WorldWideScience

Sample records for thoracolumbar junction requiring

  1. CT-findings in pain syndromes originated from thoraco-lumbar junction

    International Nuclear Information System (INIS)

    Dimitrov, I.; Karadjova, M.; Malchanova, V.

    2007-01-01

    The thoraco-lumbar junction syndrome imitates, as far as clinical symptoms are concerned, low back pain, caused by disc protrusion in the lower lumbar vertebral segments. It is manifested by referred pain in the area, innervated by posterior and anterior primary rami (dorsal and ventral rami), belonging to thoraco-lumbar junction vertebral segments (Th11-L2). Eighty one patients with clinically diagnosed thoraco-lumbar junction syndrome underwent CT-investigations, that aimed establishing pathological processes, leading to this clinical symptomatology. 148 vertebral levels were examined. In 67 patients we scanned two consecutive levels to find the type of change of the zygapophyseal joints. We found facet tropism (asymmetry) in 72 patients (88.8%) or in 117 levels (79.6%), degenerated faced joints in 63 patients (77.8%), pathology of the intervertebral disc - in 33 patients (43.1%) including 5 patients (6.2%) with disc prolapse. When investigating on two subsequent segments (Th11-Th12 and Th12-L1) sudden anatomical change in orientation of facets occurred in 55 patients (82%). Our findings support the hypothesis of the facet-joint origin of this ailment. (authors)

  2. Radiological diagnosis of chronic spinal cord compressive lesion at thoraco-lumbar junction

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Izumi; Isu, Toyohiko; Iwasaki, Yoshinobu; Akino, Minoru; Abe, Hiroshi; Tashiro, Kunio; Miyasaka, Kazuo; Abe, Satoru; Kaneda, Kiyoshi

    1988-10-01

    Radiological findings in five cases with chronic spinal cord compressive lesion at thoraco-lumbar junction were reported. Three cases had spondylosis and two cases had ossification of yellow ligament (OYL). The levels of the lesions were T12/L1 in three cases and T11/12 in two cases. Two out of three spondylotic patients had also OYL at the same level. The five cases consisted of three men and two women. The ages ranged from 42 to 60 years old with a mean age of 53 years old. Neurologically, every patient showed flaccid paresis and sensory disturbance of the legs. Two cases had sensory disturbance of stocking type. The intervals from the onset of the symptoms to the final diagnosis were 6 months, 7 years, 8 years, 11 years and 12 years. Myelography showed anterior spinal cord compression by bony spur in spondylotic patients, and posterior compression by OYL in other cases. Myelography in flexion posture disclosed the cord compression by bony spur more clearly in two out of three spondylotic patients. Delayed CT-myelography showed intramedullary filling of contrast material in two cases, which indicated degenerative change or microcavitation due to long term compression of the spinal cord. MRI was taken in three spondylotic patients and could directly show compression of the spinal cord. Difficulty in detecting abnormality at thoraco-lumbar junction on plain roentgenogram, and similarity of the symptoms to peripheral nerve disease often lead to a delay in diagnosis. The significance of dynamic myelography and delayed CT-myelography when dealing with such a lesion was discussed here. MRI is also a useful method for diagnosing a compressive lesion at the thoraco-lumbar junction.

  3. Radiological diagnosis of chronic spinal cord compressive lesion at thoraco-lumbar junction

    International Nuclear Information System (INIS)

    Koyanagi, Izumi; Isu, Toyohiko; Iwasaki, Yoshinobu; Akino, Minoru; Abe, Hiroshi; Tashiro, Kunio; Miyasaka, Kazuo; Abe, Satoru; Kaneda, Kiyoshi

    1988-01-01

    Radiological findings in five cases with chronic spinal cord compressive lesion at thoraco-lumbar junction were reported. Three cases had spondylosis and two cases had ossification of yellow ligament (OYL). The levels of the lesions were T12/L1 in three cases and T11/12 in two cases. Two out of three spondylotic patients had also OYL at the same level. The five cases consisted of three men and two women. The ages ranged from 42 to 60 years old with a mean age of 53 years old. Neurologically, every patient showed flaccid paresis and sensory disturbance of the legs. Two cases had sensory disturbance of stocking type. The intervals from the onset of the symptoms to the final diagnosis were 6 months, 7 years, 8 years, 11 years and 12 years. Myelography showed anterior spinal cord compression by bony spur in spondylotic patients, and posterior compression by OYL in other cases. Myelography in flexion posture disclosed the cord compression by bony spur more clearly in two out of three spondylotic patients. Delayed CT-myelography showed intramedullary filling of contrast material in two cases, which indicated degenerative change or microcavitation due to long term compression of the spinal cord. MRI was taken in three spondylotic patients and could directly show compression of the spinal cord. Difficulty in detecting abnormality at thoraco-lumbar junction on plain roentgenogram, and similarity of the symptoms to peripheral nerve disease often lead to a delay in diagnosis. The significance of dynamic myelography and delayed CT-myelography when dealing with such a lesion was discussed here. MRI is also a useful method for diagnosing a compressive lesion at the thoraco-lumbar junction. (author)

  4. Acrylic kyphoplasty in recent nonosteoporotic fractures of the thoracolumbar junction: a prospective clinical and 3D radiologic study of 54 patients.

    Science.gov (United States)

    Saget, Mathieu; Teyssedou, Simon; Prebet, Remi; Vendeuvre, Tanguy; Gayet, Louis-Etienne; Pries, Pierre

    2014-08-01

    Prospective clinical and radiological study. To evaluate the impact of stand-alone acrylic kyphoplasty in the treatment of recent traumatic fractures of the thoracolumbar spine in young patients. The management of fractures of the thoracolumbar spine without neurological deficit remains controversial. For a long time clinicians could only chose between functional treatment, orthopedic treatment, and traditional surgery. The recent advent of minimally invasive surgical techniques is an interesting alternative. Fifty-four patients with a mean age of 45.8±18.2 years and who had recently sustained a fracture of the thoracolumbar junction were enrolled into the study. Balloon kyphoplasty was performed using acrylic cement. Radiologic assessments (computed tomography scans) and clinical assessments (including Visual Analog Scale and Oswestry Disability Index scores) were used to determine kyphoplasty success and measure patient recovery over 2 years. Kyphoplasty reduced mean vertebral kyphosis from 12.8±5.0 degrees at trauma to 8.2±5.1 degrees at 2-year follow-up. Mean vertebral kyphosis was corrected by -5.7±4.7 degrees (P=0.0001) at the point of first verticalization, with no significant change at the 2-year follow-up visit (+1.1±4.3 degrees, P=0.1058). Kyphoplasty significantly augmented the height of the 6 anterior and intermediate segments. Maximum mean augmentation of intermediate vertebral height after 6 months was (11.6%±15.5%, P<0.0001). Patients tolerated the procedure well and 56% of them returned to work 3 months after kyphoplasty. Kyphoplasty is safe and effective in the correction of nonosteoporotic fractures of the thoracolumbar junction in young patients, and remains stable for at least 2 years postsurgery.

  5. Radiological outcome of transpedicular screws fixation in the management of thoracolumbar spine injury

    International Nuclear Information System (INIS)

    Haq, M.I.U.

    2015-01-01

    Traumatic fracture of the spine is a serious neurosurgical condition that has serious impact on the patient's quality of life. Thoracolumbar junction is the most common site of spinal injuries. The aims of management of thoracolumbar spinal fractures are to restore vertebral column stability, and to obtain spinal canal decompression. This ultimately leads to early mobilization of the patients. This study was conducted to compare preoperative and post-operative vertebral height, kyphotic angle and sagittal index in patients treated with pedicle screws and rods in thoracolumbar spine fractures. Methods: This cross-sectional study was conducted in the department of Neurosurgery, Hayatabad Medical Complex, Peshawar from 1st February 2010 to 31st July 2011. A total 161 patients with unstable thoracolumber spine fracture were included in this study. In these patients fixation was done through transpedicle screws with rods. Anteroposterior and lateral views X-rays of thoraco-lumbar spine were done pre and post operatively. Results: Out of 161 patients, 109 (67.7%) were males and 52 (32.3%) females. The age of patients ranged from 20 to 70 years (mean 42.2 years) with 71 (44.1%) in the age range of 31-40 years. Preoperative average vertebral height was 9.4194 mm while postoperative average was 19.642 mm. The mean kyphosis was 23.06 degree preoperatively. Immediately after surgery the average correction of kyphosis was 9.45 degree. The pre-operative average sagittal index was 19.38 degree, which was reduced to an average 5.41 degree post operatively. Conclusions: Transpedicular fixation for unstable thoraco-lumbar spinal fractures achieves a stable fracture segment with improvement of vertebral height, kyphotic angle and sagittal index. Hence, preventing the secondary spinal deformities. (author)

  6. Management of thoracolumbar spine trauma An overview

    Directory of Open Access Journals (Sweden)

    S Rajasekaran

    2015-01-01

    Full Text Available Thoracolumbar spine fractures are common injuries that can result in significant disability, deformity and neurological deficit. Controversies exist regarding the appropriate radiological investigations, the indications for surgical management and the timing, approach and type of surgery. This review provides an overview of the epidemiology, biomechanical principles, radiological and clinical evaluation, classification and management principles. Literature review of all relevant articles published in PubMed covering thoracolumbar spine fractures with or without neurologic deficit was performed. The search terms used were thoracolumbar, thoracic, lumbar, fracture, trauma and management. All relevant articles and abstracts covering thoracolumbar spine fractures with and without neurologic deficit were reviewed. Biomechanically the thoracolumbar spine is predisposed to a higher incidence of spinal injuries. Computed tomography provides adequate bony detail for assessing spinal stability while magnetic resonance imaging shows injuries to soft tissues (posterior ligamentous complex [PLC] and neurological structures. Different classification systems exist and the most recent is the AO spine knowledge forum classification of thoracolumbar trauma. Treatment includes both nonoperative and operative methods and selected based on the degree of bony injury, neurological involvement, presence of associated injuries and the integrity of the PLC. Significant advances in imaging have helped in the better understanding of thoracolumbar fractures, including information on canal morphology and injury to soft tissue structures. The ideal classification that is simple, comprehensive and guides management is still elusive. Involvement of three columns, progressive neurological deficit, significant kyphosis and canal compromise with neurological deficit are accepted indications for surgical stabilization through anterior, posterior or combined approaches.

  7. [Application of Finite Element Method in Thoracolumbar Spine Traumatology].

    Science.gov (United States)

    Zhang, Min; Qiu, Yong-gui; Shao, Yu; Gu, Xiao-feng; Zeng, Ming-wei

    2015-04-01

    The finite element method (FEM) is a mathematical technique using modern computer technology for stress analysis, and has been gradually used in simulating human body structures in the biomechanical field, especially more widely used in the research of thoracolumbar spine traumatology. This paper reviews the establishment of the thoracolumbar spine FEM, the verification of the FEM, and the thoracolumbar spine FEM research status in different fields, and discusses its prospects and values in forensic thoracolumbar traumatology.

  8. Minimally Invasive Surgery (MIS) Approaches to Thoracolumbar Trauma.

    Science.gov (United States)

    Kaye, Ian David; Passias, Peter

    2018-03-01

    Minimally invasive surgical (MIS) techniques offer promising improvements in the management of thoracolumbar trauma. Recent advances in MIS techniques and instrumentation for degenerative conditions have heralded a growing interest in employing these techniques for thoracolumbar trauma. Specifically, surgeons have applied these techniques to help manage flexion- and extension-distraction injuries, neurologically intact burst fractures, and cases of damage control. Minimally invasive surgical techniques offer a means to decrease blood loss, shorten operative time, reduce infection risk, and shorten hospital stays. Herein, we review thoracolumbar minimally invasive surgery with an emphasis on thoracolumbar trauma classification, minimally invasive spinal stabilization, surgical indications, patient outcomes, technical considerations, and potential complications.

  9. Obliged Removal of the Percutaneous Fixation System on the Thoracolumbar Junction in Patients with Idiopathic Scoliosis

    Directory of Open Access Journals (Sweden)

    Alessandro Landi

    2016-12-01

    Full Text Available Introduction Minimally invasive percutaneous surgery of the spine is used to treat thoracolumbar junction and lumbar spine fractures by percutaneous fixation. Once fusion has been obtained, it is possible to remove the percutaneous instrumentation after 6 - 12 months. We report the case of an obliged removal of the fixation system at 12 months following operation in a patient with a pre-existing compensated and asymptomatic idiopathic scoliosis. Case Presentation A 48-year-old patient affected by a compensated asymptomatic idiopathic scoliosis with an L3 type A3 fracture. The patient underwent a percutaneous short fixation L2 - L4. In the following months the patient presented progressive worsening of the low back pain and walking difficulties. The percutaneous fixation system was then removed using the same surgical access. Conclusions This particular case explains well the importance of biomechanical balance when a spinal fixation should be perform, and demonstrate how an underestimation of this aspect may cause a worsening of symptoms even if the surgical procedure was correctly performed. It is evident that the removal procedure can lead clinical benefit to a patient, in which the fixation system created a decompensation of the curvature of the spine, thus causing biomechanical alterations and generating pain. In these cases, it may be opportune to limit the fracture reduction during the surgical procedure to modify the least possible the pre-existing scoliosis and to increase the patient’s comfort after the operation. The biomechanical behaviour of the spine is specific for each patient so only a careful detection of it could lead to an optimal therapeutic result.

  10. MR Imaging of Supraspinous Ligament Injury in the Thoracolumbar Spine

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Hee; Hwang, Ji Young; Lee, Sun Wha; Koh, Young Do [Ewha Womans University, Seoul (Korea, Republic of)

    2009-10-15

    We wanted to evaluate the MRI features and their diagnostic accuracy for SSL injury in the thoracolumbar spine. From December 2003 to June 2006, among 42 surgically treated patients with spinal fracture, the 35 patients who underwent MRI and who were surgically evaluated for SSL injury were included in this study. The sagittal MR images were evaluated for the presence of SSL injury and its level, location and distraction gap, the level and compression ratio of the fractured body, and the presence of ISL or yellow ligament injury and posterior osseous fracture. The sensitivity, specificity and accuracy of MRI were calculated. The distraction gap of the SSL and the compression ratio of the fractured body or posterior osseous fracture were statistically analyzed. Thirty-one among the 33 patients with surgically confirmed SSL injury were diagnosed on MRI. SSL injury was mostly seen at the thoracolumbar junction and near the upper spinous process. The mean distraction gap was 4.3 mm. The level of the fractured body was most commonly in the lower vertebra of the injured SSL level and the mean compression ratio was 21.8%. Combined SSL, ISL and yellow ligament injury were mostly seen. The sensitivity, specificity and accuracy were 93.9%, 50% and 91.4%, respectively. There was a statistically significant difference of the distraction gap of the injured SSL depending on the presence of posterior osseous fracture. MRI is an accurate modality for evaluating SSL injury and the associated findings.

  11. 78 FR 68906 - Agency Information Collection (Back (Thoracolumbar Spine) Conditions Disability Benefits...

    Science.gov (United States)

    2013-11-15

    ... (Thoracolumbar Spine) Conditions Disability Benefits Questionnaire). Type of Review: New data collection... (Thoracolumbar Spine) Conditions Disability Benefits Questionnaire) Under OMB Review AGENCY: Veterans Benefits... Control No. 2900- NEW (Back (Thoracolumbar Spine) Conditions Disability Benefits Questionnaire)'' in any...

  12. Unconventional fixation Thoracolumbar fractures using round hole boneplates and transpedicular screws

    International Nuclear Information System (INIS)

    Behairy, Yaser M.

    2001-01-01

    In an attempt to contain the high cost of commercially available pediclescrew systems, several authors have used unconventional alternatives such aslocally made plates or dynamic compression plates (DCP) along with cancellousscrews for transpedicular fixation of the thoracolumbar spine. These plates,however, allow for a wide range of motion at the plate-screw interphase andthe construct does not provide stability in the sagittal plane. Round holebone plates, on the other hand, allow much less mobility at the plate-screwinterphase and the final construct offers better stability in the sagittalplane. Our objective was to determine the clinical, radiologic and functionalstatus of patients who underwent posterior fracture fixation using round holebone plates and cancellous screws and evaluate the construct's ability tomaintain reduction of the fracture. This was a postoperative follow-up ofpatients with fractures around the thoracolumbar junction fixed using roundhole bone plates and cancellous transpedicular screws. Round hole bone platesalong with 6.5 mm transpedicular cancellous screws were used for posteriorspinal instrumentation in neurologically intact patients with isolatedunstable fractures of the last thoracic or first lumbar vertebra. Seventeenpatients were included in this study. There mean follow-up was 10 months(range 5 to 12). All had evidence of fusion at a mean of 5 months (range 4 to7). No patients had breakage or loosening of the screws and none had breakageof the plate. The mean kyphosis angle at the fracture site was 34 degreepreoperatively, -4 degree in the immediate postoperative period, and 3 degreeon final follow-up radiographs. The percentage loss of anterior vertebralbody height was 51% in the immediate postoperative period and 16% on finalfollow-up radiographs. The use of round hole bone plates along with 6.5 mmcancellous screws inserted into the pedicles provides an angle-stableconstruct that allows for better stability in the sagittal plane

  13. Thoracolumbar fracture with listhesis - an uncommon manifestation of child abuse

    International Nuclear Information System (INIS)

    Levin, Terry L.; Blitman, Netta M.; Berdon, Walter E.; Cassell, Ian

    2003-01-01

    Thoracolumbar fracture with listhesis (FL) is an uncommon manifestation of child abuse (increasingly known as nonaccidental trauma), with only six prior reports in the literature. This article seeks to call attention to FL of the thoracolumbar spine in abused children and infants. We reviewed plain films, CT and MR images in seven new cases of FL of the thoracolumbar spine in abused children ages 6 months to 7 years, two of whom became paraplegic from their injuries. Findings varied from subtle listhesis of one vertebra on another to frank vertebral dislocation, most commonly at L1/2. Paravertebral calcification was present in all but one case. In two children, thoracolumbar FL was the only radiographic sign of abuse. Radiographic findings of FL of the thoracolumbar spine may be subtle and may be erroneously interpreted as due to a congenital or neoplastic cause. While other signs of child abuse should be sought, spinal injury may be the sole sign of abuse. Recognition of this entity is important to pursue the diagnosis of abuse. (orig.)

  14. Thoracolumbar fracture with listhesis - an uncommon manifestation of child abuse

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Terry L.; Blitman, Netta M. [Department of Radiology, Montefiore Medical Center, 111 E. 210th Street, Bronx, New York, NY 10467-2490 (United States); Berdon, Walter E. [Department of Radiology, Babies Hospital, New York Presbyterian Hospital, New York (United States); Cassell, Ian [Department of Radiology, Phoenix Children' s Hospital, Phoenix, AZ (United States)

    2003-05-01

    Thoracolumbar fracture with listhesis (FL) is an uncommon manifestation of child abuse (increasingly known as nonaccidental trauma), with only six prior reports in the literature. This article seeks to call attention to FL of the thoracolumbar spine in abused children and infants. We reviewed plain films, CT and MR images in seven new cases of FL of the thoracolumbar spine in abused children ages 6 months to 7 years, two of whom became paraplegic from their injuries. Findings varied from subtle listhesis of one vertebra on another to frank vertebral dislocation, most commonly at L1/2. Paravertebral calcification was present in all but one case. In two children, thoracolumbar FL was the only radiographic sign of abuse. Radiographic findings of FL of the thoracolumbar spine may be subtle and may be erroneously interpreted as due to a congenital or neoplastic cause. While other signs of child abuse should be sought, spinal injury may be the sole sign of abuse. Recognition of this entity is important to pursue the diagnosis of abuse. (orig.)

  15. Traumatic thoracolumbar spine fractures

    NARCIS (Netherlands)

    J. Siebenga (Jan)

    2013-01-01

    textabstractTraumatic spinal fractures have the lowest functional outcomes and the lowest rates of return to work after injury of all major organ systems.1 This thesis will cover traumatic thoracolumbar spine fractures and not osteoporotic spine fractures because of the difference in fracture

  16. Reduced thoracolumbar fascia shear strain in human chronic low back pain

    Directory of Open Access Journals (Sweden)

    Konofagou Elisa E

    2011-09-01

    Full Text Available Abstract Background The role played by the thoracolumbar fascia in chronic low back pain (LBP is poorly understood. The thoracolumbar fascia is composed of dense connective tissue layers separated by layers of loose connective tissue that normally allow the dense layers to glide past one another during trunk motion. The goal of this study was to quantify shear plane motion within the thoracolumbar fascia using ultrasound elasticity imaging in human subjects with and without chronic low back pain (LBP. Methods We tested 121 human subjects, 50 without LBP and 71 with LBP of greater than 12 months duration. In each subject, an ultrasound cine-recording was acquired on the right and left sides of the back during passive trunk flexion using a motorized articulated table with the hinge point of the table at L4-5 and the ultrasound probe located longitudinally 2 cm lateral to the midline at the level of the L2-3 interspace. Tissue displacement within the thoracolumbar fascia was calculated using cross correlation techniques and shear strain was derived from this displacement data. Additional measures included standard range of motion and physical performance evaluations as well as ultrasound measurement of perimuscular connective tissue thickness and echogenicity. Results Thoracolumbar fascia shear strain was reduced in the LBP group compared with the No-LBP group (56.4% ± 3.1% vs. 70.2% ± 3.6% respectively, p Conclusion Thoracolumbar fascia shear strain was ~20% lower in human subjects with chronic low back pain. This reduction of shear plane motion may be due to abnormal trunk movement patterns and/or intrinsic connective tissue pathology. There appears to be some sex-related differences in thoracolumbar fascia shear strain that may also play a role in altered connective tissue function.

  17. The increased prevalence of cervical spondylosis in patients with adult thoracolumbar spinal deformity.

    Science.gov (United States)

    Schairer, William W; Carrer, Alexandra; Lu, Michael; Hu, Serena S

    2014-12-01

    Retrospective cohort study. To assess the concomitance of cervical spondylosis and thoracolumbar spinal deformity. Patients with degenerative cervical spine disease have higher rates of degeneration in the lumbar spine. In addition, degenerative cervical spine changes have been observed in adult patients with thoracolumbar spinal deformities. However, to the best of our knowledge, there have been no studies quantifying the association between cervical spondylosis and thoracolumbar spinal deformity in adult patients. Patients seen by a spine surgeon or spine specialist at a single institution were assessed for cervical spondylosis and/or thoracolumbar spinal deformity using an administrative claims database. Spinal radiographic utilization and surgical intervention were used to infer severity of spinal disease. The relative prevalence of each spinal diagnosis was assessed in patients with and without the other diagnosis. A total of 47,560 patients were included in this study. Cervical spondylosis occurred in 13.1% overall, but was found in 31.0% of patients with thoracolumbar spinal deformity (OR=3.27, Pspondylosis (OR=3.26, Pspondylosis or thoracolumbar spinal deformity had significantly higher rates of the other spinal diagnosis. This correlation was increased with increased severity of disease. Patients with both diagnoses were significantly more likely to have received a spine fusion. Further research is warranted to establish the cause of this correlation. Clinicians should use this information to both screen and counsel patients who present for cervical spondylosis or thoracolumbar spinal deformity.

  18. CT in diagnosis of thoracolumbar region diseases

    International Nuclear Information System (INIS)

    Dimitrov, I.; Karadjova, M.

    2003-01-01

    The lumbalgia caused by affected thoracolumbar transition (Th 11 -L 2 ) imitates the clinical symptomatic of disc lesions in the lower lumbar segments. The syndrome is presented by a pain projected in the area of the three branchings of the spinal nerves, coming from thoracolumbar segments. The aim of this study is to determine the pathological processes, causing the clinical symptoms of this syndrome, using computer tomography. 51 patients are studied with clinically proved thoracolumbar transition syndrome: 14 men and 37 women. CT slices of 96 vertebral segments are made. Two patient are scanned at Th 11 -Th 12 and L 1 -L 2 . Only Th 12 -L 1 scans are made on 10 patients and 42 are made on two neighbouring segments (41 of them on Th 11 -Th 12 and Th 12 -L 1 and one on Th 11 -L 1 and L 1 -L 2 ). An asymmetry (facet tropism) has been found at 59 levels, 21 if them are with spondiloarthrosis. Spondiloarthrosis has been found in 24 segments - 21 of them with osteochondrosis, one with disc prolapse, and 2 with disc protrusion. It is also found osteoporotic changes osteolysis in multiple myeloma, metastasis etc. During the 3 level examination no evidence for either of the mentioned changes is obtained. The CT slices of two neighbouring segments showed an unexpected change from thoracic to lumbar type of the intervertebral joints in 34 patients. The results from this study support the hypothesis about joints origin of the clinical symptoms of the thoracolumbar transition and demonstrate the importance of the computer tomography as a diagnostic method in this disease

  19. 78 FR 36308 - Proposed Information Collection: (Back (Thoracolumbar Spine) Conditions Disability Benefits...

    Science.gov (United States)

    2013-06-17

    ...-NEW (Back (Thoracolumbar Spine) Conditions Disability Benefits Questionnaire). Type of Review: New... (Thoracolumbar Spine) Conditions Disability Benefits Questionnaire) Activity: Comment Request AGENCY: Veterans... comments on information needed to adjudicate the claim for VA disability benefits related to a claimant's...

  20. Anterior Z-plate and titanic mesh fixation for acute burst thoracolumbar fracture.

    Science.gov (United States)

    Xu, Jian-Guang; Zeng, Bing-Fang; Zhou, Wei; Kong, Wei-Qing; Fu, Yi-Shan; Zhao, Bi-Zeng; Zhang, Tao; Lian, Xiao-Feng

    2011-04-01

    A retrospective study. To evaluate the clinical outcome, effectiveness, and security of the surgical management of acute thoracolumbar burst fracture with corpectomy, titanic mesh autograft, and Z-plate fixation by anterior approach. Many surgical methods were adopted to treat acute burst thoracolumbar fracture. But the optimal surgical management remains controversial. A retrospective review of a consecutive series of 48 patients with thoracolumbar burst fracture treated with anterior corpectomy, titanic mesh autograft, and Z-plate internal fixation was carried out. Preoperative clinical and radiographic data of all cases were originally collected. Surgical indications were motor neurologic deficit and thoracolumbar column instability. Twenty-two patients (45.8%) with acute thoracolumbar burst fractures presented with a neurologic deficit. The postoperative recovery of neural function, restoration of anterior cortex collapse, kyphotic angle, and spinal canal compromise were observed. The preoperative kyphotic angle was improved to a mean of 5.6°, radiographic height restored to 95.8% of the adjacent normal levels, and canal compromise was 0%. None of the patients had neurologic deterioration. Mean follow-up time was 32.4 months (range, 24-47 months). All 22 patients with neurologic deficit demonstrated at least one Frankel grade improvement on final observation, with 16 (73%) patients had accomplished complete neurologic recovery. Forty-six (96%) patients reported minimal or no pain at final follow-up observation, and 40 (83%) patients who had been working before injury returned to original work. The authors considered spinal cord decompression with anterior corpectomy and stability reconstruction with titanic mesh autograft and Z-plate fixation at same time in one incision as an effective technique for unstable thoracolumbar burst fracture with and without neurologic deficit.

  1. HISTOMORPHOLOGICAL STUDY OF THORACOLUMBAR FASCIA IN PATIENTS WITH LUMBOSACRAL DISCOPATHY

    Directory of Open Access Journals (Sweden)

    Z BEHDADIPOOR

    2000-03-01

    Full Text Available Introduction. Thoracolumbar fascia has neural ends in normal positions. It has sensory role and by inhibitory and or excitatory reflexes helps to protect vertebral column. In this research, it has been studied neural ends in thoracolumbar fascia in 42 cases. Our aim was to compare the presence of neural ends in normal individuals and those with lumbosacral discopathy. Methods. The samples were taken from one centimeter of midline at the level of L4-L5 vertebrae, since in this region the posterior layer of thoracolumbar fascia is thicker. Seven of the cases were normal and 35 were patients with lumbosacral discopathy. The samples were processed and serial sections were prepared. Six hundred and thirty sections from the serial sections were selected and 90 percent of these were stained with H&E and the rest of them were stained with Bielschowsky method. The sections were studied by light microscopy. Findings. Unlike the normal individuals, nerve corpuscles were not seen in none of our patients with lumbosacraldiscopathy.UsingBielschowsky,nerveendingswerepresentin normal individuals but they were not visible in patients with discopathy. Conclusion. It is concluded that thoracolumbar fascia in patients with discopathy had insufficient neural ends. Loss of these neural ends may be cause of decreasing proprioceptive information to nervous system and can be an initiating factor to damage the bones, ligaments and muscles.

  2. Instability in Thoracolumbar Trauma: Is a New Definition Warranted?

    Science.gov (United States)

    Abbasi Fard, Salman; Skoch, Jesse; Avila, Mauricio J; Patel, Apar S; Sattarov, Kamran V; Walter, Christina M; Baaj, Ali A

    2017-10-01

    Review of the articles. The objective of this study was to review all articles related to spinal instability to determine a consensus statement for a contemporary, practical definition applicable to thoracolumbar injuries. Traumatic fractures of the thoracolumbar spine are common. These injuries can result in neurological deficits, disability, deformity, pain, and represent a great economic burden to society. The determination of spinal instability is an important task for spine surgeons, as treatment strategies rely heavily on this assessment. However, a clinically applicable definition of spinal stability remains elusive. A review of the Medline database between 1930 and 2014 was performed limited to papers in English. Spinal instability, thoracolumbar, and spinal stability were used as search terms. Case reports were excluded. We reviewed listed references from pertinent search results and located relevant manuscripts from these lists as well. The search produced a total of 694 published articles. Twenty-five articles were eligible after abstract screening and underwent full review. A definition for spinal instability was described in only 4 of them. Definitions were primarily based on biomechanical and classification studies. No definitive parameters were outlined to define stability. Thirty-six years after White and Panjabi's original definition of instability, and many classification schemes later, there remains no practical and meaningful definition for spinal instability in thoracolumbar trauma. Surgeon expertise and experience remains an important factor in stability determination. We propose that, at an initial assessment, a distinction should be made between immediate and delayed instability. This designation should better guide surgeons in decision making and patient counseling.

  3. Minimal Invasive Circumferential Management of Thoracolumbar Spine Fractures

    Directory of Open Access Journals (Sweden)

    S. Pesenti

    2015-01-01

    Full Text Available Introduction. While thoracolumbar fractures are common lesions, no strong consensus is available at the moment. Objectives. The aim of this study was to evaluate the results of a minimal invasive strategy using percutaneous instrumentation and anterior approach in the management of thoracolumbar unstable fractures. Methods. 39 patients were included in this retrospective study. Radiologic evaluation was based on vertebral and regional kyphosis, vertebral body height restoration, and fusion rate. Clinical evaluation was based on Visual Analogic Score (VAS. All evaluations were done preoperatively and at 1-year follow-up. Results. Both vertebral and regional kyphoses were significantly improved on postoperative evaluation (13° and 7° versus −1° and −9°  P<0.05, resp. as well as vertebral body height (0.92 versus 1.16, P<0.05. At 1-year follow-up, mean loss of correction was 1°. A solid fusion was visible in all the cases, and mean VAS was significantly reduced form 8/10 preoperatively to 1/10 at the last follow-up. Conclusion. Management of thoracolumbar fractures using percutaneous osteosynthesis and minimal invasive anterior approach (telescopic vertebral body prosthesis is a valuable strategy. Results of this strategy offer satisfactory and stable results in time.

  4. Constipation after thoraco-lumbar fusion surgery.

    Science.gov (United States)

    Stienen, Martin N; Smoll, Nicolas R; Hildebrandt, Gerhard; Schaller, Karl; Tessitore, Enrico; Gautschi, Oliver P

    2014-11-01

    Thoraco-lumbar posterior fusion surgery is a frequent procedure used for patients with spinal instability due to tumor, trauma or degenerative disease. In the perioperative phase, many patients may experience vomiting, bowel irritation, constipation, or may even show symptoms of adynamic ileus possibly due to immobilization and high doses of opioid analgesics and narcotics administered during and after surgery. Retrospective single-center study on patients undergoing thoraco-lumbar fusion surgery for degenerative lumbar spine disease with instability in 2012. Study groups were built according to presence/absence of postoperative constipation, with postoperative constipation being defined as no bowel movement on postoperative days 0-2. Ninety-nine patients (39 males, 60 females) with a mean age of 57.1 ± 17.3 years were analyzed, of which 44 patients with similar age, gender, BMI and ASA-grades showed constipation (44.4%). Occurrence of constipation was associated with longer mean operation times (247 ± 62 vs. 214 ± 71 min; p=0.012), higher estimated blood loss (545 ± 316 vs. 375 ± 332 ml; pconstipation. One patient with constipation developed a sonographically confirmed paralytic ileus. Patients with constipation showed a tendency toward longer postoperative hospitalization (7.6 vs. 6.7 days, p=0.136). The rate of constipation was high after thoraco-lumbar fusion surgery. Moreover, it was associated with longer surgery time, higher blood loss, and higher postoperative morphine doses. Further trials are needed to prove if the introduction of faster and less invasive surgery techniques may have a positive side effect on bowel movement after spine surgery as they may reduce operation times, blood loss and postoperative morphine use. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Anterior Overgrowth in Primary Curves, Compensatory Curves and Junctional Segments in Adolescent Idiopathic Scoliosis.

    Science.gov (United States)

    Schlösser, Tom P C; van Stralen, Marijn; Chu, Winnie C W; Lam, Tsz-Ping; Ng, Bobby K W; Vincken, Koen L; Cheng, Jack C Y; Castelein, René M

    2016-01-01

    Although much attention has been given to the global three-dimensional aspect of adolescent idiopathic scoliosis (AIS), the accurate three-dimensional morphology of the primary and compensatory curves, as well as the intervening junctional segments, in the scoliotic spine has not been described before. A unique series of 77 AIS patients with high-resolution CT scans of the spine, acquired for surgical planning purposes, were included and compared to 22 healthy controls. Non-idiopathic curves were excluded. Endplate segmentation and local longitudinal axis in endplate plane enabled semi-automatic geometric analysis of the complete three-dimensional morphology of the spine, taking inter-vertebral rotation, intra-vertebral torsion and coronal and sagittal tilt into account. Intraclass correlation coefficients for interobserver reliability were 0.98-1.00. Coronal deviation, axial rotation and the exact length discrepancies in the reconstructed sagittal plane, as defined per vertebra and disc, were analyzed for each primary and compensatory curve as well as for the junctional segments in-between. The anterior-posterior difference of spinal length, based on "true" anterior and posterior points on endplates, was +3.8% for thoracic and +9.4% for (thoraco)lumbar curves, while the junctional segments were almost straight. This differed significantly from control group thoracic kyphosis (-4.1%; P<0.001) and lumbar lordosis (+7.8%; P<0.001). For all primary as well as compensatory curves, we observed linear correlations between the coronal Cobb angle, axial rotation and the anterior-posterior length difference (r≥0.729 for thoracic curves; r≥0.485 for (thoraco)lumbar curves). Excess anterior length of the spine in AIS has been described as a generalized growth disturbance, causing relative anterior spinal overgrowth. This study is the first to demonstrate that this anterior overgrowth is not a generalized phenomenon. It is confined to the primary as well as the

  6. Reliability assessment of AOSpine thoracolumbar spine injury classification system and Thoracolumbar Injury Classification and Severity Score (TLICS) for thoracolumbar spine injuries: results of a multicentre study.

    Science.gov (United States)

    Kaul, Rahul; Chhabra, Harvinder Singh; Vaccaro, Alexander R; Abel, Rainer; Tuli, Sagun; Shetty, Ajoy Prasad; Das, Kali Dutta; Mohapatra, Bibhudendu; Nanda, Ankur; Sangondimath, Gururaj M; Bansal, Murari Lal; Patel, Nishit

    2017-05-01

    The aim of this multicentre study was to determine whether the recently introduced AOSpine Classification and Injury Severity System has better interrater and intrarater reliability than the already existing Thoracolumbar Injury Classification and Severity Score (TLICS) for thoracolumbar spine injuries. Clinical and radiological data of 50 consecutive patients admitted at a single centre with a diagnosis of an acute traumatic thoracolumbar spine injury were distributed to eleven attending spine surgeons from six different institutions in the form of PowerPoint presentation, who classified them according to both classifications. After time span of 6 weeks, cases were randomly rearranged and sent again to same surgeons for re-classification. Interobserver and intraobserver reliability for each component of TLICS and new AOSpine classification were evaluated using Fleiss Kappa coefficient (k value) and Spearman rank order correlation. Moderate interrater and intrarater reliability was seen for grading fracture type and integrity of posterior ligamentous complex (Fracture type: k = 0.43 ± 0.01 and 0.59 ± 0.16, respectively, PLC: k = 0.47 ± 0.01 and 0.55 ± 0.15, respectively), and fair to moderate reliability (k = 0.29 ± 0.01 interobserver and 0.44+/0.10 intraobserver, respectively) for total score according to TLICS. Moderate interrater (k = 0.59 ± 0.01) and substantial intrarater reliability (k = 0.68 ± 0.13) was seen for grading fracture type regardless of subtype according to AOSpine classification. Near perfect interrater and intrarater agreement was seen concerning neurological status for both the classification systems. Recently proposed AOSpine classification has better reliability for identifying fracture morphology than the existing TLICS. Additional studies are clearly necessary concerning the application of these classification systems across multiple physicians at different level of training and trauma centers to evaluate not

  7. Clinical characterization of thoracolumbar and lumbar intervertebral disk extrusions in English Cocker Spaniels.

    Science.gov (United States)

    Cardy, Thomas J A; Tzounos, Caitlin E; Volk, Holger A; De Decker, Steven

    2016-02-15

    To assess the anatomic distribution of thoracolumbar and lumbar intervertebral disk extrusions (IVDEs) in English Cocker Spaniels as compared with findings in Dachshunds and to characterize clinical findings in English Cocker Spaniels with thoracolumbar or lumbar IVDEs affecting various regions of the vertebral column. Retrospective observational study. 81 English Cocker Spaniels and 81 Dachshunds with IVDEs. Signalment, clinical signs, neurologic examination findings, and affected intervertebral disk spaces (IVDSs) were recorded for both breeds. Management methods and outcomes were recorded for English Cocker Spaniels. Lesions were categorized as thoracolumbar (IVDSs T9-10 through L1-2), midlumbar (L2-3 through L4-5), or caudal lumbar (L5-6 through L7-S1). Midlumbar and caudal lumbar IVDEs were significantly more common in English Cocker Spaniels than in Dachshunds. English Cocker Spaniels with caudal lumbar IVDEs had a longer median duration of clinical signs before evaluation and more commonly had unilateral pelvic limb lameness or spinal hyperesthesia as the predominant clinical sign than did those with IVDEs at other sites. Those with caudal lumbar IVDEs less commonly had neurologic deficits and had a higher median neurologic grade (indicating lesser severity), shorter mean postoperative hospitalization time, and faster mean time to ambulation after surgery than those with other sites affected. These variables did not differ between English Cocker Spaniels with thoracolumbar and midlumbar IVDEs. Caudal and midlumbar IVDEs were more common in English Cocker Spaniels than in Dachshunds. English Cocker Spaniels with caudal lumbar IVDE had clinical signs and posttreatment responses that differed from those in dogs with midlumbar or thoracolumbar IVDE.

  8. The thoracolumbar fascia: anatomy, function and clinical considerations

    Science.gov (United States)

    Willard, F H; Vleeming, A; Schuenke, M D; Danneels, L; Schleip, R

    2012-01-01

    In this overview, new and existent material on the organization and composition of the thoracolumbar fascia (TLF) will be evaluated in respect to its anatomy, innervation biomechanics and clinical relevance. The integration of the passive connective tissues of the TLF and active muscular structures surrounding this structure are discussed, and the relevance of their mutual interactions in relation to low back and pelvic pain reviewed. The TLF is a girdling structure consisting of several aponeurotic and fascial layers that separates the paraspinal muscles from the muscles of the posterior abdominal wall. The superficial lamina of the posterior layer of the TLF (PLF) is dominated by the aponeuroses of the latissimus dorsi and the serratus posterior inferior. The deeper lamina of the PLF forms an encapsulating retinacular sheath around the paraspinal muscles. The middle layer of the TLF (MLF) appears to derive from an intermuscular septum that developmentally separates the epaxial from the hypaxial musculature. This septum forms during the fifth and sixth weeks of gestation. The paraspinal retinacular sheath (PRS) is in a key position to act as a ‘hydraulic amplifier’, assisting the paraspinal muscles in supporting the lumbosacral spine. This sheath forms a lumbar interfascial triangle (LIFT) with the MLF and PLF. Along the lateral border of the PRS, a raphe forms where the sheath meets the aponeurosis of the transversus abdominis. This lateral raphe is a thickened complex of dense connective tissue marked by the presence of the LIFT, and represents the junction of the hypaxial myofascial compartment (the abdominal muscles) with the paraspinal sheath of the epaxial muscles. The lateral raphe is in a position to distribute tension from the surrounding hypaxial and extremity muscles into the layers of the TLF. At the base of the lumbar spine all of the layers of the TLF fuse together into a thick composite that attaches firmly to the posterior superior iliac spine

  9. Acute Thoracolumbar Spinal Cord Injury: Relationship of Cord Compression to Neurological Outcome.

    Science.gov (United States)

    Skeers, Peta; Battistuzzo, Camila R; Clark, Jillian M; Bernard, Stephen; Freeman, Brian J C; Batchelor, Peter E

    2018-02-21

    Spinal cord injury in the cervical spine is commonly accompanied by cord compression and urgent surgical decompression may improve neurological recovery. However, the extent of spinal cord compression and its relationship to neurological recovery following traumatic thoracolumbar spinal cord injury is unclear. The purpose of this study was to quantify maximum cord compression following thoracolumbar spinal cord injury and to assess the relationship among cord compression, cord swelling, and eventual clinical outcome. The medical records of patients who were 15 to 70 years of age, were admitted with a traumatic thoracolumbar spinal cord injury (T1 to L1), and underwent a spinal surgical procedure were examined. Patients with penetrating injuries and multitrauma were excluded. Maximal osseous canal compromise and maximal spinal cord compression were measured on preoperative mid-sagittal computed tomography (CT) scans and T2-weighted magnetic resonance imaging (MRI) by observers blinded to patient outcome. The American Spinal Injury Association (ASIA) Impairment Scale (AIS) grades from acute hospital admission (≤24 hours of injury) and rehabilitation discharge were used to measure clinical outcome. Relationships among spinal cord compression, canal compromise, and initial and final AIS grades were assessed via univariate and multivariate analyses. Fifty-three patients with thoracolumbar spinal cord injury were included in this study. The overall mean maximal spinal cord compression (and standard deviation) was 40% ± 21%. There was a significant relationship between median spinal cord compression and final AIS grade, with grade-A patients (complete injury) exhibiting greater compression than grade-C and D patients (incomplete injury) (p compression as independently influencing the likelihood of complete spinal cord injury (p compression. Greater cord compression is associated with an increased likelihood of severe neurological deficits (complete injury) following

  10. Evolutionary allometry of the thoracolumbar centra in felids and bovids.

    Science.gov (United States)

    Jones, Katrina E

    2015-07-01

    Mammals have evolved a remarkable range of body sizes, yet their overall body plan remains unaltered. One challenge of evolutionary biology is to understand the mechanisms by which this size diversity is achieved, and how the mechanical challenges associated with changing body size are overcome. Despite the importance of the axial skeleton in body support and locomotion, and much interest in the allometry of the appendicular skeleton, little is known about vertebral allometry outside primates. This study compares evolutionary allometry of the thoracolumbar centra in two families of quadrupedal running mammals: Felidae and Bovidae. I test the hypothesis that, as size increases, the thoracolumbar region will resist increasing loads by becoming a) craniocaudally shorter, and b) larger in cross-sectional area, particularly in the sagittal plane. Length, width, and height of the thoracolumbar centra of 23 felid and 34 bovid species were taken. Thoracic, prediaphragmatic, lumbar, and postdiaphragmatic lengths were calculated, and diameters were compared at three equivalent positions: the midthoracic, the diaphragmatic and the midlumbar vertebra. Allometric slopes were calculated using a reduced major axis regression, on both raw and independent contrasts data. Slopes and elevations were compared using an ANCOVA. As size increases the thoracolumbar centra become more robust, showing preferential reinforcement in the sagittal plane. There was less allometric shortening of the thoracic than the lumbar region, perhaps reflecting constraints due to its connection with the respiratory apparatus. The thoracic region was more robust in bovids than felids, whereas the lumbar region was longer and more robust in felids than bovids. Elongation of lumbar centra increases the outlever of sagittal bending at intervertebral joints, increasing the total pelvic displacement during dorsomobile running. Both locomotor specializations and functional regionalization of the axial skeleton

  11. Vertebral body spread in thoracolumbar burst fractures can predict posterior construct failure.

    Science.gov (United States)

    De Iure, Federico; Lofrese, Giorgio; De Bonis, Pasquale; Cultrera, Francesco; Cappuccio, Michele; Battisti, Sofia

    2018-06-01

    The load sharing classification (LSC) laid foundations for a scoring system able to indicate which thoracolumbar fractures, after short-segment posterior-only fixations, would need longer instrumentations or additional anterior supports. We analyzed surgically treated thoracolumbar fractures, quantifying the vertebral body's fragment displacement with the aim of identifying a new parameter that could predict the posterior-only construct failure. This is a retrospective cohort study from a single institution. One hundred twenty-one consecutive patients were surgically treated for thoracolumbar burst fractures. Grade of kyphosis correction (GKC) expressed radiological outcome; Oswestry Disability Index and visual analog scale were considered. One hundred twenty-one consecutive patients who underwent posterior fixation for unstable thoracolumbar burst fractures were retrospectively evaluated clinically and radiologically. Supplementary anterior fixations were performed in 34 cases with posterior instrumentation failure, determined on clinic-radiological evidence or symptomatic loss of kyphosis correction. Segmental kyphosis angle and GKC were calculated according to the Cobb method. The displacement of fracture fragments was obtained from the mean of the adjacent end plate areas subtracted from the area enclosed by the maximum contour of vertebral fragmentation. The "spread" was derived from the ratio between this subtraction and the mean of the adjacent end plate areas. Analysis of variance, Mann-Whitney, and receiver operating characteristic were performed for statistical analysis. The authors report no conflict of interest concerning the materials or methods used in the present study or the findings specified in this paper. No funds or grants have been received for the present study. The spread revealed to be a helpful quantitative measurement of vertebral body fragment displacement, easily reproducible with the current computed tomography (CT) imaging technologies

  12. Effect of MELT method on thoracolumbar connective tissue: The full study.

    Science.gov (United States)

    Sanjana, Faria; Chaudhry, Hans; Findley, Thomas

    2017-01-01

    Altered connective tissue structure has been identified in adults with chronic low back pain (LBP). A self-care treatment for managing LBP is the MELT method. The MELT method is a hands-off, self-treatment that is said to alleviate chronic pain, release tension and restore mobility, utilizing specialized soft treatments balls, soft body roller and techniques mimicking manual therapy. The objective of this study was to determine whether thickness of thoracolumbar connective tissue and biomechanical and viscoelastic properties of myofascial tissue in the low back region change in subjects with chronic LBP as a result of MELT. This study was designed using a quasi experimental pre-post- design that analyzed data from subjects who performed MELT. Using ultrasound imaging and an algorithm developed in MATLAB, thickness of thoracolumbar connective tissue was analyzed in 22 subjects. A hand-held digital palpation device, called the MyotonPRO, was used to assess biomechanical properties such as stiffness, elasticity, tone and mechanical stress relaxation time of the thoracolumbar myofascial tissue. A forward bending test assessing flexibility and pain scale was added to see if MELT affected subjects with chronic LBP. A significant decrease in connective tissue thickness and pain was observed in participants. Significant increase in flexibility was also recorded. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Thoracolumbar Langerhans cell histiocytosis in a toddler

    Directory of Open Access Journals (Sweden)

    Zhi Gang Lan

    2018-01-01

    Full Text Available Introduction: Langerhans cell histiocytosis (LCH is a rare uni or multisystem disorder associated with extreme production of immunoreactive Langerhans cells. Although this disorder has been reported in all age groups, spinal involvement especially thoracolumbar spine is seldom reported in toddlers. Case presentation: We present a one (1 year, four (4 months female child with a history of recurrent fever, irritability and severe anemia of one (1 month duration. CT-scan and MRI revealed a collapsed twelfth thoracic vertebra (T12 body height greater than 95% with a huge intradural soft tissue mass. T12 cortectomy via posterior thoracolumbar approach was used to decompress the soft tissue part followed by interbody fusion with titanium cage filled with autologous iliac crest bone graft, fixation using plates and screws. Conclusion: We are of the view that surgical decompression of spinal LHC lesions with interbody fusion with titanium cage filled with autologous iliac crest bone graft and fixation using plates and screws is very crucial in relieving neurological deficits. However, the patient will need repeated surgeries as she advances with age in a timely manner to avert any neurological deficit that may occur. Keywords: Langerhans cell histiocytosis (LCH, Letterer-Siwe disease, Hand-Schüller-Christian disease, Eosinophilic granuloma

  14. Monosegmental fixation for the treatment of fractures of the thoracolumbar spine

    Directory of Open Access Journals (Sweden)

    Defino Helton

    2007-01-01

    Full Text Available Background : A short vertebral arthrodesis has been one of the objectives of the surgical treatment of fractures of the thoracolumbar spine. We present here clinical, functional and radiographic outcome obtained after monosegmental fixation (single posterior or combined anterior and posterior of specific types of unstable thoracolumbar fractures. Materials and Methods : Twenty four patients with fractures of the thoracolumbar spine submitted to monosegmental surgical treatment (Group I - 18 single posterior monosegmental fixations and Group II - 6 combined anterior and posterior fixations were retrospectively evaluated according to clinical, radiographic and functional parameters. The indication for surgery was instability or neurological deficit. All the procedures were indicated and performed by the senior surgeon (Helton LA Defino. Results : The patients from group I were followed-up from 2 to 12 years (mean: 6.65±2.96. The clinical, functional and radiographic results show that a single posterior monosegmental fixation is adequate and a satisfactory procedure to be used in specific types of thoracolumbar spine fractures, The patients from group II were followed-up from 9 to 15 years (mean: 13 ± 2,09 years. On group II the results of clinical evaluation showed moderate indices of residual pain and of satisfaction with the final result. The values obtained by functional evaluation showed that 66.6% of the patients were unable to return to their previous job and presented a moderate disability index (Oswestry = 16.6 and a significant reduction of quality of life based on the SF-36 questionnaire. Radiographic evaluation showed increased kyphosis of the fixed vertebral segment during the late postoperative period, accompanied by a reduction of the height of the intervertebral disk. Conclusion : It is possible to stabilize the fractures which have an anterior good load-bearing capacity by a standalone posterior monosegmental fixation. However

  15. Comparison of two types of surgery for thoraco-lumbar burst fractures: combined anterior and posterior stabilisation vs. posterior instrumentation only

    NARCIS (Netherlands)

    Been, H. D.; Bouma, G. J.

    1999-01-01

    This retrospective study compares clinical outcome following two different types of surgery for thoracolumbar burst fractures. Forty-six patients with thoracolumbar burst fractures causing encroachment of the spinal canal greater than 50% were operated on within 30 days performing either: combined

  16. Comparison of thoracolumbar motion produced by manual and Jackson-table-turning methods. Study of a cadaveric instability model.

    Science.gov (United States)

    DiPaola, Christian P; DiPaola, Matthew J; Conrad, Bryan P; Horodyski, MaryBeth; Del Rossi, Gianluca; Sawers, Andrew; Rechtine, Glenn R

    2008-08-01

    Patients who have sustained a spinal cord injury remain at risk for further neurologic deterioration until the spine is adequately stabilized. To our knowledge, no study has previously addressed the effects of different bed-to-operating room table transfer techniques on thoracolumbar spinal motion in an instability model. We hypothesized that the conventional logroll technique used to transfer patients from a supine position to a prone position on the operating room table has the potential to confer significantly more motion to the unstable thoracolumbar spine than the Jackson technique. Three-column instability was surgically created at the L1 level in seven cadavers. Two protocols were tested. The manual technique entailed performing a standard logroll of a supine cadaver to a prone position on an operating room Jackson table. The Jackson technique involved sliding the supine cadaver to the Jackson table, securing it to the table, and then rotating it into a prone position. An electromagnetic tracking device measured motion--i.e., angular motion (flexion-extension, lateral bending, and axial rotation) and linear translation (axial, medial-lateral, and anterior-posterior) between T12 and L2. The logroll technique created significantly more motion than the Jackson technique as measured with all six parameters. Manual logroll transfers produced an average of 13.8 degrees to 18.1 degrees of maximum angular displacement and 16.6 to 28.3 mm of maximum linear translation. The Jackson technique resulted in an average of 3.1 degrees to 5.8 degrees of maximum angular displacement (p patient safety. Performing the Jackson turn requires approximately half as many people as required for a manual logroll. This study suggests that the Jackson technique should be considered for supine-to-prone transfer of patients with known or suspected instability of the thoracolumbar spine.

  17. Transpedicular hydroxyapatite grafting with indirect reduction for thoracolumbar burst fractures with neurological deficit: A prospective study

    Directory of Open Access Journals (Sweden)

    Toyone Tomoaki

    2007-01-01

    . Bone formation by osteoconduction in HA granules was unclear, but final radiographs showed healed fractures. Conclusions: Posterior indirect reduction, transpedicular HA grafting and pedicle screw fixation could prevent the development of kyphosis and should lead to reliable neurological improvement in patients with incomplete neurological deficit. This technique does not require fusion to a segment, thereby preserves thoracolumbar motion.

  18. Combined posteroanterior fusion versus transforaminal lumbar interbody fusion (TLIF) in thoracolumbar burst fractures.

    Science.gov (United States)

    Schmid, Rene; Lindtner, Richard Andreas; Lill, Markus; Blauth, Michael; Krappinger, Dietmar; Kammerlander, Christian

    2012-04-01

    The optimal treatment strategy for burst fractures of the thoracolumbar junction is discussed controversially in the literature. Whilst 360° fusion has shown to result in better radiological outcome, recent studies have failed to show its superiority concerning clinical outcome. The morbidity associated with the additional anterior approach may account for these findings. The aim of this prospective observational study was therefore to compare two different techniques for 360° fusion in thoracolumbar burst fractures using either thoracoscopy or a transforaminal approach (transforaminal lumbar interbody fusion (TLIF)) to support the anterior column. Posterior reduction and short-segmental fixation using angular stable pedicle screw systems were performed in all patients as a first step. Monocortical strut grafts were used for the anterior support in the TLIF group, whilst tricortical grafts or titanium vertebral body replacing implants of adjustable height were used in the combined posteroanterior group. At final follow-up, the radiological outcome was assessed by performing X-rays in a standing position. The clinical outcome was measured using five validated outcome scores. The morbidity associated with the approaches and the donor site was assessed as well. There were 21 patients in the TLIF group and 14 patients in the posteroanterior group included. The postoperative loss of correction was higher in the TLIF group (4.9°±8.3° versus 3.4°±6.4°, p>0.05). There were no significant differences regarding the outcome scores between the two groups. There were no differences in terms of return to employment, leisure activities and back function either. More patients suffered from donor-site morbidity in the TLIF group, whilst the morbidity associated with the surgical approach was higher in the posteroanterior group. The smaller donor-site morbidity in the posteroanterior group is counterbalanced by an additional morbidity associated with the anterior approach

  19. MR imaging in the assessment of the thoracolumbar spine in elite male gymnasts

    International Nuclear Information System (INIS)

    Nyman, R.; Svard, L.; Hellstrom, M.; Jakobsson, B.; Peterson, L.

    1989-01-01

    Gymnasts training on elite level from childhood to adulthood might do serious damage to the motion segments in the thoracolumbar spine. This paper reports on twenty-five elite gymnasts (age range, 18-29 years) investigated with 0.5-T MR imaging and compared with 17 aged-matched normal males. A significantly higher number of changes in configuration of the vertebrae, apophyseal changes, end plate nodes, degenerated disks, and disk bulging in the thoracolumbar spine were found among the gymnasts. The number of degenerated disks among the gymnasts were comparable to that found at the age group of 65. Disk degeneration and change of configuration of the vertebrae were also found to correlate significantly with symptoms of back pain

  20. Injury of the posterior ligamentous complex of the thoracolumbar spine: a prospective evaluation of the diagnostic accuracy of magnetic resonance imaging.

    Science.gov (United States)

    Vaccaro, Alexander R; Rihn, Jeffrey A; Saravanja, Davor; Anderson, David G; Hilibrand, Alan S; Albert, Todd J; Fehlings, Michael G; Morrison, William; Flanders, Adam E; France, John C; Arnold, Paul; Anderson, Paul A; Friel, Brian; Malfair, David; Street, John; Kwon, Brian; Paquette, Scott; Boyd, Michael; Dvorak, Marcel F S; Fisher, Charles

    2009-11-01

    Prospective diagnostic imaging study. To determine the accuracy of magnetic resonance imaging (MRI) in diagnosing injury of the posterior ligamentous complex (PLC) in patients with thoracolumbar trauma. Treatment decisions in thoracolumbar injury patients are currently based on the status of the PLC. It is, therefore, important to understand the accuracy of MRI in diagnosing varying degrees of PLC injury. Prior studies report that MRI is up to 100% sensitive for diagnosing PCL injury. Patients with an acute injury from T1 to L3 who required posterior surgery were prospectively studied. A musculoskeletal radiologist, based on the preoperative MRI findings, characterized each of the 6 components of the PLC as intact, incompletely disrupted, or disrupted. During the surgical procedure, the surgeon identified each component of the PLC as intact, incompletely disrupted, or disrupted. The radiologist's interpretation and surgical findings were compared. Forty-two patients with 62 levels of injury were studied. There were 33 males (78.6%) and 9 females (21.4%), and the average age was 35.7 years. According to the kappa score, there was a moderate level of agreement between the radiologist's interpretation and the intraoperative findings for all PLC components except the thoracolumbar fascia, for which there was slight agreement. The sensitivity for the various PLC components ranged from 79% (left facet capsule) to 90% (interspinous ligament). The specificity ranged from 53% (thoracolumbar fascia) to 65% (ligamentum flavum). There was less agreement between the radiologist and surgeon for the patients with less severe neurologic compromise, i.e., those patients with an AIS grade of either D or E. The sensitivity and specificity of MRI for diagnosing injury of the PLC are lower than previously reported in the literature. The integrity of the PLC as determined by MRI should not be used in isolation to determine treatment.

  1. Spondylectomy and lateral lumbar interbody fusion for thoracolumbar kyphosis in an adult with achondroplasia

    Science.gov (United States)

    Miyazaki, Masashi; Kanezaki, Shozo; Notani, Naoki; Ishihara, Toshinobu; Tsumura, Hiroshi

    2017-01-01

    Abstract Rationale: Fixed thoracolumbar kyphosis with spinal stenosis in adult patients with achondroplasia presents a challenging issue. We describe the first case in which spondylectomy and minimally invasive lateral access interbody arthrodesis were used for the treatment of fixed severe thoracolumbar kyphosis and lumbar spinal canal stenosis in an adult with achondroplasia. Patient concerns: A 61-year-old man with a history of achondroplastic dwarfism presented with low back pain and radiculopathy and neurogenic claudication. Diagnoses: Plain radiographs revealed a high-grade thoracolumbar kyphotic deformity with diffuse degenerative changes in the lumbar spine. The apex was located at L2, the local kyphotic angle from L1 to L3 was 105°, and the anterior area was fused from the L1 to L3 vertebrae. MRI revealed significant canal and lateral recess stenosis secondary to facet hypertrophy. Interventions: We planned a front-back correction of the anterior and posterior spinal elements. We first performed anterior release at the fused part from L1 to L3 and XLIF at L3/4 and L4/5. Next, the patient was placed in the prone position. Spondylectomy at the L2 vertebra and posterior fusion from T10 to L5 were performed. Postoperative radiographs revealed L1 to L3 kyphosis of 32°. Outcomes: No complications occurred during or after surgery. Postoperatively, the patient's low back pain and neurological claudication were resolved. No worsening of kyphosis was observed 24 months postoperatively. Lessons: Circumferential decompression of the spinal cord at the apical vertebral level and decompression of lumbar canal stenosis were necessary. Front-back correction of the anterior and posterior spinal elements via spondylectomy and lateral lumbar interbody fusion is a reasonable surgical option for thoracolumbar kyphosis and developmental canal stenosis in patients with achondroplasia. PMID:29245270

  2. Cost-Utility Analysis of Pedicle Screw Removal After Successful Posterior Instrumented Fusion in Thoracolumbar Burst Fractures.

    Science.gov (United States)

    Lee, Han-Dong; Jeon, Chang-Hoon; Chung, Nam-Su; Seo, Young-Wook

    2017-08-01

    A cost-utility analysis (CUA). The aim of this study was to determine the cost-effectiveness of pedicle screw removal after posterior fusion in thoracolumbar burst fractures. Pedicle screw instrumentation is a standard fixation method for unstable thoracolumbar burst fracture. However, removal of the pedicle screw after successful fusion remains controversial because the clinical benefits remain unclear. CUA can help clinicians make appropriate decisions about optimal health care for pedicle screw removal after successful fusion in thoracolumbar burst fractures. We conducted a single-center, retrospective, longitudinal matched-cohort study of prospectively collected outcomes. In total, 88 consecutive patients who had undergone pedicle screw instrumentation for thoracolumbar burst fracture with successful fusion confirmed by computed tomography (CT) were used in this study. In total, 45 patients wanted to undergo implant removal surgery (R group), and 43 decided not to remove the implant (NR group). A CUA was conducted from the health care perspective. The direct costs of health care were obtained from the medical bill of each patient. Changes in health-related quality of life (HRQoL) scores, validated by Short Form 6D, were used to calculate quality-adjusted life-years (QALYs). Total costs and gained QALY were calculated at 1 year (1 year) and 2 years (2 years) compared with baseline. Results are expressed as an incremental cost-effectiveness ratio (ICER). Different discount rates (0%, 3%, and 5%) were applied to both cost and QALY for sensitivity analysis. Baseline patient variables were similar between the two groups (all P > 0.05). The additional benefits of implant removal (0.201 QALY at 2 years) were achieved with additional costs ($2541 at 2 years), equating to an ICER of $12,641/QALY. On the basis of the different discount rates, the robustness of our study's results was also determined. Implant removal after successful fusion in a thoracolumbar burst

  3. The Ly6 protein coiled is required for septate junction and blood brain barrier organisation in Drosophila.

    Science.gov (United States)

    Hijazi, Assia; Haenlin, Marc; Waltzer, Lucas; Roch, Fernando

    2011-03-15

    Genetic analysis of the Drosophila septate junctions has greatly contributed to our understanding of the mechanisms controlling the assembly of these adhesion structures, which bear strong similarities with the vertebrate tight junctions and the paranodal septate junctions. These adhesion complexes share conserved molecular components and have a common function: the formation of paracellular barriers restraining the diffusion of solutes through epithelial and glial envelopes. In this work we characterise the function of the Drosophila cold gene, that codes for a protein belonging to the Ly6 superfamily of extracellular ligands. Analysis of cold mutants shows that this gene is specifically required for the organisation of the septate junctions in epithelial tissues and in the nervous system, where its contribution is essential for the maintenance of the blood-brain barrier. We show that cold acts in a cell autonomous way, and we present evidence indicating that this protein could act as a septate junction component. We discuss the specific roles of cold and three other Drosophila members of the Ly6 superfamily that have been shown to participate in a non-redundant way in the process of septate junction assembly. We propose that vertebrate Ly6 proteins could fulfill analogous roles in tight junctions and/or paranodal septate junctions.

  4. The surgical algorithm for the AOSpine thoracolumbar spine injury classification system

    NARCIS (Netherlands)

    Vaccaro, Alexander R.; Schroeder, Gregory D.; Kepler, Christopher K.; Cumhur Oner, F.; Vialle, Luiz R.; Kandziora, Frank; Koerner, John D.; Kurd, Mark F.; Reinhold, Max; Schnake, Klaus J.; Chapman, Jens; Aarabi, Bizhan; Fehlings, Michael G.; Dvorak, Marcel F.

    2016-01-01

    Purpose: The goal of the current study is to establish a surgical algorithm to accompany the AOSpine thoracolumbar spine injury classification system. Methods: A survey was sent to AOSpine members from the six AO regions of the world, and surgeons were asked if a patient should undergo an initial

  5. The Ly6 protein coiled is required for septate junction and blood brain barrier organisation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Assia Hijazi

    Full Text Available BACKGROUND: Genetic analysis of the Drosophila septate junctions has greatly contributed to our understanding of the mechanisms controlling the assembly of these adhesion structures, which bear strong similarities with the vertebrate tight junctions and the paranodal septate junctions. These adhesion complexes share conserved molecular components and have a common function: the formation of paracellular barriers restraining the diffusion of solutes through epithelial and glial envelopes. METHODOLOGY/PRINCIPAL FINDINGS: In this work we characterise the function of the Drosophila cold gene, that codes for a protein belonging to the Ly6 superfamily of extracellular ligands. Analysis of cold mutants shows that this gene is specifically required for the organisation of the septate junctions in epithelial tissues and in the nervous system, where its contribution is essential for the maintenance of the blood-brain barrier. We show that cold acts in a cell autonomous way, and we present evidence indicating that this protein could act as a septate junction component. CONCLUSION/SIGNIFICANCE: We discuss the specific roles of cold and three other Drosophila members of the Ly6 superfamily that have been shown to participate in a non-redundant way in the process of septate junction assembly. We propose that vertebrate Ly6 proteins could fulfill analogous roles in tight junctions and/or paranodal septate junctions.

  6. Reliability and reproducibility analysis of the AOSpine thoracolumbar spine injury classification system by Chinese spinal surgeons.

    Science.gov (United States)

    Cheng, Jie; Liu, Peng; Sun, Dong; Qin, Tingzheng; Ma, Zikun; Liu, Jingpei

    2017-05-01

    The objective of this study was to analyze the interobserver reliability and intraobserver reproducibility of the new AOSpine thoracolumbar spine injury classification system in young Chinese orthopedic surgeons with different levels of experience in spinal trauma. Previous reports suggest that the new AOSpine thoracolumbar spine injury classification system demonstrates acceptable interobserver reliability and intraobserver reproducibility. However, there are few studies in Asia, especially in China. The AOSpine thoracolumbar spine injury classification system was applied to 109 patients with acute, traumatic thoracolumbar spinal injuries by two groups of spinal surgeons with different levels of clinical experience. The Kappa coefficient was used to determine interobserver reliability and intraobserver reproducibility. The overall Kappa coefficient for all cases was 0.362, which represents fair reliability. The Kappa statistic was 0.385 for A-type injuries and 0.292 for B-type injuries, which represents fair reliability, and 0.552 for C-type injuries, which represents moderate reliability. The Kappa coefficient for intraobserver reproducibility was 0.442 for A-type injuries, 0.485 for B-type injuries, and 0.412 for C-type injuries. These values represent moderate reproducibility for all injury types. The raters in Group A provided significantly better interobserver reliability than Group B (P < 0.05). There were no between-group differences in intraobserver reproducibility. This study suggests that the new AO spine injury classification system may be applied in day-to-day clinical practice in China following extensive training of healthcare providers. Further prospective studies in different healthcare providers and clinical settings are essential for validation of this classification system and to assess its utility.

  7. Motion in the unstable thoracolumbar spine when spine boarding a prone patient

    Science.gov (United States)

    Conrad, Bryan P.; Marchese, Diana L.; Rechtine, Glenn R.; Horodyski, MaryBeth

    2012-01-01

    Introduction Previous research has found that the log roll (LR) technique produces significant motion in the spinal column while transferring a supine patient onto a spine board. The purpose of this project was to determine whether log rolling a patient with an unstable spine from prone to supine with a pulling motion provides better thoracolumbar immobilization compared to log rolling with a push technique. Methods A global instability was surgically created at the L1 level in five cadavers. Two spine-boarding protocols were tested (LR Push and LR Pull). Both techniques entailed performing a 180° LR rotation of the prone patient from the ground to the supine position on the spine board. An electromagnetic tracking device registered motion between the T12 and L2 vertebral segments. Six motion parameters were tracked. Repeated-measures statistical analysis was performed to evaluate angular and translational motion. Results Less motion was produced during the LR Push compared to the LR Pull for all six motion parameters. The difference was statistically significant for three of the six parameters (flexion–extension, axial translation, and anterior–posterior (A–P) translation). Conclusions Both the LR Push and LR Pull generated significant motion in the thoracolumbar spine during the prone to supine LR. The LR Push technique produced statistically less motion than the LR Pull, and should be considered when a prone patient with a suspected thoracolumbar injury needs to be transferred to a long spine board. More research is needed to identify techniques to further reduce the motion in the unstable spine during prone to supine LR. PMID:22330191

  8. First performance evaluation of software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine at CT

    Energy Technology Data Exchange (ETDEWEB)

    Scholtz, Jan-Erik, E-mail: janerikscholtz@gmail.com; Wichmann, Julian L.; Kaup, Moritz; Fischer, Sebastian; Kerl, J. Matthias; Lehnert, Thomas; Vogl, Thomas J.; Bauer, Ralf W.

    2015-03-15

    Highlights: •Automatic segmentation and labeling of the thoracolumbar spine. •Automatically generated double-angulated and aligned axial images of spine segments. •High grade of accurateness for the symmetric depiction of anatomical structures. •Time-saving and may improve workflow in daily practice. -- Abstract: Objectives: To evaluate software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine on CT in terms of accuracy, potential for time savings and workflow improvement. Material and methods: 77 patients (28 women, 49 men, mean age 65.3 ± 14.4 years) with known or suspected spinal disorders (degenerative spine disease n = 32; disc herniation n = 36; traumatic vertebral fractures n = 9) underwent 64-slice MDCT with thin-slab reconstruction. Time for automatic labeling of the thoracolumbar spine and reconstruction of double-angulated axial images of the pathological vertebrae was compared with manually performed reconstruction of anatomical aligned axial images. Reformatted images of both reconstruction methods were assessed by two observers regarding accuracy of symmetric depiction of anatomical structures. Results: In 33 cases double-angulated axial images were created in 1 vertebra, in 28 cases in 2 vertebrae and in 16 cases in 3 vertebrae. Correct automatic labeling was achieved in 72 of 77 patients (93.5%). Errors could be manually corrected in 4 cases. Automatic labeling required 1 min in average. In cases where anatomical aligned axial images of 1 vertebra were created, reconstructions made by hand were significantly faster (p < 0.05). Automatic reconstruction was time-saving in cases of 2 and more vertebrae (p < 0.05). Both reconstruction methods revealed good image quality with excellent inter-observer agreement. Conclusion: The evaluated software for automatic labeling and anatomically aligned, double-angulated axial image reconstruction of the thoracolumbar spine on CT is time

  9. Accuracy of ultrasound-guided injections of thoracolumbar articular process joints in horses

    DEFF Research Database (Denmark)

    Fuglbjerg, Vibeke; Nielsen, J.V.; Thomsen, Preben Dybdahl

    2010-01-01

    in the literature. Objectives: To evaluate factors of affecting the accuracy of intra-articular injections of the APJs in the caudal thoracolumbar region. Method: One-hundred-and-fifty-four injections with blue dye were performed on APJs including the T14-L6 region in 12 horses subjected to euthanasia for reasons...

  10. First performance evaluation of software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine at CT.

    Science.gov (United States)

    Scholtz, Jan-Erik; Wichmann, Julian L; Kaup, Moritz; Fischer, Sebastian; Kerl, J Matthias; Lehnert, Thomas; Vogl, Thomas J; Bauer, Ralf W

    2015-03-01

    To evaluate software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine on CT in terms of accuracy, potential for time savings and workflow improvement. 77 patients (28 women, 49 men, mean age 65.3±14.4 years) with known or suspected spinal disorders (degenerative spine disease n=32; disc herniation n=36; traumatic vertebral fractures n=9) underwent 64-slice MDCT with thin-slab reconstruction. Time for automatic labeling of the thoracolumbar spine and reconstruction of double-angulated axial images of the pathological vertebrae was compared with manually performed reconstruction of anatomical aligned axial images. Reformatted images of both reconstruction methods were assessed by two observers regarding accuracy of symmetric depiction of anatomical structures. In 33 cases double-angulated axial images were created in 1 vertebra, in 28 cases in 2 vertebrae and in 16 cases in 3 vertebrae. Correct automatic labeling was achieved in 72 of 77 patients (93.5%). Errors could be manually corrected in 4 cases. Automatic labeling required 1min in average. In cases where anatomical aligned axial images of 1 vertebra were created, reconstructions made by hand were significantly faster (pquality with excellent inter-observer agreement. The evaluated software for automatic labeling and anatomically aligned, double-angulated axial image reconstruction of the thoracolumbar spine on CT is time-saving when reconstructions of 2 and more vertebrae are performed. Checking results of automatic labeling is necessary to prevent errors in labeling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Early diagnosis of thoracolumbar spine fractures in children. A prospective study.

    Science.gov (United States)

    Leroux, J; Vivier, P-H; Ould Slimane, M; Foulongne, E; Abu-Amara, S; Lechevallier, J; Griffet, J

    2013-02-01

    Early detection of spine fractures in children is difficult because the clinical examination does not always raise worrisome symptoms and the vertebrae are still cartilaginous, and consequently incompletely visualized on routine X-rays. Therefore, diagnosis is often delayed or missed. The search for a "breath arrest" sensation at the moment of the trauma improves early detection of thoracolumbar spine fractures in children. This was a prospective monocentric study including all children consulting at the paediatric emergency unit of a single university hospital with a thoracolumbar spine trauma between January 2008 and March 2009. All children had the same care. Pain was quantified when they arrived using the visual analog scale. Clinical examination searched for a "breath arrest" sensation at the moment of the trauma and noted the circumstances of the accident. X-rays and MRI were done in all cases. Fifty children were included with a mean age of 11.4 years. Trauma occurred during games or sports in 94% of the cases. They fell on the back in 72% cases. Twenty-three children (46%) had fractures on the MRI, with a mean number of four fractured vertebrae (range, 1-10). Twenty-one of them (91%) had a "breath arrest" sensation. Fractures were not visualized on X-rays in five cases (22%). Twenty-seven children had no fracture; 19 of them (70%) did not feel a "breath arrest". Fractures were suspected on X-rays in 15 cases (56%). The search for a "breath arrest" sensation at the moment of injury improves early detection of thoracolumbar spine fractures in children (Se=87%, Sp=67%, PPV=69%, NPV=86%). When no fracture is apparent on X-rays and no "breath arrest" sensation is expressed by the child, the clinician can be sure there is no fracture (Se=26%, Sp=100%, PPV=100%, NPV=53%). Level III. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  12. Junction and circuit fabrication

    International Nuclear Information System (INIS)

    Jackel, L.D.

    1980-01-01

    Great strides have been made in Josephson junction fabrication in the four years since the first IC SQUID meeting. Advances in lithography have allowed the production of devices with planar dimensions as small as a few hundred angstroms. Improved technology has provided ultra-high sensitivity SQUIDS, high-efficiency low-noise mixers, and complex integrated circuits. This review highlights some of the new fabrication procedures. The review consists of three parts. Part 1 is a short summary of the requirements on junctions for various applications. Part 2 reviews intergrated circuit fabrication, including tunnel junction logic circuits made at IBM and Bell Labs, and microbridge radiation sources made at SUNY at Stony Brook. Part 3 describes new junction fabrication techniques, the major emphasis of this review. This part includes a discussion of small oxide-barrier tunnel junctions, semiconductor barrier junctions, and microbridge junctions. Part 3 concludes by considering very fine lithography and limitations to miniaturization. (orig.)

  13. Gap Junctions

    Science.gov (United States)

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  14. Spondylectomy and lateral lumbar interbody fusion for thoracolumbar kyphosis in an adult with achondroplasia: A case report.

    Science.gov (United States)

    Miyazaki, Masashi; Kanezaki, Shozo; Notani, Naoki; Ishihara, Toshinobu; Tsumura, Hiroshi

    2017-12-01

    Fixed thoracolumbar kyphosis with spinal stenosis in adult patients with achondroplasia presents a challenging issue. We describe the first case in which spondylectomy and minimally invasive lateral access interbody arthrodesis were used for the treatment of fixed severe thoracolumbar kyphosis and lumbar spinal canal stenosis in an adult with achondroplasia. A 61-year-old man with a history of achondroplastic dwarfism presented with low back pain and radiculopathy and neurogenic claudication. Plain radiographs revealed a high-grade thoracolumbar kyphotic deformity with diffuse degenerative changes in the lumbar spine. The apex was located at L2, the local kyphotic angle from L1 to L3 was 105°, and the anterior area was fused from the L1 to L3 vertebrae. MRI revealed significant canal and lateral recess stenosis secondary to facet hypertrophy. We planned a front-back correction of the anterior and posterior spinal elements. We first performed anterior release at the fused part from L1 to L3 and XLIF at L3/4 and L4/5. Next, the patient was placed in the prone position. Spondylectomy at the L2 vertebra and posterior fusion from T10 to L5 were performed. Postoperative radiographs revealed L1 to L3 kyphosis of 32°. No complications occurred during or after surgery. Postoperatively, the patient's low back pain and neurological claudication were resolved. No worsening of kyphosis was observed 24 months postoperatively. Circumferential decompression of the spinal cord at the apical vertebral level and decompression of lumbar canal stenosis were necessary. Front-back correction of the anterior and posterior spinal elements via spondylectomy and lateral lumbar interbody fusion is a reasonable surgical option for thoracolumbar kyphosis and developmental canal stenosis in patients with achondroplasia.

  15. A new brace treatment similar for adolescent scoliosis and kyphosis based on restoration of thoracolumbar lordosis. Radiological and subjective clinical results after at least one year of treatment

    Directory of Open Access Journals (Sweden)

    van Loon Piet JM

    2012-10-01

    Full Text Available Abstract Study design A prospective treatment study with a new brace was conducted Objective. To evaluate radiological and subjective clinical results after one year conservative brace treatment with pressure onto lordosis at the thoracolumbar joint in children with scoliosis and kyphosis. Summary of background data Conservative brace treatment of adolescent scoliosis is not proven to be effective in terms of lasting correction. Conservative treatment in kyphotic deformities may lead to satisfactory correction. None of the brace or casting techniques is based on sagittal forces only applied at the thoracolumbar spine (TLI= thoracolumbar lordotic intervention. Previously we showed in patients with scoliosis after forced lordosis at the thoracolumbar spine a radiological instantaneous reduction in both coronal curves of double major scoliosis. Methods A consecutive series of 91 children with adolescent scoliosis and kyphosis were treated with a modified symmetric 30 degrees Boston brace to ensure only forced lordosis at the thoracolumbar spine. Scoliosis was defined with a Cobb angle of at least one of the curves [greater than or equal to] 25 degrees and kyphosis with or without a curve Results Before treatment start ‘in brace’ radiographs showed a strong reduction of the Cobb angles in different curves in kyphosis and scoliosis groups (sagittal n = 5 all p Conclusion Conservative treatment using thoracolumbar lordotic intervention in scoliotic and kyphotic deformities in adolescence demonstrates a marked improvement after one year also in clinical and postural criteria. An effect not obtained with current brace techniques.

  16. OPEN SURGICAL VS. MINIMALLY INVASIVE TREATMENT OF THORACOLUMBAR AO FRACTURES TYPE A AND B1 IN A REFERENCE HOSPITAL

    Directory of Open Access Journals (Sweden)

    José Enrique Salcedo Oviedo

    Full Text Available ABSTRACT Objective: The thoracolumbar spine trauma represents 30% of spinal diseases. To compare the minimally invasive technique with the open technique in lumbar fractures. Method: A prospective, cross-sectional, comparative observational study, which evaluated the following variables: surgery time, length of hospital stay, transoperative bleeding, postoperative pain, analyzed by SPSS software using Student's t test with statistical significance of p ≥ 0.05, with 24 patients with single-level thoracolumbar fractures, randomly treated with percutaneous pedicle screws and by open technique with a transpedicular system. Results: The surgery time was 90 minutes for the minimally invasive technique and 60 minutes for the open technique, the bleeding was on average 50 cm3 vs. 400 cm3. The mean visual analogue scale for pain at 24 hours of surgery was 5 for the minimally invasive group vs. 8 for the open group. The number of fluoroscopic projections of pedicle screws was 220 in the minimally invasive technique vs. 100 in the traditional technique. Quantified bleeding was minimal for percutaneous access vs. 340 cm3 for the traditional system. The hospital discharge for the minimally invasive group was at 24 hours and at 72 hours for those treated with open surgery. Conclusions: It is a technique that requires longer surgical time, with reports of less bleeding, less postoperative pain and less time for hospital discharge, reasons why it is supposed to be a procedure that requires a learning curve, statistical significance with respect to bleeding, visual analogue scale for pain and showed no significant difference in the variables of surgical time.

  17. Gap junctions and motor behavior

    DEFF Research Database (Denmark)

    Kiehn, Ole; Tresch, Matthew C.

    2002-01-01

    The production of any motor behavior requires coordinated activity in motor neurons and premotor networks. In vertebrates, this coordination is often assumed to take place through chemical synapses. Here we review recent data suggesting that electrical gap-junction coupling plays an important role...... in coordinating and generating motor outputs in embryonic and early postnatal life. Considering the recent demonstration of a prevalent expression of gap-junction proteins and gap-junction structures in the adult mammalian spinal cord, we suggest that neuronal gap-junction coupling might also contribute...... to the production of motor behavior in adult mammals....

  18. The Dissolution of Double Holliday Junctions

    DEFF Research Database (Denmark)

    Bizard, Anna H; Hickson, Ian D

    2014-01-01

    as "double Holliday junction dissolution." This reaction requires the cooperative action of a so-called "dissolvasome" comprising a Holliday junction branch migration enzyme (Sgs1/BLM RecQ helicase) and a type IA topoisomerase (Top3/TopoIIIα) in complex with its OB (oligonucleotide/oligosaccharide binding......Double Holliday junctions (dHJS) are important intermediates of homologous recombination. The separate junctions can each be cleaved by DNA structure-selective endonucleases known as Holliday junction resolvases. Alternatively, double Holliday junctions can be processed by a reaction known......) fold containing accessory factor (Rmi1). This review details our current knowledge of the dissolution process and the players involved in catalyzing this mechanistically complex means of completing homologous recombination reactions....

  19. Treatment of traumatic thoracolumbar spine fractures : A multicenter prospective randomized study of operative versus nonsurgical treatment

    NARCIS (Netherlands)

    Siebenga, Jan; Leferink, Vincent J. M.; Segers, Michiel J. M.; Elzinga, Matthijs J.; Bakker, Fred C.; Haarman, Henk J. Th. M.; Rommens, Pol M.; ten Duis, Henk-Jan; Patka, Peter

    2006-01-01

    Study Design. Multicenter prospective randomized trial. Objective. To test the hypotheses that thoracolumbar AO Type A spine fractures without neurologic deficit, managed with short-segment posterior stabilization will show an improved radiographic outcome and at least the same functional outcome as

  20. Short Segment Fixation Versus Short Segment Fixation With Pedicle Screws at the Fracture Level for Thoracolumbar Burst Fracture

    Directory of Open Access Journals (Sweden)

    Anghel S

    2014-04-01

    Full Text Available Objective: The most prevailing surgical procedure in the treatment of thoracolumbar burst fractures, Short Segment Fixation (SSF, is often followed by loss of correction or hardware failure which may be significant enough to require another surgical intervention. In order to take advantage of its benefits but to avoid or diminish the risk and impact of associated drawbacks, some other alternatives have been lately developed among which we refer to short segment fixation with intermediate screws (SSF+IS. This article provides a comparative picture over the effectiveness of the two above-mentioned surgical treatments, focusing on their potential to prevent the loss of correction.

  1. Incidence and mechanism of neurological deficit after thoracolumbar fractures sustained in motor vehicle collisions.

    Science.gov (United States)

    Mukherjee, Sourabh; Beck, Chad; Yoganandan, Narayan; Rao, Raj D

    2015-10-09

    OBJECT To determine the incidence of and assess the risk factors associated with neurological injury in motor vehicle occupants who sustain fractures of the thoracolumbar spine. METHODS In this study, the authors queried medical, vehicle, and crash data elements from the Crash Injury Research and Engineering Network (CIREN), a prospectively gathered multicenter database compiled from Level I trauma centers. Subjects had fractures involving the T1-L5 vertebral segments, an Abbreviated Injury Scale (AIS) score of ≥ 3, or injury to 2 body regions with an AIS score of ≥ 2 in each region. Demographic parameters obtained for all subjects included age, sex, height, body weight, and body mass index. Clinical parameters obtained included the level of the injured vertebra and the level and type of spinal cord injury. Vehicular crash data included vehicle make, seatbelt type, and usage and appropriate use of the seatbelt. Crash data parameters included the principal direction of force, change in velocity on impact (ΔV), airbag deployment, and vehicle rollover. The authors performed a univariate analysis of the incidence and the odds of sustaining spinal neurological injury associated with major thoracolumbar fractures with respect to the demographic, clinical, and crash parameters. RESULTS Neurological deficit associated with thoracolumbar fracture was most frequent at extremes of age; the highest rates were in the 0- to 10-year (26.7% [4 of 15]) and 70- to 80-year (18.4% [7 of 38]) age groups. Underweight occupants (OR 3.52 [CI 1.055-11.7]) and obese occupants (OR 3.27 [CI 1.28-8.31]) both had higher odds of sustaining spinal cord injury than occupants with a normal body mass index. The highest risk of neurological injury existed in crashes in which airbags deployed and the occupant was not restrained by a seatbelt (OR 2.35 [CI 0.087-1.62]). Reduction in the risk of neurological injuries occurred when 3-point seatbelts were used correctly in conjunction with the

  2. Radiologic abnormalities of the thoraco-lumbar spine in athletes

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, M.; Jacobsson, B.; Swaerd, L.; Peterson, L. (Sahlgrenska Sjukhuset, Goeteborg (Sweden). Dept. of Radiology Oestra Sjukhuset, Goeteborg (Sweden). Dept. of Orthopedics King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia). Dept. of Radiology)

    1990-03-01

    A radiologic study of the thoraco-lumbar spine was performed in 143 (117 male and 26 female) athletes (wrestlers, gymnasts, soccer players and tennis players), aged 14 to 25 years and 30 male nonathletes, aged 19 to 25 years. Film interpretation was made after mixing the films from all groups and without knowledge of the individual's identity. Various types of radiologic abnormalities occured in both athletes and non-athletes but were more common among athletes, especially male-gymnasts and wrestlers. Abnormalities of the vertebral ring apophysis occurred exclusively in athletes. Combinations of different types of abnormalities were most common in male gymnasts and wrestlers. (orig.).

  3. Radiologic abnormalities of the thoraco-lumbar spine in athletes

    International Nuclear Information System (INIS)

    Hellstroem, M.; Jacobsson, B.; Swaerd, L.; Peterson, L.; Oestra Sjukhuset, Goeteborg; King Faisal Specialist Hospital and Research Centre, Riyadh

    1990-01-01

    A radiologic study of the thoraco-lumbar spine was performed in 143 (117 male and 26 female) athletes (wrestlers, gymnasts, soccer players and tennis players), aged 14 to 25 years and 30 male nonathletes, aged 19 to 25 years. Film interpretation was made after mixing the films from all groups and without knowledge of the individual's identity. Various types of radiologic abnormalities occured in both athletes and non-athletes but were more common among athletes, especially male-gymnasts and wrestlers. Abnormalities of the vertebral ring apophysis occurred exclusively in athletes. Combinations of different types of abnormalities were most common in male gymnasts and wrestlers. (orig.)

  4. Characteristic of thoracolumbar burst fracture with mid column injury and analysis of relative surgical treatment

    International Nuclear Information System (INIS)

    Yang Binhui; Zhang Bo; Ouyang Zhen; Sun Maomin; Xia Chunlin

    2010-01-01

    Objective: By analyzing the pathologic characteristics of the thoracolumbar burst fracture with mid column injury to explore the value of surgical treatment and the relationship between the spinal cord injury and the burst fracture. Methods: With the combination of X-ray film, CT, MRI examination, in 97 patients with thoracolumbar burst fracture, the rate of spinal canal stenosis was measured. For the fracture fragments morphology, translocation, and intervertebral disc, posterior longitudinal ligament injuries, a different surgical method was selected, the percentage of wound vertebral body compression, kyphosis Cobb angle and the rate of spinal canal stenosis, spinal cord nerve function recovery were compared between preoperation and postoperation. Results: After operation, all patients were reseted. Followed-up was performed from 6 to 28 months, in 88 cases bone graft fusion was obtained after 4 to 6 months, 1 ∼ 3 levels were restored in Frankel grade of spinal cord nerve function recovery. Between preoperation and postoperation, the percentage of wounded vertebral body compression, kyphosis Cobb angle and the rate of spinal canal stenosis were significantly different (P <0. 01). For the 9 cases of combined intervertebral disc injury, fusion was not achieved in the 6 cases there were loss in vertebral body height and Cobb angle in various extent. Conclusion: There is an interrelationship between thoracolumbar burst fracture caused by the reduction of spinal canal diameter and the spinal cord injury. Different forms of occupation of intraspinal bone fragments indicate different degrees of moment of violence and spinal cord primary injury. It is important to select the appropriate surgical method for clinic. The potential impact should be sufficient attention on the stability of intervertebral disc injury. (authors)

  5. The posterior layer of the thoracolumbar fascia. Its function in load transfer from spine to legs.

    NARCIS (Netherlands)

    Pool-Goudzwaard, A.L.; Vleeming, A; Stoeckart, R.; Wingerden, Jan Paul; Snijders, Chris

    1996-01-01

    STUDY DESIGN: The superficial and deep lamina of the posterior layer of the thoracolumbar fascia have been studied anatomically and biomechanically. In embalmed human specimens, the posterior layer has been loaded by simulating the action of various muscles. The effect has been studied using raster

  6. Estimating the effective radiation dose imparted to patients by intraoperative cone-beam computed tomography in thoracolumbar spinal surgery.

    Science.gov (United States)

    Lange, Jeffrey; Karellas, Andrew; Street, John; Eck, Jason C; Lapinsky, Anthony; Connolly, Patrick J; Dipaola, Christian P

    2013-03-01

    Observational. To estimate the radiation dose imparted to patients during typical thoracolumbar spinal surgical scenarios. Minimally invasive techniques continue to become more common in spine surgery. Computer-assisted navigation systems coupled with intraoperative cone-beam computed tomography (CT) represent one such method used to aid in instrumented spinal procedures. Some studies indicate that cone-beam CT technology delivers a relatively low dose of radiation to patients compared with other x-ray-based imaging modalities. The goal of this study was to estimate the radiation exposure to the patient imparted during typical posterior thoracolumbar instrumented spinal procedures, using intraoperative cone-beam CT and to place these values in the context of standard CT doses. Cone-beam CT scans were obtained using Medtronic O-arm (Medtronic, Minneapolis, MN). Thermoluminescence dosimeters were placed in a linear array on a foam-plastic thoracolumbar spine model centered above the radiation source for O-arm presets of lumbar scans for small or large patients. In-air dosimeter measurements were converted to skin surface measurements, using published conversion factors. Dose-length product was calculated from these values. Effective dose was estimated using published effective dose to dose-length product conversion factors. Calculated dosages for many full-length procedures using the small-patient setting fell within the range of published effective doses of abdominal CT scans (1-31 mSv). Calculated dosages for many full-length procedures using the large-patient setting fell within the range of published effective doses of abdominal CT scans when the number of scans did not exceed 3. We have demonstrated that single cone-beam CT scans and most full-length posterior instrumented spinal procedures using O-arm in standard mode would likely impart a radiation dose within the range of those imparted by a single standard CT scan of the abdomen. Radiation dose increases

  7. Reduction of progressive thoracolumbar adolescent idiopathic scoliosis by chiropractic biophysics® (CBP®) mirror image® methods following failed traditional chiropractic treatment: a case report

    OpenAIRE

    Haggard, Joshua S.; Haggard, Jennifer B.; Oakley, Paul A.; Harrison, Deed E.

    2017-01-01

    [Purpose] To present a case demonstrating the reduction of progressive thoracolumbar scoliosis by incorporating Chiropractic BioPhysics® (CBP®) technique’s mirror image® exercises, traction and blocking procedures based on the ‘non-commutative properties of finite rotation angles under addition’ engineering law. [Subject and Methods] A 15-year-old female presented with a right thoracolumbar scoliosis having a Cobb angle from T5–L3 of 27° and suffering from headaches and lower back pains. Her ...

  8. Spinal Epidural Hematoma after Thoracolumbar Posterior Fusion Surgery without Decompression for Thoracic Vertebral Fracture

    Directory of Open Access Journals (Sweden)

    Tsuyoki Minato

    2016-01-01

    Full Text Available We present a rare case of spinal epidural hematoma (SEH after thoracolumbar posterior fusion without decompression surgery for a thoracic vertebral fracture. A 42-year-old man was hospitalized for a thoracic vertebral fracture caused by being sandwiched against his back on broken concrete block. Computed tomography revealed a T12 dislocation fracture of AO type B2, multiple bilateral rib fractures, and a right hemopneumothorax. Four days after the injury, in order to promote early orthostasis and to improve respiratory status, we performed thoracolumbar posterior fusion surgery without decompression; the patient had back pain but no neurological deficits. Three hours after surgery, he complained of acute pain and severe weakness of his bilateral lower extremities; with allodynia below the level of his umbilicus, postoperative SEH was diagnosed. We performed immediate revision surgery. After removal of the hematoma, his symptoms improved gradually, and he was discharged ambulatory one month after revision surgery. Through experience of this case, we should strongly consider the possibility of preexisting SEH before surgery, even in patients with no neurological deficits. We should also consider perioperative coagulopathy in patients with multiple trauma, as in this case.

  9. Systematic study of shallow junction formation on germanium substrates

    DEFF Research Database (Denmark)

    Hellings, Geert; Rosseel, Erik; Clarysse, Trudo

    2011-01-01

    Published results on Ge junctions are benchmarked systematically using RS–XJ plots. The electrical activation level required to meet the ITRS targets is calculated. Additionally, new results are presented on shallow furnace-annealed B junctions and shallow laser-annealed As junctions. Co-implanting...

  10. Relevant signs of stable and unstable thoracolumbar vertebral column trauma

    International Nuclear Information System (INIS)

    Gehweiler, J.A.; Daffner, R.H.; Osborne, R.L.

    1981-01-01

    One-hundred and seventeen patients with acute thoracolumbar vertebral column fracture or fracture-dislocations were analyzed and classified into stable (36%) and unstable (64%). Eight helpful roentgen signs were observed that may serve to direct attention to serious underlying, often occult, fractures and dislocations. The changes fall into four principal groups: abnormal soft tissues, abnormal vertebral alignment, abnormal joints, and widened vertebral canal. All stable and unstable lesions showed abnormal soft tissues, while 70% demonstrated kyphosis and/or scoliosis, and an abnormal adjacent intervertebral disk space. All unstable lesions showed one or more of the following signs: displaced vertebra, widened interspinous space, abnormal apophyseal joint(s), and widened vertebral canal. (orig.)

  11. Fabrication of Josephson Junction without shadow evaporation

    Science.gov (United States)

    Wu, Xian; Ku, Hsiangsheng; Long, Junling; Pappas, David

    We developed a new method of fabricating Josephson Junction (Al/AlOX/Al) without shadow evaporation. Statistics from room temperature junction resistance and measurement of qubits are presented. Unlike the traditional ``Dolan Bridge'' technique, this method requires two individual lithographies and straight evaporations of Al. Argon RF plasma is used to remove native AlOX after the first evaporation, followed by oxidation and second Al evaporation. Junction resistance measured at room temperature shows linear dependence on Pox (oxidation pressure), √{tox} (oxidation time), and inverse proportional to junction area. We have seen 100% yield of qubits made with this method. This method is promising because it eliminates angle dependence during Junction fabrication, facilitates large scale qubits fabrication.

  12. Trauma of the lumbar spine and the thoracolumbar junction

    International Nuclear Information System (INIS)

    Reith, W.; Harsch, N.; Kraus, C.

    2016-01-01

    Patients who have experienced high energy trauma have a particularly high risk of suffering from fractures of the thoracic and lumbar spine. The detection of spinal injuries and the correct classification of fractures before surgery are not only absolute requirements for the implementation of appropriate surgical treatment but they are also decisive for the choice of surgical procedure. By the application of spiral computed tomography (CT) crucial additional information on the morphology of the fracture can be gained in order to estimate the fracture type and possibly the indications for specific surgical treatment options. Magnetic resonance imaging (MRI) is ideally suited to provide valuable additional information regarding injuries to the discoligamentous structures of the spine. Magerl et al. developed a comprehensive classification especially for injuries of the thoracic and lumbar spine, which was adopted by the working group for osteosynthesis (AO). This is based on a 2-pillar model of the spinal column. The classification is based on the pathomorphological characteristics of fractures recognizable by imaging. The injury pattern is of particular importance. In spinal trauma a distinction is made between stable and unstable fractures. The treatment of spinal injuries depends on the severity of the overall injury pattern. Besides adequate initial treatment at the scene, a trauma CT should be immediately carried out in order that no injuries are overlooked and to ensure a rapid decision on the treatment procedure. (orig.) [de

  13. A single-gradient junction technique to replace multiple-junction shifts for craniospinal irradiation treatment

    International Nuclear Information System (INIS)

    Hadley, Austin; Ding, George X.

    2014-01-01

    Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup error–induced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fields and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of ± 3 and 5 mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans

  14. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  15. Depression of the Thoracolumbar Posterior Vertebral Body on the Estimation of Cement Leakage in Vertebroplasty and Kyphoplasty Operations

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2015-01-01

    Conclusions: Depression of the thoracolumbar posterior vertebral body may be informative for the estimation of cement location on C-arm images. To reduce type-B leakage, DCPW should be made longer than DBCV on C-arm images for safety during PVP or PKP.

  16. Comparison of three different surgical approaches for treatment of thoracolumbar burst fracture

    Directory of Open Access Journals (Sweden)

    WU Han

    2013-02-01

    Full Text Available 【Abstract】Objective: The main treatment method used for thoracolumbar fractures is open reduction and in-ternal fixation. Commonly there are three surgical approaches: anterior, posterior and paraspinal. We attempt to compare the three approaches based on our clinical data analysis. Methods: A group of 94 patients with Denis type A or B thoracolumbar burst fracture between March 2008 and September 2010 were recruited in this study. These patients were treated by anterior-, posterior- or paraspinal-approach reduction with or without decompression. The fracture was fixed with titanium mesh and Z-plate via anterior approach (24 patients, screw and rod system via posterior approach (38 patients or paraspinal approach (32 patients. Clinical evaluations included operation duration, blood loss, inci-sion length, preoperative and postoperative Oswestry dis-ability index (ODI. Results: The average operation duration (94.1 min±13.7 min, blood loss (86.7 ml±20.0 ml, length of incision (9.3 mm± 0.7 mm and postoperative ODI (6±0.5 were signifi-cantly lower (P<0.05 in paraspinal approach group than in traditional posterior approach group (operation duration 94.1 min±13.7 min, blood loss 143.3 ml±28.3 ml, length of incision 15.4 cm±2.1 cm and ODI 12±0.7 and anterior approach group (operation duration 176.3 min±20.7 min, blood loss 255.1 ml±38.4 ml, length of incision 18.6 cm±2.4 cm and ODI 13±2.4. There was not statistical difference in terms of Cobb angle on radiographs among the three approaches. Conclusion: The anterior approach surgery is conve-nient for resection of the vertebrae and reconstruction of vertebral height, but it is more complicated and traumatic. Hence it is mostly used for severe Denis type B fracture. The posterior approach is commonly applied to most thora-columbar fractures and has fewer complications compared with the anterior approach, but it has some shortcomings as well. The paraspinal approach has great advantages

  17. Some chaotic features of intrinsically coupled Josephson junctions

    International Nuclear Information System (INIS)

    Kolahchi, M.R.; Shukrinov, Yu.M.; Hamdipour, M.; Botha, A.E.; Suzuki, M.

    2013-01-01

    Highlights: ► Intrinsically coupled Josephson junctions model a high-T c superconductor. ► Intrinsically coupled Josephson junctions can act as a chaotic nonlinear system. ► Chaos could be due to resonance overlap. ► Avoiding parameters that lead to chaos is important for the design of resonators. -- Abstract: We look for chaos in an intrinsically coupled system of Josephson junctions. This study has direct applications for the high-T c resonators which require coherence amongst the junctions

  18. Evaluation of the Results of Posterior Decompression, Corpectomy and Instrumentation in Traumatic Unstable Thoraco-Lumbar Burst Fractures

    Directory of Open Access Journals (Sweden)

    Md. Anowarul Islam

    2012-06-01

    Full Text Available Background: Thoraco-lumbar burst fractures occur as a result of axial load which often causes displacement of the middle column into the vertebral canal. Posterior surgery reduces the morbid outcomes of different other approaches. Objective: To evaluate the clinical and radiological success of posterior corpectomy and instrumentation in the management of traumatic unstable thoraco-lumbar burst fractures. Methods: It is a prospective interventional study carried out in Bangabandhu Sheikh Mujib Medical University and different private hospitals in Dhaka from July 2008 to December 2011. Total 18 patients; 13 male and 05 female within an age range of 21-40 years were selected. Total 09 cases involved L1, 05 cases at D12, 02 cases at D11 and at L2 each. Neurological status was assessed by Frankel‘s grading and pain status by Visual Analogue Score (VAS. Paired t-test was used for statistical analysis. Results: All the patients were followed up for minimum 1 year. Eleven out of 12 patients with Frankel grade-B and 04 patients out of 06 with Frankel grade-C recovered fully and could walk without support (p<0.05. Overall 03 patients ended with some degrees of persistant neurological deficit. The mean postoperative pain improvement and kyphotic angle correction was significant  (p<0.05. Conclusion: Decompression through posterior approach by laminectomy, corpectomy and fusion by cage with bone graft and stabilization by pedicle screw and rod significantly improves the clinical and radiological outcome in management of traumatic unstable thoraco-lumbar burst fractures.DOI: http://dx.doi.org/10.3329/bsmmuj.v5i1.10998 BSMMU J 2012; 5(1:35-41 

  19. Spontaneous correction of coronal imbalance after selective thoracolumbar-lumbar fusion in patients with Lenke-5C adolescent idiopathic scoliosis.

    Science.gov (United States)

    Hwang, Chang Ju; Lee, Choon Sung; Kim, Hyojune; Lee, Dong-Ho; Cho, Jae Hwan

    2018-03-22

    Coronal imbalance is a complication of corrective surgeries in adolescent idiopathic scoliosis (AIS). However, few studies about immediate coronal decompensation in Lenke-5C curves have reported its incidence, prognosis, and related factors. To evaluate the development of coronal imbalance after selective thoracolumbar-lumbar (TL/L) fusion (SLF) in Lenke-5C AIS, and to reveal related factors. Retrospective comparative study. This study included 50 consecutive patients with Lenke-5C AIS who underwent SLF at a single center. Whole-spine anteroposterior and lateral radiographs were used to measure radiological parameters. Patients were divided into two groups according to the presence or absence of coronal imbalance (distance between C7 plumb line and central sacral vertical line >2 cm) in the early (1 month) postoperative period. Various radiological parameters were statistically compared between groups. Of the patients, 28% (14 of 50) showed coronal imbalance in the early postoperative period; however, most of them (13 of 14) showed spontaneous correction during follow-up. The development of coronal imbalance was related to less flexibility of the TL/L curve (51.3% vs. 52.6%, p=.040), greater T10-L2 kyphosis (11.7° vs. 6.4°, p=.034), and greater distal junctional angle (6.0° vs. 3.7°, p=.025) in preoperative radiographs. Lowermost instrumented vertebra (LIV) tilt was greater in the decompensation [+] group in the early postoperative period (8.8° vs. 4.4°, p=.009). However, this difference disappeared in final follow-up with the decrease of LIV tilt in the decompensation [+] group. Less flexibility of the TL/L curve, greater TL kyphosis, and greater distal junctional angle preoperatively were predictive factors for immediate coronal imbalance in Lenke-5C curves. Although coronal imbalance was frequently detected in the early postoperative period after SLF, it was mostly corrected spontaneously with a decrease of LIV tilt. Thus, SLF for Lenke-5C curves can be

  20. EFFECTS OF X-RAY BEAM ANGLE AND GEOMETRIC DISTORTION ON WIDTH OF EQUINE THORACOLUMBAR INTERSPINOUS SPACES USING RADIOGRAPHY AND COMPUTED TOMOGRAPHY

    DEFF Research Database (Denmark)

    Djernaes, Julie D.; Nielsen, Jon V.; Berg, Lise C.

    2017-01-01

    The widths of spaces between the thoracolumbar processi spinosi (interspinous spaces) are frequently assessed using radiography in sports horses; however effects of varying X-ray beam angles and geometric distortion have not been previously described. The aim of this prospective, observational...... study was to determine whether X-ray beam angle has an effect on apparent widths of interspinous spaces. Thoracolumbar spine specimens were collected from six equine cadavers and left-right lateral radiographs and sagittal and dorsal reconstructed computed tomographic (CT) images were acquired...... measurements. Effect of geometric distortion was evaluated by comparing the interspinous space in radiographs with sagittal and dorsal reconstructed CT images. A total of 49 interspinous spaces were sampled, yielding 274 measurements. X-ray beam angle significantly affected measured width of interspinous...

  1. Fusion Rates of Different Anterior Grafts in Thoracolumbar Fractures.

    Science.gov (United States)

    Antoni, Maxime; Charles, Yann Philippe; Walter, Axel; Schuller, Sébastien; Steib, Jean-Paul

    2015-11-01

    Retrospective CT analysis of anterior fusion in thoracolumbar trauma. The aim of this study was to compare fusion rates of different bone grafts and to analyze risk factors for pseudarthrosis. Interbody fusion is indicated in anterior column defects. Different grafts are used: autologous iliac crest, titanium mesh cages filled with cancellous bone, and autologous ribs. It is not clear which graft offers the most reliable fusion. Radiologic data of 116 patients (71 men, 45 women) operated for type A2, A3, B, or C fractures were analyzed. The average age was 44.6 years (range, 16-75 y) and follow-up was 2.7 years (range, 1-9 y). All patients were treated by posterior instrumentation followed by an anterior graft: 53 cases with iliac crest, 43 cases with mesh cages, and 20 with rib grafts. Fusion was evaluated on CT and classified into complete fusion, partial fusion, unipolar pseudarthrosis, and bipolar pseudarthrosis. Iliac crest fused in 66%, cages in 98%, and rib grafts in 90%. The fusion rate of cages filled with bone was significantly higher as the iliac graft fusion rate (P=0.002). The same was applied to rib grafts compared with iliac crest (P=0.041). Additional bone formation around the main graft, bridging both vertebral bodies, was observed in 31 of the 53 iliac crests grafts. Pseudarthrosis occurred more often in smokers (P=0.042). A relationship between fracture or instrumentation types, sex, age, BMI, and fusion could not be determined. Tricortical iliac crest grafts showed an unexpected high pseudarthrosis rate in thoracolumbar injuries. Their cortical bone is dense and their fusion surface is small. Rib grafts led to a better fusion when used in combination with the cancellous bone from the fractured vertebral body. Titanium mesh cages filled with cancellous bone led to the highest fusion rate and built a complete bony bridge between vertebral bodies. Smoking seemed to influence fusion. Case control study, Level III.

  2. Epithelioid hemangioendothelioma and multiple thoraco-lumbar lateral meningoceles: two rare pathological entities in a patient with NF-1

    International Nuclear Information System (INIS)

    Reis, C.; Carneiro, E.; Fonseca, J.; Salgado, A.; Pereira, P.; Vaz, R.; Pinto, R.; Capelinha, A.F.; Lopes, J.M.

    2005-01-01

    Epithelioid hemangioendothelioma (EHE) is a rare vascular soft-tissue tumour of intermediate malignancy. Neurofibromatosis type I (NF-1) is a genetic syndrome associated with soft tissue sarcoma and higher risk of developing neoplasia. Lateral meningoceles are uncommon entities, being mostly associated with NF-1. We report a case of a 31-year-old woman, with NF-1 and past history of right thalamic/peduncular astrocytoma WHO grade II, admitted to the Neurosurgery Department in December 2003 due to severe low back pain, irradiating to the left leg without a radicular pattern. Thoraco-lumbar magnetic resonance imaging (MRI) showed a large left posterior paravertebral expansive lesion, bilateral and multiple thoraco-lumbar lateral meningoceles and dural ectasias with scalloping of the vertebral bodies. Biopsy of the paravertebral mass lesion disclosed EHE. We present this case because of the novel association between NF-1 and EHE, and the unusual aggressiveness of the neoplasia. Additionally, we highlight the co-existence of bilateral and multiple lateral meningoceles. (orig.)

  3. Reliability analysis of the AOSpine thoracolumbar spine injury classification system by a worldwide group of naïve spinal surgeons.

    Science.gov (United States)

    Kepler, Christopher K; Vaccaro, Alexander R; Koerner, John D; Dvorak, Marcel F; Kandziora, Frank; Rajasekaran, Shanmuganathan; Aarabi, Bizhan; Vialle, Luiz R; Fehlings, Michael G; Schroeder, Gregory D; Reinhold, Maximilian; Schnake, Klaus John; Bellabarba, Carlo; Cumhur Öner, F

    2016-04-01

    The aims of this study were (1) to demonstrate the AOSpine thoracolumbar spine injury classification system can be reliably applied by an international group of surgeons and (2) to delineate those injury types which are difficult for spine surgeons to classify reliably. A previously described classification system of thoracolumbar injuries which consists of a morphologic classification of the fracture, a grading system for the neurologic status and relevant patient-specific modifiers was applied to 25 cases by 100 spinal surgeons from across the world twice independently, in grading sessions 1 month apart. The results were analyzed for classification reliability using the Kappa coefficient (κ). The overall Kappa coefficient for all cases was 0.56, which represents moderate reliability. Kappa values describing interobserver agreement were 0.80 for type A injuries, 0.68 for type B injuries and 0.72 for type C injuries, all representing substantial reliability. The lowest level of agreement for specific subtypes was for fracture subtype A4 (Kappa = 0.19). Intraobserver analysis demonstrated overall average Kappa statistic for subtype grading of 0.68 also representing substantial reproducibility. In a worldwide sample of spinal surgeons without previous exposure to the recently described AOSpine Thoracolumbar Spine Injury Classification System, we demonstrated moderate interobserver and substantial intraobserver reliability. These results suggest that most spine surgeons can reliably apply this system to spine trauma patients as or more reliably than previously described systems.

  4. Is fusion necessary for thoracolumbar burst fracture treated with spinal fixation? A systematic review and meta-analysis.

    Science.gov (United States)

    Diniz, Juliete M; Botelho, Ricardo V

    2017-11-01

    OBJECTIVE Thoracolumbar fractures account for 90% of spinal fractures, with the burst subtype corresponding to 20% of this total. Controversy regarding the best treatment for this condition remains. The traditional surgical approach, when indicated, involves spinal fixation and arthrodesis. Newer studies have brought the need for fusion associated with internal fixation into question. Not performing arthrodesis could reduce surgical time and intraoperative bleeding without affecting clinical and radiological outcomes. With this study, the authors aimed to assess the effect of fusion, adjuvant to internal fixation, on surgically treated thoracolumbar burst fractures. METHODS A search of the Medline and Cochrane Central Register of Controlled Trials databases was performed to identify randomized trials that compared the use and nonuse of arthrodesis in association with internal fixation for the treatment of thoracolumbar burst fractures. The search encompassed all data in these databases up to February 28, 2016. RESULTS Five randomized/quasi-randomized trials, which involved a total of 220 patients and an average follow-up time of 69.1 months, were included in this review. No significant difference between groups in the final scores of the visual analog pain scale or Low Back Outcome Scale was detected. Surgical time and blood loss were significantly lower in the group of patients who did not undergo fusion (p < 0.05). Among the evaluated radiological outcomes, greater mobility in the affected segment was found in the group of those who did not undergo fusion. No significant difference between groups in the degree of kyphosis correction, loss of kyphosis correction, or final angle of kyphosis was observed. CONCLUSIONS The data reviewed in this study suggest that the use of arthrodesis did not improve clinical outcomes, but it was associated with increased surgical time and higher intraoperative bleeding and did not promote significant improvement in radiological

  5. The role of Rap1 in cell-cell junction formation

    NARCIS (Netherlands)

    Kooistra, M.R.H.

    2008-01-01

    Both epithelial and endothelial cells form cell-cell junctions at the cell-cell contacts to maintain tissue integrity. Proper regulation of cell-cell junctions is required for the organisation of the tissue and to prevent leakage of blood vessels. In endothelial cells, the cell-cell junctions are

  6. Ileocolic junction resection in dogs and cats: 18 cases.

    Science.gov (United States)

    Fernandez, Yordan; Seth, Mayank; Murgia, Daniela; Puig, Jordi

    2017-12-01

    There is limited veterinary literature about dogs or cats with ileocolic junction resection and its long-term follow-up. To evaluate the long-term outcome in a cohort of dogs and cats that underwent resection of the ileocolic junction without extensive (≥50%) small or large bowel resection. Medical records of dogs and cats that had the ileocolic junction resected were reviewed. Follow-up information was obtained either by telephone interview or e-mail correspondence with the referring veterinary surgeons. Nine dogs and nine cats were included. The most common cause of ileocolic junction resection was intussusception in dogs (5/9) and neoplasia in cats (6/9). Two dogs with ileocolic junction lymphoma died postoperatively. Only 2 of 15 animals, for which long-term follow-up information was available, had soft stools. However, three dogs with suspected chronic enteropathy required long-term treatment with hypoallergenic diets alone or in combination with medical treatment to avoid the development of diarrhoea. Four of 6 cats with ileocolic junction neoplasia were euthanised as a consequence of progressive disease. Dogs and cats undergoing ileocolic junction resection and surviving the perioperative period may have a good long-term outcome with mild or absent clinical signs but long-term medical management may be required.

  7. Clinical study on the application of minimally invasive percutaneous pedicle screw fixation in single segment thoracolumbar fracture without neurological symptoms

    Directory of Open Access Journals (Sweden)

    Jin-ping LIU

    2016-04-01

    Full Text Available Objective To discuss the clinical effects of minimally invasive percutaneous pedicle screw fixation in the treatment of single segment thoracolumbar fracture without neurological symptoms.  Methods From June 2012 to October 2014, 38 neurologically intact patients with thoracolumbar fracture underwent surgeries, including open pedicle screw fixation in 16 cases and percutaneous pedicle screw fixation in 22 cases. The incision length, operation time, intraoperative blood loss, postoperative drainage and postoperative complication were recorded and compared between 2 groups. Thoracolumbar orthophoric, lateral and flexion-extension X-ray was used to measure sagittal Cobb angle and height of injured anterior vertebral body before and after operation. Modified Macnab evaluation was used to assess the curative effects 3 months after operation. Results The success rate of operations in 38 patients was 100%. There were a total of 114 vertebral bodies fused and 228 pedicle screws implanted. Patients in the percutaneous pedicle screw group had smaller incision length [(10.55 ± 1.23 cm vs (18.50 ± 2.50 cm, P = 0.000], less intraoperative blood loss [(32.55 ± 7.22 ml vs (320.50 ± 15.48 ml, P = 0.000], shorter hospital stay [(6.55 ± 1.50 d vs (13.50 ± 2.52 d, P = 0.000], and without postoperative drainage. The follow-up after operation ranged from 3 to 6 months, with the average time of (4.65 ± 1.24 months. Cobb angle was reduced (P = 0.000 and height of injured anterior vertebral body were improved signifcantly (P = 0.000 3 months after surgery in both groups. The total effective rate was 14/16 in open surgery group, and 86.36% (19/22 in percutaneous pedicle screw group, however, the difference between 2 groups was not significant (P = 1.000. Conclusions Minimally invasive percutaneous pedicle screw fixation is a surgical method with less iatrogenic injury, less intraoperative blood loss and quick recovery for patients with thoracolumbar fracture

  8. Spinal Cord Kinking in Thoracic Myelopathy Caused by Ossification of the Ligamentum Flavum

    Directory of Open Access Journals (Sweden)

    Ting Wang

    2015-01-01

    Conclusions: SK is a rare radiological phenomenon. It is typically located at the thoracolumbar junction, where the CM is compressed by the OLF. Our findings indicate that these patients may benefit from a posterior decompressive procedure.

  9. Superconductive junctions for x-ray spectroscopy

    International Nuclear Information System (INIS)

    Grand, J.B. le; Bruijn, M.P.; Frericks, M.; Korte, P.A.J. de; Houwman, E.P.; Flokstra, J.

    1992-01-01

    Biasing of SIS-junctions for the purpose of high energy resolution x-ray detection is complicated by the presence of a DC Josephson current and AC Josephson current resonances, so that a large magnetic field is normally used for the suppression of these Josephson features. A transimpedance amplifier is proposed for biasing and signal amplification at low magnetic field. X-ray spectroscopy detectors for astronomy require a high detection efficiency in the 0.5-10 keV energy band and a reasonable (∼1 cm 2 ) detector area. Calculations on absorber-junctions combinations which might meet these requirements are presented. (author) 9 refs.; 10 figs

  10. Isotope scanning with /sup 99/Tcsup(m)-MDP of the spine and the costosternal junctions of patients with idiopathic scoliosis

    Energy Technology Data Exchange (ETDEWEB)

    Normelli, H.; Lewander, R.

    Bone scanning of the thoracolumbar spine and the anterior thorax was performed in 7 girls with recently diagnosed progressive thoracic idiopathic scoliosis. A reference group consisted of a group of 8 patients submitted to bone scanning for other reasons. In all 7 girls composing the scoliosis group the isotope uptake by the vertex vertebra, the 2 vertebrae above and the 2 below was homogeneous, with no areas of abnormally increased uptake. In 5 of these patients where quantitative studies were performed there was no significant difference in uptake between the vertex and the other 4 vertebrae. Nor did the 2 groups differ significantly as regards the left-right difference in uptake by the costosternal junctions. The results of this investigation confirm the observation in a preliminary study that there was no disturbance of spinal growth during the early stage of development of idiopathic thoracic scoliosis. However, the results did not support a tentative conclusion drawn on the basis of the preliminary study - namely, that the development of spinal deformity in idiopathic scoliosis might be ascribed to asymmetric longitudinal rib growth, reflected in asymmetric isotope uptake by the paired costosternal junctions. It is questionable however, whether scintigraphic scanning can provide an accurate procedure for quantitative measurement of skeletal growth of the ribs, especially in scoliotic patients. (orig.).

  11. Biomechanics of Thoracolumbar Burst and Chance-Type Fractures during Fall from Height

    Science.gov (United States)

    Ivancic, Paul C.

    2014-01-01

    Study Design In vitro biomechanical study. Objective To investigate the biomechanics of thoracolumbar burst and Chance-type fractures during fall from height. Methods Our model consisted of a three-vertebra human thoracolumbar specimen (n = 4) stabilized with muscle force replication and mounted within an impact dummy. Each specimen was subjected to a single fall from an average height of 2.1 m with average velocity at impact of 6.4 m/s. Biomechanical responses were determined using impact load data combined with high-speed movie analyses. Injuries to the middle vertebra of each spinal segment were evaluated using imaging and dissection. Results Average peak compressive forces occurred within 10 milliseconds of impact and reached 40.3 kN at the ground, 7.1 kN at the lower vertebra, and 3.6 kN at the upper vertebra. Subsequently, average peak flexion (55.0 degrees) and tensile forces (0.7 kN upper vertebra, 0.3 kN lower vertebra) occurred between 43.0 and 60.0 milliseconds. The middle vertebra of all specimens sustained pedicle and endplate fractures with comminution, bursting, and reduced height of its vertebral body. Chance-type fractures were observed consisting of a horizontal split fracture through the laminae and pedicles extending anteriorly through the vertebral body. Conclusions We hypothesize that the compression fractures of the pedicles and vertebral body together with burst fracture occurred at the time of peak spinal compression, 10 milliseconds. Subsequently, the onset of Chance-type fracture occurred at 20 milliseconds through the already fractured and weakened pedicles and vertebral body due to flexion-distraction and a forward shifting spinal axis of rotation. PMID:25083357

  12. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H.

    2012-01-01

    -performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising

  13. Prospective assessment of the safety and early outcomes of sublaminar band placement for the prevention of proximal junctional kyphosis.

    Science.gov (United States)

    Viswanathan, Vibhu K; Kukreja, Sunil; Minnema, Amy J; Farhadi, H Francis

    2018-05-01

    OBJECTIVE Proximal junctional kyphosis (PJK) can progress to proximal junctional failure (PJF), a widely recognized early and serious complication of multisegment spinal instrumentation for the treatment of adult spinal deformity (ASD). Sublaminar band placement has been suggested as a possible technique to prevent PJK and PJF but carries the theoretical possibility of a paradoxical increase in these complications as a result of the required muscle dissection and posterior ligamentous disruption. In this study, the authors prospectively assess the safety as well as the early clinical and radiological outcomes of sublaminar band insertion at the upper instrumented vertebra (UIV) plus 1 level (UIV+1). METHODS Between August 2015 and February 2017, 40 consecutive patients underwent either upper (T2-4) or lower (T8-10) thoracic sublaminar band placement at the UIV+1 during long-segment thoracolumbar arthrodesis surgery. Outcome measures were prospectively collected and uploaded to a web-based REDCap database specifically designed to include demographic, clinical, and radiological data. All patients underwent clinical assessment, as well as radiological assessment with anteroposterior and lateral 36-inch whole-spine standing radiographs both pre- and postoperatively. RESULTS Forty patients (24 women and 16 men) were included in this study. Median age at surgery was 64.0 years with an IQR of 57.7-70.0 years. Median follow-up was 12 months (IQR 6-15 months). Three procedure-related complications were noted, including 2 intraoperative cerebrospinal spinal fluid leaks and 1 transient neurological deficit. Median visual analog scale (VAS) scores for back pain significantly improved after surgery (preoperatively: 8.0, IQR 6.0-10.0; 1-year follow-up: 2.0, IQR 0.0-6.0; p = 0.001). Median Oswestry Disability Index (version 2.1a) scores also significantly improved after surgery (preoperatively: 56.0, IQR 45.0-64.0; 1-year follow-up: 46.0, IQR 22.2-54.0; p < 0.001). Sagittal

  14. The influence of junction conformation on RNA cleavage by the hairpin ribozyme in its natural junction form.

    Science.gov (United States)

    Thomson, J B; Lilley, D M

    1999-01-01

    In the natural form of the hairpin ribozyme the two loop-carrying duplexes that comprise the majority of essential bases for activity form two adjacent helical arms of a four-way RNA junction. In the present work we have manipulated the sequence around the junction in a way known to perturb the global folding properties. We find that replacement of the junction by a different sequence that has the same conformational properties as the natural sequence gives closely similar reaction rate and Arrhenius activation energy for the substrate cleavage reaction. By comparison, rotation of the natural sequence in order to alter the three-dimensional folding of the ribozyme leads to a tenfold reduction in the kinetics of cleavage. Replacement with the U1 four-way junction that is resistant to rotation into the antiparallel structure required to allow interaction between the loops also gives a tenfold reduction in cleavage rate. The results indicate that the conformation of the junction has a major influence on the catalytic activity of the ribozyme. The results are all consistent with a role for the junction in the provision of a framework by which the loops are presented for interaction in order to create the active form of the ribozyme. PMID:10024170

  15. Linker-dependent Junction Formation Probability in Single-Molecule Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Pil Sun; Kim, Taekyeong [HankukUniversity of Foreign Studies, Yongin (Korea, Republic of)

    2015-01-15

    We compare the junction formation probabilities of single-molecule junctions with different linker molecules by using a scanning tunneling microscope-based break-junction technique. We found that the junction formation probability varies as SH > SMe > NH2 for the benzene backbone molecule with different types of anchoring groups, through quantitative statistical analysis. These results are attributed to different bonding forces according to the linker groups formed with Au atoms in the electrodes, which is consistent with previous works. Our work allows a better understanding of the contact chemistry in the metal.molecule junction for future molecular electronic devices.

  16. [Comparison of effectiveness between two surgical methods in treatment of thoracolumbar brucella spondylitis].

    Science.gov (United States)

    Yang, Xinming; Zuo, Xianhong; Jia, Yongli; Chang, Yuefei; Zhang, Peng; Ren, Yixing

    2014-10-01

    To compare the effectiveness between the method of simple posterior debridement combined with bone grafting and fusion and internal fixation and the method of one-stage anterior radical debridement combined with bone grafting and fusion and posterior internal fixation in the treatment of thoracolumbar brucella spondylitis so as to provide the reference for the clinical treatment. A retrospective analysis was made on the clinical data of 148 cases of thoracolumbar brucella spondylitis between January 2002 and January 2012. Simple posterior debridement combined with bone grafting and fusion and internal fixation was used in 78 cases (group A), and one-stage anterior radical debridement combined with bone grafting and fusion and posterior internal fixation in 70 cases (group B). There was no significant difference in gender, age, disease duration, involved vertebral segments, erythrocyte sedimentation rate (ESR), visual analogue scale (VAS) score, neural function grade of America Spinal Injury Association (ASIA), and kyphosis Cobb angle before operation between 2 groups (P > 0.05). The peri operation period indexes (hospitalization time, operation time, and intraoperative blood loss) and the clinical effectiveness indexes (VAS score, ASIA grade, Cobb angle, and ESR) were compared; the bone fusion and the internal fixation were observed. Incision infection and paravertebral and/or psoas abscess occurred in 2 and 3 cases of group A respectively. All incisions healed by first intention and 2 cases had pneumothorax in group B. The operation time and the hospitalization time of group A were significantly shorter than those of group B (P average. The VAS, ESR, and Cobb angle were significantly decreased at each time point after operation when compared with preoperative ones in 2 groups (P 0.05). The neurological function was significantly improved at 3 months after operation; there were 1 case of ASIA grade C, 14 cases of grade D, and 63 cases of grade E in group A, and

  17. Exotic hadron and string junction model

    International Nuclear Information System (INIS)

    Imachi, Masahiro

    1978-01-01

    Hadron structure is investigated adopting string junction model as a realization of confinement. Besides exotic hadrons (M 4 , B 5 etc.), unconventional hadrons appear. A mass formula for these hadrons is proposed. New selection rule is introduced which requires the covalence of constituent line at hadron vertex. New duality appears due to the freedom of junction, especially in anti BB→anti BB reaction. A possible assignment of exotic and unconventional hadrons to recently observed narrow meson states is presented. (auth.)

  18. Design of thin InGaAsN(Sb) n-i-p junctions for use in four-junction concentrating photovoltaic devices

    Science.gov (United States)

    Wilkins, Matthew M.; Gupta, James; Jaouad, Abdelatif; Bouzazi, Boussairi; Fafard, Simon; Boucherif, Abderraouf; Valdivia, Christopher E.; Arès, Richard; Aimez, Vincent; Schriemer, Henry P.; Hinzer, Karin

    2017-04-01

    Four-junction solar cells for space and terrestrial applications require a junction with a band gap of ˜1 eV for optimal performance. InGaAsN or InGaAsN(Sb) dilute nitride junctions have been demonstrated for this purpose, but in achieving the 14 mA/cm2 short-circuit current needed to match typical GaInP and GaAs junctions, the open-circuit voltage (VOC) and fill factor of these junctions are compromised. In multijunction devices incorporating materials with short diffusion lengths, we study the use of thin junctions to minimize sensitivity to varying material quality and ensure adequate transmission into lower junctions. An n-i-p device with 0.65-μm absorber thickness has sufficient short-circuit current, however, it relies less heavily on field-aided collection than a device with a 1-μm absorber. Our standard cell fabrication process, which includes a rapid thermal anneal of the contacts, yields a significant improvement in diffusion length and device performance. By optimizing a four-junction cell around a smaller 1-sun short-circuit current of 12.5 mA/cm2, we produced an InGaAsN(Sb) junction with open-circuit voltage of 0.44 V at 1000 suns (1 sun=100 mW/cm2), diode ideality factor of 1.4, and sufficient light transmission to allow >12.5 mA/cm2 in all four subcells.

  19. Clinical and radiological results 6 years after treatment of traumatic thoracolumbar burst fractures with pedicle screw instrumentation and balloon assisted endplate reduction

    NARCIS (Netherlands)

    Verlaan, Jorrit Jan; Somers, Inne; Dhert, Wouter J A; Oner, F. Cumhur

    2015-01-01

    Background context  When used to fixate traumatic thoracolumbar burst fractures, pedicle screw constructs may fail in the presence of severe vertebral body comminution as the intervertebral disc can creep through the fractured endplates leading to insufficient anterior column support.

  20. The radiological diagnosis of thoracolumbar disc disease in the Dachshund

    International Nuclear Information System (INIS)

    Kirberger, R.M.; Roos, C.J.; Lubbe, A.M.

    1992-01-01

    The accuracy of survey radiographs in the diagnosis of acute thoracolumbar disc disease in 36 Dachshunds was determined by comparison with lumbar myelographic findings using iohexol. The value of making radiographs immediately after injection of contrast medium and the effectiveness of oblique radiographs in determining the exact circumferential distribution of extruding or protruding disc material were assessed. The presence of a double contrast medium column, resistance to injection and the presence of cerebrospinal fluid flow during needle placement was also evaluated. The location of the affected disc was accurately determined on survey radiographs in only 26 dogs. The myelographic technique used in this study resulted in the correct intervertebral space being identified, together with the exact circumferential distribution of disc material, in 35 dogs. Survey radiographs alone are inadequate for localization of protruding or extruding disc material

  1. Neutron induced permanent damage in Josephson junctions

    International Nuclear Information System (INIS)

    Mueller, G.P.; Rosen, M.

    1982-01-01

    14 MeV neutron induced permanent changes in the critical current density of Josephson junctions due to displacement damage in the junction barrier are estimated using a worst case model and the binary collision simulation code MARLOWE. No likelihood of single event hard upsets is found in this model. It is estimated that a fluence of 10 18 -10 19 neutrons/cm 2 are required to change the critical current density by 5%

  2. Correlation of outcome measures with epidemiological factors in thoracolumbar spinal trauma

    Directory of Open Access Journals (Sweden)

    Upendra Bidre

    2007-01-01

    Full Text Available Background : The epidemiological data of a given population on spinal trauma in India is lacking. The present study was undertaken to evaluate the profile of patients with thoracolumbar fractures in a tertiary care hospital in an urban setup. Materials and Methods : Four hundred forty patients with thoracolumbar spinal injuries admitted from January 1990 to May 2000 to the All India Institute of Medical Sciences were included in the analysis. Both retrospective data retrieval and prospective data evaluation of patients were done from January 1998 to May 2000. Epidemiological factors like age, sex and type of injury, mode of transport, time of reporting and number of transfers before admission were recorded. Frankel′s grading was used to assess neurological status. Functional assessment of all patients was done using the FIM™ instrument (Functional Independence Measure. Average follow-up was 33 months (24-41 months. Results : Of the 440 patients, females comprised 17.95% (n=79, while 82.04% (n=361 were males. As many as 40.9% (n=180 of them were in the third decade. Fall from height remained the most common cause 52.3% (n=230. Two hundred sixty (59.1% patients reported within 48 hours. Thirty-two (7.27% patients had single transfer, and all 32 showed complete independence for mobility at final follow-up. 100 of 260 (38.5% patients reporting within 48 hours developed pressure sores, while 114 of 142 (80.28% patients reporting after 5 days developed pressure sores. Conclusion : The present study highlights the magnitude of the problems of our trauma-care and transport system and the difference an effective system can make in the care of spinal injury patients. There is an urgent need for epidemiological data on a larger scale to emphasize the need for a better trauma-care system and pave way for adaptation of well-established trauma-care systems from developed countries.

  3. Particle detection with superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Jany, P.

    1990-08-01

    At the Institute of Experimental Nuclear Physics of the University of Karlsruhe (TH) and at the Institute for Nuclear Physics of the Kernforschungszentrum Karlsruhe we started to produce superconducting tunnel junctions and to investigate them for their suitability as particle detectors. The required facilities for the production of tunnel junctions and the experimental equipments to carry out experiments with them were erected. Experiments are presented in which radiations of different kinds of particles could successfully be measured with the tunnel junctions produced. At first we succeeded in detectioning light pulses of a laser. In experiments with alpha-particles of an energy of 4,6 MeV the alpha-particles were detected with an energy resolution of 1,1%, and it was shown in specific experiments that the phonons originating from the deposition of energy by an alpha-particle in the substrate can be detected with superconducting tunnel junctions at the surface. On that occasion it turned out that the signals could be separated with respect to their point of origin (tunnel junction, contact leads, substrate). Finally X-rays with an energy of 6 keV were detected with an energy resolution of 8% in a test arrangement that makes use of the so-called trapping effect to read out a larger absorber volume. (orig.) [de

  4. The value of CT and MRI in the classification and surgical decision-making among spine surgeons in thoracolumbar spinal injuries.

    Science.gov (United States)

    Rajasekaran, Shanmuganathan; Vaccaro, Alexander R; Kanna, Rishi Mugesh; Schroeder, Gregory D; Oner, Frank Cumhur; Vialle, Luiz; Chapman, Jens; Dvorak, Marcel; Fehlings, Michael; Shetty, Ajoy Prasad; Schnake, Klaus; Maheshwaran, Anupama; Kandziora, Frank

    2017-05-01

    Although imaging has a major role in evaluation and management of thoracolumbar spinal trauma by spine surgeons, the exact role of computed tomography (CT) and magnetic resonance imaging (MRI) in addition to radiographs for fracture classification and surgical decision-making is unclear. Spine surgeons (n = 41) from around the world classified 30 thoracolumbar fractures. The cases were presented in a three-step approach: first plain radiographs, followed by CT and MRI images. Surgeons were asked to classify according to the AOSpine classification system and choose management in each of the three steps. Surgeons correctly classified 43.4 % of fractures with plain radiographs alone; after, additionally, evaluating CT and MRI images, this percentage increased by further 18.2 and 2.2 %, respectively. AO type A fractures were identified in 51.7 % of fractures with radiographs, while the number of type B fractures increased after CT and MRI. The number of type C fractures diagnosed was constant across the three steps. Agreement between radiographs and CT was fair for A-type (k = 0.31), poor for B-type (k = 0.19), but it was excellent between CT and MRI (k > 0.87). CT and MRI had similar sensitivity in identifying fracture subtypes except that MRI had a higher sensitivity (56.5 %) for B2 fractures (p change after an MRI (p = 0.77). For accurate classification, radiographs alone were insufficient except for C-type injuries. CT is mandatory for accurately classifying thoracolumbar fractures. Though MRI did confer a modest gain in sensitivity in B2 injuries, the study does not support the need for routine MRI in patients for classification, assessing instability or need for surgery.

  5. Percutaneous kyphoplasty combined with zoledronic acid infusion in the treatment of osteoporotic thoracolumbar fractures in the elderly

    OpenAIRE

    Shi,Chen; Zhang,Mi; Cheng,An-Yuan; Huang,Zi-Feng

    2018-01-01

    Chen Shi,1,* Mi Zhang,2,* An-Yuan Cheng,1 Zi-Feng Huang1 1Department of Trauma Surgery, Wuhan No 1 Hospital, Wuhan, China; 2Department of Orthopedics, Wuhan No 5 Hospital, Wuhan, China *These authors contributed equally to this work Objective: We studied the efficacy of zoledronic acid (ZOL) infusion on radiographic and clinical outcomes after percutaneous kyphoplasty (PKP) for elderly patients with osteoporotic thoracolumbar fractures (osteoporotic vertebral compression fractures...

  6. Percutaneous kyphoplasty combined with zoledronic acid infusion in the treatment of osteoporotic thoracolumbar fractures in the elderly

    OpenAIRE

    Shi C; Zhang M; Cheng AY; Huang ZF

    2018-01-01

    Chen Shi,1,* Mi Zhang,2,* An-Yuan Cheng,1 Zi-Feng Huang1 1Department of Trauma Surgery, Wuhan No 1 Hospital, Wuhan, China; 2Department of Orthopedics, Wuhan No 5 Hospital, Wuhan, China *These authors contributed equally to this work Objective: We studied the efficacy of zoledronic acid (ZOL) infusion on radiographic and clinical outcomes after percutaneous kyphoplasty (PKP) for elderly patients with osteoporotic thoracolumbar fractures (osteoporotic vertebral compression fractures [OV...

  7. The influence of spine surgeons' experience on the classification and intraobserver reliability of the novel AOSpine thoracolumbar spine injury classification system : an international study

    NARCIS (Netherlands)

    Sadiqi, Said; Oner, F. Cumhur; Dvorak, Marcel F.; Aarabi, Bizhan; Schroeder, Gregory D.; Vaccaro, Alexander R.

    2015-01-01

    Study Design. International validation study. Objective. To investigate the influence of the spine surgeons' level of experience on the intraobserver reliability of the novel AOSpine Thoracolumbar Spine Injury Classification system, and the appropriate classification according to this system.

  8. Spreading epidural hematoma and deep subcutaneous edema: indirect MRI signs of posterior ligamentous complex injury in thoracolumbar burst fractures

    International Nuclear Information System (INIS)

    Kim, Na Ra; Hong, Sung Hwan; Choi, Ja-Young; Myung, Jae Sung; Chang, Bong-Soon; Lee, Joon Woo; Kang, Heung Sik; Moon, Sung Gyu

    2010-01-01

    The purpose of this study was to evaluate the diagnostic value of a spreading epidural hematoma (SEH) and deep subcutaneous edema (DSE) as indirect signs of posterior ligamentous complex (PLC) injuries on MR imaging of thoracolumbar burst fractures. We retrospectively reviewed spinal MR images of 43 patients with thoracolumbar burst fractures: 17 patients with PLC injuries (study group) and 26 without PLC injuries (control group). An SEH was defined as a hemorrhagic infiltration into the anterior or posterior epidural space that spread along more than three vertebrae including the level of the fracture. A DSE was regarded as a fluid-like signal lesion in the deep subcutaneous layer of the back, and its epicenter was at the burst fracture level. The frequency of the SEH/DSE in the two groups was analyzed. In addition, the association between each sign and the degree of vertebral collapse, the severity of central canal compromise, and surgical decisions were analyzed. Magnetic resonance images showed an SEH in 20 out of 43 patients (46%) and a DSE in 17 (40%). The SEH and DSE were more commonly seen in the study group with PLC injuries (SEH, 15 out of 17 patients, 80%; DSE, 16 out of 17 patients, 94%) than in the control group without PLC injuries (SEH, 5 out of 26, 19%; DSE, 1 out of 26, 4%) (P <0.0001). The SEH and DSE were significantly associated with surgical management decisions (17 out of 20 patients with SEH, 85%, vs 8 out of the 23 without SEH, 35%, P =0.002; 15 out of 17 with DSE, 88%, vs 10 out of 26 without DSE, 38%, P =0.002). The SEH and DSE did not correlate with the degree of vertebral collapse or the severity of central canal compromise. The SEH and DSE may be useful secondary MR signs of posterior ligamentous complex injury in thoracolumbar burst fractures. (orig.)

  9. NbCN Josephson junctions with AlN barriers

    International Nuclear Information System (INIS)

    Thomasson, S.L.; Murduck, J.M.; Chan, H.

    1991-01-01

    This paper reports on niobium carbonitride (NbCN) Josephson circuits which operate over a wider temperature range than either niobium or niobium nitride circuits. Higher operating temperature places NbCN technology more comfortably within the range of closed cycle refrigerators, a key factor in aerospace applications. We have fabricated tunnel junctions from NbCN films with transition temperatures up to 18 Kelvin. High quality NbCN tunnel junction fabrication generally requires low stress films with roughness less than the barrier thickness (∼20 Angstrom). We have developed scanning tunneling microscopy as a tool for measuring and optimizing film smoothness. Junctions formed in situ with AIN tunneling barriers show reproducible I-V characteristics

  10. Diffusion-Weighted MRI Assessment of Adjacent Disc Degeneration After Thoracolumbar Vertebral Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Noriega, David C., E-mail: dcnoriega1970@gmail.com [Valladolid University Hospital, Spine Department (Spain); Marcia, Stefano, E-mail: stemarcia@gmail.com [SS. Trinità Hospital ASL 8 Cagliari, Department of Radiology (Italy); Ardura, Francisco, E-mail: fardura@ono.com [Valladolid University Hospital, Spine Department (Spain); Lite, Israel Sanchez, E-mail: israelslite@hotmail.com [Valladolid University Hospital, Radiology Department (Spain); Marras, Mariangela, E-mail: mariangela.marrasmd@gmail.com [Azienda Ospedaliero Brotzu (A.O.B.), Department of Radiology (Italy); Saba, Luca, E-mail: lucasaba@tiscali.it [Azienda Ospedaliero Universitaria (A.O.U.), Department of Radiology (Italy)

    2016-09-15

    ObjectiveThe purpose of this study was to assess, by the mean apparent diffusion coefficient (ADC), if a relationship exists between disc ADC and MR findings of adjacent disc degeneration after thoracolumbar fractures treated by anatomic reduction using vertebral augmentation (VAP).Materials and MethodsTwenty non-consecutive patients (mean age 50.7 years; range 45–56) treated because of vertebral fractures, were included in this study. There were 10 A3.1 and 10 A1.2 fractures (AO classification). Surgical treatment using VAP was applied in 14 cases, and conservative in 6 patients. MRI T2-weighted images and mapping of apparent diffusion coefficient (ADC) of the intervertebral disc adjacent to the fractured segment were performed after a mean follow-up of 32 months. A total of 60 discs, 3 per patient, were analysed: infra-adjacent, supra-adjacent and a control disc one level above the supra-adjacent.ResultsNo differences between patients surgically treated and those following a conservative protocol regarding the average ADC values obtained in the 20 control discs analysed were found. Considering all discs, average ADC in the supra-adjacent level was lower than in the infra-adjacent (1.35 ± 0.12 vs. 1.53 ± 0.06; p < 0.001). Average ADC values of the discs used as a control were similar to those of the infra-adjacent level (1.54 ± 0.06). Compared to surgically treated patients, discs at the supra-adjacent fracture level showed statistically significant lower values in cases treated conservatively (p < 0.001). The variation in the delay of surgery had no influence on the average values of ADC at any of the measured levels.ConclusionsADC measurements of the supra-adjacent discs after a mean follow-up of 32 months following thoracolumbar fractures, showed that restoration of the vertebral collapse by minimally invasive VAP prevents posttraumatic disc degeneration.

  11. Four-junction superconducting circuit

    Science.gov (United States)

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  12. Computer simulation of two-level pedicle subtraction osteotomy for severe thoracolumbar kyphosis in ankylosing spondylitis

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2017-01-01

    Full Text Available Background: Advanced ankylosing spondylitis is often associated with thoracolumbar kyphosis, resulting in an abnormal spinopelvic balance and pelvic morphology. Different osteotomy techniques have been used to correct AS deformities, unfortunnaly, not all AS patients can gain spinal sagittal balance and good horizontal vision after osteotomy. Materials and Methods: Fourteen consecutive AS patients with severe thoracolumbar kyphosis who were treated with two-level PSO were studied retrospectively. All were male with a mean age of 34.9 ± 9.6 years. The followup ranged from 1–5 years. Preoperative computer simulations using the Surgimap Spinal software were performed for all patients, and the osteotomy level and angle determined from the computer simulation were used surgically. Spinal sagittal parameters were measured preoperatively, after the computer simulation, and postoperatively and included thoracic kyphosis (TK, lumbar lordosis (LL, sagittal vertical axis (SVA, pelvic incidence, pelvic tilt (PT, and sacral slope (SS. The level of correlation between the computer simulation and postoperative parameters was evaluated, and the differences between preoperative and postoperative parameters were compared. The visual analog scale (VAS for back pain and clinical outcome was also assessed. Results: Six cases underwent PSO at L1 and L3, five cases at L2 and T12, and three cases at L3 and T12. TK was corrected from 57.8 ± 15.2° preoperatively to 45.3 ± 7.7° postoperatively (P < 0.05, LL from 9.3 ± 17.5° to −52.3 ± 3.9° (P < 0.001, SVA from 154.5 ± 36.7 to 37.8 ± 8.4 mm (P < 0.001, PT from 43.3 ± 6.1° to 18.0 ± 0.9° (P < 0.001, and SS from 0.8 ± 7.0° to 26.5 ± 10.6° (P < 0.001. The LL, VAS, and PT of the simulated two-level PSO were highly consistent with, or almost the same as, the postoperative parameters. The correlations between the computer simulations and postoperative parameters were significant. The VAS decreased

  13. Agrin and synaptic laminin are required to maintain adult neuromuscular junctions.

    Directory of Open Access Journals (Sweden)

    Melanie A Samuel

    Full Text Available As synapses form and mature the synaptic partners produce organizing molecules that regulate each other's differentiation and ensure precise apposition of pre- and post-synaptic specializations. At the skeletal neuromuscular junction (NMJ, these molecules include agrin, a nerve-derived organizer of postsynaptic differentiation, and synaptic laminins, muscle-derived organizers of presynaptic differentiation. Both become concentrated in the synaptic cleft as the NMJ develops and are retained in adulthood. Here, we used mutant mice to ask whether these organizers are also required for synaptic maintenance. Deletion of agrin from a subset of adult motor neurons resulted in the loss of acetylcholine receptors and other components of the postsynaptic apparatus and synaptic cleft. Nerve terminals also atrophied and eventually withdrew from muscle fibers. On the other hand, mice lacking the presynaptic organizer laminin-α4 retained most of the synaptic cleft components but exhibited synaptic alterations reminiscent of those observed in aged animals. Although we detected no marked decrease in laminin or agrin levels at aged NMJs, we observed alterations in the distribution and organization of these synaptic cleft components suggesting that such changes could contribute to age-related synaptic disassembly. Together, these results demonstrate that pre- and post-synaptic organizers actively function to maintain the structure and function of adult NMJs.

  14. [The relationship between angle of puncture and distribution of bone cement of unilateral percutaneous kyphoplasty for the treatment of thoracolumbar compression fractures].

    Science.gov (United States)

    Wang, Xiang-fu; Fan, You-fu; Shi, Rui-fang; Deng, Qiang; Li, Zhong-feng

    2015-08-01

    To explore the relationship of bone cement distribution and the puncture angle in the treatment of thoracolumbar compression fractures with unilateral percutaneous kyphoplasty (PKP). The clinical data of 37 patients with thoracolumbar osteoporotic compression fractures underwent PKP between January 2013 to March 2014 were retrospectively analyzed, all punctures were performed unilaterally. There were 6 males, aged from 65 to 78 years old with an average of (71.83 ± 6.15) years; and 31 females, aged from 57 to 89 years old with an average of (71.06 ± 7.89) years. Imaging data were analyzed and puncture angle and puncture point were measured before operation. According to the measured data, the puncture were performeds during the operation. Distribution area of bone cement were calculated by X-rays data after operation. The effect of bone cement distribution on suitable puncture angle was analyzed; VAS score was used to evaluate the clinical effects. The puncture angle of thoracic vertebrae in T8-T12 was from 28° to 33° with an average 30.4°; and the puncture angle of lumbar vertebrae in L1-L5 was from 28° to 35° with an average of 31.3°. Postoperative X-rays showed the area ratios of bilateral bone cement was 0.97 ± 0.15. Bilateral diffuse area were basic equal. Postoperative VAS score decreased significantly (1.89 ± 1.29 vs 7.03 ± 1.42). Through measure imaging data before operation with PKP,the puncture point and entry point can be confirmed. According the measured data to puncture during operation, unilateral puncture can reach the distribution effect of the bilateral puncture in the treatment of thoracolumbar compression fractures.

  15. Ballistic Graphene Josephson Junctions from the Short to the Long Junction Regimes.

    Science.gov (United States)

    Borzenets, I V; Amet, F; Ke, C T; Draelos, A W; Wei, M T; Seredinski, A; Watanabe, K; Taniguchi, T; Bomze, Y; Yamamoto, M; Tarucha, S; Finkelstein, G

    2016-12-02

    We investigate the critical current I_{C} of ballistic Josephson junctions made of encapsulated graphene-boron-nitride heterostructures. We observe a crossover from the short to the long junction regimes as the length of the device increases. In long ballistic junctions, I_{C} is found to scale as ∝exp(-k_{B}T/δE). The extracted energies δE are independent of the carrier density and proportional to the level spacing of the ballistic cavity. As T→0 the critical current of a long (or short) junction saturates at a level determined by the product of δE (or Δ) and the number of the junction's transversal modes.

  16. Equivalent Josephson junctions

    International Nuclear Information System (INIS)

    Boyadzhiev, T.L.; ); Semerdzhieva, E.G.; Shukrinov, Yu.M.; Fiziko-Tekhnicheskij Inst., Dushanbe

    2008-01-01

    The magnetic field dependences of critical current are numerically constructed for a long Josephson junction with a shunt- or resistor-type microscopic inhomogeneities and compared to the critical curve of a junction with exponentially varying width. The numerical results show that it is possible to replace the distributed inhomogeneity of a long Josephson junction by an inhomogeneity localized at one of its ends, which has certain technological advantages. It is also shown that the critical curves of junctions with exponentially varying width and inhomogeneities localized at the ends are unaffected by the mixed fluxon-antifluxon distributions of the magnetic flux [ru

  17. Detailed analysis of the clinical effects of cell therapy for thoracolumbar spinal cord injury: an original study

    Directory of Open Access Journals (Sweden)

    Sharma A

    2013-07-01

    Full Text Available Alok Sharma,1 Nandini Gokulchandran,1 Hemangi Sane,2 Prerna Badhe,1 Pooja Kulkarni,2 Mamta Lohia,3 Anjana Nagrajan,3 Nancy Thomas3 1Department of Medical Services and Clinical Research, 2Department of Research and Development, 3Department of Neurorehabilitation, NeuroGen Brain and Spine Institute, Surana Sethia Hospital and Research Centre, Chembur, Mumbai, India Background: Cell therapy is amongst the most promising treatment strategies in spinal cord injury (SCI because it focuses on repair. There are many published animal studies and a few human trials showing remarkable results with various cell types. The level of SCI determines whether paraplegia or quadriplegia is present, and greatly influences recovery. The purpose of this study was to determine the significance of the clinical effects and long-term safety of intrathecal administration of autologous bone marrow-derived mononuclear cells, along with changes in functional independence and quality of life in patients with thoracolumbar SCI. Methods: We undertook a retrospective analysis of a clinical study in which a nonrandomized sample of 110 patients with thoracolumbar SCI underwent autologous bone marrow-derived mononuclear cell transplantation intrathecally and subsequent neurorehabilitation, with a mean follow-up of 2 years ± 1 month. Changes on any parameters were recorded at follow-up. The data were analyzed using the Wilcoxon's signed-rank test and McNemar's test. Functional Independence Measure and American Spinal Injury Association (ASIA scores were recorded, and a detailed neurological assessment was performed. Results: Overall improvement was seen in 91% of patients, including reduction in spasticity, partial sensory recovery, and improvement in trunk control, postural hypotension, bladder management, mobility, activities of daily living, and functional independence. A significant association of these symptomatic improvements with the cell therapy intervention was established

  18. Ischemic preconditioning protects against gap junctional uncoupling in cardiac myofibroblasts.

    Science.gov (United States)

    Sundset, Rune; Cooper, Marie; Mikalsen, Svein-Ole; Ytrehus, Kirsti

    2004-01-01

    Ischemic preconditioning increases the heart's tolerance to a subsequent longer ischemic period. The purpose of this study was to investigate the role of gap junction communication in simulated preconditioning in cultured neonatal rat cardiac myofibroblasts. Gap junctional intercellular communication was assessed by Lucifer yellow dye transfer. Preconditioning preserved intercellular coupling after prolonged ischemia. An initial reduction in coupling in response to the preconditioning stimulus was also observed. This may protect neighboring cells from damaging substances produced during subsequent regional ischemia in vivo, and may preserve gap junctional communication required for enhanced functional recovery during subsequent reperfusion.

  19. Charge splitters and charge transport junctions based on guanine quadruplexes

    Science.gov (United States)

    Sha, Ruojie; Xiang, Limin; Liu, Chaoren; Balaeff, Alexander; Zhang, Yuqi; Zhang, Peng; Li, Yueqi; Beratan, David N.; Tao, Nongjian; Seeman, Nadrian C.

    2018-04-01

    Self-assembling circuit elements, such as current splitters or combiners at the molecular scale, require the design of building blocks with three or more terminals. A promising material for such building blocks is DNA, wherein multiple strands can self-assemble into multi-ended junctions, and nucleobase stacks can transport charge over long distances. However, nucleobase stacking is often disrupted at junction points, hindering electric charge transport between the two terminals of the junction. Here, we show that a guanine-quadruplex (G4) motif can be used as a connector element for a multi-ended DNA junction. By attaching specific terminal groups to the motif, we demonstrate that charges can enter the structure from one terminal at one end of a three-way G4 motif, and can exit from one of two terminals at the other end with minimal carrier transport attenuation. Moreover, we study four-way G4 junction structures by performing theoretical calculations to assist in the design and optimization of these connectors.

  20. E-cadherin junction formation involves an active kinetic nucleation process

    Science.gov (United States)

    Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng-han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan-Chen; Guo, Zhenhuan; Padmanabhan, Anup; Troyanovsky, Sergey M.; Dustin, Michael L.; Shapiro, Lawrence; Honig, Barry; Zaidel-Bar, Ronen; Groves, Jay T.

    2015-01-01

    Epithelial (E)-cadherin-mediated cell−cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role. PMID:26290581

  1. Fabrication and characterization of graphene/molecule/graphene vertical junctions with aryl alkane monolayers

    Science.gov (United States)

    Jeong, Inho; Song, Hyunwook

    2017-11-01

    In this study, we fabricated and characterized graphene/molecule/graphene (GMG) vertical junctions with aryl alkane monolayers. The constituent molecules were chemically self-assembled via electrophilic diazonium reactions into a monolayer on the graphene bottom electrode, while the other end physically contacted the graphene top electrode. A full understanding of the transport properties of molecular junctions is a key step in the realization of molecular-scale electronic devices and requires detailed microscopic characterization of the junction's active region. Using a multiprobe approach combining a variety of transport techniques, we elucidated the transport mechanisms and electronic structure of the GMG junctions, including temperature- and length-variable transport measurements, and transition voltage spectroscopy. These results provide criteria to establish a valid molecular junction and to determine the most probable transport characteristics of the GMG junctions.

  2. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q ∼ 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement

  3. Josephson junction arrays

    International Nuclear Information System (INIS)

    Bindslev Hansen, J.; Lindelof, P.E.

    1985-01-01

    In this review we intend to cover recent work involving arrays of Josephson junctions. The work on such arrays falls naturally into three main areas of interest: 1. Technical applications of Josephson junction arrays for high-frequency devices. 2. Experimental studies of 2-D model systems (Kosterlitz-Thouless phase transition, commensurate-incommensurate transition in frustrated (flux) lattices). 3. Investigations of phenomena associated with non-equilibrium superconductivity in and around Josephson junctions (with high current density). (orig./BUD)

  4. NbN-AlN-NbN Josephson junctions on different substrates

    Energy Technology Data Exchange (ETDEWEB)

    Merker, Michael; Bohn, Christian; Voellinger, Marvin; Ilin, Konstantin; Siegel, Michael [KIT, Karlsruhe (Germany)

    2016-07-01

    Josephson junction technology is important for the realization of high quality cryogenic devices such as SQUIDs, RSFQ or SIS-mixers. The material system based on NbN/AlN/NbN tri-layer has gained a lot of interest, because it offers higher gap voltages and critical current densities compared to the well-established Nb/Al-AlOx/Nb technology. However, the realization of high quality Josephson junctions is more challenging. We developed a technology of Josephson junctions on a variety of substrates such as Silicon, Sapphire and Magnesium oxide and compared the quality parameters of these junctions at 4.2 K. The gap voltages achieved a range from 4 mV (for the junctions on Si) to 5.8 mV (in case of MgO substrates) which is considerably higher than those obtained from Nb based Josephson junctions. Another key parameter is the ratio of the subgap resistance to the normal state resistance. This so-called subgap ratio corresponds to the losses in a Josephson junction which have to be minimized. So far, subgap ratios of 26 have been achieved. Further careful optimization of the deposition conditions is required to maximize this ratio, The details of the optimization of technology and of characterization of NbN/AlN/NbN junctions will be presented and discussed.

  5. Electronic thermometry in tunable tunnel junction

    Science.gov (United States)

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  6. Thoracolumbar movement in sound horses trotting in straight lines in hand and on the lunge and the relationship with hind limb symmetry or asymmetry.

    Science.gov (United States)

    Greve, L; Pfau, T; Dyson, S

    2017-02-01

    Equine movement symmetry is changed when turning, which may induce alterations in thoracolumbosacral kinematics; however, this has not previously been investigated. Our objectives were to document thoracolumbar movement in subjectively sound horses comparing straight lines with circles on both reins and to relate these observations to the objectively determined symmetry/asymmetry of hindlimb gait. Fourteen non-lame horses were assessed prospectively in a non-random, cross-sectional survey. The horses were trotted in straight lines and lunged on both reins and inertial sensor data collected at landmarks: withers, T13 and T18, L3, tubera sacrale, and left and right tubera coxae. Data were processed using published methods; angular motion range of motion (ROM; flexion-extension, axial rotation, lateral bending) and translational ROM (dorsoventral and lateral) and symmetry within each stride were assessed. The dorsoventral movement of the back exhibited a sinusoidal pattern with two oscillations per stride. Circles induced greater asymmetry in dorsoventral movement within each stride (mean ± standard deviation, up to 9 ± 6%) compared with straight lines (up to 6 ± 6%). The greatest amplitude of dorsoventral movement (119 ± 14 mm in straight lines vs. 126 ± 20 mm in circles) occurred at T13. Circles induced greater flexion-extension ROM (>1.3°; P = 0.002), lateral bending (>16°; P 16 mm; P = 0.002) compared with straight lines. Circles induced a movement pattern similar to an inside hindlimb lameness, which was significantly associated with the circle-induced greater asymmetry of dorsoventral movement of the thoracolumbar region (P = 0.03). Moving in a circle induces measurable changes in thoracolumbar movement compared with moving in straight lines, associated with alterations in the hindlimb gait. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Dynamics of Josephson junction arrays

    International Nuclear Information System (INIS)

    Hadley, P.

    1989-01-01

    The dynamics of Josephson junction arrays is a topic that lies at the intersection of the fields of nonlinear dynamics and Josephson junction technology. The series arrays considered here consist of several rapidly oscillating Josephson junctions where each junction is coupled equally to every other junction. The purpose of this study is to understand phaselocking and other cooperative dynamics of this system. Previously, little was known about high dimensional nonlinear systems of this sort. Numerical simulations are used to study the dynamics of these arrays. Three distinct types of periodic solutions to the array equations were observed as well as period doubled and chaotic solutions. One of the periodic solutions is the symmetric, in-phase solution where all of the junctions oscillate identically. The other two periodic solutions are symmetry-broken solutions where all of the junction do not oscillate identically. The symmetry-broken solutions are highly degenerate. As many as (N - 1) stable solutions can coexist for an array of N junctions. Understanding the stability of these several solutions and the transitions among them is vital to the design of useful devices

  8. Superconducting tunnel-junction refrigerator

    International Nuclear Information System (INIS)

    Melton, R.G.; Paterson, J.L.; Kaplan, S.B.

    1980-01-01

    The dc current through an S 1 -S 2 tunnel junction, with Δ 2 greater than Δ 1 , when biased with eV 1 +Δ 2 , will lower the energy in S 1 . This energy reduction will be shared by the phonons and electrons. This device is shown to be analogous to a thermoelectric refrigerator with an effective Peltier coefficient π* approx. Δ 1 /e. Tunneling calculations yield the cooling power P/sub c/, the electrical power P/sub e/ supplied by the bias supply, and the cooling efficiency eta=P/sub c//P/sub e/. The maximum cooling power is obtained for eV= +- (Δ 2 -Δ 1 ) and t 1 =T 1 /T/sub c/1 approx. 0.9. Estimates are made of the temperature difference T 2 -T 1 achievable in Al-Pb and Sn-Pb junctions with an Al 2 O 3 tunneling barrier. The performance of this device is shown to yield a maximum cooling efficiency eta approx. = Δ 1 /(Δ 2 -Δ 1 ) which can be compared with that available in an ideal Carnot refrigerator of eta=T 1 /(T 2 -T 1 ). The development of a useful tunnel-junction refrigerator requires a tunneling barrier with an effective thermal conductance per unit area several orders of magnitude less than that provided by the A1 2 O 3 barrier in the Al-Pb and Sn-Pb systems

  9. Electrophysiological study in neuromuscular junction disorders

    Directory of Open Access Journals (Sweden)

    Ajith Cherian

    2013-01-01

    Full Text Available This review is on ultrastructure and subcellular physiology at normal and abnormal neuromuscular junctions. The clinical and electrophysiological findings in myasthenia gravis, Lambert-Eaton myasthenic syndrome (LEMS, congenital myasthenic syndromes, and botulinum intoxication are discussed. Single fiber electromyography (SFEMG helps to explain the basis of testing neuromuscular junction function by repetitive nerve stimulation (RNS. SFEMG requires skill and patience and its availability is limited to a few centers. For RNS supramaximal stimulation is essential and so is display of the whole waveform of each muscle response at maximum amplitude. The amplitudes of the negative phase of the first and fourth responses are measured from baseline to negative peak, and the percent change of the fourth response compared with the first represents the decrement or increment. A decrement greater than 10% is accepted as abnormal and smooth progression of response amplitude train and reproducibility form the crux. In suspected LEMS the effect of fast rates of stimulation should be determined after RNS response to slow rates of stimulation. Caution is required to avoid misinterpretation of potentiation and pseudofacilitation.

  10. Fabrication of sub-micron whole waffer SIS tunnel junctions for millimeter wave mixers

    International Nuclear Information System (INIS)

    Huq, S.E.; Blamire, M.G.; Evetts, J.E.; Hasko, D.G.; Ahmed, H.

    1991-01-01

    As a part of a programme for the development of a space-qualified sub-mm-wave mixer operating in the region of one terahertz we have been developing the processes required for the fabrication of submicron whole wafer tunnel junctions. Using the self-aligned whole-wafer process (SAWW) with electron beam lithography we have been able to reliably fabricate high quality (V m > 20 mV) submicron tunnel junctions from whole wafer Nb/AlO x /Nb structures. In particular we show that the junction quality is independent of size down to 0.3 μm 2 junction area. The problems of film stress, anodization, registration for electron beam lithography and lift-off, which limit the yield of good quality sub-micron scale junctions are addressed in this paper

  11. Contour junctions defined by dynamic image deformations enhance perceptual transparency.

    Science.gov (United States)

    Kawabe, Takahiro; Nishida, Shin'ya

    2017-11-01

    The majority of work on the perception of transparency has focused on static images with luminance-defined contour junctions, but recent work has shown that dynamic image sequences with dynamic image deformations also provide information about transparency. The present study demonstrates that when part of a static image is dynamically deformed, contour junctions at which deforming and nondeforming contours are connected facilitate the deformation-based perception of a transparent layer. We found that the impression of a transparent layer was stronger when a dynamically deforming area was adjacent to static nondeforming areas than when presented alone. When contour junctions were not formed at the dynamic-static boundaries, however, the impression of a transparent layer was not facilitated by the presence of static surrounding areas. The effect of the deformation-defined junctions was attenuated when the spatial pattern of luminance contrast at the junctions was inconsistent with the perceived transparency related to luminance contrast, while the effect did not change when the spatial luminance pattern was consistent with it. In addition, the results showed that contour completions across the junctions were required for the perception of a transparent layer. These results indicate that deformation-defined junctions that involve contour completion between deforming and nondeforming regions enhance the perception of a transparent layer, and that the deformation-based perceptual transparency can be promoted by the simultaneous presence of appropriately configured luminance and contrast-other features that can also by themselves produce the sensation of perceiving transparency.

  12. Tight junctions and human diseases.

    Science.gov (United States)

    Sawada, Norimasa; Murata, Masaki; Kikuchi, Keisuke; Osanai, Makoto; Tobioka, Hirotoshi; Kojima, Takashi; Chiba, Hideki

    2003-09-01

    Tight junctions are intercellular junctions adjacent to the apical end of the lateral membrane surface. They have two functions, the barrier (or gate) function and the fence function. The barrier function of tight junctions regulates the passage of ions, water, and various macromolecules, even of cancer cells, through paracellular spaces. The barrier function is thus relevant to edema, jaundice, diarrhea, and blood-borne metastasis. On the other hand, the fence function maintains cell polarity. In other words, tight junctions work as a fence to prevent intermixing of molecules in the apical membrane with those in the lateral membrane. This function is deeply involved in cancer cell biology, in terms of loss of cell polarity. Of the proteins comprising tight junctions, integral membrane proteins occludin, claudins, and JAMs have been recently discovered. Of these molecules, claudins are exclusively responsible for the formation of tight-junction strands and are connected with the actin cytoskeleton mediated by ZO-1. Thus, both functions of tight junctions are dependent on the integrity of the actin cytoskeleton as well as ATP. Mutations in the claudin14 and the claudin16 genes result in hereditary deafness and hereditary hypomagnesemia, respectively. Some pathogenic bacteria and viruses target and affect the tight-junction function, leading to diseases. In this review, the relationship between tight junctions and human diseases is summarized.

  13. DOE-Grand Junction logging model data synopsis

    International Nuclear Information System (INIS)

    Mathews, M.A.; Koizumi, C.J.; Evans, H.B.

    1978-05-01

    This synopsis provides the available data concerning the logging models at the DoE-Grand Junction facility, to date (1976). Because gamma-ray logs are used in uranium exploration to estimate the grade (percent U 3 O 8 ) and the thickness of uranium ore zones in exploration drill holes, logging models are required to calibrate the gamma-ray logging equipment in order to obtain accuracy, uniformity, standardization, and repeatability during logging. This quality control is essential for accurate ore reserve calculations and for estimates of ore potential. The logging models at the DoE-Grand Junction facility are available for use by private industry in calibrating their gamma-ray logging equipment. 21 figures, 26 tables

  14. Caveolin1 Is Required for Th1 Cell Infiltration, but Not Tight Junction Remodeling, at the Blood-Brain Barrier in Autoimmune Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Sarah E. Lutz

    2017-11-01

    Full Text Available Lymphocytes cross vascular boundaries via either disrupted tight junctions (TJs or caveolae to induce tissue inflammation. In the CNS, Th17 lymphocytes cross the blood-brain barrier (BBB before Th1 cells; yet this differential crossing is poorly understood. We have used intravital two-photon imaging of the spinal cord in wild-type and caveolae-deficient mice with fluorescently labeled endothelial tight junctions to determine how tight junction remodeling and caveolae regulate CNS entry of lymphocytes during the experimental autoimmune encephalomyelitis (EAE model for multiple sclerosis. We find that dynamic tight junction remodeling occurs early in EAE but does not depend upon caveolar transport. Moreover, Th1, but not Th17, lymphocytes are significantly reduced in the inflamed CNS of mice lacking caveolae. Therefore, tight junction remodeling facilitates Th17 migration across the BBB, whereas caveolae promote Th1 entry into the CNS. Moreover, therapies that target both tight junction degradation and caveolar transcytosis may limit lymphocyte infiltration during inflammation.

  15. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-01-01

    Experiments investigated the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very-small-capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson-phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters. The experiments on small-capacitance tunnel junctions extend the measurements on the large-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wave function has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias

  16. Increasing gap junctional coupling: a tool for dissecting the role of gap junctions

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Haugan, Ketil; Stahlhut, Martin

    2007-01-01

    Much of our current knowledge about the physiological and pathophysiological role of gap junctions is based on experiments where coupling has been reduced by either chemical agents or genetic modification. This has brought evidence that gap junctions are important in many physiological processes....... In a number of cases, gap junctions have been implicated in the initiation and progress of disease, and experimental uncoupling has been used to investigate the exact role of coupling. The inverse approach, i.e., to increase coupling, has become possible in recent years and represents a new way of testing...... the role of gap junctions. The aim of this review is to summarize the current knowledge obtained with agents that selectively increase gap junctional intercellular coupling. Two approaches will be reviewed: increasing coupling by the use of antiarrhythmic peptide and its synthetic analogs...

  17. Rehabilitation of children at the inpatient stage after surgical treatment of unstable fractures of the thoracolumbar and lumbar spine

    Directory of Open Access Journals (Sweden)

    Alla V. Ovechkina

    2017-12-01

    Full Text Available Introduction. The modern approach to the treatment of unstable fractures of the thoracolumbar and lumbar spine in children is surgical stabilization at the early stages after trauma by using metal structures that quickly restore vertical functionality to the patient and shorten the period of inpatient treatment. However, the issues related to restorative treatment have not been sufficiently addressed. Aim. To develop an algorithm for restorative treatment of children at the inpatient stage after surgical treatment of unstable uncomplicated fractures of the thoracolumbar and lumbar spine. Material and methods. Based on the results of treatment of 73 patients aged 9 to 17 years with unstable uncomplicated vertebral fractures, an algorithm of stage-by-stage rehabilitation by means of therapeutic gymnastics depending on the severity of the injury, method of surgical stabilization of the spine, physical condition of the child, and time passed after the operation was developed. Results and discussion. The use of differentiated groups of respiratory gymnastics and isometric and dynamic exercises for muscle groups restored vertical functionality to patients in 1–3 days after surgery, restored spine and motor functions, and shortened the duration of inpatient treatment to a range of 10–14 days. Conclusion. The developed algorithm for physical rehabilitation of children after surgical treatment of unstable injuries of the thoracic and lumbar spine by using metal structures at the inpatient stage contributed to the selection of the most rational and effective program of restorative treatment.

  18. Junction detection and pathway selection

    Science.gov (United States)

    Peck, Alex N.; Lim, Willie Y.; Breul, Harry T.

    1992-02-01

    The ability to detect junctions and make choices among the possible pathways is important for autonomous navigation. In our script-based navigation approach where a journey is specified as a script of high-level instructions, actions are frequently referenced to junctions, e.g., `turn left at the intersection.' In order for the robot to carry out these kind of instructions, it must be able (1) to detect an intersection (i.e., an intersection of pathways), (2) know that there are several possible pathways it can take, and (3) pick the pathway consistent with the high level instruction. In this paper we describe our implementation of the ability to detect junctions in an indoor environment, such as corners, T-junctions and intersections, using sonar. Our approach uses a combination of partial scan of the local environment and recognition of sonar signatures of certain features of the junctions. In the case where the environment is known, we use additional sensor information (such as compass bearings) to help recognize the specific junction. In general, once a junction is detected and its type known, the number of possible pathways can be deduced and the correct pathway selected. Then the appropriate behavior for negotiating the junction is activated.

  19. Surgical management of contiguous multilevel thoracolumbar tuberculous spondylitis.

    Science.gov (United States)

    Qureshi, Muhammad Asad; Khalique, Ahmed Bilal; Afzal, Waseem; Pasha, Ibrahim Farooq; Aebi, Max

    2013-06-01

    Tuberculous spondylitis (TBS) is the most common form of extra-pulmonary tuberculosis. The mainstay of TBS management is anti-tuberculous chemotherapy. Most of the patients with TBS are treated conservatively; however in some patients surgery is indicated. Most common indications for surgery include neurological deficit, deformity, instability, large abscesses and necrotic tissue mass or inadequate response to anti-tuberculous chemotherapy. The most common form of TBS involves a single motion segment of spine (two adjoining vertebrae and their intervening disc). Sometimes TBS involves more than two adjoining vertebrae, when it is called multilevel TBS. Indications for correct surgical management of multilevel TBS is not clear from literature. We have retrospectively reviewed 87 patients operated in 10 years for multilevel TBS involving the thoracolumbar spine at our spine unit. Two types of surgeries were performed on these patients. In 57 patients, modified Hong Kong operation was performed with radical debridement, strut grafting and anterior instrumentation. In 30 patients this operation was combined with pedicle screw fixation with or without correction of kyphosis by osteotomy. Patients were followed up for correction of kyphosis, improvement in neurological deficit, pain and function. Complications were noted. On long-term follow-up (average 64 months), there was 9.34 % improvement in kyphosis angle in the modified Hong Kong group and 47.58 % improvement in the group with pedicle screw fixation and osteotomy in addition to anterior surgery (p debridement and anterior column reconstruction.

  20. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting...... in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal...... of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx...

  1. Multidimensional Analysis of Magnetic Resonance Imaging Predicts Early Impairment in Thoracic and Thoracolumbar Spinal Cord Injury

    Science.gov (United States)

    Mabray, Marc C.; Whetstone, William D.; Dhall, Sanjay S.; Phillips, David B.; Pan, Jonathan Z.; Manley, Geoffrey T.; Bresnahan, Jacqueline C.; Beattie, Michael S.; Haefeli, Jenny

    2016-01-01

    Abstract Literature examining magnetic resonance imaging (MRI) in acute spinal cord injury (SCI) has focused on cervical SCI. Reproducible systems have been developed for MRI-based grading; however, it is unclear how they apply to thoracic SCI. Our hypothesis is that MRI measures will group as coherent multivariate principal component (PC) ensembles, and that distinct PCs and individual variables will show discriminant validity for predicting early impairment in thoracic SCI. We undertook a retrospective cohort study of 25 patients with acute thoracic SCI who underwent MRI on admission and had American Spinal Injury Association Impairment Scale (AIS) assessment at hospital discharge. Imaging variables of axial grade, sagittal grade, length of injury, thoracolumbar injury classification system (TLICS), maximum canal compromise (MCC), and maximum spinal cord compression (MSCC) were collected. We performed an analytical workflow to detect multivariate PC patterns followed by explicit hypothesis testing to predict AIS at discharge. All imaging variables loaded positively on PC1 (64.3% of variance), which was highly related to AIS at discharge. MCC, MSCC, and TLICS also loaded positively on PC2 (22.7% of variance), while variables concerning cord signal abnormality loaded negatively on PC2. PC2 was highly related to the patient undergoing surgical decompression. Variables of signal abnormality were all negatively correlated with AIS at discharge with the highest level of correlation for axial grade as assessed with the Brain and Spinal Injury Center (BASIC) score. A multiple variable model identified BASIC as the only statistically significant predictor of AIS at discharge, signifying that BASIC best captured the variance in AIS within our study population. Our study provides evidence of convergent validity, construct validity, and clinical predictive validity for the sampled MRI measures of SCI when applied in acute thoracic and thoracolumbar SCI. PMID:26414451

  2. Supramolecular tunneling junctions

    NARCIS (Netherlands)

    Wimbush, K.S.

    2012-01-01

    In this study a variety of supramolecular tunneling junctions were created. The basis of these junctions was a self-assembled monolayer of heptathioether functionalized ß-cyclodextrin (ßCD) formed on an ultra-flat Au surface, i.e., the bottom electrode. This gave a well-defined hexagonally packed

  3. Phase diagrams of particles with dissimilar patches: X-junctions and Y-junctions

    International Nuclear Information System (INIS)

    Tavares, J M; Teixeira, P I C

    2012-01-01

    We use Wertheim’s first-order perturbation theory to investigate the phase behaviour and the structure of coexisting fluid phases for a model of patchy particles with dissimilar patches (two patches of type A and f B patches of type B). A patch of type α = {A,B} can bond to a patch of type β = {A,B} in a volume v αβ , thereby decreasing the internal energy by ε αβ . We analyse the range of model parameters where AB bonds, or Y-junctions, are energetically disfavoured (ε AB AA /2) but entropically favoured (v AB ≫ v αα ), and BB bonds, or X-junctions, are energetically favoured (ε BB > 0). We show that, for low values of ε BB /ε AA , the phase diagram has three different regions: (i) close to the critical temperature a low-density liquid composed of long chains and rich in Y-junctions coexists with a vapour of chains; (ii) at intermediate temperatures there is coexistence between a vapour of short chains and a liquid of very long chains with X- and Y-junctions; (iii) at low temperatures an ideal gas coexists with a high-density liquid with all possible AA and BB bonds formed. It is also shown that in region (i) the liquid binodal is reentrant (its density decreases with decreasing temperature) for the lower values of ε BB /ε AA . The existence of these three regions is a consequence of the competition between the formation of X- and Y-junctions: X-junctions are energetically favoured and thus dominate at low temperatures, whereas Y-junctions are entropically favoured and dominate at higher temperatures. (paper)

  4. Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family

    Directory of Open Access Journals (Sweden)

    Balda Maria S

    2009-12-01

    Full Text Available Abstract Background Tight junctions are an intercellular adhesion complex of epithelial and endothelial cells, and form a paracellular barrier that restricts the diffusion of solutes on the basis of size and charge. Tight junctions are formed by multiprotein complexes containing cytosolic and transmembrane proteins. How these components work together to form functional tight junctions is still not well understood and will require a complete understanding of the molecular composition of the junction. Results Here we identify a new transmembrane component of tight junctions: MarvelD3, a four-span transmembrane protein. Its predicted transmembrane helices form a Marvel (MAL and related proteins for vesicle traffic and membrane link domain, a structural motif originally discovered in proteins involved in membrane apposition and fusion events, such as the tight junction proteins occludin and tricellulin. In mammals, MarvelD3 is expressed as two alternatively spliced isoforms. Both isoforms exhibit a broad tissue distribution and are expressed by different types of epithelial as well as endothelial cells. MarvelD3 co-localises with occludin at tight junctions in intestinal and corneal epithelial cells. RNA interference experiments in Caco-2 cells indicate that normal MarvelD3 expression is not required for the formation of functional tight junctions but depletion results in monolayers with increased transepithelial electrical resistance. Conclusions Our data indicate that MarvelD3 is a third member of the tight junction-associated occludin family of transmembrane proteins. Similar to occludin, normal expression of MarvelD3 is not essential for the formation of functional tight junctions. However, MarvelD3 functions as a determinant of epithelial paracellular permeability properties.

  5. Common features of a vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities

    International Nuclear Information System (INIS)

    Boyadjiev, T.L.; Semerdjieva, E.G.; Shukrinov, Yu.M.

    2007-01-01

    We study the vortex structure in three different models of the long Josephson junction: the exponentially shaped Josephson junction and the Josephson junctions with the resistor and the shunt inhomogeneities in the barrier layer. For these three models the critical curves 'critical current-magnetic field' are numerically constructed. We develop the idea of the equivalence of the exponentially shaped Josephson junction and the rectangular junction with the distributed inhomogeneity and demonstrate that at some parameters of the shunt and the resistor inhomogeneities in the ends of the junction the corresponding critical curves are very close to the exponentially shaped one

  6. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells.

    Science.gov (United States)

    Guo, Fei; Li, Ning; Fecher, Frank W; Gasparini, Nicola; Ramirez Quiroz, Cesar Omar; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V; Radmilović, Velimir R; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2015-07-16

    The multi-junction concept is the most relevant approach to overcome the Shockley-Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies.

  7. MRI interrReader and intra-reader reliabilities for assessing injury morphology and posterior ligamentous complex integrity of the spine according to the thoracolumbar injury classification system and severity score

    International Nuclear Information System (INIS)

    Lee, Guen Young; Lee, Joon Woo; Choi, Seung Woo; Lim, Hyun Jin; Sun, Hye Young; Kang, Yu Suhn; Kang, Heung Sik; Chai, Jee Won; Kim, Su Jin

    2015-01-01

    To evaluate spine magnetic resonance imaging (MRI) inter-reader and intra-reader reliabilities using the thoracolumbar injury classification system and severity score (TLICS) and to analyze the effects of reader experience on reliability and the possible reasons for discordant interpretations. Six radiologists (two senior, two junior radiologists, and two residents) independently scored 100 MRI examinations of thoracolumbar spine injuries to assess injury morphology and posterior ligamentous complex (PLC) integrity according to the TLICS. Inter-reader and intra-reader agreements were determined and analyzed according to the number of years of radiologist experience. Inter-reader agreement between the six readers was moderate (k = 0.538 for the first and 0.537 for the second review) for injury morphology and fair to moderate (k = 0.440 for the first and 0.389 for the second review) for PLC integrity. No significant difference in inter-reader agreement was observed according to the number of years of radiologist experience. Intra-reader agreements showed a wide range (k = 0.538-0.822 for injury morphology and 0.423-0.616 for PLC integrity). Agreement was achieved in 44 for the first and 45 for the second review about injury morphology, as well as in 41 for the first and 38 for the second review of PLC integrity. A positive correlation was detected between injury morphology score and PLC integrity. The reliability of MRI for assessing thoracolumbar spinal injuries according to the TLICS was moderate for injury morphology and fair to moderate for PLC integrity, which may not be influenced by radiologist' experience

  8. Behavior of tight-junction, adherens-junction and cell polarity proteins during HNF-4α-induced epithelial polarization

    International Nuclear Information System (INIS)

    Satohisa, Seiro; Chiba, Hideki; Osanai, Makoto; Ohno, Shigeo; Kojima, Takashi; Saito, Tsuyoshi; Sawada, Norimasa

    2005-01-01

    We previously reported that expression of tight-junction molecules occludin, claudin-6 and claudin-7, as well as establishment of epithelial polarity, was triggered in mouse F9 cells expressing hepatocyte nuclear factor (HNF)-4α [H. Chiba, T. Gotoh, T. Kojima, S. Satohisa, K. Kikuchi, M. Osanai, N. Sawada. Hepatocyte nuclear factor (HNF)-4α triggers formation of functional tight junctions and establishment of polarized epithelial morphology in F9 embryonal carcinoma cells, Exp. Cell Res. 286 (2003) 288-297]. Using these cells, we examined in the present study behavior of tight-junction, adherens-junction and cell polarity proteins and elucidated the molecular mechanism behind HNF-4α-initiated junction formation and epithelial polarization. We herein show that not only ZO-1 and ZO-2, but also ZO-3, junctional adhesion molecule (JAM)-B, JAM-C and cell polarity proteins PAR-3, PAR-6 and atypical protein kinase C (aPKC) accumulate at primordial adherens junctions in undifferentiated F9 cells. In contrast, CRB3, Pals1 and PATJ appeared to exhibit distinct subcellular localization in immature cells. Induced expression of HNF-4α led to translocation of these tight-junction and cell polarity proteins to beltlike tight junctions, where occludin, claudin-6 and claudin-7 were assembled, in differentiated cells. Interestingly, PAR-6, aPKC, CRB3 and Pals1, but not PAR-3 or PATJ, were also concentrated on the apical membranes in differentiated cells. These findings indicate that HNF-4α provokes not only expression of tight-junction adhesion molecules, but also modulation of subcellular distribution of junction and cell polarity proteins, resulting in junction formation and epithelial polarization

  9. Flexible 2D layered material junctions

    Science.gov (United States)

    Balabai, R.; Solomenko, A.

    2018-03-01

    Within the framework of the methods of the electron density functional and the ab initio pseudopotential, we have obtained the valence electron density spatial distribution, the densities of electron states, the widths of band gaps, the charges on combined regions, and the Coulomb potentials for graphene-based flexible 2D layered junctions, using author program complex. It is determined that the bending of the 2D layered junctions on the angle α leads to changes in the electronic properties of these junctions. In the graphene/graphane junction, there is clear charge redistribution with different signs in the regions of junctions. The presence in the heterojunctions of charge regions with different signs leads to the formation of potential barriers. The greatest potential jump is in the graphene/fluorographene junction. The greatest value of the band gap width is in the graphene/graphane junction.

  10. Experimental evaluation of IGBT junction temperature measurement via peak gate current

    DEFF Research Database (Denmark)

    Baker, Nick; Munk-Nielsen, Stig; Iannuzzo, Francesco

    2015-01-01

    Temperature sensitive electrical parameters allow junction temperature measurements on power semiconductors without modification to module packaging. The peak gate current has recently been proposed for IGBT junction temperature measurement and relies on the temperature dependent resistance...... of the gate pad. Consequently, a consideration of chip geometry and location of the gate pad is required before interpreting temperature data from this method. Results are also compared with a traditional electrical temperature measurement method: the voltage drop under low current....

  11. A passive on-chip, superconducting circulator using rings of tunnel junctions

    OpenAIRE

    Müller, Clemens; Guan, Shengwei; Vogt, Nicolas; Cole, Jared H.; Stace, Thomas M.

    2017-01-01

    We present the design of a passive, on-chip microwave circulator based on a ring of superconducting tunnel junctions. We investigate two distinct physical realisations, based on either Josephson junctions (JJ) or quantum phase slip elements (QPS), with microwave ports coupled either capacitively (JJ) or inductively (QPS) to the ring structure. A constant bias applied to the center of the ring provides the symmetry breaking (effective) magnetic field, and no microwave or rf bias is required. W...

  12. Rod rotation and differential rod contouring followed by direct vertebral rotation for treatment of adolescent idiopathic scoliosis: effect on thoracic and thoracolumbar or lumbar curves assessed with intraoperative computed tomography.

    Science.gov (United States)

    Seki, Shoji; Kawaguchi, Yoshiharu; Nakano, Masato; Makino, Hiroto; Mine, Hayato; Kimura, Tomoatsu

    2016-03-01

    Although direct vertebral rotation (DVR) is now used worldwide for the surgical treatment of adolescent idiopathic scoliosis (AIS), the benefit of DVR in reducing vertebral body rotation in these patients has not been determined. We investigated a possible additive effect of DVR on further reduction of vertebral body rotation in the axial plane following intraoperative rod rotation or differential rod contouring in patients undergoing surgical treatment for AIS. The study was a prospective computed tomography (CT) image analysis. We analyzed the results of the two intraoperative procedures in 30 consecutive patients undergoing surgery for AIS (Lenke type I or II: 15; Lenke type V: 15). The angle of reduction of vertebral body rotation taken by intraoperative CT scan was measured and analyzed. Pre- and postoperative responses to the Scoliosis Research Society 22 Questionnaire (SRS-22) were also analyzed. To analyze the reduction of vertebral body rotation with rod rotation or DVR, intraoperative cone-beam CT scans of the three apical vertebrae of the major curve of the scoliosis (90 vertebrae) were taken pre-rod rotation (baseline), post-rod rotation with differential rod contouring, and post-DVR in all patients. The angle of vertebral body rotation in these apical vertebrae was measured and analyzed for statistical significance. Additionally, differences between thoracic curve scoliosis (Lenke type I or II; 45 vertebrae) and thoracolumbar or lumbar curve scoliosis (Lenke type V; 45 vertebrae) were analyzed. Pre- and postoperative SRS-22 scores were evaluated in all patients. The mean (90 vertebrae) vertebral body rotation angles at baseline, post-rod rotation or differential rod contouring, and post-rod rotation or differential rod contouring or post-DVR were 17.3°, 11.1°, and 6.9°, respectively. The mean reduction in vertebral body rotation with the rod rotation technique was 6.8° for thoracic curves and 5.7° for thoracolumbar or lumbar curves (pself

  13. Cell polarity development and protein trafficking in hepatocytes lacking E-cadherin/beta-catenin-based adherens junctions

    NARCIS (Netherlands)

    Theard, Delphine; Steiner, Magdalena; Kalicharan, Dharamdajal; Hoekstra, Dick; van IJzendoorn, Sven C. D.

    Using a mutant hepatocyte cell line in which E-cadherin and ss-catenin are completely depleted from the cell surface, and, consequently, fail to form adherens junctions, we have investigated adherens junction requirement for apical-basolateral polarity development and polarized membrane trafficking.

  14. Defining the gastroesophageal junction in trauma: Epidemiology and management of a challenging injury.

    Science.gov (United States)

    Schellenberg, Morgan; Inaba, Kenji; Bardes, James M; OʼBrien, Daniel; Lam, Lydia; Benjamin, Elizabeth; Grabo, Daniel; Demetriades, Demetrios

    2017-11-01

    Injuries to the gastroesophageal (GE) junction are infrequently encountered because of the high mortality of associated injuries. Consequently, there is a paucity of literature on the patient demographics and treatment options. The aim of this study was to examine the epidemiology, surgical management, and outcomes of these rare injuries. Patients presenting to LAC + USC Medical Center (January 2008 to August 2016) with traumatic esophageal or gastric injury (DRG International Classification of Diseases-9th Rev.-Clinical Modification and 10th Rev. codes) were extracted from the trauma registry. Patient charts were reviewed, and all patients who sustained an injury to the GE junction were enrolled. Patient demographics, injury characteristics, procedures, and outcomes were analyzed. Of the 238 patients who sustained an injury to the esophagus or stomach during the study period, 28 (12%) were found to have a GE junction injury. Mean age was 26 years (range, 14-57 years), 89% male. Mechanism of injury was penetrating in 96% (n = 27), the majority of which were gunshot wounds (n = 22, 81%). Most patients (n = 18, 64%) were taken directly to the operating room. Ten (36%) underwent computed tomography scan before going to the operating room, all demonstrating a GE junction injury. All patients underwent repair via laparotomy. One (4%) also required thoracotomy to facilitate delayed reconstruction. GE junction injuries were typically managed with primary repair (n = 22, 79%). Associated injuries were frequent (n = 26, 93%), and injury severity was high (mean Injury Severity Score, 25 [9-75]). Mortality was 25% (n = 7), and all patients required intensive care unit admission. Most did not require total parenteral nutrition (n = 25, 89%) or a surgically placed feeding tube (n = 26, 93%). Of the 13 patients who presented for clinical follow-up, all but one (n = 12, 92%) were eating independently by the first clinic visit. GE junction injuries are uncommon and occur almost

  15. Molecular electronic junction transport

    DEFF Research Database (Denmark)

    Solomon, Gemma C.; Herrmann, Carmen; Ratner, Mark

    2012-01-01

    Whenasinglemolecule,oracollectionofmolecules,isplacedbetween two electrodes and voltage is applied, one has a molecular transport junction. We discuss such junctions, their properties, their description, and some of their applications. The discussion is qualitative rather than quantitative, and f...

  16. A Study of Electrocyclic Reactions in a Molecular Junction: Mechanistic and Energetic Requirements for Switching in the Coulomb Blockade Regime.

    Science.gov (United States)

    Olsen, Stine T; Brøndsted Nielsen, Mogens; Hansen, Thorsten; Ratner, Mark A; Mikkelsen, Kurt V

    2017-06-20

    Molecular photoswitches incorporated in molecular junctions yield the possibility of light-controlled switching of conductance due to the electronic difference of the photoisomers. Another isomerization mechanism, dark photoswitching, promoted by a voltage stimulus rather than by light, can be operative in the Coulomb blockade regime for a specific charge state of the molecule. Here we elucidate theoretically the mechanistic and thermodynamic restrictions for this dark photoswitching for donor-acceptor substituted 4n and 4n+2 π-electron open-chain oligoenes (1,3-butadiene and 1,3,5-hexatriene) by considering the molecular energies and orbitals of the molecules placed in a junction. For an electrocyclic ring closure reaction to occur for these compounds, we put forward two requirements: a) the closed stereoisomer (cis or trans form) must be of lower energy than the open form, and b) the reaction pathway must be in accordance to the orbital symmetry rules expressed by the Woodward-Hoffmann rules (when the electrodes do not significantly alter the molecular orbital appearances). We find these two requirements to be valid for the dianion of (1E,3Z,5E)-hexa-1,3,5-triene-1,6-diamine, and the Coulomb blockade diamonds were therefore modeled for this compound to elucidate how a dark photoswitching event would manifest itself in the stability plot. From this modeling of conductance as a function of gate and bias potentials, we predict a collapse in Coulomb diamond size, that is, a decrease in the height of the island of zero conductance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ligament augmentation for prevention of proximal junctional kyphosis and proximal junctional failure in adult spinal deformity.

    Science.gov (United States)

    Safaee, Michael M; Deviren, Vedat; Dalle Ore, Cecilia; Scheer, Justin K; Lau, Darryl; Osorio, Joseph A; Nicholls, Fred; Ames, Christopher P

    2018-05-01

    OBJECTIVE Proximal junctional kyphosis (PJK) is a well-recognized, yet incompletely defined, complication of adult spinal deformity surgery. There is no standardized definition for PJK, but most studies describe PJK as an increase in the proximal junctional angle (PJA) of greater than 10°-20°. Ligament augmentation is a novel strategy for PJK reduction that provides strength to the upper instrumented vertebra (UIV) and adjacent segments while also reducing junctional stress at those levels. METHODS In this study, ligament augmentation was used in a consecutive series of adult spinal deformity patients at a single institution. Patient demographics, including age; sex; indication for surgery; revision surgery; surgical approach; and use of 3-column osteotomies, vertebroplasty, or hook fixation at the UIV, were collected. The PJA was measured preoperatively and at last follow-up using 36-inch radiographs. Data on change in PJA and need for revision surgery were collected. Univariate and multivariate analyses were performed to identify factors associated with change in PJA and proximal junctional failure (PJF), defined as PJK requiring surgical correction. RESULTS A total of 200 consecutive patients were included: 100 patients before implementation of ligament augmentation and 100 patients after implementation of this technique. The mean age of the ligament augmentation cohort was 66 years, and 67% of patients were women. Over half of these cases (51%) were revision surgeries, with 38% involving a combined anterior or lateral and posterior approach. The mean change in PJA was 6° in the ligament augmentation group compared with 14° in the control group (p historical cohort, ligament augmentation is associated with a significant decrease in PJK and PJF. These data support the implementation of ligament augmentation in surgery for adult spinal deformity, particularly in patients with a high risk of developing PJK and PJF.

  18. Ferromagnetic Josephson Junctions for Cryogenic Memory

    Science.gov (United States)

    Niedzielski, Bethany M.; Gingrich, Eric C.; Khasawneh, Mazin A.; Loloee, Reza; Pratt, William P., Jr.; Birge, Norman O.

    2015-03-01

    Josephson junctions containing ferromagnetic materials are of interest for both scientific and technological purposes. In principle, either the amplitude of the critical current or superconducting phase shift across the junction can be controlled by the relative magnetization directions of the ferromagnetic layers in the junction. Our approach concentrates on phase control utilizing two junctions in a SQUID geometry. We will report on efforts to control the phase of junctions carrying either spin-singlet or spin-triplet supercurrent for cryogenic memory applications. Supported by Northorp Grumman Corporation and by IARPA under SPAWAR Contract N66001-12-C-2017.

  19. Ballistic One-Dimensional InAs Nanowire Cross-Junction Interconnects.

    Science.gov (United States)

    Gooth, Johannes; Borg, Mattias; Schmid, Heinz; Schaller, Vanessa; Wirths, Stephan; Moselund, Kirsten; Luisier, Mathieu; Karg, Siegfried; Riel, Heike

    2017-04-12

    Coherent interconnection of quantum bits remains an ongoing challenge in quantum information technology. Envisioned hardware to achieve this goal is based on semiconductor nanowire (NW) circuits, comprising individual NW devices that are linked through ballistic interconnects. However, maintaining the sensitive ballistic conduction and confinement conditions across NW intersections is a nontrivial problem. Here, we go beyond the characterization of a single NW device and demonstrate ballistic one-dimensional (1D) quantum transport in InAs NW cross-junctions, monolithically integrated on Si. Characteristic 1D conductance plateaus are resolved in field-effect measurements across up to four NW-junctions in series. The 1D ballistic transport and sub-band splitting is preserved for both crossing-directions. We show that the 1D modes of a single injection terminal can be distributed into multiple NW branches. We believe that NW cross-junctions are well-suited as cross-directional communication links for the reliable transfer of quantum information as required for quantum computational systems.

  20. Use of sequential diagnostic pain blocks in a patient of posttraumatic complex regional pain syndrome-not otherwise specified complicated by myofascial trigger points and thoracolumbar pain syndrome

    Directory of Open Access Journals (Sweden)

    Kailash Kothari

    2017-01-01

    Full Text Available We are presenting a case of posttraumatic lower limb Complex regional pain syndrome – Not otherwise specified (CRPS – NOS. As it was not treated in acute phase, the pain became chronic and got complicated by myofascial and thoracolumbar pain syndrome. This case posed us a diagnostic challenge. We used sequential diagnostic pain blocks to identify the pain generators and successfully treat the patient. We used diagnostic blocks step by step to identify and treat pain generators – T12,L1 and L2 Facet joints, Lumbar sympathetic block for CRPS NOS and Trigger point injection with dry needling for myofascial pain syndrome. This case highlights the facet that additional pain generators unrelated to original pain may complicate the presentation. Identifying these pain generators requires out of box thinking and high index of suspicion.

  1. Environmental assessment of facility operations at the U.S. Department of Energy Grand Junction Projects Office, Grand Junction, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The US Department of Energy (DOE) has prepared a sitewide environmental assessment (EA) of the proposed action to continue and expand present-day activities on the DOE Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Because DOE-GJPO regularly proposes and conducts many different on-site activities, DOE decided to evaluate these activities in one sitewide EA rather than in multiple, activity-specific documents. On the basis of the information and analyses presented in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined by the National Environmental Policy Act (NEPA) of 1969. Therefore, preparation of an environmental impact statement is not required for facility operations, and DOE is issuing this Finding of No Significant Impact (FONSI).

  2. Environmental assessment of facility operations at the U.S. Department of Energy Grand Junction Projects Office, Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1996-06-01

    The US Department of Energy (DOE) has prepared a sitewide environmental assessment (EA) of the proposed action to continue and expand present-day activities on the DOE Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Because DOE-GJPO regularly proposes and conducts many different on-site activities, DOE decided to evaluate these activities in one sitewide EA rather than in multiple, activity-specific documents. On the basis of the information and analyses presented in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined by the National Environmental Policy Act (NEPA) of 1969. Therefore, preparation of an environmental impact statement is not required for facility operations, and DOE is issuing this Finding of No Significant Impact (FONSI)

  3. Electronic noise of superconducting tunnel junction detectors

    International Nuclear Information System (INIS)

    Jochum, J.; Kraus, H.; Gutsche, M.; Kemmather, B.; Feilitzsch, F. v.; Moessbauer, R.L.

    1994-01-01

    The optimal signal to noise ratio for detectors based on superconducting tunnel junctions is calculated and compared for the cases of a detector consisting of one single tunnel junction, as well as of series and of parallel connections of such tunnel junctions. The influence of 1 / f noise and its dependence on the dynamical resistance of tunnel junctions is discussed quantitatively. A single tunnel junction yields the minimum equivalent noise charge. Such a tunnel junction exhibits the best signal to noise ratio if the signal charge is independent of detector size. In case, signal charge increases with detector size, a parallel or a series connection of tunnel junctions would provide the optimum signal to noise ratio. The equivalent noise charge and the respective signal to noise ratio are deduced as functions of tunnel junction parameters such as tunneling time, quasiparticle lifetime, etc. (orig.)

  4. Use of tranexamic acid for controlling bleeding in thoracolumbar scoliosis surgery with posterior instrumentation

    Directory of Open Access Journals (Sweden)

    Vinícius Magno da Rocha

    2015-04-01

    Full Text Available OBJECTIVE: Scoliosis surgery involves major blood loss and frequently requires blood transfusion. The cost and risks involved in using allogeneic blood have motivated investigation of methods capable of reducing patients' bleeding during operations. One of these methods is to use antifibrinolytic drugs, and tranexamic acid is among these. The aim of this study was to assess the use of this drug for controlling bleeding in surgery to treat idiopathic scoliosis.METHODS: This was a retrospective study in which the medical files of 40 patients who underwent thoracolumbar arthrodesis by means of a posterior route were analyzed. Of these cases, 21 used tranexamic acid and were placed in the test group. The others were placed in the control group. The mean volumes of bleeding during and after the operation and the need for blood transfusion were compared between the two groups.RESULTS: The group that used tranexamic acid had significantly less bleeding during the operation than the control group. There was no significant difference between the groups regarding postoperative bleeding and the need for blood transfusion.CONCLUSIONS: Tranexamic acid was effective in reducing bleeding during the operation, as demonstrated in other studies. The correlation between its use and the reduction in the need for blood transfusion is multifactorial and could not be established in this study. We believe that tranexamic acid may be a useful resource and that it deserves greater attention in randomized double-blind prospective series, with proper control over variables that directly influence blood loss.

  5. Atomic-scaled characterization of graphene PN junctions

    Science.gov (United States)

    Zhou, Xiaodong; Wang, Dennis; Dadgar, Ali; Agnihotri, Pratik; Lee, Ji Ung; Reuter, Mark C.; Ross, Frances M.; Pasupathy, Abhay N.

    Graphene p-n junctions are essential devices for studying relativistic Klein tunneling and the Veselago lensing effect in graphene. We have successfully fabricated graphene p-n junctions using both lithographically pre-patterned substrates and the stacking of vertical heterostructures. We then use our 4-probe STM system to characterize the junctions. The ability to carry out scanning electron microscopy (SEM) in our STM instrument is essential for us to locate and measure the junction interface. We obtain both the topography and dI/dV spectra at the junction area, from which we track the shift of the graphene chemical potential with position across the junction interface. This allows us to directly measure the spatial width and roughness of the junction and its potential barrier height. We will compare the junction properties of devices fabricated by the aforementioned two methods and discuss their effects on the performance as a Veselago lens.

  6. HMP-1/α-catenin promotes junctional mechanical integrity during morphogenesis.

    Directory of Open Access Journals (Sweden)

    Thanh Thi Kim Vuong-Brender

    Full Text Available Adherens junctions (AJs are key structures regulating tissue integrity and maintaining adhesion between cells. During morphogenesis, junctional proteins cooperate closely with the actomyosin network to drive cell movement and shape changes. How the junctions integrate the mechanical forces in space and in time during an in vivo morphogenetic event is still largely unknown, due to a lack of quantitative data. To address this issue, we inserted a functional Fluorescence Resonance Energy Transfer (FRET-based force biosensor within HMP-1/α-catenin of Caenorhabditis elegans. We find that the tension exerted on HMP-1 has a cell-specific distribution, is actomyosin-dependent, but is regulated differently from the tension on the actin cortex during embryonic elongation. By using time-lapse analysis of mutants and tissue-specific rescue experiments, we confirm the role of VAB-9/Claudin as an actin bundle anchor. Nevertheless, the tension exerted on HMP-1 did not increase in the absence of VAB-9/Claudin, suggesting that HMP-1 activity is not upregulated to compensate for loss of VAB-9. Our data indicate that HMP-1 does not modulate HMR-1/E-cadherin turnover, is required to recruit junctional actin but not stress fiber-like actin bundles. Altogether, our data suggest that HMP-1/α-catenin acts to promote the mechanical integrity of adherens junctions.

  7. Controlling chaos in RCL-shunted Josephson junction by delayed linear feedback

    International Nuclear Information System (INIS)

    Feng Yuling; Shen Ke

    2008-01-01

    The resistively-capacitively-inductively-shunted (RCL-shunted) Josephson junction (RCLSJJ) shows chaotic behaviour under some parameter conditions. Here a scheme for controlling chaos in the RCLSJJ is presented based on the linear feedback theory. Numerical simulations show that this scheme can be effectively used to control chaotic states in this junction into stable periodic states. Moreover, the different stable period states with different period numbers can be obtained by appropriately adjusting the feedback intensity and delay time without any pre-knowledge of this system required

  8. Stability of large-area molecular junctions

    NARCIS (Netherlands)

    Akkerman, Hylke B.; Kronemeijer, Auke J.; Harkema, Jan; van Hal, Paul A.; Smits, Edsger C. P.; de Leeuw, Dago M.; Blom, Paul W. M.

    The stability of molecular junctions is crucial for any application of molecular electronics. Degradation of molecular junctions when exposed to ambient conditions is regularly observed. In this report the stability of large-area molecular junctions under ambient conditions for more than two years

  9. Superconducting flux qubits with π-junctions

    International Nuclear Information System (INIS)

    Shcherbakova, Anastasia

    2014-01-01

    In this thesis, we present a fabrication technology of Al/AlO x /Al Josephson junctions on Nb pads. The described technology gives the possibility of combining a variety of Nb-based superconducting circuits, like pi-junction phase-shifters with sub-micron Al/AlO x /Al junctions. Using this approach, we fabricated hybrid Nb/Al flux qubits with and without the SFS-junctions and studied dispersive magnetic field response of these qubits as well as their spectroscopy characteristics.

  10. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions

    International Nuclear Information System (INIS)

    Xiao-Lan, Kong; Yong-Jian, Xiong

    2010-01-01

    We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends on the atomic features of the junction geometry. When the shoulders of the junction have zigzag type edges, sharp conductance resonances usually appear in the low energy region around the Dirac point, and a conductance gap emerges. When the shoulders of the junction have armchair type edges, the conductance resonance behavior is weakened significantly, and the metal-metal-metal junction structures show semimetallic behaviors. The contact resistance also changes notably due to the various interface geometries of the junction

  11. Origin of the transition voltage in gold–vacuum–gold atomic junctions

    International Nuclear Information System (INIS)

    Wu Kunlin; Bai Meilin; Hou Shimin; Sanvito, Stefano

    2013-01-01

    The origin and the distance dependence of the transition voltage of gold–vacuum–gold junctions are investigated by employing first-principles quantum transport simulations. Our calculations show that atomic protrusions always exist on the electrode surface of gold–vacuum–gold junctions fabricated using the mechanically controllable break junction (MCBJ) method. The transition voltage of these gold–vacuum–gold junctions with atomically sharp electrodes is determined by the local density of states (LDOS) of the apex gold atom on the electrode surface rather than by the vacuum barrier shape. More specifically, the absolute value of the transition voltage roughly equals the rising edge of the LDOS peak contributed by the 6p atomic orbitals of the gold atoms protruding from the electrode surface, whose local Fermi level is shifted downwards when a bias voltage is applied. Since the LDOS of the apex gold atom depends strongly on the exact shape of the electrode, the transition voltage is sensitive to the variation of the atomic configuration of the junction. For asymmetric junctions, the transition voltage may also change significantly depending on the bias polarity. Considering that the occurrence of the transition voltage requires the electrode distance to be larger than a critical value, the interaction between the two electrodes is actually rather weak. Consequently, the LDOS of the apex gold atom is mainly determined by its local atomic configuration and the transition voltage only depends weakly on the electrode distance as observed in the MCBJ experiments. (paper)

  12. Josephson junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Wild, Georg Hermann

    2012-01-01

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO x /Pd 0.82 Ni 0.18 /Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to π-coupling is observed for a thickness d F =6 nm of the ferromagnetic Pd 0.82 Ni 0.18 interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd 0.82 Ni 0.18 has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  13. Josephson junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Georg Hermann

    2012-03-04

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  14. Progress in the development of metamorphic multi-junction III-V space solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sinharoy, S.; Patton, M.O.; Valko, T.M.; Weizer, V.G. [Essential Research Inc., Cleveland, OH (United States)

    2002-07-01

    Theoretical calculations have shown that highest-efficiency III-V multi-junction solar cells require alloy structures that cannot be grown on a lattice-matched substrate. Ever since the first demonstration of high efficiency metamorphic single-junction 1.1 and 1.2 eV InGaAs solar cells, interest has grown in the development of multi-junction cells of this type, using graded buffer layer technology. Essential Research Incorporated (ERI) is currently developing a dual-junction 1.6 eV InGaP/1.1 eV InGaAs tandem cell (projected practical air-mass zero (AMO), one-sun efficiency of 27%, and 100-sun efficiency of 31.1%) under a Ballistic Missile Defense Command (BMDO) SBIR Phase II program. A second ongoing research effort involves the development of a 2.1 eV A1GaInP/1.6 eV InGaAsP/1.2 eV InGaAs triple-junction concentrator tandem cell (projected practical AMO efficiency 36.5% under 100 suns) under a SBIR Phase II program funded by the Air Force. We are in the process of optimizing the dual-junction cell performance. For the triple-junction cell, we have developed the bottom and the middle cell, and are in the process of developing the layer structures needed for the top cell. A progress report is presented in this paper. (author)

  15. Electron optics with ballistic graphene junctions

    Science.gov (United States)

    Chen, Shaowen

    Electrons transmitted across a ballistic semiconductor junction undergo refraction, analogous to light rays across an optical boundary. A pn junction theoretically provides the equivalent of a negative index medium, enabling novel electron optics such as negative refraction and perfect (Veselago) lensing. In graphene, the linear dispersion and zero-gap bandstructure admit highly transparent pn junctions by simple electrostatic gating, which cannot be achieved in conventional semiconductors. Robust demonstration of these effects, however, has not been forthcoming. Here we employ transverse magnetic focusing to probe propagation across an electrostatically defined graphene junction. We find perfect agreement with the predicted Snell's law for electrons, including observation of both positive and negative refraction. Resonant transmission across the pn junction provides a direct measurement of the angle dependent transmission coefficient, and we demonstrate good agreement with theory. Comparing experimental data with simulation reveals the crucial role played by the effective junction width, providing guidance for future device design. Efforts toward sharper pn junction and possibility of zero field Veselago lensing will also be discussed. This work is supported by the Semiconductor Research Corporations NRI Center for Institute for Nanoelectronics Discovery and Exploration (INDEX).

  16. Peltier cooling in molecular junctions

    Science.gov (United States)

    Cui, Longji; Miao, Ruijiao; Wang, Kun; Thompson, Dakotah; Zotti, Linda Angela; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2018-02-01

    The study of thermoelectricity in molecular junctions is of fundamental interest for the development of various technologies including cooling (refrigeration) and heat-to-electricity conversion1-4. Recent experimental progress in probing the thermopower (Seebeck effect) of molecular junctions5-9 has enabled studies of the relationship between thermoelectricity and molecular structure10,11. However, observations of Peltier cooling in molecular junctions—a critical step for establishing molecular-based refrigeration—have remained inaccessible. Here, we report direct experimental observations of Peltier cooling in molecular junctions. By integrating conducting-probe atomic force microscopy12,13 with custom-fabricated picowatt-resolution calorimetric microdevices, we created an experimental platform that enables the unified characterization of electrical, thermoelectric and energy dissipation characteristics of molecular junctions. Using this platform, we studied gold junctions with prototypical molecules (Au-biphenyl-4,4'-dithiol-Au, Au-terphenyl-4,4''-dithiol-Au and Au-4,4'-bipyridine-Au) and revealed the relationship between heating or cooling and charge transmission characteristics. Our experimental conclusions are supported by self-energy-corrected density functional theory calculations. We expect these advances to stimulate studies of both thermal and thermoelectric transport in molecular junctions where the possibility of extraordinarily efficient energy conversion has been theoretically predicted2-4,14.

  17. Dynamics of pi-junction interferometer circuits

    DEFF Research Database (Denmark)

    Kornkev, V.K.; Mozhaev, P.B.; Borisenko, I.V.

    2002-01-01

    The pi-junction superconducting circuit dynamics was studied by means of numerical simulation technique. Parallel arrays consisting of Josephson junctions of both 0- and pi-type were studied as a model of high-T-c grain-boundary Josephson junction. The array dynamics and the critical current depe...

  18. Growth modulation and remodeling by means of posterior tethering technique for correction of early-onset scoliosis with thoracolumbar kyphosis.

    Science.gov (United States)

    Ahmad, Alaaeldin A; Aker, Loai; Hanbali, Yahia; Sbaih, Aesha; Nazzal, Zaher

    2017-06-01

    The aim of this study is to evaluate the role of the non-fusion instrumented procedure with compression adjunct to lengthening by distraction in facilitating spinal modulation of the wedged peak vertebra, in patients with congenital thoracolumbar kyphosis/kyphoscoliosis according to the Hueter-Volkmann law. The authors seek to address the progressive modulation of the most wedged vertebra by analyzing the subjects' pre-operative and latest follow-up sagittal radiograph. Ongoing data collection of 14 peak wedged vertebra modulation during surgical management of 13 patients with Type I congenital thoracolumbar kyphosis (5 patients) or kyphoscoliosis (8 patients). Age at initial surgery averaged 58.6 months, with mean follow-up of 55.6 months (24-78). All were done with hybrid rib construct with clawing fashion through a single posterior approach with at least 4 lengthenings. Two vertebral bodies were selected, the peaked deformed vertebrae within the instrumentation compression level (WICL) and the vertebrae nearest but outside the instrumentation compression process (OICL). Anterior vertebral body height (AVBH) and posterior vertebral body height (PVBH) were measured in both vertebral bodies. Regarding measured vertebrae (WICL), average preoperative AVBH/PVBH ratio significantly increased from 0.54 to 0.77 in the final follow-up. Regarding measured vertebrae (OICL), the average preoperative AVBH/PVBH ratio increased from 0.76 to 0.79 in the final follow-up. Modulation can be confirmed in the most deformed vertebrae (WICL) as the difference between the change in AVBH/PVBH ratio between vertebrae (OICL) and (WICL) was statistically significant (P modulation (WICL) in comparison with the (OICL). This calls for further studies on the impact of surgical correction of EOS on modulation of the vertebrae.

  19. [Treatment of thoracolumbar burst fracture with lateral anterior decompression, internal fixation with Ventrofix and bone graft with titanic mesh].

    Science.gov (United States)

    Zhang, Shi-min; Zhang, Zhao-jie; Liu, Yu-zhang; Zhang, Lu-tang; Li, Xing

    2011-11-01

    To discuss the efficacy of lateral anterior decompression, internal fixation with Ventrofix and bone graft with titanic mesh in the treatment of severe thoracolumbar burst fracture. From January 2008 to January 2010, 21 patients with severe thoracolumbar burst fracture were treated with lateral anterior decompression, internal fixation with Ventrofix, bone graft with titanic mesh. There were 15 males and 6 females, ranging in age from 21 to 46 years with an average of 32.2 years. Segment of fracture: 3 cases were in T11, 6 cases in T12, 7 cases in L1, 5 cases in L2. The mean kyphosis angle was 20.1 degrees and loading of fracture was 7.8 scores. Twenty-one cases accompany with incomplete paralysis. Nerves functions were observed according to Frankel grade; correction and maintain of kyphosis angle were observed by X-rays and CT. All the patients were followed up from 12 to 34 months with an average of 18.5 years. Postoperative complication including injury of pleura in 1 case, dynamic ileus in 2 cases, ilioinguinal nerve injury in 1 case, faulty union of wound in 1 case. All the above complications got recovery after symptomatic treatment. The mean kyphosis angle in fusional segment were 4.2 degrees and the rate of correction was 79%. Nerves functions of all patients got improvement and no internal fixation fail, kyphosis angle obviously lost, titanium mesh shifting, loosening and breakage of screw were found at final follow-up. Lateral anterior decompression, bone graft with titanic mesh, internal fixation with Ventrofix is an idea technique for severe thoracolumber burst fracture, but the method can not be used for patient with severity osteoporosis.

  20. Geodynamical simulation of the RRF triple junction

    Science.gov (United States)

    Wang, Z.; Wei, D.; Liu, M.; Shi, Y.; Wang, S.

    2017-12-01

    Triple junction is the point at which three plate boundaries meet. Three plates at the triple junction form a complex geological tectonics, which is a natural laboratory to study the interactions of plates. This work studies a special triple junction, the oceanic transform fault intersects the collinear ridges with different-spreading rates, which is free of influence of ridge-transform faults and nearby hotspots. First, we build 3-D numerical model of this triple junction used to calculate the stead-state velocity and temperature fields resulting from advective and conductive heat transfer. We discuss in detail the influence of the velocity and temperature fields of the triple junction from viscosity, spreading rate of the ridge. The two sides of the oceanic transform fault are different sensitivities to the two factors. And, the influence of the velocity mainly occurs within 200km of the triple junction. Then, we modify the model by adding a ridge-transform fault to above model and directly use the velocity structure of the Macquarie triple junction. The simulation results show that the temperature at both sides of the oceanic transform fault decreases gradually from the triple junction, but the temperature difference between the two sides is a constant about 200°. And, there is little effect of upwelling velocity away from the triple junction 100km. The model results are compared with observational data. The heat flux and thermal topography along the oceanic transform fault of this model are consistent with the observed data of the Macquarie triple junction. The earthquakes are strike slip distributed along the oceanic transform fault. Their depths are also consistent with the zone of maximum shear stress. This work can help us to understand the interactions of plates of triple junctions and help us with the foundation for the future study of triple junctions.

  1. Posterior Fixation with Unilateral Same Segment Pedicle Fixation and Contralateral Hook in Surgical Treatment of Thoracolumbar Burst Fractures

    Directory of Open Access Journals (Sweden)

    Farzad Omidi-Kashani

    2016-06-01

    Full Text Available Background In surgical treatment of thoracolumbar burst fractures, most authors try to lower the number of vertebrae involved during the surgery. Objectives The aim of this study was to evaluate the outcome of a medium-segment posterior spinal fixation in these patients. Patients and Methods We retrospectively reviewed 27 patients (18 male, 9 female with mean age of 39.4 ± 15.0 years old in a before-and-after study. The mean follow-up period was 38.4 ± 15.6 months. We involved 2 intact above vertebrae and one intact below vertebra, inserting a pedicular screw at the fractured level and supplemented the construct with contralateral infralaminar hook. Clinical and radiologic characteristics were assessed with American spinal injury association (ASIA scale, oswestry disability index (ODI, visual analogue scale (VAS, and plain radiography. Data analysis was carried out by SPSS version 11.5 software. Results Mean post traumatic kyphosis was + 15.7° ± 3.3° that was changed to - 8.5° ± 4.3° and +1° ± 4.4° at immediate and last visit after surgery, respectively. Mean loss of correction (LOC was 9.5° ± 1.9° (P < 0.001. At the most recent follow-up visit, mean ODI and VAS were 15.0 ± 14.4 and 2.4 ± 2.5, respectively and 24 cases (88.9% declared excellent or good clinical results. At the last follow-up visit, LOC had no significant correlation neither with VAS nor ODI. Conclusions In surgical treatment of thoracolumbar burst fractures, a medium-segment posterior spinal fixation, although cannot maintain the radiologic reduction of the fractured vertebrae efficiently, is not only associated with acceptable clinical outcome but also spare one lower intact lumbar segment and therefore recommended.

  2. Loss models for long Josephson junctions

    DEFF Research Database (Denmark)

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1984-01-01

    A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement.......A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement....

  3. Dynamics of the Josephson multi-junction system with junctions characterized by non-sinusoidal current - phase relationship

    International Nuclear Information System (INIS)

    Abal'osheva, I.; Lewandowski, S.J.

    2004-01-01

    It is shown that the inclusion of junctions characterized by non-sinusoidal current - phase relationship in the systems composed of multiple Josephson junctions - results in the appearance of additional system phase states. Numerical simulations and stability considerations confirm that those phase states can be realized in practice. Moreover, spontaneous formation of the grain boundary junctions in high-T c superconductors with non-trivial current-phase relations due to the d-wave symmetry of the order parameter is probable. Switching between the phase states of multiple grain boundary junction systems can lead to additional 1/f noise in high-T c superconductors. (author)

  4. Theoretical and experimental investigations on synchronization in many-junction arrays of HTSC Josephson junctions. Final report

    International Nuclear Information System (INIS)

    Seidel, P.; Heinz, E.; Pfuch, A.; Machalett, F.; Krech, W.; Basler, M.

    1996-06-01

    Different many-junction arrays of Josephson junctions were studied theoretically to analyse the mechanisms of synchronization, the influence of internal and external parameters and the maximal allowed spread of parameters for the single junctions. Concepts to realize arrays using standard high-T c superconductor technology were created, e.g. the new arrangement of multijunction superconducting loops (MSL). First experimental results show the relevance of this concept. Intrinsic one-dimensional arrays in thin film technology were prepared as mesas out of Bi or Tl 2212 films. to characterize HTSC Josephson junctions methods based on the analysis of microwave-induced steps were developed. (orig.) [de

  5. Single P-N junction tandem photovoltaic device

    Science.gov (United States)

    Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA

    2011-10-18

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  6. Microfluidic mixing in a Y-junction open channel

    Directory of Open Access Journals (Sweden)

    Jue Nee Tan

    2012-09-01

    Full Text Available In the laminar regimes typical of microfluidic systems’, mixing is governed by molecular diffusion; however this process is slow in nature. Consequently, passive or active methods are usually sought for effective mixing. In this work, open fluidic channels will be investigated; these channels are bounded on all but one face by an air/fluid interface. Firstly, it will be shown that flow in open channels can merge at a Y-junction in a stable manner; hence two fluids can be brought into contact with each other. Secondly, the mixing of these two fluids will be studied. At high flow rates (>300 μl/min mixing occurs at the junction without need for additional intervention, this mixing is far swifter than can be expected from molecular diffusion. At lower flow rates, intervention is required. A major motivation for open fluidic channels is the ability to interact with the surrounding air environment; this feature is used to effect the desired mixing. It is shown that by blowing an air jet across the junction, shear stresses at the air/fluid interface causes a flow profile within the fluid inductive to rapid mixing of the fluids.

  7. Solar energy converters based on multi-junction photoemission solar cells.

    Science.gov (United States)

    Tereshchenko, O E; Golyashov, V A; Rodionov, A A; Chistokhin, I B; Kislykh, N V; Mironov, A V; Aksenov, V V

    2017-11-23

    Multi-junction solar cells with multiple p-n junctions made of different semiconductor materials have multiple bandgaps that allow reducing the relaxation energy loss and substantially increase the power-conversion efficiency. The choice of materials for each sub-cell is very limited due to the difficulties in extracting the current between the layers caused by the requirements for lattice- and current-matching. We propose a new vacuum multi-junction solar cell with multiple p-n junctions separated by vacuum gaps that allow using different semiconductor materials as cathode and anode, both activated to the state of effective negative electron affinity (NEA). In this work, the compact proximity focused vacuum tube with the GaAs(Cs,O) photocathode and AlGaAs/GaAs-(Cs,O) anode with GaAs quantum wells (QWs) is used as a prototype of a vacuum single-junction solar cell. The photodiode with the p-AlGaAs/GaAs anode showed the spectral power-conversion efficiency of about 1% at V bias  = 0 in transmission and reflection modes, while, at V bias  = 0.5 V, the efficiency increased up to 10%. In terms of energy conservation, we found the condition at which the energy cathode-to-anode transition was close to 1. Considering only the energy conservation part, the NEA-cell power-conversion efficiency can rich a quantum yield value which is measured up to more than 50%.

  8. The anatomical locus of T-junction processing.

    Science.gov (United States)

    Schirillo, James A

    2009-07-01

    Inhomogeneous surrounds can produce either asymmetrical or symmetrical increment/decrement induction by orienting T-junctions to selectively group a test patch with surrounding regions [Melfi, T., & Schirillo, J. (2000). T-junctions in inhomogeneous surrounds. Vision Research, 40, 3735-3741]. The current experiments aimed to determine where T-junctions are processed by presenting each eye with a different image so that T-junctions exist only in the fused percept. Only minor differences were found between retinal and cortical versus cortical-only conditions, indicating that T-junctions are processed cortically.

  9. Phase Sensitive Measurements of Ferromagnetic Josephson Junctions for Cryogenic Memory Applications

    Science.gov (United States)

    Niedzielski, Bethany Maria

    complicated system, first, studies of junctions with only a single ferromagnetic junction were required to determine the 0-pi transition thickness of that material, the decay of the critical current through the junction with thickness, and the switching field of the material. The materials studied included NiFeMo, NiFe, Ni, and NiFeCo. Additionally, roughness studies of several different superconducting base electrodes and normal metal buffer and spacer layers were performed to determine the optimum junction layers. The ferromagnetic layers used were on the order of 1-2 nm thick, so a smooth growth template is imperative to maintain continuous films with in-plane magnetizations. Lastly, single junction spin-valve samples were studied. We are not equipped to measure the phase of a single junction, but series of samples where one ferromagnetic layer is systematically varied in thickness can inform the proper thicknesses needed for 0-pi switching based on relative critical current values between the parallel and antiparallel magnetic configurations. Utilizing this background information, two spin-valve samples were incorporated in a superconducting loop so that the relative phase of the two junctions could be investigated. Through this process, the first phase-controllable ferromagnetic Josephson junctions were experimentally demonstrated using phase-sensitive measurement techniques. This provided the proof of concept for the Josephson Magnetic Random Access Memory (JMRAM), a superconducting memory system in development at Northrop Grumman, with whom we collaborate on this work. Phase-controllable systems were successfully demonstrated using two different magnetic material stacks and verified with several analysis techniques.

  10. Mixing in T-junctions

    NARCIS (Netherlands)

    Kok, Jacobus B.W.; van der Wal, S.

    1996-01-01

    The transport processes that are involved in the mixing of two gases in a T-junction mixer are investigated. The turbulent flow field is calculated for the T-junction with the k- turbulence model by FLOW3D. In the mathematical model the transport of species is described with a mixture fraction

  11. Small area silicon diffused junction x-ray detectors

    International Nuclear Information System (INIS)

    Walton, J.T.; Pehl, R.H.; Larsh, A.E.

    1981-10-01

    The low temperature performance of silicon diffused junction detectors in the measurement of low energy x-rays is reported. The detectors have an area of 0.04 cm 2 and a thickness of 100 μm. The spectral resolutions of these detectors were found to be in close agreement with expected values indicating that the defects introduced by the high temperature processing required in the device fabrication were not deleteriously affecting the detection of low energy x-rays. Device performance over a temperature range of 77 to 150 0 K is given. These detectors were designed to detect low energy x-rays in the presence of minimum ionizing electrons. The successful application of silicon diffused junction technology to x-ray detector fabrication may facilitate the development of other novel silicon x-ray detector designs

  12. Small area silicon diffused junction X-ray detectors

    Science.gov (United States)

    Walton, J. T.; Pehl, R. H.; Larsh, A. E.

    1982-01-01

    The low-temperature performance of silicon diffused junction detectors in the measurement of low energy X-rays is reported. The detectors have an area of 0.04 sq cm and a thickness of 100 microns. The spectral resolutions of these detectors were found to be in close agreement with expected values, indicating that the defects introduced by the high-temperature processing required in the device fabrication were not deleteriously affecting the detection of low-energy X-rays. Device performance over a temperature range of 77 K to 150 K is given. These detectors were designed to detect low-energy X-rays in the presence of minimum ionizing electrons. The successful application of silicon-diffused junction technology to X-ray detector fabrication may facilitate the development of other novel silicon X-ray detector designs.

  13. Surgical treatment of congenital thoracolumbar spondyloptosis in a 2-year-old child with vertebral column resection and posterior-only circumferential reconstruction of the spine column: case report.

    Science.gov (United States)

    Gressot, Loyola V; Mata, Javier A; Luerssen, Thomas G; Jea, Andrew

    2015-02-01

    Spondyloptosis refers to complete dislocation of a vertebral body onto another. The L5-S1 level is frequently affected. As this condition is rare, few published reports describing its clinical features and surgical outcomes exist, especially in the pediatric patient population. The authors report the presentation, pathological findings, and radiographic studies of a 2-year-old girl who presented to Texas Children's Hospital with a history since birth of progressive spastic paraparesis. Preoperative CT and MRI showed severe spinal cord compression associated with T11-12 spondyloptosis. The patient underwent a single-stage posterior approach for complete resection of the dysplastic vertebral bodies at the apex of the spinal deformity with reconstruction and stabilization of the vertebral column using a titanium expandable cage and pedicle screws. At the 12-month follow-up, the patient remained neurologically stable without any radiographic evidence of instrumentation failure or loss of alignment. To the best of the authors' knowledge, there have been only 2 other children with congenital thoracolumbar spondyloptosis treated with the above-described strategy. The authors describe their case and review the literature to discuss the aggregate clinical features, surgical strategies, and operative outcomes for congenital thoracolumbar spondyloptosis.

  14. Origin of the transition voltage in gold–vacuum–gold atomic junctions

    KAUST Repository

    Wu, Kunlin

    2012-12-13

    The origin and the distance dependence of the transition voltage of gold-vacuum-gold junctions are investigated by employing first-principles quantum transport simulations. Our calculations show that atomic protrusions always exist on the electrode surface of gold-vacuum-gold junctions fabricated using the mechanically controllable break junction (MCBJ) method. The transition voltage of these gold-vacuum-gold junctions with atomically sharp electrodes is determined by the local density of states (LDOS) of the apex gold atom on the electrode surface rather than by the vacuum barrier shape. More specifically, the absolute value of the transition voltage roughly equals the rising edge of the LDOS peak contributed by the 6p atomic orbitals of the gold atoms protruding from the electrode surface, whose local Fermi level is shifted downwards when a bias voltage is applied. Since the LDOS of the apex gold atom depends strongly on the exact shape of the electrode, the transition voltage is sensitive to the variation of the atomic configuration of the junction. For asymmetric junctions, the transition voltage may also change significantly depending on the bias polarity. Considering that the occurrence of the transition voltage requires the electrode distance to be larger than a critical value, the interaction between the two electrodes is actually rather weak. Consequently, the LDOS of the apex gold atom is mainly determined by its local atomic configuration and the transition voltage only depends weakly on the electrode distance as observed in the MCBJ experiments. © 2013 IOP Publishing Ltd.

  15. Expression pattern of adhesion molecules in junctional epithelium differs from that in other gingival epithelia.

    Science.gov (United States)

    Hatakeyama, S; Yaegashi, T; Oikawa, Y; Fujiwara, H; Mikami, T; Takeda, Y; Satoh, M

    2006-08-01

    The gingival epithelium is the physiologically important interface between the bacterially colonized gingival sulcus and periodontal soft and mineralized connective tissues, requiring protection from exposure to bacteria and their products. However, of the three epithelia comprising the gingival epithelium, the junctional epithelium has much wider intercellular spaces than the sulcular epithelium and oral gingival epithelium. Hence, the aim of the present study was to characterize the cell adhesion structure in the junctional epithelium compared with the other two epithelia. Gingival epithelia excised at therapeutic flap surgery from patients with periodontitis were examined for expression of adhesion molecules by immunofluorescence. In the oral gingival epithelium and sulcular epithelium, but not in the junctional epithelium, desmoglein 1 and 2 in cell-cell contact sites were more abundant in the upper than the suprabasal layers. E-cadherin, the main transmembranous molecule of adherens junctions, was present in spinous layers of the oral gingival epithelium and sulcular epithelium, but was scarce in the junctional epithelium. In contrast, desmoglein 3 and P-cadherin were present in all layers of the junctional epithelium as well as the oral gingival epithelium and sulcular epithelium. Connexin 43 was clearly localized to spinous layers of the oral gingival epithelium, sulcular epithelium and parts of the junctional epithelium. Claudin-1 and occludin were expressed in the cell membranes of a few superficial layers of the oral gingival epithelium. These findings indicated that the junctional epithelium contains only a few desmosomes, composed of only desmoglein 3; adherens junctions are probably absent because of defective E-cadherin. Thus, the anchoring junctions connecting junctional epithelium cells are lax, causing widened intercellular spaces. In contrast, the oral gingival epithelium, which has a few tight junctions, functions as a barrier.

  16. Effect of junction configurations on microdroplet formation in a T-junction microchannel

    Science.gov (United States)

    Lih, F. L.; Miao, J. M.

    2015-03-01

    This study investigates the dynamic formation process of water microdroplets in a silicon oil flow in a T-junction microchannel. Segmented water microdroplets are formed at the junction when the water flow is perpendicularly injected into the silicon oil flow in a straight rectangular microchannel. This study further presents the effects of the water flow inlet geometry on hydrodynamic characteristics of water microdroplet formation. A numerical multiphase volume of fluid (VOF) scheme is coupled to solve the unsteady three-dimensional laminar Navier-Stokes equations to depict the droplet formation phenomena at the junction. Predicted results on the length and generated frequency of the microdroplets agree well with experimental results in a T-junction microchannel with straight and flat inlets (the base model) for both fluid flows. Empirical correlations are reported between the volumetric flow ratio and the dimensionless microdroplet length or dimensionless frequency of droplet generation at a fixed capillary number of 4.7 · 10-3. The results of this study indicate a reduction in the droplet length of approximately 21% if the straight inlet for the water flow is modified to a downstream sudden contraction inlet for the water flow.

  17. Poster - Thur Eve - 57: Craniospinal irradiation with jagged-junction IMRT approach without beam edge matching for field junctions.

    Science.gov (United States)

    Cao, F; Ramaseshan, R; Corns, R; Harrop, S; Nuraney, N; Steiner, P; Aldridge, S; Liu, M; Carolan, H; Agranovich, A; Karva, A

    2012-07-01

    Craniospinal irradiation were traditionally treated the central nervous system using two or three adjacent field sets. A intensity-modulated radiotherapy (IMRT) plan (Jagged-Junction IMRT) which overcomes problems associated with field junctions and beam edge matching, improves planning and treatment setup efficiencies with homogenous target dose distribution was developed. Jagged-Junction IMRT was retrospectively planned on three patients with prescription of 36 Gy in 20 fractions and compared to conventional treatment plans. Planning target volume (PTV) included the whole brain and spinal canal to the S3 vertebral level. The plan employed three field sets, each with a unique isocentre. One field set with seven fields treated the cranium. Two field sets treated the spine, each set using three fields. Fields from adjacent sets were overlapped and the optimization process smoothly integrated the dose inside the overlapped junction. For the Jagged-Junction IMRT plans vs conventional technique, average homogeneity index equaled 0.08±0.01 vs 0.12±0.02, and conformity number equaled 0.79±0.01 vs 0.47±0.12. The 95% isodose surface covered (99.5±0.3)% of the PTV vs (98.1±2.0)%. Both Jagged-Junction IMRT plans and the conventional plans had good sparing of the organs at risk. Jagged-Junction IMRT planning provided good dose homogeneity and conformity to the target while maintaining a low dose to the organs at risk. Jagged-Junction IMRT optimization smoothly distributed dose in the junction between field sets. Since there was no beam matching, this treatment technique is less likely to produce hot or cold spots at the junction in contrast to conventional techniques. © 2012 American Association of Physicists in Medicine.

  18. The spontaneous formation of single-molecule junctions via terminal alkynes

    International Nuclear Information System (INIS)

    Pla-Vilanova, Pepita; Aragonès, Albert C; Sanz, Fausto; Darwish, Nadim; Diez-Perez, Ismael; Ciampi, Simone

    2015-01-01

    Herein, we report the spontaneous formation of single-molecule junctions via terminal alkyne contact groups. Self-assembled monolayers that form spontaneously from diluted solutions of 1, 4-diethynylbenzene (DEB) were used to build single-molecule contacts and assessed using the scanning tunneling microscopy-break junction technique (STM-BJ). The STM-BJ technique in both its dynamic and static approaches was used to characterize the lifetime (stability) and the conductivity of a single-DEB wire. It is demonstrated that single-molecule junctions form spontaneously with terminal alkynes and require no electrochemical control or chemical deprotonation. The alkyne anchoring group was compared against typical contact groups exploited in single-molecule studies, i.e. amine (benzenediamine) and thiol (benzendithiol) contact groups. The alkyne contact showed a conductance magnitude comparable to that observed with amine and thiol groups. The lifetime of the junctions formed from alkynes were only slightly less than that of thiols and greater than that observed for amines. These findings are important as (a) they extend the repertoire of chemical contacts used in single-molecule measurements to 1-alkynes, which are synthetically accessible and stable and (b) alkynes have a remarkable affinity toward silicon surfaces, hence opening the door for the study of single-molecule transport on a semiconducting electronic platform. (fast track communication)

  19. Device characterization for design optimization of 4 junction inverted metamorphic concentrator solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Geisz, John F.; France, Ryan M.; Steiner, Myles A.; Friedman, Daniel J. [National Renewable Energy Laboratory, Golden, CO 80401 (United States); García, Iván [National Renewable Energy Laboratory, Golden, CO 80401 USA and Instituto de Energía Solar, Universidad Politécnica de Madrid, Avda Complutense s/n, 28040 Madrid (Spain)

    2014-09-26

    Quantitative electroluminescence (EL) and luminescent coupling (LC) analysis, along with more conventional characterization techniques, are combined to completely characterize the subcell JV curves within a fourjunction (4J) inverted metamorphic solar cell (IMM). The 4J performance under arbitrary spectral conditions can be predicted from these subcell JV curves. The internal radiative efficiency (IRE) of each junction has been determined as a function of current density from the external radiative efficiency using optical modeling, but this required the accurate determination of the individual junction current densities during the EL measurement as affected by LC. These measurement and analysis techniques can be applied to any multijunction solar cell. The 4J IMM solar cell used to illustrate these techniques showed excellent junction quality as exhibited by high IRE and a one-sun AM1.5D efficiency of 36.3%. This device operates up to 1000 suns without limitations due to any of the three tunnel junctions.

  20. How long and low can you go? Effect of conformation on the risk of thoracolumbar intervertebral disc extrusion in domestic dogs.

    Science.gov (United States)

    Packer, Rowena M A; Hendricks, Anke; Volk, Holger A; Shihab, Nadia K; Burn, Charlotte C

    2013-01-01

    Intervertebral disc extrusion (IVDE) is a common neurological disorder in certain dog breeds, resulting in spinal cord compression and injury that can cause pain and neurological deficits. Most disc extrusions are reported in chondrodystrophic breeds (e.g. Dachshunds, Basset Hounds, Pekingese), where selection for 'long and low' morphologies is linked with intervertebral discs abnormalities that predispose dogs to IVDE. The aim of this study was to quantify the relationship between relative thoracolumbar vertebral column length and IVDE risk in diverse breeds. A 14 month cross-sectional study of dogs entering a UK small animal referral hospital for diverse disorders including IVDE was carried out. Dogs were measured on breed-defining morphometrics, including back length (BL) and height at the withers (HW). Of 700 dogs recruited from this referral population, measured and clinically examined, 79 were diagnosed with thoracolumbar IVDE following diagnostic imaging ± surgery. The BL:HW ratio was positively associated with IVDE risk, indicating that relatively longer dogs were at increased risk, e.g. the probability of IVDE was 0.30 for Miniature Dachshunds when BL:HW ratio equalled 1.1, compared to 0.68 when BL:HW ratio equalled 1.5. Additionally, both being overweight and skeletally smaller significantly increased IVDE risk. Therefore, selection for longer backs and miniaturisation should be discouraged in high-risk breeds to reduce IVDE risk. In higher risk individuals, maintaining a lean body shape is particularly important to reduce the risk of IVDE. Results are reported as probabilities to aid decision-making regarding breed standards and screening programmes reflecting the degree of risk acceptable to stakeholders.

  1. Musical molecules: the molecular junction as an active component in audio distortion circuits

    International Nuclear Information System (INIS)

    Bergren, Adam Johan; Zeer-Wanklyn, Lucas; Pekas, Nikola; Szeto, Bryan; McCreery, Richard L; Semple, Mitchell

    2016-01-01

    Molecular junctions that have a non-linear current–voltage characteristic consistent with quantum mechanical tunneling are demonstrated as analog audio clipping elements in overdrive circuits widely used in electronic music, particularly with electric guitars. The performance of large-area molecular junctions fabricated at the wafer level is compared to currently standard semiconductor diode clippers, showing a difference in the sound character. The harmonic distributions resulting from the use of traditional and molecular clipping elements are reported and discussed, and differences in performance are noted that result from the underlying physics that controls the electronic properties of each clipping component. In addition, the ability to tune the sound using the molecular junction is demonstrated. Finally, the hybrid circuit is compared to an overdriven tube amplifier, which has been the standard reference electric guitar clipped tone for over 60 years. In order to investigate the feasibility of manufacturing molecular junctions for use in commercial applications, devices are fabricated using a low-density format at the wafer level, where 38 dies per wafer, each containing two molecular junctions, are made with exceptional non-shorted yield (99.4%, representing 718 out of 722 tested devices) without requiring clean room facilities. (paper)

  2. Musical molecules: the molecular junction as an active component in audio distortion circuits

    Science.gov (United States)

    Bergren, Adam Johan; Zeer-Wanklyn, Lucas; Semple, Mitchell; Pekas, Nikola; Szeto, Bryan; McCreery, Richard L.

    2016-03-01

    Molecular junctions that have a non-linear current-voltage characteristic consistent with quantum mechanical tunneling are demonstrated as analog audio clipping elements in overdrive circuits widely used in electronic music, particularly with electric guitars. The performance of large-area molecular junctions fabricated at the wafer level is compared to currently standard semiconductor diode clippers, showing a difference in the sound character. The harmonic distributions resulting from the use of traditional and molecular clipping elements are reported and discussed, and differences in performance are noted that result from the underlying physics that controls the electronic properties of each clipping component. In addition, the ability to tune the sound using the molecular junction is demonstrated. Finally, the hybrid circuit is compared to an overdriven tube amplifier, which has been the standard reference electric guitar clipped tone for over 60 years. In order to investigate the feasibility of manufacturing molecular junctions for use in commercial applications, devices are fabricated using a low-density format at the wafer level, where 38 dies per wafer, each containing two molecular junctions, are made with exceptional non-shorted yield (99.4%, representing 718 out of 722 tested devices) without requiring clean room facilities.

  3. Articular Cartilage Increases Transition Zone Regeneration in Bone-tendon Junction Healing

    Science.gov (United States)

    Qin, Ling; Lee, Kwong Man; Leung, Kwok Sui

    2008-01-01

    The fibrocartilage transition zone in the direct bone-tendon junction reduces stress concentration and protects the junction from failure. Unfortunately, bone-tendon junctions often heal without fibrocartilage transition zone regeneration. We hypothesized articular cartilage grafts could increase fibrocartilage transition zone regeneration. Using a goat partial patellectomy repair model, autologous articular cartilage was harvested from the excised distal third patella and interposed between the residual proximal two-thirds bone fragment and tendon during repair in 36 knees. We evaluated fibrocartilage transition zone regeneration, bone formation, and mechanical strength after repair at 6, 12, and 24 weeks and compared them with direct repair. Autologous articular cartilage interposition resulted in more fibrocartilage transition zone regeneration (69.10% ± 14.11% [mean ± standard deviation] versus 8.67% ± 7.01% at 24 weeks) than direct repair at all times. There was no difference in the amount of bone formation and mechanical strength achieved. Autologous articular cartilage interposition increases fibrocartilage transition zone regeneration in bone-tendon junction healing, but additional research is required to ascertain the mechanism of stimulation and to establish the clinical applicability. PMID:18987921

  4. Valley dependent transport in graphene L junction

    Science.gov (United States)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  5. Method of manufacturing Josephson junction integrated circuits

    International Nuclear Information System (INIS)

    Jillie, D.W. Jr.; Smith, L.N.

    1985-01-01

    Josephson junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson junction electrode for the Josephson junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groudplane function and the Josephson junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed

  6. Thoracolumbar spine loading associated with kinematics of the young and the elderly during activities of daily living.

    Science.gov (United States)

    Ignasiak, Dominika; Rüeger, Andrea; Sperr, Ramona; Ferguson, Stephen J

    2018-03-21

    Excessive mechanical loading of the spine is a critical factor in vertebral fracture initiation. Most vertebral fractures develop spontaneously or due to mild trauma, as physiological loads during activities of daily living might exceed the failure load of osteoporotic vertebra. Spinal loading patterns are affected by vertebral kinematics, which differ between elderly and young individuals. In this study, the effects of age-related changes in spine kinematics on thoracolumbar spinal segmental loading during dynamic activities of daily living were investigated using combined experimental and modeling approach. Forty-four healthy volunteers were recruited into two age groups: young (N = 23, age = 27.1 ± 3.8) and elderly (N = 21, age = 70.1 ± 3.9). The spinal curvature was assessed with a skin-surface device and the kinematics of the spine and lower extremities were recorded during daily living tasks (flexion-extension and stand-sit-stand) with a motion capture system. The obtained data were used as input for a musculoskeletal model with a detailed thoracolumbar spine representation. To isolate the effect of kinematics on predicted loads, other model properties were kept constant. Inverse dynamics simulations were performed in the AnyBody Modeling System to estimate corresponding spinal loads. The maximum compressive loads predicted for the elderly motion patterns were lower than those of the young for L2/L3 and L3/L4 lumbar levels during flexion and for upper thoracic levels during stand-to-sit (T1/T2-T8/T9) and sit-to-stand (T3/T4-T6/T7). However, the maximum loads predicted for the lower thoracic levels (T9/T10-L1/L2), a common site of vertebral fractures, were similar compared to the young. Nevertheless, these loads acting on the vertebrae of reduced bone quality might contribute to a higher fracture risk for the elderly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. delta-biased Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Monaco, R.; Mygind, Jesper; Koshelet, V.

    2010-01-01

    Abstract: The behavior of a long Josephson tunnel junction drastically depends on the distribution of the dc bias current. We investigate the case in which the bias current is fed in the central point of a one-dimensional junction. Such junction configuration has been recently used to detect...... the persistent currents circulating in a superconducting loop. Analytical and numerical results indicate that the presence of fractional vortices leads to remarkable differences from the conventional case of uniformly distributed dc bias current. The theoretical findings are supported by detailed measurements...

  8. How I do it: surgical ligation of craniocervical junction dural AV fistulas.

    Science.gov (United States)

    Sorenson, Thomas J; La Pira, Biagia; Hughes, Joshua; Lanzino, Giuseppe

    2017-08-01

    Dural arteriovenous fistulas (DAVFs) of the craniocervical junction are uncommon vascular lesions, which often require surgical treatment even in the endovascular era. Most commonly, the fistula is placed laterally, and surgical ligation is performed through a lateral suboccipital craniotomy. After dural opening, the area is inspected, and the arterialized vein is identified emerging from the dura, often adjacent to the entry point of the vertebral artery, and ligated. A far lateral craniotomy is the authors' preferred surgical approach for accessing and treating dural arteriovenous fistulas of the craniocervical junction that cannot be reached endovascularly.

  9. Junction depth measurement using carrier illumination

    International Nuclear Information System (INIS)

    Borden, Peter

    2001-01-01

    Carrier Illumination [trade mark] (CI) is a new method recently developed to meet the need for a non-destructive, high throughput junction depth measurement on patterned wafers. A laser beam creates a quasi-static excess carrier profile in the semiconductor underlying the activated junction. The excess carrier profile is fairly constant below the junction, and drops rapidly in the junction, creating a steep index of refraction gradient at the junction edge. Interference with light reflected from this index gradient provides a signal that is analyzed to determine the junction depth. The paper summarizes evaluation of performance in full NMOS and PMOS process flows, on both bare and patterned wafers. The aims have been to validate (1) performance in the presence of underlying layers typically found at the source/drain (S/D) process steps and (2) measurement on patterned wafers. Correlation of CI measurements to SIMS and transistor drive current are shown. The data were obtained from NMOS structures using As S/D and LDD implants. Correlations to SRP, SIMS and sheet resistance are shown for PMOS structures using B 11 LDD implants. Gage capability measurements are also presented

  10. Piv site-specific invertase requires a DEDD motif analogous to the catalytic center of the RuvC Holliday junction resolvases.

    Science.gov (United States)

    Buchner, John M; Robertson, Anne E; Poynter, David J; Denniston, Shelby S; Karls, Anna C

    2005-05-01

    Piv, a unique prokaryotic site-specific DNA invertase, is related to transposases of the insertion elements from the IS110/IS492 family and shows no similarity to the site-specific recombinases of the tyrosine- or serine-recombinase families. Piv tertiary structure is predicted to include the RNase H-like fold that typically encompasses the catalytic site of the recombinases or nucleases of the retroviral integrase superfamily, including transposases and RuvC-like Holliday junction resolvases. Analogous to the DDE and DEDD catalytic motifs of transposases and RuvC, respectively, four Piv acidic residues D9, E59, D101, and D104 appear to be positioned appropriately within the RNase H fold to coordinate two divalent metal cations. This suggests mechanistic similarity between site-specific inversion mediated by Piv and transposition or endonucleolytic reactions catalyzed by enzymes of the retroviral integrase superfamily. The role of the DEDD motif in Piv catalytic activity was addressed using Piv variants that are substituted individually or multiply at these acidic residues and assaying for in vivo inversion, intermolecular recombination, and DNA binding activities. The results indicate that all four residues of the DEDD motif are required for Piv catalytic activity. The DEDD residues are not essential for inv recombination site recognition and binding, but this acidic tetrad does appear to contribute to the stability of Piv-inv interactions. On the basis of these results, a working model for Piv-mediated inversion that includes resolution of a Holliday junction is presented.

  11. NbN tunnel junctions

    International Nuclear Information System (INIS)

    Villegier, J.C.; Vieux-Rochaz, L.; Goniche, M.; Renard, P.; Vabre, M.

    1984-09-01

    All-niobium nitride Josephon junctions have been prepared successfully using a new processing called SNOP: Selective Niobium (nitride) Overlap Process. Such a process involves the ''trilayer'' deposition on the whole wafer before selective patterning of the electrodes by optically controlled dry reactive ion etching. Only two photomask levels are need to define an ''overlap'' or a ''cross-type'' junction with a good accuracy. The properties of the niobium nitride films deposited by DC-magnetron sputtering and the surface oxide growth are analysed. The most critical point to obtain high quality and high gap value junctions resides in the early stage of the NbN counterelectrode growth. Some possibilities to overcome such a handicap exist even if the fabrication needs substrate temperatures below 250 0 C

  12. Thoracolumbar spine fractures in the geriatric fracture center : early ambulation leads to good results on short term and is a successful and safe alternative compared to immobilization in elderly patients with two-column vertebral fractures

    NARCIS (Netherlands)

    Weerink, L B M; Folbert, E C; Kraai, M; Smit, R S; Hegeman, J H; van der Velde, D

    INTRODUCTION: Thoracolumbar spine fractures are common osteoporotic fractures among elderly patients. Several studies suggest that these fractures can be treated successfully with a nonoperative management. The aim of this study is to evaluate the conservative treatment of elderly patients with a

  13. High-performance germanium n+/p junction by nickel-induced dopant activation of implanted phosphorus at low temperature

    International Nuclear Information System (INIS)

    Huang Wei; Lu Chao; Yu Jue; Wei Jiang-Bin; Chen Chao-Wen; Wang Jian-Yuan; Xu Jian-Fang; Li Cheng; Chen Song-Yan; Lai Hong-Kai; Wang Chen; Liu Chun-Li

    2016-01-01

    High-performance Ge n + /p junctions were fabricated at a low formation temperature from 325 °C to 400 °C with a metal(nickel)-induced dopant activation technique. The obtained NiGe electroded Ge n + /p junction has a rectification ratio of 5.6× 10 4 and a forward current of 387 A/cm 2 at −1 V bias. The Ni-based metal-induced dopant activation technique is expected to meet the requirement of the shallow junction of Ge MOSFET. (paper)

  14. Hysteresis development in superconducting Josephson junctions

    International Nuclear Information System (INIS)

    Refai, T.F.; Shehata, L.N.

    1988-09-01

    The resistively and capacitive shunted junction model is used to investigate hysteresis development in superconducting Josephson junctions. Two empirical formulas that relate the hysteresis width and the quasi-particle diffusion length in terms of the junctions electrical parameters, temperature and frequency are obtained. The obtained formulas provide a simple tool to investigate the full potentials of the hysteresis phenomena. (author). 9 refs, 3 figs

  15. Study of seed layer effect in nuclear battery with P-N diode junction

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Son, Kwang Jae; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Byoung Gun [Kookmin Univ., Seoul (Korea, Republic of)

    2014-10-15

    A nuclear battery with diode junction is a device that converts nuclear radiation directly to electric power. The mechanism of a nuclear battery is same as the P-N junction diode for solar cell application. The photovoltaic is operated by converted photons to electrical energy in the junction. In betavoltaic battery, beta particles are collected and converted to electrical energy as similar principle as photovoltaic. A very low current, order of nano or micro amps, is generated in devices. If a radioisotope (RI) with a long halflife (over 50 years) is used, a lifetime of a power source is extended as long as halflife time of RI.. Some special applications require long-lived compact power sources. These include space equipment, sensors in remote locations (space, underground, etc.), and implantable medical devices. Conventionally, these sources rely on converting chemical energy to electricity. This means they require a large storage of chemical 'fuel' since the amount of energy released per reaction is small. The nuclear battery is a novel solution to solve the power needs of these applications. For the {sup 63}Ni beta-source we used, the half-life is 100.2 years. Hence, the power sources we describe could extend a system's operating life by several decades or even a century, during which time the system could gain learned behavior without worrying about the power turning off. Radioactive thin-film-based power sources also have energy density orders of magnitude higher than chemical-reaction-based energy sources. In this study, we fabricate nuclear battery using {sup 63}Ni source with diode junction, and studied seed layer effect for optimization of structure of p-n junction.

  16. Flexible MgO Barrier Magnetic Tunnel Junctions.

    Science.gov (United States)

    Loong, Li Ming; Lee, Wonho; Qiu, Xuepeng; Yang, Ping; Kawai, Hiroyo; Saeys, Mark; Ahn, Jong-Hyun; Yang, Hyunsoo

    2016-07-01

    Flexible MgO barrier magnetic tunnel junction (MTJ) devices are fabricated using a transfer printing process. The flexible MTJ devices yield significantly enhanced tunneling magnetoresistance of ≈300% and improved abruptness of switching, as residual strain in the MTJ structure is released during the transfer process. This approach could be useful for flexible electronic systems that require high-performance memory components. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Metallic Modular Taper Junctions in Total Hip Arthroplasty

    Directory of Open Access Journals (Sweden)

    Timothy McTighe

    2015-08-01

    Full Text Available The emergence of modularity in total hip arthroplasty (THA in the 1980s and 1990s was based on the fact that the benefit of these design features outweighed the risk. The use of metallic modular junctions presents a unique set of advantages and problems for use in THA. The advantages include improvement in fit and fill of the implant to bone, restoration of joint mechanics, reduced complications in revision surgery and reduction of costly inventory. However, the risks or concerns are a little harder to identify and deal with. Certainly corrosion, and fatigue failure are the two most prevalent concerns but now the specifics of fretting wear and corrosive wear increasing particulate debris and the potential biological response is having an impact on the design and potential longevity of the reconstructed hip. Material and designs are facing a shorter life expectancy than what was previously thought, mostly due to an increasing level of physical activity by the patient. Because there are no accurate laboratory test whereby the service life and performance of these implants can be predicted, early controlled clinical evaluations are necessary. Early publication of testing and clinical impressions should be encouraged in an attempt to reduce exposure to potential at risk patients, implants and material. The reduction and possible elimination of risks will require a balancing of all the variables requiring a multidisciplinary endeavor. This paper is designed to review the risk factors, and benefits of modular junctions in total hip arthroplasty (THA. Also some basic engineering principals that can reduce risk factors and improve functionality of modular junctions.

  18. Quantum synchronization effects in intrinsic Josephson junctions

    International Nuclear Information System (INIS)

    Machida, M.; Kano, T.; Yamada, S.; Okumura, M.; Imamura, T.; Koyama, T.

    2008-01-01

    We investigate quantum dynamics of the superconducting phase in intrinsic Josephson junctions of layered high-T c superconductors motivated by a recent experimental observation for the switching rate enhancement in the low temperature quantum regime. We pay attention to only the capacitive coupling between neighboring junctions and perform large-scale simulations for the Schroedinger equation derived from the Hamiltonian considering the capacitive coupling alone. The simulation focuses on an issue whether the switching of a junction induces those of the other junctions or not. The results reveal that the superconducting phase dynamics show synchronous behavior with increasing the quantum character, e.g., decreasing the junction plane area and effectively the temperature. This is qualitatively consistent with the experimental result

  19. Current–voltage characteristics of manganite–titanite perovskite junctions

    Directory of Open Access Journals (Sweden)

    Benedikt Ifland

    2015-07-01

    Full Text Available After a general introduction into the Shockley theory of current voltage (J–V characteristics of inorganic and organic semiconductor junctions of different bandwidth, we apply the Shockley theory-based, one diode model to a new type of perovskite junctions with polaronic charge carriers. In particular, we studied manganite–titanate p–n heterojunctions made of n-doped SrTi1−yNbyO3, y = 0.002 and p-doped Pr1−xCaxMnO3, x = 0.34 having a strongly correlated electron system. The diffusion length of the polaron carriers was analyzed by electron beam-induced current (EBIC in a thin cross plane lamella of the junction. In the J–V characteristics, the polaronic nature of the charge carriers is exhibited mainly by the temperature dependence of the microscopic parameters, such as the hopping mobility of the series resistance and a colossal electro-resistance (CER effect in the parallel resistance. We conclude that a modification of the Shockley equation incorporating voltage-dependent microscopic polaron parameters is required. Specifically, the voltage dependence of the reverse saturation current density is analyzed and interpreted as a voltage-dependent electron–polaron hole–polaron pair generation and separation at the interface.

  20. Entropy Flow Through Near-Critical Quantum Junctions

    Science.gov (United States)

    Friedan, Daniel

    2017-05-01

    This is the continuation of Friedan (J Stat Phys, 2017. doi: 10.1007/s10955-017-1752-8). Elementary formulas are derived for the flow of entropy through a circuit junction in a near-critical quantum circuit close to equilibrium, based on the structure of the energy-momentum tensor at the junction. The entropic admittance of a near-critical junction in a bulk-critical circuit is expressed in terms of commutators of the chiral entropy currents. The entropic admittance at low frequency, divided by the frequency, gives the change of the junction entropy with temperature—the entropic "capacitance". As an example, and as a check on the formalism, the entropic admittance is calculated explicitly for junctions in bulk-critical quantum Ising circuits (free fermions, massless in the bulk), in terms of the reflection matrix of the junction. The half-bit of information capacity per end of critical Ising wire is re-derived by integrating the entropic "capacitance" with respect to temperature, from T=0 to T=∞.

  1. Ballistic Josephson junctions based on CVD graphene

    Science.gov (United States)

    Li, Tianyi; Gallop, John; Hao, Ling; Romans, Edward

    2018-04-01

    Josephson junctions with graphene as the weak link between superconductors have been intensely studied in recent years, with respect to both fundamental physics and potential applications. However, most of the previous work was based on mechanically exfoliated graphene, which is not compatible with wafer-scale production. To overcome this limitation, we have used graphene grown by chemical vapour deposition (CVD) as the weak link of Josephson junctions. We demonstrate that very short, wide CVD-graphene-based Josephson junctions with Nb electrodes can work without any undesirable hysteresis in their electrical characteristics from 1.5 K down to a base temperature of 320 mK, and their gate-tuneable critical current shows an ideal Fraunhofer-like interference pattern in a perpendicular magnetic field. Furthermore, for our shortest junctions (50 nm in length), we find that the normal state resistance oscillates with the gate voltage, consistent with the junctions being in the ballistic regime, a feature not previously observed in CVD-graphene-based Josephson junctions.

  2. Correlation of plain radiographic and lumbar myelographic findings with surgical findings in thoracolumbar disc disease

    International Nuclear Information System (INIS)

    Oldby, N.J.; Dyce, J.; Houlton, J.E.F.

    1994-01-01

    The results of a prospective study to compare the plain radiographic and lumbar myelographic findings with the surgical findings in 70 cases of suspected thoracolumbar disc protrusion in the dog are reported. The aim was to assess the relative accuracy of disc lesion localisation using plain and contrast radiography. From the plain radiographs, the affected disc space was correctly identified in 40 cases (57.1 per cent), and incorrectly identified in seven. More than one site was identified in 11; in eight of these dogs, the affected disc space was strongly suspected. It was not possible to identify an affected disc in 12 cases. The site of disc protrusion was accurately identified by myelography in 60 dogs (85.7 per cent). In four dogs, myelography was helpful in identifying an adjacent disc and, in a further two, cord swelling was found at surgery. In one dog, neither disc material nor cord swelling was identified. Three myelograms were non-diagnostic

  3. Overlap junctions for high coherence superconducting qubits

    Science.gov (United States)

    Wu, X.; Long, J. L.; Ku, H. S.; Lake, R. E.; Bal, M.; Pappas, D. P.

    2017-07-01

    Fabrication of sub-micron Josephson junctions is demonstrated using standard processing techniques for high-coherence, superconducting qubits. These junctions are made in two separate lithography steps with normal-angle evaporation. Most significantly, this work demonstrates that it is possible to achieve high coherence with junctions formed on aluminum surfaces cleaned in situ by Ar plasma before junction oxidation. This method eliminates the angle-dependent shadow masks typically used for small junctions. Therefore, this is conducive to the implementation of typical methods for improving margins and yield using conventional CMOS processing. The current method uses electron-beam lithography and an additive process to define the top and bottom electrodes. Extension of this work to optical lithography and subtractive processes is discussed.

  4. Surface-Enhanced Raman Scattering in Molecular Junctions.

    Science.gov (United States)

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-08-18

    Surface-enhanced Raman scattering (SERS) is a surface-sensitive vibrational spectroscopy that allows Raman spectroscopy on a single molecular scale. Here, we present a review of SERS from molecular junctions, in which a single molecule or molecules are made to have contact from the top to the bottom of metal surfaces. The molecular junctions are nice platforms for SERS as well as transport measurement. Electronic characterization based on the transport measurements of molecular junctions has been extensively studied for the development of miniaturized electronic devices. Simultaneous SERS and transport measurement of the molecular junctions allow both structural (geometrical) and electronic information on the single molecule scale. The improvement of SERS measurement on molecular junctions open the door toward new nanoscience and nanotechnology in molecular electronics.

  5. Primary Tunnel Junction Thermometry

    International Nuclear Information System (INIS)

    Pekola, Jukka P.; Holmqvist, Tommy; Meschke, Matthias

    2008-01-01

    We describe the concept and experimental demonstration of primary thermometry based on a four-probe measurement of a single tunnel junction embedded within four arrays of junctions. We show that in this configuration random sample specific and environment-related errors can be avoided. This method relates temperature directly to Boltzmann constant, which will form the basis of the definition of temperature and realization of official temperature scales in the future

  6. Ginzburg–Landau theory of mesoscopic multi-band Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, F.; De Luca, R., E-mail: rdeluca@unisa.it

    2017-05-15

    Highlights: • We generalize, in the realm of the Ginzburg–Landau theory, the de Gennes matching-matrix method for the interface order parameters to describe the superconducting properties of multi-band mesoscopic Josephson junctions. • The results are in agreement with a microscopic treatment of nanobridge junctions. • Thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions. - Abstract: A Ginzburg–Landau theory for multi-band mesoscopic Josephson junctions has been developed. The theory, obtained by generalizing the de Gennes matching-matrix method for the interface order parameters, allows the study of the phase dynamics of various types of mesoscopic Josephson junctions. As a relevant application, we studied mesoscopic double-band junctions also in the presence of a superconducting nanobridge interstitial layer. The results are in agreement with a microscopic treatment of the same system. Furthermore, thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions.

  7. Harmonic synchronization in resistively coupled Josephson junctions

    International Nuclear Information System (INIS)

    Blackburn, J.A.; Gronbech-Jensen, N.; Smith, H.J.T.

    1994-01-01

    The oscillations of two resistively coupled Josephson junctions biased only by a single dc current source are shown to lock harmonically in a 1:2 mode over a significant range of bias current, even when the junctions are identical. The dependence of this locking on both junction and coupling parameters is examined, and it is found that, for this particular two-junction configuration, 1:1 locking can never occur, and also that a minimum coupling coefficient is needed to support harmonic locking. Some issues related to subharmonic locking are also discussed

  8. How long and low can you go? Effect of conformation on the risk of thoracolumbar intervertebral disc extrusion in domestic dogs.

    Directory of Open Access Journals (Sweden)

    Rowena M A Packer

    Full Text Available Intervertebral disc extrusion (IVDE is a common neurological disorder in certain dog breeds, resulting in spinal cord compression and injury that can cause pain and neurological deficits. Most disc extrusions are reported in chondrodystrophic breeds (e.g. Dachshunds, Basset Hounds, Pekingese, where selection for 'long and low' morphologies is linked with intervertebral discs abnormalities that predispose dogs to IVDE. The aim of this study was to quantify the relationship between relative thoracolumbar vertebral column length and IVDE risk in diverse breeds. A 14 month cross-sectional study of dogs entering a UK small animal referral hospital for diverse disorders including IVDE was carried out. Dogs were measured on breed-defining morphometrics, including back length (BL and height at the withers (HW. Of 700 dogs recruited from this referral population, measured and clinically examined, 79 were diagnosed with thoracolumbar IVDE following diagnostic imaging ± surgery. The BL:HW ratio was positively associated with IVDE risk, indicating that relatively longer dogs were at increased risk, e.g. the probability of IVDE was 0.30 for Miniature Dachshunds when BL:HW ratio equalled 1.1, compared to 0.68 when BL:HW ratio equalled 1.5. Additionally, both being overweight and skeletally smaller significantly increased IVDE risk. Therefore, selection for longer backs and miniaturisation should be discouraged in high-risk breeds to reduce IVDE risk. In higher risk individuals, maintaining a lean body shape is particularly important to reduce the risk of IVDE. Results are reported as probabilities to aid decision-making regarding breed standards and screening programmes reflecting the degree of risk acceptable to stakeholders.

  9. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.

    Science.gov (United States)

    Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing

    2017-04-01

    The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.

  10. The endothelial adaptor molecule TSAd is required for VEGF-induced angiogenic sprouting through junctional c-Src activation

    NARCIS (Netherlands)

    Gordon, Emma J; Fukuhara, Daisuke; Weström, Simone; Padhan, Narendra; Sjöström, Elisabet O; van Meeteren, Laurens|info:eu-repo/dai/nl/299142353; He, Liqun; Orsenigo, Fabrizio; Dejana, Elisabetta; Bentley, Katie; Spurkland, Anne; Claesson-Welsh, Lena

    2016-01-01

    Activation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) by VEGF binding is critical for vascular morphogenesis. In addition, VEGF disrupts the endothelial barrier by triggering the phosphorylation and turnover of the junctional molecule VE-cadherin, a process mediated by the

  11. Percutaneous Vertebral Augmentation with Polyethylene Mesh and Allograft Bone for Traumatic Thoracolumbar Fractures

    Directory of Open Access Journals (Sweden)

    C. Schulz

    2015-01-01

    Full Text Available Purpose. In cases of traumatic thoracolumbar fractures, percutaneous vertebral augmentation can be used in addition to posterior stabilisation. The use of an augmentation technique with a bone-filled polyethylene mesh as a stand-alone treatment for traumatic vertebral fractures has not yet been investigated. Methods. In this retrospective study, 17 patients with acute type A3.1 fractures of the thoracic or lumbar spine underwent stand-alone augmentation with mesh and allograft bone and were followed up for one year using pain scales and sagittal endplate angles. Results. From before surgery to 12 months after surgery, pain and physical function improved significantly, as indicated by an improvement in the median VAS score and in the median pain and work scale scores. From before to immediately after surgery, all patients showed a significant improvement in mean mono- and bisegmental kyphoses. During the one-year period, there was a significant loss of correction. Conclusions. Based on this data a stand-alone approach with vertebral augmentation with polyethylene mesh and allograft bone is not a suitable therapy option for incomplete burst fractures for a young patient collective.

  12. Depression of the Thoracolumbar Posterior Vertebral Body on the Estimation of Cement Leakage in Vertebroplasty and Kyphoplasty Operations.

    Science.gov (United States)

    Chen, Hao; Jia, Pu; Bao, Li; Feng, Fei; Yang, He; Li, Jin-Jun; Tang, Hai

    2015-12-05

    The cross-section of thoracolumbar vertebral body is kidney-shaped with depressed posterior boundary. The anterior wall of the vertebral canal is separated from the posterior wall of the vertebral body on the lateral X-ray image. This study was designed to determine the sagittal distance between the anterior border of the vertebral canal and the posterior border of the vertebral body (DBCV) and to analyze the potential role of DBCV in the estimation of cement leakage during percutaneous vertebroplasty (PVP) or percutaneous kyphoplasty (PKP). We retrospectively recruited 233 patients who had osteoporotic vertebral compression fractures and were treated with PVP or PKP. Computed tomography images of T11-L2 normal vertebrae were measured to obtain DBCV. The distance from cement to the posterior wall of the vertebral body (DCPW) of thoracolumbar vertebrae was measured from C-arm images. The selected vertebrae were divided into two groups according to DCPW, with the fracture levels, fracture grades and leakage rates of the two groups compared. A relative operating characteristic (ROC) curve was applied to determine whether the DCPW difference can be used to estimate the degree of cement leakage. The data were processed by statistical software SPSS version 21.0 using independent sample t-test and Chi-square tests. The maximum DBCV was 6.40 mm and the average DBCV was 3.74 ± 0.95 mm. DBCV appeared to be longer in males than in females, but the difference was not statistically significant. The average DCPW of type-B leakage vertebrae (2.59 ± 1.20 mm) was shorter than that of other vertebrae (7.83 ± 2.38 mm, P 6.40 mm for type-C and type-S, but much higher for type-B. ROC curve revealed that DCPW only has a predictive value for type-B leakage (area under the curve: 0.98, 95% confidence interval: 0.95-0.99, P DBCV on C-arm images for safety during PVP or PKP.

  13. Josephson junctions of multiple superconducting wires

    Science.gov (United States)

    Deb, Oindrila; Sengupta, K.; Sen, Diptiman

    2018-05-01

    We study the spectrum of Andreev bound states and Josephson currents across a junction of N superconducting wires which may have s - or p -wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transport across such junctions. For N ≥3 , it is well known that Berry curvature terms contribute to the Josephson currents; we chart out situations where such terms can have relatively large effects. For a system of three s -wave or three p -wave superconductors, we provide analytic expressions for the Andreev bound-state energies and study the Josephson currents in response to a constant voltage applied across one of the wires; we find that the integrated transconductance at zero temperature is quantized to integer multiples of 4 e2/h , where e is the electron charge and h =2 π ℏ is Planck's constant. For a sinusoidal current with frequency ω applied across one of the wires in the junction, we find that Shapiro plateaus appear in the time-averaged voltage across that wire for any rational fractional multiple (in contrast to only integer multiples in junctions of two wires) of 2 e /(ℏ ω ) . We also use our formalism to study junctions of two p -wave and one s -wave wires. We find that the corresponding Andreev bound-state energies depend on the spin of the Bogoliubov quasiparticles; this produces a net magnetic moment in such junctions. The time variation of these magnetic moments may be controlled by an external voltage applied across the junction. We discuss experiments which may test our theory.

  14. Molecular Diffusion through Cyanobacterial Septal Junctions.

    Science.gov (United States)

    Nieves-Morión, Mercedes; Mullineaux, Conrad W; Flores, Enrique

    2017-01-03

    Heterocyst-forming cyanobacteria grow as filaments in which intercellular molecular exchange takes place. During the differentiation of N 2 -fixing heterocysts, regulators are transferred between cells. In the diazotrophic filament, vegetative cells that fix CO 2 through oxygenic photosynthesis provide the heterocysts with reduced carbon and heterocysts provide the vegetative cells with fixed nitrogen. Intercellular molecular transfer has been traced with fluorescent markers, including calcein, 5-carboxyfluorescein, and the sucrose analogue esculin, which are observed to move down their concentration gradient. In this work, we used fluorescence recovery after photobleaching (FRAP) assays in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 to measure the temperature dependence of intercellular transfer of fluorescent markers. We find that the transfer rate constants are directly proportional to the absolute temperature. This indicates that the "septal junctions" (formerly known as "microplasmodesmata") linking the cells in the filament allow molecular exchange by simple diffusion, without any activated intermediate state. This constitutes a novel mechanism for molecular transfer across the bacterial cytoplasmic membrane, in addition to previously characterized mechanisms for active transport and facilitated diffusion. Cyanobacterial septal junctions are functionally analogous to the gap junctions of metazoans. Although bacteria are frequently considered just as unicellular organisms, there are bacteria that behave as true multicellular organisms. The heterocyst-forming cyanobacteria grow as filaments in which cells communicate. Intercellular molecular exchange is thought to be mediated by septal junctions. Here, we show that intercellular transfer of fluorescent markers in the cyanobacterial filament has the physical properties of simple diffusion. Thus, cyanobacterial septal junctions are functionally analogous to metazoan gap junctions

  15. Josephson tunnel junctions in niobium films

    International Nuclear Information System (INIS)

    Wiik, Tapio.

    1976-12-01

    A method of fabricating stable Josephson tunnel junctions with reproducible characteristics is described. The junctions have a sandwich structure consisting of a vacuum evaporated niobium film, a niobium oxide layer produced by the glow discharge method and a lead film deposited by vacuum evaporation. Difficulties in producing thin-film Josephson junctions are discussed. Experimental results suggest that the lower critical field of the niobium film is the most essential parameter when evaluating the quality of these junctions. The dependence of the lower critical field on the film thickness and on the Ginzburg-Landau parameter of the film is studied analytically. Comparison with the properties of the evaporated films and with the previous calculations for bulk specimens shows that the presented model is applicable for most of the prepared samples. (author)

  16. Josephson junctions with ferromagnetic alloy interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Himmel, Nico

    2015-07-23

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO{sub x} vertical stroke Nb vertical stroke Ni{sub 60}Cu{sub 40} vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially

  17. Josephson junctions with ferromagnetic alloy interlayer

    International Nuclear Information System (INIS)

    Himmel, Nico

    2015-01-01

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO x vertical stroke Nb vertical stroke Ni 60 Cu 40 vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially a variation of

  18. Molecular series-tunneling junctions.

    Science.gov (United States)

    Liao, Kung-Ching; Hsu, Liang-Yan; Bowers, Carleen M; Rabitz, Herschel; Whitesides, George M

    2015-05-13

    Charge transport through junctions consisting of insulating molecular units is a quantum phenomenon that cannot be described adequately by classical circuit laws. This paper explores tunneling current densities in self-assembled monolayer (SAM)-based junctions with the structure Ag(TS)/O2C-R1-R2-H//Ga2O3/EGaIn, where Ag(TS) is template-stripped silver and EGaIn is the eutectic alloy of gallium and indium; R1 and R2 refer to two classes of insulating molecular units-(CH2)n and (C6H4)m-that are connected in series and have different tunneling decay constants in the Simmons equation. These junctions can be analyzed as a form of series-tunneling junctions based on the observation that permuting the order of R1 and R2 in the junction does not alter the overall rate of charge transport. By using the Ag/O2C interface, this system decouples the highest occupied molecular orbital (HOMO, which is localized on the carboxylate group) from strong interactions with the R1 and R2 units. The differences in rates of tunneling are thus determined by the electronic structure of the groups R1 and R2; these differences are not influenced by the order of R1 and R2 in the SAM. In an electrical potential model that rationalizes this observation, R1 and R2 contribute independently to the height of the barrier. This model explicitly assumes that contributions to rates of tunneling from the Ag(TS)/O2C and H//Ga2O3 interfaces are constant across the series examined. The current density of these series-tunneling junctions can be described by J(V) = J0(V) exp(-β1d1 - β2d2), where J(V) is the current density (A/cm(2)) at applied voltage V and βi and di are the parameters describing the attenuation of the tunneling current through a rectangular tunneling barrier, with width d and a height related to the attenuation factor β.

  19. Performance of single-junction and dual-junction InGaP/GaAs solar cells under low concentration ratios

    International Nuclear Information System (INIS)

    Khan, Aurangzeb; Yamaguchi, Masafumi; Takamoto, Tatsuya

    2004-01-01

    A study of the performance of single-junction InGaP/GaAs and dual-junction InGaP/GaAs tandem cells under low concentration ratios (up to 15 suns), before and after 1 MeV electron irradiation is presented. Analysis of the tunnel junction parameters under different concentrated light illuminations reveals that the peak current (J P ) and valley current (J V ) densities should be greater than the short-circuit current density (J sc ) for better performance. The tunnel junction behavior against light intensity improved after irradiation. This led to the suggestion that the peak current density (J P ) and valley current density (J V ) of the tunnel junction were enhanced after irradiation or the peak current was shifted to higher concentration. The recovery of the radiation damage under concentrated light illumination conditions suggests that the performance of the InGaP/GaAs tandem solar cell can be enhanced even under low concentration ratios

  20. Current noise in tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Moritz; Grabert, Hermann [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Strasse 3, 79104, Freiburg (Germany)

    2017-06-15

    We study current fluctuations in tunnel junctions driven by a voltage source. The voltage is applied to the tunneling element via an impedance providing an electromagnetic environment of the junction. We use circuit theory to relate the fluctuations of the current flowing in the leads of the junction with the voltage fluctuations generated by the environmental impedance and the fluctuations of the tunneling current. The spectrum of current fluctuations is found to consist of three parts: a term arising from the environmental Johnson-Nyquist noise, a term due to the shot noise of the tunneling current and a third term describing the cross-correlation between these two noise sources. Our phenomenological theory reproduces previous results based on the Hamiltonian model for the dynamical Coulomb blockade and provides a simple understanding of the current fluctuation spectrum in terms of circuit theory and properties of the average current. Specific results are given for a tunnel junction driven through a resonator. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Final audit report of remedial action construction at the UMTRA Project, Grand Junction, Colorado, processing site

    International Nuclear Information System (INIS)

    1995-02-01

    This final audit report (FAR) for remedial action at the Grand Junction, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project processing site consists of a summary of the radiological surveillances/ audits, the quality assurance (QA) in-process surveillances, and the QA final close-out inspection performed by the US Department of Energy (DOE) and Technical Assistance Contractor (TAC). The FAR also summarizes other surveillances performed by the US Nuclear Regulatory Commission (NRC). To summarize, a total of one finding and 127 observations were noted during DOE/TAC audit and surveillance activities. The NRC noted general site-related observations during the OSCRs. Follow-up to responses required from MK-Ferguson for the DOE/TAC finding and observations indicated that all issues related to the Grand Junction processing site were resolved and closed out to the DOE's satisfaction. The NRC OSCRs resulted in no issues related to the Grand Junction processing site requiring a response from MK-Ferguson

  2. Curved Josephson junction

    International Nuclear Information System (INIS)

    Dobrowolski, Tomasz

    2012-01-01

    The constant curvature one and quasi-one dimensional Josephson junction is considered. On the base of Maxwell equations, the sine–Gordon equation that describes an influence of curvature on the kink motion was obtained. It is showed that the method of geometrical reduction of the sine–Gordon model from three to lower dimensional manifold leads to an identical form of the sine–Gordon equation. - Highlights: ► The research on dynamics of the phase in a curved Josephson junction is performed. ► The geometrical reduction is applied to the sine–Gordon model. ► The results of geometrical reduction and the fundamental research are compared.

  3. Josephson tunnel junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Weides, M.P.

    2006-01-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al 2 O 3 tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or π coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, π) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-π Josephson junction. At a certain temperature this 0-π junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum Φ 0 . Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T → 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  4. Josephson tunnel junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M.P.

    2006-07-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  5. Comparison of polymethylmethacrylate versus expandable cage in anterior vertebral column reconstruction after posterior extracavitary corpectomy in lumbar and thoraco-lumbar metastatic spine tumors.

    Science.gov (United States)

    Eleraky, Mohammed; Papanastassiou, Ioannis; Tran, Nam D; Dakwar, Elias; Vrionis, Frank D

    2011-08-01

    Single-stage posterior corpectomy for the management of spinal tumors has been well described. Anterior column reconstruction has been accomplished using polymethylmethacrylate (PMMA) or expandable cages (EC). The aim of this retrospective study was to compare PMMA versus ECs in anterior vertebral column reconstruction after posterior corpectomy for tumors in the lumbar and thoracolumbar spine. Between 2006 and 2009 we identified 32 patients that underwent a single-stage posterior extracavitary tumor resection and anterior reconstruction, 16 with PMMA and 16 with EC. There were no baseline differences in regards to age (mean: 58.2 years) or performance status. Differences between groups in terms of survival, estimated blood loss (EBL), kyphosis reduction (decrease in Cobb's angle), pain, functional outcomes, and performance status were evaluated. Mean overall survival and EBL were 17 months and 1165 ml, respectively. No differences were noted between the study groups in regards to survival (p = 0.5) or EBL (p = 0.8). There was a trend for better Kyphosis reduction in favor of the EC group (10.04 vs. 5.45, p = 0.16). No difference in performance status or VAS improvements was observed (p > 0.05). Seven patients had complications that led to reoperation (5 infections). PMMA or ECs are viable options for reconstruction of the anterior vertebral column following tumor resection and corpectomy. Both approaches allow for correction of the kyphotic deformity, and stabilization of the anterior vertebral column with similar functional and performance status outcomes in the lumbar and thoracolumbar area.

  6. Mechanically Stacked Dual-Junction and Triple-Junction III-V/Si-IBC Cells with Efficiencies Exceeding 31.5% and 35.4%: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Manuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tamboli, Adele C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Warren, Emily L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schulte-Huxel, Henning [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Klein, Talysa [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Hest, Marinus F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Geisz, John F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stradins, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Steiner, Myles A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rienaecker, Michael [Institute for Solar Energy Research Hamelin (ISFH); Merkle, Agnes [Institute for Solar Energy Research Hamelin (ISFH); Kajari-Schroeder, S. [Institute for Solar Energy Research Hamelin (ISFH); Niepelt, Raphael [Institute for Solar Energy Research Hamelin (ISFH); Schmidt, Jan [Institute for Solar Energy Research Hamelin (ISFH); Leibniz Universitat Hannover; Brendel, Rolf [Institute for Solar Energy Research Hamelin (ISFH); Leibniz Universitat Hannover; Peibst, Robby [Institute for Solar Energy Research Hamelin (ISFH); Leibniz Universitat Hannover

    2017-10-02

    Despite steady advancements in the efficiency of crystalline Silicon (c-Si) photovoltaics (PV) within the last decades, the theoretical efficiency limit of 29.4 percent depicts an insurmountable barrier for silicon-based single-junction solar cells. Combining the Si cell with a second absorber material on top in a dual junction tandem or triple junction solar cell is an attractive option to surpass this limit significantly. We demonstrate a mechanically stacked GaInP/Si dual-junction cell with an in-house measured efficiency of 31.5 percent and a GaInP/GaAs/Si triple-junction cell with a certified efficiency of 35.4 percent.

  7. Direct assessment of p-n junctions in single GaN nanowires by Kelvin probe force microscopy

    Science.gov (United States)

    Minj, Albert; Cros, Ana; Auzelle, Thomas; Pernot, Julien; Daudin, Bruno

    2016-09-01

    Making use of Kelvin probe force microscopy, in dark and under ultraviolet illumination, we study the characteristics of p-n junctions formed along the axis of self-organized GaN nanowires (NWs). We map the contact potential difference of the single NW p-n junctions to locate the space charge region and directly measure the depletion width and the junction voltage. Simulations indicate a shrinkage of the built-in potential for NWs with small diameter due to surface band bending, in qualitative agreement with the measurements. The photovoltage of the NW/substrate contact is studied by analyzing the response of NW segments with p- and n-type doping under illumination. Our results show that the shifts of the Fermi levels, and not the changes in surface band bending, are the most important effects under above band-gap illumination. The quantitative electrical information obtained here is important for the use of NW p-n junctions as photovoltaic or rectifying devices at the nanoscale, and is especially relevant since the technique does not require the formation of ohmic contacts to the NW junction.

  8. Electromagnetic waves in single- and multi-Josephson junctions

    International Nuclear Information System (INIS)

    Matsumoto, Hideki; Koyama, Tomio; Machida, Masahiko

    2008-01-01

    The terahertz wave emission from the intrinsic Josephson junctions is one of recent topics in high T c superconductors. We investigate, by numerical simulation, properties of the electromagnetic waves excited by a constant bias current in the single- and multi-Josephson junctions. Nonlinear equations of phase-differences are solved numerically by treating the effects of the outside electromagnetic fields as dynamical boundary conditions. It is shown that the emitted power of the electromagnetic wave can become large near certain retrapping points of the I-V characteristics. An instability of the inside phase oscillation is related to large amplitude of the oscillatory waves. In the single- (or homogeneous mutli-) Josephson junctions, electromagnetic oscillations can occur either in a form of standing waves (shorter junctions) or by formation of vortex-antivortex pairs (longer junctions). How these two effects affects the behavior of electromagnetic waves in the intrinsic Josephson junctions is discussed

  9. Tunable Nitride Josephson Junctions.

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lewis, Rupert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfley, Steven L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolak, Matthaeus [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We have developed an ambient temperature, SiO2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the TaxN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlOx barriers for low - power, high - performance computing.

  10. Scattering theory of superconductive tunneling in quantum junctions

    International Nuclear Information System (INIS)

    Shumeiko, V.S.; Bratus', E.N.

    1997-01-01

    A consistent theory of superconductive tunneling in single-mode junctions within a scattering formulation of Bogolyubov-de Gennes quantum mechanics is presented. The dc Josephson effect and dc quasiparticle transport in the voltage-biased junctions are considered. Elastic quasiparticle scattering by the junction determines the equilibrium Josephson current. The origin of Andreev bound states in tunnel junctions and their role in equilibrium Josephson transport are discussed. In contrast, quasiparticle tunneling in voltage-biased junctions is determined by inelastic scattering. A general expression for inelastic scattering amplitudes is derived and the quasiparticle current is calculated at all voltages with emphasis on a discussion of the properties of sub gap tunnel current and the nature of subharmonic gap structure

  11. Short chain molecular junctions: Charge transport versus dipole moment

    International Nuclear Information System (INIS)

    Ikram, I. Mohamed; Rabinal, M.K.

    2015-01-01

    Graphical abstract: - Highlights: • The role of dipole moment of organic molecules on molecular junctions has been studied. • Molecular junctions constituted using propargyl molecules of different dipole moments. • The electronic properties of the molecules were calculated using Gaussian software. • Junctions show varying rectification due to their varying dipole moment and orientation. - Abstract: The investigation of the influence of dipole moment of short chain organic molecules having three carbon atoms varying in end group on silicon surface was carried on. Here, we use three different molecules of propargyl series varying in dipole moment and its orientation to constitute molecular junctions. The charge transport mechanism in metal–molecules–semiconductor (MMS) junction obtained from current–voltage (I–V) characteristics shows the rectification behavior for two junctions whereas the other junction shows a weak rectification. The electronic properties of the molecules were calculated using Gaussian software package. The observed rectification behavior of these junctions is examined and found to be accounted to the orientation of dipole moment and electron cloud density distribution inside the molecules

  12. Cell-cell junctions: a target of acoustic overstimulation in the sensory epithelium of the cochlea

    Directory of Open Access Journals (Sweden)

    Zheng Guiliang

    2012-06-01

    Full Text Available Abstract Background Exposure to intense noise causes the excessive movement of the organ of Corti, stretching the organ and compromising sensory cell functions. We recently revealed changes in the transcriptional expression of multiple adhesion-related genes during the acute phases of cochlear damage, suggesting that the disruption of cell-cell junctions is an early event in the process of cochlear pathogenesis. However, the functional state of cell junctions in the sensory epithelium is not clear. Here, we employed graded dextran-FITC, a macromolecule tracer that is impermeable to the organ of Corti under physiological conditions, to evaluate the barrier function of cell junctions in normal and noise-traumatized cochlear sensory epithelia. Results Exposure to an impulse noise of 155 dB (peak sound pressure level caused a site-specific disruption in the intercellular junctions within the sensory epithelium of the chinchilla cochlea. The most vulnerable sites were the junctions among the Hensen cells and between the Hensen and Deiters cells within the outer zone of the sensory epithelium. The junction clefts that formed in the reticular lamina were permeable to 40 and 500 but not 2,000 kDa dextran-FITC macromolecules. Moreover, this study showed that the interruption of junction integrity occurred in the reticular lamina and also in the basilar membrane, a site that had been considered to be resistant to acoustic injury. Finally, our study revealed a general spatial correlation between the site of sensory cell damage and the site of junction disruption. However, the two events lacked a strict one-to-one correlation, suggesting that the disruption of cell-cell junctions is a contributing, but not the sole, factor for initiating acute sensory cell death. Conclusions Impulse noise causes the functional disruption of intercellular junctions in the sensory epithelium of the chinchilla cochlea. This disruption occurs at an early phase of cochlear

  13. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2004-01-01

    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the

  14. 0-π phase-controllable thermal Josephson junction

    Science.gov (United States)

    Fornieri, Antonio; Timossi, Giuliano; Virtanen, Pauli; Solinas, Paolo; Giazotto, Francesco

    2017-05-01

    Two superconductors coupled by a weak link support an equilibrium Josephson electrical current that depends on the phase difference ϕ between the superconducting condensates. Yet, when a temperature gradient is imposed across the junction, the Josephson effect manifests itself through a coherent component of the heat current that flows opposite to the thermal gradient for |ϕ| heat currents can be inverted by adding a π shift to ϕ. In the static electrical case, this effect has been obtained in a few systems, for example via a ferromagnetic coupling or a non-equilibrium distribution in the weak link. These structures opened new possibilities for superconducting quantum logic and ultralow-power superconducting computers. Here, we report the first experimental realization of a thermal Josephson junction whose phase bias can be controlled from 0 to π. This is obtained thanks to a superconducting quantum interferometer that allows full control of the direction of the coherent energy transfer through the junction. This possibility, in conjunction with the completely superconducting nature of our system, provides temperature modulations with an unprecedented amplitude of ∼100 mK and transfer coefficients exceeding 1 K per flux quantum at 25 mK. Then, this quantum structure represents a fundamental step towards the realization of caloritronic logic components such as thermal transistors, switches and memory devices. These elements, combined with heat interferometers and diodes, would complete the thermal conversion of the most important phase-coherent electronic devices and benefit cryogenic microcircuits requiring energy management, such as quantum computing architectures and radiation sensors.

  15. Planar Josephson tunnel junctions in a transverse magnetic field

    DEFF Research Database (Denmark)

    Monacoa, R.; Aarøe, Morten; Mygind, Jesper

    2007-01-01

    demagnetization effects imposed by the tunnel barrier and electrodes geometry are important. Measurements of the junction critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size, and critical current density show that it is advantageous to use a transverse......Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where...

  16. Gap junctions composed of connexins 41.8 and 39.4 are essential for colour pattern formation in zebrafish

    Science.gov (United States)

    Irion, Uwe; Frohnhöfer, Hans Georg; Krauss, Jana; Çolak Champollion, Tuǧba; Maischein, Hans-Martin; Geiger-Rudolph, Silke; Weiler, Christian; Nüsslein-Volhard, Christiane

    2014-01-01

    Interactions between all three pigment cell types are required to form the stripe pattern of adult zebrafish (Danio rerio), but their molecular nature is poorly understood. Mutations in leopard (leo), encoding Connexin 41.8 (Cx41.8), a gap junction subunit, cause a phenotypic series of spotted patterns. A new dominant allele, leotK3, leads to a complete loss of the pattern, suggesting a dominant negative impact on another component of gap junctions. In a genetic screen, we identified this component as Cx39.4 (luchs). Loss-of-function alleles demonstrate that luchs is required for stripe formation in zebrafish; however, the fins are almost not affected. Double mutants and chimeras, which show that leo and luchs are only required in xanthophores and melanophores, but not in iridophores, suggest that both connexins form heteromeric gap junctions. The phenotypes indicate that these promote homotypic interactions between melanophores and xanthophores, respectively, and those cells instruct the patterning of the iridophores. DOI: http://dx.doi.org/10.7554/eLife.05125.001 PMID:25535837

  17. Reversible postoperative blindness caused by bilateral status epilepticus amauroticus following thoracolumbar deformity correction: case report.

    Science.gov (United States)

    Ibrahim, Tarik F; Sweis, Rochelle T; Nockels, Russ P

    2017-07-01

    Postoperative vision loss (POVL) is a devastating complication and has been reported after complex spine procedures. Anterior ischemic optic neuropathy and posterior optic neuropathy are the 2 most common causes of POVL. Bilateral occipital lobe seizures causing complete blindness are rare and have not been reported as a cause of POVL after spine surgery with the patient prone. The authors report the case of a 67-year-old man without a history of seizures who underwent a staged thoracolumbar deformity correction and developed POVL 6 hours after surgery. Imaging, laboratory, and ophthalmological examination results were nonrevealing. Routine electroencephalography study results were negative, but continuous electroencephalography captured bilateral occipital lobe seizures. The patient developed nonconvulsive status epilepticus despite initial treatment with benzodiazepines and loading doses of levetiracetam and lacosamide. He was therefore intubated for status epilepticus amauroticus and received a midazolam infusion. After electrographic seizure cessation for 48 hours, the patient was weaned off midazolam. The patient was maintained on levetiracetam and lacosamide without seizure recurrence and returned to his preoperative visual baseline status.

  18. Effect of solar-cell junction geometry on open-circuit voltage

    Science.gov (United States)

    Weizer, V. G.; Godlewski, M. P.

    1985-01-01

    Simple analytical models have been found that adequately describe the voltage behavior of both the stripe junction and dot junction grating cells as a function of junction area. While the voltage in the former case is found to be insensitive to junction area reduction, significant voltage increases are shown to be possible for the dot junction cell. With regard to cells in which the junction area has been increased in a quest for better performance, it was found that (1) texturation does not affect the average saturation current density J0, indicating that the texturation process is equivalent to a simple extension of junction area by a factor of square root of 3 and (2) the vertical junction cell geometry produces a sizable decrease in J0 that, unfortunately, is more than offset by the effects of attendant areal increases.

  19. Eye lens membrane junctional microdomains: a comparison between healthy and pathological cases

    Energy Technology Data Exchange (ETDEWEB)

    Buzhynskyy, Nikolay; Scheuring, Simon [Institut Curie, Equipe Inserm Avenir, UMR168-CNRS, 26 Rue d' Ulm, 75248 Paris Cedex 05 (France); Sens, Pierre [ESPCI, CNRS-UMR 7083, 75231 Paris (France); Behar-Cohen, Francine, E-mail: simon.scheuring@curie.fr [UMRS Inserm 872, Universite Paris Descartes, Centre de Recherches des Cordeliers, 15 rue de l' Ecole de Medecine, 75270 Paris Cedex 06 (France)

    2011-08-15

    The eye lens is a transparent tissue constituted of tightly packed fiber cells. To maintain homeostasis and transparency of the lens, the circulation of water, ions and metabolites is required. Junctional microdomains connect the lens cells and ensure both tight cell-to-cell adhesion and intercellular flow of fluids through a microcirculation system. Here, we overview membrane morphology and tissue functional requirements of the mammalian lens. Atomic force microscopy (AFM) has opened up the possibility of visualizing the junctional microdomains at unprecedented submolecular resolution, revealing the supramolecular assembly of lens-specific aquaporin-0 (AQP0) and connexins (Cx). We compare the membrane protein assembly in healthy lenses with senile and diabetes-II cataract cases and novel data of the lens membranes from a congenital cataract. In the healthy case, AQP0s form characteristic square arrays confined by connexons. In the cases of senile and diabetes-II cataract patients, connexons were degraded, leading to malformation of AQP0 arrays and breakdown of the microcirculation system. In the congenital cataract, connexons are present, indicating probable non-membranous grounds for lens opacification. Further, we discuss the energetic aspects of the membrane organization in junctional microdomains. The AFM hence becomes a biomedical nano-imaging tool for the analysis of single-membrane protein supramolecular association in healthy and pathological membranes.

  20. Eye lens membrane junctional microdomains: a comparison between healthy and pathological cases

    Science.gov (United States)

    Buzhynskyy, Nikolay; Sens, Pierre; Behar-Cohen, Francine; Scheuring, Simon

    2011-08-01

    The eye lens is a transparent tissue constituted of tightly packed fiber cells. To maintain homeostasis and transparency of the lens, the circulation of water, ions and metabolites is required. Junctional microdomains connect the lens cells and ensure both tight cell-to-cell adhesion and intercellular flow of fluids through a microcirculation system. Here, we overview membrane morphology and tissue functional requirements of the mammalian lens. Atomic force microscopy (AFM) has opened up the possibility of visualizing the junctional microdomains at unprecedented submolecular resolution, revealing the supramolecular assembly of lens-specific aquaporin-0 (AQP0) and connexins (Cx). We compare the membrane protein assembly in healthy lenses with senile and diabetes-II cataract cases and novel data of the lens membranes from a congenital cataract. In the healthy case, AQP0s form characteristic square arrays confined by connexons. In the cases of senile and diabetes-II cataract patients, connexons were degraded, leading to malformation of AQP0 arrays and breakdown of the microcirculation system. In the congenital cataract, connexons are present, indicating probable non-membranous grounds for lens opacification. Further, we discuss the energetic aspects of the membrane organization in junctional microdomains. The AFM hence becomes a biomedical nano-imaging tool for the analysis of single-membrane protein supramolecular association in healthy and pathological membranes.

  1. Advance of Mechanically Controllable Break Junction for Molecular Electronics.

    Science.gov (United States)

    Wang, Lu; Wang, Ling; Zhang, Lei; Xiang, Dong

    2017-06-01

    Molecular electronics stands for the ultimate size of functional elements, keeping up with an unstoppable trend over the past few decades. As a vital component of molecular electronics, single molecular junctions have attracted significant attention from research groups all over the world. Due to its pronounced superiority, the mechanically controllable break junctions (MCBJ) technique has been widely applied to characterize the dynamic performance of single molecular junctions. This review presents a system analysis for single-molecule junctions and offers an overview of four test-beds for single-molecule junctions, thus offering more insight into the mechanisms of electron transport. We mainly focus on the development of state-of-the-art mechanically controlled break junctions. The three-terminal gated MCBJ approaches are introduced to manipulate the electron transport of molecules, and MCBJs are combined with characterization techniques. Additionally, applications of MCBJs and remarkable properties of single molecules are addressed. Finally, the challenges and perspective for the mechanically controllable break junctions technique are provided.

  2. Microwave phase locking of Josephson-junction fluxon oscillators

    DEFF Research Database (Denmark)

    Salerno, M.; Samuelsen, Mogens Rugholm; Filatrella, G.

    1990-01-01

    Application of the classic McLaughlin-Scott soliton perturbation theory to a Josephson-junction fluxon subjected to a microwave field that interacts with the fluxon only at the junction boundaries reduces the problem of phase locking of the fluxon oscillation to the study of a two-dimensional fun......Application of the classic McLaughlin-Scott soliton perturbation theory to a Josephson-junction fluxon subjected to a microwave field that interacts with the fluxon only at the junction boundaries reduces the problem of phase locking of the fluxon oscillation to the study of a two...

  3. The critical current of point symmetric Josephson tunnel junctions

    International Nuclear Information System (INIS)

    Monaco, Roberto

    2016-01-01

    Highlights: • We disclose some geometrical properties of the critical current field dependence that apply to a large class of Josephson junctions characterized by a point symmetric shape. • The developed theory is valid for any orientation of the applied magnetic field, therefore it allows the determine the consequences of field misalignment in the experimental setups. • We also address that the threshold curves of Josephson tunnel junctions with complex shapes can be expressed as a linear combination of the threshold curves of junctions with simpler point symmetric shapes. - Abstract: The physics of Josephson tunnel junctions drastically depends on their geometrical configurations. The shape of the junction determines the specific form of the magnetic-field dependence of its Josephson current. Here we address the magnetic diffraction patterns of specially shaped planar Josephson tunnel junctions in the presence of an in-plane magnetic field of arbitrary orientations. We focus on a wide ensemble of junctions whose shape is invariant under point reflection. We analyze the implications of this type of isometry and derive the threshold curves of junctions whose shape is the union or the relative complement of two point symmetric plane figures.

  4. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  5. Soliton excitations in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Lomdahl, P. S.; Sørensen, O. H.; Christiansen, Peter Leth

    1982-01-01

    A detailed numerical study of a sine-Gordon model of the Josephson tunnel junction is compared with experimental measurements on junctions with different L / λJ ratios. The soliton picture is found to apply well on both relatively long (L / λJ=6) and intermediate (L / λJ=2) junctions. We find good...... agreement for the current-voltage characteristics, power output, and for the shape and height of the zero-field steps (ZFS). Two distinct modes of soliton oscillations are observed: (i) a bunched or congealed mode giving rise to the fundamental frequency f1 on all ZFS's and (ii) a "symmetric" mode which...... on the Nth ZFS yields the frequency Nf1 Coexistence of two adjacent frequencies is found on the third ZFS of the longer junction (L / λJ=6) in a narrow range of bias current as also found in the experiments. Small asymmetries in the experimental environment, a weak magnetic field, e.g., is introduced via...

  6. Constructing carbon nanotube junctions by Ar ion beam irradiation

    International Nuclear Information System (INIS)

    Ishaq, Ahmad; Ni Zhichun; Yan Long; Gong Jinlong; Zhu Dezhang

    2010-01-01

    Carbon nanotubes (CNTs) irradiated by Ar ion beams at elevated temperature were studied. The irradiation-induced defects in CNTs are greatly reduced by elevated temperature. Moreover, the two types of CNT junctions, the crossing junction and the parallel junction, were formed. And the CNT networks may be fabricated by the two types of CNT junctions. The formation process and the corresponding mechanism of CNT networks are discussed.

  7. Field modulation of the critical current in magnetic Josephson junctions

    International Nuclear Information System (INIS)

    Blamire, M G; Smiet, C B; Banerjee, N; Robinson, J W A

    2013-01-01

    The dependence of the critical current of a simple Josephson junction on the applied magnetic field is well known and, for a rectangular junction, gives rise to the classic ‘Fraunhofer’ modulation with periodic zeros at the fields that introduce a flux quantum into the junction region. Much recent work has been performed on Josephson junctions that contain magnetic layers. The magnetization of such layers introduces additional flux into the junction and, for large junction areas or strong magnetic materials, can significantly distort the modulation of the critical current and strongly suppress the maximum critical current. The growing interest in junctions that induce odd-frequency triplet pairing in a ferromagnet, and the need to make quantitative comparisons with theory, mean that a full understanding of the role of magnetic barriers in controlling the critical current is necessary. This paper analyses the effect of magnetism and various magnetic configurations on Josephson critical currents; the overall treatment applies to junctions of general shape, but the specific cases of square and rectangular junctions are considered. (paper)

  8. Shunted-Josephson-junction model. II. The nonautonomous case

    DEFF Research Database (Denmark)

    Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.

    1977-01-01

    The shunted-Josephson-junction model with a monochromatic ac current drive is discussed employing the qualitative methods of the theory of nonlinear oscillations. As in the preceding paper dealing with the autonomous junction, the model includes a phase-dependent conductance and a shunt capacitance....... The mathematical discussion makes use of the phase-space representation of the solutions to the differential equation. The behavior of the trajectories in phase space is described for different characteristic regions in parameter space and the associated features of the junction IV curve to be expected are pointed...... out. The main objective is to provide a qualitative understanding of the junction behavior, to clarify which kinds of properties may be derived from the shunted-junction model, and to specify the relative arrangement of the important domains in the parameter-space decomposition....

  9. Observation of supercurrent in graphene-based Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Libin; Li, Sen; Kang, Ning [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Xu, Chuan; Ren, Wencai [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-07-01

    Josephson junctions with a normal metal region sandwiched between two superconductors (S) are known as superconductor- normal-superconductor (SNS) structures. It has attracted significant attention especially when changing the normal metal with graphene, which allow for high tunability with the gate voltage and to study the proximity effect of the massless Dirac fermions. Here we report our work on graphene-based Josephson junction with a new two dimensional superconductor crystal, which grown directly on graphene, as superconducting electrodes. At low temperature, we observer proximity effect induced supercurrent flowing through the junction. The temperature and the magnetic field dependences of the critical current characteristics of the junction are also studied. The critical current exhibits a Fraunhofer-type diffraction pattern against magnetic field. Our experiments provided a new route of fabrication of graphene-based Josephson junction.

  10. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  11. Phenomenological approach to bistable behavior of Josephson junctions

    International Nuclear Information System (INIS)

    Nishi, K.; Nara, S.; Hamanaka, K.

    1985-01-01

    The interaction of unbiased Josephson junction with external electromagnetic field in the presence of externally applied uniform magnetic field is theoretically examined by means of phenomenological treatment. It is proposed that an irradiated junction with suitably chosen parameters shows a bistable behavior of voltage across the junction as a function of the radiation intensity

  12. Multiplication in Silicon p-n Junctions

    DEFF Research Database (Denmark)

    Moll, John L.

    1965-01-01

    Multiplication values were measured in the collector junctions of silicon p-n-p and n-p-n transistors before and after bombardment by 1016 neutrons/cm2. Within experimental error there was no change either in junction fields, as deduced from capacitance measurements, or in multiplication values i...

  13. Anchored PKA as a gatekeeper for gap junctions.

    Science.gov (United States)

    Pidoux, Guillaume; Taskén, Kjetil

    2015-01-01

    Anchored protein kinase A (PKA) bound to A Kinase Anchoring Protein (AKAP) mediates effects of localized increases in cAMP in defined subcellular microdomains and retains the specificity in cAMP-PKA signaling to distinct extracellular stimuli. Gap junctions are pores between adjacent cells constituted by connexin proteins that provide means of communication and transfer of small molecules. While the PKA signaling is known to promote human trophoblast cell fusion, the gap junction communication through connexin 43 (Cx43) is a prerequisite for this process. We recently demonstrated that trophoblast fusion is regulated by ezrin, a known AKAP, which binds to Cx43 and delivers PKA in the vicinity gap junctions. We found that disruption of the ezrin-Cx43 interaction abolished PKA-dependent phosphorylation of Cx43 as well as gap junction communication and subsequently cell fusion. We propose that the PKA-ezrin-Cx43 macromolecular complex regulating gap junction communication constitutes a general mechanism to control opening of Cx43 gap junctions by phosphorylation in response to cAMP signaling in various cell types.

  14. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei

    2011-01-01

    We study heat transport in a graphene ferromagnet-insulator-superconducting junction. It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor (FIS) junction is an oscillatory function of the barrier strength x in the thin-barrier limit. The gate potential U0 decreases the amplitude of thermal conductance oscillation. Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh. The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.%@@ We study heat transport in a graphene ferromagnet-insulator-superconducting junction.It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor(FIS)junction is an oscillatory function of the barrier strength X in the thin-barrier limit.The gate potential Uo decreases the amplitude of thermal conductance oscillation.Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh.The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.

  15. Terahertz Responses of Intrinsic Josephson Junctions in High TC Superconductors

    International Nuclear Information System (INIS)

    Wang, H. B.; Wu, P. H.; Yamashita, T.

    2001-01-01

    High frequency responses of intrinsic Josephson junctions up to 2.5THz, including the observation of Shapiro steps under various conditions, are reported and discussed in this Letter. The sample was an array of intrinsic Josephson junctions singled out from inside a high T C superconducting Bi 2 Sr 2 CaCu 2 O 8+x single crystal, with a bow-tie antenna integrated to it. The number of junctions in the array was controllable, the junctions were homogeneous, the distribution of applied irradiation among the junctions was even, and the junctions could synchronously respond to high frequency irradiation

  16. Long Josephson Junction Stack Coupled to a Cavity

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Pedersen, Niels Falsig; Groenbech-Jensen, N.

    2007-01-01

    A stack of inductively coupled long Josephson junctions are modeled as a system of coupled sine-Gordon equations. One boundary of the stack is coupled electrically to a resonant cavity. With one fluxon in each Josephson junction, the inter-junction fluxon forces are repulsive. We look at a possible...... transition, induced by the cavity, to a bunched state....

  17. Structural Origins of Conductance Fluctuations in Gold–Thiolate Molecular Transport Junctions

    KAUST Repository

    French, William R.

    2013-03-21

    We report detailed atomistic simulations combined with high-fidelity conductance calculations to probe the structural origins of conductance fluctuations in thermally evolving Au-benzene-1,4-dithiolate-Au junctions. We compare the behavior of structurally ideal junctions (where the electrodes are modeled as flat surfaces) to structurally realistic, experimentally representative junctions resulting from break-junction simulations. The enhanced mobility of metal atoms in structurally realistic junctions results in significant changes to the magnitude and origin of the conductance fluctuations. Fluctuations are larger by a factor of 2-3 in realistic junctions compared to ideal junctions. Moreover, in junctions with highly deformed electrodes, the conductance fluctuations arise primarily from changes in the Au geometry, in contrast to results for junctions with nondeformed electrodes, where the conductance fluctuations are dominated by changes in the molecule geometry. These results provide important guidance to experimentalists developing strategies to control molecular conductance, and also to theoreticians invoking simplified structural models of junctions to predict their behavior. © 2013 American Chemical Society.

  18. Structural Origins of Conductance Fluctuations in Gold–Thiolate Molecular Transport Junctions

    KAUST Repository

    French, William R.; Iacovella, Christopher R.; Rungger, Ivan; Souza, Amaury Melo; Sanvito, Stefano; Cummings, Peter T.

    2013-01-01

    We report detailed atomistic simulations combined with high-fidelity conductance calculations to probe the structural origins of conductance fluctuations in thermally evolving Au-benzene-1,4-dithiolate-Au junctions. We compare the behavior of structurally ideal junctions (where the electrodes are modeled as flat surfaces) to structurally realistic, experimentally representative junctions resulting from break-junction simulations. The enhanced mobility of metal atoms in structurally realistic junctions results in significant changes to the magnitude and origin of the conductance fluctuations. Fluctuations are larger by a factor of 2-3 in realistic junctions compared to ideal junctions. Moreover, in junctions with highly deformed electrodes, the conductance fluctuations arise primarily from changes in the Au geometry, in contrast to results for junctions with nondeformed electrodes, where the conductance fluctuations are dominated by changes in the molecule geometry. These results provide important guidance to experimentalists developing strategies to control molecular conductance, and also to theoreticians invoking simplified structural models of junctions to predict their behavior. © 2013 American Chemical Society.

  19. Silicon fiber with p-n junction

    International Nuclear Information System (INIS)

    Homa, D.; Cito, A.; Pickrell, G.; Hill, C.; Scott, B.

    2014-01-01

    In this study, we fabricated a p-n junction in a fiber with a phosphorous doped silicon core and fused silica cladding. The fibers were fabricated via a hybrid process of the core-suction and melt-draw techniques and maintained overall diameters ranging from 200 to 900 μm and core diameters of 20–800 μm. The p-n junction was formed by doping the fiber with boron and confirmed via the current-voltage characteristic. The demonstration of a p-n junction in a melt-drawn silicon core fiber paves the way for the seamless integration of optical and electronic devices in fibers.

  20. The Morse taper junction in modular revision hip replacement--a biomechanical and retrieval analysis.

    Science.gov (United States)

    Schramm, M; Wirtz, D C; Holzwarth, U; Pitto, R P

    2000-04-01

    All biomaterials used for total joint surgery are subjected to wear mechanisms. Morse taper junctions of modular hip revision implants are predilection sites for both fretting and crevice corrosion, dissociation and breakage of the components. The aim of this study is to quantify wear and study metallurgical changes of Morse taper junctions of in-vitro and in-vivo loaded modular revision stems. Three modular revision stems (MRP-Titan, Peter Brehm GmbH, Germany) were loaded by a servohydraulic testing machine. The loads and conditions used exceeded by far the values required by ISO-standard 7206. The tests were performed with maximum axial loads of 3,500 N to 4,000 N over 10-12 x 10(6) cycles at 2 Hz. Additionally, the female part of the taper junctions were coated with blood and bone debris. The free length of the implant was set to 200 mm. One other MRP stem was investigated after retrieval following 5.5 years of in-vivo use. All contact surfaces of the modular elements were assessed by visual inspection, optical microscopy and scanning electron microscopy (SEM). The degree of plastic deformation of the male part of the morse taper junction was determined by contouroscopy. None of the morse taper junctions broke or failed mechanically. Corrosion and wear affected all tapers, especially at the medial side. The retrieved implant showed no cracks and the amount of debris measured only one third of that for the stems tested in-vitro. The present retrieval and laboratory investigations have proven, that the morse taper junctions of the MRP-titanium stem are stable and resistant to relevant wear mechanisms. The longevity of the junctions for clinical use is given. If an optimal taper design is selected, the advantages of modular femoral components in total hip revision arthroplasty will outweigh the possible risks.

  1. Quasiparticle current in superconductor-semiconductor-superconductor junctions

    International Nuclear Information System (INIS)

    Tartakovskij, A.V.; Fistul', M.V.

    1988-01-01

    It is shown that the quasiparticle current in a superconductor-semiconductor-superconductor junction may significantly increase as a result of resonant passage of the quasiparticle along particular trajectories from periodically situated localized centers. A prediction of the theory is that with increasing junction resistance there should be a change from an excessive current to a insufficient current on the current-voltage characteristics (at high voltages). The effect of transparency of the boundaries on resonance tunneling in such junctions is also investigated

  2. Transport properties of molecular junctions

    CERN Document Server

    Zimbovskaya, Natalya A

    2013-01-01

    A comprehensive overview of the physical mechanisms that control electron transport and the characteristics of metal-molecule-metal (MMM) junctions is presented. As far as possible, methods and formalisms presented elsewhere to analyze electron transport through molecules are avoided. This title introduces basic concepts—a description of the electron transport through molecular junctions—and briefly describes relevant experimental methods. Theoretical methods commonly used to analyze the electron transport through molecules are presented. Various effects that manifest in the electron transport through MMMs, as well as the basics of density-functional theory and its applications to electronic structure calculations in molecules are presented. Nanoelectronic applications of molecular junctions and similar systems are discussed as well. Molecular electronics is a diverse and rapidly growing field. Transport Properties of Molecular Junctions presents an up-to-date survey of the field suitable for researchers ...

  3. Mode conversions by a discontinuous junction of two helix loaded waveguides

    International Nuclear Information System (INIS)

    Choe, J.Y.; Ahn, S.; Ganquly, A.K.; Uhm, H.S.

    1983-01-01

    For various reasons, it is desirable to vary the primary propagating mode from one section of the waveguide to another. We choose the base structure to be the sheath helix loaded waveguide. Specifically, we join two physically different helix loaded waveguides axisymmetrically, thereby providing the required discontinuities at the junction (Z = 0). The helix loaded waveguide is more advantageous to the simple waveguide in that the helix mode that exists uniquely in the helix waveguide in addition to the usual fast wave hybrid modes, is without cutoff and thus behaves like a transmission line. In order to obtain the mode conversion rates, we expand the waves in the both sides of the junction with its own eigenmodes including the evanescent modes, and by matching fields at the junction (Z = 0) obtain the matrix equation for the coefficients for the eigenmodes in both sides. By choosing the propagating incident wave (Z = 0) the resulting outgoing waves in the other end (Z > 0) will be computed from the matrix equation. A computer program is devised to solve the suitably truncated matrix equation, and the numerical examples for the mode conversion rates with the parameter variations will be presented. The relevant physical parameters to yield discontinuities at the junction are the radii of the outer conductor and the helix wire and the pitch angle of the helix. Special emphases are on the conversion rates from the helix mode (Z 0) for the application to the tapered gyrotron amplifier

  4. Patients with proximal junctional kyphosis requiring revision surgery have higher postoperative lumbar lordosis and larger sagittal balance corrections.

    Science.gov (United States)

    Kim, Han Jo; Bridwell, Keith H; Lenke, Lawrence G; Park, Moon Soo; Song, Kwang Sup; Piyaskulkaew, Chaiwat; Chuntarapas, Tapanut

    2014-04-20

    Case control study. To evaluate risk factors in patients in 3 groups: those without proximal junctional kyphosis (PJK) (N), with PJK but not requiring revision (P), and then those with PJK requiring revision surgery (S). It is becoming clear that some patients maintain stable PJK angles, whereas others progress and develop severe PJK necessitating revision surgery. A total of 206 patients at a single institution from 2002 to 2007 with adult scoliosis with 2-year minimum follow-up (average 3.5 yr) were analyzed. Inclusion criteria were age more than 18 years and primary fusions greater than 5 levels from any thoracic upper instrumented vertebra to any lower instrumented vertebrae. Revisions were excluded. Radiographical assessment included Cobb measurements in the coronal/sagittal plane and measurements of the PJK angle at postoperative time points: 1 to 2 months, 2 years, and final follow-up. PJK was defined as an angle greater than 10°. The prevalence of PJK was 34%. The average age in N was 49.9 vs. 51.3 years in P and 60.1 years in S. Sex, body mass index, and smoking status were not significantly different between groups. Fusions extending to the pelvis were 74%, 85%, and 91% of the cases in groups N, P, and S. Instrumentation type was significantly different between groups N and S, with a higher number of upper instrumented vertebra hooks in group N. Radiographical parameters demonstrated a higher postoperative lumbar lordosis and a larger sagittal balance change, with surgery in those with PJK requiring revision surgery. Scoliosis Research Society postoperative pain scores were inferior in group N vs. P and S, and Oswestry Disability Index scores were similar between all groups. Patients with PJK requiring revision were older, had higher postoperative lumbar lordosis, and larger sagittal balance corrections than patients without PJK. Based on these data, it seems as though older patients with large corrections in their lumbar lordosis and sagittal balance

  5. Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions

    Science.gov (United States)

    Tomer, Dushyant

    Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect

  6. Lens intracellular hydrostatic pressure is generated by the circulation of sodium and modulated by gap junction coupling

    Science.gov (United States)

    Gao, Junyuan; Sun, Xiurong; Moore, Leon C.; White, Thomas W.; Brink, Peter R.

    2011-01-01

    We recently modeled fluid flow through gap junction channels coupling the pigmented and nonpigmented layers of the ciliary body. The model suggested the channels could transport the secretion of aqueous humor, but flow would be driven by hydrostatic pressure rather than osmosis. The pressure required to drive fluid through a single layer of gap junctions might be just a few mmHg and difficult to measure. In the lens, however, there is a circulation of Na+ that may be coupled to intracellular fluid flow. Based on this hypothesis, the fluid would cross hundreds of layers of gap junctions, and this might require a large hydrostatic gradient. Therefore, we measured hydrostatic pressure as a function of distance from the center of the lens using an intracellular microelectrode-based pressure-sensing system. In wild-type mouse lenses, intracellular pressure varied from ∼330 mmHg at the center to zero at the surface. We have several knockout/knock-in mouse models with differing levels of expression of gap junction channels coupling lens fiber cells. Intracellular hydrostatic pressure in lenses from these mouse models varied inversely with the number of channels. When the lens’ circulation of Na+ was either blocked or reduced, intracellular hydrostatic pressure in central fiber cells was either eliminated or reduced proportionally. These data are consistent with our hypotheses: fluid circulates through the lens; the intracellular leg of fluid circulation is through gap junction channels and is driven by hydrostatic pressure; and the fluid flow is generated by membrane transport of sodium. PMID:21624945

  7. Self-limited plasmonic welding of silver nanowire junctions

    KAUST Repository

    Garnett, Erik C.

    2012-02-05

    Nanoscience provides many strategies to construct high-performance materials and devices, including solar cells, thermoelectrics, sensors, transistors, and transparent electrodes. Bottom-up fabrication facilitates large-scale chemical synthesis without the need for patterning and etching processes that waste material and create surface defects. However, assembly and contacting procedures still require further development. Here, we demonstrate a light-induced plasmonic nanowelding technique to assemble metallic nanowires into large interconnected networks. The small gaps that form naturally at nanowire junctions enable effective light concentration and heating at the point where the wires need to be joined together. The extreme sensitivity of the heating efficiency on the junction geometry causes the welding process to self-limit when a physical connection between the wires is made. The localized nature of the heating prevents damage to low-thermal-budget substrates such as plastics and polymer solar cells. This work opens new avenues to control light, heat and mass transport at the nanoscale. © 2012 Macmillan Publishers Limited. All rights reserved.

  8. Junction Potentials Bias Measurements of Ion Exchange Membrane Permselectivity.

    Science.gov (United States)

    Kingsbury, Ryan S; Flotron, Sophie; Zhu, Shan; Call, Douglas F; Coronell, Orlando

    2018-04-17

    Ion exchange membranes (IEMs) are versatile materials relevant to a variety of water and waste treatment, energy production, and industrial separation processes. The defining characteristic of IEMs is their ability to selectively allow positive or negative ions to permeate, which is referred to as permselectivity. Measured values of permselectivity that equal unity (corresponding to a perfectly selective membrane) or exceed unity (theoretically impossible) have been reported for cation exchange membranes (CEMs). Such nonphysical results call into question our ability to correctly measure this crucial membrane property. Because weighing errors, temperature, and measurement uncertainty have been shown to not explain these anomalous permselectivity results, we hypothesized that a possible explanation are junction potentials that occur at the tips of reference electrodes. In this work, we tested this hypothesis by comparing permselectivity values obtained from bare Ag/AgCl wire electrodes (which have no junction) to values obtained from single-junction reference electrodes containing two different electrolytes. We show that permselectivity values obtained using reference electrodes with junctions were greater than unity for CEMs. In contrast, electrodes without junctions always produced permselectivities lower than unity. Electrodes with junctions also resulted in artificially low permselectivity values for AEMs compared to electrodes without junctions. Thus, we conclude that junctions in reference electrodes introduce two biases into results in the IEM literature: (i) permselectivity values larger than unity for CEMs and (ii) lower permselectivity values for AEMs compared to those for CEMs. These biases can be avoided by using electrodes without a junction.

  9. On simulation of local fluxes in molecular junctions

    Science.gov (United States)

    Cabra, Gabriel; Jensen, Anders; Galperin, Michael

    2018-05-01

    We present a pedagogical review of the current density simulation in molecular junction models indicating its advantages and deficiencies in analysis of local junction transport characteristics. In particular, we argue that current density is a universal tool which provides more information than traditionally simulated bond currents, especially when discussing inelastic processes. However, current density simulations are sensitive to the choice of basis and electronic structure method. We note that while discussing the local current conservation in junctions, one has to account for the source term caused by the open character of the system and intra-molecular interactions. Our considerations are illustrated with numerical simulations of a benzenedithiol molecular junction.

  10. A Dynamic Traffic Signal Timing Model and its Algorithm for Junction of Urban Road

    DEFF Research Database (Denmark)

    Cai, Yanguang; Cai, Hao

    2012-01-01

    As an important part of Intelligent Transportation System, the scientific traffic signal timing of junction can improve the efficiency of urban transport. This paper presents a novel dynamic traffic signal timing model. According to the characteristics of the model, hybrid chaotic quantum...... evolutionary algorithm is employed to solve it. The proposed model has simple structure, and only requires traffic inflow speed and outflow speed are bounded functions with at most finite number of discontinuity points. The condition is very loose and better meets the requirements of the practical real......-time and dynamic signal control of junction. To obtain the optimal solution of the model by hybrid chaotic quantum evolutionary algorithm, the model is converted to an easily solvable form. To simplify calculation, we give the expression of the partial derivative and change rate of the objective function...

  11. Shunted-Josephson-junction model. I. The autonomous case

    DEFF Research Database (Denmark)

    Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.

    1977-01-01

    The shunted-Josephson-junction model: the parallel combination of a capacitance, a phase-dependent conductance, and an ideal junction element biased by a constant current, is discussed for arbitrary values of the junction parameters. The main objective is to provide a qualitative understanding...... current-voltage curves are presented. The case with a time-dependent monochromatic bias current is treated in a similar fashion in the companion paper....

  12. Joint diseases: from connexins to gap junctions.

    Science.gov (United States)

    Donahue, Henry J; Qu, Roy W; Genetos, Damian C

    2017-12-19

    Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.

  13. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations

    Directory of Open Access Journals (Sweden)

    Jan eHahne

    2015-09-01

    Full Text Available Contemporary simulators for networks of point and few-compartment model neurons come with a plethora of ready-to-use neuron and synapse models and support complex network topologies. Recent technological advancements have broadened the spectrum of application further to the efficient simulation of brain-scale networks on supercomputers. In distributed network simulations the amount of spike data that accrues per millisecond and process is typically low, such that a common optimization strategy is to communicate spikes at relatively long intervals, where the upper limit is given by the shortest synaptic transmission delay in the network. This approach is well-suited for simulations that employ only chemical synapses but it has so far impeded the incorporation of gap-junction models, which require instantaneous neuronal interactions. Here, we present a numerical algorithm based on a waveform-relaxation technique which allows for network simulations with gap junctions in a way that is compatible with the delayed communication strategy. Using a reference implementation in the NEST simulator, we demonstrate that the algorithm and the required data structures can be smoothly integrated with existing code such that they complement the infrastructure for spiking connections. To show that the unified framework for gap-junction and spiking interactions achieves high performance and delivers high accuracy...

  14. Electrochemically assisted mechanically controllable break junction studies on the stacking configurations of oligo(phenylene ethynylene)s molecular junctions

    International Nuclear Information System (INIS)

    Zheng, Jue-Ting; Yan, Run-Wen; Tian, Jing-Hua; Liu, Jun-Yang; Pei, Lin-Qi; Wu, De-Yin; Dai, Ke; Yang, Yang; Jin, Shan

    2016-01-01

    Highlights: • I-V characteristics of a series of oligo(phenylene ethynylene)s molecular junctions were measured. • Conductance values were found to be dependent on molecular length and substituent group. • The measured low conductance values were explained by theoretical calculations. • EC-MCBJ is feasible to fabricate and characterize molecular junctions. - Abstract: We demonstrate an electrochemically assisted mechanically controllable break junction (EC-MCBJ) approach for current-voltage characteristic (I-V curve) measurements of metal/molecule/metal junctions. A series of oligo(phenylene ethynylene)s compounds (OPEs), including those involving electron withdrawing substituent group and different backbone lengths, had been successfully designed, synthesized, and placed onto the fabricated nanogap to form molecular junctions. The observed evolution in the measured conductances of OPEs indicates that there is a dependence of conductance on molecular length and substituent group. Compared with those extracted from conductance histogram construction, the conductances of OPEs measured from I-V curves are considerably lower. Based on the transmission spectra of OPEs that calculated by density functional theory (DFT) combined with non-equilibrium Green’s function (NEGF) method, this difference was attributed to our distinct experimental operation, which may give rise to a stacking configuration of two OPE molecules.

  15. ALTERNATIVE MATERIALS FOR RAMP-EDGE SNS JUNCTIONS

    International Nuclear Information System (INIS)

    Jia, Q.; Fan, Y.; Gim, Y.

    1999-01-01

    We report on the processing optimization and fabrication of ramp-edge high-temperature superconducting junctions by using alternative materials for both superconductor electrodes and normal-metal barrier. By using Ag-doped YBa 2 Cu 3 O 7-x (Ag:YBCO) as electrodes and a cation-modified compound of (Pr y Gd 0.6-y )Ca 0.4 Ba 1.6 La 0.4 Cu 3 O 7 (y = 0.4, 0.5, and 0.6) as a normal-metal barrier, high-temperature superconducting Josephson junctions have been fabricated in a ramp-edge superconductor/normal-metal/superconductor (SNS) configuration. By using Ag:YBCO as electrodes, we have found that the processing controllability /reproducibility and the stability of the SNS junctions are improved substantially. The junctions fabricated with these alternative materials show well-defined RSJ-like current vs voltage characteristics at liquid nitrogen temperature

  16. Electron-beam damaged high-temperature superconductor Josephson junctions

    International Nuclear Information System (INIS)

    Pauza, A.J.; Booij, W.E.; Herrmann, K.; Moore, D.F.; Blamire, M.G.; Rudman, D.A.; Vale, L.R.

    1997-01-01

    Results are presented on the fabrication and characterization of high critical temperature Josephson junctions in thin films of YBa 2 Cu 3 O 7-δ produced by the process of focused electron-beam irradiation using 350 keV electrons. The junctions so produced have uniform spatial current densities, can be described in terms of the resistive shunted junction model, and their current densities can be tailored for a given operating temperature. The physical properties of the damaged barrier can be described as a superconducting material of either reduced or zero critical temperature (T c ), which has a length of ∼15nm. The T c reduction is caused primarily by oxygen Frenkel defects in the Cu - O planes. The large beam currents used in the fabrication of the junctions mean that the extent of the barrier is limited by the incident electron-beam diameter, rather than by scattering within the film. The properties of the barrier can be calculated using a superconductor/normal/superconductor (SNS) junction model with no boundary resistance. From the SNS model, we can predict the scaling of the critical current resistance (I c R n ) product and gain insight into the factors controlling the junction properties, T c , and reproducibility. From the measured I c R n scaling data, we can predict the I c R n product of a junction at a given operating temperature with a given current density. I c R n products of ∼2mV can be achieved at 4.2 K. The reproducibility of several junctions in a number of samples can be characterized by the ratio of the maximum-to-minimum critical currents on the same substrate of less than 1.4. Stability over several months has been demonstrated at room and refrigerator temperatures (297 and 281 K) for junctions that have been initially over damaged and then annealed at temperatures ∼380K. (Abstract Truncated)

  17. Shot noise in YBCO bicrystal Josephson junctions

    DEFF Research Database (Denmark)

    Constantinian, K.Y.; Ovsyannikov, G.A.; Borisenko, I.V.

    2003-01-01

    We measured spectral noise density in YBCO symmetric bicrystal Josephson junctions on sapphire substrates at bias voltages up to 100 mV and T 4.2 K. Normal state resistance of the Josephson junctions, R-N = 20-90 Omega and ICRN up to 2.2 mV have been observed in the experimental samples. Noise...... may explain the experimentally measured linewidth broadening of Josephson oscillations at mm and submm wave frequencies in high-Tc superconducting junctions. Experimental results are discussed in terms of bound states existing at surfaces of d-wave superconducting electrodes....

  18. Intraepithelial lymphocytes express junctional molecules in murine small intestine

    International Nuclear Information System (INIS)

    Inagaki-Ohara, Kyoko; Sawaguchi, Akira; Suganuma, Tatsuo; Matsuzaki, Goro; Nawa, Yukifumi

    2005-01-01

    Intestinal intraepithelial lymphocytes (IEL) that reside at basolateral site regulate the proliferation and differentiation of epithelial cells (EC) for providing a first line of host defense in intestine. However, it remains unknown how IEL interact and communicate with EC. Here, we show that IEL express junctional molecules like EC. We identified mRNA expression of the junctional molecules in IEL such as zonula occludens (ZO)-1, occludin and junctional adhesion molecule (JAM) (tight junction), β-catenin and E-cadherin (adherens junction), and connexin26 (gap junction). IEL constitutively expressed occludin and E-cadherin at protein level, while other T cells in the thymus, spleen, liver, mesenteric lymph node, and Peyer's patches did not. γδ IEL showed higher level of these expressions than αβ IEL. The expression of occludin was augmented by anti-CD3 Ab stimulation. These results suggest the possibility of a novel role of IEL concerning epithelial barrier and communication between IEL and EC

  19. Affordance-based individuation of junctions in Open Street Map

    Directory of Open Access Journals (Sweden)

    Simon Scheider

    2012-06-01

    Full Text Available We propose an algorithm that can be used to identify automatically the subset of street segments of a road network map that corresponds to a junction. The main idea is to use turn-compliant locomotion affordances, i.e., restricted patterns of supported movement, in order to specify junctions independently of their data representation, and in order to motivate tractable individuation and classification strategies. We argue that common approaches based solely on geometry or topology of the street segment graph are useful but insufficient proxies. They miss certain turn restrictions essential to junctions. From a computational viewpoint, the main challenge of affordance-based individuation of junctions lies in its complex recursive definition. In this paper, we show how Open Street Map data can be interpreted into locomotion affordances, and how the recursive junction definition can be translated into a deterministic algorithm. We evaluate this algorithm by applying it to small map excerpts in order to delineate the contained junctions.

  20. STIM proteins and the endoplasmic reticulum-plasma membrane junctions.

    Science.gov (United States)

    Carrasco, Silvia; Meyer, Tobias

    2011-01-01

    Eukaryotic organelles can interact with each other through stable junctions where the two membranes are kept in close apposition. The junction that connects the endoplasmic reticulum to the plasma membrane (ER-PM junction) is unique in providing a direct communication link between the ER and the PM. In a recently discovered signaling process, STIM (stromal-interacting molecule) proteins sense a drop in ER Ca(2+) levels and directly activate Orai PM Ca(2+) channels across the junction space. In an inverse process, a voltage-gated PM Ca(2+) channel can directly open ER ryanodine-receptor Ca(2+) channels in striated-muscle cells. Although ER-PM junctions were first described 50 years ago, their broad importance in Ca(2+) signaling, as well as in the regulation of cholesterol and phosphatidylinositol lipid transfer, has only recently been realized. Here, we discuss research from different fields to provide a broad perspective on the structures and unique roles of ER-PM junctions in controlling signaling and metabolic processes.

  1. Morphological variation of the kidney secondary to junctional parenchyma on ultrasound

    International Nuclear Information System (INIS)

    Lee, Ji Yoon; Park, Byeong Ho; Nam, Kyeong Jin; Choi, Jong Cheol; Koo, Bong Sig; Kim, Jou Yeoun; Ahn, Seung Eon; Lee, Yung Il

    1996-01-01

    To evaluate the prevalance of morphological variation of the kidney secondary to junctional parenchyma, as well as to analyze the ultrasonographic features of junctional parenchyma. Two hundred and eighty two kidneys of 141 patient without clinical or radiologic evidence of renal disease were prospectively analysed using ultrasound. In all patients, ultrasonograms were obtained in sagittal, coronal and transaxial planes. The kidney was considered to have morphological variation if the ultrasonogram demonstrated junctional parenchymal defect of line ; those showing such variation were classified as one of three types : continuous, discontinuous, or junctional parenchymal line or defect without junctional parenchyma. The prevalance and ultrasonographic features of the kidneys were evaluated. Morphological variation was noted in 71 cases(25%). the continuous type accounted for 54% of these, the discontinuous type for 38%, and junctional parenchymal defect or line without junctional parenchyma for 8%. In all cases, junctional parenchyma was located approximately at the junction of the upper and middle third of the kidney, and had the same echogenecity as the renal cortex. An understanding of the morphological variation of the kidney resulting from junctional renal parenchyma would be helpful in differentiating pseudotumor from true renal neoplasm

  2. Visualizing supercurrents in 0-{pi} ferromagnetic Josephson tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Goldobin, Edward; Guerlich, Christian; Gaber, Tobias; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Weides, Martin; Kohlstedt, Hermann [Institute of Solid State Physics, Reserch Center Juelich (Germany)

    2009-07-01

    So-called 0 and {pi} Josephson junctions can be treated as having positive and negative critical currents. This implies that the same phase shift applied to a Josephson junction causes counterflow of supercurrents in 0 and in {pi} junctions connected in parallel provided they are short in comparison with Josephson penetration depth {lambda}{sub J}. We have fabricated several 0, {pi}, 0-{pi}, 0-{pi}-0 and 20 x (0-{pi}-) planar superconductor-insulator-ferromagnet-superconductor Josephson junctions and studied the spatial supercurrent density distribution j{sub s}(x,y) across the junction area using low temperature scanning electron microscopy. At zero magnetic field we clearly see counterflow of the supercurrents in 0 and {pi} regions. The picture also changes consistently in the applied magnetic field.

  3. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    Science.gov (United States)

    Chang, Y. Austin; Yang, Jianhua Joshua

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  4. Spin, Vibrations and Radiation in Superconducting Junctions

    NARCIS (Netherlands)

    Padurariu, C.

    2013-01-01

    This thesis presents the theoretical study of superconducting transport in several devices based on superconducting junctions. The important feature of these devices is that the transport properties of the junction are modified by the interaction with another physical system integrated in the

  5. Regulation of Tight Junctions in Upper Airway Epithelium

    Directory of Open Access Journals (Sweden)

    Takashi Kojima

    2013-01-01

    Full Text Available The mucosal barrier of the upper respiratory tract including the nasal cavity, which is the first site of exposure to inhaled antigens, plays an important role in host defense in terms of innate immunity and is regulated in large part by tight junctions of epithelial cells. Tight junction molecules are expressed in both M cells and dendritic cells as well as epithelial cells of upper airway. Various antigens are sampled, transported, and released to lymphocytes through the cells in nasal mucosa while they maintain the integrity of the barrier. Expression of tight junction molecules and the barrier function in normal human nasal epithelial cells (HNECs are affected by various stimuli including growth factor, TLR ligand, and cytokine. In addition, epithelial-derived thymic stromal lymphopoietin (TSLP, which is a master switch for allergic inflammatory diseases including allergic rhinitis, enhances the barrier function together with an increase of tight junction molecules in HNECs. Furthermore, respiratory syncytial virus infection in HNECs in vitro induces expression of tight junction molecules and the barrier function together with proinflammatory cytokine release. This paper summarizes the recent progress in our understanding of the regulation of tight junctions in the upper airway epithelium under normal, allergic, and RSV-infected conditions.

  6. Spin-dependent quasiparticle tunneling in junction superconductor-isolator-ferromagnetic

    International Nuclear Information System (INIS)

    Shlapak, Yu.V.; Shaternik, V.E.; Rudenko, E.M.

    2001-01-01

    The influence of Andreev reflection of quasiparticles in transparent tunnel junctions of superconductor-isolator-ferromagnetic on electric-current transport is studied within the framework of the Blonder-Tinkham-Klapwijk (BTK) model. It's obtained that current and signal-to-noise ratio can be increased for the memory cell by using in it the double-barrier tunnel junction ferromagnetic-isolator-superconductor-isolator-ferromagnetic instead off the usual tunnel junction ferromagnetic-isolator-ferromagnetic. The evolution of non-linear (tunnel-type) current-voltage characteristics with increasing of the junction transparency is described. (orig.)

  7. Antireflection coating design for series interconnected multi-junction solar cells

    International Nuclear Information System (INIS)

    Aiken, Daniel J.

    1999-01-01

    AR coating design for multi-junction solar cells can be more challenging than in the single junction case. Reasons for this are discussed. Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J(sub SC)) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design can be used to provide an additional degree of freedom for current matching multi-junction devices

  8. Holographic s-wave and p-wave Josephson junction with backreaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong-Qiang; Liu, Shuai [Institute of Theoretical Physics, Lanzhou University,Lanzhou 730000, People’s Republic of (China)

    2016-11-22

    In this paper, we study the holographic models of s-wave and p-wave Josephoson junction away from probe limit in (3+1)-dimensional spacetime, respectively. With the backreaction of the matter, we obtained the anisotropic black hole solution with the condensation of matter fields. We observe that the critical temperature of Josephoson junction decreases with increasing backreaction. In addition to this, the tunneling current and condenstion of Josephoson junction become smaller as backreaction grows larger, but the relationship between current and phase difference still holds for sine function. Moreover, condenstion of Josephoson junction deceases with increasing width of junction exponentially.

  9. Functional anatomy of the human ureterovesical junction

    NARCIS (Netherlands)

    Roshani, H.; Dabhoiwala, N. F.; Verbeek, F. J.; Lamers, W. H.

    1996-01-01

    BACKGROUND: The valve function of the ureterovesical-junction (UVJ) is responsible for protection of the low pressure upper urinary tract from the refluxing of urine from the bladder. Controversy about the microanatomy of the human ureterovesical-junction persists. METHODS: Ten (3 male and 7 female)

  10. Double-well potential in annular Josephson junction

    International Nuclear Information System (INIS)

    Shaju, P.D.; Kuriakose, V.C.

    2004-01-01

    A double-well potential suitable for quantum-coherent vortex tunnelling can be created in an annular Josephson junction by inserting a microshort in the junction and by applying an in-plane dc magnetic field. Analysis shows that the intensity of the magnetic field determines the depth of the potential well and the strength of the microshort controls the potential barrier height while a dc bias across the junction tilts the potential well. At milli-Kelvin temperatures, the system is expected to behave as a quantum two-level system and may be useful in designing vortex qubits

  11. Parametric frequency conversion in long Josephson junctions

    International Nuclear Information System (INIS)

    Irie, F.; Ashihara, S.; Yoshida, K.

    1976-01-01

    Current steps at voltages corresponding to the parametric coupling between an applied r.f. field and junction resonant modes have been observed in long Josephson tunnel junctions in the flux-flow state. The observed periodic variations of the step height due to the applied magnetic field are explained quantitatively by a perturbational analysis using Josephson phase equations. The present study demonstrates that the moving vortex array can serve as a coherent pump wave for signal waves propagating in the barrier region, which indicates, as a result, the possibility of traveling-wave parametric devices with long Josephson tunnel junctions. (author)

  12. Stress analysis of PCV nozzle junction

    International Nuclear Information System (INIS)

    Uchiyama, Shoichi; Oikawa, Tsuneo; Hoshino, Seizo

    1976-01-01

    Most of various pressure vessels comprise each one cylindrical shell and one or more nozzles. In this study, in order to analyze the stress in the structures of this type as minutely and exactly as possible, the program for stress analysis by the finite element method was made, which is required for the strength analysis for three-dimensional structures. Especially, the problem of the stress distribution around nozzle junctions was solved theoretically with the program. The program for the analysis developed in this study is provided with various functions, such as the input generator for cylindrical, conical and spherical shells, and plotter, and is very covenient. The accuracy of analysis is very good. The method of analysis and the calculation of the rigidity matrices for the deformation in plane and bending are explained. The result of the stress analysis around the nozzle junctions of a containment vessel with this program was in good agreement with experimental data and the result with SAP-4 code, therefore the propriety of the calculated result with this program was proved. Also calculations were carried out on three cases, namely a flat plate fixed at one end with distributed load, a cylinder fixed at one end with internal pressure, and an I-beam fixed at one end with concentrated load. The calculated results agreed well with theoretical solutions in all cases. (Kako, I.)

  13. Fractional Solitons in Excitonic Josephson Junctions

    Science.gov (United States)

    Su, Jung-Jung; Hsu, Ya-Fen

    The Josephson effect is especially appealing because it reveals macroscopically the quantum order and phase. Here we study this effect in an excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. Such a junction is proposed to take place in the quantum Hall bilayer (QHB) that makes it subtler than in superconductor because of the counterflow of excitonic supercurrent and the interlayer tunneling in QHB. We treat the system theoretically by first mapping it into a pseudospin ferromagnet then describing it by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, the excitonic Josephson junction can possess a family of fractional sine-Gordon solitons that resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Interestingly, each fractional soliton carries a topological charge Q which is not necessarily a half/full integer but can vary continuously. The resultant current-phase relation (CPR) shows that solitons with Q =ϕ0 / 2 π are the lowest energy states for small ϕ0. When ϕ0 > π , solitons with Q =ϕ0 / 2 π - 1 take place - the polarity of CPR is then switched.

  14. Gravitation at the Josephson Junction

    Directory of Open Access Journals (Sweden)

    Victor Atanasov

    2018-01-01

    Full Text Available A geometric potential from the kinetic term of a constrained to a curved hyperplane of space-time quantum superconducting condensate is derived. An energy conservation relation involving the geometric field at every material point in the superconductor is demonstrated. At a Josephson junction the energy conservation relation implies the possibility of transforming electric energy into geometric field energy, that is, curvature of space-time. Experimental procedures to verify that the Josephson junction can act as a voltage-to-curvature converter are discussed.

  15. The cranial-spinal junction in medulloblastoma: does it matter?

    International Nuclear Information System (INIS)

    Narayana, Ashwatha; Jeswani, Sam; Paulino, Arnold C.

    1999-01-01

    Purpose: Late effects of treatment in children and young adults with medulloblastoma can be influenced by the technique employed in radiating the craniospinal axis. The purpose of this study is to determine whether the placement of the cranial-spinal junction has an impact on dose to the cervical spinal cord and surrounding organs. Methods and Materials: Five patients underwent computed tomography (CT) simulation in the prone position for craniospinal irradiation. A dose of 36 Gy was prescribed to the entire neuraxis. The doses to the cervical spinal cord and surrounding organs were calculated using a cranial-spinal junction at the C1-C2 vertebral interspace (high junction) or at the lowest point in the neck, with exclusion of the shoulders in the lateral cranial fields (low junction).The volume of critical organs at risk, as well as dose to these structures using the cranial and spinal field(s) were outlined and calculated using the CMS FOCUS 3-dimensional treatment planning system. Results: The average dose to the cervical spinal cord was 11.9% higher than the prescribed dose with the low junction, and 6.7% higher with the high junction. However, doses to the thyroid gland, mandible, pharynx, and larynx were increased by an average of 29.6%, 75.8%, 70.6%, and 227.7%, respectively, by the use of the high junction compared to the low junction. Conclusion: A higher dose to the cervical spinal cord can be minimized by using a high junction. However, this would be at the cost of substantially increased doses to surrounding organs such as the thyroid gland, mandible, pharynx, and larynx. This can be critical in children and young adults, where hypothyroidism, mandibular hypoplasia, and development of second malignancies may be a late sequela of radiation therapy

  16. Chirality effect in disordered graphene ribbon junctions

    International Nuclear Information System (INIS)

    Long Wen

    2012-01-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)

  17. A simplified method of walking track analysis to assess short-term locomotor recovery after acute spinal cord injury caused by thoracolumbar intervertebral disc extrusion in dogs.

    Science.gov (United States)

    Song, R B; Oldach, M S; Basso, D M; da Costa, R C; Fisher, L C; Mo, X; Moore, S A

    2016-04-01

    The purpose of this study was to evaluate a simplified method of walking track analysis to assess treatment outcome in canine spinal cord injury. Measurements of stride length (SL) and base of support (BS) were made using a 'finger painting' technique for footprint analysis in all limbs of 20 normal dogs and 27 dogs with 28 episodes of acute thoracolumbar spinal cord injury (SCI) caused by spontaneous intervertebral disc extrusion. Measurements were determined at three separate time points in normal dogs and on days 3, 10 and 30 following decompressive surgery in dogs with SCI. Values for SL, BS and coefficient of variance (COV) for each parameter were compared between groups at each time point. Mean SL was significantly shorter in all four limbs of SCI-affected dogs at days 3, 10, and 30 compared to normal dogs. SL gradually increased toward normal in the 30 days following surgery. As measured by this technique, the COV-SL was significantly higher in SCI-affected dogs than normal dogs in both thoracic limbs (TL) and pelvic limbs (PL) only at day 3 after surgery. BS-TL was significantly wider in SCI-affected dogs at days 3, 10 and 30 following surgery compared to normal dogs. These findings support the use of footprint parameters to compare locomotor differences between normal and SCI-affected dogs, and to assess recovery from SCI. Additionally, our results underscore important changes in TL locomotion in thoracolumbar SCI-affected dogs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A set packing inspired method for real-time junction train routing

    DEFF Research Database (Denmark)

    Lusby, Richard Martin; Larsen, Jesper; Ehrgott, Matthias

    2013-01-01

    Efficiently coordinating the often large number of interdependent, timetabled train movements on a railway junction, while satisfying a number of operational requirements, is one of the most important problems faced by a railway company. The most critical variant of the problem arises on a daily...... basis at major railway junctions where disruptions to rail traffic make the planned schedule/routing infeasible and rolling stock planners are forced to re-schedule/re-route trains in order to recover feasibility. The dynamic nature of the problem means that good solutions must be obtained quickly....... In this paper we describe a set packing inspired formulation of this problem and develop a branch-and-price based solution approach. A real life test instance arising in Germany and supplied by the major German railway company, Deutsche Bahn, indicates the efficiency of the proposed approach by confirming...

  19. A Set Packing Inspired Method for Real-Time Junction Train Routing

    DEFF Research Database (Denmark)

    Lusby, Richard Martin; Larsen, Jesper; Ehrgott, Matthias

    Efficiently coordinating the often large number of interdependent, timetabled train movements on a railway junction, while satisfying a number of operational requirements, is one of the most important problems faced by a railway company. The most critical variant of the problem arises on a daily...... basis at major railway junctions where disruptions to rail traffi c make the planned schedule/routing infeasible and rolling stock planners are forced to reschedule/re-route trains in order to recover feasibility. The dynamic nature of the problem means that good solutions must be obtained quickly....... In this paper we describe a set packing inspired formulation of this problem and develop a branch-and-price based solution approach. A real life test instance arising in Germany and supplied by the major German railway company, Deutsche Bahn, indicates the efficiency of the proposed approach by confirming...

  20. Junction depth dependence of breakdown in silicon detector diodes

    International Nuclear Information System (INIS)

    Beck, G.A.; Carter, A.A.; Carter, J.R.; Greenwood, N.M.; Lucas, A.D.; Munday, D.J.; Pritchard, T.W.; Robinson, D.; Wilburn, C.D.; Wyllie, K.

    1996-01-01

    The high voltage capability of detector diodes fabricated in the planar process is limited by the high field generated at the edge of the junction.We have fabricated diodes with increased junction depth with respect to our standard process and find a significantly higher breakdown voltage,in reasonable agreement with previous studies of junction breakdown. (orig.)

  1. The fallopian tube-peritoneal junction: a potential site of carcinogenesis.

    Science.gov (United States)

    Seidman, Jeffrey D; Yemelyanova, Anna; Zaino, Richard J; Kurman, Robert J

    2011-01-01

    Junctions between different types of epithelia are hot spots for carcinogenesis, but the junction of the peritoneal mesothelium with the fallopian tubal epithelium, the tubal-peritoneal junction, has not been characterized earlier. A total of 613 junctional foci in 228 fallopian tube specimens from 182 patients who underwent surgery for a variety of indications, including 27 risk-reducing salpingo-oophorectomy specimens, were studied. Edema, congestion, and dilated lymphatic channels were commonly present. Transitional metaplasia was found at the junction in 20% of patients and mesothelial hyperplasia in 17%. Inflammation at the junction was seen predominantly in patients with salpingitis, torsion, or tubal pregnancy. Ovarian-type stroma was found at the junction in 5% of patients, and was found elsewhere in the tubal lamina propria in an additional 27% of patients. Findings in risk-reducing salpingo-oophorectomy specimens in women with BRCA mutations, a personal history of breast cancer, and/or a family history of breast/ovarian cancer were similar to those in controls. Transitional metaplasia specifically localizes to this junction, and is the probable source of Walthard cell nests. The recently highlighted significance of fimbrial tubal epithelium in the origin of serous ovarian carcinomas and a study suggesting that mucinous and Brenner tumors may arise from transitional-type epithelium in this location suggest that the tubal-peritoneal junction may play a role in the development of these tumors. This is the first comprehensive description of a hitherto unrecognized transitional zone in the adnexa.

  2. Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation

    Science.gov (United States)

    Adam, Alejandro Pablo

    2015-01-01

    Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing. PMID:26556953

  3. Two-dimensional non-volatile programmable p-n junctions

    Science.gov (United States)

    Li, Dong; Chen, Mingyuan; Sun, Zhengzong; Yu, Peng; Liu, Zheng; Ajayan, Pulickel M.; Zhang, Zengxing

    2017-09-01

    Semiconductor p-n junctions are the elementary building blocks of most electronic and optoelectronic devices. The need for their miniaturization has fuelled the rapid growth of interest in two-dimensional (2D) materials. However, the performance of a p-n junction considerably degrades as its thickness approaches a few nanometres and traditional technologies, such as doping and implantation, become invalid at the nanoscale. Here we report stable non-volatile programmable p-n junctions fabricated from the vertically stacked all-2D semiconductor/insulator/metal layers (WSe2/hexagonal boron nitride/graphene) in a semifloating gate field-effect transistor configuration. The junction exhibits a good rectifying behaviour with a rectification ratio of 104 and photovoltaic properties with a power conversion efficiency up to 4.1% under a 6.8 nW light. Based on the non-volatile programmable properties controlled by gate voltages, the 2D p-n junctions have been exploited for various electronic and optoelectronic applications, such as memories, photovoltaics, logic rectifiers and logic optoelectronic circuits.

  4. Thermionic refrigeration at CNT-CNT junctions

    Science.gov (United States)

    Li, C.; Pipe, K. P.

    2016-10-01

    Monte Carlo (MC) simulation is used to study carrier energy relaxation following thermionic emission at the junction of two van der Waals bonded single-walled carbon nanotubes (SWCNTs). An energy-dependent transmission probability gives rise to energy filtering at the junction, which is predicted to increase the average electron transport energy by as much as 0.115 eV, leading to an effective Seebeck coefficient of 386 μV/K. MC results predict a long energy relaxation length (˜8 μm) for hot electrons crossing the junction into the barrier SWCNT. For SWCNTs of optimal length, an analytical transport model is used to show that thermionic cooling can outweigh parasitic heat conduction due to high SWCNT thermal conductivity, leading to a significant cooling capacity (2.4 × 106 W/cm2).

  5. Response of high Tc superconducting Josephson junction to nuclear radiation

    International Nuclear Information System (INIS)

    Ding Honglin; Zhang Wanchang; Zhang Xiufeng

    1992-10-01

    The development of nuclear radiation detectors and research on high T c superconducting nuclear radiation detectors are introduced. The emphases are the principle of using thin-film and thick-film Josephson junctions (bridge junction) based on high T c YBCO superconductors to detect nuclear radiation, the fabrication of thin film and thick-film Josephson junction, and response of junction to low energy gamma-rays of 59.5 keV emitted from 241 Am and beta-rays of 546 keV. The results show that a detector for measuring nuclear radiation spectrum made of high T c superconducting thin-film or thick-film, especially, thick-film Josephson junction, certainly can be developed

  6. ‘Gap Junctions and Cancer: Communicating for 50 Years’

    Science.gov (United States)

    Aasen, Trond; Mesnil, Marc; Naus, Christian C.; Lampe, Paul D.; Laird, Dale W.

    2017-01-01

    Fifty years ago, tumour cells were found to lack electrical coupling, leading to the hypothesis that loss of direct intercellular communication is commonly associated with cancer onset and progression. Subsequent studies linked this phenomenon to gap junctions composed of connexin proteins. While many studies support the notion that connexins are tumour suppressors, recent evidence suggests that, in some tumour types, they may facilitate specific stages of tumour progression through both junctional and non-junctional signalling pathways. This Timeline article highlights the milestones connecting gap junctions to cancer, and underscores important unanswered questions, controversies and therapeutic opportunities in the field. PMID:27782134

  7. Dynamics of fractional vortices in long Josephson junctions

    International Nuclear Information System (INIS)

    Gaber, Tobias

    2007-01-01

    In this thesis static and dynamic properties of fractional vortices in long Josephson junctions are investigated. Fractional vortices are circulating supercurrents similar to the well-known Josephson fluxons. Yet, they show the distinguishing property of carrying only a fraction of the magnetic flux quantum. Fractional vortices are interesting non-linear objects. They spontaneously appear and are pinned at the phase discontinuity points of so called 0-κ junctions but can be bend or flipped by external forces like bias currents or magnetic fields. 0-κ junctions and fractional vortices are generalizations of the well-known 0-π junctions and semifluxons, where not only phase jumps of pi but arbitrary values denoted by kappa are considered. By using so-called artificial 0-κ junctions that are based on standard Nb-AlO x -Nb technology the classical dynamics of fractional vortices has been investigated experimentally for the very first time. Here, half-integer zero field steps could be observed. These voltage steps on the junction's current-voltage characteristics correspond to the periodic flipping/hopping of fractional vortices. In addition, the oscillatory eigenmodes of fractional vortices were investigated. In contrast to fluxons fractional vortices have an oscillatory eigenmode with a frequency within the plasma gap. Using resonance spectroscopy the dependence of the eigenmode frequency on the flux carried by the vortex and an applied bias current was determined. (orig.)

  8. Functional Molecular Junctions Derived from Double Self-Assembled Monolayers.

    Science.gov (United States)

    Seo, Sohyeon; Hwang, Eunhee; Cho, Yunhee; Lee, Junghyun; Lee, Hyoyoung

    2017-09-25

    Information processing using molecular junctions is becoming more important as devices are miniaturized to the nanoscale. Herein, we report functional molecular junctions derived from double self-assembled monolayers (SAMs) intercalated between soft graphene electrodes. Newly assembled molecular junctions are fabricated by placing a molecular SAM/(top) electrode on another molecular SAM/(bottom) electrode by using a contact-assembly technique. Double SAMs can provide tunneling conjugation across the van der Waals gap between the terminals of each monolayer and exhibit new electrical functions. Robust contact-assembled molecular junctions can act as platforms for the development of equivalent contact molecular junctions between top and bottom electrodes, which can be applied independently to different kinds of molecules to enhance either the structural complexity or the assembly properties of molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Gap junctions-guards of excitability

    DEFF Research Database (Denmark)

    Stroemlund, Line Waring; Jensen, Christa Funch; Qvortrup, Klaus

    2015-01-01

    Cardiomyocytes are connected by mechanical and electrical junctions located at the intercalated discs (IDs). Although these structures have long been known, it is becoming increasingly clear that their components interact. This review describes the involvement of the ID in electrical disturbances...... of the heart and focuses on the role of the gap junctional protein connexin 43 (Cx43). Current evidence shows that Cx43 plays a crucial role in organizing microtubules at the intercalated disc and thereby regulating the trafficking of the cardiac sodium channel NaV1.5 to the membrane....

  10. Association of visceral adiposity with oesophageal and junctional adenocarcinomas.

    LENUS (Irish Health Repository)

    Beddy, P

    2012-02-01

    BACKGROUND: Obesity is associated with an increased incidence of oesophageal and oesophagogastric junction adenocarcinoma, in particular Siewert types I and II. This study compared abdominal fat composition in patients with oesophageal\\/junctional adenocarcinoma with that in patients with oesophageal squamous cell carcinoma and gastric adenocarcinoma, and in controls. METHOD: In total, 194 patients (110 with oesophageal\\/junctional adenocarcinoma, 38 with gastric adenocarcinoma and 46 with oesophageal squamous cell carcinoma) and 90 matched control subjects were recruited. The abdominal fat area was assessed using computed tomography (CT), and the total fat area (TFA), visceral fat area (VFA) and subcutaneous fat area (SFA) were calculated. RESULTS: Patients with oesophageal\\/junctional adenocarcinoma had significantly higher TFA and VFA values compared with controls (both P < 0.001), patients with gastric adenocarcinoma (P = 0.013 and P = 0.006 respectively) and patients with oesophageal squamous cell carcinoma (both P < 0.001). For junctional tumours, the highest TFA and VFA values were seen in patients with Siewert type I tumours (respectively P = 0.041 and P = 0.033 versus type III; P = 0.332 and P = 0.152 versus type II). CONCLUSION: Patients with oesophageal\\/junctional adenocarcinoma, in particular oesophageal and Siewert type I junctional tumours, have greater CT-defined visceral adiposity than patients with gastric adenocarcinoma or oesophageal squamous cell carcinoma, or controls.

  11. Magnetic interaction between spatially extended superconducting tunnel junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm

    2002-01-01

    A general description of magnetic interactions between superconducting tunnel junctions is given. The description covers a wide range of possible experimental systems, and we explicitly explore two experimentally relevant limits of coupled junctions. One is the limit of junctions with tunneling...... been considered through arrays of superconducting weak links based on semiconductor quantum wells with superconducting electrodes. We use the model to make direct interpretations of the published experiments and thereby propose that long-range magnetic interactions are responsible for the reported...

  12. Treatment of thoraco-lumbar curves in adolescent females affected by idiopathic scoliosis with a progressive action short brace (PASB: assessment of results according to the SRS committee on bracing and nonoperative management standardization criteria

    Directory of Open Access Journals (Sweden)

    Perisano Carlo

    2009-09-01

    Full Text Available Abstract Background The effectiveness of conservative treatment of scoliosis is controversial. Some studies suggest that brace is effective in stopping curve progression, whilst others did not report such an effect. The purpose of the present study was to effectiveness of Progressive Action Short Brace (PASB in the correction of thoraco-lumbar curves, in agreement with the Scoliosis Research Society (SRS Committee on Bracing and Nonoperative Management Standardisation Criteria. Methods Fifty adolescent females (mean age 11.8 ± 0.5 years with thoraco-lumbar curve and a pre-treatment Risser score ranging from 0 to 2 have been enrolled. The minimum duration of follow-up was 24 months (mean: 55.4 ± 44.5 months. Antero-posterior radiographs were used to estimate the curve magnitude (CM and the torsion of the apical vertebra (TA at 5 time points: beginning of treatment (t1, one year after the beginning of treatment (t2, intermediate time between t1 and t4 (t3, end of weaning (t4, 2-year minimum follow-up from t4 (t5. Three situations were distinguished: curve correction, curve stabilisation and curve progression. The Kruskal Wallis and Spearman Rank Correlation tests have been used as statistical tests. Results CM mean value was 29,30 ± 5,16 SD at t1 and 14,67 ± 7,65 SD at t5. TA was 12.70 ± 6,14 SD at t1 and 8,95 ± 5,82 at t5. The variation between measures of Cobb and Perdriolle degrees at t1,2,3,4,5 and between CM t5-t1 and TA t5-t1 were significantly different. Curve correction was accomplished in 94% of patients, whereas a curve stabilisation was obtained in 6% of patients. Conclusion The PASB, due to its peculiar biomechanical action on vertebral modelling, is highly effective in correcting thoraco-lumbar curves.

  13. Cavity syncronisation of underdamped Josephson junction arrays

    DEFF Research Database (Denmark)

    Barbara, P.; Filatrella, G.; Lobb, C.

    2003-01-01

    the junctions in the array and an electromagnetic cavity. Here we show that a model of a one-dimensional array of Josephson junctions coupled to a resonator can produce many features of the coherent be havior above threshold, including coherent radiation of power and the shape of the array current...

  14. impairs gap junction function causing congenital cataract

    Indian Academy of Sciences (India)

    Navya

    2017-03-24

    Mar 24, 2017 ... experiment showed a lower dye diffusion distance of Cx46 V44M cells, ... Studies of connexins show that channel gating and permeability .... have found that connexin assembled into gap junction plaques is not soluble in 1% ..... high glucose reduces gap junction activity in microvascular endothelial cells.

  15. Reproducible fabrication and characterization of YBa2Cu3O7 Josephson junctions and SQUIDs on SrTiO3 bi-crystal substrates

    International Nuclear Information System (INIS)

    Kromann, R.; Vase, P.; Shen, Y.Q.; Freltoft, T.

    1993-01-01

    The fabrication of Josephson junctions and SQUIDs using ceramic high T c superconductors continues to be a subject of great interest and activity. In the case of the YBCO family of superconductors, most of the research effort has been concentrated on the grain boundary junctions. This type of junction can be fabricated in a controlled way by a variety of approaches, such as the bi-crystal technique, the bi-epitaxial technique or the step-edge technique. From a fabrication point of view, the bi-crystal technique is by far the simplest of the three. The availability of (100) SrTiO 3 bi-crystals on a commercial basis has lead to the possibility of making Josephson junctions by a simple process involving only one deposition and one patterning step. Reproducibility of the junction parameters between junctions on the same chip is a key point for electronic applications of Josephson junctions requiring a large amount of Josephson junctions working at the same time, as for example in the voltage standard. Another key point is the uniformity of the barrier, i.e. the extent to which the junction behaves as an ideal SIS junction. In this work junction uniformity has been studied by Frauenhofer diffraction patterns. The Josephson junctions have also been used in the fabrication of dc SQUIDs. In this work we have tried to optimize the magnitude of the voltage modulation from the SQUID by varying the design parameters. The SQUIDs have been characterized in terms of I c , R n , voltage modulation and noise properties. (orig.)

  16. Spatially resolved detection of mutually locked Josephson junctions in arrays

    International Nuclear Information System (INIS)

    Keck, M.; Doderer, T.; Huebener, R.P.; Traeuble, T.; Dolata, R.; Weimann, T.; Niemeyer, J.

    1997-01-01

    Mutual locking due to the internal coupling in two-dimensional arrays of Josephson junctions was investigated. The appearance of Shapiro steps in the current versus voltage curve of a coupled on-chip detector junction is used to indicate coherent oscillations in the array. A highly coherent state is observed for some range of the array bias current. By scanning the array with a low-power electron beam, mutually locked junctions remain locked while the unlocked junctions generate a beam-induced additional voltage drop at the array. This imaging technique allows the detection of the nonlocked or weakly locked Josephson junctions in a (partially) locked array state. copyright 1997 American Institute of Physics

  17. Two coupled Josephson junctions: dc voltage controlled by biharmonic current

    International Nuclear Information System (INIS)

    Machura, L; Spiechowicz, J; Kostur, M; Łuczka, J

    2012-01-01

    We study transport properties of two Josephson junctions coupled by an external shunt resistance. One of the junctions (say, the first) is driven by an unbiased ac current consisting of two harmonics. The device can rectify the ac current yielding a dc voltage across the first junction. For some values of coupling strength, controlled by an external shunt resistance, a dc voltage across the second junction can be generated. By variation of system parameters such as the relative phase or frequency of two harmonics, one can conveniently manipulate both voltages with high efficiency, e.g. changing the dc voltages across the first and second junctions from positive to negative values and vice versa. (paper)

  18. Probing electrical transport in individual carbon nanotubes and junctions

    International Nuclear Information System (INIS)

    Kim, Tae-Hwan; Wendelken, John F; Li Anping; Du Gaohui; Li Wenzhi

    2008-01-01

    The electrical transport properties of individual carbon nanotubes (CNTs) and multi-terminal junctions of CNTs are investigated with a quadraprobe scanning tunneling microscope. The CNTs used in this study are made of stacked herringbone-type conical graphite sheets with a cone angle of ∼20 deg. to the tube axis, and the CNT junctions have no catalytic particles in the junction areas. The CNTs have a significantly higher resistivity than conventional CNTs with concentric walls. The straight CNTs display linear current-voltage (I-V) characteristics, indicating diffusive transport rather than ballistic transport. The structural deformation in CNTs with bends substantially increases the resistivity in comparison with that for the straight segments on the same CNTs, and the I-V curve departs slightly from linearity in curved segments. The junction area of the CNT junctions behaves like an ohmic-type scattering center with linear I-V characteristics. In addition, a gating effect has not been observed, in contrast to the case for conventional multi-walled CNT junctions. These unusual transport properties can be attributed to the enhanced inter-layer interaction in the herringbone-type CNTs.

  19. impairs gap junction function causing congenital cataract

    Indian Academy of Sciences (India)

    LIJUAN CHEN

    2017-12-20

    Dec 20, 2017 ... showed a lower dye diffusion distance of Cx46 V44M cells, which indicates that the gap junction intercellular ... permeability could be affected by alterations of charged residues of .... bled into gap junction plaques is not soluble in 1% Triton ..... regulation of connexin 43 expression by high glucose reduces.

  20. Fast temporal fluctuations in single-molecule junctions.

    Science.gov (United States)

    Ochs, Roif; Secker, Daniel; Elbing, Mark; Mayor, Marcel; Weber, Heiko B

    2006-01-01

    The noise within the electrical current through single-molecule junctions is studied cryogenic temperature. The organic sample molecules were contacted with the mechanically controlled break-junction technique. The noise spectra refer to a where only few Lorentzian fluctuators occur in the conductance. The frequency dependence shows qualitative variations from sample to sample.

  1. Axial p-n-junctions in nanowires.

    Science.gov (United States)

    Fernandes, C; Shik, A; Byrne, K; Lynall, D; Blumin, M; Saveliev, I; Ruda, H E

    2015-02-27

    The charge distribution and potential profile of p-n-junctions in thin semiconductor nanowires (NWs) were analyzed. The characteristics of screening in one-dimensional systems result in a specific profile with large electric field at the boundary between the n- and p- regions, and long tails with a logarithmic drop in the potential and charge density. As a result of these tails, the junction properties depend sensitively on the geometry of external contacts and its capacity has an anomalously large value and frequency dispersion. In the presence of an external voltage, electrons and holes in the NWs can not be described by constant quasi-Fermi levels, due to small values of the average electric field, mobility, and lifetime of carriers. Thus, instead of the classical Sah-Noice-Shockley theory, the junction current-voltage characteristic was described by an alternative theory suitable for fast generation-recombination and slow diffusion-drift processes. For the non-uniform electric field in the junction, this theory predicts the forward branch of the characteristic to have a non-ideality factor η several times larger than the values 1 < η < 2 from classical theory. Such values of η have been experimentally observed by a number of researchers, as well as in the present work.

  2. Macroscopic Refrigeration Using Superconducting Tunnel Junctions

    Science.gov (United States)

    Lowell, Peter; O'Neil, Galen; Underwood, Jason; Zhang, Xiaohang; Ullom, Joel

    2014-03-01

    Sub-kelvin temperatures are often a prerequisite for modern scientific experiments, such as quantum information processing, astrophysical missions looking for dark energy signatures and tabletop time resolved x-ray spectroscopy. Existing methods of reaching these temperatures, such as dilution refrigerators, are bulky and costly. In order to increase the accessibility of sub-Kelvin temperatures, we have developed a new method of refrigeration using normal-metal/insulator/superconductor (NIS) tunnel junctions. NIS junctions cool the electrons in the normal metal since the hottest electrons selectively tunnel from the normal metal into the superconductor. By extending the normal metal onto a thermally isolated membrane, the cold electrons can cool the phonons through the electron-phonon coupling. When these junctions are combined with a pumped 3He system, they provide a potentially inexpensive method of reaching these temperatures. Using only three devices, each with a junction area of approximately 3,500 μm2, we have cooled a 2 cm3 Cu plate from 290 mK to 256 mK. We will present these experimental results along with recent modeling predictions that strongly suggest that further refinements will allow cooling from 300 mK to 120 mK. This work is supported by the NASA APRA program.

  3. No junctional communication between epithelial cells in hydra

    DEFF Research Database (Denmark)

    de Laat, S W; Tertoolen, L G; Grimmelikhuijzen, C J

    1980-01-01

    junctions between epithelial cells of hydra. However, until now, there has been no report published on whether these junctions enable the epithelial cells to exchange molecules of small molecular weight, as has been described in other organisms. Therefore we decided to investigate the communicative...... properties of the junctional membranes by electrophysiological methods and by intracellular-dye iontophoresis. We report here that no electrotonic coupling is detectable between epithelial cells of Hydra attenuata in: (1) intact animals, (2) head-regenerating animals, (3) cell re-aggregates, and (4) hydra...

  4. Spectrum of resonant plasma oscillations in long Josephson junctions

    International Nuclear Information System (INIS)

    Holst, T.

    1996-01-01

    An analysis is presented for the amplitude of the plasma oscillations in the zero-voltage state of a long and narrow Josephson tunnel junction. The calculation is valid for arbitrary normalized junction length and arbitrary bias current. The spectrum of the plasma resonance is found numerically as solutions to an analytical equation. The low-frequency part of the spectrum contains a single resonance, which is known to exist also in the limit of a short and narrow junction. Above a certain cutoff frequency, a series of high-frequency standing wave plasma resonances is excited, a special feature of long Josephson junctions. copyright 1996 The American Physical Society

  5. Niobium nitride Josephson tunnel junctions with magnesium oxide barriers

    International Nuclear Information System (INIS)

    Shoji, A.; Aoyagi, M.; Kosaka, S.; Shinoki, F.; Hayakawa, H.

    1985-01-01

    Niobium nitride-niobium nitride Josephson tunnel junctions have been fabricated using amorphous magnesium oxide (a-MgO) films as barriers. These junctions have excellent tunneling characteristics. For example, a large gap voltage (V/sub g/ = 5.1 mV), a large product of the maximum critical current and the normal tunneling resistance (I/sub c/R/sub n/ = 3.25 mV), and a small subgap leakage current (V/sub m/ = 45 mV, measured at 3 mV) have been obtained for a NbN/a-MgO/NbN junction. The critical current of this junction remains finite up to 14.5 K

  6. Squeezed States in Josephson Junctions.

    Science.gov (United States)

    Hu, X.; Nori, F.

    1996-03-01

    We have studied quantum fluctuation properties of Josephson junctions in the limit of large Josephson coupling energy and small charging energy, when the eigenstates of the system can be treated as being nearly localized. We have considered(X. Hu and F. Nori, preprints.) a Josephson junction in a variety of situations, e.g., coupled to one or several of the following elements: a capacitor, an inductor (in a superconducting ring), and an applied current source. By solving an effective Shrödinger equation, we have obtained squeezed vacuum (coherent) states as the ground states of a ``free-oscillating'' (linearly-driven) Josephson junction, and calculated the uncertainties of its canonical momentum, charge, and coordinate, phase. We have also shown that the excited states of the various systems we consider are similar to the number states of a simple harmonic oscillator but with different fluctuation properties. Furthermore, we have obtained the time-evolution operators for these systems. These operators can make it easier to calculate the time-dependence of the expectation values and fluctuations of various quantities starting from an arbitrary initial state.

  7. Molecular anatomy of interendothelial junctions in human blood-brain barrier microvessels.

    Directory of Open Access Journals (Sweden)

    Andrzej W Vorbrodt

    2004-07-01

    Full Text Available Immunogold cytochemical procedure was used to study the localization at the ultrastructural level of interendothelial junction-associated protein molecules in the human brain blood microvessels, representing the anatomic site of the blood-brain barrier (BBB. Ultrathin sections of Lowicryl K4M-embedded biopsy specimens of human cerebral cortex obtained during surgical procedures were exposed to specific antibodies, followed by colloidal gold-labeled secondary antibodies. All tight junction-specific integral membrane (transmembrane proteins--occludin, junctional adhesion molecule (JAM-1, and claudin-5--as well as peripheral zonula occludens protein (ZO-1 were highly expressed. Immunoreactivity of the adherens junction-specific transmembrane protein VE-cadherin was of almost similar intensity. Immunolabeling of the adherens junction-associated peripheral proteins--alpha-catenin, beta-catenin, and p120 catenin--although positive, was evidently less intense. The expression of gamma-catenin (plakoglobin was considered questionable because solitary immunosignals (gold particles appeared in only a few microvascular profiles. Double labeling of some sections made possible to observe strict colocalization of the junctional molecules, such as occludin and ZO-1 or JAM-1 and VE-cadherin, in the interendothelial junctions. We found that in human brain microvessels, the interendothelial junctional complexes contain molecular components specific for both tight and adherens junctions. It is assumed that the data obtained can help us find the immunodetectable junctional molecules that can serve as sensitive markers of normal or abnormal function of the BBB.

  8. Phase-dependent noise in Josephson junctions

    Science.gov (United States)

    Sheldon, Forrest; Peotta, Sebastiano; Di Ventra, Massimiliano

    2018-03-01

    In addition to the usual superconducting current, Josephson junctions (JJs) support a phase-dependent conductance related to the retardation effect of tunneling quasi-particles. This introduces a dissipative current with a memory-resistive (memristive) character that should also affect the current noise. By means of the microscopic theory of tunnel junctions we compute the complete current autocorrelation function of a Josephson tunnel junction and show that this memristive component gives rise to both a previously noted phase-dependent thermal noise, and an undescribed non-stationary, phase-dependent dynamic noise. As experiments are approaching ranges in which these effects may be observed, we examine the form and magnitude of these processes. Their phase dependence can be realized experimentally as a hysteresis effect and may be used to probe defects present in JJ based qubits and in other superconducting electronics applications.

  9. Electrical analog of a Josephson junction

    International Nuclear Information System (INIS)

    Goldman, A.M.

    1979-01-01

    It is noted that a mathematical description of the phase-coupling of two oscillators synchronized by a phase-lock-loop under the influence of thermal white noise is analogous to that of the phase coupling of two superconductors in a Josephson junction also under the influence of noise. This analogy may be useful in studying threshold instabilities of the Josephson junction in regimes not restricted to the case of large damping. This is of interest because the behavior of the mean voltage near the threshold current can be characterized by critical exponents which resemble those exhibited by an order parameter of a continuous phase transition. As it is possible to couple a collection of oscillators together in a chain, the oscillator analogy may also be useful in exploring the dynamics and statistical mechanics of coupled junctions

  10. Several alternative approaches to the manufacturing of HTS Josephson junctions

    OpenAIRE

    Villegier , J.; Boucher , H.; Ghis , A.; Levis , M.; Méchin , Laurence; Moriceau , H.; Pourtier , F.; Vabre , M.; Nicoletti , S.; Correra , L.

    1994-01-01

    In this work we describe comparatively the fabrication and the characterization of various types of HTS Josephson junctions manufactured using different processes : grain boundary junctions have been studied both by the way of junctions on bicrystal substrates and of bi-epitaxial junctions. Ramp-edge types have been elaborated and characterized using mainly N-YBaCuO thin film as a barrier while the trilayer approach has been investigated through a-axis structures. YBaCuO or GdBaCuO supercondu...

  11. What happens in Josephson junctions at high critical current densities

    Science.gov (United States)

    Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Caruso, R.; Galletti, L.; Montemurro, D.; Jouault, B.; Campagnano, G.; Arani, H. F.; Longobardi, L.; Parlato, L.; Pepe, G. P.; Rotoli, G.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.

    2017-07-01

    The impressive advances in material science and nanotechnology are more and more promoting the use of exotic barriers and/or superconductors, thus paving the way to new families of Josephson junctions. Semiconducting, ferromagnetic, topological insulator and graphene barriers are leading to unconventional and anomalous aspects of the Josephson coupling, which might be useful to respond to some issues on key problems of solid state physics. However, the complexity of the layout and of the competing physical processes occurring in the junctions is posing novel questions on the interpretation of their phenomenology. We classify some significant behaviors of hybrid and unconventional junctions in terms of their first imprinting, i.e., current-voltage curves, and propose a phenomenological approach to describe some features of junctions characterized by relatively high critical current densities Jc. Accurate arguments on the distribution of switching currents will provide quantitative criteria to understand physical processes occurring in high-Jc junctions. These notions are universal and apply to all kinds of junctions.

  12. An ion-beam-assisted process for high-Tc Josephson junctions

    International Nuclear Information System (INIS)

    Huang, M.Q.; Chen, L.; Zhao, Z.X.; Yang, T.; Nie, J.C.; Wu, P.J.; Xiong, X.M.

    1997-01-01

    We have developed a non-ion-etching ion-beam-assisted-deposition (IBAD) process for fabricating high critical-temperature (T c ) grain boundary Josephson junctions through a photoresist liftoff mask. The YBa 2 Cu 3 O 7 (YBCO) junctions fabricated through this process exhibited the resistively-shunted-junction (RSJ)-like I - V characteristics. The well-defined Shapiro steps have been seen on the I - V curves under microwave radiation. The magnetic modulation of critical current of a 4 μm width YBCO junction tallied with the prior simulated Fraunhofer diffraction pattern of a Josephson junction with a spatially homogeneous critical current density. The maximum peak-to-peak modulation voltage across the dc superconducting quantum interference device (SQUID) fabricated by using these junctions reached up to 32 μV at 77 K. The magnetic modulation of the SQUID exhibited periodic behavior with the observed modulation period of 5.0x10 -4 G. copyright 1997 American Institute of Physics

  13. Graphene-Based Josephson-Junction Single-Photon Detector

    Science.gov (United States)

    Walsh, Evan D.; Efetov, Dmitri K.; Lee, Gil-Ho; Heuck, Mikkel; Crossno, Jesse; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung

    2017-08-01

    We propose to use graphene-based Josephson junctions (GJJs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer graphene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high-sensitivity photon detection required for research areas including quantum information processing and radio astronomy. As an example, we present our device concepts for GJJ single-photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured GJJ, demonstrating feasibility within existing technologies.

  14. Au nanowire junction breakup through surface atom diffusion

    Science.gov (United States)

    Vigonski, Simon; Jansson, Ville; Vlassov, Sergei; Polyakov, Boris; Baibuz, Ekaterina; Oras, Sven; Aabloo, Alvo; Djurabekova, Flyura; Zadin, Vahur

    2018-01-01

    Metallic nanowires are known to break into shorter fragments due to the Rayleigh instability mechanism. This process is strongly accelerated at elevated temperatures and can completely hinder the functioning of nanowire-based devices like e.g. transparent conductive and flexible coatings. At the same time, arranged gold nanodots have important applications in electrochemical sensors. In this paper we perform a series of annealing experiments of gold and silver nanowires and nanowire junctions at fixed temperatures 473, 673, 873 and 973 K (200 °C, 400 °C, 600 °C and 700 °C) during a time period of 10 min. We show that nanowires are especially prone to fragmentation around junctions and crossing points even at comparatively low temperatures. The fragmentation process is highly temperature dependent and the junction region breaks up at a lower temperature than a single nanowire. We develop a gold parametrization for kinetic Monte Carlo simulations and demonstrate the surface diffusion origin of the nanowire junction fragmentation. We show that nanowire fragmentation starts at the junctions with high reliability and propose that aligning nanowires in a regular grid could be used as a technique for fabricating arrays of nanodots.

  15. Flicker (1/f) noise in tunnel junction DC SQUIDS

    International Nuclear Information System (INIS)

    Koch, R.H.; Clarke, J.; Goubau, W.M.; Martinis, J.M.; Pegrum, C.M.; Van Harlingen, D.J.

    1983-01-01

    We have measured the spectral density of the 1/f voltage noise in current-biased resistively shunted Josephson tunnel junctions and dc SQUIDs. A theory in which fluctuations in the temperature give rise to fluctuations in the critical current and hence in the voltage predicts the magnitude of the noise quite accurately for junctions with areas of about 2 x 10 4 μm 2 , but significantly overestimates the noise for junctions with areas of about 6 μm 2 . DC SQUIDs fabricated from these two types of junctions exhibit substantially more 1/f voltage noise than would be predicted from a model in which the noise arises from critical current fluctuations in the junctions. This result was confirmed by an experiment involving two different bias current and flux modulation schemes, which demonstrated that the predominant 1/f voltage noise arises not from critical current fluctuations, but from some unknown source that can be regarded as an apparent 1/f flux noise. Measurements on five different configurations of dc SQUIDs fabricated with thin-film tunnel junctions and with widely varying areas, inductances, and junction capacitances show that the spectral density of the 1/f equivalent flux noise is roughtly constant, within a factor of three of (10 -10 /f)phi 2 0 Hz -1 . It is emphasized that 1/f flux noise may not be the predominant source of 1/f noise in SQUIDS fabricated with other technologies

  16. Many-junction photovoltaic device performance under non-uniform high-concentration illumination

    Science.gov (United States)

    Valdivia, Christopher E.; Wilkins, Matthew M.; Chahal, Sanmeet S.; Proulx, Francine; Provost, Philippe-Olivier; Masson, Denis P.; Fafard, Simon; Hinzer, Karin

    2017-09-01

    A parameterized 3D distributed circuit model was developed to calculate the performance of III-V solar cells and photonic power converters (PPC) with a variable number of epitaxial vertically-stacked pn junctions. PPC devices are designed with many pn junctions to realize higher voltages and to operate under non-uniform illumination profiles from a laser or LED. Performance impacts of non-uniform illumination were greatly reduced with increasing number of junctions, with simulations comparing PPC devices with 3 to 20 junctions. Experimental results using Azastra Opto's 12- and 20-junction PPC illuminated by an 845 nm diode laser show high performance even with a small gap between the PPC and optical fiber output, until the local tunnel junction limit is reached.

  17. Development of Nb nanoSQUIDs based on SNS junctions for operation in high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Morosh, Viacheslav; Kieler, Oliver; Weimann, Thomas; Zorin, Alexander [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany); Mueller, Benedikt; Martinez-Perez, Maria Jose; Kleiner, Reinhold; Koelle, Dieter [Physikalisches Institut and Center for Quantum Science in LISA+, Universitaet Tuebingen (Germany)

    2016-07-01

    Investigation of the magnetization reversal of single magnetic nanoparticles requires SQUIDs with high spatial resolution, high spin sensitivity (a few Bohr magneton μ{sub B}) and at the same time sufficient stability in high magnetic fields. We fabricated dc nanoSQUIDs comprising overdamped SNS sandwich-type (Nb/HfTi/Nb) Josephson junctions using optimized technology based on combination of electron beam lithography and chemical-mechanical polishing. Our nanoSQUIDs have Josephson junctions with lateral dimensions ≤ 150 nm x 150 nm, effective loop areas < 0.05 μm{sup 2} and the distance between the Josephson junctions ≤ 100 nm. The feeding strip lines of the width ≤ 200 nm have been realized. The nanoSQUIDs have shown stable operation in external magnetic fields at least up to 250 mT. Sufficiently low level of flux noise resulting in spin sensitivity of few tens μ{sub B}/Hz{sup 1/2} has been demonstrated. A further reduction of the nanoSQUID size using our technology is possible.

  18. Josephson junctions array resonators

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, Oscar; Muppalla, Phani; Mirzaei, Iman; Kirchmair, Gerhard [Institute for Quantum Optics and Quantum Information, Innsbruck (Austria)

    2016-07-01

    We present an experimental analysis of the self- and cross-Kerr effect of extended plasma resonances in Josephson junction chains. The chain consists of 1600 individual junctions and we can measure quality factors in excess of 10000. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. By changing the input power we are able to measure this frequency shift on a single mode (self-kerr). By changing the input power on another mode while measuring the same one, we are able to evaluate the cross-kerr effect. We can measure the cross-Kerr effect by probing the resonance frequency of one mode while exciting another mode of the array with a microwave drive.

  19. Doping enhanced barrier lowering in graphene-silicon junctions

    Science.gov (United States)

    Zhang, Xintong; Zhang, Lining; Chan, Mansun

    2016-06-01

    Rectifying properties of graphene-semiconductor junctions depend on the Schottky barrier height. We report an enhanced barrier lowering in graphene-Si junction and its essential doping dependence in this paper. The electric field due to ionized charge in n-type Si induces the same type doping in graphene and contributes another Schottky barrier lowering factor on top of the image-force-induced lowering (IFIL). We confirm this graphene-doping-induced lowering (GDIL) based on well reproductions of the measured reverse current of our fabricated graphene-Si junctions by the thermionic emission theory. Excellent matching between the theoretical predictions and the junction data of the doping-concentration dependent barrier lowering serves as another evidence of the GDIL. While both GDIL and IFIL are enhanced with the Si doping, GDIL exceeds IFIL with a threshold doping depending on the as-prepared graphene itself.

  20. Investigations on in situ diagnostics by an infrared camera to distinguish between the plasma facing tiles with carbonaceous surface layer and defect in the underneath junction

    International Nuclear Information System (INIS)

    Cai, Laizhong; Gauthier, Eric; Corre, Yann; Liu, Jian

    2013-01-01

    Both a deposition surface layer and a delamination underneath junction existing on plasma facing components (PFCs) can result in abnormal high surface temperature under normal heating conditions. The tile with delamination has to be replaced to prevent from a critical failure (complete delamination) during plasma operation while the carbon deposit can be removed without any repairing. Therefore, distinguishing in situ deposited tiles and junction defect tiles is crucial to avoid the critical failure without unwanted shutdown. In this paper, the thermal behaviors of junction defect tiles and carbon deposit tiles are simulated numerically. A modified time constant method is then introduced to analyze the thermal behaviors of deposited tiles and junction defect tiles. The feasibility of discrimination by analyzing the thermal behaviors of tiles is discussed and the requirements of this method for discrimination are described. Finally, the time resolution requirement of IR cameras to do the discrimination is mentioned

  1. Magnetic properties of slablike Josephson-junction arrays

    International Nuclear Information System (INIS)

    Chen, D.; Sanchez, A.; Hernando, A.

    1994-01-01

    Magnetic properties of infinitely long and wide slablike Josephson-junction arrays (JJA's) consisting of 2N+1 rows of grains are calculated for the dc Josephson effect with gauge-invariant phase differences. When N is large, the intergranular magnetization curve, M J (H), of the JJA's in low fields approaches that of uniform Josephson junctions with lengths equal to the thicknesses of the JJA's, but in a larger field interval, its amplitude is dually modulated with periods determined by the junction and void areas. M J (H) curves for small N are more complicated. The concept of Josephson vortices and the application of the results to high-T c superconductors are discussed

  2. Internal resonances in periodically modulated long Josephson junctions

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Mygind, Jesper; Ustinov, Alexey V.

    1995-01-01

    Current-voltage (I-V) characteristics of long Josephson junctions with a periodic lattice of localized inhomogeneities are studied. The interaction between the moving fluxons and the inhomogeneities causes resonant steps in the IV-curve. Some of these steps are due to a synchronization to resonant...... Fiske modes in the sub-junctions formed between the inhomogeneities. The voltage positions of the resonant steps oscillate as function of the applied magnetic field with a period corresponding to the inclusion of one magnetic flux quantum, Φ0=h/2e, per sub-junction. A qualitative explanation that takes...

  3. Capacitance measurement of Josephson tunnel junctions with microwave-induced dc quasiparticle tunneling currents

    International Nuclear Information System (INIS)

    Hamasaki, K.; Yoshida, K.; Irie, F.; Enpuku, K.

    1982-01-01

    The microwave response of the dc quasiparticle tunneling current in Josephson tunnel junctions, where the Josephson current is suppressed by an external magnetic field, has been studied quantitatively in order to clarify its characteristics as a probe for the measurement of the junction capacitance. Extensive experiments for both small and long junctions are carried out for distinguishing between microwave behaviors of lumped and distributed constant junctions. It is shown that the observed voltage dependence of the dc quasiparticle tunneling current modified by an applied rf field is in good agreement with a theoretical result which takes into account the influence of the microwave circuit connected to the junction. The comparison between theory and experiment gives the magnitude of the internal rf field in the junction. Together with the applied rf field, this internal rf field leads to the junction rf impedance which is dominated by the junction capacitance in our experimental condition. In the case of lumped junctions, this experimental rf impedance is in reasonable agreement with the theoretical one with the junction capacitance estimated from the Fiske step of the distributed junction fabricated on the same substrate; the obtained ratio of the experimental impedance to the theoretical one is approximately 0.6--1.7. In the case of distributed junctions, however, experimental values of their characteristic impedances are approximately 0.2--0.3 of theoretical values calculated by assuming the one-dimensional junction model and taking account of the standing-wave effect in the junction

  4. Manufacturing P-N junctions in germanium bodies

    International Nuclear Information System (INIS)

    Hall, R.N.

    1980-01-01

    A method of producing p-n junctions in Ge so as to facilitate their use as radiation detectors involves forming a body of high purity p-type germanium, diffusing lithium deep into the body, in the absence of electrolytic processes, to form a junction between n-type and p-type germanium greater than 1 mm depth. (UK)

  5. Self-positioned thin Pb-alloy base electrode Josephson junction

    International Nuclear Information System (INIS)

    Kuroda, K.; Sato, K.

    1986-01-01

    A self-positioned thin (SPOT) Pb-alloy base electrode Josephson junction is developed. In this junction, a 50-nm thick Pb-alloy base electrode is restricted within the junction region on an Nb underlayer using a self-alignment technique. The grain size reduction and the base electrode area restriction greatly improve thermal cycling stability, where the thermal cycling tests of 4000 proposed junctions (5 x 5 μm 2 ) showed no failures after 4000 cycles. In addition, the elimination of insulator layer stress on the Pb-alloy base electrode rectifies the problem of size effect on current density. The Nb underlayers also serve to isolate the Pb-alloy base electrodes from the resistors

  6. High-efficiency thermal switch based on topological Josephson junctions

    Science.gov (United States)

    Sothmann, Björn; Giazotto, Francesco; Hankiewicz, Ewelina M.

    2017-02-01

    We propose theoretically a thermal switch operating by the magnetic-flux controlled diffraction of phase-coherent heat currents in a thermally biased Josephson junction based on a two-dimensional topological insulator. For short junctions, the system shows a sharp switching behavior while for long junctions the switching is smooth. Physically, the switching arises from the Doppler shift of the superconducting condensate due to screening currents induced by a magnetic flux. We suggest a possible experimental realization that exhibits a relative temperature change of 40% between the on and off state for realistic parameters. This is a factor of two larger than in recently realized thermal modulators based on conventional superconducting tunnel junctions.

  7. Facile fabrication and electrical investigations of nanostructured p-Si/n-TiO2 hetero-junction diode

    Science.gov (United States)

    Kumar, Arvind; Mondal, Sandip; Rao, K. S. R. Koteswara

    2018-05-01

    In this work, we have fabricated the nanostructured p-Si/n-TiO2 hetero-junction diode by using a facile spin-coating method. The XRD analysis suggests the presence of well crystalline anatase TiO2 film on Si with small grain size (˜16 nm). We have drawn the band alignment using Anderson model to understand the electrical transport across the junction. The current-voltage (J-V) characteristics analysis reveals the good rectification ratio (103 at ± 3 V) and slightly higher ideality factor (4.7) of our device. The interface states are responsible for the large ideality factor as Si/TiO2 form a dissimilar interface and possess a large number of dangling bonds. The study reveals the promises to be used Si/TiO2 diode as an alternative to the traditional p-n homo-junction diode, which typically require high budget.

  8. Relative Roles of Gap Junction Channels and Cytoplasm in Cell-to-Cell Diffusion of Fluorescent Tracers

    Science.gov (United States)

    Safranyos, Richard G. A.; Caveney, Stanley; Miller, James G.; Petersen, Nils O.

    1987-04-01

    Intercellular (tissue) diffusion of molecules requires cytoplasmic diffusion and diffusion through gap junctional (or cell-to-cell) channels. The rates of tissue and cytoplasmic diffusion of fluorescent tracers, expressed as an effective diffusion coefficient, De, and a cytoplasmic diffusion coefficient, Dcyt, have been measured among the developing epidermal cells of a larval beetle, Tenebrio molitor L., to determine the contribution of the junctional channels to intercellular diffusion. Tracer diffusion was measured by injecting fluorescent tracers into cells and quantitating the rate of subsequent spread into adjacent cells. Cytoplasmic diffusion was determined by fluorescence photobleaching. These experiments show that gap junctional channels constitute approximately 70-80% of the total cell-to-cell resistance to the diffusion of organic tracers at high concentrations in this tissue. At low concentrations, however, the binding of tracer to cytoplasm slows down the cytoplasmic diffusion, which may limit intercellular diffusion.

  9. Phonon spectroscopy with superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Grimshaw, J.M.

    1984-02-01

    Superconducting tunnel junctions can be used as generators and detectors of monochromatic phonons of frequency larger than 80 GHz, as was first devised by Eisenmenger and Dayem (1967) and Kinder (1972a, 1973). In this report, we intend to give a general outline of this type of spectroscopy and to present the results obtained so far. The basic physics underlying phonon generation and detection are described in chapter I, a wider approach being given in the references therein. In chapter II, the different types of junctions are considered with respect to their use. Chapter III deals with the evaporation technique for the superconducting junctions. The last part of this report is devoted to the results that we have obtained on γ-irradiated LiF, pure Si and Phosphorous implanted Si. In these chapters, the limitations of the spectrometer are brought out and suggestions for further work are given [fr

  10. Stenosis of the thoracolumbar vertebral canal in a Basset Hound

    International Nuclear Information System (INIS)

    Stigen, Ø.; Hagen, G.; Kolbjørnsen, Ø.

    1990-01-01

    A three-month-old female basset hound was referred to the Norwegian College of Veterinary Medicine with a history of progressive paresis of the pelvic limbs. Following neurological examination and the study of myelograms, extradural masses causing spinal cord compressions at the T 12.13 and T 13 -L 1 junctions were diagnosed. At necropsy bone-tissue of the vertebral laminae was found to have formed stenoses of the vertebral canal producing compressions of the spinal cord. Irreversible tissue-damage was observed in histological sections prepared from the compressed areas of the spinal cord

  11. Breaking into the epithelial apical-junctional complex--news from pathogen hackers.

    Science.gov (United States)

    Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James

    2004-02-01

    The epithelial apical-junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical-junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical-junctional complex of the Ig superfamily--junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor--are important regulators of junction structure and function and represent critical targets of microbial virulence gene products.

  12. Dilute Nitrides For 4-And 6- Junction Space Solar Cells

    Science.gov (United States)

    Essig, S.; Stammler, E.; Ronsch, S.; Oliva, E.; Schachtner, M.; Siefer, G.; Bett, A. W.; Dimroth, F.

    2011-10-01

    According to simulations the efficiency of conventional, lattice-matched GaInP/GaInAs/Ge triple-junction space solar cells can be strongly increased by the incorporation of additional junctions. In this way the existing excess current of the Germanium bottom cell can be reduced and the voltage of the stack can be increased. In particular, the use of 1.0 eV materials like GaInNAs opens the door for solar cells with significantly improved conversion efficiency. We have investigated the material properties of GaInNAs grown by metal organic vapour phase epitaxy (MOVPE) and its impact on the quantum efficiency of solar cells. Furthermore we have developed a GaInNAs subcell with a bandgap energy of 1.0 eV and integrated it into a GaInP/GaInAs/GaInNAs/Ge 4-junction and a AlGaInP/GaInP/AlGaInAs/GaInAs/GaInNAs/Ge 6- junction space solar cell. The material quality of the dilute nitride junction limits the current density of these devices to 9.3 mA/cm2 (AM0). This is not sufficient for a 4-junction cell but may lead to current matched 6- junction devices in the future.

  13. Josephson junctions in high-T/sub c/ superconductors

    Science.gov (United States)

    Falco, C.M.; Lee, T.W.

    1981-01-14

    The invention includes a high T/sub c/ Josephson sperconducting junction as well as the method and apparatus which provides the junction by application of a closely controlled and monitored electrical discharge to a microbridge region connecting two portions of a superconducting film.

  14. Modeling Bloch oscillations in ultra-small Josephson junctions

    Science.gov (United States)

    Vora, Heli; Kautz, Richard; Nam, Sae Woo; Aumentado, Jose

    In a seminal paper, Likharev et al. developed a theory for ultra-small Josephson junctions with Josephson coupling energy (Ej) less than the charging energy (Ec) and showed that such junctions demonstrate Bloch oscillations which could be used to make a fundamental current standard that is a dual of the Josephson volt standard. Here, based on the model of Geigenmüller and Schön, we numerically calculate the current-voltage relationship of such an ultra-small junction which includes various error processes present in a nanoscale Josephson junction such as random quasiparticle tunneling events and Zener tunneling between bands. This model allows us to explore the parameter space to see the effect of each process on the width and height of the Bloch step and serves as a guide to determine whether it is possible to build a quantum current standard of a metrological precision using Bloch oscillations.

  15. Majorana splitting from critical currents in Josephson junctions

    Science.gov (United States)

    Cayao, Jorge; San-Jose, Pablo; Black-Schaffer, Annica M.; Aguado, Ramón; Prada, Elsa

    2017-11-01

    A semiconducting nanowire with strong Rashba spin-orbit coupling and coupled to a superconductor can be tuned by an external Zeeman field into a topological phase with Majorana zero modes. Here we theoretically investigate how this exotic topological superconductor phase manifests in Josephson junctions based on such proximitized nanowires. In particular, we focus on critical currents in the short junction limit (LN≪ξ , where LN is the junction length and ξ is the superconducting coherence length) and show that they contain important information about nontrivial topology and Majoranas. This includes signatures of the gap inversion at the topological transition and a unique oscillatory pattern that originates from Majorana interference. Interestingly, this pattern can be modified by tuning the transmission across the junction, thus providing complementary evidence of Majoranas and their energy splittings beyond standard tunnel spectroscopy experiments, while offering further tunability by virtue of the Josephson effect.

  16. AlGaAs/InGaAlP tunnel junctions for multijunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    SHARPS,P.R.; LI,N.Y.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

    2000-05-16

    Optimization of GaInP{sub 2}/GaAs dual and GaInP{sub 2}/GaAs/Ge triple junction cells, and development of future generation monolithic multi-junction cells will involve the development of suitable high bandgap tunnel junctions. There are three criteria that a tunnel junction must meet. First, the resistance of the junction must be kept low enough so that the series resistance of the overall device is not increased. For AMO, 1 sun operation, the tunnel junction resistance should be below 5 x 10{sup {minus}2} {Omega}-cm. Secondly, the peak current density for the tunnel junction must also be larger than the J{sub sc} of the cell so that the tunnel junction I-V curve does not have a deleterious effect on the I-V curve of the multi-junction device. Finally, the tunnel junction must be optically transparent, i.e., there must be a minimum of optical absorption of photons that will be collected by the underlying subcells. The paper reports the investigation of four high bandgap tunnel junctions grown by metal-organic chemical vapor deposition.

  17. Critical current fluctuation in a microwave-driven Josephson junction

    International Nuclear Information System (INIS)

    Dong Ning; Sun Guozhu; Wang Yiwen; Cao Junyu; Yu Yang; Chen Jian; Kang Lin; Xu Weiwei; Han Siyuan; Wu Peiheng

    2007-01-01

    Josephson junction devices are good candidates for quantum computation. A large energy splitting was observed in the spectroscopy of a superconducting Josephson junction. The presence of the critical current fluctuation near the energy splitting indicated coupling between the junction and a two-level system. Furthermore, we find that this fluctuation is microwave dependent. It only appears at certain microwave frequency. This relation suggested that the decoherence of qubits is influenced by the necessary computing operations

  18. Junction Propagation in Organometal Halide Perovskite-Polymer Composite Thin Films.

    Science.gov (United States)

    Shan, Xin; Li, Junqiang; Chen, Mingming; Geske, Thomas; Bade, Sri Ganesh R; Yu, Zhibin

    2017-06-01

    With the emergence of organometal halide perovskite semiconductors, it has been discovered that a p-i-n junction can be formed in situ due to the migration of ionic species in the perovskite when a bias is applied. In this work, we investigated the junction formation dynamics in methylammonium lead tribromide (MAPbBr 3 )/polymer composite thin films. It was concluded that the p- and n- doped regions propagated into the intrinsic region with an increasing bias, leading to a reduced intrinsic perovskite layer thickness and the formation of an effective light-emitting junction regardless of perovskite layer thicknesses (300 nm to 30 μm). The junction propagation also played a major role in deteriorating the LED operation lifetime. Stable perovskite LEDs can be achieved by restricting the junction propagation after its formation.

  19. Magnetic field behavior of current steps in long Josephson junctions

    International Nuclear Information System (INIS)

    Costabile, G.; Cucolo, A.M.; Pace, S.; Parmentier, R.D.; Savo, B.; Vaglio, R.

    1980-01-01

    The zero-field steps, or dc current singularities, in the current-voltage characteristics of long Josephson tunnel junctions, first reported by Chen et al., continue to attract research interest both because their study can provide fundamental information on the dynamics of fluxons in such junctions and because they are accompanied by the emission of microwave radiation from the junction, which may be exploitable in practical oscillator applications. The purpose of this paper is to report some experimental observations of the magnetic field behavior of the steps in junctions fabricated in our Laboratory and to offer a qualitative explanation for this behavior. Measurements have been made both for very long (L >> lambdasub(J)) and for slightly long (L approx. >= lambdasub(J)) junctions with a view toward comparing our results with those of other workers. (orig./WRI)

  20. Environmental Audit of the Grand Junction Projects Office

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    The Grand Junction Projects Office (GJPO) is located in Mesa County, Colorado, immediately south and west of the Grand Junction city limits. The US Atomic Energy Commission (AEC) established the Colorado Raw Materials Office at the present-day Grand Junction Projects Office in 1947, to aid in the development of a viable domestic uranium industry. Activities at the site included sampling uranium concentrate; pilot-plant milling research, including testing and processing of uranium ores; and operation of a uranium mill pilot plant from 1954 to 1958. The last shipment of uranium concentrate was sent from GJPO in January, 1975. Since that time the site has been utilized to support various DOE programs, such as the former National Uranium Resource Evaluation (NURE) Program, the Uranium Mill Tailings Remedial Action Project (UMTRAP), the Surplus Facilities Management Program (SFMP), and the Technical Measurements Center (TMC). All known contamination at GJPO is believed to be the result of the past uranium milling, analyses, and storage activities. Hazards associated with the wastes impounded at GJPO include surface and ground-water contamination and potential radon and gamma-radiation exposure. This report documents the results of the Baseline Environmental Audit conducted at Grand Junction Projects Office (GJPO) located in Grand Junction, Colorado. The Grand Junction Baseline Environmental Audit was conducted from May 28 to June 12, 1991, by the Office of Environmental Audit (EH-24). This Audit evaluated environmental programs and activities at GJPO, as well as GJPO activities at the State-Owned Temporary Repository. 4 figs., 12 tabs.

  1. Environmental Audit of the Grand Junction Projects Office

    International Nuclear Information System (INIS)

    1991-08-01

    The Grand Junction Projects Office (GJPO) is located in Mesa County, Colorado, immediately south and west of the Grand Junction city limits. The US Atomic Energy Commission (AEC) established the Colorado Raw Materials Office at the present-day Grand Junction Projects Office in 1947, to aid in the development of a viable domestic uranium industry. Activities at the site included sampling uranium concentrate; pilot-plant milling research, including testing and processing of uranium ores; and operation of a uranium mill pilot plant from 1954 to 1958. The last shipment of uranium concentrate was sent from GJPO in January, 1975. Since that time the site has been utilized to support various DOE programs, such as the former National Uranium Resource Evaluation (NURE) Program, the Uranium Mill Tailings Remedial Action Project (UMTRAP), the Surplus Facilities Management Program (SFMP), and the Technical Measurements Center (TMC). All known contamination at GJPO is believed to be the result of the past uranium milling, analyses, and storage activities. Hazards associated with the wastes impounded at GJPO include surface and ground-water contamination and potential radon and gamma-radiation exposure. This report documents the results of the Baseline Environmental Audit conducted at Grand Junction Projects Office (GJPO) located in Grand Junction, Colorado. The Grand Junction Baseline Environmental Audit was conducted from May 28 to June 12, 1991, by the Office of Environmental Audit (EH-24). This Audit evaluated environmental programs and activities at GJPO, as well as GJPO activities at the State-Owned Temporary Repository. 4 figs., 12 tabs

  2. Absolute migration and the evolution of the Rodriguez triple junction ...

    African Journals Online (AJOL)

    The Rodriguez Triple Junction (RTJ) is a junction connecting three mid-ocean ridges in the Indian Ocean: the Southwest Indian Ridge (SWIR), the Central Indian Ridge (CIR) and the Southeast Indian Ridge (SEIR). The evolution of the RTJ has been studied extensively for the past 10 Ma and the triple junction is believed to ...

  3. Supercurrent and multiple Andreev reflections in micrometer-long ballistic graphene Josephson junctions.

    Science.gov (United States)

    Zhu, Mengjian; Ben Shalom, Moshe; Mishchsenko, Artem; Fal'ko, Vladimir; Novoselov, Kostya; Geim, Andre

    2018-02-08

    Ballistic Josephson junctions are predicted to support a number of exotic physics processess, providing an ideal system to inject the supercurrent in the quantum Hall regime. Herein, we demonstrate electrical transport measurements on ballistic superconductor-graphene-superconductor junctions by contacting graphene to niobium with a junction length up to 1.5 μm. Hexagonal boron nitride encapsulation and one-dimensional edge contacts guarantee high-quality graphene Josephson junctions with a mean free path of several micrometers and record-low contact resistance. Transports in normal states including the observation of Fabry-Pérot oscillations and Sharvin resistance conclusively witness the ballistic propagation in the junctions. The critical current density J C is over one order of magnitude larger than that of the previously reported junctions. Away from the charge neutrality point, the I C R N product (I C is the critical current and R N the normal state resistance of junction) is nearly a constant, independent of carrier density n, which agrees well with the theory for ballistic Josephson junctions. Multiple Andreev reflections up to the third order are observed for the first time by measuring the differential resistance in the micrometer-long ballistic graphene Josephson junctions.

  4. Shapiro and parametric resonances in coupled Josephson junctions

    International Nuclear Information System (INIS)

    Gaafar, Ma A; Shukrinov, Yu M; Foda, A

    2012-01-01

    The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We compare the current-voltage characteristics for a stack of coupled Josephson junctions under external irradiation calculated in the framework of CCJJ and CCJJ+DC models.

  5. Towards molecular electronics with large-area molecular junctions

    NARCIS (Netherlands)

    Akkerman, HB; Blom, PWM; de Leeuw, DM; de Boer, B

    2006-01-01

    Electronic transport through single molecules has been studied extensively by academic(1-8) and industrial(9,10) research groups. Discrete tunnel junctions, or molecular diodes, have been reported using scanning probes(11,12), break junctions(13,14), metallic crossbars(6) and nanopores(8,15). For

  6. Chlorpromazine reduces the intercellular communication via gap junctions in mammalian cells

    International Nuclear Information System (INIS)

    Orellana, Juan A.; Palacios-Prado, Nicolas; Saez, Juan C.

    2006-01-01

    In the work presented herein, we evaluated the effect of chlorpromazine (CPZ) on gap junctions expressed by two mammalian cell types; Gn-11 cells (cell line derived from mouse LHRH neurons) and rat cortical astrocytes maintained in culture. We also attempted to elucidate possible mechanisms of action of CPZ effects on gap junctions. CPZ, in concentrations comparable with doses used to treat human diseases, was found to reduce the intercellular communication via gap junctions as evaluated with measurements of dye coupling (Lucifer yellow). In both cell types, maximal inhibition of functional gap junctions was reached within about 1 h of treatment with CPZ, an recovery was almost complete at about 5 h after CPZ wash out. In both cell types, CPZ treatment increased the phosphorylation state of connexin43 (Cx43), a gap junction protein subunit. Moreover, CPZ reduced the reactivity of Cx43 (immunofluorescence) at cell interfaces and concomitantly increased its reactivity in intracellular vesicles, suggesting an increased retrieval from and/or reduced insertion into the plasma membrane. CPZ also caused cellular retraction reducing cell-cell contacts in a reversible manner. The reduction in contact area might destabilize existing gap junctions and abrogate formation of new ones. Moreover, the CPZ-induced reduction in gap junctional communication may depend on the connexins (Cxs) forming the junctions. If Cx43 were the only connexin expressed, MAPK-dependent phosphorylation of this connexin would induce closure of gap junction channels

  7. A universal route to fabricate n-i-p multi-junction polymer solar cells via solution processing

    NARCIS (Netherlands)

    Rasi, Dario Di Carlo; Hendriks, Koen H.; Heintges, Gael H. L.; Simone, Giulio; Gelinck, Gerwin H.; Gevaerts, Veronique S.; Andriessen, Ronn; Pirotte, Geert; Maes, Wouter; Li, Weiwei; Wienk, Martijn M.; Janssen, Rene A. J.

    The interconnection layer (ICL) that connects adjacent subcells electrically and optically in solution‐processed multi‐junction polymer solar cells must meet functional requirements in terms of work functions, conductivity, and transparency, but also be compatible with the multiple layer stack in

  8. Comparison of harmonic blade versus traditional approach in canine patients undergoing spinal decompressive surgery for naturally occurring thoracolumbar disk extrusion.

    Directory of Open Access Journals (Sweden)

    Bianca F Hettlich

    Full Text Available To assess feasibility of the harmonic Osteovue blade (HOB for use in the soft tissue approach for dogs undergoing hemilaminectomy and to compare outcomes between dogs undergoing HOB or traditional approach (TRAD.A prospective randomized clinical trial was performed using 20 client-owned dogs with thoracolumbar intervertebral disk extrusion requiring hemilaminectomy. Dogs were randomly assigned to HOB or TRAD. Neurologic function and pain scores were assessed pre-operatively. Intraoperative blood loss and surgical approach time as well as postoperative pain and wound healing scores were recorded. Additionally, neurologic recovery and owner perceived quality of life were recorded at day 10 and 30 postoperative.There was no significant difference in sex distribution, weight, age, preoperative neurological grade and pain score, and perioperative outcome measures between groups. Intraoperative total blood loss was minimal for HOB and TRAD (median: 0 ml (range 0-9 and 2.2 ml (range 0-6.8, respectively; p = 0.165 and approach times were similar (median: 7 min (range 5-12 and 8 min (range 5-13, respectively; p = 0.315. While changes in wound healing scores were similar, changes in postoperative pain scores and neurological function were significantly improved in the HOB compared to the TRAD group. Postoperative complications in the HOB group consisted of automutilation of part of the incision and development of a small soft, non-painful subcutaneous swelling in 1 dog each.The HOB is a safe and effective tool for the soft tissue approach for routine spinal surgery in dogs and is associated with decreased pain and increased neurological function post-surgery.

  9. ACCIDENT PREDICTION MODELS FOR UNSIGNALISED URBAN JUNCTIONS IN GHANA

    OpenAIRE

    Mohammed SALIFU, MSc., PhD, MIHT, MGhIE

    2004-01-01

    The main objective of this study was to provide an improved method for safety appraisal in Ghana through the development and application of suitable accident prediction models for unsignalised urban junctions. A case study was designed comprising 91 junctions selected from the two most cosmopolitan cities in Ghana. A wide range of traffic and road data together with the corresponding accident data for each junction for the three-year period 1996-1998 was utilized in the model development p...

  10. Not only … but also: REM sleep creates and NREM Stage 2 instantiates landmark junctions in cortical memory networks.

    Science.gov (United States)

    Llewellyn, Sue; Hobson, J Allan

    2015-07-01

    This article argues both rapid eye movement (REM) and non-rapid eye movement (NREM) sleep contribute to overnight episodic memory processes but their roles differ. Episodic memory may have evolved from memory for spatial navigation in animals and humans. Equally, mnemonic navigation in world and mental space may rely on fundamentally equivalent processes. Consequently, the basic spatial network characteristics of pathways which meet at omnidirectional nodes or junctions may be conserved in episodic brain networks. A pathway is formally identified with the unidirectional, sequential phases of an episodic memory. In contrast, the function of omnidirectional junctions is not well understood. In evolutionary terms, both animals and early humans undertook tours to a series of landmark junctions, to take advantage of resources (food, water and shelter), whilst trying to avoid predators. Such tours required memory for emotionally significant landmark resource-place-danger associations and the spatial relationships amongst these landmarks. In consequence, these tours may have driven the evolution of both spatial and episodic memory. The environment is dynamic. Resource-place associations are liable to shift and new resource-rich landmarks may be discovered, these changes may require re-wiring in neural networks. To realise these changes, REM may perform an associative, emotional encoding function between memory networks, engendering an omnidirectional landmark junction which is instantiated in the cortex during NREM Stage 2. In sum, REM may preplay associated elements of past episodes (rather than replay individual episodes), to engender an unconscious representation which can be used by the animal on approach to a landmark junction in wake. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Droplet Traffic Control at a simple T junction

    Science.gov (United States)

    Panizza, Pascal; Engl, Wilfried; Colin, Annie; Ajdari, Armand

    2006-03-01

    A basic yet essential element of every traffic flow control is the effect of a junction where the flow is separated into several streams. How do pedestrians, vehicles or blood cells divide when they reach a junction? How does the outcome depend on their density? Similar fundamental questions hold for much simpler systems: in this paper, we have studied the behaviour of periodic trains of water droplets flowing in oil through a channel as they reach a simple, locally symmetric, T junction. Depending on their dilution, we observe that the droplets are either alternately partitioned between both outlets or sorted exclusively into the shortest one. We show that this surprising behaviour results from the hydrodynamic feed-back of drops in the two outlets on the selection process occurring at the junction. Our results offer a first guide for the design and modelling of droplet traffic in complex branched networks, a necessary step towards parallelized droplet-based ``lab-on-chip'' devices.

  12. Evidence for differential changes of junctional complex proteins in murine neurocysticercosis dependent upon CNS vasculature.

    Science.gov (United States)

    Alvarez, Jorge I; Teale, Judy M

    2007-09-12

    The delicate balance required to maintain homeostasis of the central nervous system (CNS) is controlled by the blood-brain barrier (BBB). Upon injury, the BBB is disrupted compromising the CNS. BBB disruption has been represented as a uniform event. However, our group has shown in a murine model of neurocysticercosis (NCC) that BBB disruption varies depending upon the anatomical site/vascular bed analyzed. In this study further understanding of the mechanisms of BBB disruption was explored in blood vessels located in leptomeninges (pial vessels) and brain parenchyma (parenchymal vessels) by examining the expression of junctional complex proteins in murine brain infected with Mesocestoides corti. Both pial and parenchymal vessels from mock infected animals showed significant colocalization of junctional proteins and displayed an organized architecture. Upon infection, the patterned organization was disrupted and in some cases, particular tight junction and adherens junction proteins were undetectable or appeared to be undergoing proteolysis. The extent and timing of these changes differed between both types of vessels (pial vessel disruption within days versus weeks for parenchymal vessels). To approach potential mechanisms, the expression and activity of matrix metalloproteinase-9 (MMP-9) were evaluated by in situ zymography. The results indicated an increase in MMP-9 activity at sites of BBB disruption exhibiting leukocyte infiltration. Moreover, the timing of MMP activity in pial and parenchymal vessels correlated with the timing of permeability disruption. Thus, breakdown of the BBB is a mutable process despite the similar structure of the junctional complex between pial and parenchymal vessels and involvement of MMP activity.

  13. MRI appearances of inflammatory vertebral osteitis in early ankylosing spondylitis

    Energy Technology Data Exchange (ETDEWEB)

    Kurugoglu, Sebuh; Kanberoglu, Kaya; Mihmanli, Ismail; Cokyuksel, Oktay [Department of Radiology, Cerrahpasa Medical Faculty, Istanbul University (Turkey); Kanberoglu, Ayfer [Department of Physical Medicine, SSK Istanbul Hospital, Istanbul (Turkey)

    2002-03-01

    Background: Undiagnosed and early ankylosing spondylitis (AS), especially in adolescent patients suffering from back pain, may present with the finding of vertebral osteitis on MRI. Aims: To identify the early MRI changes of vertebral osteitis in AS. Patients and methods: Five patients (three boys, two girls) aged 11-20 years (mean 15.4 years) suffering from back pain underwent MRI of the thoracolumbar spine. There was no initial diagnosis of AS. After clinical and radiological suspicion of AS, MRI of the sacroiliac (SI) joints was performed. Results: During the course of AS, destructive and reactive changes affect the discovertebral junctions that are initially seen in the thoracolumbar area. At this stage plain radiography of the spinal column may be normal. On MR images, inflammatory osteitis of the vertebrae is seen as hypointense areas on T1-weighted images and hyperintense areas on T2-W images. The lesions enhance homogenously with contrast material. Conclusions: Awareness of the MRI appearances of vertebral osteitis is helpful in suspecting AS. Radiological examination of the SI facilitates the diagnosis and unnecessary further imaging can be avoided. (orig.)

  14. The string-junction picture of multiquark states: an update

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, G.C. [Dipartimento di Fisica, Università di Roma Tor Vergata, INFN, Sezione di Roma 2, Via della Ricerca Scientifica, 00133 Roma (Italy); Centro Fermi, Museo Storico della Fisica,Piazza del Viminale 1, 00184 Roma (Italy); Veneziano, G. [Collège de France,11 place M. Berthelot, 75005 Paris (France); Theory Division, CERN,CH-1211 Geneva 23 (Switzerland); Dipartimento di Fisica, Università di Roma La Sapienza,Piazzale A. Moro 5, 00185 Roma (Italy)

    2016-06-07

    We recall and update, both theoretically and phenomenologically, our (nearly) forty-years-old proposal of a string-junction as a necessary complement to the conventional classification of hadrons based just on their quark-antiquark constituents. In that proposal single (though in general metastable) hadronic states are associated with “irreducible' gauge-invariant operators consisting of Wilson lines (visualized as strings of color flux tubes) that may either end on a quark or an antiquark, or annihilate in triplets at a junction J or an anti-junction J̄. For the junction-free sector (ordinary q q̄ mesons and glueballs) the picture is supported by large-N (number of colors) considerations as well as by a lattice strong-coupling expansion. Both imply the famous OZI rule suppressing quark-antiquark annihilation diagrams. For hadrons with J and/or J̄ constituents the same expansions support our proposal, including its generalization of the OZI rule to the suppression of J−J̄ annihilation diagrams. Such a rule implies that hadrons with junctions are “mesophobic' and thus unusually narrow if they are below threshold for decaying into as many baryons as their total number of junctions (two for a tetraquark, three for a pentaquark). Experimental support for our claim, based on the observation that narrow multiquark states typically lie below (well above) the relevant baryonic (mesonic) thresholds, will be presented.

  15. Vector spin modeling for magnetic tunnel junctions with voltage dependent effects

    International Nuclear Information System (INIS)

    Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.

    2014-01-01

    Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects

  16. Risk Factors for the Failure of Spinal Burst Fractures Treated Conservatively According to the Thoracolumbar Injury Classification and Severity Score (TLICS: A Retrospective Cohort Trial.

    Directory of Open Access Journals (Sweden)

    Jieliang Shen

    Full Text Available The management of thoracolumbar (TL burst fractures is still controversial. The thoracolumbar injury classification and severity score (TLICS algorithm is now widely used to guide clinical decision making, however, in clinical practice, we come to realize that TLICS also has its limitations for treating patients with total scores less than 4, for which conservative treatment may not be optimal in all cases.The aim of this study is to identify several risk factors for the failure of conservative treatment of TL burst fractures according to TLICS algorithm.From June 2008 to December 2013, a cohort of 129 patients with T10-l2 TL burst fractures with a TLISC score ≤3 treated non-operatively were identified and included into this retrospective study. Age, sex, pain intensity, interpedicular distance (IPD, canal compromise, loss of vertebral body height and kyphotic angle (KA were selected as potential risk factors and compared between the non-operative success group and the non-operative failure group.One hundred and four patients successfully completed non-operative treatment, the other 25 patients were converted to surgical treatment because of persistent local back pain or progressive neurological deficits during follow-up. Our results showed that age, visual analogue scale (VAS score and IPD, KA were significantly different between the two groups. Furthermore, regression analysis indicated that VAS score and IPD could be considered as significant predictors for the failure of conservative treatment.The recommendation of non-operative treatment for TLICS score ≤3 has limitations in some patients, and VAS score and IPD could be considered as risk factors for the failure of conservative treatment. Thus, conservative treatment should be decided with caution in patients with greater VAS scores or IPD. If non-operative management is decided, a close follow-up is necessary.

  17. Multiscale modeling of current-induced switching in magnetic tunnel junctions using ab initio spin-transfer torques

    Science.gov (United States)

    Ellis, Matthew O. A.; Stamenova, Maria; Sanvito, Stefano

    2017-12-01

    There exists a significant challenge in developing efficient magnetic tunnel junctions with low write currents for nonvolatile memory devices. With the aim of analyzing potential materials for efficient current-operated magnetic junctions, we have developed a multi-scale methodology combining ab initio calculations of spin-transfer torque with large-scale time-dependent simulations using atomistic spin dynamics. In this work we introduce our multiscale approach, including a discussion on a number of possible schemes for mapping the ab initio spin torques into the spin dynamics. We demonstrate this methodology on a prototype Co/MgO/Co/Cu tunnel junction showing that the spin torques are primarily acting at the interface between the Co free layer and MgO. Using spin dynamics we then calculate the reversal switching times for the free layer and the critical voltages and currents required for such switching. Our work provides an efficient, accurate, and versatile framework for designing novel current-operated magnetic devices, where all the materials details are taken into account.

  18. Mixing Hot and Cold Water Streams at a T-Junction

    Science.gov (United States)

    Sharp, David; Zhang, Mingqian; Xu, Zhenghe; Ryan, Jim; Wanke, Sieghard; Afacan, Artin

    2008-01-01

    A simple mixing of a hot- and cold-water stream at a T-junction was investigated. The main objective was to use mass and energy balance equations to predict mass low rates and the temperature of the mixed stream after the T-junction, and then compare these with the measured values. Furthermore, the thermocouple location after the T-junction and…

  19. Vortex dynamics in Josephson ladders with II-junctions

    DEFF Research Database (Denmark)

    Kornev, Victor K.; Klenov, N. V.; Oboznov, V.A.

    2004-01-01

    Both experimental and numerical studies of a self-frustrated triangular array of pi-junctions are reported. The array of SFS Josephson junctions shows a transition to the pi-state and self-frustration with a decrease in temperature. This manifests itself in a half-period shift of the bias critica...

  20. Optically induced bistable states in metal/tunnel-oxide/semiconductor /MTOS/ junctions

    Science.gov (United States)

    Lai, S. K.; Dressendorfer, P. V.; Ma, T. P.; Barker, R. C.

    1981-01-01

    A new switching phenomenon in metal-oxide semiconductor tunnel junction has been discovered. With a sufficiently large negative bias applied to the electrode, incident visible light of intensity greater than about 1 microW/sq cm causes the reverse-biased junction to switch from a low-current to a high-current state. It is believed that hot-electron-induced impact ionization provides the positive feedback necessary for switching, and causes the junction to remain in its high-current state after the optical excitation is removed. The junction may be switched back to the low-current state electrically. The basic junction characteristics have been measured, and a simple model for the switching phenomenon has been developed.

  1. Marker of cemento-periodontal ligament junction associated with periodontal regeneration.

    Science.gov (United States)

    Hara, Ryohko; Wato, Masahiro; Tanaka, Akio

    2005-06-01

    The purpose of this study was to identify factors promoting formation of the cemento-periodontal ligament junction. Regeneration of the cemento-periodontal ligament junction is an important factor in recovery of the connective tissue attachment to the cementum and it is important to identify all specific substances that promote its formation. To clarify the substances involved in cemento-periodontal ligament junction formation, we produced a monoclonal antibody (mAb) to human cemento-periodontal ligament junction (designated as the anti-TAP mAb) and examined its immunostaining properties and reactive antigen. Hybridomas producing monoclonal antibody against human cemento-periodontal ligament junction antigens were established by fusing P3U1 mouse myeloma cells with spleen cells from BALB/c mice immunized with homogenized human cemento-periodontal ligament junction. The mAb, the anti-TAP mAb for cemento-periodontal ligament junction, was then isolated. The immunoglobulin class and light chain of the mAb were examined using an isotyping kit. Before immunostaining, antigen determination using an enzymatic method or heating was conducted. Human teeth, hard tissue-forming lesions, and animal tissues were immunostained by the anti-TAP mAb. The anti-TAP mAb was positive in human cemento-periodontal ligament junction and predentin but negative in all other human and animal tissues examined. In the cemento-osseous lesions, the anti-TAP mAb was positive in the peripheral area of the cementum and cementum-like hard tissues and not in the bone and bone-like tissues. The anti-TAP mAb showed IgM (kappa) and recognized phosphoprotein. The anti-TAP mAb is potentially useful for developing new agents promoting cementogenesis and periodontal regeneration.

  2. Cdc42 is crucial for the maturation of primordial cell junctions in keratinocytes independent of Rac1

    DEFF Research Database (Denmark)

    Du, Dan; Pedersen, Esben; Wang, Zhipeng

    2008-01-01

    Cell-cell contacts are crucial for the integrity of all tissues. Contrasting reports have been published about the role of Cdc42 in epithelial cell-cell contacts in vitro. In keratinocytes, it was suggested that Rac1 and not Cdc42 is crucial for the formation of mature epithelial junctions, based...... on dominant negative inhibition experiments. Deletion of the Cdc42 gene in keratinocytes in vivo slowly impaired the maintenance of cell-cell contacts by an increased degradation of beta-catenin. Whether Cdc42 is required for the formation of mature junctions was not tested. We show now that Cdc42-deficient...... immortalized and primary keratinocytes form only punctate primordial cell contacts in vitro, which cannot mature into belt-like junctions. This defect was independent of enhanced degradation of beta-catenin, but correlated to an impaired activation and localization of aPKCzeta in the Cdc42-null keratinocytes...

  3. A numerical model of p-n junctions bordering on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Altermatt, P.P.; Aberle, A.G.; Jianhua Zhao; Aihua Wang; Heiser, G. [University of New South Wales, Sydney (Australia). Centre for Photovolatic Engineering

    2002-10-01

    Many solar cell structures contain regions where the emitter p-n junction borders on the surface. If the surface is not well passivated, a large amount of recombination occurs in such regions. This type of recombination is influenced by the electrostatics of both the p-n junction and the surface, and hence it is different from the commonly described recombination phenomena occurring in the p-n junction within the bulk. We developed a two-dimensional model for the recombination mechanisms occurring in emitter p-n junctions bordering on surfaces. The model is validated by reproducing the experimental I-V curves of specially designed silicon solar cells. It is shown under which circumstances a poor surface passivation, near where the p-n junction borders on the surface, reduces the fill factor and the open-circuit voltage. The model can be applied to many other types of solar cells. (author)

  4. Preparation of CN /Carbon Nanotube Intramolecular Junctions by ...

    African Journals Online (AJOL)

    NICO

    intramolecular junctions composed of CNx with a bamboo-like structure and empty hollow carbon nanotubes were observed, ... and excellent thermal and mechanical properties.1,2 In recent .... tion of hexane, and the other segment with a curved compart- ... by an arrow lies at the interface of the junction between 'b' and.

  5. Systematic optimization of quantum junction colloidal quantum dot solar cells

    KAUST Repository

    Liu, Huan

    2012-01-01

    The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum junction solar cell that leverages an improved aluminum zinc oxide electrode for a stable contact to the n-side of the quantum junction and silver doping of the p-layer that greatly enhances the photocurrent by expanding the depletion region in the n-side of the device. These improvements result in greater stability and a power conversion efficiency of 6.1 under AM1.5 simulated solar illumination. © 2012 American Institute of Physics.

  6. Proliferation of sharp kinks on cosmic (super)string loops with junctions

    International Nuclear Information System (INIS)

    Binetruy, P.; Bohe, A.; Hertog, T.; Steer, D. A.

    2010-01-01

    Motivated by their effect on the gravitational wave signal emitted by cosmic strings, we study the dynamics of kinks on strings of different tensions meeting at junctions. The propagation of a kink through a Y junction leads to the formation of three 'daughter' kinks. Assuming a uniform distribution of the incoming wave vectors at the junction, we find there is a significant region of configuration space in which the sharpness of at least one of the daughter kinks is enhanced relative to the sharpness of the initial kink. For closed loops with junctions we show this leads to an exponential growth in time of very sharp kinks. Using numerical simulations of realistic, evolving cosmic string loops with junctions to calculate the distribution of kink amplitudes as a function of time, we show that loops of this kind typically develop several orders of magnitude of very sharp kinks before the two junctions collide. This collision, or other effects such as gravitational backreaction, may end the proliferation.

  7. Vertebral body trabecular density at the thoracolumbar junction using quantitative computed tomography

    International Nuclear Information System (INIS)

    Singer, K.P.; Breidahl, P.D.; Royal Perth Hospital

    1990-01-01

    Quantitative computed tomography was used to assess vertebral trabecular density in 26 post-mortem spines from individuals aged between 14 and 80 years. All vertebrae from T10 to L1 were scanned transversely near the mid-vertebral level with calculations of trabecular density in HUs averaged and referenced to a mineral equivalent phantom. An age-related decline in trabecular density was recorded (r=0.55, p<0.0001). Density measures from the anterior aspect of the vertebral body were significantly greater than from postero-lateral regions. From T10 to L1, there was a significant decrease in trabecular density, whereas density measures multiplied by vertebral body cross-sectional area were constant. Predictions of vertebral compressive strength using quantitative computed tomography may become more accurate by increasing the sampling area per scan and including vertebral body cross-sectional area as part of the radiologic assessment. (orig.)

  8. On-Line Junction Temperature Monitoring of Switching Devices with Dynamic Compact Thermal Models Extracted with Model Order Reduction

    Directory of Open Access Journals (Sweden)

    Fabio Di Napoli

    2017-02-01

    Full Text Available Residual lifetime estimation has gained a key point among the techniques that improve the reliability and the efficiency of power converters. The main cause of failures are the junction temperature cycles exhibited by switching devices during their normal operation; therefore, reliable power converter lifetime estimation requires the knowledge of the junction temperature time profile. Since on-line dynamic temperature measurements are extremely difficult, in this work an innovative real-time monitoring strategy is proposed, which is capable of estimating the junction temperature profile from the measurement of the dissipated powers through an accurate and compact thermal model of the whole power module. The equations of this model can be easily implemented inside a FPGA, exploiting the control architecture already present in modern power converters. Experimental results on an IGBT power module demonstrate the reliability of the proposed method.

  9. Field-In-Field Technique With Intrafractionally Modulated Junction Shifts for Craniospinal Irradiation

    International Nuclear Information System (INIS)

    Yom, Sue S.; Frija, Erik K. C.; Mahajan, Anita; Chang, Eric; Klein, Kelli C.; Shiu, Almon; Ohrt, Jared; Woo, Shiao

    2007-01-01

    Purpose: To plan craniospinal irradiation with 'field-in-field' (FIF) homogenization in combination with daily, intrafractional modulation of the field junctions, to minimize the possibility of spinal cord overdose. Methods and Materials: Lateral cranial fields and posterior spinal fields were planned using a forward-planned, step-and-shoot FIF technique. Field junctions were automatically modulated and custom-weighted for maximal homogeneity within each treatment fraction. Dose-volume histogram analyses and film dosimetry were used to assess results. Results: Plan inhomogeneity improved with FIF. Planning with daily modulated junction shifts provided consistent dose delivery during each fraction of treatment across the junctions. Modulation minimized the impact of a 5-mm setup error at the junction. Film dosimetry confirmed that no point in the junction exceeded the anticipated dose. Conclusions: Field-in-field planning and modulated junction shifts improve the homogeneity and consistency of daily dose delivery, simplify treatment, and reduce the impact of setup errors

  10. Direct analysis of Holliday junction resolving enzyme in a DNA origami nanostructure.

    Science.gov (United States)

    Suzuki, Yuki; Endo, Masayuki; Cañas, Cristina; Ayora, Silvia; Alonso, Juan C; Sugiyama, Hiroshi; Takeyasu, Kunio

    2014-06-01

    Holliday junction (HJ) resolution is a fundamental step for completion of homologous recombination. HJ resolving enzymes (resolvases) distort the junction structure upon binding and prior cleavage, raising the possibility that the reactivity of the enzyme can be affected by a particular geometry and topology at the junction. Here, we employed a DNA origami nano-scaffold in which each arm of a HJ was tethered through the base-pair hybridization, allowing us to make the junction core either flexible or inflexible by adjusting the length of the DNA arms. Both flexible and inflexible junctions bound to Bacillus subtilis RecU HJ resolvase, while only the flexible junction was efficiently resolved into two duplexes by this enzyme. This result indicates the importance of the structural malleability of the junction core for the reaction to proceed. Moreover, cleavage preferences of RecU-mediated reaction were addressed by analyzing morphology of the reaction products. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. GaAs nanowire array solar cells with axial p-i-n junctions.

    Science.gov (United States)

    Yao, Maoqing; Huang, Ningfeng; Cong, Sen; Chi, Chun-Yung; Seyedi, M Ashkan; Lin, Yen-Ting; Cao, Yu; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2014-06-11

    Because of unique structural, optical, and electrical properties, solar cells based on semiconductor nanowires are a rapidly evolving scientific enterprise. Various approaches employing III-V nanowires have emerged, among which GaAs, especially, is under intense research and development. Most reported GaAs nanowire solar cells form p-n junctions in the radial direction; however, nanowires using axial junction may enable the attainment of high open circuit voltage (Voc) and integration into multijunction solar cells. Here, we report GaAs nanowire solar cells with axial p-i-n junctions that achieve 7.58% efficiency. Simulations show that axial junctions are more tolerant to doping variation than radial junctions and lead to higher Voc under certain conditions. We further study the effect of wire diameter and junction depth using electrical characterization and cathodoluminescence. The results show that large diameter and shallow junctions are essential for a high extraction efficiency. Our approach opens up great opportunity for future low-cost, high-efficiency photovoltaics.

  12. Proposed differential-frequency-readout system by hysteretic Josephson junctions

    International Nuclear Information System (INIS)

    Wang, L.Z.; Duncan, R.V.

    1992-01-01

    The Josephson relation V=nhν/2e has been verified experimentally to 3 parts in 10 19 [A. K. Jain, J. E. Lukens, and J.-S. Tsai, Phys. Rev. Lett. 58, 1165 (1987)]. Motivated by this result, we propose a differential-frequency-readout system by two sets of hysteretic Josephson junctions rf biased at millimeter wavelengths. Because of the Josephson relation, the proposed differential-frequency-readout system is not limited by photon fluctuation, which limits most photon-detection schemes. In the context of the Stewart-McCumber model [W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968); D. E. McCumber, J. Appl. Phys. 39, 3113 (1968)] of Josephson junctions, we show theoretically that the differential frequency of the two milliwave biases can be read out by the proposed system to unprecedented accuracy. The stability of the readout scheme is also discussed. The measurement uncertainty of the readout system resulting from the intrinsic thermal noise in the hysteretic junctions is shown to be insignificant. The study of two single junctions can be extended to two sets of Josephson junctions connected in series (series array) in this measurement scheme provided that junctions are separated by at least 10 μm [D. W. Jillie, J. E. Lukens, and Y. H. Kao, Phys. Rev. Lett. 38, 915 (1977)]. The sensitivity for the differential frequency detection may be increased by biasing both series arrays to a higher constant-voltage step

  13. Human zonulin, a potential modulator of intestinal tight junctions.

    Science.gov (United States)

    Wang, W; Uzzau, S; Goldblum, S E; Fasano, A

    2000-12-01

    Intercellular tight junctions are dynamic structures involved in vectorial transport of water and electrolytes across the intestinal epithelium. Zonula occludens toxin derived from Vibrio cholerae interacts with a specific intestinal epithelial surface receptor, with subsequent activation of a complex intracellular cascade of events that regulate tight junction permeability. We postulated that this toxin may mimic the effect of a functionally and immunologically related endogenous modulator of intestinal tight junctions. Affinity-purified anti-zonula occludens toxin antibodies and the Ussing chamber assay were used to screen for one or more mammalian zonula occludens toxin analogues in both fetal and adult human intestine. A novel protein, zonulin, was identified that induces tight junction disassembly in non-human primate intestinal epithelia mounted in Ussing chambers. Comparison of amino acids in the active zonula occludens toxin fragment and zonulin permitted the identification of the putative receptor binding domain within the N-terminal region of the two proteins. Zonulin likely plays a pivotal role in tight junction regulation during developmental, physiological, and pathological processes, including tissue morphogenesis, movement of fluid, macromolecules and leukocytes between the intestinal lumen and the interstitium, and inflammatory/autoimmune disorders.

  14. Large eddy simulation of a wing-body junction flow

    Science.gov (United States)

    Ryu, Sungmin; Emory, Michael; Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca

    2014-11-01

    We present numerical simulations of the wing-body junction flow experimentally investigated by Devenport & Simpson (1990). Wall-junction flows are common in engineering applications but relevant flow physics close to the corner region is not well understood. Moreover, performance of turbulence models for the body-junction case is not well characterized. Motivated by the insufficient investigations, we have numerically investigated the case with Reynolds-averaged Naiver-Stokes equation (RANS) and Large Eddy Simulation (LES) approaches. The Vreman model applied for the LES and SST k- ω model for the RANS simulation are validated focusing on the ability to predict turbulence statistics near the junction region. Moreover, a sensitivity study of the form of the Vreman model will also be presented. This work is funded under NASA Cooperative Agreement NNX11AI41A (Technical Monitor Dr. Stephen Woodruff)

  15. Mechanical break junctions: enormous information in a nanoscale package.

    Science.gov (United States)

    Natelson, Douglas

    2012-04-24

    Mechanical break junctions, particularly those in which a metal tip is repeatedly moved in and out of contact with a metal film, have provided many insights into electronic conduction at the atomic and molecular scale, most often by averaging over many possible junction configurations. This averaging throws away a great deal of information, and Makk et al. in this issue of ACS Nano demonstrate that, with both simulated and real experimental data, more sophisticated two-dimensional analysis methods can reveal information otherwise obscured in simple histograms. As additional measured quantities come into play in break junction experiments, including thermopower, noise, and optical response, these more sophisticated analytic approaches are likely to become even more powerful. While break junctions are not directly practical for useful electronic devices, they are incredibly valuable tools for unraveling the electronic transport physics relevant for ultrascaled nanoelectronics.

  16. BPS dynamics of the triple (p,q) string junction

    International Nuclear Information System (INIS)

    Rey, S.-J.; Yee, J.-T.

    1998-01-01

    We study the dynamics of the triple junction of (p,q) strings in type IIB string theory. We probe the tension and mass density of (p,q) strings by studying harmonic fluctuations of the triple junction. We show that they agree perfectly with the BPS formula provided a suitable geometric interpretation of the junction is given. We provide a precise statement of the BPS limit and force-balance property. At weak coupling and sufficiently dense limit, we argue that a (p,q) string embedded in the string network is a 'wiggly string', whose low-energy dynamics can be described via a renormalization group evolved, smooth effective non-relativistic string. We also suggest the possibility that, upon type IIB strings being promoted to the M-theory membrane, there can exist 'evanescent' bound-states at the triple junction in the continuum. (orig.)

  17. Symmetry breaking in SNS junctions: edge transport and field asymmetries

    Science.gov (United States)

    Suominen, Henri; Nichele, Fabrizio; Kjaergaard, Morten; Rasmussen, Asbjorn; Danon, Jeroen; Flensberg, Karsten; Levitov, Leonid; Shabani, Javad; Palmstrom, Chris; Marcus, Charles

    We study magnetic diffraction patterns in a tunable superconductor-semiconductor-superconductor junction. By utilizing epitaxial growth of aluminum on InAs/InGaAs we obtain transparent junctions which display a conventional Fraunhofer pattern of the critical current as a function of applied perpendicular magnetic field, B⊥. By studying the angular dependence of the critical current with applied magnetic fields in the plane of the junction we find a striking anisotropy. We attribute this effect to dephasing of Andreev states in the bulk of the junction, leading to SQUID like behavior when the magnetic field is applied parallel to current flow. Furthermore, in the presence of both in-plane and perpendicular fields, asymmetries in +/-B⊥ are observed. We suggest possible origins and discuss the role of spin-orbit and Zeeman physics together with a background disorder potential breaking spatial symmetries of the junction. Research supported by Microsoft Project Q, the Danish National Research Foundation and the NSF through the National Nanotechnology Infrastructure Network.

  18. Tunnel magnetoresistance in double spin filter junctions

    International Nuclear Information System (INIS)

    Saffarzadeh, Alireza

    2003-01-01

    We consider a new type of magnetic tunnel junction, which consists of two ferromagnetic tunnel barriers acting as spin filters (SFs), separated by a nonmagnetic metal (NM) layer. Using the transfer matrix method and the free-electron approximation, the dependence of the tunnel magnetoresistance (TMR) on the thickness of the central NM layer, bias voltage and temperature in the double SF junction are studied theoretically. It is shown that the TMR and electron-spin polarization in this structure can reach very large values under suitable conditions. The highest value of the TMR can reach 99%. By an appropriate choice of the thickness of the central NM layer, the degree of spin polarization in this structure will be higher than that of the single SF junctions. These results may be useful in designing future spin-polarized tunnelling devices

  19. Breaking gold nano-junctions simulation and analysis

    DEFF Research Database (Denmark)

    Lauritzen, Kasper Primdal

    , to predict the structure of a gold junction just as it breaks. This method is based on artificial neural networks and can be used on experimental data, even when it is trained purely on simulated data. The method is extended to other types of experimental traces, where it is trained without the use......Simulating the movements of individual atoms allows us to look at and investigate the physical processes that happen in an experiment. In this thesis I use simulations to support and improve experimental studies of breaking gold nano-junctions. By using molecular dynamics to study gold nanowires, I...... can investigate their breaking forces under varying conditions, like stretching rate or temperature. This resolves a confusion in the literature, where the breaking forces of two different breaking structures happen to coincide. The correlations between the rupture and reformation of a gold junction...

  20. Membrane junctions in Xenopus eggs: their distribution suggests a role in calcium regulation.

    Science.gov (United States)

    Gardiner, D M; Grey, R D

    1983-04-01

    We have observed the presence of membrane junctions formed between the plasma membrane and cortical endoplasmic reticulum of mature, unactivated eggs of xenopus laevis. The parallel, paired membranes of the junction are separated by a 10-mn gap within which electron-dense material is present. This material occurs in patches with an average center-to-center distance of approximately 30 nm. These junctions are rare in immature (but fully grown) oocytes (approximately 2 percent of the plasma membrane is associated with junctions) and increase dramatically during progesterone-induced maturation. Junctions in the mature, unactivated egg are two to three times more abundant in the animal hemisphere (25-30 percent of the plasma membrane associated with junction) as compared with the vegetal hemisphere (10-15 percent). Junction density decreases rapidly to values characteristic of immature oocytes in response to egg activation. The plasma membrane-ER junctions of xenopus eggs are strikingly similar in structure to membrane junctions in muscle cells thought to be essential in the triggering of intracellular calcium release from the sarcoplasmic reticulum. In addition, the junctions' distinctive, animal-vegetal polarity of distribution, their dramatic appearance during maturation, and their disapperance during activation are correlated with previously documented patterns of calcium-mediated events in anuran eggs. We discuss several lines of evidence supporting the hypothesis that these junctions in xenopus eggs are sites that transduce extracellular events into intracellular calcium release during fertilization and activation of development.

  1. Stretching of BDT-gold molecular junctions: Thiol or thiolate termination?

    KAUST Repository

    Souza, Amaury De Melo; Rungger, Ivan; Pontes, Renato Borges; Rocha, Alexandre Reily; Da Silva, Antô nio José Roque; Schwingenschlö gl, Udo; Sanvito, S.

    2014-01-01

    It is often assumed that the hydrogen atoms in the thiol groups of a benzene-1,4-dithiol dissociate when Au-benzene-1,4-dithiol-Au junctions are formed. We demonstrate, by stability and transport property calculations, that this assumption cannot be made. We show that the dissociative adsorption of methanethiol and benzene-1,4-dithiol molecules on a flat Au(111) surface is energetically unfavorable and that the activation barrier for this reaction is as high as 1 eV. For the molecule in the junction, our results show, for all electrode geometries studied, that the thiol junctions are energetically more stable than their thiolate counterparts. Due to the fact that density functional theory (DFT) within the local density approximation (LDA) underestimates the energy difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital by several electron-volts, and that it does not capture the renormalization of the energy levels due to the image charge effect, the conductance of the Au-benzene-1,4-dithiol-Au junctions is overestimated. After taking into account corrections due to image charge effects by means of constrained-DFT calculations and electrostatic classical models, we apply a scissor operator to correct the DFT energy level positions, and calculate the transport properties of the thiol and thiolate molecular junctions as a function of the electrode separation. For the thiol junctions, we show that the conductance decreases as the electrode separation increases, whereas the opposite trend is found for the thiolate junctions. Both behaviors have been observed in experiments, therefore pointing to the possible coexistence of both thiol and thiolate junctions. Moreover, the corrected conductance values, for both thiol and thiolate, are up to two orders of magnitude smaller than those calculated with DFT-LDA. This brings the theoretical results in quantitatively good agreement with experimental data.

  2. Steady-state properties of Josephson junctions with direct conductivity

    International Nuclear Information System (INIS)

    Zubkov, A.A.; Kupriyanov, M.Y.; Semenov, V.K.

    1981-01-01

    A new criterion for determining the kinetic inductance of Josephson junctions is introduced. The effects of temperature T, the critical temperatures of the superconducting electrodes T/sub c/1 and T/sub c/2, and the weak-link length on the kinetic inductance of ''dirty'' junctions with direct conductivity are analyzed within the framework of the Usadel equations. Numerical calculations show that both a large characteristic voltage and a nearly harmonic dependence of the current on the phase difference of the superconducting-electrode wave functions cannot be obtained by varying the junction parameters

  3. Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks.

    Directory of Open Access Journals (Sweden)

    Mati Goldberg

    Full Text Available A new paradigm has recently emerged in brain science whereby communications between glial cells and neuron-glia interactions should be considered together with neurons and their networks to understand higher brain functions. In particular, astrocytes, the main type of glial cells in the cortex, have been shown to communicate with neurons and with each other. They are thought to form a gap-junction-coupled syncytium supporting cell-cell communication via propagating Ca(2+ waves. An identified mode of propagation is based on cytoplasm-to-cytoplasm transport of inositol trisphosphate (IP(3 through gap junctions that locally trigger Ca(2+ pulses via IP(3-dependent Ca(2+-induced Ca(2+ release. It is, however, currently unknown whether this intracellular route is able to support the propagation of long-distance regenerative Ca(2+ waves or is restricted to short-distance signaling. Furthermore, the influence of the intracellular signaling dynamics on intercellular propagation remains to be understood. In this work, we propose a model of the gap-junctional route for intercellular Ca(2+ wave propagation in astrocytes. Our model yields two major predictions. First, we show that long-distance regenerative signaling requires nonlinear coupling in the gap junctions. Second, we show that even with nonlinear gap junctions, long-distance regenerative signaling is favored when the internal Ca(2+ dynamics implements frequency modulation-encoding oscillations with pulsating dynamics, while amplitude modulation-encoding dynamics tends to restrict the propagation range. As a result, spatially heterogeneous molecular properties and/or weak couplings are shown to give rise to rich spatiotemporal dynamics that support complex propagation behaviors. These results shed new light on the mechanisms implicated in the propagation of Ca(2+ waves across astrocytes and the precise conditions under which glial cells may participate in information processing in the brain.

  4. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian

    2014-12-08

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green\\'s function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  5. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mairbek

    2014-01-01

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  6. Spinal Gap Junction Channels in Neuropathic Pain

    OpenAIRE

    Jeon, Young Hoon; Youn, Dong Ho

    2015-01-01

    Damage to peripheral nerves or the spinal cord is often accompanied by neuropathic pain, which is a complex, chronic pain state. Increasing evidence indicates that alterations in the expression and activity of gap junction channels in the spinal cord are involved in the development of neuropathic pain. Thus, this review briefly summarizes evidence that regulation of the expression, coupling, and activity of spinal gap junction channels modulates pain signals in neuropathic pain states induced...

  7. Junction temperature estimation for an advanced active power cycling test

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, S.

    2015-01-01

    estimation method using on-state VCE for an advanced active power cycling test is proposed. The concept of the advanced power cycling test is explained first. Afterwards the junction temperature estimation method using on-state VCE and current is presented. Further, the method to improve the accuracy...... of the maximum junction temperature estimation is also proposed. Finally, the validity and effectiveness of the proposed method is confirmed by experimental results.......On-state collector-emitter voltage (VCE) is a good indicator to determine the wear-out condition of power device modules. Further, it is a one of the Temperature Sensitive Electrical Parameters (TSEPs) and thus can be used for junction temperature estimation. In this paper, the junction temperature...

  8. Photovoltaic Cells Improvised With Used Bipolar Junction Transistors

    International Nuclear Information System (INIS)

    Akintayo, J. A

    2002-01-01

    The understanding of the underlying principle that the solar cell consists of a p-n junction is exploited to adapt the basic NPN or PNP Bipolar Junction Transistors (BJT) to serve as solar cells. In this mode the in improvised solar cell have employed just the emitter and the base sections with an intact emitter/base junction as the active PN area. The improvised devices tested screened and sorted are wired up in strings, blocks and modules. The photovoltaic modules realised tested as close replica of solar cells with output voltage following insolation level. Further work need be done on the modules to make them generate usable levels of output voltage and current

  9. Tuning spin transport across two-dimensional organometallic junctions

    Science.gov (United States)

    Liu, Shuanglong; Wang, Yun-Peng; Li, Xiangguo; Fry, James N.; Cheng, Hai-Ping

    2018-01-01

    We study via first-principles modeling and simulation two-dimensional spintronic junctions made of metal-organic frameworks consisting of two Mn-phthalocyanine ferromagnetic metal leads and semiconducting Ni-phthalocyanine channels of various lengths. These systems exhibit a large tunneling magnetoresistance ratio; the transmission functions of such junctions can be tuned using gate voltage by three orders of magnitude. We find that the origin of this drastic change lies in the orbital alignment and hybridization between the leads and the center electronic states. With physical insight into the observed on-off phenomenon, we predict a gate-controlled spin current switch based on two-dimensional crystallines and offer general guidelines for designing spin junctions using 2D materials.

  10. Measurement of noise in YBCO bi-crystal junctions

    International Nuclear Information System (INIS)

    Kuznik, J.; Hao, L.; Macfarlane, J.C.; Pegrum, C.M.; Fischer, G.M.; Mygind, J.; Pedersen, N.F.; Beck, A.; Gross, R.

    1993-01-01

    This paper describes collaborative work between three institutions as part of an ESPRIT programme to fabricate and characterise grain-boundary junctions. Bi-crystal junctions were fabricated at Tuebingen on SrTiO 3 substrates with a 24 misorientation angle and a-b tilt. 200nm of c-axis YBCO was sputter-deposited using a hollow-cathode magnetron, and the films patterned with optical lithography and Ar ion beam etching (3). For test purposes junctions with a range of sizes were made, with widths between 4 and 20μm. These have been characterised for noise properties at 0.3 - 1kHz and 60kHz at Strathclyde, and at 70GHz at Lyngby. (orig.)

  11. Resistance switch employing a simple metal nanogap junction

    International Nuclear Information System (INIS)

    Naitoh, Yasuhisa; Horikawa, Masayo; Abe, Hidekazu; Shimizu, Tetsuo

    2006-01-01

    In recent years, several researchers have reported the occurrence of reversible resistance switching effects in simple metal nanogap junctions. A large negative resistance is observed in the I-V characteristics of such a junction when high-bias voltages are applied. This phenomenon is characteristic behaviour on the nanometre scale; it only occurs for gap widths slightly under 13 nm. Furthermore, such a junction exhibits a non-volatile resistance hysteresis when the bias voltage is reduced very rapidly from a high level to around 0 V, and when the bias voltage is reduced slowly. This non-volatile resistance change occurs as a result of changes in the gap width between the metal electrodes, brought about by the applied bias voltage

  12. Surgical outcome of posterior decompression, posterolateral fusion and stabilization by pedicle screw and rod in thoracolumbar tuberculosis

    Directory of Open Access Journals (Sweden)

    Md. Anowarul Islam

    2017-05-01

    Full Text Available Spinal tuberculosis causes severe complications like neurological and spinal deformity which may lead to respiratory distress, costo-pelvic impingement, paraplegia and consequent reduction in the quality and longevity of life. The aim of the present treatment is to avoid the consequence of neural complications and gain near-normal spine. Mechanical factor causes pathological fracture or dislocation of an affected vertebral body. Surgical decompression ensues further instability. Reconstruction of spinal column by pedicle screw and rod provide stability and prevents secondary neural damage and deformity thereby helps in early mobilization. Prospective study was done to evaluate the results in 20 cases of spinal tuberculosis in thoracolumbar region associated with neurological deficit. We operated our cases (12 males and 8 females by posterolateral decompression, fusion and stabilization by pedicle screw and rod along with antitubercular drug treatment. All patients were with neurological deficit, single level involvement and 10 to 30 degree of mild kyphosis. After surgery, kyphosis improved from 20.7 ± 5.5 degrees to 12.5 ± 3.9 degree. Bony fusion was in 65.0% cases. Neurological improvement and pain subsided in all the patients.

  13. Investigation on Single-Molecule Junctions Based on Current–Voltage Characteristics

    Directory of Open Access Journals (Sweden)

    Yuji Isshiki

    2018-02-01

    Full Text Available The relationship between the current through an electronic device and the voltage across its terminals is a current–voltage characteristic (I–V that determine basic device performance. Currently, I–V measurement on a single-molecule scale can be performed using break junction technique, where a single molecule junction can be prepared by trapping a single molecule into a nanogap between metal electrodes. The single-molecule I–Vs provide not only the device performance, but also reflect information on energy dispersion of the electronic state and the electron-molecular vibration coupling in the junction. This mini review focuses on recent representative studies on I–Vs of the single molecule junctions that cover investigation on the single-molecule diode property, the molecular vibration, and the electronic structure as a form of transmission probability, and electronic density of states, including the spin state of the single-molecule junctions. In addition, thermoelectronic measurements based on I–Vs and identification of the charged carriers (i.e., electrons or holes are presented. The analysis in the single-molecule I–Vs provides fundamental and essential information for a better understanding of the single-molecule science, and puts the single molecule junction to more practical use in molecular devices.

  14. Simulations of signal amplification and oscillations using a SNS junction

    International Nuclear Information System (INIS)

    Luiz, A.M.; Soares, V.; Nicolsky, R.

    1998-01-01

    A superconducting - normal metal - superconducting junction (SNS junction) may exhibit a low voltage negative differential resistance (LVNDR) effect over part of its current voltage characteristic (CVC). As the LVNDR effect is stable against a bias voltage at this CVC range, it should be possible to combine a SNS junction with conventional electronic circuits to obtain electronic devices such as mixers, amplifiers and oscillators. Making use of this remarkable effect, we show that an amplifier may be feasible by assembling a simple voltage divider made up of a SNS junction in series with a resistor. The amplifier circuit includes an adjustable DC voltage supply (the bias voltage) and an AC signal source with a given voltage. The SNS junction is connected in series with a resistor R. Choosing values of the load resistance R approximately equal to the module of the negative differential resistance (dV/dI), at the bias voltage, we may obtain large gains in this amplifier device. In order to get an oscillator, the SNS junction should be connected to a RLC tank circuit with a bias voltage adjusted in the range of the LVNDR region of its CVC. A power output of the order of one microwatt may be easily obtained. (orig.)

  15. Terahertz Mixing Characteristics of NbN Superconducting Tunnel Junctions and Related Astronomical Observations

    Science.gov (United States)

    Li, J.

    2010-01-01

    High-sensitivity superconducting SIS (superconductor-insulator-superconductor) mixers are playing an increasingly important role in the terahertz (THz) astronomical observation, which is an emerging research frontier in modern astrophysics. Superconducting SIS mixers with niobium (Nb) tunnel junctions have reached a sensitivity close to the quantum limit, but have a frequency limit about 0.7 THz (i.e., gap frequency of Nb tunnel junctions). Beyond this frequency Nb superconducting films will absorb energetic photons (i.e., energy loss) to break Cooper pairs, thereby resulting in significant degradation of the mixer performance. Therefore, it is of particular interest to develop THz superconducting SIS mixers incorporating tunnel junctions with a larger energy gap. Niobium-nitride (NbN) superconducting tunnel junctions have been long known for their large energy gap, almost double that of Nb ones. With the introduction of epitaxially grown NbN films, the fabrication technology of NbN superconducting tunnel junctions has been considerably improved in the recent years. Nevertheless, their performances are still not as good as Nb ones, and furthermore they are not yet demonstrated in real astronomical applications. Given the facts mentioned above, in this paper we systematically study the quantum mixing behaviors of NbN superconducting tunnel junctions in the THz regime and demonstrate an astronomical testing observation with a 0.5 THz superconducting SIS mixer developed with NbN tunnel junctions. The main results of this study include: (1) successful design and fabrication of a 0.4˜0.6 THz waveguide mixing circuit with the high-dielectric-constant MgO substrate; (2) successful fabrication of NbN superconducting tunnel junctions with the gap voltage reaching 5.6 mV and the quality factor as high as 15; (3) demonstration of a 0.5 THz waveguide NbN superconducting SIS mixer with a measured receiver noise temperature (no correction) as low as five times the quantum limit

  16. SU-E-T-226: Junction Free Craniospinal Irradiation in Linear Accelerator Using Volumetric Modulated Arc Therapy : A Novel Technique Using Dose Tapering

    International Nuclear Information System (INIS)

    Sarkar, B; Roy, S; Paul, S; Munshi, A; Roy, Shilpi; Jassal, K; Ganesh, T; Mohanti, BK

    2014-01-01

    Purpose: Spatially separated fields are required for craniospinal irradiation due to field size limitation in linear accelerator. Field junction shits are conventionally done to avoid hot or cold spots. Our study was aimed to demonstrate the feasibility of junction free irradiation plan of craniospinal irradiation (CSI) for Meduloblastoma cases treated in linear accelerator using Volumetric modulated arc therapy (VMAT) technique. Methods: VMAT was planned using multiple isocenters in Monaco V 3.3.0 and delivered in Elekta Synergy linear accelerator. A full arc brain and 40° posterior arc spine fields were planned using two isocentre for short (<1.3 meter height ) and 3 isocentres for taller patients. Unrestricted jaw movement was used in superior-inferior direction. Prescribed dose to PTV was achieved by partial contribution from adjacent beams. A very low dose gradient was generated to taper the isodoses over a long length (>10 cm) at the conventional field junction. Results: In this primary study five patients were planned and three patients were delivered using this novel technique. As the dose contribution from the adjacent beams were varied (gradient) to create a complete dose distribution, therefore there is no specific junction exists in the plan. The junction were extended from 10–14 cm depending on treatment plan. Dose gradient were 9.6±2.3% per cm for brain and 7.9±1.7 % per cm for spine field respectively. Dose delivery error due to positional inaccuracy was calculated for brain and spine field for ±1mm, ±2mm, ±3mm and ±5 mm were 1%–0.8%, 2%–1.6%, 2.8%–2.4% and 4.3%–4% respectively. Conclusion: Dose tapering in junction free CSI do not require a junction shift. Therefore daily imaging for all the field is also not essential. Due to inverse planning dose to organ at risk like thyroid kidney, heart and testis can be reduced significantly. VMAT gives a quicker delivery than Step and shoot or dynamic IMRT

  17. SU-E-T-226: Junction Free Craniospinal Irradiation in Linear Accelerator Using Volumetric Modulated Arc Therapy : A Novel Technique Using Dose Tapering

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, B; Roy, S; Paul, S; Munshi, A; Roy, Shilpi; Jassal, K; Ganesh, T; Mohanti, BK [Fortis Memorial Research Institute, Gurgaon (India)

    2014-06-01

    Purpose: Spatially separated fields are required for craniospinal irradiation due to field size limitation in linear accelerator. Field junction shits are conventionally done to avoid hot or cold spots. Our study was aimed to demonstrate the feasibility of junction free irradiation plan of craniospinal irradiation (CSI) for Meduloblastoma cases treated in linear accelerator using Volumetric modulated arc therapy (VMAT) technique. Methods: VMAT was planned using multiple isocenters in Monaco V 3.3.0 and delivered in Elekta Synergy linear accelerator. A full arc brain and 40° posterior arc spine fields were planned using two isocentre for short (<1.3 meter height ) and 3 isocentres for taller patients. Unrestricted jaw movement was used in superior-inferior direction. Prescribed dose to PTV was achieved by partial contribution from adjacent beams. A very low dose gradient was generated to taper the isodoses over a long length (>10 cm) at the conventional field junction. Results: In this primary study five patients were planned and three patients were delivered using this novel technique. As the dose contribution from the adjacent beams were varied (gradient) to create a complete dose distribution, therefore there is no specific junction exists in the plan. The junction were extended from 10–14 cm depending on treatment plan. Dose gradient were 9.6±2.3% per cm for brain and 7.9±1.7 % per cm for spine field respectively. Dose delivery error due to positional inaccuracy was calculated for brain and spine field for ±1mm, ±2mm, ±3mm and ±5 mm were 1%–0.8%, 2%–1.6%, 2.8%–2.4% and 4.3%–4% respectively. Conclusion: Dose tapering in junction free CSI do not require a junction shift. Therefore daily imaging for all the field is also not essential. Due to inverse planning dose to organ at risk like thyroid kidney, heart and testis can be reduced significantly. VMAT gives a quicker delivery than Step and shoot or dynamic IMRT.

  18. Superconductor-Insulator transition in a single Josephson junction

    International Nuclear Information System (INIS)

    Sonin, E.B.; PenttilA, J.S.; Parts, O.; Hakonen, P.J.; Paalanen, M.A.

    1999-01-01

    For ultra small Josephson junctions, when quantum effects become important, dissipative phase transition (DPT) has been predicted. The physical origin of this transition is the suppression of macroscopic quantum tunneling of the phase by tile interaction with dissipative quantum-mechanical environment. Macroscopic quantum tunneling destroys superconductivity of a junction, whereas suppression of tunneling restores superconductivity. Hence, this transition is often called a superconductor-insulator transition (SIT). SIT was predicted for various systems, but its detection in a single Josephson junction is of principal importance since it is the simplest system where this transition is expected, without any risk of being masked by other physical processes, as is possible in more complicated systems like regular or' random Josephson junction arrays. In this Letter we present results of our measurements on R = dV/dI vs. I curves, for a variety of single small isolated Josephson junctions, shunted and un shunted, with different values of capacitance C and normal state tunneling resistance RT. We have detected a crossover. between two types of RI-curves with an essentially different behavior at small currents. On the basis of this crossover, we are able to map out the whole phase diagram for a Josephson junction. The position of the observed phase boundary did not agree with that expected from the original theory. However, the theory revised to take into account a finite accuracy of our voltage measurements (viz., the minimum voltage which we are able to detect), explains well the observed phase diagram. Our important conclusion is that the concept of dissipative phase transition (DPT) and superconductor-insulator transition (SIT) are not completely identical as assumed before. Both are accompanied by the sign change of the thermo resistance, which is traditionally considered as a signature of SIT. Thus any DPT is SIT, but not vice versa. We argue that the real signature

  19. MoRe-based and NbN-based tunnel junctions and their characteristics

    International Nuclear Information System (INIS)

    Shaternik, V.E.; Noskov, V.L.; Chubatyy, V.V.; Larkin, S.Yu.; Sizontov, V.M.; Miroshnikov, A.M.; Karmazin, A.A.

    2007-01-01

    Full text: Perspective [1] Josephson Mo-Re alloy-oxide-Pb, Mo-Re alloy-normal metal-oxide-Pb and Mo-Re alloy-normal metal-oxide- normal metal-Mo-Re alloy junctions have been fabricated and investigated. Thin (∼50-100 nm) MoRe superconducting films are deposited on Al 2 O 3 substrates by using a dc magnetron sputtering of MoRe target. Normal metal (Sn, Al) thin films are deposited on the MoRe films surfaces by thermal evaporation of metals in vacuum and oxidized to fabricate junctions oxide barriers. Quasiparticle I-V curves of the fabricated junctions were measured in wide range of voltages. To investigate a transparency spread for the fabricated junctions barriers the computer simulation of the measured quasiparticle I-V curves have been done in framework of the model of multiple Andreev reflections in double-barrier junction interfaces. It's demonstrated the investigated junctions can be described as highly asymmetric double-barrier Josephson junctions with great difference between the two barrier transparencies [2,3]. The result of the comparison of experimental quasiparticle I-V curves and calculated ones is proposed and discussed. Results of computer simulation of quasiparticles I-V curves of NbN-based junctions are presented and discussed. Also I-V curves of the fabricated junctions have been measured under microwave irradiation with 60 GHz frequency , clear Shapiro steps in the measured I-V curves were observed and discussed. (authors)

  20. Reliability of twin-dependent triple junction distributions measured from a section plane

    International Nuclear Information System (INIS)

    Hardy, Graden B.; Field, David P.

    2016-01-01

    Numerous studies indicate polycrystalline triple junctions are independent microstructural features with distinct properties from their constituent grain boundaries. Despite the influence of triple junctions on material properties, it is impractical to characterize triple junctions on a large scale using current three-dimensional methods. This work demonstrates the ability to characterize twin-dependent triple junction distributions from a section plane by adopting a grain boundary plane stereology. The technique is validated through simulated distributions and simulated electron back-scatter diffraction (EBSD) data. Measures of validation and convergence are adopted to demonstrate the quantitative reliability of the technique as well as the convergence behavior of twin-dependent triple junction distributions. This technique expands the characterization power of EBSD and prepares the way for characterizing general triple junction distributions from a section plane. - Graphical abstract: The distribution of planes forming a triple junction with a given twin boundary is shown partially in the stereographic projections below from a given projection. The plot on the left shows the ideal/measured distribution and the plot on the right shows the distribution obtained from the stereological method presented here.

  1. Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading.

    Science.gov (United States)

    Ignasiak, Dominika; Dendorfer, Sebastian; Ferguson, Stephen J

    2016-04-11

    Musculoskeletal modeling offers an invaluable insight into the spine biomechanics. A better understanding of thoracic spine kinetics is essential for understanding disease processes and developing new prevention and treatment methods. Current models of the thoracic region are not designed for segmental load estimation, or do not include the complex construct of the ribcage, despite its potentially important role in load transmission. In this paper, we describe a numerical musculoskeletal model of the thoracolumbar spine with articulated ribcage, modeled as a system of individual vertebral segments, elastic elements and thoracic muscles, based on a previously established lumbar spine model and data from the literature. The inverse dynamics simulations of the model allow the prediction of spinal loading as well as costal joints kinetics and kinematics. The intradiscal pressure predicted by the model correlated well (R(2)=0.89) with reported intradiscal pressure measurements, providing a first validation of the model. The inclusion of the ribcage did not affect segmental force predictions when the thoracic spine did not perform motion. During thoracic motion tasks, the ribcage had an important influence on the predicted compressive forces and muscle activation patterns. The compressive forces were reduced by up to 32%, or distributed more evenly between thoracic vertebrae, when compared to the predictions of the model without ribcage, for mild thoracic flexion and hyperextension tasks, respectively. The presented musculoskeletal model provides a tool for investigating thoracic spine loading and load sharing between vertebral column and ribcage during dynamic activities. Further validation for specific applications is still necessary. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Nonlinearity in superconductivity and Josephson junctions

    International Nuclear Information System (INIS)

    Lazarides, N.

    1995-01-01

    Within the framework of the Bardeen, Cooper and Schrieffers (BCS) theory, the influence of anisotropy on superconducting states are investigated. Crystal anisotropy exists in un-conventional low temperature superconductors as e.g. U 1-x Th x Be 13 and in high temperature superconductors. Starting from a phenomenological pairing interaction of the electrons or holes, the BCS approach is used to derive a set of coupled nonlinear algebraic equations for the momentum dependent gap parameter. The emphasis is put on bifurcation phenomena between s-, d-wave and mixed s- and d-wave symmetry and the influence on measurable quantities as the electron specific heat, spin susceptibility and Josephson tunnelling. Pitch-fork and perturbed pitch-fork bifurcations have been found separating s- and d-wave superconducting states from mixed s- and d-wave states. The additional superconducting states give rise to jumps in the electron specific heat below the transition temperature. These jumps are rounded in the case of perturbed pitch-fork bifurcations. An experiment to measure the sign of the interlayer interaction using dc SQUIDS is suggested. The Ambegaokar-Baratoff formalism has been used for calculating the quasiparticle current and the two phase coherent tunnelling currents in a Josephson junction made of anisotropic superconductors. It is shown that anisotropy can lead to a reduction in the product of the normal resistance and the critical current. For low voltages across the junction the usual resistively shunted Josephson model can be used. Finally, bunching in long circular Josephson junctions and suppression of chaos in point junctions have been investigated. (au) 113 refs

  3. Breaking into the epithelial apical–junctional complex — news from pathogen hackers

    Science.gov (United States)

    Vogelmann, Roger; Amieva, Manuel R; Falkow, Stanley; Nelson, W James

    2012-01-01

    The epithelial apical–junctional complex is a key regulator of cellular functions. In addition, it is an important target for microbial pathogens that manipulate the cell to survive, proliferate and sometimes persist within a host. Out of a myriad of potential molecular targets, some bacterial and viral pathogens have selected a subset of protein targets at the apical–junctional complex of epithelial cells. Studying how microbes use these targets also teaches us about the inherent physiological properties of host molecules in the context of normal junctional structure and function. Thus, we have learned that three recently uncovered components of the apical–junctional complex of the Ig superfamily — junctional adhesion molecule, Nectin and the coxsackievirus and adenovirus receptor — are important regulators of junction structure and function and represent critical targets of microbial virulence gene products. PMID:15037310

  4. Charge transport in junctions between d-wave superconductors

    International Nuclear Information System (INIS)

    Barash, Y.S.; Galaktionov, A.V.; Zaikin, A.D.

    1995-01-01

    We develop a microscopic analysis of superconducting and dissipative currents in junctions between superconductors with d-wave symmetry of the order parameter. We study the proximity effect in such superconductors and show that for certain crystal orientations the superconducting order parameter can be essentially suppressed in the vicinity of a nontransparent specularly reflecting boundary. This effect strongly influences the value and the angular dependence of the dc Josephson current j S . At T∼T c it leads to a crossover between j S ∝T c -T and j S ∝(T c -T) 2 respectively for homogeneous and nonhomogeneous distribution of the order parameter in the vicinity of a tunnel junction. We show that at low temperatures the current-phase relation j S (cphi) for superconductor--normal-metal--superconductor junctions and short weak links between d-wave superconductors is essentially nonharmonic and contains a discontinuity at cphi=0. This leads to further interesting features of such systems which can be used for pairing symmetry tests in high-temperature superconductors (HTSC). We also investigated the low-temperature I-V curves of normal-metal--superconductor and superconductor-superconductor tunnel junctions and demonstrated that depending on the junction type and crystal orientation these curves show zero-bias anomalies I∝V 2 , I∝V 2 ln(1/V), and I∝V 3 caused by the gapless behavior of the order parameter in d-wave superconductors. Many of our results agree well with recent experimental findings for HTSC compounds

  5. Low-resistance magnetic tunnel junctions prepared by partial remote plasma oxidation of 0.9 nm Al barriers

    International Nuclear Information System (INIS)

    Ferreira, Ricardo; Freitas, Paulo P.; MacKenzie, Maureen; Chapman, John N.

    2005-01-01

    Current perpendicular to the plane read-head elements suitable for high-density magnetic storage require low resistance while maintaining a reasonable magnetoresistive (MR) signal (RxA 2 and MR>20% for areal densities >200 Gb/in 2 ). This letter shows that competitive low RxA junctions can be produced using underoxidized barriers starting from 0.9 nm thick Al layers. For as-deposited junctions, tunneling magnetoresistance (TMR) ∼20% for RxA∼2-15 Ω μm 2 is obtained, while in the RxA∼60-150 Ω μm 2 range, TMR values between 40% to 45% are achieved. A limited number of junctions exhibits considerably lower RxA values with respect to the average, while keeping a similar MR (down to 0.44 Ω μm 2 with TMR of 20% and down to 2.2 Ω μm 2 with TMR of 52%). Experimental data suggest that current confinement to small regions (barrier defects/hot spots) may explain these results

  6. Towards quantum signatures in a swept-bias Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Losert, Harald; Vogel, Karl; Schleich, Wolfgang P. [Institut fuer Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universitaet Ulm, D-89069 Ulm (Germany)

    2016-07-01

    Josephson junctions are one of the best examples for the observation of macroscopic quantum tunneling. The phase difference in a current-biased Josephson junction behaves like the position of a particle in a tilted washboard potential. The escape of this phase-particle corresponds to the voltage switching of the associated junction. Quantum mechanically, the escape from the washboard potential can be explained as tunneling from the ground state, or an excited state. However, it has been shown, that in the case of periodic driving the experimental data for quantum mechanical key features, e.g. Rabi oscillations or energy level quantization, can be reproduced by a completely classical description. Motivated by this discussion, we investigate a swept-bias Josephson junction in the case of a large critical current. In particular, we contrast the switching current distributions resulting from a quantum mechanical and classical description of the time evolution.

  7. Radiation effects on junction field-effect transistors (JFETS), MOSFETs, and bipolar transistors, as related to SSC circuit design

    International Nuclear Information System (INIS)

    Kennedy, E.J.; Alley, G.T.; Britton, C.L. Jr.; Skubic, P.L.; Gray, B.; Wu, A.

    1990-01-01

    Some results of radiation effects on selected junction field-effect transistors, MOS field-effect transistors, and bipolar junction transistors are presented. The evaluations include dc parameters, as well as capacitive variations and noise evaluations. The tests are made at the low current and voltage levels (in particular, at currents ≤1 mA) that are essential for the low-power regimes required by SSC circuitry. Detailed noise data are presented both before and after 5-Mrad (gamma) total-dose exposure. SPICE radiation models for three high-frequency bipolar processes are compared for a typical charge-sensitive preamplifier

  8. Hyperglycaemia and diabetes impair gap junctional communication among astrocytes.

    Science.gov (United States)

    Gandhi, Gautam K; Ball, Kelly K; Cruz, Nancy F; Dienel, Gerald A

    2010-03-15

    Sensory and cognitive impairments have been documented in diabetic humans and animals, but the pathophysiology of diabetes in the central nervous system is poorly understood. Because a high glucose level disrupts gap junctional communication in various cell types and astrocytes are extensively coupled by gap junctions to form large syncytia, the influence of experimental diabetes on gap junction channel-mediated dye transfer was assessed in astrocytes in tissue culture and in brain slices from diabetic rats. Astrocytes grown in 15-25 mmol/l glucose had a slow-onset, poorly reversible decrement in gap junctional communication compared with those grown in 5.5 mmol/l glucose. Astrocytes in brain slices from adult STZ (streptozotocin)-treated rats at 20-24 weeks after the onset of diabetes also exhibited reduced dye transfer. In cultured astrocytes grown in high glucose, increased oxidative stress preceded the decrement in dye transfer by several days, and gap junctional impairment was prevented, but not rescued, after its manifestation by compounds that can block or reduce oxidative stress. In sharp contrast with these findings, chaperone molecules known to facilitate protein folding could prevent and rescue gap junctional impairment, even in the presence of elevated glucose level and oxidative stress. Immunostaining of Cx (connexin) 43 and 30, but not Cx26, was altered by growth in high glucose. Disruption of astrocytic trafficking of metabolites and signalling molecules may alter interactions among astrocytes, neurons and endothelial cells and contribute to changes in brain function in diabetes. Involvement of the microvasculature may contribute to diabetic complications in the brain, the cardiovascular system and other organs.

  9. Construction of tunable peptide nucleic acid junctions.

    Science.gov (United States)

    Duan, Tanghui; He, Liu; Tokura, Yu; Liu, Xin; Wu, Yuzhou; Shi, Zhengshuang

    2018-03-15

    We report here the construction of 3-way and 4-way peptide nucleic acid (PNA) junctions as basic structural units for PNA nanostructuring. The incorporation of amino acid residues into PNA chains makes PNA nanostructures with more structural complexity and architectural flexibility possible, as exemplified by building 3-way PNA junctions with tunable nanopores. Given that PNA nanostructures have good thermal and enzymatic stabilities, they are expected to have broad potential applications in biosensing, drug delivery and bioengineering.

  10. Craniovertebral junction stenosis in Lenz-Majewski syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Mizuguchi, Koichi; Ishigro, Akira [National Center for Child Health and Development, Department of General Pediatrics and Interdisciplinary Medicine, Setagaya-ku, Tokyo (Japan); Miyazaki, Osamu [National Center for Child Health and Development, Department of Radiology, Tokyo (Japan); Nishimura, Gen [Tokyo Metropolitan Children' s Medical Center, Department of Pediatric Imaging, Tokyo (Japan)

    2015-09-15

    We report a girl with Lenz-Majewski syndrome associated with craniovertebral junction stenosis that led to communicating hydrocephalus and cervical myelopathy. The life-threatening complication was related to progressive craniovertebral hyperostosis that rapidly exacerbated during early childhood. Despite initial success of surgical intervention at 2 years of age, she developed apneic spells and died suddenly at age 5 years. Close monitoring for craniovertebral junction stenosis is essential to reduce morbidity and mortality in children with Lenz-Majewski syndrome. (orig.)

  11. Controlling formation of single-molecule junctions by electrochemical reduction of diazonium terminal groups.

    Science.gov (United States)

    Hines, Thomas; Díez-Pérez, Ismael; Nakamura, Hisao; Shimazaki, Tomomi; Asai, Yoshihiro; Tao, Nongjian

    2013-03-06

    We report controlling the formation of single-molecule junctions by means of electrochemically reducing two axialdiazonium terminal groups on a molecule, thereby producing direct Au-C covalent bonds in situ between the molecule and gold electrodes. We report a yield enhancement in molecular junction formation as the electrochemical potential of both junction electrodes approach the reduction potential of the diazonium terminal groups. Step length analysis shows that the molecular junction is significantly more stable, and can be pulled over a longer distance than a comparable junction created with amine anchoring bonds. The stability of the junction is explained by the calculated lower binding energy associated with the direct Au-C bond compared with the Au-N bond.

  12. Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions

    International Nuclear Information System (INIS)

    Zou Jianfei; Jin Guojun; Ma Yuqiang

    2009-01-01

    We study the tunnel magnetoresistance (TMR) and spin transport in ferromagnetic graphene junctions composed of ferromagnetic graphene (FG) and normal graphene (NG) layers. It is found that the TMR in the FG/NG/FG junction oscillates from positive to negative values with respect to the chemical potential adjusted by the gate voltage in the barrier region when the Fermi level is low enough. Particularly, the conventionally defined TMR in the FG/FG/FG junction oscillates periodically from a positive to negative value with increasing the barrier height at any Fermi level. The spin polarization of the current through the FG/FG/FG junction also has an oscillating behavior with increasing barrier height, whose oscillating amplitude can be modulated by the exchange splitting in the ferromagnetic graphene.

  13. Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions.

    Science.gov (United States)

    Zou, Jianfei; Jin, Guojun; Ma, Yu-Qiang

    2009-03-25

    We study the tunnel magnetoresistance (TMR) and spin transport in ferromagnetic graphene junctions composed of ferromagnetic graphene (FG) and normal graphene (NG) layers. It is found that the TMR in the FG/NG/FG junction oscillates from positive to negative values with respect to the chemical potential adjusted by the gate voltage in the barrier region when the Fermi level is low enough. Particularly, the conventionally defined TMR in the FG/FG/FG junction oscillates periodically from a positive to negative value with increasing the barrier height at any Fermi level. The spin polarization of the current through the FG/FG/FG junction also has an oscillating behavior with increasing barrier height, whose oscillating amplitude can be modulated by the exchange splitting in the ferromagnetic graphene.

  14. Gap junction protein connexin-43 interacts directly with microtubules

    NARCIS (Netherlands)

    Giepmans, B N; Verlaan, I; Hengeveld, T; Janssen, H; Calafat, J; Falk, M M; Moolenaar, W H

    2001-01-01

    Gap junctions are specialized cell-cell junctions that mediate intercellular communication. They are composed of connexin proteins, which form transmembrane channels for small molecules [1, 2]. The C-terminal tail of connexin-43 (Cx43), the most widely expressed connexin member, has been implicated

  15. Voltage-dependent conductance states of a single-molecule junction

    DEFF Research Database (Denmark)

    Wang, Y F; Néel, N; Kröger, J

    2012-01-01

    Ag–Sn-phthalocyanine–Ag junctions are shown to exhibit three conductance states. While the junctions are conductive at low bias, their impedance drastically increases above a critical bias. Two-level fluctuations occur at intermediate bias. These characteristics may be used to protect a nanoscale...

  16. Superconducting proximity effect in mesoscopic superconductor/normal-metal junctions

    CERN Document Server

    Takayanagi, H; Toyoda, E

    1999-01-01

    The superconducting proximity effect is discussed in mesoscopic superconductor/normal-metal junctions. The newly-developed theory shows long-range phase-coherent effect which explaines early experimental results of giant magnetoresistance oscillations in an Andreev interferometer. The theory also shows that the proximity correction to the conductance (PCC) has a reentrant behavior as a function of energy. The reentrant behavior is systematically studied in a gated superconductor-semiconductor junction. A negative PCC is observed in the case of a weak coupling between the normal metal and the external reservoir. Phase coherent ac effect is also observed when rf is irradiated to the junction.

  17. Building memristive and radiation hardness TiO{sub 2}-based junctions

    Energy Technology Data Exchange (ETDEWEB)

    Ghenzi, N., E-mail: n.ghenzi@gmail.com [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Rubi, D. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); ECyT, UNSAM, Martín de Irigoyen 3100, 1650 San Martín, Bs As (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Mangano, E.; Gimenez, G. [Instituto Nacional de Tecnología Industrial (INTI) (Argentina); Lell, J. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Zelcer, A. [Gerencia Química, Comisión Nacional de Energía Atómica (Argentina); ECyT, UNSAM, Martín de Irigoyen 3100, 1650 San Martín, Bs As (Argentina); Stoliar, P. [ECyT, UNSAM, Martín de Irigoyen 3100, 1650 San Martín, Bs As (Argentina); IMN, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes (France); and others

    2014-01-01

    We study micro-scale TiO{sub 2} junctions that are suitable to be used as resistive random-access memory nonvolatile devices with radiation hardness memristive properties. The fabrication and structural and electrical characterization of the junctions are presented. We obtained a retentivity of 10{sup 5} s, an endurance of 10{sup 4} cycles and reliable switching with short electrical pulses (time-width below 10 ns). Additionally, the devices were exposed to 25 MeV oxygen ions. Then, we performed electrical measurements comparing pristine and irradiated devices in order to check the feasibility of using these junctions as memory elements with memristive and radiation hardness properties. - Highlights: • We fabricated radiation hardness memristive metal insulator metal junctions. • We characterized the structural properties of the devices. • We showed the feasibility of the junctions as a non-volatile memory.

  18. Tunnel junctions with multiferroic barriers

    Science.gov (United States)

    Gajek, Martin; Bibes, Manuel; Fusil, Stéphane; Bouzehouane, Karim; Fontcuberta, Josep; Barthélémy, Agnès; Fert, Albert

    2007-04-01

    Multiferroics are singular materials that can exhibit simultaneously electric and magnetic orders. Some are ferroelectric and ferromagnetic and provide the opportunity to encode information in electric polarization and magnetization to obtain four logic states. However, such materials are rare and schemes allowing a simple electrical readout of these states have not been demonstrated in the same device. Here, we show that films of La0.1Bi0.9MnO3 (LBMO) are ferromagnetic and ferroelectric, and retain both ferroic properties down to a thickness of 2nm. We have integrated such ultrathin multiferroic films as barriers in spin-filter-type tunnel junctions that exploit the magnetic and ferroelectric degrees of freedom of LBMO. Whereas ferromagnetism permits read operations reminiscent of magnetic random access memories (MRAM), the electrical switching evokes a ferroelectric RAM write operation. Significantly, our device does not require the destructive ferroelectric readout, and therefore represents an advance over the original four-state memory concept based on multiferroics.

  19. Microwave oscillator using arrays of long Josephson junctions

    International Nuclear Information System (INIS)

    Pagano, S.; Monaco, R.; Costabile, G.

    1989-01-01

    The authors report on measurements performed on integrated superconducting devices based on arrays of long Josephson tunnel junctions operating in the resonant fluxon oscillation regime (i.e. biased on the Zero Field Steps). The electromagnetic coupling among the junction causes a mutual phase-locking of the fluxon oscillations with a corresponding increase of the emitted power and a decrease of the signal linewidth. This phase-locked state can be controlled by means of an external dc bias current and magnetic field. The effect of the generated microwave signal has been observed on a small Josephson tunnel junction coupled to the array via a microstrip transmission line. The feasibility of the reported devices as local oscillators in an integrated microwave Josephson receiver is discussed

  20. Filtering microfluidic bubble trains at a symmetric junction.

    Science.gov (United States)

    Parthiban, Pravien; Khan, Saif A

    2012-02-07

    We report how a nominally symmetric microfluidic junction can be used to sort all bubbles of an incoming train exclusively into one of its arms. The existence of this "filter" regime is unexpected, given that the junction is symmetric. We analyze this behavior by quantifying how bubbles modulate the hydrodynamic resistance in microchannels and show how speeding up a bubble train whilst preserving its spatial periodicity can lead to filtering at a nominally symmetric junction. We further show how such an asymmetric traffic of bubble trains can be triggered in symmetric geometries by identifying conditions wherein the resistance to flow decreases with an increase in the number of bubbles in the microchannel and derive an exact criterion to predict the same.

  1. Creation of stable molecular junctions with a custom-designed scanning tunneling microscope.

    Science.gov (United States)

    Lee, Woochul; Reddy, Pramod

    2011-12-02

    The scanning tunneling microscope break junction (STMBJ) technique is a powerful approach for creating single-molecule junctions and studying electrical transport in them. However, junctions created using the STMBJ technique are usually mechanically stable for relatively short times (scanning tunneling microscope that enables the creation of metal-single molecule-metal junctions that are mechanically stable for more than 1 minute at room temperature. This stability is achieved by a design that minimizes thermal drift as well as the effect of environmental perturbations. The utility of this instrument is demonstrated by performing transition voltage spectroscopy-at the single-molecule level-on Au-hexanedithiol-Au, Au-octanedithiol-Au and Au-decanedithiol-Au junctions.

  2. 75 FR 76294 - Radio Broadcasting Services: Pacific Junction, IA

    Science.gov (United States)

    2010-12-08

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 [DA 10-2236; MB Docket No. 10-108] Radio Broadcasting Services: Pacific Junction, IA AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY: The staff deletes FM Channel 299C2 at Pacific Junction, Iowa, because the record in this...

  3. P-N semiconductor junctions used as X-ray detectors

    International Nuclear Information System (INIS)

    Pela, C.A.; Bruco, J.L.; Navas, E.A.; Paula, E. de; Guilardi Neto, T.

    1987-01-01

    The current response of some comercial P-N semiconductor junctions in function of X-ray incidency, in 40 to 140 KVp band used in diagnosis was characterized. Some junctions were also exposed to radiation of 80 to 250 KVp used in therapy. (C.G.C.) [pt

  4. Effect of quasi-particle injection on retrapping current of Josephson junction

    OpenAIRE

    Utsunomiya, K.; Yagi, Ryuta

    2006-01-01

    We report that the energy dissipation of Josephson junction can be controlled by quasi-particle injection. We fabricated two Josephson junctions on the narrow aluminum wire and controlled the energy dissipation of one junction by quasi-particle injection from the other. We observed the retrapping current increased as the quasi-particles were injected. We also studied the heating effect of our measurement.

  5. Fratura toracolombar explosão: confiabilidade do método de guerra na análise tomográfica Thoracolumbar burst fracture: reliability of the guerra's method on tomographic analysis

    Directory of Open Access Journals (Sweden)

    Osmar Avanzi

    2009-01-01

    Full Text Available OBJETIVOS: Avaliar as características do fragmento retropulsado nas fraturas explosão da coluna toracolombar, de acordo com dois examinadores independentes no plano sagital da TAC e correlacionar estes achados com a presença de déficit neurológico. MATERIAL E MÉTODOS: Coleta retrospectiva de dados de prontuário e TC em 138 pacientes com fratura toracolombar do tipo explosão internados no nosso serviço entre 1983 e 2004. RESULTADOS: Observamos correlação significante entre dois examinadores independentes (pOBJECTIVES: The objective of the current study was to evaluate the correlation between neurological deficits and the characteristics of retropulsed fragment into the spinal canal in patients with thoracolumbar burst fractures. MATERIAL AND METHODS: From 1983 to 2004, 135 patients with thoracolumbar burst fractures according to Denis' criteria were evaluated at a tertiary teaching institution by two different observers. CT-Scans of the fractured spine were analyzed in order to assess the narrowing of the spinal canal. Neurological deficit was evaluated by using the Franke's classification. RESULTS: A significant correlation was found between two independent observers (P<0.05. The observed characteristics of the retropulsed fragment into the spinal canal were: triangular form, rotation dislocation with average of 20 degrees and cranial dislocation with average of eight millimeters. There was no statistical correlation between neurological deficits and the characteristics of retropulsed fragment of the spinal canal. CONCLUSION: There was no statistical correlation between neurological deficits and the characteristics of retropulsed fragment of the spinal canal.

  6. Multicentre dosimetric comparison of photon-junctioning techniques in head and neck radiotherapy

    International Nuclear Information System (INIS)

    Kron, T.

    2003-01-01

    Because many head and neck radiotherapy treatment techniques rely on a junction between X-ray fields, it was the aim of the present study to investigate the use of different junctioning techniques and the affect on the dose across the junction. Techniques in use at nine radiotherapy centres in Australia were investigated using thermoluminescence dosimetry (TLD). The techniques could broadly be divided into two groups: (i) use of the light field to match the fields after moving the patient; and (ii) use of asymmetric collimation to create a single isocentre located in the junction. The mean dose at the junction and its reproducibility was studied in five consecutive treatments in each centre using 25 TLD chips placed throughout the junction in an anthropomorphic phantom. There was a tendency for the mono-isocentric technique to deliver a lower, more accurate mean dose at the junction (Group I: 1.22 Gy (n = 8) vs Group II: 0.96 Gy (n = 5) for 1 Gy planned, some centres contributed to both technique) with greater reproducibility (Group I: 9.6%, Group II: 5.1 % of the mean dose). We conclude that a mono-isocentric treatment technique has the potential to deliver a more accurate and reproducible dose distribution at the field junction of photon beams in head and neck treatment. Copyright (2003) Blackwell Science Pty Ltd

  7. The string-junction picture of multiquark states: an update

    CERN Document Server

    Rossi, Giancarlo

    2016-06-07

    We recall and update, both theoretically and phenomenologically, our (nearly) forty-years-old proposal of a string-junction as a necessary complement to the conventional classification of hadrons based just on their quark-antiquark constituents. In that proposal single (though in general metastable) hadronic states are associated with "irreducible" gauge-invariant operators consisting of Wilson lines (visualized as strings of color flux tubes) that may either end on a quark or an antiquark, or annihilate in triplets at a junction $J$ or an anti-junction $\\bar{J}$. For the junction-free sector (ordinary $q\\, \\bar{q}$ mesons and glueballs) the picture is supported by large-$N$ (number of colors) considerations as well as by a lattice strong-coupling expansion. Both imply the famous OZI rule suppressing quark-antiquark annihilation diagrams. For hadrons with $J$ and/or $\\bar{J}$ constituents the same expansions support our proposal, including its generalization of the OZI rule to the suppression of $J-\\bar{J}$ a...

  8. The physical analysis on electrical junction of junctionless FET

    Directory of Open Access Journals (Sweden)

    Lun-Chun Chen

    2017-02-01

    Full Text Available We propose the concept of the electrical junction in a junctionless (JL field-effect-transistor (FET to illustrate the transfer characteristics of the JL FET. In this work, nanowire (NW junctionless poly-Si thin-film transistors are used to demonstrate this conception of the electrical junction. Though the dopant and the dosage of the source, of the drain, and of the channel are exactly the same in the JL FET, the transfer characteristics of the JL FET is similar to these of the conventional inversion-mode FET rather than these of a resistor, which is because of the electrical junction at the boundary of the gate and the drain in the JL FET. The electrical junction helps us to understand the JL FET, and also to explain the superior transfer characteristic of the JL FET with the gated raised S/D (Gout structure which reveals low drain-induced-barrier-lowering (DIBL and low breakdown voltage of ion impact ionization.

  9. Molecular electronics: some views on transport junctions and beyond.

    Science.gov (United States)

    Joachim, Christian; Ratner, Mark A

    2005-06-21

    The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the quantum state space of the molecule. Current work in molecular electronics usually addresses molecular junction transport, where the molecule acts as a barrier for incoming electrons: This is the fundamental Landauer idea of "conduction as scattering" generalized to molecular junction structures. Another point of view in terms of superexchange as a guiding mechanism for coherent electron transfer through the molecular bridge is discussed. Molecules generally exhibit relatively strong vibronic coupling. The last section of this overview focuses on vibronic effects, including inelastic electron tunneling spectroscopy, hysteresis in junction charge transport, and negative differential resistance in molecular transport junctions.

  10. Microscopic tunneling theory of long Josephson junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Hattel, Søren A.; Samuelsen, Mogens Rugholm

    1992-01-01

    We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate that the detai......We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate...

  11. Mechanically controllable break junctions for molecular electronics.

    Science.gov (United States)

    Xiang, Dong; Jeong, Hyunhak; Lee, Takhee; Mayer, Dirk

    2013-09-20

    A mechanically controllable break junction (MCBJ) represents a fundamental technique for the investigation of molecular electronic junctions, especially for the study of the electronic properties of single molecules. With unique advantages, the MCBJ technique has provided substantial insight into charge transport processes in molecules. In this review, the techniques for sample fabrication, operation and the various applications of MCBJs are introduced and the history, challenges and future of MCBJs are discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bar dynamics and channel junctions in scale-experiments of estuaries

    Science.gov (United States)

    Leuven, J.; Braat, L.; van Dijk, W. M.; Haas, T. D.; Kleinhans, M. G.

    2017-12-01

    The evolution of channels and bars in estuaries has high socio-economic relevance, with strong implications for navigation, dredging and ecology. However, the spatial and temporal evolution of channels and bars in estuaries is poorly understood. Here, we study feedbacks of bar morphodynamics on widening and narrowing of estuaries. Therefore, we conducted an experiment in a 20 m long and 3 m wide tilting flume (the 'Metronome'), in which we monitored the evolution of a self-formed estuary that developed from an intial straight channel into an irregular planform with multiple channels, braided bars and a meandering ebb channel. At locations where the estuary width is confined, major channel junctions occur, while the zones between the junctions are characterised by high braiding indices, periodically migrating channels and a relatively large estuary width. The junction locations were forced by the in- and outflow locations on the sides of the ebb-tidal delta and at the location where the channel pattern transitions from multiple channels into a single channel. In the middle of the estuary, self-confinement occurred by sedimentation on the sides of the estuary, which caused another major junction. The channel orientation at the junctions steers the morphodynamics of channels and bars immediately landward and seaward, because the orientation of inflow from the ebb-tidal delta and landward river perpetually varies. In natural systems major junction locations are mostly forced by inherited geology or human engineering. However, this study concludes that even without external forcing, the estuary planform will not converge to an ideal shape but will self-confine at major junctions and widens in the adjacent zones, resulting in an irregular planform shape.

  13. T-junction cross-flow mixing with thermally driven density stratification

    Energy Technology Data Exchange (ETDEWEB)

    Kickhofel, John, E-mail: jkickhofel@gmail.com [Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8057 Zurich (Switzerland); Prasser, Horst-Michael, E-mail: prasser@lke.mavt.ethz.ch [Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8057 Zurich (Switzerland); Selvam, P. Karthick, E-mail: karthick.selvam@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Laurien, Eckart, E-mail: eckart.laurien@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Kulenovic, Rudi, E-mail: rudi.kulenovic@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany)

    2016-12-01

    Highlights: • Mesh sensor for realistic nuclear thermal hydraulic scenarios is demonstrated. • Flow temperature behavior across a wide range of Richardson numbers measured. • Upstream stratified flow in the T-junction results in a thermal shock scenario. • Large, stable near-wall thermal gradients exist in spite of turbulent flows. - Abstract: As a means of further elucidating turbulence- and stratification-driven thermal fatigue in the vicinity of T-junctions in nuclear power plants, a series of experiments have been conducted at the high temperature high pressure fluid–structure interaction T-junction facility of the University of Stuttgart with novel fluid measurement instrumentation. T-junction mixing with large fluid temperature gradients results in complex flow behavior, the result of density driven effects. Deionized water mixing at temperature differences of up to 232 K at 7 MPa pressure have been investigated in a T-junction with main pipe diameter 71.8 mm and branch line diameter 38.9 mm. The experiments have been performed with fixed flow rates of 0.4 kg/s in the main pipe and 0.1 kg/s in the branch line. A novel electrode-mesh sensor compatible with the DN80 PN100 pipeline upstream and downstream of the T-junction has been utilized as a temperature sensor providing a high density information in the pipe cross-section in both space and time. Additionally, in-flow and in-wall thermocouples quantify the damping of thermal fluctuations by the wall material. The results indicate that large inflow temperature differences lead to strong turbulence damping, and ultimately stable stratification extending both downstream and upstream of the T-junction resulting in large local thermal gradients.

  14. Realization of φ Josephson junctions with a ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Sickinger, Hanna Sabine

    2014-01-01

    In this thesis, φ Josephson junctions based on 0-π junctions with a ferromagnetic interlayer are studied. Josephson junctions (JJs) with a ferromagnetic interlayer can have a phase drop of 0 or π in the ground state, depending on the thickness of the ferromagnet (0 JJs or π JJs). Also, 0-π JJs can be realized, where one segment of the junction (if taken separately) is in the 0 state, while the other segment is in the π state. One can use these π Josephson junctions as a device in superconducting circuits, where it provides a constant phase shift, i.e., it acts as a π phase battery. A generalization of a π JJ is a φ JJ, which has the phase ±φ in the ground state. The value of φ can be chosen by design and tuned in the interval 0<φ<π. The φ JJs used in this experiment were fabricated as 0-π JJs with asymmetric current densities in the 0 and π facets. This system can be described by an effective current-phase relation which is tunable by an externally applied magnetic field. The first experimental evidence of such a φ JJ is presented in this thesis. In particular it is demonstrated that (a) a φ JJ has two ground states +φ and -φ, (b) the unknown state can be detected (read out) by measuring the critical current I c (I c+ or I c- ), and (c) a particular state can be prepared by applying a magnetic field or a special bias sweep sequence. These properties of a φ JJ can be utilized, for example, as a memory cell (classical bit). Furthermore, a φ Josephson junction can be used as a deterministic ratchet. This is due to the tunable asymmetry of the potential that can be changed by the external magnetic field. Rectification curves are observed for the overdamped and the underdamped case. Moreover, experimental data of the retrapping process of the phase of a φ Josephson junction depending on the temperature is presented.

  15. Andreev reflexion studies on planar hybrid SNS-junctions based on 122-thin films

    Energy Technology Data Exchange (ETDEWEB)

    Doering, Sebastian; Schmidt, Stefan; Schmidl, Frank; Tympel, Volker; Seidel, Paul [Friedrich-Schiller-Universitaet Jena, Institut fuer Festkoerperphysik, Helmholtzweg 5, Jena (Germany); Haindl, Silvia; Kurth, Fritz; Iida, Kazumasa; Holzapfel, Bernhard [IFW Dresden, Institut fuer Metallische Werkstoffe, 01069 Dresden (Germany)

    2012-07-01

    To investigate the properties of iron-based superconductors, we prepared hybrid junctions in thin film technique. Therefore two geometries were prepared, a planar SNS-junction and an edge junction. The base electrode was made of Ba(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2} thin films, a sputtered gold layer acts as normal barrier for the planar junction and for the counter electrode we used the conventional superconductor lead. We measured the electrical properties of each electrode, as well as the junctions itself. To obtain information about the order parameter symmetry, we show the differential conductance and compare with different variations of an extended BTK-model. We show differences and commonalities between the results of both junction geometries.

  16. The Control of Junction Flows

    National Research Council Canada - National Science Library

    Smith, Charles

    1997-01-01

    An experimental study of the effects of spatially-limited (i.e. localized) surface suction on unsteady laminar and turbulent junction flows was performed using hydrogen bubble flow visualization and Particle Image Velocimetry (PIV...

  17. Spin-flip effects on the supercurrent through mesoscopic superconducting junctions

    International Nuclear Information System (INIS)

    Pan Hui; Lin Tsunghan

    2005-01-01

    We investigate the spin-flip effects on the Andreev bound states and the supercurrent in a superconductor/quantum-dot/superconductor system, theoretically. The spin-flip scattering in the quantum dot can reverse the supercurrent flowing through the system, which results in a π-junction transition. By controlling the energy level of the quantum dot, the π-junction transition can be caused to occur again. The two mechanisms of the π-junction transitions are interpreted within the picture of Andreev bound states

  18. Electron Transport through Porphyrin Molecular Junctions

    Science.gov (United States)

    Zhou, Qi

    The goal of this work is to study the properties that would affect the electron transport through a porphyrin molecular junction. This work contributes to the field of electron transport in molecular junctions in the following 3 aspects. First of all, by carrying out experiments comparing the conductance of the iron (III) porphyrin (protected) and the free base porphyrin (protected), it is confirmed that the molecular energy level broadening and shifting occurs for porphyrin molecules when coupled with the metal electrodes, and this level broadening and shifting plays an important role in the electron transport through molecular junctions. Secondly, by carrying out an in-situ deprotection of the acetyl-protected free base porphyrin molecules, it is found out that the presence of acetyl groups reduces the conductance. Thirdly, by incorporating the Matrix-assisted laser desorption/ionization (MALDI) spectrum and the in-situ deprotection prior to formation of molecular junctions, it allows a more precise understanding of the molecules involved in the formation of molecular junctions, and therefore allows an accurate analysis of the conductance histogram. The molecules are prepared by self-assembly and the junctions are formed using a Scanning Tunneling Microscopy (STM) molecular break junction technique. The porphyrin molecules are characterized by MALDI in solution before self-assembly to a gold/mica substrate. The self-assembled monolayers (SAMs) of porphyrins on gold are characterized by Ultraviolet-visible (UV-Vis) reflection spectroscopy to confirm that the molecules are attached to the substrate. The SAMs are then characterized by Angle-Resolved X-ray photoelectron spectroscopy (ARXPS) to determine the thickness and the average molecular orientation of the molecular layer. The electron transport is measured by conductance-displacement (G-S) experiments under a given bias (-0.4V). The conductance value of a single molecule is identified by a statistical analysis

  19. Gap junctions and epileptic seizures--two sides of the same coin?

    Directory of Open Access Journals (Sweden)

    Vladislav Volman

    Full Text Available Electrical synapses (gap junctions play a pivotal role in the synchronization of neuronal ensembles which also makes them likely agonists of pathological brain activity. Although large body of experimental data and theoretical considerations indicate that coupling neurons by electrical synapses promotes synchronous activity (and thus is potentially epileptogenic, some recent evidence questions the hypothesis of gap junctions being among purely epileptogenic factors. In particular, an expression of inter-neuronal gap junctions is often found to be higher after the experimentally induced seizures than before. Here we used a computational modeling approach to address the role of neuronal gap junctions in shaping the stability of a network to perturbations that are often associated with the onset of epileptic seizures. We show that under some circumstances, the addition of gap junctions can increase the dynamical stability of a network and thus suppress the collective electrical activity associated with seizures. This implies that the experimentally observed post-seizure additions of gap junctions could serve to prevent further escalations, suggesting furthermore that they are a consequence of an adaptive response of the neuronal network to the pathological activity. However, if the seizures are strong and persistent, our model predicts the existence of a critical tipping point after which additional gap junctions no longer suppress but strongly facilitate the escalation of epileptic seizures. Our results thus reveal a complex role of electrical coupling in relation to epileptiform events. Which dynamic scenario (seizure suppression or seizure escalation is ultimately adopted by the network depends critically on the strength and duration of seizures, in turn emphasizing the importance of temporal and causal aspects when linking gap junctions with epilepsy.

  20. Nonlocal Cooper pair splitting in a pSn-junction

    NARCIS (Netherlands)

    Veldhorst, M.; Brinkman, Alexander

    2010-01-01

    Perfect Cooper pair splitting is proposed, based on crossed Andreev reflection (CAR) in a p-type semiconductor-superconductor-n-type semiconductor (pSn) junction. The ideal splitting is caused by the energy filtering that is enforced by the band structure of the electrodes. The pSn junction is

  1. Gas-liquid flow splitting in T-junction with inclined lateral arm

    Science.gov (United States)

    Yang, Le-le; Liu, Shuo; Li, Hua; Zhang, Jian; Wu, Ying-xiang; Xu, Jing-yu

    2018-02-01

    This paper studies the gas-liquid flow splitting in T-junction with inclined lateral arm. The separation mechanism of the T-junction is related to the pressure distribution in the T-junction. It is shown that the separation efficiency strongly depends on the inclination angle, when the angle ranges from 0° to 30°, while not so strongly for angles in the range from 30° to 90° Increasing the number of connecting tubes is helpful for the gas-liquid separation, and under the present test conditions, with four connecting tubes, a good separation performance can be achieved. Accordingly, a multi-tube Y-junction separator with four connecting tubes is designed for the experimental investigation. A good agreement between the simulated and measured data shows that there is an optimal split ratio to achieve the best performance for the multi-tube Y-junction separator.

  2. Thermopower in double planar tunnel junctions with ferromagnetic barriers and nonmagnetic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wilczyński, M., E-mail: wilczyns@if.pw.edu.pl

    2017-01-01

    The Seebeck effect is investigated in double planar tunnel junctions consisting of nonmagnetic electrodes and the central layer separated by ferromagnetic barriers. Calculations are performed in the linear response theory using the free-electron model. The thermopower is analyzed as a function of the thickness of the central layer, temperature of the junctions and the relative orientation of magnetic moments of the barriers. It has been found that the thermopower can be significantly enhanced in the junction with special central layer thickness due to electron tunneling by resonant states. The thickness of the central layer for which the thermopower is enhanced depends not only on the temperature of the junction but also on the orientation of magnetic moments in the barriers. - Highlights: • Thermopower in the double planar junctions with magnetic barriers is analyzed. • Thermopower can be enhanced due to the resonant tunneling. • Thermopower depends on the magnetic configuration of the junction.

  3. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique

    Science.gov (United States)

    Huang, Cancan; Jevric, Martyn; Borges, Anders; Olsen, Stine T.; Hamill, Joseph M.; Zheng, Jue-Ting; Yang, Yang; Rudnev, Alexander; Baghernejad, Masoud; Broekmann, Peter; Petersen, Anne Ugleholdt; Wandlowski, Thomas; Mikkelsen, Kurt V.; Solomon, Gemma C.; Brøndsted Nielsen, Mogens; Hong, Wenjing

    2017-05-01

    Charge transport by tunnelling is one of the most ubiquitous elementary processes in nature. Small structural changes in a molecular junction can lead to significant difference in the single-molecule electronic properties, offering a tremendous opportunity to examine a reaction on the single-molecule scale by monitoring the conductance changes. Here, we explore the potential of the single-molecule break junction technique in the detection of photo-thermal reaction processes of a photochromic dihydroazulene/vinylheptafulvene system. Statistical analysis of the break junction experiments provides a quantitative approach for probing the reaction kinetics and reversibility, including the occurrence of isomerization during the reaction. The product ratios observed when switching the system in the junction does not follow those observed in solution studies (both experiment and theory), suggesting that the junction environment was perturbing the process significantly. This study opens the possibility of using nano-structured environments like molecular junctions to tailor product ratios in chemical reactions.

  4. A semiconductor nanowire Josephson junction microwave laser

    Science.gov (United States)

    Cassidy, Maja; Uilhoorn, Willemijn; Kroll, James; de Jong, Damaz; van Woerkom, David; Nygard, Jesper; Krogstrup, Peter; Kouwenhoven, Leo

    We present measurements of microwave lasing from a single Al/InAs/Al nanowire Josephson junction strongly coupled to a high quality factor superconducting cavity. Application of a DC bias voltage to the Josephson junction results in photon emission into the cavity when the bias voltage is equal to a multiple of the cavity frequency. At large voltage biases, the strong non-linearity of the circuit allows for efficient down conversion of high frequency microwave photons down to multiple photons at the fundamental frequency of the cavity. In this regime, the emission linewidth narrows significantly below the bare cavity linewidth to 50%. The junction-cavity coupling and laser emission can be tuned rapidly via an external gate, making it suitable to be integrated into a scalable qubit architecture as a versatile source of coherent microwave radiation. This work has been supported by the Netherlands Organisation for Scientific Research (NWO/OCW), Foundation for Fundamental Research on Matter (FOM), European Research Council (ERC), and Microsoft Corporation Station Q.

  5. Magnetometry with Low-Resistance Proximity Josephson Junction

    Science.gov (United States)

    Jabdaraghi, R. N.; Peltonen, J. T.; Golubev, D. S.; Pekola, J. P.

    2018-06-01

    We characterize a niobium-based superconducting quantum interference proximity transistor (Nb-SQUIPT) and its key constituent formed by a Nb-Cu-Nb SNS weak link. The Nb-SQUIPT and SNS devices are fabricated simultaneously in two separate lithography and deposition steps, relying on Ar ion cleaning of the Nb contact surfaces. The quality of the Nb-Cu interface is characterized by measuring the temperature-dependent equilibrium critical supercurrent of the SNS junction. In the Nb-SQUIPT device, we observe a maximum flux-to-current transfer function value of about 55 nA/Φ_0 in the sub-gap regime of bias voltages. This results in suppression of power dissipation down to a few fW. Low-bias operation of the device with a relatively low probe junction resistance decreases the dissipation by up to two orders of magnitude compared to a conventional device based on an Al-Cu-Al SNS junction and an Al tunnel probe (Al-SQUIPT).

  6. A case report of craniovertebral junction intradural extramedullary neurenteric cyst

    Directory of Open Access Journals (Sweden)

    Rajeshwari S Vhora

    2014-01-01

    Full Text Available A neurenteric cyst of the craniocervical (CV junction, as a cause of bulbomedullary compression, is very rare. An abnormal communication between the endoderm and neuroectoderm during the third week of embryogenesis may be responsible for its formation. It is a rare spinal condition. The most frequent location is at the lower cervical and higher thoracic spine. Neurenteric cysts of the craniocervical junction are even rarer. We report the case of a CV junction intradural neurenteric cyst. Magnetic Resonance Imaging (MRI of our patient demonstrated an intradural extramedullary process of the craniocervical junction. A surgical posterior approach allowed gross total resection of the lesion. The histopathology of the surgical specimen showed that the cyst wall was made up of fibrocollagen walls lined with a partially ciliated columnar epithelium.

  7. Instabilities in thin tunnel junctions

    International Nuclear Information System (INIS)

    Konkin, M.K.; Adler, J.G.

    1978-01-01

    Tunnel junctions prepared for inelastic electron tunneling spectroscopy are often plagued by instabilities in the 0-500-meV range. This paper relates the bias at which the instability occurs to the barrier thickness

  8. Heterocellular interaction enhances recruitment of α and β-catenins and ZO-2 into functional gap-junction complexes and induces gap junction-dependant differentiation of mammary epithelial cells

    International Nuclear Information System (INIS)

    Talhouk, Rabih S.; Mroue, Rana; Mokalled, Mayssa; Abi-Mosleh, Lina; Nehme, Ralda; Ismail, Ayman; Khalil, Antoine; Zaatari, Mira; El-Sabban, Marwan E.

    2008-01-01

    Gap junctions (GJ) are required for mammary epithelial differentiation. Using epithelial (SCp2) and myoepithelial-like (SCg6) mouse-derived mammary cells, the role of heterocellular interaction in assembly of GJ complexes and functional differentiation (β-casein expression) was evaluated. Heterocellular interaction is critical for β-casein expression, independent of exogenous basement membrane or cell anchoring substrata. Functional differentiation of SCp2, co-cultured with SCg6, is more sensitive to GJ inhibition relative to homocellular SCp2 cultures differentiated by exogenous basement membrane. Connexin (Cx)32 and Cx43 levels were not regulated across culture conditions; however, GJ functionality was enhanced under differentiation-permissive conditions. Immunoprecipitation studies demonstrated association of junctional complex components (α-catenin, β-catenin and ZO-2) with Cx32 and Cx43, in differentiation conditions, and additionally with Cx30 in heterocellular cultures. Although β-catenin did not shuttle between cadherin and GJ complexes, increased association between connexins and β-catenin in heterocellular cultures was observed. This was concomitant with reduced nuclear β-catenin, suggesting that differentiation in heterocellular cultures involves sequestration of β-catenin in GJ complexes

  9. Single-electron tunnel junction array

    International Nuclear Information System (INIS)

    Likharev, K.K.; Bakhvalov, N.S.; Kazacha, G.S.; Serdyukova, S.I.

    1989-01-01

    The authors have carried out an analysis of statics and dynamics of uniform one-dimensional arrays of ultrasmall tunnel junctions. The correlated single-electron tunneling in the junctions of the array results in its behavior qualitatively similar to that of the Josephson transmission line. In particular, external electric fields applied to the array edges can inject single-electron-charged solitons into the array interior. Shape of such soliton and character of its interactions with other solitons and the array edges are very similar to those of the Josephson vortices (sine-Gordon solitons) in the Josephson transmission line. Under certain conditions, a coherent motion of the soliton train along the array is possible, resulting in generation of narrowband SET oscillations with frequency f/sub s/ = /e where is the dc current flowing along the array

  10. Three-dimensional models of conventional and vertical junction laser-photovoltaic energy converters

    Science.gov (United States)

    Heinbockel, John H.; Walker, Gilbert H.

    1988-01-01

    Three-dimensional models of both conventional planar junction and vertical junction photovoltaic energy converters have been constructed. The models are a set of linear partial differential equations and take into account many photoconverter design parameters. The model is applied to Si photoconverters; however, the model may be used with other semiconductors. When used with a Nd laser, the conversion efficiency of the Si vertical junction photoconverter is 47 percent, whereas the efficiency for the conventional planar Si photoconverter is only 17 percent. A parametric study of the Si vertical junction photoconverter is then done in order to describe the optimum converter for use with the 1.06-micron Nd laser. The efficiency of this optimized vertical junction converter is 44 percent at 1 kW/sq cm.

  11. Creation of stable molecular junctions with a custom-designed scanning tunneling microscope

    International Nuclear Information System (INIS)

    Lee, Woochul; Reddy, Pramod

    2011-01-01

    The scanning tunneling microscope break junction (STMBJ) technique is a powerful approach for creating single-molecule junctions and studying electrical transport in them. However, junctions created using the STMBJ technique are usually mechanically stable for relatively short times (<1 s), impeding detailed studies of their charge transport characteristics. Here, we report a custom-designed scanning tunneling microscope that enables the creation of metal–single molecule–metal junctions that are mechanically stable for more than 1 minute at room temperature. This stability is achieved by a design that minimizes thermal drift as well as the effect of environmental perturbations. The utility of this instrument is demonstrated by performing transition voltage spectroscopy—at the single-molecule level—on Au–hexanedithiol–Au, Au–octanedithiol–Au and Au–decanedithiol–Au junctions.

  12. Systematic optimization of quantum junction colloidal quantum dot solar cells

    KAUST Repository

    Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Tang, Jiang; Kramer, Illan J.; Ning, Zhijun; Sargent, Edward H.

    2012-01-01

    The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum

  13. Optical photon detection in Al superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Brammertz, G.; Peacock, A.; Verhoeve, P.; Martin, D.; Venn, R.

    2004-01-01

    We report on the successful fabrication of low leakage aluminium superconducting tunnel junctions with very homogeneous and transparent insulating barriers. The junctions were tested in an adiabatic demagnetisation refrigerator with a base temperature of 35 mK. The normal resistance of the junctions is equal to ∼7 μΩ cm 2 with leakage currents in the bias voltage domain as low as 100 fA/μm 2 . Optical single photon counting experiments show a very high responsivity with charge amplification factors in excess of 100. The total resolving power λ/Δλ (including electronic noise) for 500 nm photons is equal to 13 compared to a theoretical tunnel limited value of 34. The current devices are found to be limited spectroscopically by spatial inhomogeneities in the detectors response

  14. Temporal correlations and structural memory effects in break junction measurements

    DEFF Research Database (Denmark)

    Magyarkuti, A.; Lauritzen, Kasper Primdal; Balogh, Zoltan Imre

    2017-01-01

    that correlations between the opening and subsequent closing traces may indicate structural memory effects in atomic-sized metallic and molecular junctions. Applying these methods on measured and simulated gold metallic contacts as a test system, we show that the surface diffusion induced flattening of the broken......-molecule junctions, we demonstrate pronounced contact memory effects and recovery of the molecule for junctions breaking before atomic chains are formed. However, if chains are pulled the random relaxation of the chain and molecule after rupture prevents opening-closing correlations....

  15. Intercellular coupling mediated by potassium accumulation in peg-and-socket junctions

    DEFF Research Database (Denmark)

    Vigmond, Edward J.; Bardakjian, Berj L.; Thuneberg, Lars

    2000-01-01

    Physiology, peg-and-socket junctions, smooth muscle, boundary element method, coupling, morphology......Physiology, peg-and-socket junctions, smooth muscle, boundary element method, coupling, morphology...

  16. Josephson junction analog and quasiparticle-pair current

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl; Pedersen, Niels Falsig

    1973-01-01

    A close analogy exists between a Josephson junction and a phase-locked loop. A new type of electrical analog based on this principle is presented. It is shown that the inclusion in this analog of a low-pass filter gives rise to a current of the same form as the Josephson quasiparticle-pair current....... A simple picture of the quasiparticle-pair current, which gives the right dependences, is obtained by assuming a junction cutoff frequency to be at the energy gap. ©1973 American Institute of Physics...

  17. High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions

    Directory of Open Access Journals (Sweden)

    Graham Trevor Reed

    2014-12-01

    Full Text Available This paper presents new experimental data from a lateral PN junction silicon Mach-Zehnder optical modulator. Efficiencies in the 1.4V.cm to 1.9V.cm range are demonstrated for drive voltages between 0V and 6V. High speed operation up to 52Gbit/s is also presented. The performance of the device which has its PN junction positioned in the centre of the waveguide is then compared to previously reported data from a lateral PN junction device with the junction self-aligned to the edge of the waveguide rib. An improvement in modulation efficiency is demonstrated when the junction is positioned in the centre of the waveguide. Finally we propose schemes for achieving high modulation efficiency whilst retaining self-aligned formation of the PN junction.

  18. Dielectric effect on electric fields in the vicinity of the metal–vacuum–dielectric junction

    International Nuclear Information System (INIS)

    Chung, M.S.; Mayer, A.; Miskovsky, N.M.; Weiss, B.L.; Cutler, P.H.

    2013-01-01

    The dielectric effect was theoretically investigated in order to describe the electric field in the vicinity of a junction of a metal, dielectric, and vacuum. The assumption of two-dimensional symmetry of the junction leads to a simple analytic form and to a systematic numerical calculation for the field. The electric field obtained for the triple junction was found to be enhanced or reduced according to a certain criterion determined by the contact angles and dielectric constant. Further numerical calculations of the dielectric effect show that an electric field can experience a larger enhancement or reduction for a quadruple junction than that achieved for the triple junction. It was also found that even though it changes slowly in comparison with the shape effect, the dielectric effect was noticeably large over the entire range of the shape change. - Highlights: ► This work explains how a very strong electric field can be produced due to the dielectric in the vicinity of metal–dielectric contact. ► This work deals with configurations which enhance electric fields using the dielectric effect. The configuration is a type of junction at which metal, vacuum and dielectric meet. ► This work suggests the criterion to determine whether field enhancement occurs or not in the triple junction of metal, vacuum and dielectric. ► This work suggests that a quadruple junction is more effective in enhancing the electric field than a triple junction. The quadruple junction is formed by an additional vacuum portion to the triple junction. ► This work suggests that a triple junction can be a breakthrough candidate for a cold electron source

  19. Single-Molecule Photocurrent at a Metal-Molecule-Semiconductor Junction.

    Science.gov (United States)

    Vezzoli, Andrea; Brooke, Richard J; Higgins, Simon J; Schwarzacher, Walther; Nichols, Richard J

    2017-11-08

    We demonstrate here a new concept for a metal-molecule-semiconductor nanodevice employing Au and GaAs contacts that acts as a photodiode. Current-voltage traces for such junctions are recorded using a STM, and the "blinking" or "I(t)" method is used to record electrical behavior at the single-molecule level in the dark and under illumination, with both low and highly doped GaAs samples and with two different types of molecular bridge: nonconjugated pentanedithiol and the more conjugated 1,4-phenylene(dimethanethiol). Junctions with highly doped GaAs show poor rectification in the dark and a low photocurrent, while junctions with low doped GaAs show particularly high rectification ratios in the dark (>10 3 for a 1.5 V bias potential) and a high photocurrent in reverse bias. In low doped GaAs, the greater thickness of the depletion layer not only reduces the reverse bias leakage current, but also increases the volume that contributes to the photocurrent, an effect amplified by the point contact geometry of the junction. Furthermore, since photogenerated holes tunnel to the metal electrode assisted by the HOMO of the molecular bridge, the choice of the latter has a strong influence on both the steady state and transient metal-molecule-semiconductor photodiode response. The control of junction current via photogenerated charge carriers adds new functionality to single-molecule nanodevices.

  20. Q factor and resonance amplitude of Josephson tunnel junctions

    International Nuclear Information System (INIS)

    Broom, R.F.; Wolf, P.

    1977-01-01

    The surface impedance of the superconducting films comprising the electrodes of Josephson tunnel junctions has been derived from the BCS theory in the extreme London limit. Expressions have been obtained for (i) the dependence of the penetration depth lambda on frequency and temperature, and (ii) the quality factor Q of the junction cavity, attributable to surface absorption in the electrodes. The effect of thin electrodes (t 9 or approx. = lambda) is also included in the calculations. Comparison of the calculated frequency dependence of lambda with resonance measurements on Pb-alloy and all-Nb tunnel junctions yields quite good agreement, indicating that the assumptions made in the theory are reasonable. Measurements of the (current) amplitude of the resonance peaks of the junctions have been compared with the values obtained from inclusion of the calculated Q in the theory by Kulik. In common with observations on microwave cavities by other workers, we find that a small residual conductivity must be added to the real part of the BCS value. With its inclusion, good agreement is found between calculation and experiment, within the range determined by the simplifying assumptions of Kulik's theory. From the results, we believe the calculation of Q to be reasonably accurate for the materials investigated. It is shown that the resonance amplitude of Josephson junctions can be calculated directly from the material constants and a knowledge of the residual conductivity