovoltaic technology is established today for remote area, small power applications, and photovoltaic module sales alone are over 100 million dollars per year at present. The photovoltaic market has grown steadily since the mid-1970's, as prices have fallen continuously. Future energy options are briefly described. The merits of a sustainable energy economy, based on renewable energy resources, including solar energy, are emphasized, as this seems to provide the only hope of eliminating the problems caused by the build-up of atmospheric carbon dioxide, acid rain pollution and nuclear waste disposal. There is no doubt that clean fuels which were derived from solar energy and either did not involve carbon dioxide and used atmospheric carbon dioxide as the source dioxide as the source of carbon would be a worthy ideal. Methods described could one day achieve this.

  4. Integrated biofuel facility, with carbon dioxide consumption and power generation

    Energy Technology Data Exchange (ETDEWEB)

    Powell, E.E.; Hill, G.A. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemical Engineering

    2009-07-01

    This presentation provided details of an economical design for a large-scale integrated biofuel facility for coupled production of bioethanol and biodiesel, with carbon dioxide capture and power generation. Several designs were suggested for both batch and continuous culture operations, taking into account all costs and revenues associated with the complete plant integration. The microalgae species Chlorella vulgaris was cultivated in a novel photobioreactor (PBR) in order to consume industrial carbon dioxide (CO{sub 2}). This photosynthetic culture can also act as a biocathode in a microbial fuel cell (MFC), which when coupled to a typical yeast anodic half cell, results in a complete biological MFC. The photosynthetic MFC produces electricity as well as valuable biomass and by-products. The use of this novel photosynthetic microalgae cathodic half cell in an integrated biofuel facility was discussed. A series of novel PBRs for continuous operation can be integrated into a large-scale bioethanol facility, where the PBRs serve as cathodic half cells and are coupled to the existing yeast fermentation tanks which act as anodic half cells. These coupled MFCs generate electricity for use within the biofuel facility. The microalgae growth provides oil for biodiesel production, in addition to the bioethanol from the yeast fermentation. The photosynthetic cultivation in the cathodic PBR also requires carbon dioxide, resulting in consumption of carbon dioxide from bioethanol production. The paper also discussed the effect of plant design on net present worth and internal rate of return. tabs., figs.

  5. Study of the 'Impatiens walleriana' for phytoremediation of chromium, thorium, uranium and zinc soil contamination

    Energy Technology Data Exchange (ETDEWEB)

    Torrecilha, Jefferson K.; Mariano, Gabriela P.; Silva, Paulo S.C. da, E-mail: jeffkoy@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The objective of this study was to determine the Cr, Th, U and Zn transfer from soil to Impatiens walleriana and verify if this plant species is suitable for soil decontamination. Samples of small, medium and large size of the plant were collected in three different locations, University of Sao Paulo, IPEN and Cotia, as well as soil samples from the surroundings. Instrumental neutron activation analysis was applied to determine the element concentrations. Roots, stems and leaves of the plant samples were analyzed in separate in order to verify the preferential site of concentration of these elements in the plant. For the analyses, samples of the soil and the plants were dried and pulverized into a fine powder, accurately weighed and sealed in polyethylene bags, irradiated together with reference standard materials in the IEA-R1 IPEN reactor and counted in a Ge-hiperpure detector. Cr, Th, and U did not present a significant potential to be accumulated in none of the plant parts. Zinc, on the other hand, showed great capacity to be accumulated in in all parts of Impatiens walleriana and, therefore, this species is a good candidate to be used for phytoremediation purpose, in case of soil contamination with zinc. (author)

  6. Fabrication of fuel elements on the basis of increased concentration fuel composition

    International Nuclear Information System (INIS)

    Alexandrov, A.B.; Afanasiev, V.L.; Enin, A.A.; Suprun, V.B.

    2004-01-01

    As a part of Russian Program RERTR Reduced Enrichment for Research and Test Reactors), at NCCP, Inc. jointly with the State Scientific Centre VNIINM the mastering in industrial environment of design and fabrication process of fuel elements (FE) with increased concentration fuel compositions is performed. Fuel elements with fuel composition on the basis of dioxide uranium with nearly 4 g/cm 3 fuel concentration have been produced thus confirming the principal possibility of fuel enrichment reduction down to 20% for research reactors which were built up according to the projects of the former USSR, by increasing the oxide fuel concentration in fuel assemblies (FAs). The form and geometrical dimensions of FEs and FAs shall remain unchanged, only uranium mass in FA shall be increased. (author)

  7. Spent fuel workshop'2002

    International Nuclear Information System (INIS)

    Poinssot, Ch.

    2002-01-01

    This document gathers the transparencies of the presentations given at the 2002 spent fuel workshop: Session 1 - Research Projects: Overview on the IN CAN PROCESSES European project (M. Cowper), Overview on the SPENT FUEL STABILITY European project (C. Poinssot), Overview on the French R and D project on spent fuel long term evolution, PRECCI (C. Poinssot); Session 2 - Spent Fuel Oxidation: Oxidation of uranium dioxide single crystals (F. Garrido), Experimental results on SF oxidation and new modeling approach (L. Desgranges), LWR spent fuel oxidation - effects of burn-up and humidity (B. Hanson), An approach to modeling CANDU fuel oxidation under dry storage conditions (P. Taylor); Session 3 - Spent Fuel Dissolution Experiments: Overview on high burnup spent fuel dissolution studies at FZK/INE (A. Loida), Results on the influence of hydrogen on spent fuel leaching (K. Spahiu), Leaching of spent UO 2 fuel under inert and reducing conditions (Y. Albinsson), Fuel corrosion investigation by electrochemical techniques (D. Wegen), A reanalysis of LWR spent fuel flow through dissolution tests (B. Hanson), U-bearing secondary phases formed during fuel corrosion (R. Finch), The near-field chemical conditions and spent fuel leaching (D. Cui), The release of radionuclides from spent fuel in bentonite block (S.S. Kim), Trace actinide behavior in altered spent fuel (E. Buck, B. Hanson); Session 4 - Radiolysis Issues: The effect of radiolysis on UO 2 dissolution determined from electrochemical experiments with 238 Pu doped UO 2 M. Stroess-Gascoyne (F. King, J.S. Betteridge, F. Garisto), doped UO 2 studies (V. Rondinella), Preliminary results of static and dynamic dissolution tests with α doped UO 2 in Boom clay conditions (K. Lemmens), Studies of the behavior of UO 2 / water interfaces under He 2+ beam (C. Corbel), Alpha and gamma radiolysis effects on UO 2 alteration in water (C. Jegou), Behavior of Pu-doped pellets in brines (M. Kelm), On the potential catalytic behavior of

  8. Producing liquid fuels from biomass

    Science.gov (United States)

    Solantausta, Yrjo; Gust, Steven

    The aim of this survey was to compare, on techno-economic criteria, alternatives of producing liquid fuels from indigenous raw materials in Finland. Another aim was to compare methods under development and prepare a proposal for steering research related to this field. Process concepts were prepared for a number of alternatives, as well as analogous balances and production and investment cost assessments for these balances. Carbon dioxide emissions of the alternatives and the price of CO2 reduction were also studied. All the alternatives for producing liquid fuels from indigenous raw materials are utmost unprofitable. There are great differences between the alternatives. While the production cost of ethanol is 6 to 9 times higher than the market value of the product, the equivalent ratio for substitute fuel oil produced from peat by pyrolysis is 3 to 4. However, it should be borne in mind that the technical uncertainties related to the alternatives are of different magnitude. Production of ethanol from barley is of commercial technology, while biomass pyrolysis is still under development. If the aim is to reach smaller carbon dioxide emissions by using liquid biofuels, the most favorable alternative is pyrolysis oil produced from wood. Fuels produced from cultivated biomass are more expensive ways of reducing CO2 emissions. Their potential of reducing CO2 emissions in Finland is insignificant. Integration of liquid fuel production to some other production line is more profitable.

  9. Forest fuel and sulphur

    International Nuclear Information System (INIS)

    Lundborg, A.

    1994-10-01

    This report illustrates the sulphur cycle in forest fuel and in the forest ecosystem. The hypothesis is that sulphur dioxide from combustion of forest fuel is not more acidifying than sulphur that is mineralized from tree biomass if it is left in the forest instead of being burnt. The report gives an overview of the sulphur cycle in general together with the acidifying effect of sulphur. The sulphur content in wood biomass is about 1 mg/g in the needles and 0.2-0.3 mg/g in wood. Chipped forest fuel contains 0.2-0.5 mg S/g. A removal of 40 tonnes of felling residues per hectare may contain about 8-30 kg S. The sulphur occurs both in organic, often reduced, form and as sulphate. In situations of high availability to sulphur there will be an increased proportion of sulphate. After combustion some, perhaps half, of the sulphur is left in the ashes, most of which appears to be sulphate. In mineralisation of reduced organic sulphur, of type R-SH, the sulphur is released in the form of sulphide. Hydrogen sulphide, H2S, can be oxidised by microbes to sulphate, which should be acidifying (2 H+ will remain). A very rough estimate suggests that emissions of sulphur dioxide from forest fuel, spread over the period the trees are growing, and on the area from which the trees are taken, corresponds to 0.5% of the sulphur deposition in southern Sweden. Sulphur emissions from biofuel combustion are much lower than Sweden's and the EU's most stringent emission limits for coal. Whole-tree removal with return of ashes will theoretically give a considerable reduction in soil acidity since large quantities of nitrogen are removed and thus the acidifying effect of nitrogen will not occur. This should be of greater importance for forest acidification than the effect of biomass sulphur. 80 refs, numerous tabs

  10. Constraints to commercialization of algal fuels.

    Science.gov (United States)

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term. Copyright © 2013 Elsevier B.V. All

  11. Alternative Fuels

    Science.gov (United States)

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  12. Feedback mechanisms in the climate system affecting future levels of carbon dioxide

    International Nuclear Information System (INIS)

    Kellogg, W.W.

    1983-01-01

    The rate of increase of concentration of atmospheric carbon dioxide depends on the consumption of fossil fuels (the major source of 'new' carbon dioxide) and the natural sinks for this trace constituent, primarily the oceans and the biosphere. (It is now fairly well established that the biosphere cannot be a major source, as has been claimed.) The rate of operation of these sinks depends on several factors determined by the state of the climate system, and they will therefore presumably change as the greenhouse effect of increasing carbon dioxide warms the earth. Five specific feedback loops are discussed, two of which are positive (amplifying the rate of increase), two are weakly negative (damping the rate of increase), and one is indeterminate but probably positive. It is concluded that it would be well to be prepared for the possibility that carbon dioxide may increase faster than predicted by models based on the current or past state of the climate system

  13. Carbon dioxide capture processes: Simulation, design and sensitivity analysis

    DEFF Research Database (Denmark)

    Zaman, Muhammad; Lee, Jay Hyung; Gani, Rafiqul

    2012-01-01

    equilibrium and associated property models are used. Simulations are performed to investigate the sensitivity of the process variables to change in the design variables including process inputs and disturbances in the property model parameters. Results of the sensitivity analysis on the steady state...... performance of the process to the L/G ratio to the absorber, CO2 lean solvent loadings, and striper pressure are presented in this paper. Based on the sensitivity analysis process optimization problems have been defined and solved and, a preliminary control structure selection has been made.......Carbon dioxide is the main greenhouse gas and its major source is combustion of fossil fuels for power generation. The objective of this study is to carry out the steady-state sensitivity analysis for chemical absorption of carbon dioxide capture from flue gas using monoethanolamine solvent. First...

  14. Coal and carbon dioxide reduction: What does it mean for our power production future?

    International Nuclear Information System (INIS)

    Weinstein, R.E.

    1994-01-01

    Carbon dioxide (CO 2 ) is not a pollutant. It is a limiting nutrient, like water and oxygen, necessary for life to exist on earth. It helps retain heat from the sun keeping the earth comfortably warm. Though scientifically controversial, some segments of the public are nonetheless concerned that increasing amounts of carbon dioxide (and other gases) emitted by mankind's activity may contribute to what they perceive as mankind-induced global warming trend, the so-called open-quotes greenhouse effect.close quotes The 1992 Earth Summit in Rio De Janeiro addressed this, and in response, the U.S. signed agreements to roll back its greenhouse gas emissions to 1990 levels. Carbon dioxide is of concern as a greenhouse gas because of the quantity produced by the combustion of fossil fuels. Because coal is mostly carbon, when burned, it produces more carbon dioxide per Btu of energy released of any of the common fossil fuels. With 54 percent of our electricity generated by coal, capping carbon dioxide emissions without disrupting the economy will be no mean feat for the United States. The U.S. also relies on its huge reserves for its energy independence, so altering policies that affect coal use must be carefully assessed. A growing population and economy demand more energy. One can use other fuels than coal: natural gas releases only 56 percent the carbon dioxide coal does, and nuclear energy produces none. One can also employ higher efficiency coal plants to reduce the amount of carbon dioxide produced for a given power output. The highest efficiency coal units projected are magnetohydrodynamics (MHD) plants the focus of this conference which are projected to produce electricity at 60 percent energy efficiency, extraordinary by today's standards. Does this mean that the Rio de Janeiro agreement then encourages the earlier introduction of MHD and other emerging high efficiency coal technologies?

  15. Fuel assembly

    International Nuclear Information System (INIS)

    Chaki, Masao; Nishida, Koji; Karasawa, Hidetoshi; Kanazawa, Toru; Orii, Akihito; Nagayoshi, Takuji; Kashiwai, Shin-ichi; Masuhara, Yasuhiro

    1998-01-01

    The present invention concerns a fuel assembly, for a BWR type nuclear reactor, comprising fuel rods in 9 x 9 matrix. The inner width of the channel box is about 132mm and the length of the fuel rods which are not short fuel rods is about 4m. Two water rods having a circular cross section are arranged on a diagonal line in a portion of 3 x 3 matrix at the center of the fuel assembly, and two fuel rods are disposed at vacant spaces, and the number of fuel rods is 74. Eight fuel rods are determined as short fuel rods among 74 fuel rods. Assuming the fuel inventory in the short fuel rod as X(kg), and the fuel inventory in the fuel rods other than the short fuel rods as Y(kg), X and Y satisfy the relation: X + Y ≥ 173m, Y ≤ - 9.7X + 292, Y ≤ - 0.3X + 203 and X > 0. Then, even when the short fuel rods are used, the fuel inventory is increased and fuel economy can be improved. (I.N.)

  16. Fuel assembly

    International Nuclear Information System (INIS)

    Yamazaki, Hajime.

    1995-01-01

    In a fuel assembly having fuel rods of different length, fuel pellets of mixed oxides of uranium and plutonium are loaded to a short fuel rod. The volume ratio of a pellet-loaded portion to a plenum portion of the short fuel rod is made greater than the volume ratio of a fuel rod to which uranium fuel pellets are loaded. In addition, the volume of the plenum portion of the short fuel rod is set greater depending on the plutonium content in the loaded fuel pellets. MOX fuel pellets are loaded on the short fuel rods having a greater degree of freedom relevant to the setting for the volume of the plenum portion compared with that of a long rod fuel, and the volume of the plenum portion is ensured greater depending on the plutonium content. Even if a large amount of FP gas and He gas are discharged from the MOX fuels compared with that from the uranium fuels, the internal pressure of the MOX fuel rod during operation is maintained substantially identical with that of the uranium fuel rod, so that a risk of generating excess stresses applied to the fuel cladding tubes and rupture of fuels are greatly reduced. (N.H.)

  17. Electrochemical Properties of Transparent Conducting Films of Tantalum-Doped Titanium Dioxide

    Czech Academy of Sciences Publication Activity Database

    Krýsová, Hana; Mazzolini, P.; Casari, C. S.; Russo, V.; Li Bassi, A.; Kavan, Ladislav

    2017-01-01

    Roč. 232, APR 2017 (2017), s. 44-53 ISSN 0013-4686 R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : titanium dioxide * tantalum doping * electrochemistry Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 4.798, year: 2016

  18. Carbon Dioxide Capture from Flue Gas : Development and Evaluation of Existing and Novel Process Concepts

    NARCIS (Netherlands)

    Abu Zahra, M.R.M.

    2009-01-01

    One of the main global challenges in the years to come is to reduce the CO2 emissions in view of the apparent contribution to global warming. Carbon dioxide capture, transport, and storage (CCS) from fossil fuel fired power plants is drawing increased interest as an intermediate solution towards

  19. Nuclear energy - Determination of chlorine and fluorine in uranium dioxide powder and sintered pellets

    International Nuclear Information System (INIS)

    2008-01-01

    This International Standard describes a method for determining the chlorine and fluorine concentrations in uranium dioxide and in sintered fuel pellets by pyrohydrolysis of samples, followed either by liquid ion-exchange chromatography or by selective electrode measurement of chlorine and fluorine ions. Many ion-exchange chromatography systems and ion-selective electrode measurement systems are available

  20. Microstructural evolution and thermophysical property evaluation of Th-U alloys

    International Nuclear Information System (INIS)

    Das, Santanu; Kaity, Santu; Bannerjee, Joydipto; Kumar, Raj; Roy, S.B.; Chaudhari, G.P.; Daniel, B.S.S.

    2015-01-01

    Thorium-uranium alloy fuel has not received much research attention mainly because of easy availability of uranium and military incentive offered by U-Pu cycle. Moreover, (i) lack of a consistent systematic effort to develop the alloys and define the limitations of these fuels, (ii) dearth of initiatives to define its microstructures that can result from composition and fabrication variables are prime reasons for this system not having witnessed much developmental research endeavour. Hence, it seems prudent to explore few compositions selected from thorium-uranium phase diagram keeping two primary objectives in view viz. (i) establishing its microstructural features and to study the variations in those, if any, brought about by processing variables etc. and (ii) to assess few thermal properties relevant to fuel applications. This experimental work aims at addressing gap in research on thorium-uranium alloys. Selected compositions of thorium-uranium alloy have been taken for microstructural study and evaluation of thermophysical properties. Based on the microstructural features and thermophysical property evaluation it is seen that high thorium Th-U alloys have appreciable thermal conductivity and low thermal expansion coefficient. It can reasonably be concluded that high thorium Th-U alloy can be used for possible nuclear fuel application in reactors provided other factors (e.g. reactor physics, post irradiation examinations etc.) are also seen to be favourable. (author)

  1. Process for producing nuclear reactor fuel oxides

    International Nuclear Information System (INIS)

    Goenrich, H.; Druckenbrodt, W.G.

    1981-01-01

    The waste gases of the calcination process furnace in the AVC or AV/PuC process (manufacture of nuclear reactor fuel dioxides) are returned to the furnace in a closed circuit. The NH 3 produced replaces the hydrogen which would otherwise be required for reduction in this process. (orig.) [de

  2. Fuels for internal-combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    1925-10-23

    To reduce knocking in internal-conbustion engines, the fuel is mixed with a small quantity, for instance 10 percent, of the hydrocarbon obtained by extracting with liquid sulfur dioxide hydrocarbon material, such as mineral oil fractions, coal tar and lignite tar distillates of higher boiling point, for example distillates boiling between 150 and 300/sup 0/C.

  3. Carbon Dioxide Absorption Heat Pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  4. Contribution to the study of uranium dioxide aqueous corrosion mechanisms

    International Nuclear Information System (INIS)

    Gallien, J.-P.

    1994-01-01

    The corrosion of uranium dioxide by a synthetical ground water has been studied in order to understand the behaviour of nuclear fuels in the hypothesis of a direct storage. An original leaching unit has been carried out in order to control the parameters occurring in the oxidation-dissolution of the uranium dioxide and to condition the leachate (in particular the temperature and the partial pressure of the carbon dioxide). A ground water in equilibrium with the geological enveloping site has been reconstituted from data acquired on the site. The influence of two parameters has been followed: the carbon dioxide carbon pressure and the redox potential. Each experiment has been carried out at 96 C during one month and the time-history of the solutions and of the solids has been studied. In oxidizing conditions, the uranium concentration in solution has been controlled by an U(VI) complex (one oxide, one hydroxide or a carbonate). The possibility of a control by an U(IV) complex (as coffinite, uraninite or uraninite B) has been confirmed in the case of reducing leaching. An original interpretation of the Rutherford backscattering spectra has allowed to describe the decomposition of the samples in a succession of layers of different densities. A very good agreement between the analyses of the solids and those of the solutions has been obtained in the experiments occurring in reducing conditions. Complementary leaching involving solutions containing stable isotopes (deuterium, O 18 ) have revealed the formation of an hydrated layer and the contribution of grain boundaries to the corrosion phenomenon of uranium dioxide. The results of the current hydro-geochemistry study on the uranium Oklo deposit prove the realism of the experiments that have been carried out in the laboratory. (O.M.)

  5. Surface Characterization and Electrochemical Oxidation of Metal Doped Uranium Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongmook; Kim, Jandee; Youn, Young-Sang; Kim, Jong-Goo; Ha, Yeong-Keong; Kim, Jong-Yun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Trivalent element in UO{sub 2} matrix makes the oxygen vacancy from loss of oxygen for charge compensation. Tetravalent element alters lattice parameter of UO{sub 2} due to diameter difference between the tetravalent element and replaced U. These structural changes have significant effect on not only relevant fuel performance but also the kinetics of fuel oxidation. Park and Olander explained the stabilization of Ln (III)-doped UO{sub 2} against oxidation based on oxygen potential calculations. In this work, we have been investigated the effect of Gd{sup 3+} and Th{sup 4+} doping on the UO{sub 2} structure with Raman spectroscopy and X-ray diffraction to characterize the surface structure of nuclear fuel material. For Gd doped UO{sub 2}, its electrochemical oxidation behaviors are also investigated. The Gd and Th doped uranium dioxide solid solution pellets with various doping level were investigated by XRD, Raman spectroscopy, SEM, electrochemical experiments to investigate surface structure and electro chemical oxidation behaviors. The lattice parameter evaluated from XRD spectra indicated the formation of solid solutions. Raman spectra showed the existence of the oxygen vacancy. SEM images showed the grain structure on the surface of Gd doped uranium dioxide depending on doping level and oxygen-to-metal ratio.

  6. Determination of the stoichiometric ratio uranium dioxide samples

    International Nuclear Information System (INIS)

    Moura, Sergio Carvalho

    1999-01-01

    The determination of the O/U stoichiometric ratio in uranium dioxide is an important parameter in order to qualify nuclear fuels. The excess oxygen in the crystallographic structure can cause changes in the physico-chemical properties of this compound such as variation of the thermal conductivity alterations, fuel plasticity and others, affecting the efficiency of this material when it is utilized as nuclear fuel in the reactor core. The purpose of this work is to evaluate methods for the determination of uranium oxide samples from two different production processes, using gravimetric, voltammetric and X-ray diffraction techniques. After the evaluation of these techniques, the main aspect of this work is to define a reliable methodology in order to characterize the behavior of uranium oxide. The methodology used in this work consisted of two different steps: utilization of gravimetric and volumetric methods in order to determine the ratio in uranium dioxide samples; utilization of X-ray diffraction technique in order to determine the lattice parameters using patterns and application of the Rietveld method during refining of the structural data. As a result of the experimental part of this work it was found that the X-ray diffraction analysis performs better and detects the presence of more phases than gravimetric and voltammetric techniques, not sensitive enough in this detection. (author)

  7. Nuclear fuels

    International Nuclear Information System (INIS)

    Gangwani, Saloni; Chakrabortty, Sumita

    2011-01-01

    Nuclear fuel is a material that can be consumed to derive nuclear energy, by analogy to chemical fuel that is burned for energy. Nuclear fuels are the most dense sources of energy available. Nuclear fuel in a nuclear fuel cycle can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. The following paper will also include the uses. advancements, advantages, disadvantages, various processes and behavior of nuclear fuels

  8. Titanium dioxide. An effective additive for minimisation of alkali vaporisation; Titandioxidadditiv. En effektiv tillsats foer att minska alkalifoeraangning

    Energy Technology Data Exchange (ETDEWEB)

    Wiinikka, Henrik; Groenberg, Carola; Oehrman, Olov

    2008-10-15

    If an additive of titanium dioxide can limit the release of alkali under practical combustion conditions it may significantly reduce the ash related operational problems in real furnaces. The aim with this project is therefore to investigate if an additive of titanium dioxide could reduce the vaporisation of alkali during practical combustion conditions and determine the optimum mixing ratio between the fuel and titanium dioxide. Controlled combustion experiments with varied amounts of titanium dioxide in straw pellets were performed in a pellet burner together with sampling of particles in the flue gas (impactor and absolute filter), analysis of the flue gas composition (FTIR) and chemical analyses of the collected particles and bottom ashes (ICP, SEM/EDS, and XRD). The experimental results from this study showed that an increasing amount of titanium dioxide additive reduced the concentration of fine particles in the flue gas. The particle concentration was reduced from 241 mg/Nm3 to 163 mg/Nm3 for an optimum amount of titanium dioxide additive. Furthermore, the concentration of HCl and SO{sub 2} in the flue gas increased when the titanium dioxide was introduced to the straw pellets. Independent of titanium dioxide additive or not, no titanium was detected in the submicron particles. This indicates that titanium is a refractory element that is not vaporised during the combustion process. The chemical composition of the flue gas particles was also influenced by titanium dioxide additive. In general, the amounts of O, Na, and P were increased in the same time as the amounts of S, Cl, and K were reduced when more titanium dioxide was introduced to the straw pellets. From the particle concentration in the flue gas and the chemical composition of the fine particles, the particle bound elemental concentration of Na, P, S, Cl, and K could be estimated. From this investigation the concentration of potassium in the flue gas was reduced from 126 mg/Nm3 to 77 mg/Nm3 when

  9. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  10. Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

    1999-09-08

    The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

  11. Carbon Dioxide Embolism during Laparoscopic Surgery

    Science.gov (United States)

    Park, Eun Young; Kwon, Ja-Young

    2012-01-01

    Clinically significant carbon dioxide embolism is a rare but potentially fatal complication of anesthesia administered during laparoscopic surgery. Its most common cause is inadvertent injection of carbon dioxide into a large vein, artery or solid organ. This error usually occurs during or shortly after insufflation of carbon dioxide into the body cavity, but may result from direct intravascular insufflation of carbon dioxide during surgery. Clinical presentation of carbon dioxide embolism ranges from asymptomatic to neurologic injury, cardiovascular collapse or even death, which is dependent on the rate and volume of carbon dioxide entrapment and the patient's condition. We reviewed extensive literature regarding carbon dioxide embolism in detail and set out to describe the complication from background to treatment. We hope that the present work will improve our understanding of carbon dioxide embolism during laparoscopic surgery. PMID:22476987

  12. Hodgkin's disease following thorium dioxide angiography

    Energy Technology Data Exchange (ETDEWEB)

    Gotlieb, A I; Kirk, M E [McGill Univ., Montreal, Quebec (Canada). Dept. of Pathology; Hutchison, J L [Montreal General Hospital, Quebec (Canada)

    1976-09-04

    Hodgkin's disease occurred in a 53-year-old man who, 25 years previously, had undergone cerebral angiography, for which thorium dioxide suspension (Thorotrast) was used. Deposits of thorium dioxide were noted in reticuloendothelial cells in various locations. An association between thorium dioxide administration and the subsequent development of malignant tumours and neoplastic hematologic disorders has previously been reported.

  13. 21 CFR 582.1240 - Carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is generally...

  14. 21 CFR 73.1575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements...

  15. 40 CFR 180.1195 - Titanium dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or on...

  16. 21 CFR 73.2575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the requirements...

  17. 21 CFR 73.575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.575 Section 73.575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.575 Titanium dioxide. (a) Identity. (1) The color additive titanium dioxide is synthetically prepared TiO2, free from admixture with other substances. (2) Color...

  18. 21 CFR 73.3126 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891, shall...

  19. Fuel assembly

    International Nuclear Information System (INIS)

    Sakuyama, Tadashi; Mukai, Hideyuki.

    1988-01-01

    Purpose: To prevent the bending of a fuel rod caused by the difference in the elongation between a joined fuel rod and a standard fuel rod thereby maintain the fuel rod integrity. Constitution: A joined fuel rod is in a thread engagement at its lower end plug thereof with a lower plate, while passed through at its upper end plug into an upper tie plate and secured with a nut. Further, a standard fuel rod is engaged at its upper end plug and lower end plug with the upper tie plate and the lower tie plate respectively. Expansion springs are mounted to the upper end plugs of these bonded fuel rods and the standard fuel rods for preventing this lifting. Each of the fuel rods comprises a plurality of sintered pellets of nuclear fuel materials laminated in a zircaloy fuel can. The content of the alloy ingredient in the fuel can of the bonded fuel rod is made greater than that of the alloy ingredient of the standard fuel rod. this can increase the elongation for the bonded fuel rod, and the spring of the standard fuel rod is tightly bonded to prevent the bending. (Yoshino, Y.)

  20. New Concept of Designing Composite Fuel for Fast Reactors with Closing Fuel Cycle

    International Nuclear Information System (INIS)

    Savchenko, A.; Vatulin, A.; Uferov, O.; Kulakov, G.; Sorokin, V.

    2013-01-01

    For fast reactors a novel type of promising composite U-PuO2 fuel is proposed which is based on dispersion fuel elements. Basic approach to fuel element development - separated operations of fabricating uranium meat fuel element and introducing into it Pu or MA dioxides powder, that results in minimizing dust forming operations in fuel element fabrication. Novel fuel features higher characteristics in comparison to metallic or MOX fuel its fabrication technology is readily accomplished and is environmentally clean. A possibility is demonstrated of fabricating coated steel claddings to protect from interaction with fuel and fission products when use standard rod type MOX or metallic U-Pu-Zr fuel. Novel approach to reprocessing of composite fuel is demonstrated, which allows to separate uranium from burnt plutonium as well as the newly generated fissile plutonium from burnt one without chemical processes, which simplifies the closing of the nuclear fuel cycle. Novel composite fuel combines the advantages of metallic and ceramic types of fuel and has high uranium density that allows also to implicate it in BREST types reactor with conversion ratio more than 1. Peculiarities of closing nuclear cycle with composite fuel are demonstrated that allows more effective re-usage of generated Pu as well as, minimizing r/a wastes by incineration of MA in specially developed IMF design

  1. Modelling Sublimation of Carbon Dioxide

    Science.gov (United States)

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  2. Thermal conductivity of uranium dioxide

    International Nuclear Information System (INIS)

    Pillai, C.G.S.; George, A.M.

    1993-01-01

    The thermal conductivity of uranium dioxide of composition UO 2.015 was measured from 300 to 1400 K. The phonon component of the conductivity is found to be quantitatively accounted for by the theoretical expression of Slack derived by modifying the Leibfried-Schlomann equation. (orig.)

  3. The forest as a historic source and sink for carbon dioxide; Skogen som historisk kaella respektive saenka foer koldioxid

    Energy Technology Data Exchange (ETDEWEB)

    Kander, A [Lund Univ. (Sweden). Dept. of Economic History

    1996-06-01

    The aim of the present project is to quantify the changes in the growing stock of timber between 1800 and 1985 in order to find out under which periods and to what extent the forest has served as a source resp. sink for carbon dioxide. These data are compared to the carbon dioxide emissions from combustion of fossil fuels under the same period. Another goal of the project is to find the order of magnitude of the effect of other potential sinks and sources for carbon dioxide. 32 refs, 9 figs, 1 tab

  4. Carbon dioxide and climate: too much heat clouds debate

    Energy Technology Data Exchange (ETDEWEB)

    Gribben, J

    1978-12-01

    Technical feature:The possibility of a significant global warming as a result of increased atmospheric carbon dioxide from the burning of fossil fuels (the greenhouse effect) has recently received attention from climatologists and energy policy planners. The greenhouse effect has been used by the pro-nuclear lobby as an argument in favor of a massive commitment to nuclear power generation. While the CO2 problem is real, the solution does not lie in an energy strategy based on nuclear power, which involves as yet unsolved problems of radioactive waste disposal. The economic feasibility of processes for removing CO2 from waste gases should be investigated. (4 graphs, 10 references)

  5. A Review of Carbon Dioxide Selective Membranes: A Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dushyant Shekhawat; David R. Luebke; Henry W. Pennline

    2003-12-01

    Carbon dioxide selective membranes provide a viable energy-saving alternative for CO2 separation, since membranes do not require any phase transformation. This review examines various CO2 selective membranes for the separation of CO2 and N2, CO2 and CH4, and CO2 and H2 from flue or fuel gas. This review attempts to summarize recent significant advances reported in the literature about various CO2 selective membranes, their stability, the effect of different parameters on the performance of the membrane, the structure and permeation properties relationships, and the transport mechanism applied in different CO2 selective membranes.

  6. Application of a novel calcium looping process for production of heat and carbon dioxide enrichment of greenhouses

    International Nuclear Information System (INIS)

    Ramezani, Mohammad; Shah, Kalpit; Doroodchi, Elham; Moghtaderi, Behdad

    2015-01-01

    Highlights: • The greenhouse calcium looping process was developed by ASPEN Plus simulator. • In this process, the carbonation reaction provides required heat during night time. • The calcination reaction provides required carbon dioxide during day time. • This novel process saves up to 72% energy compared to the fossil fuel burners. • The process thermodynamically attributes to zero emission of carbon dioxide. - Abstract: Greenhouses typically employ conventional burner systems to suffice heat and carbon dioxide required for plant growth. The energy requirement and carbon dioxide emissions from fossil fuel burner are generally high. As an alternative, this paper describes a novel greenhouse calcium looping process which is expected to decrease the energy requirements and associated carbon dioxide emissions. The conceptual design of greenhouse calcium looping process is carried out in the ASPEN Plus v 7.3 simulator. In a greenhouse calcium looping process, the calcination reaction is considered to take place during day time in order to provide the required optimum carbon dioxide between 1000 and 2000 ppm, while the carbonation reaction is occurred during night time to provide required heat. The process simulations carried out in ASPEN indicates that greenhouse calcium looping process theoretically attributes to zero emission of carbon dioxide. Moreover, in a scenario modelling study compared to the conventional natural gas burner system, the heat duty requirements in the greenhouse calcium looping process were found to reduce by as high as 72%

  7. Nuclear fuel supply view in Argentina

    International Nuclear Information System (INIS)

    Cirimello, R.O.

    1997-01-01

    The Argentine Atomic Energy Commission promoted and participated in a unique achievement in the R and D system in Argentina: the integration of science technology and production based on a central core of knowledge for the control and management of the nuclear fuel cycle technology. CONUAR SA, as a fuel manufacturer, FAE SA, the manufacturer of Zircaloy tubes, CNEA and now DIOXITEC SA producer of Uranium Dioxide, have been supply, in the last ten years, the amount of products required for about 1300 Tn of equivalent U content in fuels. The most promising changes for the fuel cycle economy is the Slight Enriched Uranium project which begun in Atucha I reactor. In 1997 seventy five fuel assemblies, equivalent to 900 Candu fuel bundles, will complete its irradiation. (author)

  8. Fuel processing

    International Nuclear Information System (INIS)

    Allardice, R.H.

    1990-01-01

    The technical and economic viability of the fast breeder reactor as an electricity generating system depends not only upon the reactor performance but also on a capability to recycle plutonium efficiently, reliably and economically through the reactor and fuel cycle facilities. Thus the fuel cycle is an integral and essential part of the system. Fuel cycle research and development has focused on demonstrating that the challenging technical requirements of processing plutonium fuel could be met and that the sometimes conflicting requirements of the fuel developer, fuel fabricator and fuel reprocessor could be reconciled. Pilot plant operation and development and design studies have established both the technical and economic feasibility of the fuel cycle but scope for further improvement exists through process intensification and flowsheet optimization. These objectives and the increasing processing demands made by the continuing improvement to fuel design and irradiation performance provide an incentive for continuing fuel cycle development work. (author)

  9. Ceramics as nuclear reactor fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    1975-01-01

    Ceramics are widely accepted as nuclear reactor fuel materials, for both metal clad ceramic and all-ceramic fuel designs. Metal clad UO 2 is used commercially in large tonnages in five different power reactor designs. UO 2 pellets are made by familiar ceramic techniques but in a reactor they undergo complex thermal and chemical changes which must be thoroughly understood. Metal clad uranium-plutonium dioxide is used in present day fast breeder reactors, but may eventually be replaced by uranium-plutonium carbide or nitride. All-ceramic fuels, which are necessary for reactors operating above about 750 0 C, must incorporate one or more fission product retentive ceramic coatings. BeO-coated BeO matrix dispersion fuels and silicate glaze coated UO 2 -SiO 2 have been studied for specialised applications, but the only commercial high temperature fuel is based on graphite in which small fuel particles, each coated with vapour deposited carbon and silicon carbide, are dispersed. Ceramists have much to contribute to many aspects of fuel science and technology. (author)

  10. Experiment Plan of High Temperature Steam and Carbon dioxide Co-electrolysis for Synthetic Gas Production

    International Nuclear Information System (INIS)

    Yoon, Duk-Joo; Ko, Jae-Hwa

    2008-01-01

    Currently, Solid oxide fuel cells (SOFC) come into the spotlight in the middle of the energy technologies of the future for highly effective conversion of fossil fuels into electricity without carbon dioxide emission. The SOFC is a reversible cell. By applying electrical power to the cell, which is solid oxide electrolysis cell (SOEC), it is possible to produce synthetic gas (syngas) from high temperature steam and carbon dioxide. The produced syngas (hydrogen and carbon monoxide) can be used for synthetic fuels. This SOEC technology can use high temperature from VHTRs for high efficiency. This paper describes KEPRI's experiment plan of high temperature steam and carbon co-electrolysis for syngas production using SOEC technology

  11. Antibotulinal efficacy of sulfur dioxide in meat.

    Science.gov (United States)

    Tompkin, R B; Christiansen, L N; Shaparis, A B

    1980-01-01

    The addition of sodium metabisulfite as a source of sulfur dioxide delayed botulinal outgrowth in perishable canned comminuted pork when it was temperature abused at 27 degree C. The degree of inhibition was directly related to the level of sulfur dioxide. Levels greater than 100 microgram of sulfur dioxide per g were necessary to achieve significant inhibition when a target level of 100 botulinal spores per g was used. Sodium nitrite partially reduced the efficacy of the sulfur dioxide. Sulfur dioxide offers a new option for the control of botulinal outgrowth in cured or noncured meat and poultry products. PMID:6996613

  12. Perspectives in the use of carbon dioxide

    Directory of Open Access Journals (Sweden)

    Aresta Michele

    1999-01-01

    Full Text Available The mitigation of carbon dioxide is one of the scientific and technological challenges of the 2000s. Among the technologies that are under assessment, the recovery of carbon dioxide from power plants or industrial flue gases plays a strategic role. Recovered carbon dioxide can be either disposed in natural fields or used. The availability of large amounts of carbon dioxide may open new routes to its utilisation in biological, chemical and innovative technological processes. In this paper, the potential of carbon dioxide utilisation in the short-, medium-term is reviewed.

  13. Dissolution of LMFBR fuel-sodium aerosols

    International Nuclear Information System (INIS)

    Allen, M.D.; Moss, O.R.

    1979-01-01

    Plutonium dioxide, normally insoluble in biological fluids, becomes much more soluble when mixed with sodium as the aerosol is formed. Sodium-fuel aerosols are approximately 20 times less soluble in simulated lung fluid than in distilled water. Solubility of sodium-fuel aerosols increases when Na 2 CO 3 are added to the distilled-water dissolution fluid. Mixed-oxide fuel aerosols without sodium present are relatively insoluble in distilled water, simulated lung fluid, and distilled water with Na 2 CO 3 and NaHCO 3 added

  14. Solid recovered fuels in the steel industry.

    Science.gov (United States)

    Kepplinger, Werner L; Tappeiner, Tamara

    2012-04-01

    By using waste materials as alternative fuels in metallurgical plants it is possible to minimize the traditionally used reducing agents, such as coke, coal, oil or natural gas. Moreover, by using waste materials in the metallurgical industry it is feasible to recover these materials as far as possible. This also represents another step towards environmental protection because carbon dioxide emissions can be reduced, if the H(2) content of the waste material is greater in comparison with that of the substituted fuel and the effects of global warming can therefore be reduced. In the present article various solid recovered fuels and their applications in the metallurgical industry are detailed.

  15. Nuclear fuels and development of nuclear fuel elements

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Mannan, S.L.

    1989-01-01

    Safe, reliable and economic operation of nuclear fission reactors, the source of nuclear power at present, requires judicious choice, careful preparation and specialised fabrication procedures for fuels and fuel element structural materials. These aspects of nuclear fuels (uranium, plutonium and their oxides and carbides), fuel element technology and structural materials (aluminium, zircaloy, stainless steel etc.) are discussed with particular reference to research and power reactors in India, e.g. the DHRUVA research reactor at BARC, Trombay, the pressurised heavy water reactors (PHWR) at Rajasthan and Kalpakkam, and the Fast Breeder Test Reactor (FBTR) at Kalpakkam. Other reactors like the gas-cooled reactors operating in UK are also mentioned. Because of the limited uranium resources, India has opted for a three-stage nuclear power programme aimed at the ultimate utilization of her abundant thorium resources. The first phase consists of natural uranium dioxide-fuelled, heavy water-moderated and cooled PHWR. The second phase was initiated with the attainment of criticality in the FBTR at Kalpakkam. Fast Breeder Reactors (FBR) utilize the plutonium and uranium by-products of phase 1. Moreover, FBR can convert thorium into fissile 233 U. They produce more fuel than is consumed - hence, the name breeders. The fuel parameters of some of the operating or proposed fast reactors in the world are compared. FBTR is unique in the choice of mixed carbides of plutonium and uranium as fuel. Factors affecting the fuel element performance and life in various reactors e.g. hydriding of zircaloys, fuel pellet-cladding interaction etc. in PHWR and void swelling; irradiation creep and helium embrittlement of fuel element structural materials in FBR are discussed along with measures to overcome some of these problems. (author). 15 refs., 9 tabs., 23 figs

  16. The global environment effects of fossil and nuclear fuels

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    1981-01-01

    The relative risks and environmental impacts of coal and uranium fueled power plants are dicussed. Fossil-fuel power plants are associated with a build-up of carbon dioxide levels and consequent climatic changes, release of sulphur dioxide and resultant acid rains and radioactive emissions. In comparing the discharges per megawatt year of sulphur dioxide, nitrogen dioxide and radioactive Ra-226 and Ra-225 in fly ash from coal and other fossil plants with Kr-85 and I-131 from nuclear plants, the fossil plants have a much poorer performance. Estimates indicate that nuclear energy can be adopted on a large scale as an alternative to coal without any increase in hazards and with a probability of a substantial reduction

  17. CMS: CO2 Emissions from Fossil Fuels Combustion, ACES Inventory for Northeastern USA

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides estimates of annual and hourly carbon dioxide (CO2) emissions from the combustion of fossil fuels (FF) for 13 states across the Northeastern...

  18. A contribution to the analysis of the thermal behaviour of Fast Breeder fuel rods with UO2-PuO2 fuel

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.; Elbel, H.

    1977-01-01

    The fuel of Fast Breeder Reactors which consists of Uranium and Plutonium dioxide is mainly characterized by the amount and distribution of void volume and Plutonium and the amount of oxygen. Irradiation experiments carried out with this fuel have shown that initial structure of the fuel pellet is subjected to large changes during operation. These are consequences of the radial and axial temperature gradients within the fuel rods. (Author) 54 refs

  19. Balance of emissions and consumptions of carbon dioxide in Spain

    International Nuclear Information System (INIS)

    Valero, A.; Subiela, V.; Cortes, C.

    1994-01-01

    The amount of carbon dioxide in atmosphere increase due to deforestation and anthropogenic emissions. The consumption of this gas in vegetal ecosystems must also be considered to know the net mass of CO 2 that gets into the atmosphere. This article summarizes the methodology, results and conclusions of the carbon dioxide balance in Spain by autonomous communities. The different fossil fuel consumer sectors (Thermal power plants, industry, transport, domestic and agricultural), forest biomass reduction due to fires and wood extractions for firewood are considered as sources. As sinks, natural and reforested forests, and the equivalent sea are noticed. Basically, the article presents a new methodology to estimate carbon dioxide consumption in forest biomass. The average emissions for 1981 to 1990 are presented. A per capita value of 5 t(CO 2 /year is obtained in contrast to the EC average of 8,6 t(CO 2 ) year. The resulting net balance shows that it is only consumed between 20 and 50% of the emitted CO 2 . (Author) 47 refs

  20. Medium temperature carbon dioxide gas turbine reactor

    International Nuclear Information System (INIS)

    Kato, Yasuyoshi; Nitawaki, Takeshi; Muto, Yasushi

    2004-01-01

    A carbon dioxide (CO 2 ) gas turbine reactor with a partial pre-cooling cycle attains comparable cycle efficiencies of 45.8% at medium temperature of 650 deg. C and pressure of 7 MPa with a typical helium (He) gas turbine reactor of GT-MHR (47.7%) at high temperature of 850 deg. C. This higher efficiency is ascribed to: reduced compression work around the critical point of CO 2 ; and consideration of variation in CO 2 specific heat at constant pressure, C p , with pressure and temperature into cycle configuration. Lowering temperature to 650 deg. C provides flexibility in choosing materials and eases maintenance through the lower diffusion leak rate of fission products from coated particle fuel by about two orders of magnitude. At medium temperature of 650 deg. C, less expensive corrosion resistant materials such as type 316 stainless steel are applicable and their performance in CO 2 have been proven during extensive operation in AGRs. In the previous study, the CO 2 cycle gas turbomachinery weight was estimated to be about one-fifth compared with He cycles. The proposed medium temperature CO 2 gas turbine reactor is expected to be an alternative solution to current high-temperature He gas turbine reactors

  1. Solubility of plutonium dioxide aerosols, in vitro

    International Nuclear Information System (INIS)

    Newton, G.J.; Kanapilly, G.M.

    1976-01-01

    Solubility of plutonium aerosols is an important parameter in establishing risk estimates for industrial workers who might accidentally inhale these materials and in evaluating environmental health impacts associated with Pu. In vitro solubility of industrial plutonium aerosols in a simulated lung fluid is compared to similar studies with ultrafine aerosols from laser ignition of delta phase plutonium metal and laboratory-produced spherical particles of 238 PuO 2 and 239 PuO 2 . Although relatively insoluble, industrial plutonium-mixed oxide aerosols were much more soluble than laboratory-produced plutonium dioxide particles. Chain agglomerate aerosols from laser ignition of metallic Pu indicated in vitro dissolution half-times of 10 and 50 days for activity median aerodynamic diameter (AMAD) of 0.7 and 2.3 μm, respectively. Plutonium-containing mixed oxide aerosols indicated dissolution half-times of 40 to 500 days for particles formed by industrial powder comminution and blending. Centerless grinding of fuel pellets yielded plutonium-containing aerosols with dissolution half-times of 1200 to 8000 days. All mixed oxide particles were in the size range 1.0 μm to 2.5 μm AMAD

  2. Effects of Fuel Type and Fuel Delivery System on Pollutant Emissions of Pride and Samand Vehicles

    Directory of Open Access Journals (Sweden)

    Akbar Sarhadi

    2017-04-01

    Full Text Available This research was aimed to study the effect of the type of fuel delivery system (petrol, dedicated or bifuel, the type of consumed fuel (petrol or gas, the portion of consumed fuel and also the duration of dual-fuelling in producing carbon monoxide, carbon dioxide and unburned hydrocarbons from Pride and Samand. According to research objectives, data gathering from 2000 vehicles has been done by visiting Hafiz Vehicle Inspection Center every day for 2 months. The results of this survey indicated that although there is no significant difference between various fuel delivery systems in terms of producing the carbon monoxide, carbon dioxide and unburned hydrocarbons by Samand, considering the emission amount of carbon dioxide, the engine performance of Pride in bifuel and dedicated state in GTXI and 132 types is more unsatisfactory than that of petrol state by 0.3 and 0.4%, respectively. On the other hand, consuming natural gas increases the amount of carbon monoxide emission in dual- fuel Pride by 0.18% and decreases that in dual-fuel Samand by 1.2%, which signifies the better design of Samand in terms of fuel pumps, used kit type and other engine parts to use this alternative fuel compared to Pride. Since the portion of consumed fuel and also duration of dual-fuelling does not have a significant effect on the amount of output pollutants from the studied vehicles, it can be claimed that the output substances from the vehicle exhaust are more related to the vehicle’s condition than the fuel type.

  3. Fuel assembly

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1970-01-01

    Herein disclosed is a fuel assembly in which a fuel rod bundle is easily detachable by rotating a fuel rod fastener rotatably mounted to the upper surface of an upper tie-plate supporting a fuel bundle therebelow. A locking portion at the leading end of each fuel rod protrudes through the upper tie-plate and is engaged with or separated from the tie-plate by the rotation of the fastener. The removal of a desired fuel rod can therefore be remotely accomplished without the necessity of handling pawls, locking washers and nuts. (Owens, K.J.)

  4. Nuclear fuel

    International Nuclear Information System (INIS)

    D Hondt, P.

    1998-01-01

    The research and development programme on nuclear fuel at the Belgian Nuclear Research Centre SCK/CEN is described. The objective of this programme is to enhance the quantitative prediction of the operational limits of nuclear fuel and to assess the behaviour of fuel under incidental and accidental conditions. Progress is described in different domains including the modelling of fission gas release in LWR fuel, thermal conductivity, basic physical phenomena, post-irradiation examination for fuel performance assessment, and conceptual studies of incidental and accidental fuel experiments

  5. History of fast reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, J.H. (Argonne National Lab., IL (United States)); Frost, B.R.T. (Argonne National Lab., IL (United States)); Mustelier, J.P. (COGEMA, Velizy-Villacoublay (France)); Bagley, K.Q. (AEA Reactor Services, Risley (United Kingdom)); Crittenden, G.C. (AEA Reactor Services, Dounreay (United Kingdom)); Dievoet, J. van (Belgonucleaire, Brussels (Belgium))

    1993-09-01

    The first fast breeder eactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s. (orig.)

  6. Fossil fuel usage and the environment

    International Nuclear Information System (INIS)

    Klass, D.L.

    1991-01-01

    The Greenhouse Effect and global warming, ozone formation in the troposphere, ozone destruction in the stratosphere, and acid rain are important environmental issues. The relationship of fossil fuel usage to some of these issues is discussed. Data on fossil fuel consumption and the sources and sinks of carbon dioxide, carbon monoxide, methane, nitrogen and sulfur oxides, and ozone indicate that natural gas provides lower emissions of carbon dioxide, carbon monoxide, and nitrogen and sulfur oxides than other fossil fuels. Global emissions of methane from the gas industry are significantly less than those from other anthropogenic activities and natural sources, and methane plays an important role along with carbon monoxide and nitric oxide in tropospheric ozone formation. Reductions in any or all of these air pollutants would reduce ozone in the lower atmosphere. Several remedial measures have been or are being implemented in certain countries to reduce fossil fuel emissions. These include removal of emissions from the atmosphere by new biomass growth, fuel substitution by use of cleaner burning fuels for stationary and mobile sources, and fossil fuel combustion at higher efficiencies. It is unlikely that concerted environmental action by all governments of the world will occur soon, but much progress has been made to achieve clean air

  7. High capacity carbon dioxide sorbent

    Science.gov (United States)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  8. Oxygen and carbon dioxide sensing

    Science.gov (United States)

    Ren, Fan (Inventor); Pearton, Stephen John (Inventor)

    2012-01-01

    A high electron mobility transistor (HEMT) capable of performing as a CO.sub.2 or O.sub.2 sensor is disclosed, hi one implementation, a polymer solar cell can be connected to the HEMT for use in an infrared detection system. In a second implementation, a selective recognition layer can be provided on a gate region of the HEMT. For carbon dioxide sensing, the selective recognition layer can be, in one example, PEI/starch. For oxygen sensing, the selective recognition layer can be, in one example, indium zinc oxide (IZO). In one application, the HEMTs can be used for the detection of carbon dioxide and oxygen in exhaled breath or blood.

  9. Carbon dioxide retention in divers

    Energy Technology Data Exchange (ETDEWEB)

    Florio, J.T.; Mackenzie, D.A.R.; McKenzie, R.S. [ARE Physiological Laboratory, Gosport (United Kingdom)

    1998-04-01

    This report summarises the work carried out at the ARE Physiological Laboratory (ARE(PL)) between July 1978 and December 1983. The work was intended to examine the proposition that some divers have a low ventilatory response to carbon dioxide; that this results in a low ventilatory response to exercise with consequent hypercapnia; and that these characteristics put the diver at a greater-than-normal risk by increasing the individual`s susceptibility to oxygen toxicity and to other hazards associated with diving (e.g. nitrogen narcosis, decompression sickness and hypothermia). The specific aims of the project can be summarised as follows: (a) to demonstrate the existence of divers who exhibit the tendency to `retain carbon dioxide` when working in hyperbaric conditions; (b) to define the circumstances under which such individuals are at risk; (c) to assess the magnitude of the risk; and (d) to recommend ways to eliminate or to reduce the risk. (author)

  10. Micromechanical simulation of Uranium dioxide polycrystalline aggregate behaviour under irradiation

    International Nuclear Information System (INIS)

    Pacull, J.

    2011-02-01

    In pressurized water nuclear power reactor (PWR), the fuel rod is made of dioxide of uranium (UO 2 ) pellet stacked in a metallic cladding. A multi scale and multi-physic approaches are needed for the simulation of fuel behavior under irradiation. The main phenomena to take into account are thermomechanical behavior of the fuel rod and chemical-physic behavior of the fission products. These last years one of the scientific issue to improve the simulation is to take into account the multi-physic coupling problem at the microscopic scale. The objective of this ph-D study is to contribute to this multi-scale approach. The present work concerns the micro-mechanical behavior of a polycrystalline aggregate of UO 2 . Mean field and full field approaches are considered. For the former and the later a self consistent homogenization technique and a periodic Finite Element model base on the 3D Voronoi pattern are respectively used. Fuel visco-plasticity is introduced in the model at the scale of a single grain by taking into account specific dislocation slip systems of UO 2 . A cohesive zone model has also been developed and implemented to simulate grain boundary sliding and intergranular crack opening. The effective homogenous behaviour of a Representative Volume Element (RVE) is fitted with experimental data coming from mechanical tests on a single pellet. Local behavior is also analyzed in order to evaluate the model capacity to assess micro-mechanical state. In particular, intra and inter granular stress gradient are discussed. A first validation of the local behavior assessment is proposed through the simulation of intergranular crack opening measured in a compressive creep test of a single fuel pellet. Concerning the impact of the microstructure on the fuel behavior under irradiation, a RVE simulation with a representative transient loading of a fuel rod during a power ramp test is achieved. The impact of local stress and strain heterogeneities on the multi

  11. Study of uranium dioxide pellets by micro-acoustic techniques

    International Nuclear Information System (INIS)

    Roque, V.

    1999-01-01

    In order to reduce the volume of spent fuel to reprocess and to improve the productivity and the safety of the nuclear reactor, 'Electricite De France' aim to increase the average fuel discharge burn-up. To elaborate the safety reports, EDF develops codes to simulate the thermo-mechanical behaviour of the nuclear fuel element. These numeric simulations need to evaluate accurately and locally the evolution of the material and of its properties. One of the major concern today is the local characterisation of the intrinsic volume fraction porosity and the mechanical properties of the irradiated fuel. The fuel pellet fragmentation, the steep radial gradient in its physical properties evolution and the chemical evolution of the irradiated material make difficult nay the use of the conventional techniques. This leads EDF to pay interest for the use of two complementary techniques: micro-indentation on the one hand and acoustic methods on the other hand (acoustic microscopy and micro-echography), with an additional constrain to perform on active materials. The objective of this work has been to adapt the acoustic methods for an application on uranium dioxide pellets, used as nuclear fuel in Water Pressurised Reactor. Acquisitions protocols have been set to measure accurately the Rayleigh velocity and the longitudinal velocity of the UO 2 . Using these protocols, we have calibrated these acoustic methods by analysing non irradiated nuclear pellet which properties were well known. This process enable to quantify the effects of different physico-chemical parameters of the UO 2 on the ultrasonic velocities measured. Particularly, the large influence of the porosity has been demonstrated and empirical laws to express the evolution of the acoustic velocities as a function of the volume fraction porosity were established. Moreover, we have established a methodology to characterise the intrinsic elastic constants and the volume fraction porosity on irradiated UO 2 fuel pellets

  12. Manufacture of uranium dioxide powder

    International Nuclear Information System (INIS)

    Becker, M.

    1976-01-01

    Uranium dioxide powder is prepared by the AUC (ammonium uranyl carbonate) method. Supplementing the known process steps, the AUC, after separation from the mother liquor, is washed with an ammonium hydrogen carbonate or an NH 4 OH solution and is subsequently post-treated with a liquid which reduces the surface tension of the residual water in an AUC. Such a liquid is, for instance, alcohol

  13. Carbon dioxide capture and storage

    International Nuclear Information System (INIS)

    Durand, B.

    2011-01-01

    The author first highlights the reasons why storing carbon dioxide in geological formations could be a solution in the struggle against global warming and climate change. Thus, he comments various evolutions and prospective data about carbon emissions or fossil energy consumption as well as various studies performed by international bodies and agencies which show the interest of carbon dioxide storage. He comments the evolution of CO 2 contributions of different industrial sectors and activities, notably in France. He presents the different storage modes and methods which concern different geological formations (saline aquifers, abandoned oil or gas fields, not exploitable coal seams) and different processes (sorption, carbonation). He discusses the risks associated with these storages, the storable quantities, evokes some existing installations in different countries. He comments different ways to capture carbon dioxide (in post-combustion, through oxy-combustion, by pre-combustion) and briefly evokes some existing installations. He evokes the issue of transport, and discusses efficiency and cost aspects, and finally has few words on legal aspects and social acceptability

  14. Internal friction in uranium dioxide

    International Nuclear Information System (INIS)

    Paulin Filho, Pedro Iris

    1979-01-01

    The uranium dioxide inelastic properties were studied measuring internal friction at low frequencies (of the order of 1 Hz). The work was developed in the 160 to 400 deg C temperature range. The effect of stoichiometry variation was studied oxidizing the sample with consequent change of the defect structure originally present in the non-stoichiometric uranium dioxide. The presence of a wide and irregular peak due to oxidation was observed at low temperatures. Activation energy calculations indicated the occurrence of various relaxation processes and assuming the existence of a peak between - 80 and - 70 deg C , the absolute value obtained for the activation energy (0,54 eV) is consistent with the observed values determined at medium and high frequencies for the stress induced reorientation of defects. The microstructure effect on the inelastic properties was studied for stoichiometric uranium dioxide, by varying grain size and porosity. These parameters have influence on the high temperature measurements of internal friction. The internal friction variation for temperatures higher than 340 deg C is thought to be due to grain boundary relaxation phenomena. (author)

  15. Fuel management

    International Nuclear Information System (INIS)

    Schwarz, E.R.

    1975-01-01

    Description of the operation of power plants and the respective procurement of fuel to fulfil the needs of the grid. The operation of the plants shall be optimised with respect to the fuel cost. (orig./RW) [de

  16. Fuel gases

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This paper gives a brief presentation of the context, perspectives of production, specificities, and the conditions required for the development of NGV (Natural Gas for Vehicle) and LPG-f (Liquefied Petroleum Gas fuel) alternative fuels. After an historical presentation of 80 years of LPG evolution in vehicle fuels, a first part describes the economical and environmental advantages of gaseous alternative fuels (cleaner combustion, longer engines life, reduced noise pollution, greater natural gas reserves, lower political-economical petroleum dependence..). The second part gives a comparative cost and environmental evaluation between the available alternative fuels: bio-fuels, electric power and fuel gases, taking into account the processes and constraints involved in the production of these fuels. (J.S.)

  17. Fuel cycles

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1983-05-01

    AECL publications, from the open literature, on fuels and fuel cycles used in CANDU reactors are listed in this bibliography. The accompanying index is by subject. The bibliography will be brought up to date periodically

  18. Nuclear fuel rod with burnable plate and pellet-clad interaction fix

    International Nuclear Information System (INIS)

    Boyle, R.F.

    1987-01-01

    This patent describes a nuclear fuel rod comprising a metallic tubular cladding containing nuclear fuel pellets, the pellets containing enriched uranium-235. The improvement described here comprises: ceramic wafers, each wafter comprising a sintered mixture of gadolinium oxide and uranium dioxide, the uranium oxide having no more uranium-235 than is present in natural uranium dioxide. Each of the wafers is axially disposed between a major portion of adjacent the nuclear fuel pellets, whereby the wafers freeze out volatile fission products produced by the nuclear fuel and prevent interaction of the fission products with the metallic tubing cladding

  19. Carbon Dioxide Removal via Passive Thermal Approaches

    Science.gov (United States)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  20. Nuclear fuels

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear fuel is one of the key component of a nuclear reactor. Inside it, the fission reactions of heavy atoms, uranium and plutonium, take place. It is located in the core of the reactor, but also in the core of the whole nuclear system. Its design and properties influence the behaviour, the efficiency and the safety of the reactor. Even if it represents a weak share of the generated electricity cost, its proper use represents an important economic stake. Important improvements remain to be made to increase its residence time inside the reactor, to supply more energy, and to improve its robustness. Beyond the economical and safety considerations, strategical questions have to find an answer, like the use of plutonium, the management of resources and the management of nuclear wastes and real technological challenges have to be taken up. This monograph summarizes the existing knowledge about the nuclear fuel, its behaviour inside the reactor, its limits of use, and its R and D tracks. It illustrates also the researches in progress and presents some key results obtained recently. Content: 1 - Introduction; 2 - The fuel of water-cooled reactors: aspect, fabrication, behaviour of UO 2 and MOX fuels inside the reactor, behaviour in loss of tightness situation, microscopic morphology of fuel ceramics and evolution under irradiation - migration and localisation of fission products in UOX and MOX matrices, modeling of fuels behaviour - modeling of defects and fission products in the UO 2 ceramics by ab initio calculations, cladding and assembly materials, pellet-cladding interaction, advanced UO 2 and MOX ceramics, mechanical behaviour of the fuel assembly, fuel during a loss of coolant accident, fuel during a reactivity accident, fuel during a serious accident, fuel management inside reactor cores, fuel cycle materials balance, long-term behaviour of the spent fuel, fuel of boiling water reactors; 3 - the fuel of liquid metal fast reactors: fast neutrons radiation

  1. Preparation, sintering and leaching of optimized uranium thorium dioxides

    International Nuclear Information System (INIS)

    Hingant, N.; Clavier, N.; Dacheux, N.; Barre, N.; Hubert, S.; Obbade, S.; Taborda, F.; Abraham, F.

    2009-01-01

    Mixed actinide dioxides are currently studied as potential fuels for several concepts associated to the fourth generation of nuclear reactors. These solids are generally obtained through dry chemistry processes from powder mixtures but could present some heterogeneity in the distribution of the cations in the solid. In this context, wet chemistry methods were set up for the preparation of U 1-x Th x O 2 solid solutions as model compounds for advanced dioxide fuels. Two chemical routes of preparation, involving the precipitation of crystallized precursor, were investigated: on the one hand, a mixture of acidic solutions containing cations and oxalic acid was introduced in an open vessel, leading to a poorly-crystallized precipitate. On the other hand, the starting mixture was placed in an acid digestion bomb then set in an oven in order to reach hydrothermal conditions. By this way, small single-crystals were obtained then characterized by several techniques including XRD and SEM. The great differences in terms of morphology and crystallization state of the samples were correlated to an important variation of the specific surface area of the oxides prepared after heating, then the microstructure of the sintered pellets prepared at high temperature. Preliminary leaching tests were finally undertaken in dynamic conditions (i.e. with high renewal of the leachate) in order to evaluate the influence of the sample morphology on the chemical durability of the final cohesive materials

  2. Thermodynamic and transport properties of uranium dioxide and related phases

    International Nuclear Information System (INIS)

    1965-01-01

    The high melting point of uranium dioxide and its stability under irradiation have led to its use as a fuel in a variety of types of nuclear reactors. A wide range of chemical and physical studies has been stimulated by this circumstances and by the complex nature of the uranium dioxide phase itself. The boundaries of this phase widen as the temperature is increased; at 2000 deg. K a single, homogeneous phase exists from U 2.27 to a hypostoichiometric (UO 2-x ) composition, depending on the oxygen potential of the surroundings. Since there is often an incentive to operate a reactor at the maximum practicable heat rating and, therefore, maximum thermal gradient in the fuel, the determination of the physical properties of the UO 2-x phase becomes a matter of great technological importance. In addition a complex sequence of U-O phases may be formed during the preparation of powder feed material or during the sintering process; these affect the microstructure and properties of the final product and have also received much attention. 184 refs, 33 figs, 15 tabs

  3. Collision and radiative processes in emission of atmospheric carbon dioxide

    Science.gov (United States)

    Smirnov, B. M.

    2018-05-01

    The peculiarities of the spectroscopic properties of CO2 molecules in air due to vibration-rotation radiative transitions are analyzed. The absorption coefficient due to atmospheric carbon dioxide and other atmospheric components is constructed within the framework of the standard atmosphere model, on the basis of classical molecular spectroscopy and the regular model for the spectroscopy absorption band. The radiative flux from the atmosphere toward the Earth is represented as that of a blackbody, and the radiative temperature for emission at a given frequency is determined with accounting for the local thermodynamic equilibrium, a small gradient of the tropospheric temperature and a high optical thickness of the troposphere for infrared radiation. The absorption band model with an absorption coefficient averaged over the frequency and line-by-line model are used for evaluating the radiative flux from the atmosphere to the Earth which values are nearby for these models and are equal W m‑2 for the contemporary concentration of atmospheric CO2 molecules and W m‑2 at its doubled value. The absorption band model is not suitable to calculate the radiative flux change at doubling of carbon dioxide concentration because averaging over oscillations decreases the range where the atmospheric optical thickness is of the order of one, and just this range determines this change. The line-by-line method gives the change of the global temperature K as a result of doubling the carbon dioxide concentration. The contribution to the global temperature change due to anthropogenic injection of carbon dioxide in the atmosphere, i.e. resulted from combustion of fossil fuels, is approximately 0.02 K now.

  4. Fuel pellet

    International Nuclear Information System (INIS)

    Hayashi, K.

    1980-01-01

    Fuel pellet for insertion into a cladding tube in order to form a fuel element or a fuel rod. The fuel pellet has got a belt-like projection around its essentially cylindrical lateral circumferential surface. The upper and lower edges in vertical direction of this belt-like projection are wave-shaped. The projection is made of the same material as the bulk pellet. Both are made in one piece. (orig.) [de

  5. Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Gerdemann, Stephen J.; Dahlin, David C.; O' Connor, William K.; Penner, Larry R.

    2003-01-01

    The dramatic increase in atmospheric carbon dioxide since the Industrial Revolution has caused concerns about global warming. Fossil-fuel-fired power plants contribute approximately one third of the total human-caused emissions of carbon dioxide. Increased efficiency of these power plants will have a large impact on carbon dioxide emissions, but additional measures will be needed to slow or stop the projected increase in the concentration of atmospheric carbon dioxide. By accelerating the naturally occurring carbonation of magnesium silicate minerals it is possible to sequester carbon dioxide in the geologically stable mineral magnesite (MgCO3). The carbonation of two classes of magnesium silicate minerals, olivine (Mg2SiO4) and serpentine (Mg3Si2O5(OH)4), was investigated in an aqueous process. The slow natural geologic process that converts both of these minerals to magnesite can be accelerated by increasing the surface area, increasing the activity of carbon dioxide in the solution, introducing imperfections into the crystal lattice by high-energy attrition grinding, and in the case of serpentine, by thermally activating the mineral by removing the chemically bound water. The effect of temperature is complex because it affects both the solubility of carbon dioxide and the rate of mineral dissolution in opposing fashions. Thus an optimum temperature for carbonation of olivine is approximately 185 degrees C and 155 degrees C for serpentine. This paper will elucidate the interaction of these variables and use kinetic studies to propose a process for the sequestration of the carbon dioxide.

  6. Sequestering carbon dioxide in industrial polymers: Building materials for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Molton, P.M.; Nelson, D.A.

    1993-06-01

    This study was undertaken to determine the possibility of developing beneficial uses for carbon dioxide as a key component for a large-volume building product. Such a use may provide an alternative to storing the gas in oceanic sinks or clathrates as a way to slow the rate of global warming. The authors investigated the concept that carbon dioxide might be used with other chemicals to make carbon-dioxide-based polymers which would be lightweight, strong, and economical alternatives to some types of wood and silica-based building materials. As a construction-grade material, carbon dioxide would be fixed in a solid, useful form where it would not contribute to global warming. With the probable imposition of a fuel carbon tax in industrialized countries, this alternative would allow beneficial use of the carbon dioxide and could remove it from the tax basis if legislation were structured appropriately. Hence, there would be an economic driver towards the use of carbon-dioxide-based polymers which would enhance their future applications. Information was obtained through literature searches and personal contacts on carbon dioxide polymers which showed that the concept (1) is technically feasible, (2) is economically defensible, and (3) has an existing industrial infrastructure which could logically develop it. The technology exists for production of building materials which are strong enough for use by industry and which contain up to 90% by weight of carbon dioxide, both chemically and physically bound. A significant side-benefit of using this material would be that it is self-extinguishing in case of fire. This report is the first stage in the investigation. Further work being proposed will provide details on costs, specific applications and volumes, and potential impacts of this technology.

  7. Molten carbonate fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yasuhiko; Kinoshita, Mamoru; Murakami, Shuzo; Furukawa, Nobuhiro

    1987-09-26

    Reformed gas or coal gasification gas, etc. is used as the fuel gas for fused carbonate fuel cells, however sulfuric compounds are contained in these gases and even after these gases have been treated beforehand through a desulfurizer, a trace quantity of H/sub 2/S is sent to a fuel electrode. Sulfur oxide which is formed at the time of burning and oxidating the exhaust gas from the fuel electrode is supplied together with the air to an oxygen electrode and becomes sulfate after substituting carbonate, which is the electrolyte of the electrode, causing deterioration of the cell characteristics and durability. With regard to a system that hydrogen rich gas which was reformed from the raw fuel is supplied to a fuel electrode, and its exhaust gas is oxidated through a burner to form carbon dioxide which is supplied together with the air to an oxygen electrode, this invention proposes the prevention of the aforementioned defects by providing at the down stream of the above burner a remover to trap with fused carbonate such sulfur compounds as SO/sub 2/ and SO/sub 3/ in the gas after being oxidated as above. (3 figs)

  8. On the possibility of reprocessing of fuel elements of dispersion type with copper matrix by pyrochemical methods

    International Nuclear Information System (INIS)

    Vasin, B.D.; Ivanov, V.A.; Shchetinskij, A.V.; Vavilov, S.K.; Savochkin, Yu.P.; Bychkov, A.V.; Kormilitsyn, M.V.

    2005-01-01

    A consideration is given to pyrochemical processes suitable for separation of uranium dioxide from structural materials when reprocessing cermet type fuel elements. The estimation of the possibility to apply liquid antimony and bismuth, potassium and copper chlorides melts is made. The specimens compacted of copper and uranium dioxide powders in a stainless steel can are used as simulators of fuel element sections. It is concluded that the dissolution of structural materials in molten salts at the stage of uranium dioxide concentration is the process of choice for reprocessing of dispersion type fuel elements [ru

  9. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  10. Fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A new fuel can with a loose bottom and head is described. The fuel bar is attached to the loose bottom and head with two grid poles keeping the distance between bottom and head. A bow-shaped handle is attached to the head so that the fuel bar can be lifted from the can

  11. Environmental costs of fossil fuel energy production

    International Nuclear Information System (INIS)

    Riva, A.; Trebeschi, C.

    1997-01-01

    The costs of environmental impacts caused by fossil fuel energy production are external to the energy economy and normally they are not reflected in energy prices. To determine the environmental costs associated with an energy source a detailed analysis of all environmental impacts of the complete energy cycle is required. The economic evaluation of environmental damages is presented caused by atmospheric emissions produced by fossil fuel combustion for different uses. Considering the emission factors of sulphur oxides, nitrogen oxides, dust and carbon dioxide and the economic evaluation of their environmental damages reported in literature, a range of environmental costs associated with different fossil fuels and technologies is presented. A comparison of environmental costs resulting from atmospheric emissions produced by fossil-fuel combustion for energy production shows that natural gas has a significantly higher environmental value than other fossil fuels. (R.P.)

  12. Technical specifications and performance of CANDU fuel

    International Nuclear Information System (INIS)

    Sejnoha, R.

    1997-01-01

    The relations between Technical Specifications and fuel performance are discussed in terms of design limits and margins. The excellent performance record of CANDU reactor fuel demonstrates that the fuel design defined in the Technical Specifications (and with it other components of the procurement cycle, such as fuel manufacturing), satisfy the requirements. New requirements, changing conditions of fuel application and accumulating experience make periodic updates of the Technical Specifications necessary. Under the CANDU Owners Group (COG) Working Party 9, a Work Package has been conducted to support the review of the Specifications and the documentation of the rationales for their requirements. So far, the review has been completed for 4 Specifications: 1 for Zircaloy tubing, and 3 for uranium dioxide powder. It is planned to complete the review of all 11 currently used specifications by 1999. The paper summarizes the results achieved to mid 1997. (author)

  13. Manufacturing technology and process for BWR fuel

    International Nuclear Information System (INIS)

    Kato, Shigeru

    1996-01-01

    Following recent advanced technologies, processes and requests of the design changes of BWR fuel, Nuclear Fuel Industries, Ltd. (NFI) has upgraded the manufacturing technology and honed its own skills to complete its brand-new automated facility in Tokai in the latter half of 1980's. The plant uses various forms of automation throughout the manufacturing process: the acceptance of uranium dioxide powder, pelletizing, fuel rod assembling, fuel bundle assembling and shipment. All processes are well computerized and linked together to establish the integrated control system with three levels of Production and Quality Control, Process Control and Process Automation. This multi-level system plays an important role in the quality assurance system which generates the highest quality of fuels and other benefits. (author)

  14. Bio-fuels: European Communities fiscal initiatives

    International Nuclear Information System (INIS)

    Autrand, A.

    1992-01-01

    This paper first reviews the influence that European Communities fiscal policies have had in the past on the development of more environmentally compatible fuels such as unleaded gasoline. It then discusses which directions fiscal policy makers should take in order to create appropriate financial incentives encouraging the production and use of biomass derived fuels - methanol, ethanol and pure and transesterified vegetable oils. An assessment is made of the efficacy of a recent European Communities proposal which calls for the application of excise tax reductions on bio-fuels. Attention is given to the net effects due to reduced sulfur and carbon dioxide emissions characterizing bio-fuels and the increased use of fertilizers necessary to produce biomass fuels

  15. Absorption of carbon dioxide in waste tanks

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1987-01-01

    Air flow rates and carbon dioxide concentrations of air entering and exiting eight H-Area waste tanks were monitored for a period of one year. The average instanteous concentration of carbon dioxide in air is within the range reported offsite, and therefore is not affect by operation of the coal-fired power plant adjacent to the tank farm. Waste solutions in each of the tanks were observed to be continuously absorbing carbon dioxide. The rate of absorption of carbon dioxide decreased linearly with the pH of the solution. Personnel exposure associated with the routine sampling and analysis of radioactive wastes stored at SRP to determine the levels of corrosion inhibitors in solution could be reduced by monitoring the absorption of carbon dioxide and using the relationship between pH and carbon dioxide absorption to determine the free hydroxide concentration in solution

  16. LPG fuel

    International Nuclear Information System (INIS)

    Dagnas, F.X.; Jeuland, N.; Fouquet, J.P.; Lauraire, S.; Coroller, P.

    2005-01-01

    LPG fuel has become frequently used through a distribution network with 2 000 service stations over the French territory. LPG fuel ranks number 3 world-wide given that it can be used on individual vehicles, professional fleets, or public transport. What is the environmental benefit of LPG fuel? What is the technology used for these engines? What is the current regulation? Government commitment and dedication on support to promote LPG fuel? Car makers projects? Actions to favour the use of LPG fuel? This article gathers 5 presentations about this topic given at the gas conference

  17. Design and Analysis of Thorium-fueled Reduced Moderation Boiling Water Reactors

    Science.gov (United States)

    Gorman, Phillip Michael

    The Resource-renewable Boiling Water Reactors (RBWRs) are a set of light water reactors (LWRs) proposed by Hitachi which use a triangular lattice and high void fraction to incinerate fuel with an epithermal spectrum, which is highly atypical of LWRs. The RBWRs operate on a closed fuel cycle, which is impossible with a typical thermal spectrum reactor, in order to accomplish missions normally reserved for sodium fast reactors (SFRs)--either fuel self-sufficiency or waste incineration. The RBWRs also axially segregate the fuel into alternating fissile "seed" regions and fertile "blanket" regions in order to enhance breeding and leakage probability upon coolant voiding. This dissertation focuses on thorium design variants of the RBWR: the self-sufficient RBWR-SS and the RBWR-TR, which consumes reprocessed transuranic (TRU) waste from PWR used nuclear fuel. These designs were based off of the Hitachi-designed RBWR-AC and the RBWR-TB2, respectively, which use depleted uranium (DU) as the primary fertile fuel. The DU-fueled RBWRs use a pair of axially segregated seed sections in order to achieve a negative void coefficient; however, several concerns were raised with this multi-seed approach, including difficulty with controlling the reactor and unacceptably high axial power peaking. Since thorium-uranium fuel tends to have much more negative void feedback than uranium-plutonium fuels, the thorium RBWRs were designed to use a single elongated seed to avoid these issues. A series of parametric studies were performed in order to find the design space for the thorium RBWRs, and optimize the designs while meeting the required safety constraints. The RBWR-SS was optimized to maximize the discharge burnup, while the RBWR-TR was optimized to maximize the TRU transmutation rate. These parametric studies were performed on an assembly level model using the MocDown simulator, which calculates an equilibrium fuel composition with a specified reprocessing scheme. A full core model was

  18. 21 CFR 184.1240 - Carbon dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...

  19. A METHOD OF PREPARING URANIUM DIOXIDE

    Science.gov (United States)

    Scott, F.A.; Mudge, L.K.

    1963-12-17

    A process of purifying raw, in particular plutonium- and fission- products-containing, uranium dioxide is described. The uranium dioxide is dissolved in a molten chloride mixture containing potassium chloride plus sodium, lithium, magnesium, or lead chloride under anhydrous conditions; an electric current and a chlorinating gas are passed through the mixture whereby pure uranium dioxide is deposited on and at the same time partially redissolved from the cathode. (AEC)

  20. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Makoto; Ogiya, Shunsuke.

    1989-01-01

    For improving the economy of a BWR type reactor by making the operation cycle longer, the fuel enrichment degree has to be increased further. However, this makes the subcriticality shallower in the upper portion of the reactor core, to bring about a possibility that the reactor shutdown becomes impossible. In the present invention, a portion of fuel rod is constituted as partial length fuel rods (P-fuel rods) in which the entire stack length in the effective portion is made shorter by reducing the concentration of fissionable materials in the axial portion. A plurality of moderator rods are disposed at least on one diagonal line of a fuel assembly and P-fuel rods are arranged at a position put between the moderator rods. This makes it possible to reactor shutdown and makes the axial power distribution satisfactory even if the fuel enrichment degree is increased. (T.M.)

  1. Fuel Services

    International Nuclear Information System (INIS)

    Silberstein, A.

    1982-09-01

    FRAGEMA has developed most types of inspection equipments to work on irradiated fuel assemblies and on single fuel rods during reactor outages with an efficiency compatible with the utilities operating priorities. In order to illustrate this statement, two specific examples of inspection equipments are shortly described: the on-site removable fuel rod assembly examination stand, and the fuel assembly multiple examination device. FRAGEMA has developed techniques for the identifiction of the leaking fuel rods in the fuel assembly and the tooling necessary to perform the replacement of the faulted element. These examples of methods, techniques and equipments described and the experience accumulated through their use allow FRAGEMA to qualify for offering the supply of the corresponding software, hardware or both whenever an accurate understanding of the fuel behaviour is necessary and whenever direct intervention on the assembly and associated components is necessary due to safety, operating or economical reasons

  2. Fuel assembly

    International Nuclear Information System (INIS)

    Watanabe, Shoichi; Hirano, Yasushi.

    1998-01-01

    A one-half or more of entire fuel rods in a fuel assembly comprises MOX fuel rods containing less than 1wt% of burnable poisons, and at least a portion of the burnable poisons comprises gadolinium. Then, surplus reactivity at an initial stage of operation cycle is controlled to eliminate burnable poisons remained unburnt at a final stage, as well as increase thermal reactivity. In addition, the content of fission plutonium is determined to greater than the content of uranium 235, and fuel rods at corner portions are made not to incorporate burnable poisons. Fuel rods not containing burnable poisons are disposed at positions in adjacent with fuel rods facing to a water rod at one or two directions. Local power at radial center of the fuel assembly is increased to flatten the distortion of radial power distribution. (N.H.)

  3. Testing of reactor fuel materials using nuclear techniques

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.

    1978-01-01

    The tests presented here apply to: the quantitative determination of uranium in the core of fuel element plates by the detection of the number of neutrons produced in photo induced reactions in uranium; the determination of 235 U proportion in uranium dioxide samples, in the form of uranyl nitrate, by the technique of the detection of tracks produced by fission fragments and in pellet samples by passive gamma spectrometry and the checking of uranium homogenization distribution in fuel plates and uranium dioxide pellets. (Author) [pt

  4. Can carbon dioxide storage help cut greenhouse emissions? A simplified guide to the IPCC's 'Special Report on Carbon Dioxide Capture and Storage'

    International Nuclear Information System (INIS)

    2006-06-01

    Fossil fuels account for 75 - 80% of today's global energy use and three quarters of humanity's total carbon dioxide emissions. Without specific actions to minimize our impact on the climate, carbon dioxide (CO2) emissions from fossil-fuel energy are projected to swell over the course of the 21st century. The consequences - a global temperature rise of 1.4 - 5.8C and shifting patterns of weather and extreme events - could prove disastrous for future generations. Stabilizing or reducing global emissions of carbon dioxide and other greenhouse gases over the coming decades will challenge human ingenuity. Fortunately, the IPCC's Third Assessment Report, published in 2001, concluded that existing and emerging technologies for limiting emissions could - if supported by the right policies - stabilize atmospheric concentrations of greenhouse gases by the end of the century at levels that would limit further climate change. No single technology will suffice by itself; instead, a combination of technologies will be required. Many of the most promising technologies will contribute by improving the energy efficiency of certain processes and products or by converting solar, wind and other noncarbon power sources into usable energy. But with oil, coal and gas set to remain the primary sources of energy for decades to come, governments and industry are also examining technologies for reducing emissions from these fuels. One such technology is known as carbon dioxide capture and storage. Abbreviated as CCS, this technology could be used by large c1 Introduction stationary 'point sources' such as fossil fuel-fired power plants and industrial facilities to prevent their CO2 emissions from entering the atmosphere and contributing to climate change. To learn more about this technology's potential, the member governments of the United Nations Framework Convention on Climate Change asked the IPCC to assess the current state of knowledge about carbon dioxide storage and capture. The IPCC

  5. Abatement and mitigation of carbon dioxide emissions from power generation

    International Nuclear Information System (INIS)

    Freund, P.; Audus, H.

    1998-01-01

    Current understanding of the world's climate indicates that human-induced changes are occurring and may be sufficient in magnitude to require preventative action, such as limiting atmospheric concentrations of greenhouse gases. The main anthropogenic greenhouse gas is carbon dioxide and its largest source is combustion of fossil fuels for power generation. Many different technologies can be used for reducing emissions, as well as increasing the removal of CO 2 from the atmosphere through enhancement of natural sinks, such as by forestry. Some of these options are available today and could be implemented at relatively little overall cost. For example, improving energy efficiency and switching from high carbon fuels to low carbon fuels, if suitable supplies are available. These can achieve significant reductions in CO 2 emissions. Introduction of renewable sources of energy or nuclear power to displace fossil fuels would achieve deep reductions in emissions if applied widely. However, to avoid disruptive changes, it will also be necessary to find ways of continuing to use fossil fuels but with much less emissions. Capture and storage of CO 2 is a technology which could deliver deep reductions in emissions from fossil fuels. In this paper, methods of removing CO 2 from the flue gas streams of coal and gas-fired power plants are examined, considering both plant as built today as well as possible future variants. Methods of CO 2 storage are also discussed. The results on capture and storage of CO 2 are put into perspective by comparison with studies of the large-scale application of forestry for sequestering atmospheric CO 2 , and also large-scale use of renewable energy sources, in this case growth and harvesting of woody biomass for power generation. Each of these options has different characteristics, providing a range of choices of ways of tackling climate change

  6. Combined effect of sulfur dioxide and carbon dioxide gases on mold fungi

    Energy Technology Data Exchange (ETDEWEB)

    Kochurova, A.I.; Karpova, T.N.

    1974-01-01

    Sulfur dioxide at 0.08% killed Penicillium expansum, Stemphylium macrosporium, and Botrytis cinerea within 24 hours. At 0.2%, it killed P. citrinum, Alternaria tenuis, and Fusarium moniliforme. Sulfur dioxide (at 0.04%) and Sulfur dioxide-carbon dioxide mixtures (at 0.02 and 5% respectively) completely suppressed the growth of P. citrinum, P. expansum, P. rubrum, A. tenuis, S. macrosporium, B. cinerea, and F. moniliforme in laboratory experiments. 1 table.

  7. Experimental nitrogen dioxide poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Cutlip, R C

    1966-01-01

    Experimental nitrogen dioxide inhalation has been reported to produce signs and lesions typical of field cases of bovine pulmonary adenomatosis (BPA) as described by Monlux et al, and Seaton. Similar lesions have been produced in mice and guinea pigs. These studies were conducted because of the similarities between silo-filler's disease of man, caused by nitrogen dioxide, and BPA. Since previous studies involved inadequate numbers of cattle, a more critical evaluation of the effects of nitrogen dioxide was needed. This project was designed to study the clinical and pathologic alterations induced in cattle by repeated exposure to nitrogen dioxide gas.

  8. The Probability of Tax Charges for Industrial Emission of Carbon Dioxide

    International Nuclear Information System (INIS)

    Arief-Goeritno

    2000-01-01

    Generally, although all industrial by product can be toxic and non-toxic pollutant that have potential hazard for human being and environmental. One of these pollutants is carbon dioxide that has potential contribution for greenhouse effect. Although carbon dioxide can be absorbed by plants at the forest but quantity of this emission more higher than quantity of forest area. For this reason rehabilitation of the forest and diversifications and energy saving can be used for decreasing of greenhouse effect. The synergy action such as economical instrumentation (specially microeconomics) can be implemented base on regulators, taxing and incentive and effluent charge by deeper assessment on environmental economics. By identification of quality and quantity fossil fuels that was burned in the industrial process so with stoichiometry calculation will be found quantity of carbon dioxide emission and the taxes can be estimated. (author)

  9. Study of behavior of cermet fuel elements on IGR reactor under RIA type accident condition

    International Nuclear Information System (INIS)

    Vasil'ev, Yu.S.; Vurim, A.D.; Koltyshev, S.M.; Pakhnits, V.A.; Tukhvatulin, Sh.T.; Popov, V.V.; Ryzhkov, A.N.

    1996-01-01

    In 1993 December in IGR reactor of Inst. of Atomic Energy of National Nuclear Center of Republic of Kazakstan the second batch of in-pile testing of perspective cermet fuel elements under the condition, simulating RIA type accident was conducted. In the second batch of testing during eight start-ups 10 cermet fuel elements were examined. Among which 8 of monolith type and 2 fuel elements with false jacket beside cladding (FJF), as well as, 6 standard fuel elements of WWER-1000 type reactor with dioxide fuel were tested. 2 fuel elements - cermet and standard were placed into capsule filled with water. To measure energy release for the each start-up two fission monitor and inside core control gauge were placed. In all the start-ups operation mode of IGR was neutron pulse. Power of fuel element kept changing from 151 to 336 k W; energy release was 38-93 kJ/gr m 235 U; maximum temperature of cermet fuel was 1943-2173 K, of dioxide fuel - 1923-2843 K. The testing has demonstrated that operability of cermet fuel elements under reactivity accident condition with pulse width of 0,2 s is, at least, not less that operability of dioxide fuel elements, through advantages of cermet fuel under these conditions are revealed to the least extent

  10. Titanium dioxide nanomaterials for photocatalysis

    International Nuclear Information System (INIS)

    Liu, Yan; Li, Zhe; Green, Michael; Just, Michael; Chen, Xiaobo; Li, Yang Yang

    2017-01-01

    Titanium dioxide (TiO 2 ) has been long regarded as one of the more promising photocatalysts to remove environmental pollution and to generate hydrogen from water under sunlight irradiation via photocatalysis. TiO 2 is environmentally benign and thus is considered a ‘green’ catalyst. In this review we present a short introduction to the physical and electronic properties of TiO 2 , its photocatalytic mechanisms, and some recent examples of various TiO 2 materials used for photocatalysis; these examples include 0, 1, 2, 3D, faceted, defected, composited, and hydrogenated TiO 2 materials. (topical review)

  11. Muon transfer to sulphur dioxide

    International Nuclear Information System (INIS)

    Mulhauser, F.; Schneuwly, H.

    1993-01-01

    A systematic study of muon capture and muon transfer has been performed in seven different H 2 + SO 2 gas mixtures. From the single-exponential time structure of the muonic sulphur x-rays, one determines the lifetime of the μp atoms under the given experimental conditions. The reduced muon transfer rates to the sulphur dioxide molecule, deduced from these lifetimes, all agree well with each other. The muonic oxygen time spectra show an additional structure as if μp atoms of another kind were present. Comparable time structures are observed in a D 2 + SO 2 mixture. (author)

  12. Nuclear energy - Uranium dioxide pellets - Determination of density and volume fraction of open and closed porosity. 2. ed. 2. ed.

    International Nuclear Information System (INIS)

    2008-01-01

    This International Standard describes a method for determining the chlorine and fluorine concentrations in uranium dioxide and in sintered fuel pellets by pyrohydrolysis of samples, followed either by liquid ion-exchange chromatography or by selective electrode measurement of chlorine and fluorine ions. Many ion-exchange chromatography systems and ion-selective electrode measurement systems are available

  13. A high-temperature, short-duration method of fabricating surrogate fuel microkernels for carbide-based TRISO nuclear fuels

    International Nuclear Information System (INIS)

    Vasudevamurthy, G.; Radecka, A.; Massey, C.

    2015-01-01

    High-temperature gas-cooled reactor technology is a frontrunner among generation IV nuclear reactor designs. Among the advanced nuclear fuel forms proposed for these reactors, dispersion-type fuel consisting of microencapsulated uranium di-oxide kernels, popularly known as tri-structural isotropic (TRISO) fuel, has emerged as the fuel form of choice. Generation IV gas-cooled fast reactors offer the benefit of recycling nuclear waste with increased burn-ups in addition to producing the required power and hydrogen. Uranium carbide has shown great potential to replace uranium di-oxide for use in these fast spectrum reactors. Uranium carbide microkernels for fast reactor TRISO fuel have traditionally been fabricated by long-duration carbothermic reduction and sintering of precursor uranium dioxide microkernels produced using sol-gel techniques. These long-duration conversion processes are often plagued by issues such as final product purity and process parameters that are detrimental to minor actinide retention. In this context a relatively simple, high-temperature but relatively quick-rotating electrode arc melting method to fabricate microkernels directly from a feedstock electrode was investigated. The process was demonstrated using surrogate tungsten carbide on account of its easy availability, accessibility and the similarity of its melting point relative to uranium carbide and uranium di-oxide.

  14. A high-temperature, short-duration method of fabricating surrogate fuel microkernels for carbide-based TRISO nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevamurthy, G.; Radecka, A.; Massey, C. [Virginia Commonwealth Univ., Richmond, VA (United States). High Temperature Materials Lab.

    2015-07-01

    High-temperature gas-cooled reactor technology is a frontrunner among generation IV nuclear reactor designs. Among the advanced nuclear fuel forms proposed for these reactors, dispersion-type fuel consisting of microencapsulated uranium di-oxide kernels, popularly known as tri-structural isotropic (TRISO) fuel, has emerged as the fuel form of choice. Generation IV gas-cooled fast reactors offer the benefit of recycling nuclear waste with increased burn-ups in addition to producing the required power and hydrogen. Uranium carbide has shown great potential to replace uranium di-oxide for use in these fast spectrum reactors. Uranium carbide microkernels for fast reactor TRISO fuel have traditionally been fabricated by long-duration carbothermic reduction and sintering of precursor uranium dioxide microkernels produced using sol-gel techniques. These long-duration conversion processes are often plagued by issues such as final product purity and process parameters that are detrimental to minor actinide retention. In this context a relatively simple, high-temperature but relatively quick-rotating electrode arc melting method to fabricate microkernels directly from a feedstock electrode was investigated. The process was demonstrated using surrogate tungsten carbide on account of its easy availability, accessibility and the similarity of its melting point relative to uranium carbide and uranium di-oxide.

  15. Evaluating measurements of carbon dioxide emissions using a precision source--A natural gas burner.

    Science.gov (United States)

    Bryant, Rodney; Bundy, Matthew; Zong, Ruowen

    2015-07-01

    A natural gas burner has been used as a precise and accurate source for generating large quantities of carbon dioxide (CO2) to evaluate emissions measurements at near-industrial scale. Two methods for determining carbon dioxide emissions from stationary sources are considered here: predicting emissions based on fuel consumption measurements-predicted emissions measurements, and direct measurement of emissions quantities in the flue gas-direct emissions measurements. Uncertainty for the predicted emissions measurement was estimated at less than 1%. Uncertainty estimates for the direct emissions measurement of carbon dioxide were on the order of ±4%. The relative difference between the direct emissions measurements and the predicted emissions measurements was within the range of the measurement uncertainty, therefore demonstrating good agreement. The study demonstrates how independent methods are used to validate source emissions measurements, while also demonstrating how a fire research facility can be used as a precision test-bed to evaluate and improve carbon dioxide emissions measurements from stationary sources. Fossil-fuel-consuming stationary sources such as electric power plants and industrial facilities account for more than half of the CO2 emissions in the United States. Therefore, accurate emissions measurements from these sources are critical for evaluating efforts to reduce greenhouse gas emissions. This study demonstrates how a surrogate for a stationary source, a fire research facility, can be used to evaluate the accuracy of measurements of CO2 emissions.

  16. Fuel assembly

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Matsuzuka, Ryuji.

    1976-01-01

    Object: To provide a fuel assembly which can decrease pressure loss of coolant to uniform temperature. Structure: A sectional area of a flow passage in the vicinity of an inner peripheral surface of a wrapper tube is limited over the entire length to prevent the temperature of a fuel element in the outermost peripheral portion from being excessively decreased to thereby flatten temperature distribution. To this end, a plurality of pincture-frame-like sheet metals constituting a spacer for supporting a fuel assembly, which has a plurality of fuel elements planted lengthwise and in given spaced relation within the wrapper tube, is disposed in longitudinal grooves and in stacked fashion to form a substantially honeycomb-like space in cross section. The fuel elements are inserted and supported in the space to form a fuel assembly. (Kamimura, M.)

  17. Fuel assemblies

    International Nuclear Information System (INIS)

    Nagano, Mamoru; Yoshioka, Ritsuo

    1983-01-01

    Purpose: To effectively utilize nuclear fuels by increasing the reactivity of a fuel assembly and reduce the concentration at the central region thereof upon completion of the burning. Constitution: A fuel assembly is bisected into a central region and a peripheral region by disposing an inner channel box within a channel box. The flow rate of coolants passing through the central region is made greater than that in the peripheral region. The concentration of uranium 235 of the fuel rods in the central region is made higher. In such a structure, since the moderating effect in the central region is improved, the reactivity of the fuel assembly is increased and the uranium concentration in the central region upon completion of the burning can be reduced, fuel economy and effective utilization of uranium can be attained. (Kamimura, M.)

  18. Fuel assembly

    International Nuclear Information System (INIS)

    Bando, Masaru.

    1993-01-01

    As neutron irradiation progresses on a fuel assembly of an FBR type reactor, a strong force is exerted to cause ruptures if the arrangement of fuel elements is not displaced, whereas the fuel elements may be brought into direct contact with each other not by way of spacers to cause burning damages if the arrangement is displaced. In the present invention, the circumference of fuel elements arranged in a normal triangle lattice is surrounded by a wrapper tube having a hexagonal cross section, wire spacers are wound therearound, and deformable spacers are distributed to optional positions for fuel elements in the wrapper tube. Interaction between the fuel elements caused by irradiation is effectively absorbed, thereby enabling to delay the occurrence of the rupture and burning damages of the elements. (N.H.)

  19. Fuel assembly

    International Nuclear Information System (INIS)

    Yokota, Tokunobu.

    1990-01-01

    A fuel assembly used in a FBR type nuclear reactor comprises a plurality of fuel rods and a moderator guide member (water rod). A moderator exit opening/closing mechanism is formed at the upper portion of the moderator guide member for opening and closing a moderator exit. In the initial fuel charging operation cycle to the reactor, the moderator exit is closed by the moderator exit opening/closing mechanism. Then, voids are accumulated at the inner upper portion of the moderator guide member to harden spectrum and a great amount of plutonium is generated and accumulated in the fuel assembly. Further, in the fuel re-charging operation cycle, the moderator guide member is used having the moderator exit opened. In this case, voids are discharged from the moderator guide member to decrease the ratio, and the plutonium accumulated in the initial charging operation cycle is burnt. In this way, the fuel economy can be improved. (I.N.)

  20. Fuel spacer

    International Nuclear Information System (INIS)

    Nishida, Koji; Yokomizo, Osamu; Kanazawa, Toru; Kashiwai, Shin-ichi; Orii, Akihito.

    1992-01-01

    The present invention concerns a fuel spacer for a fuel assembly of a BWR type reactor and a PTR type reactor. Springs each having a vane are disposed on the side surface of a circular cell which supports a fuel rods. A vortex streams having a vertical component are formed by the vanes in the flowing direction of a flowing channel between adjacent cylindrical cells. Liquid droplets carried by streams are deposited on liquid membrane streams flowing along the fuel rod at the downstream of the spacer by the vortex streams. In view of the above, the liquid droplets can be deposited to the fuel rod without increasing the amount of metal of the spacer. Accordingly, the thermal margin of the fuel assembly can be improved without losing neutron economy. (I.N.)