WorldWideScience

Sample records for thin-walled short cylinder

  1. Strength Tests of Thin-Walled Duralumin Cylinders in Compression

    Science.gov (United States)

    Lundquist, Eugene E

    1934-01-01

    This report is the second of a series presenting the results of strength tests of thin-walled duralumin cylinders and truncated cones of circular and elliptic section. It contains the results obtained from compression tests on 45 thin-walled duralumin cylinders of circular section with ends clamped to rigid bulkheads. In addition to the tests on duralumin cylinders, there are included the results of numerous tests on rubber, celluloid, steel, and brass cylinders obtained from various sources.

  2. Magnetic moment jumps in flat and nanopatterned Nb thin-walled cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Tsindlekht, M.I., E-mail: mtsindl@vms.huji.ac.il [The Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Genkin, V.M.; Felner, I.; Zeides, F.; Katz, N. [The Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Gazi, Š.; Chromik, Š. [The Institute of Electrical Engineering SAS, Dúbravská cesta 9, 84104 Bratislava (Slovakia); Dobrovolskiy, O.V. [Physikalisches Institut, Goethe University, 60438 Frankfurt am Main (Germany); Physics Department, V. Karazin Kharkiv National University, 61077 Kharkiv (Ukraine); Sachser, R.; Huth, M. [Physikalisches Institut, Goethe University, 60438 Frankfurt am Main (Germany)

    2017-02-15

    Highlights: • Magnetization curves of as-prepared and patterned thin-walled cylinders were measured in magnetic fields applied parallel to cylinders axis. • Magnetic moment jumps were observed in magnetic fields lower and above Hc1. • Critical current density in isthmus between two antidots is higher than in a film itself. - Abstract: Penetration of magnetic flux into hollow superconducting cylinders is investigated by magnetic moment measurements. The magnetization curves of a flat and a nanopatterned thin-walled superconducting Nb cylinders with a rectangular cross section are reported for the axial field geometry. In the nanopatterned sample, a row of micron-sized antidots (holes) was milled in the film along the cylinder axis. Magnetic moment jumps are observed for both samples at low temperatures for magnetic fields not only above H{sub c1}, but also in fields lower than H{sub c1}, i. e., in the vortex-free regime. The positions of the jumps are not reproducible and they change from one experiment to another, resembling vortex lattice instabilities usually observed for magnetic fields larger than H{sub c1}. At temperatures above 0.66T{sub c} and 0.78T{sub c} the magnetization curves become smooth for the patterned and the as-prepared sample, respectively. The magnetization curve of a reference flat Nb film in the parallel field geometry does not exhibit jumps in the entire range of accessible temperatures.

  3. Methods and results for stress analyses on 14-ton, thin-wall depleted UF6 cylinders

    International Nuclear Information System (INIS)

    Kirkpatrick, J.R.; Chung, C.K.; Frazier, J.L.; Kelley, D.K.

    1996-10-01

    Uranium enrichment operations at the three US gaseous diffusion plants produce depleted uranium hexafluoride (DUF 6 ) as a residential product. At the present time, the inventory of DUF 6 in this country is more than half a million tons. The inventory of DUF 6 is contained in metal storage cylinders, most of which are located at the gaseous diffusion plants. The principal objective of the project is to ensure the integrity of the cylinders to prevent causing an environmental hazard by releasing the contents of the cylinders into the atmosphere. Another objective is to maintain the cylinders in such a manner that the DUF 6 may eventually be converted to a less hazardous material for final disposition. An important task in the DUF 6 cylinders management project is determining how much corrosion of the walls can be tolerated before the cylinders are in danger of being damaged during routine handling and shipping operations. Another task is determining how to handle cylinders that have already been damaged in a manner that will minimize the chance that a breach will occur or that the size of an existing breach will be significantly increased. A number of finite element stress analysis (FESA) calculations have been done to analyze the stresses for three conditions: (1) while the cylinder is being lifted, (2) when a cylinder is resting on two cylinders under it in the customary two-tier stacking array, and (3) when a cylinder is resting on tis chocks on the ground. Various documents describe some of the results and discuss some of the methods whereby they have been obtained. The objective of the present report is to document as many of the FESA cases done at Oak Ridge for 14-ton thin-wall cylinders as possible, giving results and a description of the calculations in some detail

  4. Strength tests of thin-walled elliptic duralumin cylinders in pure bending and in combined pure bending and torsion

    Science.gov (United States)

    Lundquist, Eugene E; Stowell, Elbridge Z

    1942-01-01

    An analysis is presented of the results of tests made by the Massachusetts Institute of Technology and by the National Advisory Committee for Aeronautics on an investigation of the strength of thin-walled circular and elliptic cylinders in pure bending and in combined torsion and bending. In each of the loading conditions, the bending moments were applied in the plane of the major axis of the ellipse.

  5. Assessment of Reusing 14-Ton, Thin-Wall, Depleted UF6 Cylinders as LLW Disposal Containers

    International Nuclear Information System (INIS)

    O'Connor, D.G.; Poole, A.B.; Shelton, J.H.

    2000-01-01

    Approximately 700,000 MT of DUF 6 is stored, or will be produced under a current agreement with the USEC, at the Paducah site in Kentucky, Portsmouth site in Ohio, and ETTP site in Tennessee. On July 21, 1998, the 105th Congress approved Public Law 105-204, which directed that facilities be built at the Kentucky and Ohio sites to convert DUF 6 to a stable form for disposition. On July 6, 1999, the Department of Energy (DOE) issued the ''Final Plan for the Conversion of Depleted Uranium Hexafluoride as Required by Public Law 105-204'', in which DOE committed to develop a ''Depleted Uranium Hexafluoride Materials Use Roadmap''. On September 1,2000, DOE issued the ''Draft Depleted Uranium Hexafluoride Materials Use Roadmap'' (Roadmap), which provides alternate paths for the long-term storage, beneficial use, and eventual disposition of each product form and material that will result from the DUF 6 conversion activity. One of the paths being considered for DUF 6 cylinders is to reuse the empty cylinders as containers to transport and dispose of LLW, including the converted DU. The Roadmap provides results of the many alternate uses and disposal paths for conversion products and the empty DUF 6 storage cylinders. As a part of the Roadmap, evaluations were conducted of cost savings, technical maturity, barriers to implementation, and other impacts. Results of these evaluations indicate that using the DUF 6 j storage cylinders as LLW disposal containers could provide moderate cost savings due to the avoided cost of purchasing LLW packages and the avoided cost of disposing of the cylinders. No significant technical or institutional .issues were identified that.would make using cylinders as LLW packages less effective than other disposition paths. Over 58,000 cylinders have been used, or will be used, to store DUF 6 . Over 5 1,000 of those cylinders are 14TTW cylinders with a nominal wall thickness of 5/16-m (0.79 cm). These- 14TTW cylinders, which have a nominal diameter

  6. The Strength of Thin-wall Cylinders of D Cross Section in Combined Pure Bending and Torsion

    Science.gov (United States)

    Sherwood, A W

    1943-01-01

    The results of tests of 56 cylinders of D cross section conducted in the Aeronautical Laboratory of the University of Maryland are presented in this report. These cylinders were subjected to pure bending and torsional moments of varying proportions to give the strength under combined loading conditions. The average buckling stress of these cylinders has been related to that of circumscribing circular cylinders for conditions of pure torsion and pure bending and the equation of the interaction curve has been determined for conditions of combined loading.

  7. Electronmicroscopical evaluation of short-term nerve regeneration through a thin-walled biodegradable poly(DLLA-epsilon-CL) nerve guide filled with modified denatured muscle tissue

    NARCIS (Netherlands)

    Meek, MF; Robinson, PH; Stokroos, [No Value; Blaauw, EH; Kors, G; den Dunnen, WFA

    The aim of this study was to evaluate short-term peripheral nerve regeneration across a 15-mm gap in the sciatic nerve of the rat, using a thin-walled biodegradable poly(DL-lactide-epsilon -caprolactone) nerve guide filled with modified denatured muscle tissue (MDMT). The evaluation was performed

  8. Thin Wall Austempered Ductile Iron (TWADI

    Directory of Open Access Journals (Sweden)

    M. Górny

    2009-07-01

    Full Text Available In this paper the analysis of thin walled castings made of ductile iron is considered. It is shown that thin wall austempered ductile iron can be obtained by means of short-term heat treatment of thin wall castings without addition of alloying elements. Metallographic examinations of 2 mm thin walled castings along with casting with thicker wall thickness (20x28 mm after different austempring conditions are presented. It has been proved that short-term heat treatment amounted 20 minutes of austenitizing at 880 oC followed by holding at 400 oC for 5 minutes causes ausferrite matrix in 2 mm wall thickness castings, while casting with thicker wall thickness remain untransformed and martensite is still present in a matrix. Finally there are shown that thin wall ductile iron is an excellent base material for austempering heat treatments. As a result high mechanical properties received in thin wall plates made of austempered ductile iron.

  9. Combined convective heat transfer from short cylinders

    International Nuclear Information System (INIS)

    Oosthuizen, P.H.; Paul, J.T.

    1985-01-01

    Considerable experimental evidence has been produced recently showing that the free convective heat transfer rate from horizontal circular cylinders becomes influenced by the length to diameter ratio L/D. The major aim of the present study was to determine the influence of the L/D ratio on the conditions under which buoyancy forces cause the heat transfer rate to start to deviate significantly from that existing in purely forced convection

  10. Thin wall ductile and austempered iron castings

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2010-07-01

    Full Text Available It has been shown that it is possible to produce thin wall castings made of ductile iron with wall thickness in the range of 1.2 to 2.9 mm(without chills, cold laps and misruns. Thin wall ductile iron castings can be lighter (380 g than their substitutes made of aluminium alloys (580g. The kinetics of austenitising transformation was studied in unalloyed ductile iron. The advance of transformations during austenitising was monitored by measurement the fraction of martensite and also by dilatometic studies. It has been shown that in thin wall ductile iron castings austenitising at 880 oC for 20 minutes is adequate to obtain the austenite matrix at the end of the first stage of austempering heat treatment cycle.

  11. Coupled electromechanical model of an imperfect piezoelectric vibrating cylinder gyroscope

    CSIR Research Space (South Africa)

    Loveday, PW

    1996-01-01

    Full Text Available Coupled electromechanical equations of motion, describing the dynamics of a vibrating cylinder gyroscope, are derived using Hamilton's principle and the Rayleigh-Ritz method. The vibrating cylinder gyroscope comprises a thin walled steel cylinder...

  12. Distortional Modes of Thin-Walled Beams

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Andreassen, Michael Joachim

    2009-01-01

    The classic thin-walled beam theory for open and closed cross-sections can be generalized by including distortional displacement modes. The introduction of additional displacement modes leads to coupled differential equations, which seems to have prohibited the use of exact shape functions in the...

  13. CALCULATION AND EXPERIMENTAL ESTIMATION OF RESULTS OF ELECTRO-THERMAL ACTION OF RATIONED BY THE INTERNATIONAL STANDARD IEC 62305-1-2010 IMPULSE CURRENT OF SHORT BLOW OF ARTIFICIAL LIGHTNING ON THE THIN-WALLED COVERAGE FROM STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    M. I. Baranov

    2017-03-01

    Full Text Available Purpose. Calculation and experimental researches of electro-thermal resistibility of the pre-production thin-walled sheet models of outward roof of height technical buildings from stainless steel are easily soiled 12Х18Н10Т to direct action on them rationed by the International Standard IEC 62305-1-2010 aperiodic impulse of current of short bow of artificial lightning of temporal form 10/350 μs with the proper admittances on his peak-temporal parameters (PTP. Methodology. Electrophysics bases of technique of high voltage and large impulsive currents (LIC, and also scientific and technical bases of planning of high-voltage impulsive devices and measuring methods in them LIC with followings below extreme PTP: amplitude of impulse of current of ImL=200 кА (with admittance ±10 %; integral of action of impulse of current of JL=10·106 A2·s (with admittance ±35 %; %; duration of wavefront current of T1=10 μs (with admittance ±20 %; time, proper amplitude of impulse of current of ImL, tmL≤24 μs (with admittance ±20 %; duration of flowing of impulse of current of T2=350 μs (with admittance ±10 %. Results. The results of evaluation calculation and experimental researches of electro-thermal resistibility of the indicated pre-production sheet models are resulted measuring in the plan of 0,5 x 0,5 m from stainless steel are easily soiled the 12Х18Н10Т thickness of 1 mm to action on them of aperiodic impulse of current of short blow of artificial lightning with rationed PTP on the requirements of the International Standard IEC 62305-1-2010. In high current experiments amplitude of ImL of the aperiodic rationed impulse of current of artificial lightning of temporal form of T1/T2=15 μs/315 μs changed in the range of (100-184 кА. The integral of action of JL of impulse of current for I-IV of levels of protection of lightning of technical objects (TO numeral made from 2,32·106 А2·s to 7,88·106 А2·s, and the flowing through the

  14. Processing strategies for thin wall injection molding

    Science.gov (United States)

    Tantakom, Patraporn

    1998-12-01

    Thin wall injection molding of a thin wall molding grade of polycarbonate and acrylonitrile butadiene styrene were examined in this research. The work investigated the effect of melt and mold temperature on part weight, orientation, tensile strength, flow front profile and flow instability. The HPM H90-V6 injection molding machine, set at its maximum injection velocity was used in the study. A flow simulation was conducted using a commercially available computer program to verify its reliability for thin wall injection molding. Thermal pulse heating systems for heating the mold cavity surfaces prior to injection of the melt were examined. A data acquisition system was designed to record four pressure and four temperature signals inside the mold cavity. Increasing the melt and mold temperatures showed a positive effect on part weight, and tensile strength. However, when the melt temperature was increased beyond the resin's recommended melt temperature, the tensile strength of the part decreased and a change in color to the molded parts were an indication of polymer degradation. As a result, increasing the mold temperature was found to be a better strategy for improving the thin wall molding process. Two systems for thermal pulse heating were examined. One was a high-flow, low-pressure system while the other was a high-flow, high-pressure system. The high-pressure system yielded results that correlated with the calculation, but it required careful design. The low-pressure system showed positive results for heating the cavity surface. The scale-up possibilities of the low pressure system was very appealing. An unexpected melt flow front profile and a melt flow instability for the thin wall part during filling occurred as a result of high shear on the polymer melt in the cavity. The flow front profile was concave and resembled a fishtail curve. At the edge of the part where the shear rate is the highest, the melt viscosity dropped due to the pseudoplastic effects

  15. Machining Thin-Walled Cylindrical Parts

    Science.gov (United States)

    Cimbak, Joe; Spagnolo, Jim; Kraus, Dan

    1988-01-01

    Cylindrical walls only few thousandths of inch thick machined accurately and without tears or punctures with aid of beryllium copper mandrel. Chilled so it contracts, then inserted in cylinder. As comes to room temperature, mandrel expands and fits snugly inside cylinder. Will not allow part to slide and provides solid backup to prevent deflection when part machined by grinding wheel. When machining finished, cylinder-and-mandrel assembly inserted in dry ice, mandrel contracts and removed from part.

  16. Nondestructive testing of welds on thin-walled tubing

    Science.gov (United States)

    Hagemaier, D. J.; Posakony, G. J.

    1969-01-01

    Special ultrasonic search unit, or transducer assembly, reliably inspects the quality of melt-through welds of fusion welded tubing couplers for hydraulic lines. This instrumentation can also be used to detect faulty braze bonds in thin-walled, small diameter joints and wall thickness of thin-walled metal tubing.

  17. Experimental validation of tape springs to be used as thin-walled space structures

    Science.gov (United States)

    Oberst, S.; Tuttle, S. L.; Griffin, D.; Lambert, A.; Boyce, R. R.

    2018-04-01

    With the advent of standardised launch geometries and off-the-shelf payloads, space programs utilising nano-satellite platforms are growing worldwide. Thin-walled, flexible and self-deployable structures are commonly used for antennae, instrument booms or solar panels owing to their lightweight, ideal packaging characteristics and near zero energy consumption. However their behaviour in space, in particular in Low Earth Orbits with continually changing environmental conditions, raises many questions. Accurate numerical models, which are often not available due to the difficulty of experimental testing under 1g-conditions, are needed to answer these questions. In this study, we present on-earth experimental validations, as a starting point to study the response of a tape spring as a representative of thin-walled flexible structures under static and vibrational loading. Material parameters of tape springs in a singly (straight, open cylinder) and a doubly curved design, are compared to each other by combining finite element calculations, with experimental laser vibrometry within a single and multi-stage model updating approach. While the determination of the Young's modulus is unproblematic, the damping is found to be inversely proportional to deployment length. With updated material properties the buckling instability margin is calculated using different slenderness ratios. Results indicate a high sensitivity of thin-walled structures to miniscule perturbations, which makes proper experimental testing a key requirement for stability prediction on thin-elastic space structures. The doubly curved tape spring provides closer agreement with experimental results than a straight tape spring design.

  18. Behaviour of thin-walled cold-formed steel members in eccentric compression

    Science.gov (United States)

    Ungureanu, Viorel; Kotełko, Maria; Borkowski, Łukasz; Grudziecki, Jan

    2018-01-01

    Thin-walled cold-formed steel structures are usually made of members of class 4 cross-sections. Since these sections are prematurely prone to local or distortional buckling and due to the fact they do not have a real post-elastic capacity, the failure at ultimate stage of those members, either in compression or bending, always occurs by forming a local plastic mechanism. The present paper investigates the evolution of the plastic mechanisms and the possibility to use them to characterise the ultimate strength of short thin-walled cold-formed steel members subjected to eccentric compression about minor axis, particularly for members with lipped channel cross-section. Five different types of plastic mechanisms for members in compression with different eccentricities are identified and examined on the basis of FE numerical simulations. Preliminary results of experimental validation of numerical results are presented. The research is based on previous studies and some new investigations of the authors.

  19. A distortional semi-discretized thin-walled beam element

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Jönsson, Jeppe

    2013-01-01

    Due to the increased consumption of thin-walled structural elements there has been increasing focus and need for more detailed calculations as well as development of new approaches. In this paper a thin-walled beam element including distortion of the cross section is formulated. The formulation...... is based on a generalized beam theory (GBT), in which the classic Vlasov beam theory for analysis of open and closed thin-walled cross sections is generalized by including distortional displacements. The beam element formulation utilizes a semi-discretization approach in which the cross section...... is discretized into wall elements and the analytical solutions of the related GBT beam equations are used as displacement functions in the axial direction. Thus the beam element contains the semi-analytical solutions. In three related papers the authors have recently presented the semi-discretization approach...

  20. Vibration improved the fluidity of aluminum alloys in thin wall ...

    African Journals Online (AJOL)

    Misrun is a term used to describe the incomplete filling of the mould cavity. It is a major defect in the investment casting process when used to produce turbine blades, impellers and impulse blades for turbo pumps which have complex profiles, thin walls and sharp edges. From the casting engineering point of view, poor ...

  1. Torsional vibration of thin-walled elastic beams with doubly ...

    African Journals Online (AJOL)

    In this paper, the problem of analyzing the torsional vibration of thin-walled elastic beams, with open cross-sections that are doubly symmetric and traversed by moving concentrated masses at constant speeds is addressed. The mathematical model adopted accounts for both the gravitational and inertial effects of the ...

  2. Method for preparing thin-walled ceramic articles of configuration

    International Nuclear Information System (INIS)

    Holcombe, C.E.; Powell, G.L.

    1975-01-01

    A method for preparing a hollow thin-walled ceramic product is described. Ceramic powder is plasma-sprayed onto a concave surface of a substrate having a coefficient of thermal expansion less than that of the ceramic. The coated substrate is heated to sinter the ceramic and then cooled to effect a separation of the ceramic product from the substrate

  3. The Dynamic Similitude Design Method of Thin Walled Structures and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Zhong Luo

    2016-01-01

    Full Text Available For the applicability of dynamic similitude models of thin walled structures, such as engine blades, turbine discs, and cylindrical shells, the dynamic similitude design of typical thin walled structures is investigated. The governing equation of typical thin walled structures is firstly unified, which guides to establishing dynamic scaling laws of typical thin walled structures. Based on the governing equation, geometrically complete scaling law of the typical thin walled structure is derived. In order to determine accurate distorted scaling laws of typical thin walled structures, three principles are proposed and theoretically proved by combining the sensitivity analysis and governing equation. Taking the thin walled annular plate as an example, geometrically complete and distorted scaling laws can be obtained based on the principles of determining dynamic scaling laws. Furthermore, the previous five orders’ accurate distorted scaling laws of thin walled annular plates are presented and numerically validated. Finally, the effectiveness of the similitude design method is validated by experimental annular plates.

  4. Static and dynamic buckling of thin-walled plate structures

    CERN Document Server

    Kubiak, Tomasz

    2013-01-01

    This monograph deals with buckling and postbuckling behavior of thin plates and thin-walled structures with flat wall subjected to static and dynamic load. The investigations are carried out in elastic range. The basic assumption here is the  thin plate theory. This method is used to determination the buckling load and postbuckling analysis of thin-walled structures subjected to static and dynamic load. The book introduces two methods for static and dynamic buckling investigation which allow for a wider understanding of the phenomenon. Two different methods also can allow uncoupling of the phenomena occurring at the same time and attempt to estimate their impact on the final result. A general mathematical model, adopted in proposed analytical-numerical method, enables the consideration of all types of stability loss i.e.local, global and interactive forms of buckling. The applied numerical-numerical method includes adjacent of walls, shear-lag phenomenon and a deplanation of cross-sections.

  5. Distortional Mechanics of Thin-Walled Structural Elements

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim

    In several industries such as civil, mechanical, and aerospace, thin-walled structures are often used due to the high strength and effective use of the materials. Because of the increased consumption there has been increasing focus on optimizing and more detailed calculations. However, finely...... number of degrees of freedom. This means that the classical Vlasov thin-walled beam theory for open and closed cross sections is generalized as part of a semi-discretization process by including distortional displacement fields. A novel finite-element-based displacement approach is used in combination...... by discretization of the cross section are now solved analytically and the formulation is valid without special attention and approximation also for closed single or multi-cell cross sections. Furthermore, the found eigenvalues have clear mechanical meaning, since they represent the attenuation of the distortional...

  6. Manufacturing of thin walled near net shape iron castings

    DEFF Research Database (Denmark)

    Larsen, Per Leif

    2003-01-01

    to be substituting iron casings with aluminum castings. Substituting iron castings with aluminum castings is not as easy as first believed, and hence the substitution is very slow. This combined with the lack of fully exploiting the potential in iron castings, makes research in iron castings interesting. The 60......The demand for near net shape thin walled iron castings is growing. This has several reasons, the main one is the need for lowering the fuel consumption of cars; the easiest way to do that is to lower the weight of the cars. The best way to do this was for a period of time believed.......000.000 cars produced world wide each year consumes enormous amounts of cast parts ! The aim of the project is to develop the green sand molding method on DISAMATIC to be able to deal with the new demands for thin walled near net shape castings in iron....

  7. Thin-walled reinforcement lattice structure for hollow CMC buckets

    Science.gov (United States)

    de Diego, Peter

    2017-06-27

    A hollow ceramic matrix composite (CMC) turbine bucket with an internal reinforcement lattice structure has improved vibration properties and stiffness. The lattice structure is formed of thin-walled plies made of CMC. The wall structures are arranged and located according to high stress areas within the hollow bucket. After the melt infiltration process, the mandrels melt away, leaving the wall structure to become the internal lattice reinforcement structure of the bucket.

  8. Energy absorption capabilities of complex thin walled structures

    Science.gov (United States)

    Tarlochan, F.; AlKhatib, Sami

    2017-10-01

    Thin walled structures have been used in the area of energy absorption during an event of a crash. A lot of work has been done on tubular structures. Due to limitation of manufacturing process, complex geometries were dismissed as potential solutions. With the advancement in metal additive manufacturing, complex geometries can be realized. As a motivation, the objective of this study is to investigate computationally the crash performance of complex tubular structures. Five designs were considered. In was found that complex geometries have better crashworthiness performance than standard tubular structures used currently.

  9. Linear motion feed through with thin wall rubber sealing element

    Science.gov (United States)

    Mikhailov, V. P.; Deulin, E. A.

    2017-07-01

    The patented linear motion feedthrough is based on elastic thin rubber walls usage being reinforced with analeptic string fixed in the middle part of the walls. The pneumatic or hydro actuators create linear movement of stock. The length of this movement is two times more the rubber wall length. This flexible wall is a sealing element of feedthrough. The main advantage of device is negligible resistance force that is less then mentioned one in sealing bellows that leads to positioning error decreasing. Nevertheless, the thin wall rubber sealing element (TRE) of the feedthrough is the main unreliable element that was the reason of this element longevity research. The theory and experimental results help to create equation for TRE longevity calculation under vacuum or extra high pressure difference action. The equation was used for TRE longevity determination for hydraulic or vacuum equipment realization also as it helps for gas flow being leaking through the cracks in thin walls of rubber sealing element of linear motion feedthrough calculation.

  10. Radiation levels on empty cylinders containing heel material

    Energy Technology Data Exchange (ETDEWEB)

    Shockley, C.W. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    Empty UF{sub 6} cylinders containing heel material were found to emit radiation levels in excess of 200 mr/hr, the maximum amount stated in ORO-651. The radiation levels were as high as 335 mr/hr for thick wall (48X and 48Y) cylinders and 1050 mr/hr for thin wall (48G and 48H) cylinders. The high readings were found only on the bottom of the cylinders. These radiation levels exceeded the maximum levels established in DOT 49 CFR, Part 173.441 for shipment of cylinders. Holding periods of four weeks for thick-wall cylinders and ten weeks for thin-wall cylinders were established to allow the radiation levels to decay prior to shipment.

  11. Finite element analysis of the design and manufacture of thin-walled pressure vessels used as aerosol cans

    Science.gov (United States)

    Abdussalam, Ragba Mohamed

    Thin-walled cylinders are used extensively in the food packaging and cosmetics industries. The cost of material is a major contributor to the overall cost and so improvements in design and manufacturing processes are always being sought. Shape optimisation provides one method for such improvements. Aluminium aerosol cans are a particular form of thin-walled cylinder with a complex shape consisting of truncated cone top, parallel cylindrical section and inverted dome base. They are manufactured in one piece by a reverse-extrusion process, which produces a vessel with a variable thickness from 0.31 mm in the cylinder up to 1.31 mm in the base for a 53 mm diameter can. During manufacture, packaging and charging, they are subjected to pressure, axial and radial loads and design calculations are generally outside the British and American pressure vessel codes. 'Design-by-test' appears to be the favoured approach. However, a more rigorous approach is needed in order to optimise the designs. Finite element analysis (FEA) is a powerful tool for predicting stress, strain and displacement behaviour of components and structures. FEA is also used extensively to model manufacturing processes. In this study, elastic and elastic-plastic FEA has been used to develop a thorough understanding of the mechanisms of yielding, 'dome reversal' (an inherent safety feature, where the base suffers elastic-plastic buckling at a pressure below the burst pressure) and collapse due to internal pressure loading and how these are affected by geometry. It has also been used to study the buckling behaviour under compressive axial loading. Furthermore, numerical simulations of the extrusion process (in order to investigate the effects of tool geometry, friction coefficient and boundary conditions) have been undertaken. Experimental verification of the buckling and collapse behaviours has also been carried out and there is reasonable agreement between the experimental data and the numerical

  12. Effect of load eccentricity on the buckling of thin-walled laminated C-columns

    Science.gov (United States)

    Wysmulski, Pawel; Teter, Andrzej; Debski, Hubert

    2018-01-01

    The study investigates the behaviour of short, thin-walled laminated C-columns under eccentric compression. The tested columns are simple-supported. The effect of load inaccuracy on the critical and post-critical (local buckling) states is examined. A numerical analysis by the finite element method and experimental tests on a test stand are performed. The samples were produced from a carbon-epoxy prepreg by the autoclave technique. The experimental tests rest on the assumption that compressive loads are 1.5 higher than the theoretical critical force. Numerical modelling is performed using the commercial software package ABAQUS®. The critical load is determined by solving an eigen problem using the Subspace algorithm. The experimental critical loads are determined based on post-buckling paths. The numerical and experimental results show high agreement, thus demonstrating a significant effect of load inaccuracy on the critical load corresponding to the column's local buckling.

  13. Experimental Investigation of Compressed Thin-Walled Steel Members

    Science.gov (United States)

    Juhás, Pavol; Juhásová Šenitková, Ingrid

    2017-10-01

    The paper presents fundamental information about realized experimental-theoretical research to determinate the load-carrying capacities for thin-walled compressed steel members with quasi-homogenous and hybrid cross-sections. The webs of such members are stressed in the elastic-plastic region. This continuous research joins on previous research of the first author of the paper. The aim of this research is to investigate and analyse the elastic-plastic post-critical behaviour of thin web and its interaction with flanges. The experimental program, test members and their geometrical parameters and material properties are evident from table 1 and table 2 as well as from figure 1 and figure 2. The test arrangement and failures of the test members are illustrated on Figures 3, 4 and 5. Some partial results are presented in Table 3 of the paper, too.

  14. Nonlinear behaviour and stability of thin-walled shells

    CERN Document Server

    Obodan, Natalia I; Gromov, Vasilii A

    2013-01-01

    This book focuses on the nonlinear behaviour of thin-wall shells (single- and multilayered with delamination areas) under various uniform and non-uniform loadings. The dependence of critical (buckling) load upon load variability is revealed to be highly non-monotonous, showing minima when load variability is close to the eigenmode variabilities of solution branching points of the respective nonlinear boundary problem. A novel numerical approach is employed to analyze branching points and to build primary, secondary, and tertiary bifurcation paths of the nonlinear boundary problem for the case of uniform loading. The load levels of singular points belonging to the paths are considered to be critical load estimates for the case of non-uniform loadings.

  15. Impact of Thin-Walled Projectiles with Concrete Targets

    Directory of Open Access Journals (Sweden)

    Rayment E. Moxley

    1995-01-01

    Full Text Available An experimental program to determine the response of thin-walled steel projectiles to the impact with concrete targets was recently conducted. The projectiles were fired against 41-MPa concrete targets at an impact velocity of 290 m/s. This article contains an outline of the experimental program, an examination of the results of a typical test, and predictions of projectile deformation by classical shell theory and computational simulation. Classical shell analysis of the projectile indicated that the predicted impact loads would result in circumferential buckling. A computational simulation of a test was conducted with an impact/penetration model created by linking a rigid-body penetration trajectory code with a general-purpose finite element code. Scientific visualization of the resulting data revealed that circumferential buckling was induced by the impact conditions considered.

  16. Impact of assembly on signal detection from thin-wall rotors of micro-gyroscopes

    Directory of Open Access Journals (Sweden)

    Hai Li

    2014-03-01

    Full Text Available The assembly of sealed hollow rotors, a key component in achieving liquid-levitated micro-gyroscopes, represents a significant challenge. The rotor is a thin-wall cylinder composed of materials that are only 100-μm thick. Furnace soldering and hand soldering are used to join the work pieces, but produce defects evident from deformations and surface roughness. Modeling and experiments show that the deformation is related to the temperature during assembly and the mode by which heat is applied to the components. Temperature affects the deformation through thermal stress and air pressure on the rotor, but the mode of heating creates a big difference. Surface deformation of the rotor alters the detecting capacitance and introduces uncertainty in detection sensitivity of the gyroscope. Experiments show that at 220°C, furnace soldering of rotors causes a great decrease in detection sensitivity, leading to a relative uncertainty of nearly 40%. In contrast, hand soldering leads to a relative uncertainty of about 5%. Spot heating of the rotor during assembly is much better than total heating as less thermal stress is generated and the air pressure difference is almost eliminated. Lowering the temperature is helpful to as long as the connection is sufficiently strengthened.

  17. Microstructure and mechanical properties of fine-grained thin-walled ...

    Indian Academy of Sciences (India)

    2017-11-30

    Nov 30, 2017 ... a novel combined severe plastic deformation (SPD) was applied on AZ91 alloy to produce ultrafine-grained (UFG) thin- walled tubes ... Keywords. Severe plastic deformation; thin-walled tube; ultrafine-grained; AZ91; hydro-bulge test. 1. ... process, the TBE process is done to reduce the thickness of the UFG ...

  18. Mechanism of Filling and Feeding of Thin-Walled Structures during Gravity Casting

    Directory of Open Access Journals (Sweden)

    Faguo Li

    2015-06-01

    Full Text Available The filling and feeding of thin-walled structures in metal castings pose significant difficulties in manufacturing aerospace structural materials. Samples containing 2 mm and 5 mm thin-walled structures were designed to study the kinetics of filling. The microstructural evolution of the solidification of thin-walled structures was studied with synchrotron X-radiation imaging. The formation of dendritic networks and the isotherm profiles of samples of different thickness were examined. The experimental results showed solidification microstructures of 2 mm and 5 mm thin-walled parts containing elongated equiaxed grains and normal equiaxed grains, respectively. The filling and feeding abilities of thin-walled parts were found to depend more on the wall thickness than on the pouring temperature.

  19. Mechanical testing of thin-walled zirconia abutments

    Directory of Open Access Journals (Sweden)

    Luigi CANULLO

    2013-01-01

    Full Text Available Although the use of zirconia abutments for implant-supported restorations has gained momentum with the increasing demand for esthetics, little informed design rationale has been developed to characterize their fatigue behavior under different clinical scenarios. However, to prevent the zirconia from fracturing, the use of a titanium connection in bi-component aesthetic abutments has been suggested. Objective Mechanical testing of customized thin-walled titanium-zirconia abutments at the connection with the implant was performed in order to characterize the fatigue behavior and the failure modes for straight and angled abutments. Material and Methods Twenty custom-made bi-component abutments were tested according to ISO 14801:2007 either at a straight or a 25° angle inclination (n=10 each group. Fatigue was conducted at 15 Hz for 5 million cycles in dry conditions at 20°C±5°C. Mean values and standard deviations were calculated for each group. All comparisons were performed by t-tests assuming unequal variances. The level of statistical significance was set at p≤0.05. Failed samples were inspected in a polarized-light and then in a scanning electron microscope. Results Straight and angled abutments mean maximum load was 296.7 N and 1,145 N, the dynamic loading mean Fmax was 237.4 N and 240.7 N, respectively. No significant differences resulted between the straight and angled bi-component abutments in both static (p=0.253 and dynamic testing (p=0.135. A significant difference in the bending moment required for fracture was detected between the groups (p=0.01. Fractures in the angled group occurred mainly at the point of load application, whereas in the straight abutments, fractures were located coronally and close to the thinly designed areas at the cervical region. Conclusion Angled or straight thin-walled zirconia abutments presented similar Fmax under fatigue testing despite the different bending moments required for fracture. The main

  20. Thin wall vacuum reaction chamber for neutron measurement

    International Nuclear Information System (INIS)

    Banerjee, K.; Meena, J.K.; Bhattacharya, Sumantra; Bhattacharya, S.; Bhattacharya, C.; Roy, P.; Saha, A.K.; Ghosh, T.K.; Kundu, S.; Rana, T.K.; Mukherjee, G.; Pandey, R.; Sahoo, J.K.; Saha Mondal, R.; Yadav, R.C.; Chatterjee, S.

    2013-01-01

    A thin wall (3 mm) stainless steel vacuum reaction chamber has been designed, fabricated and installed in the K500 superconducting beam hall at VECC for the in-beam experiment. The chamber is spherical in shape, with inner diameter 1010 mm, having three independent sections. The middle segment is fixed to the beam line, whereas the two hemispherical sections are removable type with the help of hydraulic trolleys. This specific design facilitates almost 360 degree access of the chamber for setting up an experiment. The typical vacuum ∼ 4 x 10 -7 mbar is achieved by two 550 lit/sec air cooled turbo molecular pumps backed by two 35 m 3 /hr scroll pumps in ∼ 8 hours. PLC based control system has been developed for the operation of pumps. 12 rings are fabricated to mount detectors, each having 440 mm radius and separated by 30° from each other in polar angle. These rings are supported inside the chamber by two flanges placed along the beam line. These rings are properly calibrated in polar and azimuthal angles with respect to the centre of the chamber. (author)

  1. Simulations and Experiments on Vibration Control of Aerospace Thin-Walled Parts via Preload

    Directory of Open Access Journals (Sweden)

    Qiong Wu

    2017-01-01

    Full Text Available Thin-walled parts primarily comprise the entire piece of rough machining, and the material removal rate can surpass 95%. Numerous components with thin-walled structures are preferred in the aerospace industry for their light weight, high strength, and other advantages. In aerospace thin-walled workpiece machining processes and practical applications, they are excited by the vibration. The preload changing the modal stiffness of the part is found and this change causes continuous changes in the natural frequency. Researching on the influence of pretightening force on dynamic characteristics of thin-walled components is highly significant for controlling vibration. In this study, the typical aviation thin-walled part is the research object. Finite element numerical simulation and experimental verification are employed to analyze the dynamic characteristics of 7075 aluminum alloy thin-walled plates under different preloads for exploring the relationship between natural frequency and preload. The relationship is validated by comparative results. Both the simulation and experimental results show that the natural frequencies of plates increase following the augmentation of the preload. Thus, this research introduces the method where vibration of aerospace thin-walled parts is reduced by preload. For practical engineering application, a program showing the relationship between natural frequency and preload is written using Visual Basic language.

  2. Long-Term Bending Creep Behavior of Thin-Walled CFRP Tendon Pretensioned Spun Concrete Poles

    Directory of Open Access Journals (Sweden)

    Giovanni P. Terrasi

    2014-07-01

    Full Text Available This paper discusses the long-term behavior of a series of highly-loaded, spun concrete pole specimens prestressed with carbon fiber-reinforced polymer (CFRP tendons, which were subjected to outdoor four-point bending creep tests since 1996 in the frame of collaboration with the Swiss precast concrete producer, SACAC (Società Anonima Cementi Armati Centrifugati. The 2 m span cylindrical beams studied are models for lighting poles produced for the last 10 years and sold on the European market. Five thin-walled pole specimens were investigated (diameter: 100 mm; wall-thickness: 25–27 mm. All specimens were produced in a pretensioning and spinning technique and were prestressed by pultruded CFRP tendons. Initially, two reference pole specimens were tested in quasi-static four-point bending to determine the short-term failure moment and to model the short-term flexural behavior. Then, three pole specimens were loaded to different bending creep moments: while the lowest loaded specimen was initially uncracked, the second specimen was loaded with 50% of the short-term bending failure moment and exhibited cracking immediately after load introduction. The highest loaded pole specimen sustained a bending moment of 72% of the short-term bending failure moment for 16.5 years before failing in July 2013, due to the bond failure of the tendons, which led to local crushing of the high-performance spun concrete (HPSC. Besides this, long-term monitoring of the creep tests has shown a limited time- and temperature-dependent increase of the deflections over the years, mainly due to the creep of the concrete. A concrete creep-based model allowed for the calculation of the long-term bending curvatures with reasonable accuracy. Furthermore, the pole specimens showed crack patterns that were stable over time and minimal slippage of the tendons with respect to the pole’s end-faces for the two lower load levels. The latter proves the successful and durable

  3. Investigation of solidification of thin walled ductile cast iron using temperature measurement

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels

    2005-01-01

    Investigation of solidification of thin walled ductile cast iron can be improved using temperature measurement. This article includes some background of the precautions that have to be taken when measuring temperatures in thin walled castings. The aim is to minimize influence of temperature...... measurement on castings and to get sufficient response time of thermocouples. Investigation of thin wall ductile iron has been performed with temperature measurement in plates with thickness between 2,8 and 8mm. The cooling curves achieved are combined with examination of the microstructure in order to reveal...

  4. Temperature measurement during solidification of thin wall ductile cast iron. Part 1: Theory and experiment

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Temperature measurement using thermocouples (TC’s) influence solidification of the casting, especially in thin wall castings. The problems regarding acquisition of detailed cooling curves from thin walled castings is discussed. Experiments were conducted where custom made TC’s were used to acquire...... cooing curves in thin wall ductile iron castings. The experiments show how TC’s of different design interact with the melt and how TC design and surface quality affect the results of the data acquisition. It is discussed which precautions should be taken to ensure reliable acquisition of cooling curves...

  5. Eddy-Current Testing of Thin-Walled Cladding Tubes

    International Nuclear Information System (INIS)

    Verstappen, C.; Deknock, R.; Neider, R.; Brabers, M.; Meester, P. de

    1965-01-01

    In view of an extended programme on the evaluation of properties and defects of stainless-steel and Zircaloy thin-walled tubes, a basic study has been made of the optimum test conditions for applying eddy-current test methods. An electronic apparatus has been built to define these conditions for a great variety of test problems. Therefore, it was necessary to have the possibility of changing the frequency over a wide range and to measure the two components of the complex impedance of the test coil separately. This has die advantage over a measurement of the absolute value of the impedance change since this value has little meaning in view of the change of the properties of the test object. The actual apparatus allows the precise and sensitive measurement of the real and imaginary components of any test coil in a frequency range from 0.1 - 500 kHz. A special type of modulation device has been developed. The apparatus is not considered as an actual testing apparatus; by determining optimum conditions for each case,- it enables a relatively simple and specific apparatus to be built. Up to now, a detailed study of relationships between physical and electrical properties of a specimen and the test-coil impedance has been performed for tubular fuel-cladding materials. Frequency and coil configurations are established for wall-thickness measurements and a particular apparatus has been constructed; the accuracy is better than 1% and changes between inner and outer diameter variations can be discriminated. Other specific apparatus are studied and proposed. (author) [fr

  6. PHYSICAL BASES OF SYSTEMS CREATION FOR MAGNETIC-IMPULSIVE ATTRACTION OF THIN-WALLED SHEET METALS

    Directory of Open Access Journals (Sweden)

    Y. Batygin

    2009-01-01

    Full Text Available The work is dedicated to the physical base of systems creating for the thin-walled sheet metals magnetic pulse attraction. Some practical realization models of the author’s suggestions are represented.

  7. Computationally efficient analysis and optimisation of stiffened thin-walled panels in shear

    CSIR Research Space (South Africa)

    Viljoen, A

    2005-05-01

    Full Text Available The computationally efficient analysis and optimum design of the buckling of stiffened, thin-walled shear panels in aircraft structures is discussed. Namely, the postbuckling behaviour of these panels is assessed using the iterative procedure...

  8. Experimental High Speed Milling of the Selected Thin-Walled Component

    Directory of Open Access Journals (Sweden)

    Jozef Zajac

    2017-11-01

    Full Text Available In a technical practice, it is possible to meet thin-walled parts more and more often. These parts are most commonly used in the automotive industry or aircraft industry to reduce the weight of different design part of cars or aircraft. Presented article is focused on experimental high speed milling of selected thin-walled component. The introduction of this article presents description of high speed machining and specification of thin – walled parts. The experiments were carried out using a CNC machine Pinnacle VMC 650S and C45 material - plain carbon steel for automotive components and mechanical engineering. In the last part of the article, described are the arrangements to reduction of deformation of thin-walled component during the experimental high speed milling.

  9. A semi-discretized thin-walled beam element including distortion

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Jönsson, Jeppe

    2013-01-01

    An advanced thin-walled beam element including distortion of the cross section is presented. The formulation is based on a generalization of the classical Vlasov beam theory for analysis of open and closed thin-walled cross sections by including distortional displacements.The beam element...... formulation utilizes a semidiscretization approach in which the cross section is discretized into wall elements and the analytical solutions of the related GBT beam equations are used as displacement functions in the axial direction. Thus the beam element contains the semi-analytical solutions. In a number...... of related publications the authors have recently presented the semi-discretization approach and the analytical solution of the generalized beam equations. An illustrative example showing the validity and the accuracy of the developed distortional semi-discretized thin-walled beam element is given...

  10. A new local thickening reverse spiral origami thin-wall construction for improving of energy absorption

    Science.gov (United States)

    Kong, C. H.; Zhao, X. L.; Hagiwara, I. R.

    2018-02-01

    As an effective and representative origami structure, reverse spiral origami structure can be capable to effectively take up energy in a crash test. The origami structure has origami creases thus this can guide the deformation of structure and avoid of Euler buckling. Even so the origami creases also weaken the support force and this may cut the absorption of crash energy. In order to increase the supporting capacity of the reverse spiral origami structure, we projected a new local thickening reverse spiral origami thin-wall construction. The reverse spiral origami thin-wall structure with thickening areas distributed along the longitudinal origami crease has a higher energy absorption capacity than the ordinary reverse spiral origami thin-wall structure.

  11. Computed tomography for the diagnosis of solitary thin-walled cavity lung cancer.

    Science.gov (United States)

    Xue, Xin-Ying; Liu, Yu-Xia; Wang, Kai-Fei; Zang, Xue-Feng; Sun, Jun-Ping; Zhang, Ming-Yue; Yang, Bing; Ao, Ting; Wang, Jian-Xin

    2015-10-01

    Lung cancer is the most commonly diagnosed neoplasm and the leading cause of cancer-related death worldwide. Despite the high incidence of lung cancer, the diagnosis of solitary thin-walled cavity lung cancer is rare. The aim of this review is to explore the potentials of computed tomography (CT) as diagnostic tool for solitary thin-walled cavity lung cancer. The literature search was made in electronic databases including PudMed, Ovid SP, Embase, Web of Sciences, EBSCO and Wiley online by using relevant key terms. Because of the rarity of the subject, no precise exclusion or inclusion criteria were used for article selection and the outcome dissemination was decided to be more descriptive rather than quantitative. The detection of cavitation in lungs is frequently done utilizing chest radiographs CT scans. However, the diagnostic challenge remains the accurate detection of solitary thin-walled cavity lung cancer among the prevalence of cavitary lung lesions in multiple thoracic disorders including benign disorders, infectious disease and malignant tumors. Moreover, an accurate diagnosis of solitary thin-walled cavity lung cancer is further complicated by its subjective classification within the literature. In order to facilitate early diagnosis of this disease and circumvent the need for more invasive tests that may not be warranted, the overarching goal is to establish definitive radiological features of lung cavities that are indicative of malignancy. Herein, we describe the benefits of using CT to identify and diagnose solitary thin-walled cavity lung cancer, as well as explore the underlying mechanisms that contribute to thin-walled cavity formation in oncology patients. CT is the best modality for the noninvasive differentiation between malignant and nonmalignant cavities as it provides reliable information regarding the morphology and density of lesions. Besides, CT densitometry can efficiently detect the calcifications in lesions. © 2014 John Wiley & Sons

  12. Vibration and Instability of Rotating Composite Thin-Walled Shafts with Internal Damping

    Directory of Open Access Journals (Sweden)

    Ren Yongsheng

    2014-01-01

    Full Text Available The dynamical analysis of a rotating thin-walled composite shaft with internal damping is carried out analytically. The equations of motion are derived using the thin-walled composite beam theory and the principle of virtual work. The internal damping of shafts is introduced by adopting the multiscale damping analysis method. Galerkin’s method is used to discretize and solve the governing equations. Numerical study shows the effect of design parameters on the natural frequencies, critical rotating speeds, and instability thresholds of shafts.

  13. Vibrational behavior of adaptive aircraft wing structures modelled as composite thin-walled beams

    Science.gov (United States)

    Song, O.; Librescu, L.; Rogers, C. A.

    1992-01-01

    The vibrational behavior of cantilevered aircraft wings modeled as thin-walled beams and incorporating piezoelectric effects is studied. Based on the converse piezoelectric effect, the system of piezoelectric actuators conveniently located on the wing yield the control of its associated vertical and lateral bending eigenfrequencies. The possibility revealed by this study enabling one to increase adaptively the eigenfrequencies of thin-walled cantilevered beams could play a significant role in the control of the dynamic response and flutter of wing and rotor blade structures.

  14. One-dimensional analysis of filamentary composite beam columns with thin-walled open sections

    Science.gov (United States)

    Lo, Patrick K.-L.; Johnson, Eric R.

    1986-01-01

    Vlasov's one-dimensional structural theory for thin-walled open section bars was originally developed and used for metallic elements. The theory was recently extended to laminated bars fabricated from advanced composite materials. The purpose of this research is to provide a study and assessment of the extended theory. The focus is on flexural and torsional-flexural buckling of thin-walled, open section, laminated composite columns. Buckling loads are computed from the theory using a linear bifurcation analysis and a geometrically nonlinear beam column analysis by the finite element method. Results from the analyses are compared to available test data.

  15. Study of Local and Distortional Stability of Thin-Walled Structures

    Directory of Open Access Journals (Sweden)

    Imene Mahi

    2018-01-01

    Full Text Available Thin-walled structures have an increasingly large and growing field of application in the engineering sector, the goal behind using this type of structure is efficiency in terms of resistance and cost, however the stability of its components (the thin walls remains the first aspect of the behavior, and a primordial factor in the design process. The hot rolled sections are known by a consequent post-buckling reserve, cold-formed steel sections which are thin-walled elements also benefit, in this case, it seems essential to take into account the favorable effects of this reserve in to the verification procedure of the resistance with respect to the three modes of failures of this type of structure. The design method that takes into account this reserve of resistance is inevitably the effective width method. The direct strength method has been developed to improve the speed and efficiency of the design of thin-walled profiles. The latter mainly uses the buckling loads (for Local, Distortional and Global mode obtained from a numerical analysis and the resistance curves calibrated experimentally to predict the ultimate load of the profile. Among those, the behavior of a set of Cshaped profiles (highly industrialized is studied, this type of section is assumed to be very prone to modes of local and distortional instability. The outcome of this investigation revealed very relevant conclusions both scientifically and practically.

  16. Distortional buckling modes of semi-discretized thin-walled columns

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Jönsson, Jeppe

    2012-01-01

    This paper presents distorting buckling solutions for semi-discretized thin-walled columns using the coupled differential equations of a generalized beam theory (GBT). In two related papers recently published by the authors a novel semi-discretization approach to GBT has been presented. The cross...

  17. Iron melt flow in thin-walled sections using vertically parted moulds

    DEFF Research Database (Denmark)

    Larsen, Per; Tiedje, Niels

    2004-01-01

    gating systems are used small changes in the casting conditions can change the flow patterns radically. Flow in thin walled sections is not only important in thin walled part. This is illustrated with a brake disc as example. 3 different layouts have been made. The filling sequences have been recorded......Reducing the fuel consumption of vehicles can be done in many ways. A general way of doing it, is to reduce the weight as it is applicable together with all other means of saving fuel. Even though iron castings have been used in cars from the first car ever build, a big potential still exist...... for optimizing iron cast parts. To do so thin walled parts have to be used. I.e. flow in thin walled sections becomes important. Flow in plates with thicknesses from 2 to 4 mm have been investigated. It is shown that the main flow path can be changed even in such small thicknesses and that when conventional...

  18. Numerical modelling of thin-walled hypereutectic ductile cast iron parts

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper Henri; Tiedje, Niels Skat

    2006-01-01

    Solidification of hypereutectic thin-walled ductile cast iron has been modelled in one dimension taking into account the precipitation of off-eutectic austenite dendrites during solidification. The simulations have been compared with casting experiments on plate geometries with plate thicknesses...

  19. Nucleation and solidification of thin walled ductile iron - Experiments and numerical simulation

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2005-01-01

    Investigation of solidification of thin walled ductile cast iron has been performed based on experiments and numerical simulation. The experiments were based on temperature and microstructure examination. Results of the experiments have been compared with a 1-D numerical solidification model...

  20. Optimization process for thin-walled high performance concrete sandwich panels

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hulin, Thomas; Schmidt, Jacob Wittrup

    2014-01-01

    economical solution. The present paper aims to provide multi-objective optimisation procedure addressed to structural precast thin-walled High Performance Concrete Sandwich Panels (HPCSP). The research aim is concerned with developing a tool that considers the cost of HPCSP materials along...

  1. Optimization process for thin-walled High Performance Concrete sandwich panels

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hulin, Thomas; Schmidt, Jacob Wittrup

    2013-01-01

    economical solu-tion. The present paper aims to provide multi-objective optimisation procedure addressed to structural precast thin-walled High Performance Concrete Sandwich Panels (HPCSP). The research aim is concerned with de-veloping a tool that considers the cost of HPCSP materials along...

  2. Microstructure and mechanical properties of fine-grained thin-walled ...

    Indian Academy of Sciences (India)

    The results showed a notable increasein ultimate strength, yield strength and microhardness of the thin-walled UFG tube were achieved compared to that fromPTCAP ... University of Tehran, Tehran 11155-4563, Iran; Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran 16788-15811, Iran ...

  3. High-pressure oxygenation of thin-wall YBCO single-domain samples

    International Nuclear Information System (INIS)

    Chaud, X; Savchuk, Y; Sergienko, N; Prikhna, T; Diko, P

    2008-01-01

    The oxygen annealing of ReBCO bulk material, necessary to achieve superconducting properties, usually induces micro- and macro-cracks. This leads to a crack-assisted oxygenation process that allows oxygenating large bulk samples faster than single crystals. But excellent superconducting properties are cancelled by the poor mechanical ones. More progressive oxygenation strategy has been shown to reduce drastically the oxygenation cracks. The problem then arises to keep a reasonable annealing time. The concept of bulk Y123 single-domain samples with thin-wall geometry has been introduced to bypass the inherent limitation due to a slow oxygen diffusion rate. But it is not enough. The use of a high oxygen pressure (16 MPa) enables to speed up further the process. It introduces a displacement in the equilibrium phase diagram towards higher temperatures, i.e., higher diffusion rates, to achieve a given oxygen content in the material. Remarkable results were obtained by applying such a high pressure oxygen annealing process on thin-wall single-domain samples. The trapped field of 16 mm diameter Y123 thin-wall single-domain samples was doubled (0.6T vs 0.3T at 77K) using an annealing time twice shorter (about 3 days). The initial development was made on thin bars. The advantage of thin-wall geometry is that such an annealing can be applied directly to a much larger sample

  4. Stress Distribution in Continuous Thin-Walled Multi-Cell Box Girder ...

    African Journals Online (AJOL)

    Therefore, the analytical tool for this study is a MATLAB program developed by the authors for the finite strip analysis of continuous thin-walled box girder bridges. Numerical study on stress distribution was ... The beam theory solution was also used for comparison of results in both cases. The study concluded that under ...

  5. Microstructure and mechanical properties of fine-grained thin-walled ...

    Indian Academy of Sciences (India)

    2017-11-30

    Nov 30, 2017 ... Microstructure and mechanical properties of fine-grained thin-walled AZ91 tubes processed by a novel combined SPD process. H ABDOLVAND1, G FARAJI1,∗. , J SHAHBAZI KARAMI2 and M BANIASADI1. 1School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran ...

  6. Thin-walled large-diameter zirconium alloy tubes in CANDU reactors

    International Nuclear Information System (INIS)

    Price, E.G.; Richinson, P.J.

    1978-08-01

    The requirements of the thin-walled large-diameter Zircaloy-2 tubing used in CANDU reactors are reviewed. Strength, residual stress patterns, texture and prior deformation contribute to the stability of these tubes. The extent to which the present manufacturing route meets these requirements is discussed. (author)

  7. Numerical modelling of solidification of thin walled hypereutectic ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper; Tiedje, Niels

    2006-01-01

    Numerical simulation of solidification of ductile cast iron is normally based on a model where graphite nodules are surrounded by an austenite shell. The two phases are then growing as two concentric spheres governed by diffusion of carbon through the austenite shell. Experiments have however shown...... simulation of thin-walled ductile iron castings. Simulations have been performed with a 1-D numerical solidi¬fication model that includes the precipitation of non-eutectic austenite during the eutectic stage. Results from the simulations have been compared with experimental castings with wall thick...... the presence of austenite dendrites even in hypereutectic castings. In thin-walled castings the presence of austenite dendrites is even more pronounced, which increases the risk of shrinkage porosities. This off-eutectic austenite is therefore an important part that should be taken into account during...

  8. Temperature measurement during solidification of thin wall ductile cast iron. Part 2: Numerical simulations

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Temperature measurements in castings are carried out with thermocouples (TC’s), which are inserted in the melt. The TC influence solidification of the casting, especially in thin wall castings where the heat content of the melt is small compared to the cooling power of the TC. A numerical analysis...... of factors influencing temperature measurement in thin walled castings was carried out. The calculations are based on and compared with experiments presented in part 1 of this paper. The analysis shows that the presence of the TC has only a minor influence on the microstructure of the casting. The influence...... is restricted to a volume within 2mm from the TC. Measured cooling curves will have the right shape. In a 2 mm plate the measured temperature was 17 °C below the true temperature in the melt. However, the cooling curve provides important information about nucleation and growth during solidification....

  9. Application of UHPC thin-walled elements for multi-purpose use table

    Science.gov (United States)

    Slabý, O.; Vašková, J.; Veselý, V.

    2017-09-01

    This paper deals with thin-walled elements made of high performance concrete and the application of these elements in practice. This material is nowadays used more often in civil engineering and also in architecture, it enables realization of lighter and thinner products. The paper presents design and manufacturing of a ping-pong table for multi-purpose use, which is assembled from thin-walled UHPC elements. The intention was to utilize the advantages of the material and design and construct a demountable table, which could be easily transported; hence the weight of each element will be lower than 100 kg. The thickness of the concrete board of the table was only 15 mm. The paper describes the whole development of the product - from the design and the software verification, the development of casting technologies and the development of suitable concrete composite to the final realization and testing of the manufactured table.

  10. Fabrication technology for a series of cylindrical thin-wall cavity targets

    CERN Document Server

    Zheng Yong; Sun Zu Oke; Wang Ming Da; Zhou La; Zhou Zhi Yun

    2002-01-01

    Cylindrical thin-wall cavity targets have been fabricated to study the behavior of superthermal electrons and their effects on inertial confinement fusion (ICF). Self-supporting cavity targets having adjustable, uniform wall thickness, and low surface roughness were required. This required production of high-quality mandrels, coating them by sputtering or electroplating, developing techniques for measurement of wall thickness and other cavity parameters, improving the uniformity of rotation of the mandrels, and preventing damage to the targets during removal from the mandrels. Details of the fabrication process are presented. Experimental results from the use of these targets are presented. These results, in good agreement with simulations, indicate that the use of thin-wall cavity targets is an effective method for studying superthermal electrons in ICF.

  11. Methods of Parametric Optimization of Thin-Walled Structures and Parameters which Influence on it

    Directory of Open Access Journals (Sweden)

    Kibkalo Anton

    2016-01-01

    Full Text Available The question of efficiency of thin-walled structures contains a number of contradictions. You need to select the best from all the existing structures on the criteria of optimization options. The search is conducted by varying of the parameters at parametric optimization. As a rule the aim of building structure optimization is reducing of material consumption, the labor input and cost. The costs of a particular variant of construction most full describes the given cost. There are two types of optimization parameters - immutable and varying. The result of the optimization of thin-walled beams will be a combination of parameters for each design situation in which provides the required strength and the minimum of the objective function - factory cost of production

  12. Evaluation of stresses in large diameter, thin walled piping at support locations

    International Nuclear Information System (INIS)

    Bryan, B.J.; Flanders, H.E. Jr.; Rawls, G.B. Jr.

    1992-01-01

    The highest stresses in many thin walled piping systems are the local stresses at the pipe supports. These secondary stresses are caused by saddles or other structural discontinuities that restrain pipe ovalization. A static analysis of a thin walled pipe supported on structural steel saddle under dead weight loading is presented. The finite element analysis is performed using a shell model with distributed gravity and hydrostatic pressure loading. Parametric studies on global and local stress are performed to determine the effect of the pipe diameter to thickness ratio. Two aspects of the saddle design are also investigated: the effect of saddle width, and the effect of saddle wrap angle. Additionally, the computed stresses are compared to closed form solutions

  13. Graphite nodule count and size distribution in thin-walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count...... as these are inclusions and micro porosities that do not influence the solidification morphology. If there are many small graphite nodules as in thin walled castings only 3D nodule count calculated by FDM will give reliable results. 2D nodule count and 3D nodule count calculated by simple equations will give too low...... results. The 3D size distribution showed presence of primary graphite nodules in hypereutectic castings. In thin plates the nodule count is similar in eutectic and hypereutectic plates. In thicker plates the hypereutectic casting has the highest nodule count....

  14. Choosing optimal rapid manufacturing process for thin-walled products using expert algorithm

    Directory of Open Access Journals (Sweden)

    Filip Gorski

    2010-10-01

    Full Text Available Choosing right Rapid Prototyping technology is not easy, especially for companies inexperienced with that group of manufacturing techniques. Paper summarizes research focused on creating an algorithm for expert system, helping to choose optimal process and determine its parameters for thin-walled products rapid manufacturing. Research was based upon trial manufacturing of different thin-walled items using various RP technologies. Products were categorized, each category was defined by a set of requirements. Basing on research outcome, main algorithm has been created. Next step was developing detailed algorithms for optimizing particular methods. Implementation of these algorithms brings huge benefit for recipients, including cost reduction, supply time decrease and improvements in information flow.

  15. Standard practice for estimating the approximate residual circumferential stress in straight thin-walled tubing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 A qualitative estimate of the residual circumferential stress in thin-walled tubing may be calculated from the change in outside diameter that occurs upon splitting a length of the tubing. This practice assumes a linear stress distribution through the tube wall thickness and will not provide an estimate of local stress distributions such as surface stresses. (Very high local residual stress gradients are common at the surface of metal tubing due to cold drawing, peening, grinding, etc.) The Hatfield and Thirkell formula, as later modified by Sachs and Espey, provides a simple method for calculating the approximate circumferential stress from the change in diameter of straight, thin-walled, metal tubing. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  16. Finite element based investigation of buckling and vibration behaviour of thin walled box beams

    Directory of Open Access Journals (Sweden)

    Ramkumar K.

    2013-12-01

    Full Text Available Thin-walled box type conventional and composite structures are having wide applications for building the structural system which are used in advanced ships, aerospace, civil, construction equipment and etc. Often these structures are subjected to vibration and buckling due to the environmental effect such as mechanical, thermal, electrical, magnetic, and acoustic or a combination of these. Also dampingmaterial and structural stiffness plays an important role for the improvement of vibration, noise control, fatigue and bulking resistance of these structures. So it is important to know the dynamic and buckling characteristics of these structures. Pre-stress in a structure affects the stiffness, which modifies the dynamic and stability characteristics of the structure. So it is also important to know the influence of pre-stress on the vibration and buckling character. In this paper, buckling and dynamic characteristics of the thin-walled box type structures are analyzed using finite element software ANSYS.

  17. Micro laser metal wire deposition for additive manufacturing of thin-walled structures

    Science.gov (United States)

    Demir, Ali Gökhan

    2018-01-01

    In this work, the micro laser metal wire deposition (μLMWD) process is studied as an additive manufacturing process for manufacturing thin walled structures with high aspect ratio. The developed μLMWD system consisted of a flash-pumped Nd:YAG laser source operating with ms-long pulses and an in-house developed wire feeding system. Processing conditions were investigated for single and multi-layer deposition in terms of geometry, microhardness and material use efficiency. Thin-walled structures with aspect ratio up to 20 were manufactured successfully, where layer width was between 700 and 800 μm. In multi-layer deposition conditions, the material use efficiency was observed to be close to 100%. The microhardness over the build direction was homogenous. The results show that the μLMWD process yields geometrical resolution close to powder-bed additive manufacturing processes, while maintaining the benefits of using wire feedstock.

  18. Rapid precision casting for complex thin-walled aluminum alloy parts

    Directory of Open Access Journals (Sweden)

    Xuanpu DONG

    2004-11-01

    Full Text Available Based on Vacuum Differential Pressure Casting (VDPC precision forming technology and the Selective Laser Sintering (SLS Rapid Prototyping (RP technology, a rapid manufacturing method called Rapid Precision Casting (RPC process from computer three-dimensional solid models to metallic parts was investigated. The experimental results showed that the main advantage of RPC was not only its ability to cast higher internal quality and more accurate complex thin-walled aluminum alloy parts, but also the greatly-reduced lead time cycle from Selective Laser Sintering(SLS plastic prototyping to metallic parts. The key forming technology of RPC for complex thin-walled metallic parts has been developed for new casting production and Rapid Tooling (RT, and it is possible to rapidly manufacture high-quality and accurate metallic parts by means of RP in foundry industry.

  19. Role of Titanium in Thin Wall Vermicular Graphite Iron Castings Production

    Directory of Open Access Journals (Sweden)

    Górny M.

    2013-06-01

    Full Text Available In this paper the effects of titanium addition in an amount up to 0.13 wt.% have been investigated to determine their effect on the microstructure and mechanical properties of Thin Wall Vermicular Graphite Iron Castings (TWVGI. The study was performed for thinwalled iron castings with 3-5 mm wall thickness and for the reference casting with 13 mm. Microstructural changes were evaluated by analyzing quantitative data sets obtained by image analyzer and also using scanning electron microscope (SEM. Metallographic examinations show that in thin-walled castings there is a significant impact of titanium addition to vermicular graphite formation. Thinwalled castings with vermicular graphite have a homogeneous structure, free of chills, and good mechanical properties. It may predispose them as a potential use as substitutes for aluminum alloy castings in diverse applications.

  20. Development of a Thin-Wall Magnesium side door Inner Panel for Automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Jekl, J.; Auld, J.; Sweet, C.; Carter, Jon; Resch, Steve; Klarner, A.; Brevick, J.; Luo, A.

    2015-05-17

    Cast magnesium side door inner panels can provide a good combination of weight, functional, manufacturing and economical requirements. However, several challenges exist including casting technology for thin-wall part design, multi-material incompatibility and relatively low strength vs steel. A project has been initiated, supported by the US Department of Energy, to design and develop a lightweight frame-under-glass door having a thin-wall, full die-cast, magnesium inner panel. This development project is the first of its kind within North America. Phase I of the project is now complete and the 2.0mm magnesium design, through casting process enablers, has met or exceeded all stiffness requirements, with significant mass reduction and part consolidation. In addition, a corrosion mitigation strategy has been established using industry-accepted galvanic isolation methods and coating technologies.

  1. The FEM simulation of the thin walled aircraft engine corpus deformation during milling

    Science.gov (United States)

    Matras, A.; Plaza, M.

    2016-09-01

    This paper discusses the results of the experimental research performed with the support of finite element method. The deformation of the thin walled aircraft engine corpus was analyzed based on a geometric model. Then, the boundary of the outer side of the part was loaded by the components of a cutting force during milling. The material model of the part was also defined in the simulation software. The analysis allowed to optimize feed rate in order to decrease the deformation of the part.

  2. Nonlinear response analysis and experimental verification for thin-walled plates to thermal-acoustic loads

    Directory of Open Access Journals (Sweden)

    Yundong SHA

    2017-12-01

    Full Text Available For large deflection strongly nonlinear response problem of thin-walled structure to thermal-acoustic load, thermal-acoustic excitation test and corresponding simulation analysis for clamped metallic thin-walled plate have been implemented. Comparing calculated values with experimental values shows the consistency and verifies the effectiveness of calculation method and model for thin-walled plate subjected to thermal-acoustic load. Then this paper further completes dynamic response calculation for the cross reinforcement plate under different thermal-acoustic load combinations. Based on the obtained time-domain displacement response, analyses about structure vibration forms are mainly focused on three typical motions of post-buckled plate, indicating that the relative strength between thermal load and acoustic load determines jump forms of plate. The Probability spectrum Density Functions (PDF of displacement response were drawn and analyzed by employing statistical analysis method, and it clearly shows that the PDF of post-buckled plate exhibits bimodal phenomena. Then the Power Spectral Density (PSD functions were used to analyze variations of response frequencies and corresponding peaks with the increase of temperatures, as well as how softening and hardening areas of the plate are determined. In the last section, this paper discusses the change laws of tensile stress and compressive stress in pre/post buckling areas, and gives the reasons for N glyph trend of the stress Root Mean Square (RMS. Keywords: Buckling, Experimental verification, Nonlinear response, Power spectral density, Probability spectrum density, Snap-through, Thermal-acoustic load, Thin-walled structure

  3. Surface Modification of Cored, Thin Walled Castings of Nickel Superalloy IN-713C

    Directory of Open Access Journals (Sweden)

    Binczyk F.

    2015-09-01

    Full Text Available In current casting technology of cored, thin walled castings, the modifying coating is applied on the surface of wax pattern and, after the removal of the wax, is transferred to inner mould surface. This way the modification leading to grain refinement occur on the surface of the casting. In thin walled castings the modification effect can also be seen on the other (external side of the casting. Proper reproduction of details in thin walled castings require high pouring temperature which intensify the chemical reactions on the mould – molten metal interface. This may lead to degradation of the surface of the castings. The core modification process is thought to circumvent this problem. The modifying coating is applied to the surface of the core. The degradation of internal surface of the casting is less relevant. The most important factor in this technology is “trough” modification – obtaining fine grained structure on the surface opposite to the surface reproduced by the core.

  4. Numerical study on injection parameters optimization of thin wall and biodegradable polymers parts

    Science.gov (United States)

    Santos, C.; Mendes, A.; Carreira, P.; Mateus, A.; Malça, C.

    2017-07-01

    Nowadays, the molds industry searches new markets, with diversified and added value products. The concept associated to the production of thin walled and biodegradable parts mostly manufactured by injection process has assumed a relevant importance due to environmental and economic factors. The growth of a global consciousness about the harmful effects of the conventional polymers in our life quality associated with the legislation imposed, become key factors for the choice of a particular product by the consumer. The target of this work is to provide an integrated solution for the injection of parts with thin walls and manufactured using biodegradable materials. This integrated solution includes the design and manufacture processes of the mold as well as to find the optimum values for the injection parameters in order to become the process effective and competitive. For this, the Moldflow software was used. It was demonstrated that this computational tool provides an effective responsiveness and it can constitute an important tool in supporting the injection molding of thin-walled and biodegradable parts.

  5. Stability analysis of a thin-walled cylinder in turning operation using the semi-discretization method

    Science.gov (United States)

    Chanda, Arnab; Fischer, Achim; Eberhard, Peter; Dwivedy, Santosha Kumar

    2014-04-01

    In this work, the stability of a flexible thin cylindrical workpiece in turning is analyzed. A process model is derived based on a finite element representation of the workpiece flexibility and a nonlinear cutting force law. Repeated cutting of the same surface due to overlapping cuts is modeled with the help of a time delay. The stability of the so obtained system of periodic delay differential equations is then determined using an approximation as a time-discrete system and Floquet theory. The time-discrete system is obtained using the semi-discretization method. The method is implemented to analyze the stability of two different workpiece models of different thicknesses for different tool positions with respect to the jaw end. It is shown that the stability chart depends on the tool position as well as on the thickness. [Figure not available: see fulltext.

  6. [Fracture resistance of thin-walled teeth restored with different post and core materials].

    Science.gov (United States)

    Zhou, Wen-mei; Huang, Guo-wei

    2014-06-01

    To discuss the selection of appropriate post and core materials in order to obtain better fracture resistance for thin-walled teeth. Ninety maxillary incisors were endodontically treated and the crowns were cut off. Then they were randomly divided into 9 groups. The teeth in the first 4 groups were restored with cast (A1.3 and A1.6) and fiber (B1.3 and B1.6) posts of 1.3 and 1.7 mm diameters. The teeth in the other 5 groups were enlarged to simulate the 1 mm thin-walled teeth and restored with cast (C) and fiber posts. The fiber posts were reconstructed and cemented with Unicem (D1.3 and D1.6) and ParaCore (E1.3 and E1.6). All teeth were restored with full crown, and the fracture resistance and fracture mode were analysed. Statistical analysis was carried out using SPSS 16.0 software package. Largest fracture resistance values (610.2 ± 45.6) N were found in Group A1.3 of ordinary root canals, and no significant difference (P>0.05) existed between Group A1.3, A1.6 and B1.3, B1.6. Group C received the largest fracture resistance value(584.5 ± 121.2) N in thin-walled root canals, and fiber posts reconstructed with ParaCore cement could increase fracture resistance [E1.3,(420.6 ± 95.7) N; E1.6,(517.9 ± 67.2) N], which was significant different compared with D1.3 and D1.6 (PParacore.

  7. Numerical modelling of thin-walled Z-columns made of general laminates subjected to uniform shortening

    Science.gov (United States)

    Teter, Andrzej; Kolakowski, Zbigniew

    2018-01-01

    The numerical modelling of a plate structure was performed with the finite element method and a one-mode approach based on Koiter's method. The first order approximation of Koiter's method enables one to solve the eigenvalue problem. The second order approximation describes post-buckling equilibrium paths. In the finite element analysis, the Lanczos method was used to solve the linear problem of buckling. Simulations of the non-linear problem were performed with the Newton-Raphson method. Detailed calculations were carried out for a short Z-column made of general laminates. Configurations of laminated layers were non-symmetric. Due to possibilities of its application, the general laminate is very interesting. The length of the samples was chosen to obtain the lowest value of local buckling load. The amplitude of initial imperfections was 10% of the wall thickness. Thin-walled structures were simply supported on both ends. The numerical results were verified in experimental tests. A strain-gauge technique was applied. A static compression test was performed on a universal testing machine and a special grip, which consisted of two rigid steel plates and clamping sleeves, was used. Specimens were obtained with an autoclave technique. Tests were performed at a constant velocity of the cross-bar equal to 2 mm/min. The compressive load was less than 150% of the bifurcation load. Additionally, soft and thin pads were used to reduce inaccuracy of the sample ends.

  8. Spatial resolution of thin-walled high-pressure drift tubes

    CERN Document Server

    Davkov, V I; Tikhomirov, V O; Smirnov, S Y; Gregor, I; Senger, P; Naumann, L; Myalkovskiy, V V; Mouraviev, S V; Peshekhonov, V D; Russakovich, N A; Rufanov, I A; Rembser, C

    2011-01-01

    A small prototype detector based on high pressure thin-walled tubes (straws) has been developed and its parameters have been studied on a bench at JINR, Dubna, and SPS at CERN. The inner diameter of the straws is 9.53 mm. The pressure of the active gas mixture Ar/CO(2) (80/20) was varied from 1 to 5 bar. The best spatial resolution achieved in this pressure range is similar to 40 mu m. Both the high efficiency and high rate capability are retained. (C) 2011 Published by Elsevier B.V.

  9. Analysis of moderately thin-walled beam cross-sections by cubic isoparametric elements

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Krenk, Steen

    2014-01-01

    In technical beam theory the six equilibrium states associated with homogeneous tension, bending, shear and torsion are treated as individual load cases. This enables the formulation of weak form equations governing the warping from shear and torsion. These weak form equations are solved...... numerically by introducing a cubic-linear two-dimensional isoparametric element. The cubic interpolation of this element accurately represents quadratic shear stress variations along cross-section walls, and thus moderately thin-walled cross-sections are effectively discretized by these elements. The ability...

  10. Numerical simulation of instability behaviour of thin-walled frames with flexible connections

    Energy Technology Data Exchange (ETDEWEB)

    Turkalj, G. [Department of Engineering Mechanics, Faculty of Engineering, University of Rijeka, Vukovarska 58, HR-51000 Rijeka (Croatia)], E-mail: goran.turkalj@riteh.hr; Brnic, J.; Vizentin, G.; Lanc, D. [Department of Engineering Mechanics, Faculty of Engineering, University of Rijeka, Vukovarska 58, HR-51000 Rijeka (Croatia)

    2009-01-15

    A one-dimensional finite element formulation for numerical simulation of instability behaviour of thin-walled frames containing flexible connections is presented. Stiffness matrices of a conventional 14-degree of freedom beam element are derived by applying the linearized virtual work principle and Vlasov's assumption. The structural material is assumed to be homogeneous, isotropic and linear-elastic. Flexible connection behaviour and different warping deformation conditions are introduced into the numerical model by modifying stiffness matrices of a conventional beam element. For that purpose a special transformation matrix is derived. The effectiveness of the numerical algorithm discussed is validated through the test problem.

  11. Dynamic testing of thin-walled composite box beams in a vacuum chamber

    Science.gov (United States)

    Chandra, Ramesh; Chopra, Inderjit

    1989-01-01

    Vibration characteristics of thin-walled composite box beams are measured in a rotating environment in a 10-ft diameter vacuum chamber. Symmetric and antisymmetric layup beams are fabricated out of graphite/epoxy prepreg material using an autoclave molding technique. These are excited using piezoelectric ceramic elements and responses are measured using strain gages and accelerometers. First three natural modes are identified using spectrum analyzer over a range of rotational speeds up to 1000 rpm. Measured frequencies and mode shapes (displacement as well as strain) are correlated satisfactorily with calculated finite element results.

  12. A prototype coordinate detector based on granulated thin-walled drift tubes

    CERN Document Server

    Bazylev, S N; Tikhomirov, V O; Davkov, K I; Gregor, I; Smirnov, S Y; Senger, P; Shutov, A V; Slepnev, I V; Myalkovskiy, V V; Naumann, L; Mouraviev, S V; Zhukov, I A; Peshekhonov, V D; Russakovich, N A; Rufanov, I A; Rembser, C

    2011-01-01

    A prototype detector based on thin-walled segmented tubes has been developed and its parameters have been studied. The detector contains 360 registration channels with a straw diameter of 4 mm. The prototype' granularity is 4 cm(2) and the length of insensitive region due to straw internal elements is less than 5\\% of its full sensitive area. Deterioration of the spatial resolution near these elements is observed for 1.0\\% of the detector sensitive area. The time and spatial parameters of the detector do not differ from those of conventional tracking detectors based on drift tubes. (C) 2011 Published by Elsevier B.V.

  13. Iron Melt Flow in Thin Walled Sections Cast in Vertically Parted Green Sand Moulds

    DEFF Research Database (Denmark)

    Larsen, Per; Andersen, Uffa; Rasmussen, Niels

    consumption and pollution of passenger cars, trucks etc. The engine design can be optimized for higher efficiency, the wind resistance can be reduced, combinations of combustion engines and electrical power can be used etc. But no matter which approach is taken, parts have to be used for building the vehicles...... will be initiated by the hammer effect when the melt reaches the dead end of the runner. Pressure shock waves can also be initiated when the last air pocket in a partly filled runner is closed. The pressure shock waves result in disintegrating melt surfaces. Flow in thin walled sections is not only important when...

  14. Reduction of Injection Pressure for Thin Walled Molding using the Laser Metal Sintered Mold

    OpenAIRE

    米山, 猛; 内藤, 圭亮; 阿部, 諭; 宮丸, 充

    2010-01-01

    Using milling combined laser metal sintering, porous surface has been fabricated on the thin walled cavity closed by the surrounded thick cavity in the injection mold. Resin flows into the cavity of 2mm thick at first around the thin part and then flows into the thin cavity of 0.2mm thick with 11mm square by packing pressure. The packing pressure for filling the thin part was compared among laser metal sintered mold with or without porous surface, steel mold with or without porous block. The ...

  15. Cost optimization of load carrying thin-walled precast high performance concrete sandwich panels

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hansen, Sanne; Hulin, Thomas

    2015-01-01

    The paper describes a procedure to find the structurally and thermally efficient design of load-carrying thin-walled precast High Performance Concrete Sandwich Panels (HPCSP) with an optimal economical solution. A systematic optimization approach is based on the selection of material’s performances....... The solution of the optimization problem is performed in the computer package software Matlab® with SQPlab package and integrates the processes of HPCSP design, quantity take-off and cost estimation. The proposed optimization process outcomes in complex HPCSP design proposals to achieve minimum cost of HPCSP....

  16. SECTIO: a program for the determination of cross sectional properties of closed thin walled beams

    Energy Technology Data Exchange (ETDEWEB)

    Lundsager, P.

    1979-07-01

    The report contains the theoretical basis and users manual for the program SECTIO. Intending for use in connectio with a general purpose finite element program. SECTIO computes bending properties from Bernovilli beam theory and torsional properties from St. Venant theory for thin walled, closed sections. The theories are developed for cross sections with inhomogeneous materials onja form that gives results which are compatible with conventional homogeneous beam elements, and a startegy for modelling beams with non-coincident axes using conventional beam elements is outlined. The accuracy of results is demonstrated by examples, and a sample problem is shown, including listing of input and output.

  17. Manufacturing of thin-walled parts for machinery by selective laser melting

    Directory of Open Access Journals (Sweden)

    Bobyr Vitaliy

    2017-01-01

    Full Text Available The paper describes the technology of selective laser melting, as well as its capabilities in the manufacture of thin-wall honeycomb energy absorber (HEA. The effect of the technological parameters of the building process on the HEA walls’ thickness is studied. Conformity analysis of the mass-dimensional characteristics of the finished composition with the predefined parameters of the 3D-CAD model is carried out. Dependencies of building parameterson the quality of the manufactured HEA are established, general recommendations for the practical use of technology in the creation of HEAare given.

  18. Creep bending of thin-walled shells and plates by consideration of finite deflections

    Science.gov (United States)

    Altenbach, H.; Naumenko, K.

    A phenomenological constitutive model for the characterization of creep-damage processes of metals is applied to the numerical analysis of thin-walled shells and plates. The governing equations of the theory of shallow shells are used taking into account geometrical nonlinearities connected with finite time-dependent deflections by moderate bending. The solutions of the initial-boundary value problem are obtained for thin rectangular plates in order to show the influence of geometrical nonlinearity on results of time-dependent deformation and stress redistribution as well as on estimations of the failure time.

  19. Behavior of precast ferrocement thin walls under cyclic loading: an experimental and analytical study

    Directory of Open Access Journals (Sweden)

    Daniel Alveiro Bedoya Ruiz

    2014-01-01

    Full Text Available Thin ferrocement walls are the structural elements that comprise the earthquake resistant system of housing built with this material. This article presents the results drawn from an experimental campaign carried out over full-scale precast ferrocement thin walls, which were assessed under cyclic loading conditions. The tests assessed the strength of the walls, their hysteretic behavior, ductility, energy dissipation, equivalent damping, their coefficient of energy dissipation and their characteristic failure mode when subjected to cyclic loading conditions. Finally, an analytical model that modeled the nonlinear dynamic behavior exhibited by ferrocement walls was implemented; its feasibility and potential use in earthquake resistant design of ferrocement walls was evaluated.

  20. Mount Protects Thin-Walled Glass or Ceramic Tubes from Large Thermal and Vibration Loads

    Science.gov (United States)

    Amato, Michael; Schmidt, Stephen; Marsh. James; Dahya, Kevin

    2011-01-01

    The design allows for the low-stress mounting of fragile objects, like thin walled glass, by using particular ways of compensating, isolating, or releasing the coefficient of thermal expansion (CTE) differences between the mounted object and the mount itself. This mount profile is lower than true full kinematic mounting. Also, this approach enables accurate positioning of the component for electrical and optical interfaces. It avoids the higher and unpredictable stress issues that often result from potting the object. The mount has been built and tested to space-flight specifications, and has been used for fiber-optic, optical, and electrical interfaces for a spaceflight mission. This mount design is often metal and is slightly larger than the object to be mounted. The objects are optical or optical/electrical, and optical and/or electrical interfaces are required from the top and bottom. This requires the mount to be open at both ends, and for the object s position to be controlled. Thin inside inserts at the top and bottom contact the housing at defined lips, or edges, and hold the fragile object in the mount. The inserts can be customized to mimic the outer surface of the object, which further reduces stress. The inserts have the opposite CTE of the housing material, partially compensating for the CTE difference that causes thermal stress. A spring washer is inserted at one end to compensate for more CTE difference and to hold the object against the location edge of the mount for any optical position requirements. The spring also ensures that any fiber-optic or optic interface, which often requires some pressure to ensure a good interface, does not overstress the fragile object. The insert thickness, material, and spring washer size can be traded against each other to optimize the mount and stresses for various thermal and vibration load ranges and other mounting requirements. The alternate design uses two separate, unique features to reduce stress and hold the

  1. Thin-Walled CFST Columns for Enhancing Seismic Collapse Performance of High-Rise Steel Frames

    Directory of Open Access Journals (Sweden)

    Yongtao Bai

    2017-01-01

    Full Text Available This paper numerically studied the collapse capacity of high-rise steel moment-resisting frames (SMRFs using various width-to-thickness members subjected to successive earthquakes. It was found that the long-period component of earthquakes obviously correlates with the first-mode period of high-rises controlled by the total number of stories. A higher building tends to produce more significant component deterioration to enlarge the maximum story drift angle at lower stories. The width-to-thickness ratio of beam and column components overtly affects the collapse capacity when the plastic deformation extensively develops. The ratio of residual to maximum story drift angle is significantly sensitive to the collapse capacity of various building models. A thin-walled concrete filled steel tubular (CFST column is proposed as one efficient alternative to enhance the overall stiffness and deformation capacity of the high-rise SMRFs with fragile collapse performance. With the equivalent flexural stiffness, CFST-MRF buildings with thin-walled members demonstrate higher capacity to avoid collapse, and the greater collapse margin indicates that CFST-MRFs are a reasonable system for high-rises in seismic prone regions.

  2. Dynamic behaviors of visco-elastic thin-walled spherical shells impact onto a rigid plate

    Directory of Open Access Journals (Sweden)

    X.W. Zhang

    Full Text Available As a representative structure, ping-pong balls are usually used to study the mechanical properties of thin-walled spherical shells. In a previous study, the dynamic behaviors of ping-pong balls impinged onto a rigid plate were investigated. It was found that the dynamic deformation energy of the balls could be several times higher than that under quasi-static compression, which could not be completely explained by elastic-plastic material property, strain-rate and inertial effects. In this paper, more impact tests were conducted and the details including the contact time, deformation and rebound behaviors with different impact velocities were reinvestigated. Based on the experimental results, visco-elastic material model is applied and the numerical simulation of thin-walled spherical shells impact onto a plate is performed, in which the influences of the visco-elastic parameters and the impact velocity on the dynamic behaviors are studied. By adjusting the visco-elastic parameters, the contact time, deformation, and the coefficient of restitution agree well with the experimental results.

  3. Dynamic Analysis of Horizontally Curved Thin-Walled Box-Girder Bridge due to Moving Vehicle

    Directory of Open Access Journals (Sweden)

    K. Nallasivam

    2007-01-01

    Full Text Available The impact on curved box-girder bridges due to vehicle moving across rough bridge deck have been analyzed using bridge-vehicle coupled dynamics. The bridge deck unevenness has been assumed to be a homogeneous random process in space specified by a PSD function. The analysis incorporates the effect of centrifugal forces due to vehicle moving on curved bridge. The curved box-girder bridge has been numerically modeled using computationally efficient thin-walled box-beam finite elements which take into account the torsional warping, distortion and distortional warping, that are important features of thin-walled box girders. Rigid vehicle with longitudinal and transverse input to the wheels giving rise to heave-pitch-roll degrees of freedom has been considered. The theoretical bridge model used in simulation study has been validated by a free vibration experiment using impact excitation. The impact factors for several response parameters such as bending moment, shear force, torsional moment, torsional bi-moment, distortional moment, distortional bi-moment and vertical deflections have been obtained for various bridge-vehicle parameters. Both constant velocity and forward acceleration of the vehicle have been considered to examine impact factor. The results highlighted that the impact factors of a curved box girder bridge corresponding to torsion, distortion and their corresponding bimoments have been observed to be generally very high, while those of the other responses are also relatively higher than that of corresponding straight box girder bridge.

  4. Accuracy Enhancement of Hybrid/Mixed Models for Thin-Walled Beam Assemblages

    Science.gov (United States)

    Gendy, A. S.; El-Fayomy, T. I.

    2012-07-01

    Aiming to increase the accuracy and computational efficiency of shear, flexible, thin-walled beam assemblages with arbitrary cross-section, two C0-finite element models for three-dimensional analysis are developed based on the hybrid/mixed variational principle. To eliminate the shear/warping locking in these C0elements, the Hellinger-Reissner-variational principle is adopted. In this, both displacement and stress fields are approximated independently. To enhance the accuracy and performance of these models, the stress parameters are chosen to satisfy the equilibrium within the element level in addition to the conventional requirements; i.e., avoid all kinematic deformation modes and enable the resulting element to handle applications with constrained problems. Such stress parameters are of the interelement-independent type and, therefore, can be eliminated on the element level by applying the relevant stationary conditions, thus leading to the standard form of the stiffness equations for implementation. Further, the underlying generalized beam theory employed accounts for all coupled significant modes of deformations including stretching, bending, shear, torsion, as well as warping. The formulation is also valid for both open- and closed-type, thin-walled sections; this is accomplished by using kinematic descriptions accounting for both flexural and warping torsional effects. Despite the effort in selecting the stress field to satisfy equilibrium within the element level, the present models achieved better accuracy, robustness, and fast convergence.

  5. Accuracy Enhancement of Spatial Response of Hybrid/Mixed Curved Beams with Thin-Walled Sections

    Science.gov (United States)

    Gendy, A. S.; Mesiha, F. M.

    2015-01-01

    Opposite to the conventional hybrid/mixed formulation in which stress parameters are selected with relaxed equilibrium conditions, a shear, flexible, thin-walled curve beam assemblage has been developed with stress parameters satisfying the equilibrium within the element level in addition to the common requirements; i.e., avoiding all kinematic deformation modes, and enabling the resulting element to handle applications with constrained problems (i.e., thin curved beams). Such stress parameters are of the interelement-independent type, and therefore can be eliminated on the element level by applying the relevant stationary conditions, thus leading to the standard form of the stiffness equations for implementation. The membrane and shear, due to flexure and warping, locking in this C°-element can be eliminated by adopting the Hellinger-Reissner-variational principle in which both displacement and stress fields are approximated independently. Further, the underlying generalized beam theory employed accounts for all coupled significant modes of deformations, including stretching, bending, shear, torsion, as well as warping. The formulation is also valid for both open- and closed-type thin-walled sections. Despite the effort in selecting the stress field to satisfy equilibrium within element, the developed model achieved better accuracy, robustness, and fast convergence.

  6. PRODUCTION OF HIGHER STRENGTH THIN WALLED GLOW DISCHARGE POLYMER SHELLS FOR CRYOGENIC EXPERIMENTS AT OMEGA

    International Nuclear Information System (INIS)

    NIKROO, A; CZECHOWICZ, DG; CASTILLO, ER; PONTELANDOLFO, JM

    2002-01-01

    OAK A271 PRODUCTION OF HIGHER STRENGTH THIN WALLED GLOW DISCHARGE POLYMER SHELLS FOR CRYOGENIC EXPERIMENTS AT OMEGA. Thin walled polymer shells are needed for OMEGA cryogenic laser experiments. These capsules need to be about 900 (micro)m in diameter and as thin as possible (approx 1-2 (micro)m), while having enough strength to be filled with DT as fast as possible to about 1000 atm. The authors have found that by optimizing the coating parameters in the glow discharge polymer (GDP) deposition system, traditionally used for making ICF targets, they can routinely make robust, ∼ 1.5 (micro)m thick, 900 (micro)m diameter GDP shells with buckle strengths of over 0.3 atm. This is twice the strength of shells made prior to the optimization and is comparable to values quoted for polyimide shells. In addition, these shells were found to be approximately three times more permeable and over 20% denser than previously made GDP shells. The combination of higher strength and permeability is ideal for direct drive cryogenic targets at OMEGA. Shells as thin as 0.5 (micro)m have been made. In this paper, the authors discuss the shell fabrication process, effects of modifying various GDP deposition parameters on shell properties and chemical composition

  7. Thin-Wall GaN/InAlN Multiple Quantum Well Tubes.

    Science.gov (United States)

    Durand, Christophe; Carlin, Jean-François; Bougerol, Catherine; Gayral, Bruno; Salomon, Damien; Barnes, Jean-Paul; Eymery, Joël; Butté, Raphaël; Grandjean, Nicolas

    2017-06-14

    Thin-wall tubes composed of nitride semiconductors (III-N compounds) based on GaN/InAlN multiple quantum wells (MQWs) are fabricated by metal-organic vapor-phase epitaxy in a simple and full III-N approach. The synthesis of such MQW-tubes is based on the growth of N-polar c-axis vertical GaN wires surrounded by a core-shell MQW heterostructure followed by in situ selective etching using controlled H 2 /NH 3 annealing at 1010 °C to remove the inner GaN wire part. After this process, well-defined MQW-based tubes having nonpolar m-plane orientation exhibit UV light near 330 nm up to room temperature, consistent with the emission of GaN/InAlN MQWs. Partially etched tubes reveal a quantum-dotlike signature originating from nanosized GaN residuals present inside the tubes. The possibility to fabricate in a simple way thin-wall III-N tubes composed of an embedded MQW-based active region offering controllable optical emission properties constitutes an important step forward to develop new nitride devices such as emitters, detectors or sensors based on tubelike nanostructures.

  8. Experimental Study on Reinforced Concrete Column Incased in Prefabricated Permanent Thin-Walled Steel Form

    Directory of Open Access Journals (Sweden)

    Jae Yuel Oh

    2016-01-01

    Full Text Available Conventional construction methods of reinforced concrete (RC structures generally require a long construction period and high costs due to many on-site temporary form works. In this study, a prefabricated permanent thin-walled steel form integrated with reinforcement cage (PPSFRC was developed, and it makes for a fast-built construction by reducing the temporary form works. Axial compression tests were conducted on a total of 9 test specimens to investigate the structural performances of the newly developed columns. The proposed column construction method utilized relatively thinner steel plates compared to conventional concrete-filled tube (CFT columns, but it was designed to have sufficient resistance performances against the lateral pressure of fresh concrete and to prevent the buckling of the thin plates by utilizing the steel angles and channel stiffeners prefabricated in the permanent thin-walled steel form. The experimental results showed that the column specimens fabricated by the PPSFRC method had better local buckling resistance and behaved in a more ductile manner compared to the conventional CFT columns. In addition, the axial strengths of the test specimens were compared with those estimated by design provisions, and the flexural moments induced by initial imperfection or accidental eccentricity of axial loads were also discussed in detail.

  9. Thin-Walled Double Side Freeform Component Milling Process with Paraffin Filling Method

    Directory of Open Access Journals (Sweden)

    Jun Zha

    2017-11-01

    Full Text Available The machining of thin-walled double side freeform component has many challenges in terms of the geometrical complexity, high-requirement accuracy, and especially low stiffness. This paper surveys the filling method during the milling processes of thin-walled double side freeform component. Firstly, the DEFORM-3D was used to analyze and calculate the surface residual stress which provides a theoretical basis for parameters selection of the rough milling process, and the optimal milling parameters were obtained by the Taguchi method. Residual stress measurements have been carried out to verify the simulation results. The results show the difference between simulation and experimental data is less than 15%. Secondly, semi-finishing parameters and finishing process parameters were determined by equal error step length and step distance method. Thirdly, two machining experiments were conducted with and without paraffin filling, and the accuracy was measured by coordinate measurement machine. The results shown that the PV values are 25.16 μm and 20.34 μm for the concave and convex surface, and the corresponding RMS values are 13.75 μm and 11.93 μm in the first milling experiment. The PV values have improved to 8.53 μm and 7.12 μm, and RMS values have improved to 2.45 μm and 3.05 μm by the filled method applied.

  10. Investigation into the influence of laser energy input on selective laser melted thin-walled parts by response surface method

    Science.gov (United States)

    Liu, Yang; Zhang, Jian; Pang, Zhicong; Wu, Weihui

    2018-04-01

    Selective laser melting (SLM) provides a feasible way for manufacturing of complex thin-walled parts directly, however, the energy input during SLM process, namely derived from the laser power, scanning speed, layer thickness and scanning space, etc. has great influence on the thin wall's qualities. The aim of this work is to relate the thin wall's parameters (responses), namely track width, surface roughness and hardness to the process parameters considered in this research (laser power, scanning speed and layer thickness) and to find out the optimal manufacturing conditions. Design of experiment (DoE) was used by implementing composite central design to achieve better manufacturing qualities. Mathematical models derived from the statistical analysis were used to establish the relationships between the process parameters and the responses. Also, the effects of process parameters on each response were determined. Then, a numerical optimization was performed to find out the optimal process set at which the quality features are at their desired values. Based on this study, the relationship between process parameters and SLMed thin-walled structure was revealed and thus, the corresponding optimal process parameters can be used to manufactured thin-walled parts with high quality.

  11. On deformation of thin-walled parts while turning on the lathes

    Directory of Open Access Journals (Sweden)

    E. V. Arbuzov

    2014-01-01

    Full Text Available In a number of industries such as aviation engineering, instrumentation engineering, etc. the nonrigid thin-walled parts are a widespread sort of products. For their turning on the lathes the specially designed arrangements are necessary to prevent parts from deformation caused by the action of cutting force and retaining pressure. To create and use the arrangements extra costs are needed, and it, as a consequence, leads to the growth of production price. Potentially, there is another approach. It is to machine using the standard arrangements under special "soft" cutting operation conditions, which are characterized by reduced forces to act on the part, thus decreasing process deformations to the appropriate level. It may be a priori expected that such approach is economically more preferable. Unfortunately, it is difficult to conduct a comparative assessment of these two alternatives to choose a preferable version because of limited data on studies and implementation of the second alternative. Thereupon, to learn the thin-walled deformations versus their treatment conditions is of interest.The aim of the paper is to have general information on topology and elastic deformation value of thin-walled parts, machined on the lathes. The objective is to assess a perspective for further potentially possible activities to develop a concept of machining the thin-walled parts with controlled deformation due to selecting the "soft" cutting operation conditions.The paper studies the thin-walled steel parts of class "Tube" and "Disk" in the role of force action with their dimensions within the range of 5-200 mm for the length, 60-250 mm for diameter, and 4-25 mm for the wall thickness. It considers a chucked work-holding scheme and two machining types, namely external turning cut (for parts of class "Tube" and cross butt turning (for parts of class "Disk". Three stages of machining have been simulated for each type of machining, namely rough (Ra 12.5; IT10

  12. Optimal Shakedown of the Thin-Wall Metal Structures Under Strength and Stiffness Constraints

    Directory of Open Access Journals (Sweden)

    Alawdin Piotr

    2017-06-01

    Full Text Available Classical optimization problems of metal structures confined mainly with 1st class cross-sections. But in practice it is common to use the cross-sections of higher classes. In this paper, a new mathematical model for described shakedown optimization problem for metal structures, which elements are designed from 1st to 4th class cross-sections, under variable quasi-static loads is presented. The features of limited plastic redistribution of forces in the structure with thin-walled elements there are taken into account. Authors assume the elastic-plastic flexural buckling in one plane without lateral torsional buckling behavior of members. Design formulae for Methods 1 and 2 for members are analyzed. Structures stiffness constrains are also incorporated in order to satisfy the limit serviceability state requirements. With the help of mathematical programming theory and extreme principles the structure optimization algorithm is developed and justified with the numerical experiment for the metal plane frames.

  13. Effect of processing on properties of thin walled calandria tubes for pressurised heavy water reactor

    Science.gov (United States)

    Kapoor, K.; Padmaprabu, C.; Ramana Rao, S. V.; Sanyal, T.; Kashyap, B. P.

    2003-02-01

    Thin walled calandria tubes for pressurised heavy water reactors are manufactured either by seam welding of Zircaloy-4 sheets or by seamless route. In the present study, the effect of processing on the critical properties such as texture, microstructure, hydriding behaviour and residual stress for both the routes as well as the mechanical anisotropy developed due to seam welding are investigated. The properties of the seam welded tube in the fusion and adjoining region are markedly different from the base material and from the seamless tube. Residual stress measurements indicate that heat affected zone (HAZ) of seam welded tubes have longitudinal tensile residual stress and the seamless tubes have uniform compressive stress along the circumference. The phase transition in the presence of residual stresses due to thermal gradient is found to modify the texture in the HAZ. The hydride orientation and mechanical anisotropy in these regions are found to be dependent on the texture of the material.

  14. Experimental validation of error in temperature measurements in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    An experimental analysis has been performed to validate the measurement error of cooling curves measured in thin walled ductile cast iron. Specially designed thermocouples with Ø0.2 mm thermocouple wire in Ø1.6 mm ceramic tube was used for the experiments. Temperatures were measured in plates...... with thicknesses between 2 and 4.3 mm. The thermocouples were accurately placed at the same distance from the surface of the casting for different plate thicknesses. It is shown that when measuring the temperature in plates with thickness between 2 and 4.3 mm the measured temperature will be parallel shifted...... to a level about 20C lower than the actual temperature in the casting. Factors affecting the measurement error (oxide layer on the thermocouple wire, penetration into the ceramic tube and variation in placement of thermocouple) are discussed. Finally, it is shown how useful cooling curve may be obtained...

  15. Thin wall ductile iron casting as a substitute for aluminum alloy casting in automotive industry

    Directory of Open Access Journals (Sweden)

    M. Górny

    2009-01-01

    Full Text Available In paper it is presented thin wall ductile iron casting (TWDI as a substitute of aluminium alloy casting. Upper control arm made of ductile iron with wall thickness ranging from 2 – 3.7 mm was produced by inmold process. Structure, mechanical properties and computer simulations were investigated. Structural analysis of TWDI shows pearlitic-ferritic matrix free from chills and porosity. Mechanical testing disclose superior ultimate tensile strength (Rm, yield strength (Rp0,2 and slightly lower elongation (E of TWDI in comparison with forged control arm made of aluminium alloy (6061-T6. Moreover results of computer simulation of static loading for tested control arms are presented. Analysis show that the light-weight ductile iron casting can be loaded to similar working conditions as the forged Al alloy without any potential failures.

  16. Effect of Eccentricity of Load on Critical Force of Thin-Walled Columns CFRP

    Directory of Open Access Journals (Sweden)

    Pawel Wysmulski

    2017-09-01

    Full Text Available The subject of study was a thin-walled C-section made of carbon fiber reinforced polymer (CFRP. Column was subjected to eccentric compression in the established direction. In the computer simulation, the boundary conditions were assumed in the form of articulated support of the sections of the column. Particular studies included an analysis of the effects of eccentricity on the critical force value. The research was conducted using two independent research methods: numerical and experimental. Numerical simulations were done using the finite element method using the advanced system Abaqus®. The high sensitivity of the critical force value corresponding to the local buckling of the channel section to the load eccentricity was demonstrated.

  17. Thin walled Nb tubes for suspending test masses in interferometric gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.H. [School of Physics, University of Western Australia, Crawley 6009, WA (Australia)]. E-mail: bhl@physics.uwa.edu.au; Ju, L. [School of Physics, University of Western Australia, Crawley 6009, WA (Australia); Blair, D.G. [School of Physics, University of Western Australia, Crawley 6009, WA (Australia)

    2006-02-13

    In a previous Letter, we have shown that the use of orthogonal ribbons could provide a better mirror suspension technique in interferometric gravitational wave antennas. One of the key improvements presented by the orthogonal ribbon is the reduction in the number of violin string modes in the direction of the laser. We have considered more elaborate geometries in recent simulations and obtained a suspension that provides further reduction in the number of violin string modes in the direction of the laser, as well as in the direction orthogonal to the laser. This thin walled niobium tube suspension exhibits a reduction in the number of violin modes to 5 in each direction up to a frequency of 5 kHz. Furthermore, the violin mode thermal noise peaks can be reduced in amplitude by 30 dB.

  18. Thin walled Nb tubes for suspending test masses in interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Lee, B.H.; Ju, L.; Blair, D.G.

    2006-01-01

    In a previous Letter, we have shown that the use of orthogonal ribbons could provide a better mirror suspension technique in interferometric gravitational wave antennas. One of the key improvements presented by the orthogonal ribbon is the reduction in the number of violin string modes in the direction of the laser. We have considered more elaborate geometries in recent simulations and obtained a suspension that provides further reduction in the number of violin string modes in the direction of the laser, as well as in the direction orthogonal to the laser. This thin walled niobium tube suspension exhibits a reduction in the number of violin modes to 5 in each direction up to a frequency of 5 kHz. Furthermore, the violin mode thermal noise peaks can be reduced in amplitude by 30 dB

  19. Nonlinear mechanics of thin-walled structures asymptotics, direct approach and numerical analysis

    CERN Document Server

    Vetyukov, Yury

    2014-01-01

    This book presents a hybrid approach to the mechanics of thin bodies. Classical theories of rods, plates and shells with constrained shear are based on asymptotic splitting of the equations and boundary conditions of three-dimensional elasticity. The asymptotic solutions become accurate as the thickness decreases, and the three-dimensional fields of stresses and displacements can be determined. The analysis includes practically important effects of electromechanical coupling and material inhomogeneity. The extension to the geometrically nonlinear range uses the direct approach based on the principle of virtual work. Vibrations and buckling of pre-stressed structures are studied with the help of linearized incremental formulations, and direct tensor calculus rounds out the list of analytical techniques used throughout the book. A novel theory of thin-walled rods of open profile is subsequently developed from the models of rods and shells, and traditionally applied equations are proven to be asymptotically exa...

  20. A Simplified Finite Element Simulation for Straightening Process of Thin-Walled Tube

    Science.gov (United States)

    Zhang, Ziqian; Yang, Huilin

    2017-12-01

    The finite element simulation is an effective way for the study of thin-walled tube in the two cross rolls straightening process. To determine the accurate radius of curvature of the roll profile more efficiently, a simplified finite element model based on the technical parameters of an actual two cross roll straightening machine, was developed to simulate the complex straightening process. Then a dynamic simulation was carried out using ANSYS LS-DYNA program. The result implied that the simplified finite element model was reasonable for simulate the two cross rolls straightening process, and can be obtained the radius of curvature of the roll profile with the tube’s straightness 2 mm/m.

  1. Computation of macro-fiber composite integrated thin-walled smart structures

    Science.gov (United States)

    Zhang, S. Q.; Zhang, S. Y.; Chen, M.; Bai, J.; Li, J.

    2016-07-01

    Due to high flexibility, reliability, and strong actuation forces, piezo fiber based composite smart material, macro-fiber composite (MFC), is increasingly applied in various fields for vibration suppression, shape control, and health monitoring. The complexity arrangement of MFC materials makes them difficult in numerical simulations. This paper develops a linear electro-mechanically coupled finite element (FE) model for composite laminated thin-walled smart structures bonded with MFC patches considering arbitrary piezo fiber orientation. Two types of MFCs are considered, namely, MFC-d31 in which the d 31 effect dominates the actuation forces, and MFC-d33 which mainly uses the d 33 effect. The proposed FE model is validated by static analysis of an MFC bonded smart plate.

  2. Application of manufacturing constraints to structural optimization of thin-walled structures

    Science.gov (United States)

    Kuczek, T.

    2016-02-01

    Topology optimization can be a very useful tool for creating conceptual designs for vehicles. Structures suggested by topology optimization often turn out to be difficult to implement in manufacturing processes. Presently, rail vehicle structures are made by welding sheet metal parts. This leads to many complications and increased weight of the vehicle. This article presents a new design concept for modern rail vehicle structures made of standardized, thin-walled, closed, steel profiles that fulfil the stress and manufacturing requirements. For this purpose, standard software for topology optimization was used with a new way of preprocessing the design space. The design methodology is illustrated by an example of the topology optimization of a freight railcar. It is shown that the methodology turns out to be a useful tool for obtaining optimal structure design that fulfils the assumed manufacturing constraints.

  3. Primary Response Assessment Method for Concept Design of Monotonous Thin-Walled Structures

    Directory of Open Access Journals (Sweden)

    V. Zanic

    2005-01-01

    Full Text Available A concept design methodology for monotonous, tapered thin-walled structures (wing/fuselage/ship/bridge is presented including modules for: model generation; loads; primary (longitudinal and secondary (transverse strength calculations; structural feasibility (buckling/fatigue/ultimate strength criteria; design optimization modules based on ES/GA/FFE; graphics. A method for primary strength calculation is presented in detail. It provides the dominant response field for design feasibility assessment. Bending and torsion of the structure are modelled with the accuracy required for concept design. A ‘2.5D-FEM’ model is developed by coupling a 1D-FEM model along the ‘monotonity’ axis and a 2D-FEM model(s transverse to it. The shear flow and stiffness characteristics of the cross-section for bending and pure/restrained torsion are given, based upon the warping field of the cross-section. Examples: aircraft wing and ship hull. 

  4. Degenerated shell element for geometrically nonlinear analysis of thin-walled piezoelectric active structures

    International Nuclear Information System (INIS)

    Marinković, D; Köppe, H; Gabbert, U

    2008-01-01

    Active piezoelectric thin-walled structures, especially those with a notably higher membrane than bending stiffness, are susceptible to large rotations and transverse deflections. Recent investigations conducted by a number of researchers have shown that the predicted behavior of piezoelectric structures can be significantly influenced by the assumption of large displacements and rotations of the structure, thus demanding a geometrically nonlinear formulation in order to investigate it. This paper offers a degenerated shell element and a simplified formulation that relies on small incremental steps for the geometrically nonlinear analysis of piezoelectric composite structures. A set of purely mechanical static cases is followed by a set of piezoelectric coupled static cases, both demonstrating the applicability of the proposed formulation

  5. Metal Injection Molding of Thin-Walled Titanium Glasses Arms: A Case Study

    Science.gov (United States)

    Ye, Shulong; Mo, Wei; Lv, Yonghu; Li, Xia; Kwok, Chi Tat; Yu, Peng

    2018-02-01

    Commercially pure titanium (CP Ti) and Ti-6Al-4V arms for a new brand of augmented reality smart glasses, which are over 170 mm in length, with thin wall structures and extremely complex surfaces, have been successfully fabricated via metal injection molding. After sintering, both the metal injection-molded (MIMed) CP Ti and Ti-6Al-4V can reach relative densities of over 95% with an oxygen content 2200 ppm, thus imparting mechanical properties comparable to cast alloys. The ductility of the MIMed CP Ti and Ti-6Al-4V are about 15% and 8%, respectively. This is a good example of applying metal injection molding to mass production of precise Ti alloy parts with complicated shapes.

  6. Structural performance of new thin-walled concrete sandwich panel system reinforced with bfrp shear connectors

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hulin, Thomas; Schmidt, Jacob Wittrup

    2013-01-01

    This paper presents a new thin-walled concrete sandwich panel system reinforced with basalt fiber-reinforced plastic (BFRP) with optimum structural performances and a high thermal resistance developed by Connovate and Technical University of Denmark. The shear connecting system made of a BFRP grid...... is described and provides information on the structural design with its advantages. Experimental and numerical investigations of the BFRP connecting systems were performed. The experimental program included testing of small scale specimens by applying shear (push-off) loading and semi-full scale specimens...... by flexural loading. Numerical investigations were based on 3-D linear elastic finite element analysis. Results from the numerical investigations were compared with experimental results of small and semi-scale specimens for the validation of the design procedure. Experimental and numerical results based...

  7. Modeling of Macro-deformation Behavior of Thin-Walled Aluminum Foam by Gas Injection Method

    Science.gov (United States)

    Xiang, Chen; Ningzhen, Wang; Jianyu, Yuan; Yanxiang, Li; Huawei, Zhang; Yuan, Liu

    2017-07-01

    The favorable energy absorption characteristics of foam structures originate from their layer-by-layer deformation behavior. In this paper, the effects of cell morphology on the compressive performance of thin-walled aluminum foams were studied by a finite element method using a three-dimensional, thin-shell Kelvin tetrakaidecahedron model. Models with varying cell structure parameters were established so that the effects of relative density, cell size, cell wall thickness, and cell anisotropy on the plateau stress and energy absorption capacity of the foams could be investigated. Both the numerical deformation behavior and stress-strain curves of aluminum foams are found to have good agreement with the experimental results under quasi-static compressive loading. Moreover, the deformation behaviors of those foams with a certain anisotropy ratio are compared for different loading directions. The cell shape is a key factor affecting the plateau stress as well as the relative density.

  8. Fuel retention properties of thin-wall glass target in low temperature

    International Nuclear Information System (INIS)

    Gao Dangzhong; Huang Yong; Tang Yongjian; Wen Shuhuai

    2001-01-01

    In room temperature the fuel gas storage half-life of the thin-wall (wall-thickness less than 1μm) glass microsphere is only a few days, it is difficult to be used for ICF. To efficiently prolong the half-life of such type targets, and meet the need of ICF experiments, the special device for storing the targets was developed. All the targets are immerged in liquid-nitrogen (LN 2 ), after being sealed in vacuum. During this period the change of Si 1.74 keV X-ray counts were measured a few times with the low energy X-ray multi-channel analyzer. The results of experiment indicate that, in the environment of -196 degree C, the fuel storage half-life of target has been successfully extended to 100-300 d from 3-10 d. However, the surface roughness of target was not obviously changed

  9. THIN-WALLED CROSS SECTION SHAPE INFLUENCE ON STEEL MEMBER RESISTANCE

    Directory of Open Access Journals (Sweden)

    Elżbieta Urbańska-Galewska

    2016-03-01

    Full Text Available This work describes why trending thin-walled technology is achieving popularity in steel construction sector. A purpose of this article is to present the influence of the cold-formed element cross-section shape on an axial compression and a bending moment resistance. The authors have considered four different shapes assuming constant section area and thickness. Calculations were based on three different steel grades taking into account local, distortional and overall buckling. The results are presented in a tabular and a graphical way and clearly confirm that cross-section forming distinctly impact the cold-formed member resistance. The authors choose these cross-sections that work better in compression state and the other (those slender and high that function more efficiently are subjected to bending.

  10. A Variable Stiffness Analysis Model for Large Complex Thin-Walled Guide Rail

    Directory of Open Access Journals (Sweden)

    Wang Xiaolong

    2016-01-01

    Full Text Available Large complex thin-walled guide rail has complicated structure and no uniform low rigidity. The traditional cutting simulations are time consuming due to huge computation especially in large workpiece. To solve these problems, a more efficient variable stiffness analysis model has been propose, which can obtain quantitative stiffness value of the machining surface. Applying simulate cutting force in sampling points using finite element analysis software ABAQUS, the single direction variable stiffness rule can be obtained. The variable stiffness matrix has been propose by analyzing multi-directions coupling variable stiffness rule. Combining with the three direction cutting force value, the reasonability of existing processing parameters can be verified and the optimized cutting parameters can be designed.

  11. Axial Crushing Behaviors of Thin-Walled Corrugated and Circular Tubes - A Comparative Study

    Science.gov (United States)

    Reyaz-Ur-Rahim, Mohd.; Bharti, P. K.; Umer, Afaque

    2017-10-01

    With the help of finite element analysis, this research paper deals with the energy absorption and collapse behavior with different corrugated section geometries of hollow tubes made of aluminum alloy 6060-T4. Literature available experimental data were used to validate the numerical models of the structures investigated. Based on the results available for symmetric crushing of circular tubes, models were developed to investigate corrugated thin-walled structures behavior. To study the collapse mechanism and energy absorbing ability in axial compression, the simulation was carried in ABAQUS /EXPLICIT code. In the simulation part, specimens were prepared and axially crushed to one-fourth length of the tube and the energy diagram of crushing force versus axial displacement is shown. The effect of various parameters such as pitch, mean diameter, corrugation, amplitude, the thickness is demonstrated with the help of diagrams. The overall result shows that the corrugated section geometry could be a good alternative to the conventional tubes.

  12. Thin walled Nb tubes for suspending test masses in interferometric gravitational wave detectors

    Science.gov (United States)

    Lee, B. H.; Ju, L.; Blair, D. G.

    2006-02-01

    In a previous Letter, we have shown that the use of orthogonal ribbons could provide a better mirror suspension technique in interferometric gravitational wave antennas. One of the key improvements presented by the orthogonal ribbon is the reduction in the number of violin string modes in the direction of the laser. We have considered more elaborate geometries in recent simulations and obtained a suspension that provides further reduction in the number of violin string modes in the direction of the laser, as well as in the direction orthogonal to the laser. This thin walled niobium tube suspension exhibits a reduction in the number of violin modes to 5 in each direction up to a frequency of 5 kHz. Furthermore, the violin mode thermal noise peaks can be reduced in amplitude by 30 dB.

  13. Buckling of thin walled composite cylindrical shell filled with solid propellant

    Science.gov (United States)

    Dash, A. P.; Velmurugan, R.; Prasad, M. S. R.

    2017-12-01

    This paper investigates the buckling of thin walled composite cylindrical tubes that are partially filled with solid propellant equivalent elastic filler. Experimental investigation is conducted on thin composite tubes made out of S2-glass epoxy, which is made by using filament winding technique. The composite tubes are filled with elastic filler having similar mechanical properties as that of a typical solid propellant used in rocket motors. The tubes are tested for their buckling strength against the external pressure in the presence of the filler. Experimental data confirms the enhancement of external pressure carrying capacity of the composite tubes by up to three times as that of empty tubes for a volumetric loading fraction (VLF) of 0.9. Furthermore, the finite element based geometric nonlinearity analysis predicts the buckling behaviour of the partially filled composite tubes close to the experimental results.

  14. Short term endurance results on a single cylinder diesel engine fueled with upgraded bio oil biodiesel emulsion

    Science.gov (United States)

    Prakash, R.; Murugan, S.

    2017-11-01

    This paper deliberates the endurance test outcomes obtained from a single cylinder, diesel engine fueled with an upgraded bio oil biodiesel emulsion. In this investigation a bio oil obtained by pyrolysis of woody biomass was upgraded with acid treatment. The resulted bio oil was emulsified with addition of biodiesel and suitable surfactant which is termed as ATJOE15. The main objective of the endurance test was to evaluate the wear characteristics of the engine components and lubrication oil properties, when the engine is fueled with the ATJOE15 emulsion. The photographic views taken before and after the end of 100 hrs endurance test, and visual inspection of the engine components, wear and carbon deposit results, are discussed in this paper.

  15. Thermomechanics of Inelastic Thin-Walled Structural Members with Piezoelectric Sensors and Actuators Under Harmonic Loading (Review)

    Science.gov (United States)

    Karnaukhov, V. G.; Kirichok, I. F.; Kozlov, V. I.

    2017-01-01

    Models, combined numerical-analytical methods, and results related to study of the forced resonance vibrations and self-heating of thin-walled inelastic structural members with piezoelectric sensors and actuators under monoharmonic mechanical and electric loading are presented. The thermomechanical behavior of passive and piezoactive materials is described using the concept of complex characteristics that are assumed to depend on temperature and invariants of the strain tensor. The classical and refined thermomechanical theories are used to model the vibrations and self-heating of thin-walled structural members with sensors and actuators. Nonlinear coupled thermoelastic problems for thin-walled structural members are solved by iteration and numerical methods. The thermal failure of structural members is considered. Methods for determining the critical electrical and mechanical monoharmonic loads and methods of postcritical analysis are described. The effect of various factors on the effectiveness of active damping of the resonance vibrations of inelastic thin-walled structural members by piezoelectric sensors and actuators is studied

  16. Computer aided process planning for high-speed milling of thin-walled parts : strategy-based support

    NARCIS (Netherlands)

    Popma, M.G.R.

    2010-01-01

    Technological developments have made high-speed milling economically attractive. It is now a manufacturing technology that can competitively manufacture thin-walled parts. Such parts however can require a lot of material to be machined. With high-speed milling, this can take a lot of toolpaths.

  17. Multiple, thin-walled cysts are one of the HRCT features of airspace enlargement with fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yasutaka, E-mail: yasuyasu@omiya.jichi.ac.jp [Division of Diagnostic Pathology, Saitama Prefectural Cardiovascular and Respiratory Center, 1696 Itai, Kumagaya City, Saitama 360-0105 (Japan); Division of Pulmonary Medicine, Clinical Department of Internal Medicine, Jichi Medical University, Saitama Medical Center, Amanuma-cho, Omiya City, Saitama 330-8503 (Japan); Kawabata, Yoshinori [Division of Diagnostic Pathology, Saitama Prefectural Cardiovascular and Respiratory Center, 1696 Itai, Kumagaya City, Saitama 360-0105 (Japan); Kanauchi, Tetsu [Department of Radiology, Saitama Prefectural Cardiovascular and Respiratory Center, 1696 Itai, Kumagaya City, Saitama 360-0105 (Japan); Hoshi, Eishin [Department of Thoracic Surgery, Saitama Prefectural Cardiovascular and Respiratory Center, 1696 Itai, Kumagaya City, Saitama 360-0105 (Japan); Kurashima, Kazuyoshi [Department of Pulmonary Medicine, Saitama Prefectural Cardiovascular and Respiratory Center, 1696 Itai, Kumagaya City, Saitama 360-0105 (Japan); Koyama, Shinichiro [Division of Pulmonary Medicine, Clinical Department of Internal Medicine, Jichi Medical University, Saitama Medical Center, Amanuma-cho, Omiya City, Saitama 330-8503 (Japan); Colby, Thomas V. [Department of Laboratory Medicine and Pathology, Mayo Clinic Scottsdale, Scottsdale, AZ 85259 (United States)

    2015-05-15

    Highlights: • High resolution computed tomography (HRCT) findings of airspace enlargement with fibrosis (AEF), recently identified as a smoking related change. • Investigation was in 35 smokers. • They underwent lobectomy for lung cancer with pathological confirmation of AEF. • Multiple, thin-walled cysts are one of the HRCT features of AEF. - Abstract: Purpose: Airspace enlargement with fibrosis (AEF) has been identified pathologically as a smoking related change. We sought to identify the HRCT findings of AEF and search for distinguishing features from honeycombing. Materials and methods: 50 patients (47 males; mean age 69) were evaluated. All had undergone lobectomy for lung cancer and had confirmed AEF and/or usual interstitial pneumonia (UIP) by pathological evaluation. HRCT findings were first evaluated preresection for resected lobes, and then correlated with the subsequent pathological findings in the resection specimens. Three groups were devised: one with AEF alone to determine the HRCT findings of AEF, a second with AEF and UIP and third with UIP alone. HRCT features of AEF and honeycombing were compared. Results: There were 11 patients (10 male; mean age 69) with AEF alone, 24 patients (22 male; mean age 69) with AEF and UIP, and 15 patients (15 male; mean age 68) with UIP alone. The HRCT on the AEF alone showed subpleural (but not abutting the pleura) multiple thin-walled cysts (MTWCs) in 7 and reticular opacities in 3. The HRCT in AEF and UIP showed MTWCs in 10, reticular opacities in 17; and honeycombing in 5. Among these 35 patients with the pathological finding of AEF (with or without UIP), 17 showed MTWCs. The maximum cyst wall thickness of MTWCs (mean 0.81 mm) was significantly thinner than that of honeycombing (mean 1.56 mm). MTWCs did not locate in lung base and was distant from the pleura. HRCT findings correlated with gross findings on both cysts and honeycombing. No MTWCs were seen in the 15 patients with UIP, 8 of 15 had

  18. Prediction of External Corrosion for Steel Cylinders--2007 Report

    Energy Technology Data Exchange (ETDEWEB)

    Schmoyer, Richard L [ORNL

    2008-01-01

    Depleted uranium hexafluoride (DUF{sub 6}) is stored in over 62,000 containment cylinders at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and at the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. Over 4,800 of the cylinders at Portsmouth were recently moved there from the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. The cylinders range in age up to 56 years and come in various models, but most are 48-inch diameter 'thin-wall'(312.5 mil) and 'thick-wall' (625 mil) cylinders and 30-inch diameter '30A' (including '30B') cylinders with 1/2-inch (500 mil) walls. Most of the cylinders are carbon steel, and they are subject to corrosion. The United States Department of Energy (DOE) manages the cylinders to maintain them and the DUF{sub 6} they contain. Cylinder management requirements are specified in the System Requirements Document (LMES 1997a), and the activities to fulfill them are specified in the System Engineering Management Plan (LMES 1997b). This report documents activities that address DUF{sub 6} cylinder management requirements involving measuring and forecasting cylinder wall thicknesses. As part of these activities, ultrasonic thickness (UT) measurements are made on samples of cylinders. For each sampled cylinder, multiple measurements are made in an attempt to find, approximately, the minimum wall thickness. Some cylinders have a skirt, which is an extension of the cylinder wall to protect the head (end) and valve. The head/skirt interface crevice is thought to be particularly vulnerable to corrosion, and for some skirted cylinders, in addition to the main body UT measurements, a separate suite of measurements is also made at the head/skirt interface. The main-body and head/skirt minimum thickness data are used to fit models relating minimum thickness to cylinder age, nominal thicknesses, and cylinder functional groups defined in terms of plant site, storage yard

  19. A novel desktop device for lapping thin-walled micro groove

    Science.gov (United States)

    Wang, Shilei; Wang, Bo; Che, Lin; Ding, Fei; Li, Duo

    2014-08-01

    This paper presents a novel desktop device for lapping thin-walled micro groove of a specimen used in optical equipment, the device is aimed to remove metamorphic layer (about 1μm thick) formed on the groove's upper surface as well as ensure its thickness accuracy. It adopts the way of macro/micro motion combination, the macro-motion table uses stepper motor and ball screws to realize motion in large stroke, high speed and the micron level positioning, the micro-motion table uses the electrostriction appliance to actuate the flexible four bars mechanism to realize the small stroke, low speed, and the submicron level positioning. The system uses the strategy of two ways of feedback, the macro/micro motion table uses the precise linear grating as close-loop position feedback, and the sensing holder uses the eddy current transducer as the force and deformation feedback of the elastic fixture. The most novel aspect is the first proposed idea of realizing automatic feeding by elastic recovery of the fixture, whose structure has been delicately designed. In order to ensure small lapping force and relatively high natural frequency, both static and modal analysis of the fixture has been done by ANSYS, the results was in good accordance with experiments. Lapping experiments have showed that this device can remove metamorphic layer efficiently as well as obtain good surface quality at the same time.

  20. Effects of microporosity on the elasticity and yielding of thin-walled metallic hollow spheres

    International Nuclear Information System (INIS)

    Song, Jinliang; Sun, Quansheng; Yang, Zhenning; Luo, Shengmin; Xiao, Xianghui; Arwade, Sanjay R.; Zhang, Guoping

    2017-01-01

    Knowledge of the mechanical properties of porous metallic hollow spheres (MHS) thin wall is of key importance for understanding the engineering performance of both individual ultralight MHS and the innovative MHS-based bulk foams. This paper presents the first integrated experimental and numerical study to determine the elasticity and yielding of the porous MHS wall and their dependence on its microporosity. Nanoindentation was used to probe the Young's modulus and hardness of the nonporous MHS wall material, and synchrotron X-ray computed tomography (XCT) conducted to obtain its porous microstructure and pore morphology. Three-dimensional finite element modeling was performed to obtain the mechanical response of microcubes with varying porosity trimmed from the XCT-derived real digital model of the porous MHS wall. Results show that both the Young's modulus and yield strength of the porous wall decrease nonlinearly with increasing porosity, and their relationships follow the same format of a power law function and agree well with prior experimental results. The empirical relations also reflect certain features of pore morphology, such as pore connectivity and shape. These findings can shed lights on the design, manufacturing, and modeling of individual MHS and MHS-based foams.

  1. Tensile Response of Hoop Reinforced Multiaxially Braided Thin Wall Composite Tubes

    Science.gov (United States)

    Roy, Sree Shankhachur; Potluri, Prasad; Soutis, Constantinos

    2017-04-01

    This paper presents the tensile response of thin-walled composite tubes with multi-axial fibre architecture. A hybrid braid-wound layup has the potential to optimise the composite tube properties, however, stacking sequence plays a role in the failure mechanism. A braid-winding method has been used to produce stacked overwound braid layup [(±45°/0°)5/90°4]T. Influence of stacking sequence on premature failure of hoop layers has been reported. Under tensile loading, a cross-ply composite tube with the alternate stacking of hoop and axial fibre show hoop plies splitting similar to the overwound braided composite tube. However, splitting has been restricted by the surrounding axial plies and contained between the adjacent axial fibre tows. This observation suggests hoop layers sandwiched between braid layers will improve structural integrity. A near net shape architecture with three fibre orientation in a triaxial braid will provide additional support to prevent extensive damage for plies loaded in off-axis. Several notable observations for relatively open braid structures such as tow scissoring, high Poisson's ratio and influence of axial tow crimp on the strain to failure have been reported. Digital Image Correlation (DIC) in conjunction with surface strain gauging has been employed to capture the strain pattern.

  2. Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall

    KAUST Repository

    Wang, Kai Yu

    2009-04-01

    To develop high-flux and high-rejection forward osmosis (FO) membranes for water reuses and seawater desalination, we have fabricated polybenzimidazole (PBI) nanofiltration (NF) hollow fiber membranes with a thin wall and a desired pore size via non-solvent induced phase inversion and chemically cross-linking modification. The cross-linking by p-xylylene dichloride can finely tune the mean pore size and enhance the salt selectivity. High water permeation flux and improved salt selectivity for water reuses were achieved by using the 2-h modified PBI NF membrane which has a narrow pore size distribution. Cross-linking at a longer time produces even a lower salt permeation flux potentially suitable for desalination but at the expense of permeation flux due to tightened pore sizes. It is found that draw solution concentration and membrane orientations are main factors determining the water permeation flux. In addition, effects of membrane morphology and operation conditions on water and salt transport through membrane have been investigated. © 2008 Elsevier Ltd. All rights reserved.

  3. Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets

    Science.gov (United States)

    Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko

    2017-10-01

    Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.

  4. Bulging Behavior of Thin-walled Welded Low Carbon Steel Tubes

    Directory of Open Access Journals (Sweden)

    XIE Wen-cai

    2017-01-01

    Full Text Available In order to investigate the deformation behaviour of welded tubes during hydraulic bulging process,the hydraulic bulging tests of thin-walled welded low carbon steel tubes (STKM11A were conducted on the tube hydroformability testing unit.The thickness distribution,profiles of bulging area and the strain distribution were all obtained.Results show that the thickness reduction of weld zone is just 2.4%-5.5% while its effective strain is just 0.05-0.10,which is very small and negligible compared with the parent material and means that just the geometric position of weld zone is changed with the continuous bulging.The thinnest points are located on the both sides of weld seam symmetrically and the angle between the thinnest point and weld seam is about 30°,at which the necking has been occurred.When the length of bulging area increases,the fracture pressure,the thickness reduction and the ultimate expansion ratio all decrease,and the profile of the bulging area gradually steps away from the elliptical model which is powerless for the ratio of length to diameter up to 2.0.Moreover,the strain state of the tube is transformed from biaxial tension to plane strain state with the increasing length of bulging area,on the basis of this the forming limit diagram of welded STKM11A steel tubes can be established.

  5. Viability of thin wall tube forming of ATF FeCrAl

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-16

    Fabrication of thin walled tubing of FeCrAl alloys is critical to its success as a candidate enhanced accident-tolerant fuel cladding material. Alloys that are being investigated are Generation I and Generation II FeCrAl alloys produced at ORNL and an ODS FeCrAl alloy, MA-956 produced by Special Metals. Gen I and Gen II FeCrAl alloys were provided by ORNL and MA-956 was provided by LANL (initially produced by Special Metals). Three tube development efforts were undertaken. ORNL led the FeCrAl Gen I and Gen II alloy development and tube processing studies through drawing tubes at Rhenium Corporation. LANL received alloys from ORNL and led tube processing studies through drawing tubes at Century Tubing. PNNL led the development of tube processing studies on MA-956 through pilger processing working with Sandvik Corporation. A summary of the recent progress on tube development is provided in the following report and a separate ORNL report: ORNL/TM-2015/478, “Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes”.

  6. Deposition Time and Thermal Cycles of Fabricating Thin-wall Steel Parts by Double Electrode GMAW Based Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Yang Dongqing

    2017-01-01

    Full Text Available The deposition time for fabricating the thin-wall part as well as the peak temperature of the substrate during the process was analyzed in the double electrode gas metal arc welding (DE-GMAW based additive manufacturing (AM. The total deposition time and the interlayer idle time of the manufacturing process decreased with the increasing of the bypass current under the same interlayer temperature and the same deposition rate. The thermal cycling curves illustrated that the peak temperature of the substrate was lower in the DE-GMAW base AM under the same conditions. When depositing the thin-wall parts, the DE-GMAW based AM can reduce the heat input to the substrate and improve the fabrication efficiency, compared with the GMAW based AM.

  7. The post-buckled behaviour in thin-walled construction and its partial "erosion" under repeated loading

    Czech Academy of Sciences Publication Activity Database

    Škaloud, Miroslav; Zörnerová, Marie

    2011-01-01

    Roč. 11, č. 5 (2011), s. 805-827 ISSN 0219-4554 R&D Projects: GA ČR(CZ) GA103/09/0091 Grant - others:GA ČR(CZ) GA103/08/0275; GA ČR(CZ) GA103/08/1677 Program:GA Institutional research plan: CEZ:AV0Z20710524 Keywords : thin-walled construction * buckling * fatigue Subject RIV: JM - Building Engineering Impact factor: 0.450, year: 2011

  8. Modeling and Application of Process Damping in Milling of Thin-Walled Workpiece Made of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Xin Li

    2015-01-01

    Full Text Available The modeling as well as application of process damping in milling of thin-walled workpiece made of titanium alloy is investigated. Titanium alloy used commonly in aviation industry is one typical difficult-to-machine material. Chatter usually occurs in cutting of titanium alloy, which results in poor surface quality and damaged tool. Thus, chatter is one important restriction for the quality and efficiency of titanium alloy manufacture, especially for the thin-walled workpiece made of titanium alloy due to poor structural stiffness. Process damping results from interference between flank face and machined surface, which is critical but usually ignored in chatter analysis for difficult-to-machine material. The paper presents one nonlinear dynamic model considering process damping for milling of thin-walled workpiece made of titanium alloy and designs antivibration clearance angle to suppress chatter based on the model. The experimental and computational results indicate that the presented methods for chatter stability analysis are reasonable, and the antivibration clearance angle designed is effective in suppressing chatter and improving machining quality.

  9. Stiffness Matrix of Thin-Walled Open Bar Subject to Bending, Bending Torsion and Shift of Cross Section Middle Surface

    Science.gov (United States)

    Panasenko, N. N.; Sinelschikov, A. V.

    2017-11-01

    One of the main stages in the analysis of complex 3D structures and engineering constructions made of thin-walled open bars using FEM is a stiffness matrix developing. Taking into account middle surface shear deformation caused by the work of tangential stresses in the formula to calculate a potential energy of thin-walled open bars, the authors obtain an important correction at calculation of the bar deformation and fundamental frequencies. The results of the analysis of the free end buckling of a cantilever H-bar under plane bending differ from exact solution by 0.53%. In the course of comparison of the obtained results with the cantilever bar buckling regardless the middle surface shear deformation, an increase made 16.6%. The stiffness matrix of a thin-walled open bar developed in the present work can be integrated into any software suite using FEM for the analysis of complex 3-D structures and engineering constructions with n-freedoms.

  10. Nonlinear Dynamic Behavior Analysis of Pressure Thin-Wall Pipe Segment with Supported Clearance at Both Ends

    Directory of Open Access Journals (Sweden)

    Chaofeng Li

    2016-01-01

    Full Text Available An analysis of nonlinear behaviors of pressure thin-wall pipe segment with supported clearance at both ends was presented in this paper. The model of pressure thin-wall pipe segment with supported clearance was established by assuming the restraint condition as the work of springs in the deformation directions. Based on Sanders shell theory, Galerkin method was utilized to discretize the energy equations, external excitation, and nonlinear restraint forces. And the nonlinear governing equations of motion were derived by using Lagrange equation. The displacements in three directions were represented by the characteristic orthogonal polynomial series and trigonometric functions. The effects of supporting stiffness and supported clearance on dynamic behavior of pipe wall were discussed. The results show that the existence of supported clearance may lead to the changing of stiffness of the pipe vibration system and the dynamic behaviors of the pipe system show nonlinearity and become more complex; for example, the amplitude-frequency curve of the foundation frequency showed hard nonlinear phenomenon. The chaos and bifurcation may emerge at some region of the values of stiffness and clearance, which means that the responses of the pressure thin-wall pipe segment would be more complex, including periodic motion, times periodic motion, and quasiperiodic or chaotic motions.

  11. Coupled Static and Dynamic Buckling Modelling of Thin-Walled Structures in Elastic Range Review of Selected Problems

    Directory of Open Access Journals (Sweden)

    Kołakowski Zbigniew

    2016-06-01

    Full Text Available A review of papers that investigate the static and dynamic coupled buckling and post-buckling behaviour of thin-walled structures is carried out. The problem of static coupled buckling is sufficiently well-recognized. The analysis of dynamic interactive buckling is limited in practice to columns, single plates and shells. The applications of finite element method (FEM or/and analytical-numerical method (ANM to solve interaction buckling problems are on-going. In Poland, the team of scientists from the Department of Strength of Materials, Lodz University of Technology and co-workers developed the analytical-numerical method. This method allows to determine static buckling stresses, natural frequencies, coefficients of the equation describing the post-buckling equilibrium path and dynamic response of the plate structure subjected to compression load and/or bending moment. Using the dynamic buckling criteria, it is possible to determine the dynamic critical load. They presented a lot of interesting results for problems of the static and dynamic coupled buckling of thin-walled plate structures with complex shapes of cross-sections, including an interaction of component plates. The most important advantage of presented analytical-numerical method is that it enables to describe all buckling modes and the post-buckling behaviours of thin-walled columns made of different materials. Thin isotropic, orthotropic or laminate structures were considered.

  12. Static and free-vibrational response of semi-circular graphite-epoxy frames with thin-walled open sections

    Science.gov (United States)

    Collins, J. Scott; Johnson, Eric R.

    1989-01-01

    Experiments were conducted to measure the three-dimensional static and free vibrational response of two graphite-epoxy, thin-walled, open section frames. The frames are semi-circular with a radius of three feet, and one specimen has an I cross section and the other has a channel cross section. The flexibility influence coefficients were measured in static tests for loads applied at midspan with the ends of the specimens clamped. Natural frequencies and modes were determined from vibrational tests for free and clamped end conditions. The experimental data is used to evaluate a new finite element which was developed specifically for the analysis of curved, thin-walled structures. The formulation of the element is based on a Vlasov-type, thin-walled, curved beam theory. The predictions from the finite element program generally correlated well with the experimental data for the symmetric I-specimen. Discrepancies in some of the data were found to be due to flexibility in the clamped end conditions. With respect to the data for the channel specimen, the correlation was less satisfactory. The finite element analysis predicted the out-of-plane response of the channel specimen reasonably well, but large discrepancies occurred between the predicted in-plane response and the experimental data. The analysis predicted a much more compliant in-plane response than was observed in the experiments.

  13. Evaluation of advanced automatic PET segmentation methods using nonspherical thin-wall inserts

    International Nuclear Information System (INIS)

    Berthon, B.; Marshall, C.; Evans, M.; Spezi, E.

    2014-01-01

    Purpose: The use of positron emission tomography (PET) within radiotherapy treatment planning requires the availability of reliable and accurate segmentation tools. PET automatic segmentation (PET-AS) methods have been recommended for the delineation of tumors, but there is still a lack of thorough validation and cross-comparison of such methods using clinically relevant data. In particular, studies validating PET segmentation tools mainly use phantoms with thick plastic walls inserts of simple spherical geometry and have not specifically investigated the effect of the target object geometry on the delineation accuracy. Our work therefore aimed at generating clinically realistic data using nonspherical thin-wall plastic inserts, for the evaluation and comparison of a set of eight promising PET-AS approaches. Methods: Sixteen nonspherical inserts were manufactured with a plastic wall of 0.18 mm and scanned within a custom plastic phantom. These included ellipsoids and toroids derived with different volumes, as well as tubes, pear- and drop-shaped inserts with different aspect ratios. A set of six spheres of volumes ranging from 0.5 to 102 ml was used for a baseline study. A selection of eight PET-AS methods, written in house, was applied to the images obtained. The methods represented promising segmentation approaches such as adaptive iterative thresholding, region-growing, clustering and gradient-based schemes. The delineation accuracy was measured in terms of overlap with the computed tomography reference contour, using the dice similarity coefficient (DSC), and error in dimensions. Results: The delineation accuracy was lower for nonspherical inserts than for spheres of the same volume in 88% cases. Slice-by-slice gradient-based methods, showed particularly lower DSC for tori (DSC 0.76 except for tori) but showed the largest errors in the recovery of pears and drops dimensions (higher than 10% and 30% of the true length, respectively). Large errors were visible

  14. Approximate relative fatigue life estimation methods for thin-walled monolithic ceramic crowns.

    Science.gov (United States)

    Nasrin, Sadia; Katsube, Noriko; Seghi, Robert R; Rokhlin, Stanislav I

    2018-02-02

    The objective is to establish an approximate relative fatigue life estimation method under simulated mastication load for thin-walled monolithic restorations. Experimentally measured fatigue parameters of fluormica, leucite, lithium disilicate and yttrium-stabilized zirconia in the existing literature were expressed in terms of the maximum cyclic stress and stress corresponding to initial crack size prior to N number of loading cycles to assess their differences. Assuming that failures mostly originate from high stress region, an approximate restoration life method was explored by ignoring the multi-axial nature of stress state. Experiments utilizing a simple trilayer restoration model with ceramic LD were performed to test the model validity. Ceramic fatigue was found to be similar for clinically relevant loading range and mastication frequency, resulting in the development of an approximate fatigue equation that is universally applicable to a wide range of dental ceramic materials. The equation was incorporated into the approximate restoration life estimation, leading to a simple expression in terms of fast fracture parameters, high stress area ΔA, the high stress averaged over ΔA and N. The developed method was preliminarily verified by the experiments. The impact of fast fracture parameters on the restoration life was separated from other factors, and the importance of surface preparation was manifested in the simplified equation. Both the maximum stress and the area of high stress region were also shown to play critical roles. While nothing can replace actual clinical studies, this method could provide a reasonable preliminary estimation of relative restoration life. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Jon T. [General Motors LLC, Warren, MI (United States); Wang, Gerry [Meridian Lightweight Technologies, Plymouth MI (United States); Luo, Alan [General Motors LLC, Warren, MI (United States)

    2017-11-29

    The purpose of this project was to develop a process and product which would utilize magnesium die casting and result in energy savings when compared to the baseline steel product. The specific product chosen was a side door inner panel for a mid-size car. The scope of the project included: re-design of major structural parts of the door, design and build of the tooling required to make the parts, making of parts, assembly of doors, and testing (both physical and simulation) of doors. Additional work was done on alloy development, vacuum die casting, and overcasting, all in order to improve the performance of the doors and reduce cost. The project achieved the following objectives: 1. Demonstrated ability to design a large thin-wall magnesium die casting. 2. Demonstrated ability to manufacture a large thin-wall magnesium die casting in AM60 alloy. 3. Tested via simulations and/or physical tests the mechanical behavior and corrosion behavior of magnesium die castings and/or lightweight experimental automotive side doors which incorporate a large, thin-wall, powder coated, magnesium die casting. Under some load cases, the results revealed cracking of the casting, which can be addressed with re-design and better material models for CAE analysis. No corrosion of the magnesium panel was observed. 4. Using life cycle analysis models, compared the energy consumption and global warming potential of the lightweight door with those of a conventional steel door, both during manufacture and in service. Compared to a steel door, the lightweight door requires more energy to manufacture but less energy during operation (i.e., fuel consumption when driving vehicle). Similarly, compared to a steel door, the lightweight door has higher global warming potential (GWP) during manufacture, but lower GWP during operation. 5. Compared the conventional magnesium die casting process with the “super-vacuum” die casting process. Results achieved with cast tensile bars suggest some

  16. Thin-walled nanoscrolls by multi-step intercalation from tubular halloysite-10 Å and its rearrangement upon peroxide treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zsirka, Balázs, E-mail: zsirkab@almos.vein.hu [University of Pannonia, Institute of Environmental Engineering, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Horváth, Erzsébet, E-mail: erzsebet.horvath@gmail.com [University of Pannonia, Institute of Environmental Engineering, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Szabó, Péter, E-mail: xysma@msn.com [University of Pannonia, Department of Analytical Chemistry, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Juzsakova, Tatjána, E-mail: yuzhakova@almos.uni-pannon.hu [University of Pannonia, Institute of Environmental Engineering, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Szilágyi, Róbert K., E-mail: szilagyi@montana.edu [Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 (United States); Fertig, Dávid, E-mail: fertig.david92@gmail.com [University of Pannonia, Department of Analytical Chemistry, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Makó, Éva, E-mail: makoe@almos.vein.hu [University of Pannonia, Institute of Materials Engineering, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Varga, Tamás, E-mail: vtamas@chem.u-szeged.hu [University of Szeged, Department of Applied and Environmental Chemistry, Rerrich B. tér 1., Szeged H-6720 Hungary (Hungary); and others

    2017-03-31

    Highlights: • Halloysite intercalation/delamination. • Thin-walled nanoscroll preparation. • Oxidative surface cleaning with H{sub 2}O{sub 2} and heating. • X-ray diffraction, TEM, N{sub 2} adsorption, TG/DTG and FT-IR/ATR measurements. • Nanoscroll rearrangement, periodicity along the crystallographic ‘c’-axis. - Abstract: Surface modification of the halloysite-10 Å mineral with tubular morphology can be achieved by slightly modified procedures developed for the delamination of kaolinite minerals. The resulting delaminated halloysite nanoparticles have unexpected surface/morphological properties that display, new potentials in catalyst development. In this work, a four-step intercalation/delamination procedure is described for the preparation of thin-walled nanoscrolls from the multi-layered hydrated halloysite mineral that consists of (1) intercalation of halloysite with potassium acetate, (2) replacement intercalation with ethylene glycol, (3) replacement intercalation with hexylamine, and (4) delamination with toluene. The intercalation steps were followed by X-ray diffraction, transmission electron microscopy, N{sub 2} adsorption-desorption, thermogravimetry, and infrared spectroscopy. Delamination eliminated the crystalline order and the crystallite size along the ‘c’-axis, increased the specific surface area, greatly decreased the thickness of the mineral tubes to a monolayer, and shifted the pore diameter toward the micropore region. Unexpectedly, the removal of residual organics from intercalation steps adsorbed at the nanoscroll surface with a peroxide treatment resulted in partial recovery of crystallinity and increase of crystallite size along the ‘c’-crystal direction. The d(001) value showed a diffuse pattern at 7.4–7.7 Å due to the rearrangement of the thin-walled nanoscrolls toward the initial tubular morphology of the dehydrated halloysite-7 Å mineral.

  17. Complete Status Report Documenting Development of Friction Stir Welding for Joining Thin Wall Tubing of ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bunn, Jeffrey R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    The development of friction stir welding (FSW) for joining thin sections of the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy was initiated in Fuel Cycle Research and Development (FCRD), now the Nuclear Technology Research and Development (NTRD), in 2015. The first FSW experiment was conducted in late FY15 and successfully produced a bead-on-plate stir zone (SZ) on a 1 mm thick plate of 14YWT (SM13 heat). The goal of this research task is to ultimately demonstrate that FSW is a feasible method for joining thin wall (0.5 mm thick) tubing of 14YWT.

  18. Development of a radionuclide short-test for the evaluation of engine oils in respect to cam- and cylinder linear wear by using OM 616 Kombi-Test conditions

    International Nuclear Information System (INIS)

    Volz, J.; Lausch, W.

    1980-05-01

    A survey is given on the studies performed since 1973 on the development of radionuclide short-test procedure, based on the test procedure of the OM 616 Kombi-Test, for the evaluation of engine oils in respect to cam- and cylinder liner wear (deuteron activated Co-56). Out of the results of these studies on experimental short test procedure has been elaborated to evaluate cylinder liner wear. With this experimental procedure some round robin testing has been carried out by three laboratories using a well-known reference oil and two test oils. The results of this round robin test led to further improvements in the test procedure. This improved test procedure has become a suitable screening-test for the development of engine oils in respect to cylinder liner wear. It never can replace the OM 616-Kombi-Test as a whole, but it will complete it. The radionuclide short test gets results quicker and at lower costs than the Kombi-Test, discriminates between hot test and cold-warm test results, and gives results even with correlation to the Kombi-Test by comparison to an approved reference oil. For such screening work, the repeatability of the test is also sufficient. (orig./HP) [de

  19. Complete Status Report Documenting Weld Development for Thin Wall Tubing of ODS Ferritic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Edmondson, Philip D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tang, Wei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-16

    Beginning in 2015, research in the FCRD program began the development of FSW for joining thin sections of 14YWT in the form of thin (0.5 mm) plate and ultimately thin wall tubing. In the previous fiscal year, a ~1 mm thick plate, or sheet, of 14YWT was produced by hot rolling with no edge cracking. The initial FSW experiment was performed on the 1 mm thick plate and involved a bead-on-plate weld in which the spinning pin tool is plunged into the plate surface, but does not penetrate the thickness of the plate, and then travels the length of the plate. The FSW run successfully produced a bead-on-plate stir zone on the 1 mm thick plate of 14YWT, but no characterization studies of the stir zone were performed by the end of FY15. Therefore, the results presented in this report cover the microstructural analysis of the bead-on-plate stir zone and the initial research task on obtaining tensile properties of the stir zone using the digital image correlation (DIC) approach during testing of miniature tensile specimens to assess the quality of the FSW parameters used in the initial experiment. The results of the microstructural characterization study using optical, scanning electron and scanning transmission electron microscopies showed the grain structure in the SZ to have isotropic and irregular shape but very similar size compared to the highly elongated grains oriented horizontally with the plane of the plate that were observed in the unaffected zone of 14YWT. Several cracks oriented horizontally were observed mostly on the retreating side of the SZ in both the SZ and TMAZ. These cracks may have formed due to insufficient pressure being exerted on the top surface of the plate by the shoulder and pin tool during the FSW run. High resolution STEM-EDS analysis showed the presence of the Y-Ti-O particles in the SZ, but that some particles exhibited coarsening. Overall, the FSW parameters used to produce the bead-on-plate SZ in the 0.1 cm thick plate of 14YWT were nearly

  20. Study of tensile test behavior of austenitic stainless steel type 347 seamless thin-walled tubes in cold worked condition

    Energy Technology Data Exchange (ETDEWEB)

    Terui, Clarice, E-mail: clarice.terui@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CINA/CTMSP), Iperó, SP (Brazil). Centro Industrial Nuclear da Marinha; Lima, Nelson B. de, E-mail: nblima@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    These austenitic stainless steel type 347 seamless thin-walled tubes are potential candidates to be used in fuel elements of nuclear power plants (as PWR - Pressurized Water Reactor). So, their metallurgical condition and mechanical properties, as the tensile strength and yield strength, normally are very restrict in demanding project and design requirements. Several full size tensile tests at room temperature and high temperature (315 deg C) were performed in these seamless tubes in cold-worked condition. The results of specified tensile and yield strengths were achieved but the elongation of the tube, in the geometry of the component, could not be measured at high temperature due to unconventional mode of rupture (helical mode without separation of parts). The average value of elongation was obtained from stress-strain curves of hot tensile tests and was around 5%. The results obtained in this research show that this behavior of the full size tensile test samples of thin-walled tube (wall thickness less than 0.5 mm) in high temperature (315°C) is due to the combination of the manufacturing process, the material (crystallographic structure and chemical composition) and the final geometry of the component. In other words, the strong crystallographic texture of material induced by tube drawing process in addition with the geometry of the component are responsible for the behavior in hot uniaxial tensile tests. (author)

  1. Design of welding parameters for laser welding of thin-walled stainless steel tubes using numerical simulation

    Science.gov (United States)

    Nagy, M.; Behúlová, M.

    2017-11-01

    Nowadays, the laser technology is used in a wide spectrum of applications, especially in engineering, electronics, medicine, automotive, aeronautic or military industries. In the field of mechanical engineering, the laser technology reaches the biggest increase in the automotive industry, mainly due to the introduction of automation utilizing 5-axial movements. Modelling and numerical simulation of laser welding processes has been exploited with many advantages for the investigation of physical principles and complex phenomena connected with this joining technology. The paper is focused on the application of numerical simulation to the design of welding parameters for the circumferential laser welding of thin-walled exhaust pipes from theAISI 304 steel for automotive industry. Using the developed and experimentally verified simulation model for laser welding of tubes, the influence of welding parameters including the laser velocity from 30 mm.s-1 to 60 mm.s-1 and the laser power from 500 W to 1200 W on the temperature fields and dimensions of fusion zone was investigated using the program code ANSYS. Based on obtained results, the welding schedule for the laser beam welding of thin-walled tubes from the AISI 304 steel was suggested.

  2. NUMERICAL ANALYSIS OF THE CRITICAL STATE OF THIN-WALLED STRUCTURE WITH Z-PROFILE CROSS SECTION

    Directory of Open Access Journals (Sweden)

    Patryk Różyło

    2017-03-01

    Full Text Available The object of the study was the thin-walled profile with Z-shaped cross section made of the carbon-epoxy composite. Material model was prepared based on the implemented orthotropic properties. The purpose of study was to determine the value of the critical load at which buckling occurs, the form of buckling and operating characteristics in critical condition. In order to achieve this numerical analysis were carried out. Additionally, the effects of the modification in arrangement of layers of the laminate to the stability and strength of thin-walled composite structures was presented. Numerical studies were carried out using commercial simulation software - ABAQUS®. Within the FEM research, both forms of buckling and the associated critical load, dependent on the configuration the layers of the composite were achieved. Analysis of the obtained results, allowed the evaluation of the structure's work in relation to the level of energy consumption or rigidity estimation. In the paper only numerical simulations of the critical state were conducted.

  3. Mathematical modeling of processes of devising fibrous composite materials and thin-walled structural elements by forced winding

    Science.gov (United States)

    Paimushin, V. N.; Sidorov, I. N.

    1990-05-01

    With the aid of the method of averaging processes in regular media, on the assumption that the temperature field in the semiproduct of PM is homogeneous at all stages of the production of thin-walled articles of CM, we suggested averaged equations of equilibrium, and also constructive algorithms for calculating the effective moduli and defining relations of the material of the semiproduct of CM. On the basis of these equations and the boundary conditions corresponding to them, we showed that it is possible to determine the RTS in a finished product of CM, and also to predict the change of its shape after removal from the mandrel and cutting it up into separate elements. To determine the above-mentioned technological characteristics of thin-walled elements made of fibrous CM, it is necessary to know the physicomechanical characteristics of the fibers and of the PM before and after polymerization; the volume fraction of the reinforcing filler and of the PM during winding, and also the orientation of the reinforcement; the relative change of volume of the PM after heat treatment and cooling; the prestresses in the fibers in the process of winding. It should be noted that the obtained averaged equations make it possible to calculate only the components of the averaged RTS in products of CM. To determine the local stresses in PM and fibers at all stages of making the product, it would be necessary to investigate in detail the rheology of PM at different temperatures.

  4. Prevalence and histopathological finding of thin-walled and thick-walled Sarcocysts in slaughtered cattle of Karaj abattoir, Iran.

    Science.gov (United States)

    Nourollahi-Fard, Saeid R; Kheirandish, Reza; Sattari, Saeid

    2015-06-01

    Sarcocystosis is a zoonotic disease caused by Sarcocystis spp. with obligatory two host life cycle generally alternating between an herbivorous intermediate host and a carnivorous definitive host. Some species of this coccidian parasite can cause considerable morbidity and mortality in cattle. The present study was set to investigate the prevalence of Sarcocystis spp. and type of cyst wall in slaughtered cattle of Karaj abattoir, Iran. For this purpose 125 cattle (88 males and 37 females) were investigated for the presence of macroscopic and microscopic Sarcocystis cysts in muscular tissues. No macroscopic Sarcocystis cysts were found in any of the samples. In light microscopy, 121 out of 125 cattle (96.8 %) had thin-walled cysts of Sarcocystis cruzi, while 43 out of them (34.4 %) had thick-walled Sarcocystis cyst. In this survey, the most infected tissue was esophagus and heart and the less was diaphragm. Thin-walled cysts (S. cruzi) mostly found in heart and skeletal muscle showed the less. However, thick-walled cyst (S. hominis or S. hirsuta) mostly were detected in diaphragm, heart muscle showed no thick-walled cyst. No significant relation was observed between age and sex and the rate of infection. The results showed that Sarcocystis cyst is prevalent in cattle in the North part of Iran and the evaluation of infection potential can be useful when considering control programs.

  5. Fabrication of thin-wall, freestanding inertial confinement fusion targets by chemical vapor deposition

    International Nuclear Information System (INIS)

    Carroll, D.W.; McCreary, W.J.

    1982-01-01

    To meet the requirements for plasma physics experiments in the inertial confinement fusion (ICF) program, chemical vapor deposition (CVD) in fluid beds was used to fabricate freestanding tungsten spheres and cylinders with wall thicknesses less than 5.0 μm. Molybdenum and molybdenum alloy (TZM) mandrels of the desired geometry were suspended in a carrier bed of dense microspheres contained in an induction-heated fluid-bed reactor. The mandrels were free to float randomly through the bed, and using the reaction WF 6 +3H 2 →/sub /KW +6HF, very fine-grained tungsten was deposited onto the surface at a rate and in a grain size determined by temperature, gas flow rate, system pressure, and duration of the reaction. After coating, a portion of each mandrel was exposed by hole drilling or grinding. The mandrel was then removed by acid leaching, leaving a freestanding tungsten shape. Experimental procedures, mandrel preparation, and results obtained are discussed

  6. An Experimental Investigation of the Nonlinear Response of Thin-Walled Ferromagnetic Shields to Short-Duration Current Pulses

    National Research Council Canada - National Science Library

    Croisant, W. J; McInerney, M. K; Feickert, C. A; Nielsen, P. H

    2004-01-01

    Intense electromagnetic (EM) fields can disrupt, disable, damage, or destroy sensitive electronic equipment that is needed to perform critical functions such as those related to command, control, communications, computer...

  7. Non-linear dynamic instability analysis of thin-walled stiffener beam subjected to uniform harmonic in-plane loading

    Science.gov (United States)

    Yadav, Amit; Panda, Sarat Kumar; Dey, Tanish

    2017-11-01

    Present analysis deals with nonlinear flexural-torsional vibration and dynamic instability of thin-walled stiffener beam with open section subjected to harmonic in-plane loading. The static and dynamic components of the applied harmonic in-plane loading are assumed to vary uniformly. A set of nonlinear partial differential equations (PDEs) describing the vibration of system is derived. Using Galerkin's method, these partial differential equations are reduced into coupled Mathieu equations. The steady state response of the system is determined by solving the condition for a non-trivial solution. The principal regions of parametric resonance are determined using the method suggested by Bolotin. The numerical results are presented to investigate the effect of aspect ratios, boundary conditions and static load factor on the frequency-amplitude responses and instability regions.

  8. Pre-deformation Analysis on Construction of Special-shaped Thin-walled Concrete Acoustic Wind Tunnel Structure

    Directory of Open Access Journals (Sweden)

    Li Boping

    2015-01-01

    Full Text Available Structural deformation of special-shaped thin-walled concrete acoustic wind tunnel under self-weight effect can not cater for requirements of high flatness and smoothness of moulding surface. Therefore pre-deformation analysis is carried out on construction of wind tunnel structure. Threshold is utilized to choose equivalent cross-section for the plane needing pre-deformation construction to do analysis. Analysis results show that design specifications of reinforced concrete is feasible for pre-deformation analysis on equivalent plane model under self-weight effect. Present construction on pre-camber wind tunnel according to deflection under self-weight effect also achieves the desired design requirements. Construction technology of arc-shaped erection template which controls mid-span pre-camber value keeps features of simple construction and high accuracy

  9. STUDY OF STATIC AND DYNAMIC STABILITY OF THIN-WALLED BARS EXCITED BY PERIODICAL AXIAL EXTERNAL FORCES.

    Directory of Open Access Journals (Sweden)

    Minodora Maria PASĂRE

    2010-10-01

    Full Text Available In these paper, starting from the relations for the displacements and spinning the transversal section of a bar with thin walls of sections opened expressed by the corresponding influence functions and introducing the components of the exterior forces distributed and the moments of the exterior forces distributed due to the inertia forces, the exciting axial forces together with the following effect of these and of the reaction forces of the elastic environment for leaning it may reach to the system of the equations of parametric vibrations under the form of three integral equation These equations may serve for the study of vibrations of the bars, to study the static stability and to study the dynamic stability

  10. Numerical simulation for mold-filling of thin-walled aluminum alloy castings in traveling magnetic field

    Directory of Open Access Journals (Sweden)

    Shiping WU

    2004-11-01

    Full Text Available The numeical simulation for mold-filling of thin-walled aluminum alloy castins in horizontal traveling magnetic field is performed. A force model of Al alloy melt in the traveling magnetic field is founded by analyzing traveling magnetic field carefully. Numerical model of Al alloy mold-filling is founded based on N-S equation, which was suitable for traveling magnetic field. By using acryl glass mold with indium as alloy melt, the experiment testiied the filling state of alloy in traveling magnetic field. The results of numerical simulation indicate that the mold-filling ability of gallium melt increases continually with the incease of the input ampere turns.

  11. THE STUDY OF THE SURFACE QUALITY OF THE THIN WALL BEARING UNITS TO ROLLS ROLLER SEATS PIPE CONVEYOR

    Directory of Open Access Journals (Sweden)

    Peter Michalik

    2017-06-01

    Full Text Available The article deals with the study of surface roughness of thin-walled houses bearing rollers for roller mills. Size and shape of the rear end housing was designed in order to measure the surface roughness of the inner cylindrical bearing surface with a wall thickness of 4, 5 and 6 mm. For comparison roughness was measured and a wall thickness of 26 mm. Welded housing and the base plate is clamped in the machine vice jaw of a width of 150 mm. Material components bearing small house has been fine-grain weldable steel bearing S355. Tool for finishing the hole with a diameter of 40 mm was used with a diameter of 32 mm with three cutting blades SDXT09M405R MM. Spindle speed was 1350 rev / min. Tool feed speed was 850 mm / min. The surface roughness was measured with a Mitutoyo SJ 400th.

  12. Stress in closed thin-walled tubes of single box subjected by shear forces and application to airfoils

    Directory of Open Access Journals (Sweden)

    Zebbiche Toufik

    2014-09-01

    Full Text Available The presented work is to develop a numerical computation program to determine the distribution of the shear stress to shear in closed tubes with asymmetric single thin wall section with a constant thickness and applications to airfoils and therefore determining the position and value of the maximum stress. In the literature, there are exact analytical solutions only for some sections of simple geometries such as circular section. Hence our interest is focused on the search of approximate numerical solutions for more complex sections used in aeronautics. In the second stage the position of the shear center is determined so that the section does not undergo torsion. The analytic function of the boundary of the airfoil is obtained by using the cubic spline interpolation since it is given in the form of tabulated points.

  13. Material and structural mechanical modelling and reliability of thin-walled bellows at cryogenic temperatures. Application to LHC compensation system

    CERN Document Server

    Garion, Cédric; Skoczen, Blazej

    The present thesis is dedicated to the behaviour of austenitic stainless steels at cryogenic temperatures. The plastic strain induced martensitic transformation and ductile damage are taken into account in an elastic-plastic material modelling. The kinetic law of →’ transformation and the evolution laws of kinematic/isotropic mixed hardening are established. Damage issue is analysed by different ways: mesoscopic isotropic or orthotropic model and a microscopic approach. The material parameters are measured from 316L fine gauge sheet at three levels of temperature: 293 K, 77 K and 4.2 K. The model is applied to thin-walled corrugated shell, used in the LHC interconnections. The influence of the material properties on the stability is studied by a modal analysis. The reliability of the components, defined by the Weibull distribution law, is analysed from fatigue tests. The impact on reliability of geometrical imperfections and thermo-mechanical loads is also analysed.

  14. Three-dimensional finite element analysis of molars with thin-walled prosthetic crowns made of various materials.

    Science.gov (United States)

    Dejak, Beata; Młotkowski, Andrzej; Langot, Cezary

    2012-04-01

    The aim of the study was to compare the strength of thin-walled molar crowns made of various materials under simulation of mastication. Five 3D FE models of the first lower molar with the use of contact elements were created: intact tooth; tooth with a zirconia crown; tooth with a porcelain crown; tooth with a gold alloy crown and tooth with a composite crown. The computer simulations of mastication were conducted. For the models, equivalent stresseswere calculated using the modified von Mises failure criterion (mvM). Contact stresses at the adhesive interface between the cement and tooth structure under the crowns were analyzed. Equivalent stresses in the crowns, did not exceed the tensile strength of their material. The mvM stresses in resin cement under the zirconia crown were 1.3 MPa, and under the composite crown they increased over 6 times. The tensile and shear contact stressesunder the stiff crowns (ceramics and gold alloy), were several times lower than those under the composite one. The maximum mvM stresses in the tooth structure for the zirconia crown were only 2.8 MPa, whereas for the composite crown were 6.4 MPa. The higher elastic modulus the crown was, the lower the equivalent stresses occurred in the composite luting cement and in the tooth structures. Also contact stresses decreased with the increasing stiffness of the crowns. Under physiological loads, the thin-walled crowns perfectly luted to molars, made of zirconia ceramic, gold alloys and composite resin are resistant to failure. Prosthetic crowns made of stiff materials are less prone to debonding than those made of composite resin. Prosthetic crowns made of a material with a higher elastic modulus than enamel will strengthen the dental structures of molar teeth. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Ball tonometry: a rapid, nondestructive method for measuring cell turgor pressure in thin-walled plant cells

    Science.gov (United States)

    Lintilhac, P. M.; Wei, C.; Tanguay, J. J.; Outwater, J. O.

    2000-01-01

    In this article we describe a new method for the determination of turgor pressures in living plant cells. Based on the treatment of growing plant cells as thin-walled pressure vessels, we find that pressures can be accurately determined by observing and measuring the area of the contact patch formed when a spherical glass probe is lowered onto the cell surface with a known force. Within the limits we have described, we can show that the load (determined by precalibration of the device) divided by the projected area of the contact patch (determined by video microscopy) provides a direct, rapid, and accurate measure of the internal turgor pressure of the cell. We demonstrate, by parallel measurements with the pressure probe, that our method yields pressure data that are consistent with those from the pressure probe. Also, by incubating target tissues in stepped concentrations of mannitol to incrementally reduce the turgor pressure, we show that the pressures measured by tonometry accurately reflect the predicted changes from the osmotic potential of the bathing medium. The advantages of this new method over the pressure probe are considerable, however, in that we can move rapidly from cell to cell, taking measurements every 20 s. In addition, the nondestructive nature of the method means that we can return to the same cell repeatedly for periodic pressure measurements. The limitations of the method lie in the fact that it is suitable only for superficial cells that are directly accessible to the probe and to cells that are relatively thin walled and not heavily decorated with surface features. It is also not suitable for measuring pressures in flaccid cells.

  16. EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE COMPRESSION OF A THIN-WALLED COMPOSITE PLATE

    Directory of Open Access Journals (Sweden)

    Katarzyna Falkowicz

    2016-09-01

    Full Text Available The subject of research is a rectangular plate with a cut-out subjected to regular compression. The plate articulately supported on the short side edges, made of a composite with high strength properties. The study concerned the numerical finite element analysis linear and nonlinear stability of the structure and the experimental validation of the results. The instrument used was a numerical program ABAQUS®.

  17. Analysis of Cavity Pressure and Warpage of Polyoxymethylene Thin Walled Injection Molded Parts: Experiments and Simulations

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Tosello, Guido; Hattel, Jesper Henri

    2014-01-01

    Process analysis and simulations on molding experiments of 3D thin shell parts have been conducted. Moldings were carried out with polyoxymethylene (POM). The moldings were performed with cavity pressure sensors in order to compare experimental process results with simulations. The warpage...... was characterized by measuring distances using a tactile coordinate measuring machine (CMM). Molding simulations have been executed taking into account actual processing conditions. Various aspects have been considered in the simulation: machine barrel geometry, injection speed profiles, cavity injection pressure...... of conclusions concerning improvements to simulation accuracy are presented regarding: pvT data, mesh, short shots, cavity pressure for process control validation as well as molding machine geometry modelling. Eventually, a methodology for improved molding simulations of cavity injection pressure, filling...

  18. Fabrication of Aluminum Foam-Filled Thin-Wall Steel Tube by Friction Welding and Its Compression Properties

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2014-09-01

    Full Text Available Aluminum foam has received considerable attention in various fields and is expected to be used as an engineering material owing to its high energy absorption properties and light weight. To improve the mechanical properties of aluminum foam, combining it with dense tubes, such as aluminum foam-filled tubes, was considered necessary. In this study, an aluminum foam-filled steel tube, which consisted of ADC12 aluminum foam and a thin-wall steel tube, was successfully fabricated by friction welding. It was shown that a diffusion bonding layer with a thickness of approximately 10 μm was formed, indicating that strong bonding between the aluminum foam and the steel tube was realized. By the X-ray computed tomography observation of pore structures, the fabrication of an aluminum foam-filled tube with almost uniform pore structures over the entire specimen was confirmed. In addition, it was confirmed that the aluminum foam-filled steel tube exhibited mechanical properties superior to those of the ADC12 aluminum foam and steel tube. This is considered to be attributed to the combination of the aluminum foam and steel tube, which particularly prevents the brittle fracture and collapse of the ADC12 foam by the steel tube, along with the strong metal bonding between the aluminum foam and the steel tube.

  19. Analysis of the ballooning deformation of an internally pressurized thin-wall tube during fast thermal transients

    International Nuclear Information System (INIS)

    Lin, E.I.H.

    1977-01-01

    A large-strain time-dependent thermoplastic analysis has been developed for the ballooning deformation of a thin-wall tube subjected to internal pressure, axial loading, and fast thermal transients. This deformation initiates with the onset of plastic instability in the material, the onset being determined by a plastic-instability criterion for strain-rate sensitive materials. The interaction among the local ballooning geometry, the state of stress, and the plastic flow process was considered, and integration of the flow equations yields the local curvature and the states of stress and strain in the vicinity of the maximum ballooning site. The effects of axial constraint and heating rate were also discussed. The analysis was applied to a LWR Zircaloy cladding subjected to a constant heating rate and a range of internal pressures. The results agree very well with experimental strain-time data obtained from tube-burst tests. In most cases, the time of rupture was accurately predicted despite the lack of complete material-property data

  20. Structures tubulaires minces en matériaux composites. Principes de calcul Thin-Walled Composite Tubular Structures. Calculation Method

    Directory of Open Access Journals (Sweden)

    Odru P.

    2006-11-01

    Full Text Available Cet article présente une méthode de calcul des structures composites fibres-résine appliquée aux cas des tubes minces. Outre l'établissement des relations contraintes - déformations généralisées des tubes à partir des caractéristiques des matériaux de base et de leur orientation, on pose les relations permettant de calculer leur comportement et leur dimensionnement sous des charges axisymétriques combinées de traction, pression et flexion. Une méthode simplifiée applicable au cas des composites microfissurés est aussi présentée. On montre ensuite, à travers quelques exemples concrets d'applications, les propriétés intéressantes ou inhabituelles que le matériau permet de conférer aux structures. This article presents a method of calculation of composite structures applied to thin-walled tubes. Starting from the characteristics and orientation of the basic materials, the generalized stress-strain equations of the tubes are determined ; then the relationship allowing the calculation of their design and behavior under combined axisymmetrical loads of tension, pressure and bending are established. A simplified method applicable to microcracked composite materials is also described. Several complete examples of applications illustrate the interesting or unusual properties that this material can impart to structures

  1. Ultimate Load Capacity and Behavior of Thin-Walled Curved-Steel Square Struts, Subjected to Compressive Load

    Directory of Open Access Journals (Sweden)

    S.Mohammad Reza Mortazavi

    2016-06-01

    Full Text Available There have been some experimental tests on hollow curved-steel struts with thin-walled square sections, in order to investigate their general behavior, particularly their capacity for bearing differing loads. One set of square tubes are cold-formed into segments of circular arcs with curvature radii, equal to 4000 mm. Different lengths of curved struts are fabricated so as to cover a practical range of slenderness ratios. The struts tests were pin-ended and had slenderness ratios, based on the straight length between ends ranging from 31-126. The cold-forming operation induces initial inelastic behavior and associated residual stresses. There is, therefore, an interaction among material effects, such as the strain hardening capacity, the Bauschinger effect, strain aging, and residual stresses, together with the significant geometrical effect of the initial curvature, caused by the cold-forming operation. Eventually the results from three series of tests, which are taken on fully-aged and stress-relief-annealed square curved struts, are compared. The variations in load carrying response are discussed.

  2. Development of an extremely thin-wall straw tracker operational in vacuum – The COMET straw tracker system

    International Nuclear Information System (INIS)

    Nishiguchi, H.; Evtoukhovitch, P.; Fujii, Y.; Hamada, E.; Mihara, S.; Moiseenko, A.; Noguchi, K.; Oishi, K.; Tanaka, S.; Tojo, J.; Tsamalaidze, Z.; Tsverava, N.; Ueno, K.; Volkov, A.

    2017-01-01

    The COMET experiment at J-PARC aims to search for a lepton-flavour violating process of muon to electron conversion in a muonic atom, μ-e conversion, with a branching-ratio sensitivity of better than 10 −16 , 4 orders of magnitude better than the present limit, in order to explore the parameter region predicted by most of well-motivated theoretical models beyond the Standard Model. The need for this sensitivity places several stringent requirements on the detector development. The experiment requires to detect the monochromatic electron of 105 MeV, the momentum resolution is primarily limited by the multiple scattering effect for this momentum region. Thus we need the very light material detector in order to achieve an excellent momentum resolution, better than 2%, for 100 MeV region. In order to fulfil such a requirement, the thin-wall straw-tube planar tracker has been developed by an extremely light material which is operational in vacuum. The COMET straw tracker consists of 9.8 mm diameter straw tube, longer than 1 m length, with 20-μm-thick Mylar foil and 70-nm-thick aluminium deposition. Currently even thinner and smaller, 12 μm thick and 5 mm diameter, straw is under development by the ultrasonic welding technique.

  3. Optimization and improvement of stable processing condition by attaching additional masses for milling of thin-walled workpiece

    Science.gov (United States)

    Wan, Min; Dang, Xue-Bin; Zhang, Wei-Hong; Yang, Yun

    2018-03-01

    Light weight is the main design requirement for minimizing costs or fuel consumption in mechanical equipments, and it, together with the material removal rate (MRR) requirement, also brings an important source of chatter, which still remains as an essential phenomenon to be suppressed in the future. This paper investigates the stable cutting region optimization problems in milling of structures with low rigidity. An effective method is proposed to improve the chatter stability by attaching appropriate additional masses to the workpiece, and thorough studies are also carried out to reveal the effect of additional masses on chatter stability. An efficient method based on structural dynamic modification scheme is developed to calculate the varying dynamics of the in-process workpiece under the combined effect of additional masses and material removal during milling process. Typical characteristic of this method lies in that only one modal analysis is needed to be performed on the finite element (FE) model of the initial workpiece, and the mode shape and natural frequency of the workpiece after attaching additional masses and removing material at each tool position can be calculated without the requirement to rebuild the FE model of the in-process workpiece. Based on the proposed dynamic modification scheme, an optimization algorithm is established to obtain the optimized combination of additional masses and the suitable stable cutting region for the achievement of maximum MRR. The proposed method is verified by milling process of a set of thin-walled workpieces, and comparisons of predictions and measurements show the validity and reliability.

  4. Fabrication of Aluminum Foam-Filled Thin-Wall Steel Tube by Friction Welding and Its Compression Properties.

    Science.gov (United States)

    Hangai, Yoshihiko; Saito, Masaki; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2014-09-19

    Aluminum foam has received considerable attention in various fields and is expected to be used as an engineering material owing to its high energy absorption properties and light weight. To improve the mechanical properties of aluminum foam, combining it with dense tubes, such as aluminum foam-filled tubes, was considered necessary. In this study, an aluminum foam-filled steel tube, which consisted of ADC12 aluminum foam and a thin-wall steel tube, was successfully fabricated by friction welding. It was shown that a diffusion bonding layer with a thickness of approximately 10 μm was formed, indicating that strong bonding between the aluminum foam and the steel tube was realized. By the X-ray computed tomography observation of pore structures, the fabrication of an aluminum foam-filled tube with almost uniform pore structures over the entire specimen was confirmed. In addition, it was confirmed that the aluminum foam-filled steel tube exhibited mechanical properties superior to those of the ADC12 aluminum foam and steel tube. This is considered to be attributed to the combination of the aluminum foam and steel tube, which particularly prevents the brittle fracture and collapse of the ADC12 foam by the steel tube, along with the strong metal bonding between the aluminum foam and the steel tube.

  5. An analytical model for shape memory alloy fiber-reinforced composite thin-walled beam undergoing large deflection

    Directory of Open Access Journals (Sweden)

    Yongsheng Ren

    2015-03-01

    Full Text Available The structural model of the thin-walled laminated beams with integral shape memory alloy active fibers and accounting for geometrically nonlinear is presented in this article. The structural modeling is split into two parts: a two-dimensional analysis over the cross section and a geometrically nonlinear analysis of a beam along the beam span. The variational asymptotic method is used to formulate the force–deformation relationship equations taking into account the presence of active shape memory alloy fibers distributed along the cross section of the beam. The geometrically nonlinear governing equations are derived using variational principle and based on the von Kármán-type nonlinear strain–displacement relations. The equations are then solved using Galerkin’s method and an incremental Newton–Raphson method. The validation for the proposed model has been carried out by comparison of the present results with those available in the literature. The results show that significant extension, bending, and twisting coupled nonlinear deflections occur during the phase transformation due to shape memory alloy actuation. The effects of the volume fraction of the shape memory alloy fiber and ply angle are also addressed.

  6. Evaluation of nano ceramic coating on radiographic defects of thin-walled AL4-4 aluminum alloy sand casting

    Directory of Open Access Journals (Sweden)

    Mansour Borouni

    2016-10-01

    Full Text Available Internal defects are among the problems in gravity casting of aluminum parts. The main internal volumetric defects are gas and shrinkage defects which form during solidification of the melt and drastically reduce the quality of the produced parts. These defects adversely affect the mechanical properties of thin walled castings parts. In this study, ceramic nanoparticles coatings were applied on the sand mold and the effect of mold coatings on the reduction of defects were investigated. X-ray radiography was used to detect defects in sand molds with ceramic nanoparticles coatings. For comparison, this test was performed on molds with micro-ceramic and graffiti coatings and uncoated sand mold. The results showed that the maximum amount of gas and shrinkage defects was observed in casting parts from AL4-1 alloy in uncoated molds. On the other hand, the minimum defects were found in molds coated with ceramic nanoparticles. It seems that the reduced defects in casting parts in molds coated with ceramic nanoparticles may be due to high thermal and chemical stability and higher heat transfer rate of the coating. These results can facilitate the production of high quality aluminum alloys parts using nanotechnology.

  7. Fibers and cylinders of cryptomelane-hollandite in Permian bedded salt, Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    Belkin, H.E.; Libelo, E.L.

    1987-01-01

    Fibers and thin-walled, hollow cylinders of cryptomelane-hollandite have been found in both the chevron and the clear salt from various drill cores in Permian bedded salt from the Palo Duro Basin, Texas. The authors have found fibers or cylinders from only the lower San Andres Formation units 4 and 5, the upper San Andres Formation, and the Salado-Transill salt. The fibers are inorganic, light to dark reddish brown, pleochroic, highly birefringent, filamentary single crystals, < 1 to ∼ 5 μm in diameter, with length-to-diameter ratios of at least 20:1. The fibers can be straight and/or curved, can bifurcate, can form loops, waves or spirals, and can be isolated or in parallel groups. Detailed petrographic analyses show no evidence for recrystallization or deformation of the enclosing salt after fiber formation. Although the authors observations do not provide a definitive explanation for fiber origin, they suggest that the fibers grew in situ by a solid-state diffusional process at low temperatures. The cylinders are pleochroic, highly birefringent, light to dark reddish brown, hollow, thin-walled, open-ended right cylinders, having a 1- to 2-μm wall thickness and variable lengths and diameters. There also appear to be single crystals of cryptomelane-hollandite, but these are found almost entirely in fluid inclusions in the chevron and clear salt. Their presence in the primary halite suggests that they were formed contemporaneously with the chevron structure and were accidentally trapped in the fluid inclusions. The observation of cylinders partially or completely enclosed by salt stratigraphically above large fluid inclusions suggests that natural downward fluid-inclusion migration has occurred, in response to the geothermal gradient

  8. An Applied Method for Predicting the Load-Carrying Capacity in Compression of Thin-Wall Composite Structures with Impact Damage

    Science.gov (United States)

    Mitrofanov, O.; Pavelko, I.; Varickis, S.; Vagele, A.

    2018-03-01

    The necessity for considering both strength criteria and postbuckling effects in calculating the load-carrying capacity in compression of thin-wall composite structures with impact damage is substantiated. An original applied method ensuring solution of these problems with an accuracy sufficient for practical design tasks is developed. The main advantage of the method is its applicability in terms of computing resources and the set of initial data required. The results of application of the method to solution of the problem of compression of fragments of thin-wall honeycomb panel damaged by impacts of various energies are presented. After a comparison of calculation results with experimental data, a working algorithm for calculating the reduction in the load-carrying capacity of a composite object with impact damage is adopted.

  9. Effect of Internal Pressure on Parametric Vibrations and Dynamic Stability of Thin-Walled Ground Pipeline Larger Diameter Connect with Elastic Foundation

    Directory of Open Access Journals (Sweden)

    Sokolov Vladimir

    2016-01-01

    Full Text Available The article describes the research methodology of parametric vibrations and dynamic stability of ground thin-walled large-diameter pipeline. The equation of motion of the middle surface of the cylindrical shell element based on elastic resistance of ground. To determine the frequency of free oscillations using the assumptions of the semimomental theory of cylindrical shells and get a complete system of equations for the case of an articulated fixing of the cylindrical shell. Solving the resulting system in analytical form the expression for determining the square of the frequency of free oscillations of a thin-walled ground gas pipeline of large diameter. The methodology of the study of the dynamic stability of a gas pipeline under unsteady effects of internal operating pressure, and the parameter of the longitudinal compressive force, using Mathieu equations. With the help of the Bogolyubov-Mitropolsky techniques built area of dynamic instability in the form of Ince-Strutt diagram for different values of the internal pressure of the pipeline section, the parameter of the longitudinal compressive force, and parameter of thin-walled h / R.

  10. A comparison RSM and ANN surface roughness models in thin-wall machining of Ti6Al4V using vegetable oils under MQL-condition

    Science.gov (United States)

    Mohruni, Amrifan Saladin; Yanis, Muhammad; Sharif, Safian; Yani, Irsyadi; Yuliwati, Erna; Ismail, Ahmad Fauzi; Shayfull, Zamree

    2017-09-01

    Thin-wall components as usually applied in the structural parts of aeronautical industry require significant challenges in machining. Unacceptable surface roughness can occur during machining of thin-wall. Titanium product such Ti6Al4V is mostly applied to get the appropriate surface texture in thin wall designed requirements. In this study, the comparison of the accuracy between Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) in the prediction of surface roughness was conducted. Furthermore, the machining tests were carried out under Minimum Quantity Lubrication (MQL) using AlCrN-coated carbide tools. The use of Coconut oil as cutting fluids was also chosen in order to evaluate its performance when involved in end milling. This selection of cutting fluids is based on the better performance of oxidative stability than that of other vegetable based cutting fluids. The cutting speed, feed rate, radial and axial depth of cut were used as independent variables, while surface roughness is evaluated as the dependent variable or output. The results showed that the feed rate is the most significant factors in increasing the surface roughness value followed by the radial depth of cut and lastly the axial depth of cut. In contrary, the surface becomes smoother with increasing the cutting speed. From a comparison of both methods, the ANN model delivered a better accuracy than the RSM model.

  11. Guided waves in pre-stressed hyperelastic plates and tubes: Application to the ultrasound elastography of thin-walled soft materials

    Science.gov (United States)

    Li, Guo-Yang; He, Qiong; Mangan, Robert; Xu, Guoqiang; Mo, Chi; Luo, Jianwen; Destrade, Michel; Cao, Yanping

    2017-05-01

    In vivo measurement of the mechanical properties of thin-walled soft tissues (e.g., mitral valve, artery and bladder) and in situ mechanical characterization of thin-walled artificial soft biomaterials in service are of great challenge and difficult to address via commonly used testing methods. Here we investigate the properties of guided waves generated by focused acoustic radiation force in immersed pre-stressed plates and tubes, and show that they can address this challenge. To this end, we carry out both (i) a theoretical analysis based on incremental wave motion in finite deformation theory and (ii) finite element simulations. Our analysis leads to a novel method based on the ultrasound elastography to image the elastic properties of pre-stressed thin-walled soft tissues and artificial soft materials in a non-destructive and non-invasive manner. To validate the theoretical and numerical solutions and demonstrate the usefulness of the corresponding method in practical measurements, we perform (iii) experiments on polyvinyl alcohol cryogel phantoms immersed in water, using the Verasonics V1 System equipped with a L10-5 transducer. Finally, potential clinical applications of the method have been discussed.

  12. MODELING OF KINEMATICS OF A PLASTIC SHAPING AT CALIBRATION OF A THIN-WALLED PRECISION PIPE SINKING

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2014-01-01

    Full Text Available Summary. The mathematical model of kinematics of a plastic shaping at the sinking of a thin-walled precision pipe applied to calibration of the ends of the unified elements of the pipeline of aircraft from titanic alloys and corrosion-resistant steel before assembly to the route by means of automatic argon-arc welding of ring joints is developed. For modeling, the power criterion of stability with use of kinematic possible fields of speeds is applied to receiving the top assessment of effort of deformation. The developed model of kinematics of a plastic current allows to receive power parameters of the main condition of process of calibration by sinking and can be used for the solution of a task on stability of process of deformation by results of comparison of power (power parameters for the main (steady and indignant states. Modeling is made in cylindrical system of coordinates by comparison of options of kinematic possible fields of the speeds of a current meeting a condition of incompressibility and kinematic regional conditions. The result of the modeling was selected discontinuous field of high-speed, in which the decrease outer radius (R occurs only by increasing the thickness of the pipe wall (t. For this option the size of pressure of sinking had the smallest value, therefore the chosen field of speeds closely to the valid. It is established that with increase in a step of giving 1 at calibration by the multisector tool the demanded pressure of sinking of q decreases. At an identical step of giving 1 pipe with the smaller relative thickness of (t/r needs to be calibrated the smaller pressure of sinking. With increase of a limit of fluidity at shift of material of pipe preparation pressure of sinking of (q increases.

  13. Engine Cylinder Temperature Control

    Science.gov (United States)

    Kilkenny, Jonathan Patrick; Duffy, Kevin Patrick

    2005-09-27

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  14. Cylinder monitoring program

    Energy Technology Data Exchange (ETDEWEB)

    Alderson, J.H. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    Cylinders containing depleted uranium hexafluoride (UF{sub 6}) in storage at the Department of Energy (DOE) gaseous diffusion plants, managed by Martin Marietta Energy Systems, Inc., are being evaluated to determine their expected storage life. Cylinders evaluated recently have been in storage service for 30 to 40 years. In the present environment, the remaining life for these storage cylinders is estimated to be 30 years or greater. The group of cylinders involved in recent tests will continue to be monitored on a periodic basis, and other storage cylinders will be observed as on a statistical sample population. The program has been extended to all types of large capacity UF{sub 6} cylinders.

  15. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    On the basis of the results obtained by Silver and Saunders [4] for the field radiated from an arbitrary slot in a perfectly conducting circular cylinder, expressions have been derived for the field radiated by a narrow helical slot, with an arbitrary aperture field distribution, in a circular...... antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...

  16. Delamination of Composite Cylinders

    Science.gov (United States)

    Davies, Peter; Carlsson, Leif A.

    The delamination resistance of filament wound glass/epoxy cylinders has been characterized for a range of winding angles and fracture mode ratios using beam fracture specimens. The results reveal that the delamination fracture resistance increases with increasing winding angle and mode II (shear) fraction (GΠ/G). It was also found that interlaced fiber bundles in the filament wound cylinder wall acted as effective crack arresters in mode I loading. To examine the sensitivity of delamina-tion damage on the strength of the cylinders, external pressure tests were performed on filament-wound glass/epoxy composite cylinders with artificial defects and impact damage. The results revealed that the cylinder strength was insensitive to the presence of single delaminations but impact damage caused reductions in failure pressure. The insensitivity of the failure pressure to a single delamination is attributed to the absence of buckling of the delaminated sublaminates before the cylinder wall collapsed. The impacted cylinders contained multiple delaminations, which caused local reduction in the compressive load capability and reduction in failure pressure. The response of glass/epoxy cylinders was compared to impacted carbon reinforced cylinders. Carbon/epoxy is more sensitive to damage but retains higher implosion resistance while carbon/PEEK shows the opposite trend.

  17. Short (

    NARCIS (Netherlands)

    Telleman, Gerdien; den Hartog, Laurens

    2013-01-01

    Aim: This systematic review assessed the implant survival rate of short (<10 mm) dental implants installed in partially edentulous patients. A case report of a short implant in the posterior region have been added. Materials and methods: A search was conducted in the electronic databases of MEDLINE

  18. Torsional Post-Buckling of a Simply Supported Thin-Walled Open-Section Beam Resting on a Two-Parameter Foundation

    Science.gov (United States)

    Rao, Ch. K.; Rao, L. B.

    2018-01-01

    The problem of the post-buckling response of a simply supported thin-walled beam subjected to an axial compressive load and supported by the Winkler-Pasternak foundation is studied in this paper. The strains are assumed to be small and elastic. The shear deformations and the in-plane cross-sectional deformations are assumed to be negligible. The post-buckling paths of the simply supported beam are determined for different values of the Winkler and Pasternak stiffness parameters. Bifurcation points are found.

  19. Fiber Tracking Cylinder Nesting

    International Nuclear Information System (INIS)

    Stredde, H.

    1999-01-01

    The fiber tracker consists of 8 concentric carbon fiber cylinders of varying diameters, from 399mm to 1032.2mm and two different lengths. 1.66 and 2.52 meters. Each completed cylinder is covered over the entire o.d. with scintillating fiber ribbons with a connector on each ribbon. These ribbons are axial (parallel to the beam line) at one end and stereo (at 3 deg. to the beam line) at the other. The ribbon connectors have dowel pins which are used to match with the connectors on the wave guide ribbons. These dowel pins are also used during the nesting operation, locating and positioning measurements. The nesting operation is the insertion of one cylinder into another, aligning them with one another and fastening them together into a homogeneous assembly. For ease of assembly. the nesting operation is accomplished working from largest diameter to smallest. Although the completed assembly of all 8 cylinders glued and bolted together is very stiff. individual cylinders are relatively flexible. Therefore. during this operation, No.8 must be supported in a manner which maintains its integrity and yet allows the insertion of No.7. This is accomplished by essentially building a set of dummy end plates which replicate a No.9 cylinder. These end plates are mounted on a wheeled cart that becomes the nesting cart. Provisions for a protective cover fastened to these rings has been made and will be incorporated in finished product. These covers can be easily removed for access to No.8 and/or the connection of No.8 to No.9. Another wheeled cart, transfer cart, is used to push a completed cylinder into the cylinder(s) already mounted in the nesting cart.

  20. Tandem Cylinder Noise Predictions

    Science.gov (United States)

    Lockard, David P.; Khorrami, Mehdi R.; CHoudhari, Meelan M.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.

    2007-01-01

    In an effort to better understand landing-gear noise sources, we have been examining a simplified configuration that still maintains some of the salient features of landing-gear flow fields. In particular, tandem cylinders have been studied because they model a variety of component level interactions. The present effort is directed at the case of two identical cylinders spatially separated in the streamwise direction by 3.7 diameters. Experimental measurements from the Basic Aerodynamic Research Tunnel (BART) and Quiet Flow Facility (QFF) at NASA Langley Research Center (LaRC) have provided steady surface pressures, detailed off-surface measurements of the flow field using Particle Image Velocimetry (PIV), hot-wire measurements in the wake of the rear cylinder, unsteady surface pressure data, and the radiated noise. The experiments were conducted at a Reynolds number of 166 105 based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent shedding process and simulate the effects of a high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The current calculations further explore the influence of the grid resolution and spanwise extent on the flow and associated radiated noise. Extensive comparisons with the experimental data are used to assess the ability of the computations to simulate the details of the flow. The results show that the pressure fluctuations on the upstream cylinder, caused by vortex shedding, are smaller than those generated on the downstream cylinder by wake interaction. Consequently, the downstream cylinder dominates the noise radiation, producing an overall directivity pattern that is similar to that of an isolated cylinder. Only calculations based on the full length of the model span were able to

  1. Insulin pen needles: effects of extra-thin wall needle technology on preference, confidence, and other patient ratings.

    Science.gov (United States)

    Aronson, Ronnie; Gibney, Michael A; Oza, Kunjal; Bérubé, Julie; Kassler-Taub, Kenneth; Hirsch, Laurence

    2013-07-01

    Pen needles (PNs) are essential for insulin injections using pen devices. PN characteristics affect patients' injection experience. The goal of this study was to evaluate the impact of a new extra-thin wall (XTW) PN versus usual PNs on overall patient preference, ease of injection, perceived time to complete the full dose, thumb button force to deliver the injection, and dose delivery confidence in individuals with diabetes mellitus (DM). Subjects injected insulin with the KwikPen(TM) (Eli Lilly and Company, Indianapolis, Indiana), SoloSTAR(®) (sanofi-aventis U.S. LLC, Bridgewater, New Jersey), and FlexPen(®) (Novo Nordisk A/S, Bagsvaerd, Denmark) insulin pens, and included some with impaired hand dexterity. We first performed quantitative testing of XTW and comparable PNs with the 3 insulin pens for thumb force, flow rate, and time to deliver medication. A prospective, randomized, 2-period, open-label, crossover trial was then conducted in patients aged 35 to 80 years with type 1 or type 2 DM who injected insulin by pen for ≥2 months, with at least 1 daily dose ≥10 U. Patients who used 4- to 8-mm length PNs with 31- to 32-G diameter were randomly assigned to use their current PN or the same/similar size XTW PN at home for ~1 week and the other PN the second week. They completed several comparative 150-mm visual analog scales and direct questions at the end of period 2. XTW PNs had statistically significant better performance for each studied PN characteristic (thumb force, flow, and time to deliver medication) for all pens combined and each individual pen brand (all, P ≤ 0.05). Of 216 patients randomized to study groups (80, SoloSTAR; 77, FlexPen; 59, KwikPen), 209 completed both periods; 198 were evaluable. Baseline characteristics revealed a mean (SD) age of 60.8 (9.3) years, insulin pen use duration of 4.3 (4.1) years, and mean total daily dose of 75.1 (52.3) U (range, 10-420 U). Approximately 50% of patients were female; 81.5% were white and 14.8% were

  2. Gas Cylinder Safety, Course 9518

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-27

    This course, Gas Cylinder Safety (#9518), presents an overview of the hazards and controls associated with handling, storing, using, and transporting gas cylinders. Standard components and markings of gas cylinders are also presented, as well as the process for the procurement, delivery, and return of gas cylinders at Los Alamos National Laboratory (LANL).

  3. The reliability of finite element analysis results of the low impact test in predicting the energy absorption performance of thin-walled structures

    Energy Technology Data Exchange (ETDEWEB)

    Alipour, R.; Nejadx, Farokhi A.; Izman, S. [Universiti Teknologi Malaysia, Johor Bahru (Malaysia)

    2015-05-15

    The application of dual phase steels (DPS) such as DP600 in the form of thin-walled structure in automotive components is being continuously increased as vehicle designers utilize modern steel grades and low weight structures to improve structural performance, make automotive light and reinforce crash performance. Preventing cost enhancement of broad investigations in this area can be gained by using computers in structural analysis in order to substitute lots of experiments with finite element analysis (FEA). Nevertheless, it necessitates to be certified that selected method including element type and solution methodology is capable of predicting real condition. In this paper, numerical and experimental studies are done to specify the effect of element type selection and solution methodology on the results of finite element analysis in order to investigate the energy absorption behavior of a DP600 thin-walled structure with three different geometries under a low impact loading. The outcomes indicated the combination of implicit method and solid elements is in better agreement with the experiments. In addition, using a combination of shell element types with implicit method reduces the time of simulation remarkably, although the error of results compared to the experiments increased to some extent.

  4. Isotropic damage model and serial/parallel mix theory applied to nonlinear analysis of ferrocement thin walls. Experimental and numerical analysis

    Directory of Open Access Journals (Sweden)

    Jairo A. Paredes

    2016-01-01

    Full Text Available Ferrocement thin walls are the structural elements that comprise the earthquake resistant system of dwellings built with this material. This article presents the results drawn from an experimental campaign carried out over full-scale precast ferrocement thin walls that were assessed under lateral static loading conditions. The tests allowed the identification of structural parameters and the evaluation of the performance of the walls under static loading conditions. Additionally, an isotropic damage model for modelling the mortar was applied, as well as the classic elasto-plastic theory for modelling the meshes and reinforcing bars. The ferrocement is considered as a composite material, thus the serial/parallel mix theory is used for modelling its mechanical behavior. In this work a methodology for the numerical analysis that allows modeling the nonlinear behavior exhibited by ferrocement walls under static loading conditions, as well as their potential use in earthquake resistant design, is proposed.

  5. Simple Formulas and Results for Buckling-Resistance and Stiffness Design of Compression-Loaded Laminated-Composite Cylinders

    Science.gov (United States)

    Nemeth, Michael P.; Mikulas, Martin M., Jr.

    2009-01-01

    Simple formulas for the buckling stress of homogeneous, specially orthotropic, laminated-composite cylinders are presented. The formulas are obtained by using nondimensional parameters and equations that facilitate general validation, and are validated against the exact solution for a wide range of cylinder geometries and laminate constructions. Results are presented that establish the ranges of the nondimensional parameters and coefficients used. General results, given in terms of the nondimensional parameters, are presented that encompass a wide range of geometries and laminate constructions. These general results also illustrate a wide spectrum of behavioral trends. Design-oriented results are also presented that provide a simple, clear indication of laminate composition on critical stress, critical strain, and axial stiffness. An example is provided to demonstrate the application of these results to thin-walled column designs.

  6. Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration

    International Nuclear Information System (INIS)

    Cui, Xintao; Zhang, Hongwei; Wang, Shuxin; Zhang, Lianhong; Ko, Jeonghan

    2011-01-01

    Currently, automotive bodies are constructed usually using a single material, e.g. steel or aluminum. Compared to single-material automotive bodies, multi-material automotive bodies allow optimal material selection in each structural component for higher product performance and lower cost. This paper presents novel material performance indices and procedures developed to guide systematic material selection for multi-material automotive bodies. These new indices enable to characterize the crashworthiness performance of complex-shaped thin-walled beams in multi-material automotive bodies according to material types. This paper also illustrates the application of these performance indices and procedures by designing a lightweight multi-material automotive body. These procedures will help to design a lightweight and affordable body favored by the automotive industry, thus to reduce fuel consumption and greenhouse gas emissions.

  7. Full-scale experimental and numerical study about structural behaviour of a thin-walled cold-formed steel building affected by ground settlements due to land subsidence

    Directory of Open Access Journals (Sweden)

    J. A. Ortiz

    2015-11-01

    Full Text Available Land subsidence due to ground water withdrawal is a problem in many places around the world (Poland, 1984. This causes differential ground settlements that affect masonry structures, because these structural materials do not exhibit an adequate performance beyond a certain level of angular distortion. This work presents the experimental and numerical results about a study regarding the performance of a full-scale thin-walled cold-formed steel building affected by ground differential settlements due to land subsidence. The experimental stage consisted in the construction of a test-building to be subjected to differential settlements in laboratory. The numerical stage consisted in performing a numerical non-linear static pull-down analysis simulating the differential ground settlements of the test-building. The results show that the structural performance of the tested building was very suitable in terms of ductility.

  8. The Control of Solidification Kinetics of the Vacuum-cast Thin-wall Nickel-based Superalloys by Changing the Geometrical Characteristics of the Ceramic Mold

    Directory of Open Access Journals (Sweden)

    Cygan R.

    2013-12-01

    Full Text Available This paper provides an analysis of experimental research and results of investment casting process. Temperature field in a ceramic mold is one of the problems during numerical simulation. Reducing the costs of production in precision casting involves the reduction of scraps, which is one of the fundamental problems of the foundry industry. Reducing these costs is associated with optimization of precision casting technology of aircraft engines critical parts, including control of the solidification front in thin-walled castings of nickel super alloys cast in a vacuum. It is achieved by changing the geometrical characteristics of the ceramic mold. The results of the tests were used to optimize the industrial production of aircraft components in Precision Foundry of WSK Rzeszów. Temperature distribution gained in the conducted tests allowed verification and optimization of computer simulations.

  9. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.

    Science.gov (United States)

    Shao, Huifeng; Ke, Xiurong; Liu, An; Sun, Miao; He, Yong; Yang, Xianyan; Fu, Jianzhong; Liu, Yanming; Zhang, Lei; Yang, Guojing; Xu, Sanzhong; Gou, Zhongru

    2017-04-12

    Three-dimensional (3D) printing bioactive ceramics have demonstrated alternative approaches to bone tissue repair, but an optimized materials system for improving the recruitment of host osteogenic cells into the bone defect and enhancing targeted repair of the thin-wall craniomaxillofacial defects remains elusive. Herein we systematically evaluated the role of side-wall pore architecture in the direct-ink-writing bioceramic scaffolds on mechanical properties and osteogenic capacity in rabbit calvarial defects. The pure calcium silicate (CSi) and dilute Mg-doped CSi (CSi-Mg6) scaffolds with different layer thickness and macropore sizes were prepared by varying the layer deposition mode from single-layer printing (SLP) to double-layer printing (DLP) and then by undergoing one-, or two-step sintering. It was found that the dilute Mg doping and/or two-step sintering schedule was especially beneficial for improving the compressive strength (∼25-104 MPa) and flexural strength (∼6-18 MPa) of the Ca-silicate scaffolds. The histological analysis for the calvarial bone specimens in vivo revealed that the SLP scaffolds had a high osteoconduction at the early stage (4 weeks) but the DLP scaffolds displayed a higher osteogenic capacity for a long time stage (8-12 weeks). Although the DLP CSi scaffolds displayed somewhat higher osteogenic capacity at 8 and 12 weeks, the DLP CSi-Mg6 scaffolds with excellent fracture resistance also showed appreciable new bone tissue ingrowth. These findings demonstrate that the side-wall pore architecture in 3D printed bioceramic scaffolds is required to optimize for bone repair in calvarial bone defects, and especially the Mg doping wollastontie is promising for 3D printing thin-wall porous scaffolds for craniomaxillofacial bone defect treatment.

  10. Determining the Presence of Thin-Walled Regions at High-Pressure Areas in Unruptured Cerebral Aneurysms by Using Computational Fluid Dynamics.

    Science.gov (United States)

    Suzuki, Tomoaki; Takao, Hiroyuki; Suzuki, Takashi; Kambayashi, Yukinao; Watanabe, Mitsuyoshi; Sakamoto, Hiroki; Kan, Issei; Nishimura, Kengo; Kaku, Shogo; Ishibashi, Toshihiro; Ikeuchi, Satoshi; Yamamoto, Makoto; Fujii, Yukihiko; Murayama, Yuichi

    2016-10-01

    Thin-walled regions (TWRs) of cerebral aneurysms are at high risk of rupture, and careful attention should be paid during surgical procedures. Despite this, an optimal imaging technique to estimate TWRs has not been established. Previously, pressure elevation at TWRs was reported with computational fluid dynamics (CFD) but not fully evaluated. To investigate the possibility of predicting aneurysmal TWRs at high-pressure areas with CFD. Fifty unruptured middle cerebral artery aneurysms were analyzed. Spatial and temporal maximum pressure (Pmax) areas were determined with a fluid-flow formula under pulsatile blood flow conditions. Intraoperatively, TWRs of aneurysm domes were identified as reddish areas relative to the healthy normal middle cerebral arteries; 5 neurosurgeons evaluated and divided these regions according to Pmax area and TWR correspondence. Pressure difference (PD) was defined as the degree of pressure elevation on the aneurysmal wall at Pmax and was calculated by subtracting the average pressure from the Pmax and dividing by the dynamic pressure at the aneurysm inlet side for normalization. In 41 of the 50 cases (82.0%), the Pmax areas and TWRs corresponded. PD values were significantly higher in the correspondence group than in the noncorrespondence group (P = .008). A receiver-operating characteristic curve demonstrated that PD accurately predicted TWRs at Pmax areas (area under the curve, 0.764; 95% confidence interval, 0.574-0.955; cutoff value, 0.607; sensitivity, 66.7%; specificity, 82.9%). A high PD may be a key parameter for predicting TWRs in unruptured cerebral aneurysms. CFD, computational fluid dynamicsMCA, middle cerebral arteryPave, average pressurePD, pressure differencePmax, maximum pressureTWR, thin-walled regionWSS, wall shear stress.

  11. Magnetic susceptibility in the edged topological disordered nanoscopic cylinder

    International Nuclear Information System (INIS)

    Faizabadi, Edris; Omidi, Mahboubeh

    2011-01-01

    The effects of edged topological disorder on magnetic susceptibility are investigated in a nanoscopic cylinder threaded by a magnetic flux. Persistent current versus even or odd number of electrons shows different signs in ordered and disordered cylinders and also in short or long ones. In addition, temperature-averaged susceptibility has only diamagnetic signs in strong regimes and it is associated with paramagnetic signs in ordered and weak disordered ones. Besides, in an edged topological disordered cylinder, the temperature-averaged susceptibility decreases by raising the temperature somewhat and then increasing initiates and finally at high temperature tends to zero as the ordered one. - Research highlights: → Magnetic susceptibility in one-dimensional topological disordered quantum ring. → Edged topological disorder effect on magnetic susceptibility in nanoscopic cylinder. → Edged topological disorder effect on temperature-averaged susceptibility in cylinder.

  12. Buckling Analysis of a Honeycomb-Core Composite Cylinder with Initial Geometric Imperfections

    Science.gov (United States)

    Cha, Gene; Schultz, Marc R.

    2013-01-01

    Thin-walled cylindrical shell structures often have buckling as the critical failure mode, and the buckling of such structures can be very sensitive to small geometric imperfections. The buckling analyses of an 8-ft-diameter, 10-ft-long honeycomb-core composite cylinder loaded in pure axial compression is discussed in this document. Two loading configurations are considered configuration 1 uses simple end conditions, and configuration 2 includes additional structure that may more closely approximate experimental loading conditions. Linear eigenvalue buckling analyses and nonlinear analyses with and without initial geometric imperfections were performed on both configurations. The initial imperfections were introduced in the shell by applying a radial load at the midlength of the cylinder to form a single inward dimple. The critical bifurcation buckling loads are predicted to be 924,190 lb and 924,020 lb for configurations 1 and 2, respectively. Nonlinear critical buckling loads of 918,750 lb and 954,900 lb were predicted for geometrically perfect configurations 1 and 2, respectively. Lower-bound critical buckling loads for configurations 1 and 2 with radial perturbations were found to be 33% and 36% lower, respectively, than the unperturbed critical loads. The inclusion of the load introduction cylinders in configuration 2 increased the maximum bending-boundary-layer rotation up to 11%.

  13. Long-term evaluation of functional nerve recovery after reconstruction with a thin-walled biodegradable poly (DL-lactide-epsilon-caprolactone) nerve guide, using walking track analysis and electrostimulation tests

    NARCIS (Netherlands)

    Meek, MF; Den Dunnen, WFA; Schakenraad, JM; Robinson, PH

    1999-01-01

    This study was performed to evaluate the long-term functional nerve recovery after reconstruction of a IO-mm gap in the sciatic nerve of the rat, with a thin-walled nerve guide, composed of a biodegradable copolymer of DL-lactide and epsilon-caprolactone [p(DLLA-epsilon-CL)]. To evaluate both motor

  14. Anaesthesia gas supply: gas cylinders.

    Science.gov (United States)

    Srivastava, Uma

    2013-09-01

    Invention of oxygen cylinder was one of the most important developments in the field of medical practice. Oxygen and other gases were compressed and stored at high pressure in seamless containers constructed from hand-forged steel in1880. Materials technology has continued to evolve and now medical gas cylinders are generally made of steel alloys or aluminum. The filling pressure as well as capacity has increased considerably while at the same time the weight of cylinders has reduced. Today oxygen cylinder of equivalent size holds a third more oxygen but weighs about 20 kg less. The cylinders are of varying sizes and are color coded. They are tested at regular intervals by the manufacturer using hydraulic, impact, and tensile tests. The top end of the cylinder is fitted with a valve with a variety of number and markings stamped on it. Common valve types include: Pin index valve, bull nose, hand wheel and integral valve. The type of valve varies with cylinder size. Small cylinders have a pin index valve while large have a bull nose type. Safety features in the cylinder are: Color coding, pin index, pressure relief device, Bodok seal, and label attached etc., Safety rules and guidelines must be followed during storage, installation and use of cylinders to ensure safety of patients, hospital personnel and the environment.

  15. Anaesthesia gas supply: Gas cylinders

    Directory of Open Access Journals (Sweden)

    Uma Srivastava

    2013-01-01

    Full Text Available Invention of oxygen cylinder was one of the most important developments in the field of medical practice. Oxygen and other gases were compressed and stored at high pressure in seamless containers constructed from hand-forged steel in1880. Materials technology has continued to evolve and now medical gas cylinders are generally made of steel alloys or aluminum. The filling pressure as well as capacity has increased considerably while at the same time the weight of cylinders has reduced. Today oxygen cylinder of equivalent size holds a third more oxygen but weighs about 20 kg less. The cylinders are of varying sizes and are color coded. They are tested at regular intervals by the manufacturer using hydraulic, impact, and tensile tests. The top end of the cylinder is fitted with a valve with a variety of number and markings stamped on it. Common valve types include: Pin index valve, bull nose, hand wheel and integral valve. The type of valve varies with cylinder size. Small cylinders have a pin index valve while large have a bull nose type. Safety features in the cylinder are: Color coding, pin index, pressure relief device, Bodok seal, and label attached etc., Safety rules and guidelines must be followed during storage, installation and use of cylinders to ensure safety of patients, hospital personnel and the environment.

  16. Method to Determine the Stress-Strain Response of As-Formed Thin-Walled Tubular Structures Using a Flaring Apparatus

    Science.gov (United States)

    Jurendic, S.; Anderson, D.

    2017-09-01

    Finite element simulations are used extensively to refine the forming steps of draw and wall iron (DWI) aluminum bottles; therefore, accurate material data is required Unfortunately, the material properties of the base sheet cannot presently be used for simulation of the later forming stages due to preceding significant deformation (ironing) and thermal treatments. Measuring the stress-strain response using traditional methods (e.g. tensile test) becomes increasingly difficult at later stages of the bottle forming process due to a significant diameter reduction of the bottle neck from successive die-necking stages. Moreover, failure during forming tends to occur in the final deformation stages when the bottle opening is rolled over, creating a brim roll, at which point brim roll splits may occur. Knowledge of the stress-strain response prior to the roll over may lead to improved product design, reduced waste, and an optimized product. Therefore, this work details a flaring apparatus and data analysis method to determine the stress-strain response in the die-necked region of thin-walled aluminum bottles fabricated from AA3104 sheet metal.

  17. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fasoyinu, Yemi [CanmetMATERIALS; Griffin, John A. [University of Alabama - Birmingham

    2014-03-31

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their long freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.

  18. Dilated thin-walled blood and lymphatic vessels in human endometrium: a potential role for VEGF-D in progestin-induced break-through bleeding.

    Directory of Open Access Journals (Sweden)

    Jacqueline F Donoghue

    Full Text Available Progestins provide safe, effective and cheap options for contraception as well as the treatment of a variety of gynaecological disorders. Episodes of irregular endometrial bleeding or breakthrough bleeding (BTB are a major unwanted side effect of progestin treatment, such that BTB is the leading cause for discontinued use of an otherwise effective and popular medication. The cellular mechanisms leading to BTB are poorly understood. In this study, we make the novel finding that the large, dilated, thin walled vessels characteristic of human progestin-treated endometrium include both blood and lymphatic vessels. Increased blood and lymphatic vessel diameter are features of VEGF-D action in other tissues and we show by immunolocalisation and Western blotting that stromal cell decidualisation results in a significant increase in VEGF-D protein production, particularly of the proteolytically processed 21 kD form. Using a NOD/scid mouse model with xenografted human endometrium we were able to show that progestin treatment causes decidualisation, VEGF-D production and endometrial vessel dilation. Our results lead to a novel hypothesis to explain BTB, with stromal cell decidualisation rather than progestin treatment per se being the proposed causative event, and VEGF-D being the proposed effector agent.

  19. Investigation of Mild Steel Thin-Wall Tubes in Unfilled and Foam-Filled Triangle, Square, and Hexagonal Cross Sections Under Compression Load

    Science.gov (United States)

    Rajak, Dipen Kumar; Kumaraswamidhas, L. A.; Das, S.

    2018-02-01

    This study has examined proposed structures with mild steel-reinforced LM30 aluminum (Al) alloy having diversely unfilled and 10 wt.% SiCp composite foam-filled tubes for improving axial compression performance. This class of material has novel physical, mechanical, and electrical properties along with low density. In the present experiment, Al alloy foams were prepared by the melt route technique using metal hydride powder as a foaming agent. Crash energy phenomena for diverse unfilled and foam-filled in mild steel thin-wall tubes (triangular, square and hexagonal) were studied as well. Compression deformation investigation was conducted at strain rates of 0.001-0.1/s for evaluating specific energy absorption (SEA) under axial loading conditions. The results were examined to measure plateau stress, maximum densification strain, and deformation mechanism of the materials. Specific energy absorption and total energy absorption capacities of the unfilled and filled sections were determined from the compressive stress-strain curves, which were then compared with each other.

  20. Data indicating temperature response of Ti–6Al–4V thin-walled structure during its additive manufacture via Laser Engineered Net Shaping

    Directory of Open Access Journals (Sweden)

    Garrett J. Marshall

    2016-06-01

    Full Text Available An OPTOMEC Laser Engineered Net Shaping (LENS™ 750 system was retrofitted with a melt pool pyrometer and in-chamber infrared (IR camera for nondestructive thermal inspection of the blown-powder, direct laser deposition (DLD process. Data indicative of temperature and heat transfer within the melt pool and heat affected zone atop a thin-walled structure of Ti–6Al–4V during its additive manufacture are provided. Melt pool temperature data were collected via the dual-wavelength pyrometer while the dynamic, bulk part temperature distribution was collected using the IR camera. Such data are provided in Comma Separated Values (CSV file format, containing a 752×480 matrix and a 320×240 matrix of temperatures corresponding to individual pixels of the pyrometer and IR camera, respectively. The IR camera and pyrometer temperature data are provided in blackbody-calibrated, raw forms. Provided thermal data can aid in generating and refining process-property-performance relationships between laser manufacturing and its fabricated materials.

  1. Structural Properties of EB-Welded AlSi10Mg Thin-Walled Pressure Vessels Produced by AM-SLM Technology

    Science.gov (United States)

    Nahmany, Moshe; Stern, Adin; Aghion, Eli; Frage, Nachum

    2017-10-01

    Additive manufacturing of metals by selective laser melting (AM-SLM) is hampered by significant limitations in product size due to the limited dimensions of printing trays. Electron beam welding (EBW) is a well-established process that results in relatively minor metallurgical modifications in workpieces due to the ability of EBW to pass high-density energy to the related substance. The present study aims to evaluate structural properties of EB-welded AlSi10Mg thin-walled pressure vessels produced from components prepared by SLM technology. Following the EB welding process, leak and burst tests were conducted, as was fractography analysis. The welded vessels showed an acceptable holding pressure of 30 MPa, with a reasonable residual deformation up to 2.3% and a leak rate better than 1 × 10-8 std-cc s-1 helium. The failures that occurred under longitudinal stresses reflected the presence of two weak locations in the vessels, i.e., the welded joint region and the transition zone between the vessel base and wall. Fractographic analysis of the fracture surfaces of broken vessels displayed the ductile mode of the rupture, with dimples of various sizes, depending on the failure location.

  2. Anaesthesia Gas Supply: Gas Cylinders

    OpenAIRE

    Srivastava, Uma

    2013-01-01

    Invention of oxygen cylinder was one of the most important developments in the field of medical practice. Oxygen and other gases were compressed and stored at high pressure in seamless containers constructed from hand-forged steel in1880. Materials technology has continued to evolve and now medical gas cylinders are generally made of steel alloys or aluminum. The filling pressure as well as capacity has increased considerably while at the same time the weight of cylinders has reduced. Today o...

  3. Focal surfaces of hyperbolic cylinders

    Science.gov (United States)

    Georgiev, Georgi Hristov; Pavlov, Milen Dimov

    2017-12-01

    Cylindrical surfaces have many applications in geometric modeling, architecture and other branches of engineering. In this paper, we describe two cylindrical surfaces associated to a given hyperbolic cylinder. The first one is a focal surface which is determined by reciprocal principle curvature of the hyperbolic cylinder. The second one is a generalized focal surface obtained by reciprocal mean curvature of the same hyperbolic cylinder. In particular, we show that each of these surfaces admits three different parametric representations. As consequence, it is proved that the focal and generalized focal surfaces of the hyperbolic cylinder are rational surfaces. An illustrative example is included.

  4. Research on torsional vibration modelling and control of printing cylinder based on particle swarm optimization

    Science.gov (United States)

    Wang, Y. M.; Xu, W. C.; Wu, S. Q.; Chai, C. W.; Liu, X.; Wang, S. H.

    2018-03-01

    The torsional oscillation is the dominant vibration form for the impression cylinder of printing machine (printing cylinder for short), directly restricting the printing speed up and reducing the quality of the prints. In order to reduce torsional vibration, the active control method for the printing cylinder is obtained. Taking the excitation force and moment from the cylinder gap and gripper teeth open & closing cam mechanism as variable parameters, authors establish the dynamic mathematical model of torsional vibration for the printing cylinder. The torsional active control method is based on Particle Swarm Optimization(PSO) algorithm to optimize input parameters for the serve motor. Furthermore, the input torque of the printing cylinder is optimized, and then compared with the numerical simulation results. The conclusions are that torsional vibration active control based on PSO is an availability method to the torsional vibration of printing cylinder.

  5. Structural design of shield-integrated thin-wall vacuum vessel and manufacturing qualification tests for International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Shimizu, Katsusuke; Shibui, Masanao; Koizumi, Koichi; Kanamori, Naokazu; Nishio, Satoshi; Sasaki, Takashi; Tada, Eisuke

    1992-09-01

    Conceptual design of shield-integrated thin-wall vacuum vessel has been done for ITER (International Thermonuclear Experimental Reactor). The vacuum vessel concept is based on a thin-double-wall structure, which consists of inner and outer plates and rib stiffeners. Internal shielding structures, which provide neutron irradiation shielding to protect TF coils, are set up between the inner plate and the outer plate of the vessel to avoid complexity of machine systems such as supporting systems of blanket modules. The vacuum vessel is assembled/disassembled by remote handling, so that welding joints are chosen as on-site joint method from reliability of mechanical strength. From a view point of assembling TF coils, the vacuum vessel is separated at the side of port, and is divided into 32 segments similar to the ITER-CDA reference design. Separatrix sweeping coils are located in the vacuum vessel to reduce heat fluxes onto divertor plates. Here, the coil structure and attachment to the vacuum vessel have been investigated. A sectorized saddle-loop coil is available for assembling and disassembling the coil. To support electromagnetic loads on the coils, they are attached to the groove in the vacuum vessel by welding. Flexible multi-plate supporting structure (compression-type gravity support), which was designed during CDA, is optimized by investigating buckling and frequency response properties, and concept on manufacturing and fabrication of the gravity support are proposed. Partial model of the vacuum vessel is manufactured for trial, so that fundamental data on welding and fabrication are obtained. From mechanical property tests of weldment and partial models, mechanical intensity and behaviors of the weldment are obtained. Informations on FEM-modeling are obtained by comparing analysis results with experimental results. (author)

  6. Detection of thin wall regions of unruptured cerebral aneurysms by ECG synchronous reconstruction 3D-CT angiography (4D-CTA) using 16 slices per rotation CT

    International Nuclear Information System (INIS)

    Fujita, Shigekiyo

    2004-01-01

    The objective of this study was to evaluate the capability of electrocardiogram (ECG) synchronous reconstruction 3D-CT angiography (4D-CTA) using 16 sequence MD-CT to detect weak portions of unruptured cerebral aneurysm. 4D-CT angiography of unruptured cerebral aneurysms was performed on 26 patients, 28 cerebral aneurysms, using 16 sequence MD-CT (GE, HiLight Matrix II). Contrast material of iodine (300 mg/ml) was injected over 30 sec period into the ante-cubital vein with a rate of 0.06 ml/Kg/sec. ECG synchronous reconstruction images (10 images at intervals of 10% between R-R of ECG) were generated (GE, Workstation Advantage 4.1). After careful inspection of the wall motion of an aneurysm from many aspects, cine images were made from several directions. Acquisition of data required 9 seconds, total volume data were generated within 15 minutes, and ECG synchronous reconstruction image processing was performed in about 5 minutes. Animation creation for one direction was completed within one minute. Even in 3-mm aneurysms, changes of its form and size within a heartbeat were fully observed. Timing of maximum and minimum sizes were also recognized. The pulsatile changes and nipple extent, bleb, daughter, and dome of aneurysms were well visualized. The projecting motion of the pulsatory enlargement of nipple was detected in nine cases, and definite increases in bleb sizes were detected in five cases. Since the easily reptured thin walled portion of a cerebral aneurysm can be recognized by this method, 4D-CT angiography is likely to become indispensable in judging how to cope with unruptured cerebral aneurysms, in deciding whether to operate or observe. (author)

  7. Fatigue life assessment of thin-walled welded joints under non-proportional load-time histories by the shear stress rate integral approach

    Directory of Open Access Journals (Sweden)

    A. Bolchoun

    2016-10-01

    Full Text Available Fatigue life tests under constant and variable amplitude loadings were performed on the tube-tube thin-walled welded specimens made of magnesium (AZ31 and AZ61 alloys. The tests included pure axial, pure torsional and combined in-phase and out-of-phase loadings with the load ratio  RR " ", " " 1  . For the tests with variable amplitude loads a Gaußdistributed loading spectrum with S L 4 5 10  cycles was used. Since magnesium welds show a fatigue life reduction under out-of-phase loads, a stress-based method, which takes this behavior into account, is proposed. The out-of-phase loading results in rotating shear stress vectors in the section planes, which are not orthogonal to the surface. This fact is used in order to provide an out-of-phase measure of the load. This measure is computed as an area covered by the shear stress vectors in all planes over a certain time interval, its computation involves the shear stress and the shear stress rate vectors in the individual planes. Fatigue life evaluation for the variable amplitudes loadings is performed using the Palmgren-Miner linear damage accumulation, whereas the total damage of every cycle is split up into two components: the amplitude component and the out-of-phase component. In order to compute the two components a modification of the rainflow counting method, which keeps track of the time intervals, where the cycles occur, must be used. The proposed method also takes into account different slopes of the pure axial and the pure torsional Wöhler-line by means of a Wöhler-line interpolation for combined loadings

  8. Brachistochrone for a rolling cylinder

    Science.gov (United States)

    Legeza, V. P.

    2010-02-01

    The motion of a heavy homogeneous cylinder is considered as a no-slip rolling along the desired curve. We obtain a functional in the form of the total time of the cylinder rolling and solve the corresponding variational problem of minimizing this functional. We obtain an algebraic equation for the directional line of steepest descent, brachistochrone, in parametric form. We use the equation of motion of the cylinder with constraint reaction to determine the conditions of implementation of its pure rolling without separation and slip with respect to the brachistochrone.

  9. Rolling Cylinder Phase 1bis

    DEFF Research Database (Denmark)

    Margheritini, Lucia

    Cylinder Phase 1: proof of concept and first optimization”, DCE report 115, ISSN 1901-726X, and it is recommended that the two are consulted together as they were firstly agreed to be in one document. The present report aims at estimate the efficiency of the Rolling Cylinder long model (previously...... optimized), by mean of physical tests in irregular waves. Several difficulties have been encountered during the testing, the biggest of witch being the extremely unfriendly torque measuring system....

  10. Video analysis of rolling cylinders

    Science.gov (United States)

    Phommarach, S.; Wattanakasiwich, P.; Johnston, I.

    2012-03-01

    In this work, we studied the rolling motion of solid and hollow cylinders down an inclined plane at different angles. The motions were captured on video at 300 frames s - 1, and the videos were analyzed frame by frame using video analysis software. Data from the real motion were compared with the theory of rolling down an inclined plane without slipping. From the experiment, the acceleration does not depend on the cylinder mass as indicated from the theory. For the wood-steel surface, we found that the coefficient of static friction was equal to 0.131 and the critical angle for the solid cylinder was 21.45°. The critical angle for the hollow cylinder depends on the inner and outer radius of the cylinder. Motion paths of a point on the hollow cylinder at small and large angles were shown to elucidate the pure rolling condition. Finally, we demonstrated that total mechanical energy was conserved during the pure rolling motion. This confirms that work done by the friction force is zero. We will use these results to design an interactive lecture demonstration on rolling without slipping.

  11. Pressure cylinders under fire condition

    Directory of Open Access Journals (Sweden)

    Jan Hora

    2016-03-01

    Full Text Available The presence of pressure cylinders under fire conditions significantly increases the risk rate for the intervening persons. It is considerably problematic to predict the pressure cylinders behaviour during heat exposition, its destruction progress and possible following explosion of the produced air–gas mixture because pressure cylinders and its environment generate a highly complicated dynamic system during an uncontrolled destruction. The large scale tests carried out by the Pilsen Fire and Rescue Department and the Rapid Response Unit of the Czech Republic Police in October 2012 and in May 2014 in the Military area Brdy and in the area of the former Lachema factory in Kaznějov had several objectives, namely, to record, qualify and quantify some of the aspects of an uncontrolled heat destruction procedure of an exposed pressure cylinder in an enclosed space and to qualify and describe the process of a controlled destruction of a pressure cylinder by shooting through it including basic tactical concepts. The article describes the experiments that were carried out.

  12. Filament winding cylinders. I - Process model

    Science.gov (United States)

    Lee, Soo-Yong; Springer, George S.

    1990-01-01

    A model was developed which describes the filament winding process of composite cylinders. The model relates the significant process variables such as winding speed, fiber tension, and applied temperature to the thermal, chemical and mechanical behavior of the composite cylinder and the mandrel. Based on the model, a user friendly code was written which can be used to calculate (1) the temperature in the cylinder and the mandrel, (2) the degree of cure and viscosity in the cylinder, (3) the fiber tensions and fiber positions, (4) the stresses and strains in the cylinder and in the mandrel, and (5) the void diameters in the cylinder.

  13. Enhancement of polarizabilities of cylinders with cylinder-slab resonances.

    Science.gov (United States)

    Xiao, Meng; Huang, Xueqin; Liu, H; Chan, C T

    2015-02-02

    If an object is very small in size compared with the wavelength of light, it does not scatter light efficiently. It is hence difficult to detect a very small object with light. We show using analytic theory as well as full wave numerical calculation that the effective polarizability of a small cylinder can be greatly enhanced by coupling it with a superlens type metamaterial slab. This kind of enhancement is not due to the individual resonance effect of the metamaterial slab, nor due to that of the object, but is caused by a collective resonant mode between the cylinder and the slab. We show that this type of particle-slab resonance which makes a small two-dimensional object much "brighter" is actually closely related to the reverse effect known in the literature as "cloaking by anomalous resonance" which can make a small cylinder undetectable. We also show that the enhancement of polarizability can lead to strongly enhanced electromagnetic forces that can be attractive or repulsive, depending on the material properties of the cylinder.

  14. High-Fidelity Buckling Analysis of Composite Cylinders Using the STAGS Finite Element Code

    Science.gov (United States)

    Hilburger, Mark W.

    2014-01-01

    Results from previous shell buckling studies are presented that illustrate some of the unique and powerful capabilities in the STAGS finite element analysis code that have made it an indispensable tool in structures research at NASA over the past few decades. In particular, prototypical results from the development and validation of high-fidelity buckling simulations are presented for several unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells along with a discussion on the specific methods and user-defined subroutines in STAGS that are used to carry out the high-fidelity simulations. These simulations accurately account for the effects of geometric shell-wall imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and elastic boundary conditions. The analysis procedure uses a combination of nonlinear quasi-static and transient dynamic solution algorithms to predict the prebuckling and unstable collapse response characteristics of the cylinders. Finally, the use of high-fidelity models in the development of analysis-based shell-buckling knockdown (design) factors is demonstrated.

  15. SIMULATION OF SCOURING AROUND A VERTICAL CYLINDER DUE TO TSUNAMI

    Directory of Open Access Journals (Sweden)

    Kuswandi

    2017-06-01

    Full Text Available Local scour due to tsunami is damaging especially on shallow foundation. Although relatively in a short duration, tsunami attack may scour material around buildings that led to destruction. A number of formulae on local scouring due to flood and tsunami have been available. The local scouring pattern and depth produced by tsunami may be affected by tsunami duration and tsunami surge Froude number and hence different to that resulted by flood which normally have much longer duration and lower Froude number. The research used a relatively short flume to create short duration tsunami surge that run-up on 1:20 beach slope and hit a vertical cylinder on land. Both the pattern and the depth of local scouring around the cylinder were observed and the results were compared with similar research but with different tsunami surge characteristic. It was shown that the maximum scour depth was significantly deeper than the final scour depth. When compared with other experimental study of local scour due to tsunami, the present local scour maximum depth seemed to be slightly less. This could have been caused by the relatively short duration of the present experiment. It was also found that the sidewall effect was insignificant when the ratio of cylinder diameter to the flume width was less then approximately 0.15.

  16. Cycloidal pendulum with a rolling cylinder

    Science.gov (United States)

    Legeza, V. P.

    2012-07-01

    Free vibrations of a heavy homogeneous cylinder rolling in a cylindrical cavity whose directing curve is a brachistochrone are considered. The equation of motion of the cylinder is derived and the circular frequency of free vibrations of the cylinder center of mass is determined. An analogy between the cycloidal pendulum with a rolling cylinder and the classical cycloidal pendulum in the form of a material point is obtained.

  17. Cylinder components properties, applications, materials

    CERN Document Server

    2016-01-01

    Owing to the ever-increasing requirements to be met by gasoline and diesel engines in terms of CO2 reduction, emission behavior, weight, and service life, a comprehensive understanding of combustion engine components is essential today. It is no longer possible for professionals in automotive engineering to manage without the corresponding expertise, whether they work in the field of design, development, testing, or maintenance. This technical book provides in-depth answers to questions about design, production, and machining of cylinder components. In this second edition, every section has been revised and expanded to include the latest developments in the combustion engine. Content Piston rings Piston pins and piston pin circlips Bearings Connecting rods Crankcase and cylinder liners Target audience Engineers in the field of engine development and maintenanceLecturers and students in the areas of mechanical engineering, engine technology, and vehicle constructionAnyone interested in technology Publisher MAH...

  18. Vortex shedding from tandem cylinders

    Science.gov (United States)

    Alam, Md. Mahbub; Elhimer, Mehdi; Wang, Longjun; Jacono, David Lo; Wong, C. W.

    2018-03-01

    An experimental investigation is conducted on the flow around tandem cylinders for ranges of diameter ratio d/ D = 0.25-1.0, spacing ratio L/ d = 5.5-20, and Reynolds number Re = 0.8 × 104-2.42 × 104, where d and D are the diameters of the upstream and downstream cylinders, respectively, L is the distance from the upstream cylinder center to the forward stagnation point of the downstream one. The focus is given on examining the effects of d/ D, L/ d and Re on Strouhal number St, flow structures and fluid forces measured using hotwire, particle image velocimetry (PIV) and load cell measurement techniques, respectively. Changes in d/ D and L/ d in the ranges examined lead to five flow regimes, namely lock-in, intermittent lock-in, no lock-in, subharmonic lock-in and shear-layer reattachment regimes. Time-mean drag coefficient ( C D) and fluctuating drag and lift coefficients ({C^'D} and {C^'L}) are more sensitive to L/ d than d/ D. The scenario is opposite for St where d/ D is more prominent than L/ d to change the St. The detailed facet of the dependence on d/ D and L/ d of C D, {C^'D}, {C^'L} and St is discussed based on shear-layer velocity, approaching velocity, vortex formation length, and wake width.

  19. Fire testing of bare uranium hexafluoride cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} x 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover, the valves failed and UF{sub 6} was released. The remaining 6 cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  20. Fire testing of bare uranium hexafluoride cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A. [PAI Corp., Oak Rige, TN (United States)

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover the valves failed and UF{sub 6} was released. The remaining cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  1. Caledon Propane first to import composite cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2007-11-15

    The Ontario-based company Caledon Transport will be the first company in Canada to import lightweight fiberglass propane cylinders. The Ragasco liquid propane gas (LPG) cylinder is constructed from non-metallic composite materials in 3 different layers. The thermoplastic single-piece layer provides a gas barrier, while the composite layer on the outside of the cylinder is reinforced with continuous fiberglass and resin. The outer casing was designed to provide impact protection for the pressure cylinder and valve. At 18 pounds, the lightweight cylinder is only 18.9 inches high and 12.1 inches in diameter. The propane level is visible at all times. The cylinder was constructed to provide improved stacking and lifting advantages for both customers and gas company employees. 2 figs.

  2. Cylinder valve packing nut studies

    Energy Technology Data Exchange (ETDEWEB)

    Blue, S.C. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    The design, manufacture, and use of cylinder valve packing nuts have been studied to improve their resistance to failure from stress corrosion cracking. Stress frozen photoelastic models have been analyzed to measure the stress concentrations at observed points of failure. The load effects induced by assembly torque and thermal expansion of stem packing were observed by strain gaging nuts. The effects of finishing operations and heat treatment were studied by the strain gage hole boring and X-ray methods. Modifications of manufacturing and operation practices are reducing the frequency of stress corrosion failures.

  3. Transient Magnetic Field in a Conducting Cylinder

    Directory of Open Access Journals (Sweden)

    Zygmunt Piatek

    2004-01-01

    Full Text Available In the paper we determine the transient magnetic field in a conducting cylinder placed in external longitudinal sine-shaped magnetic field using the solution of Bessell equation in cylindrical co-ordinates, and also applying integral Laplace transformations, attenuation and diffusion of the magnetic field strength in the cylinder. The resulting equations can be used to describe volume density of the power lost in the cylinder and to determine substitute parameters of the inductor-cylindrical work system.

  4. Accidental death resulting from acetylene cylinder impact.

    Science.gov (United States)

    Rani, Mukta; Gupta, Avneesh; Dikshit, P C; Aggrawal, Anil; Setia, Puneet; Dhankar, Vijay

    2005-06-01

    Acetylene is an inflammable gas commonly used for welding in small-scale industries. We present a case of a 34-year-old male welder who died following injuries sustained from explosion of an acetylene gas-welding cylinder. In this case report, we discuss the circumstances leading to the explosion of the welding cylinder, the autopsy findings, and a brief review of the literature on deaths resulting from blasts of acetylene cylinders.

  5. Fire exposure of empty 30B cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Ziehlke, K.T. [MJB Technical Associates, Inc., Knoxville, TN (United States)

    1991-12-31

    Cylinders for UF{sub 6} handling, transport, and storage are designed and built as unfired pressure vessels under ASME Boiler and Pressure Vessel Code criteria and standards. They are normally filled and emptied while UF{sub 6} is in its liquid phase. Transport cylinders such as the Model 30B are designed for service at 200 psi and 250{degrees}F, to sustain the process conditions which prevail during filling or emptying operations. While in transport, however, at ambient temperature the UF{sub 6} is solid, and the cylinder interior is well below atmospheric pressure. When the cylinders contain isotopically enriched product (above 1.0 percent U-235), they are transported in protective overpacks which function to guard the cylinders and their contents against thermal or mechanical damage in the event of possible transport accidents. Two bare Model 30B cylinders were accidentally exposed to a storage warehouse fire in which a considerable amount of damage was sustained by stored materials and the building structure, as well as by the cylinder valves and valve protectors. The cylinders were about six years old, and had been cleaned, inspected, hydrotested, and re-certified for service, but were still empty at the time of the fire. The privately-owned cylinders were transferred to DOE for testing and evaluation of the fire damage.

  6. Optimization and improvement of Halbach cylinder design

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2008-01-01

    In this paper we describe the results of a parameter survey of a 16 segmented Halbach cylinder in three dimensions in which the parameters internal radius, rin, external radius, rex, and length, L, have been varied. Optimal values of rex and L were found for a Halbach cylinder with the least...... that this parameter was optimal for long Halbach cylinders with small rex. Using the previously mentioned additional blocks of magnets can improve the parameter by as much as 15% as well as improve the homogeneity of the field in the cylinder bore. ©2008 American Institute of Physics...

  7. The Permeability of Boolean Sets of Cylinders

    Directory of Open Access Journals (Sweden)

    Willot F.

    2016-07-01

    Full Text Available Numerical and analytical results on the permeability of Boolean models of randomly-oriented cylinders with circular cross-section are reported. The present work investigates cylinders of prolate (highly-elongated and oblate (nearly flat types. The fluid flows either inside or outside of the cylinders. The Stokes flow is solved using full-fields Fourier-based computations on 3D binarized microstructures. The permeability is given for varying volume fractions of pores. A new upper-bound is derived for the permeability of the Boolean model of oblate cylinders. The behavior of the permeability in the dilute limit is discussed.

  8. Inner cylinder of the CMS vacuum tank.

    CERN Document Server

    Patrice Loïez

    2002-01-01

    The vacuum tank of the CMS magnet system consists of inner and outer stainless-steel cylinders and houses the superconducting coil. The inner cylinder contains all the barrel sub-detectors, which it supports via a system of horizontal rails. The cylinder is pictured here in the vertical position on a yellow platform mounted on the ferris-wheel support structure. This will allow it to be pivoted and inserted into the outer cylinder already attached to the innermost ring of the barrel yoke.

  9. Overseas shipments of 48Y cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, R.T.; Furlan, A.S. [Cameco Corp., Port Hope, Ontario (Canada)

    1991-12-31

    This paper describes experiences with two incidents of overseas shipments of uranium hexafluoride (UF{sub 6}) cylinders. The first incident involved nine empty UF{sub 6} cylinders in enclosed sea containers. Three UF{sub 6} cylinders broke free from their tie-downs and damaged and contaminated several sea containers. This paper describes briefly how decontamination was carried out. The second incident involved a shipment of 14 full UF{sub 6} cylinders. Although the incident did not cause an accident, the potential hazard was significant. The investigation of the cause of the near accident is recounted. Recommendations to alleviate future similar incidents for both cases are presented.

  10. Swap your propane cylinder with SWOP

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    A very successful propane cylinder exchange program operated by South Western Ontario Propane (SWOP) Inc., was described. The company specializes in propane cylinder exchange and in the refurbishing and marketing of top quality domestic and commercial propane cylinders. The company, currently operating out of Bradford, Ontario, was started in 1991. It employs a staff of 25 in peak season. It has some 200 exchange outlets throughout Ontario and has accepted outdated tanks from as far west as Manitoba and as far east as Quebec. A typical transaction involves bringing an empty cylinder to the nearest SWOP location and exchanging it for a full SWOP cylinder. SWOP does about 50,000 to 60,000 exchanges a year. For the consumer, the program is said to be cheaper, safer and more convenient than getting refills. As far as dealers are concerned operating a SWOP exchange outlet can add extra profits, attract new customers, and build additional consumer loyalty without the need for extra staff or additional indoor space. SWOP delivers full cylinders to exchange outlets on a weekly basis when it also picks up the empty cylinders. At dealer locations, the cylinders (full or empty) are stored in company -designed vandal-proof metal cages. Major expansion of the network of outlets and the cylinder refurbishing and refilling facilities are planned for 1998

  11. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    Science.gov (United States)

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  12. Two dimensional numerical analysis of aerodynamic characteristics for rotating cylinder on concentrated air flow

    Science.gov (United States)

    Alias, M. S.; Rafie, A. S. Mohd; Marzuki, O. F.; Hamid, M. F. Abdul; Chia, C. C.

    2017-12-01

    Over the years, many studies have demonstrated the feasibility of the Magnus effect on spinning cylinder to improve lift production, which can be much higher than the traditional airfoil shape. With this characteristic, spinning cylinder might be used as a lifting device for short take-off distance aircraft or unmanned aerial vehicle (UAV). Nonetheless, there is still a gap in research to explain the use of spinning cylinder as a good lifting device. Computational method is used for this study to analyse the Magnus effect, in which two-dimensional finite element numerical analysis method is applied using ANSYS FLUENT software to examine the coefficients of lift and drag, and to investigate the flow field around the rotating cylinder surface body. Cylinder size of 30mm is chosen and several configurations in steady and concentrated air flows have been evaluated. All in all, it can be concluded that, with the right configuration of the concentrated air flow setup, the rotating cylinder can be used as a lifting device for very short take-off since it can produce very high coefficient of lift (2.5 times higher) compared with steady air flow configuration.

  13. Determination of physical adsorption loss of primary standard gas mixtures in cylinders using cylinder-to-cylinder division

    Science.gov (United States)

    Lee, Sangil; Eon Kim, Mi; Hyub Oh, Sang; Seog Kim, Jin

    2017-12-01

    Primary standard gas mixtures (PSMs) are typically prepared in cylinders and the amount-of-substance fractions are determined by purity analysis and gravimetric method. However, the actual amount-of-substance fraction can be different from the gravimetrically determined value due to adsorption loss onto the internal surface of cylinders. The resulted difference due to the adsorption loss can be larger than the PSM uncertainty. In this study, the cylinder-to-cylinder division method is proposed to evaluate any potential physical adsorption loss onto the internal surface of cylinders. A method for estimating the amount of adsorption loss, the corrected amount-of-substance fraction and its uncertainty due to the adsorption loss is described.

  14. The effects of cactus inspired spines on the aerodynamics of a cylinder

    Science.gov (United States)

    Levy, Benjamin; Liu, Yingzheng

    2013-05-01

    The effect of cactus-like spines on the topology and the dynamics of the flow past a stationary or pivoted cylinder are experimentally studied. The experiments are performed either in a water channel or a wind tunnel at low to moderate Reynolds number (390-12 500). The instantaneous velocity field is recorded using TR-PIV and investigated for three different configurations: no spines, short spines (0.1D) and long spines (0.2D). The results show how the spines are able to slow the flow past the cylinder and then increase the recirculation area by up to 128% while the maximum fluctuating kinetic energy intensity is decreased by up to 35%. Moreover, the spines have a significant effect on the vortex shedding and the dynamic pressure at the surface of the cylinder, thus significantly reducing both the amplitude and the frequency at which a pivoted cylinder oscillates.

  15. Flexural vibrations of finite composite poroelastic cylinders

    Indian Academy of Sciences (India)

    infinite hollow poroelastic cylinders. Axially symmetric vibrations of finite composite poroe- lastic cylinders that are bonded end to end are investigated by Shah & Tajuddin (2009). The analysis of the flexural vibrations in cylindrical structures has wide applications in the field of acoustics structural design and Biomechanics, ...

  16. Topping pressure for gas-storage cylinders

    Science.gov (United States)

    Haben, R. L.

    1979-01-01

    With charts derived from gas-storage system model, required topping pressure can be determined from initial cylinder pressure and temperature of gas entering cylinder. Charts are available for hydrogen and oxygen and can be developed for other important industrial gases as well.

  17. On certain geodesic conjugacies of flat cylinders

    Indian Academy of Sciences (India)

    We prove C 0 -conjugacy rigidity of any flat cylinder among two different classes of metrics on the cylinder, namely among the class of rotationally symmetric metrics and among the class of metrics without conjugate points. Author Affiliations. C S ARAVINDA1 H A GURURAJA2. TIFR Centre for Applicable Mathematics, P.O. ...

  18. Longitudinal shear vibrations of composite poroelastic cylinders ...

    African Journals Online (AJOL)

    Employing Biot's theory of wave propagation in liquid saturated porous media, longitudinal shear vibrations of composite poroelastic cylinders of infinite extent are investigated. The composite poroelastic cylinder is made of two different poroelastic materials. The dilatations of liquid and solid media are zero, hence liquid ...

  19. NUMERICAL STUDY OF NATURAL CONVECTION FROM TWO PARALLEL HORIZONTAL CYLINDERS ENCLOSED BY CIRCULAR CYLINDER

    Directory of Open Access Journals (Sweden)

    Mahmood Husain Ali

    2013-05-01

    Full Text Available In this paper, numerical solution is presented for the steady state, two dimensional natural convection heat transfer from two parallel horizontal cylinders enclosed by circular cylinder. The inner cylinders are heated and maintained at constant surface temperature, while the outer cylinder is cooled at constant surface temperature. Boundary fitted coordinate system is used to solve governing equations. The vorticity-stream function and energy equations is solved using explicit finite deference method and stream function equation solved by successive iteration method. (20Deferent cases are studied cover rang of Rayleigh number from (1,000 to (25,000 based on the inner cylinder diameter. These cases study the effect of the  varying inner cylinders position horizontally and vertically within outer cylinder on the heat transfer and buoyancy that causes the flow. Outputs are displayed in terms of streamline, isothermal contours and local and average Nusselt number. The results showed that the position of the inner cylinders highly affects the heat transfer and flow movements in the gap. At low Rayleigh numbers the average Nusselt number increases with increase of horizontal distance between inner cylinders but the state is reversed at high Rayleigh numbers, while the average Nusselt number is increases with inner cylinder moving down at all Rayleigh numbers. The optimal position of inner cylinders for maximum and minimum heat transfer is located at each Rayleigh number so can be employed in isolation process or cooling process.

  20. Brachistochrone curve of a fluid filled cylinder

    Science.gov (United States)

    Sarma, Srikanth; Raja, Sharan; Mahapatra, Pallab Sinha; Panchangnula, Mahesh

    2017-11-01

    The brachistochrone curve for a non-dissipative particle tries to maximize inertia of the particle but for a fluid filled cylinder, increasing inertia would amount to high dissipative losses. Hence the trade off between inertia and dissipation plays a vital role in the dynamics of a fluid filled cylinder. This trade off manifests itself in the form of an integro-differential equation governing the angular acceleration of the cylinder. Here, we compute the brachistochrone curve using optimal control principles and investigate the effect of the fore mentioned trade off on the deviation of the brachistochrone curve from that of a non-dissipative particle. Also, we investigate the effects of the non-dimensional parameters of the problem on the shape of the brachistochrone curve. We analyze the dissipation rate during the cylinder's motion and show that energy based arguments don't hold good for a fluid filled cylinder. We then analyze the stability of the time varying fluid flow in the cylinder and find an admissible region for the terminal point which would ensure the stability of the fluid flow as the cylinder rolls over the brachistochrone curve.

  1. Dynamical instability of a charged gaseous cylinder

    Science.gov (United States)

    Sharif, M.; Mumtaz, Saadia

    2017-10-01

    In this paper, we discuss dynamical instability of a charged dissipative cylinder under radial oscillations. For this purpose, we follow the Eulerian and Lagrangian approaches to evaluate linearized perturbed equation of motion. We formulate perturbed pressure in terms of adiabatic index by applying the conservation of baryon numbers. A variational principle is established to determine characteristic frequencies of oscillation which define stability criteria for a gaseous cylinder. We compute the ranges of radii as well as adiabatic index for both charged and uncharged cases in Newtonian and post-Newtonian limits. We conclude that dynamical instability occurs in the presence of charge if the gaseous cylinder contracts to the radius R*.

  2. Flow induced by a skewed vortex cylinder

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The velocity field induced by a skewed vortex cylinder of longitudinal and tangential vorticity is derived in this chapter by direct integration of the Biot– Savart law. The derivation steps are provided in details. The results of Castles and Durham for the skewed semi-infinite cylinder....... The content of this chapter is based on the publication of the author entitled "Cylindrical vortex wake model: skewed cylinder, application to yawed or tilted rotors" [1]. Results from this chapter are applied: in Chap. 21 to model a wind turbine (or rotor) in yaw, in Chap. 22 to derive a new yaw...

  3. Multi-cylinder hot gas engine

    Science.gov (United States)

    Corey, John A.

    1985-01-01

    A multi-cylinder hot gas engine having an equal angle, V-shaped engine block in which two banks of parallel, equal length, equally sized cylinders are formed together with annular regenerator/cooler units surrounding each cylinder, and wherein the pistons are connected to a single crankshaft. The hot gas engine further includes an annular heater head disposed around a central circular combustor volume having a new balanced-flow hot-working-fluid manifold assembly that provides optimum balanced flow of the working fluid through the heater head working fluid passageways which are connected between each of the cylinders and their respective associated annular regenerator units. This balanced flow provides even heater head temperatures and, therefore, maximum average working fluid temperature for best operating efficiency with the use of a single crankshaft V-shaped engine block.

  4. Theory of interacting dislocations on cylinders.

    Science.gov (United States)

    Amir, Ariel; Paulose, Jayson; Nelson, David R

    2013-04-01

    We study the mechanics and statistical physics of dislocations interacting on cylinders, motivated by the elongation of rod-shaped bacterial cell walls and cylindrical assemblies of colloidal particles subject to external stresses. The interaction energy and forces between dislocations are solved analytically, and analyzed asymptotically. The results of continuum elastic theory agree well with numerical simulations on finite lattices even for relatively small systems. Isolated dislocations on a cylinder act like grain boundaries. With colloidal crystals in mind, we show that saddle points are created by a Peach-Koehler force on the dislocations in the circumferential direction, causing dislocation pairs to unbind. The thermal nucleation rate of dislocation unbinding is calculated, for an arbitrary mobility tensor and external stress, including the case of a twist-induced Peach-Koehler force along the cylinder axis. Surprisingly rich phenomena arise for dislocations on cylinders, despite their vanishing Gaussian curvature.

  5. Investigations of Flow past Spinning Cylinders

    Science.gov (United States)

    Mehmedagic, Igbal; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald; Aljallis, Elias; Thangam, Siva

    2013-11-01

    A subsonic wind tunnel is used to perform experiments on flow past spinning cylinders. The blunt cylinders are sting-mounted and oriented such that their axis of rotation is aligned with the mean flow. The experiments cover a Reynolds number range of up to 300000 and rotation numbers of up to 1.2 (based on cylinder diameter). The results for spinning cylinders with both rear-mounted and fore-mounted stings are presented. Computations are performed using a two-equation anisotropic turbulence model that is based on proper representation of the energy spectrum to capture rotation and curvature. The model performance is validated with benchmark experimental flows and implemented for analyzing the flow configuration used in the experimental study. Funded in part by U. S. Army, ARDEC.

  6. Experimental Investigations of Flow past Spinning Cylinders

    Science.gov (United States)

    Carlucci, Pasquale; Buckley, Liam; Mehmedagic, Igbal; Carlucci, Donald; Thangam, Siva

    2015-11-01

    Experimental investigations of flow past spinning cylinders is presented in the context of their application and relevance to flow past projectiles. A subsonic wind tunnel is used to perform experiments on flow past spinning cylinders that are sting-mounted and oriented such that their axis of rotation is aligned with the mean flow. The experiments cover a Reynolds number range of up to 300000 and rotation numbers of up to 2 (based on cylinder diameter). The experimental validation of the tunnel characteristics and the benchmarking of the flow field in the tunnel are described. The experimental results for spinning cylinders with both rear-mounted and fore-mounted stings are presented along with available computational and experimental findings. This work was funded in part by U. S. Army ARDEC.

  7. W-76 PBX 9501 cylinder tests

    Energy Technology Data Exchange (ETDEWEB)

    Hill, L.G.; Catanach, R.A.

    1998-07-01

    Five 1-inch diameter cylinder tests were fired in support of the W-76 high explosive surveillance program. Three of the tests used baseline material, and two used stockpile return material. The diagnostics were electrical pins to measure detonation velocity and a streak camera to measure wall motion. The data was analyzed for cylinder energy, Gurney energy, and detonation velocity. The results of all three measures were consistent for all five tests, to within the experimental accuracy.

  8. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Carly W. [Univ. of California, Davis, CA (United States). Dept. of Civil and Environmental Engineering; Goto, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  9. Multiple Cylinder Free-Piston Stirling Machinery

    Science.gov (United States)

    Berchowitz, David M.; Kwon, Yong-Rak

    In order to improve the specific power of piston-cylinder type machinery, there is a point in capacity or power where an advantage accrues with increasing number of piston-cylinder assemblies. In the case of Stirling machinery where primary energy is transferred across the casing wall of the machine, this consideration is even more important. This is due primarily to the difference in scaling of basic power and the required heat transfer. Heat transfer is found to be progressively limited as the size of the machine increases. Multiple cylinder machines tend to preserve the surface area to volume ratio at more favorable levels. In addition, the spring effect of the working gas in the so-called alpha configuration is often sufficient to provide a high frequency resonance point that improves the specific power. There are a number of possible multiple cylinder configurations. The simplest is an opposed pair of piston-displacer machines (beta configuration). A three-cylinder machine requires stepped pistons to obtain proper volume phase relationships. Four to six cylinder configurations are also possible. A small demonstrator inline four cylinder alpha machine has been built to demonstrate both cooling operation and power generation. Data from this machine verifies theoretical expectations and is used to extrapolate the performance of future machines. Vibration levels are discussed and it is argued that some multiple cylinder machines have no linear component to the casing vibration but may have a nutating couple. Example applications are discussed ranging from general purpose coolers, computer cooling, exhaust heat power extraction and some high power engines.

  10. Maximal liquid bridges between horizontal cylinders

    Science.gov (United States)

    Huppert, Herbert E.; Neufeld, Jerome A.

    2016-01-01

    We investigate two-dimensional liquid bridges trapped between pairs of identical horizontal cylinders. The cylinders support forces owing to surface tension and hydrostatic pressure that balance the weight of the liquid. The shape of the liquid bridge is determined by analytically solving the nonlinear Laplace–Young equation. Parameters that maximize the trapping capacity (defined as the cross-sectional area of the liquid bridge) are then determined. The results show that these parameters can be approximated with simple relationships when the radius of the cylinders is small compared with the capillary length. For such small cylinders, liquid bridges with the largest cross-sectional area occur when the centre-to-centre distance between the cylinders is approximately twice the capillary length. The maximum trapping capacity for a pair of cylinders at a given separation is linearly related to the separation when it is small compared with the capillary length. The meniscus slope angle of the largest liquid bridge produced in this regime is also a linear function of the separation. We additionally derive approximate solutions for the profile of a liquid bridge, using the linearized Laplace–Young equation. These solutions analytically verify the above-mentioned relationships obtained for the maximization of the trapping capacity. PMID:27616922

  11. 30 CFR 57.16006 - Protection of gas cylinder valves.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of gas cylinder valves. 57.16006... Storage and Handling § 57.16006 Protection of gas cylinder valves. Valves on compressed gas cylinders shall be protected by covers when being transported or stored, and by a safe location when the cylinders...

  12. 30 CFR 56.16006 - Protection of gas cylinder valves.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of gas cylinder valves. 56.16006... Storage and Handling § 56.16006 Protection of gas cylinder valves. Valves on compressed gas cylinders shall be protected by covers when being transported or stored, and by a safe location when the cylinders...

  13. A nonlinear model for a towed flexible cylinder

    Science.gov (United States)

    Kheiri, M.; Païdoussis, M. P.; Amabili, M.

    2013-04-01

    In this paper, a weakly nonlinear equation of motion is derived for the dynamics of a towed, neutrally buoyant flexible slender cylinder. The cylinder is terminated by end-pieces at its two ends and is fastened via a massless towrope to a support rigidly fixed upstream. The motions are considered to take place in a horizontal plane. The equation of motion is obtained via Hamilton's principle after obtaining the Lagrangian of the system and the virtual work associated with the fluid dynamic forces. For convenience, the fluid-related forces are derived separately: inviscid hydrodynamic forces are modelled by an extension of Lighthill's slender-body work to third-order accuracy, and the viscous forces are derived to the same accuracy, by elaboration of Taylor's expressions. The Galerkin method is used to discretize the equation of motion with the free-free Euler-Bernoulli beam eigenfunctions, and the resulting set of first-order equations are solved numerically using a time-integration solver. Numerical results are obtained to illustrate the typical dynamical behaviour of a towed flexible cylinder, generally confirming experimental observations and linear theory predictions made in the past. Also, the effect of the towrope-length to cylinder-length ratio and the effect of the tail end-piece shape on the dynamics and stability of the system are investigated. The results confirm that for a towed flexible cylinder, if the tail end-piece is not blunt and the towrope not too short, both rigid-body and flexural instabilities may develop as the flow velocity is increased. The former occur at low flow velocities, in the form of oscillatory and then static instabilities, whereas the latter generally occur at higher flow velocities in the form of second- and then third-mode flutter. Moreover, it is found that the system becomes less stable and is subject to larger deformations if the towrope is longer. On the other hand, making the tail end-piece sufficiently blunt can

  14. Results of ultrasonic testing evaluations on UF6 storage cylinders

    International Nuclear Information System (INIS)

    Lykins, M.L.

    1997-02-01

    The three site cylinder management program is responsible for the safe storage of the DOE owned UF 6 storage cylinders at PORTS, PGDP and at the K-25 site. To ensure the safe storage of the UF 6 in the cylinders, the structural integrity of the cylinders must be evaluated. This report represents the latest cylinder integrity investigation that utilized wall thickness evaluations to identify thinning due to atmospheric exposure

  15. Statics of Thin-Walled Pretwisted Beams

    DEFF Research Database (Denmark)

    Krenk, Steen; Gunneskov, O.

    1981-01-01

    of the beam axis with any of the structural axes. This procedure gives a unique consistent definition of sectional moments and generalized forces. Some simple explicit formulae are derived for homogeneous tension–torsion. For the general case a computer code is developed on the basis of discretized...

  16. Durability of thin-walled concrete structures

    International Nuclear Information System (INIS)

    Salomon, M.; Gallias, J.L.

    1991-01-01

    The aim of the present document is to draw up a survey of knowledge of the problems of ageing of reinforced concrete shell structure atmospheric coolers. The exposure conditions are particularly favourable to the induction and development of degradation which, because of the thinness of the reinforced concrete can compromise the stability and the durability of coolers. The study will be axed on the link between the specific characteristics of coolers from the point of view of operation, design and environment, also the durability of reinforced concrete. The set of factors exerting their influence on the reinforced concrete of the shell structure (condensates, rain water, temperature and humidity gradients, dynamic loads, weathering, etc.) is particularly complex. The principal degradation reactions involved are classified according to the chemical and physical action on concrete and on the reinforcement. Particular emphasis is placed on the analysis of degradation processes and the influence of the characteristics of the materials and of the medium. The aim is to determine the mechanisms which present the greatest risk for coolers. The interaction between the degradation to concrete and the change in mechanical characteristics is also studied [fr

  17. Effect of longitudinal and transverse vibrations of an upstream square cylinder on vortex shedding behind two inline square cylinders

    International Nuclear Information System (INIS)

    Patil, Pratish P; Tiwari, Shaligram

    2009-01-01

    The characteristics of unsteady wakes behind a stationary square cylinder and another upstream vibrating square cylinder have been investigated numerically with the help of a developed computational code. The effect of longitudinal as well as transverse vibrations of the upstream cylinder is studied on the coupled wake between the two cylinders, which is found to control the vortex shedding behavior behind the downstream stationary cylinder. Computations are carried out for a fixed value of Reynolds number (Re = 200) and three different values of excitation frequencies of the upstream cylinder, namely less than, equal to and greater than the natural frequency of vortex shedding corresponding to flow past a stationary square cylinder. The vortex shedding characteristics of the unsteady wakes behind the vibrating and stationary cylinders are found to differ significantly for longitudinal and transverse modes of vibration of the upstream cylinder. The wake of the downstream stationary cylinder is found to depict a synchronization behavior with the upstream cylinder vibration. The spacing between the two cylinders has been identified to be the key parameter influencing the synchronization phenomenon. The effect of cylinder spacing on the wake synchronization and the hydrodynamic forces has been examined. In addition, a comparison of the drag forces for flow past transversely vibrating square and circular cylinders for similar amplitudes and frequencies of cylinder vibration has been presented while employing the tested computational code.

  18. Prediction of external corrosion for steel cylinders

    International Nuclear Information System (INIS)

    Lyon, B.F.

    1997-02-01

    The US Department of Energy (DOE) currently manages the UF 6 Cylinder Program (the program). The program was formed to address the depleted-uranium hexafluoride (UF 6 ) stored in approximately 50,000 carbon steel cylinders. The cylinders are located at three DOE sites: the K-25 site (K-25) at Oak Ridge, Tennessee; the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. The System Requirements Document (SRD) (LMES 1996a) delineates the requirements of the program. The appropriate actions needed to fulfill these requirements are then specified within the System Engineering Management Plan (SEMP) (LMES 1996b). The report presented herein documents activities that in whole or in part satisfy specific requirements and actions stated in the UF 6 Cylinder Program SRD and SEMP with respect to forecasting cylinder conditions. The wall thickness projections made in this report are based on the assumption that the corrosion trends noted will continue. Some activities planned may substantially reduce the rate of corrosion, in which case the results presented here are conservative. The results presented here are intended to supersede those presented previously, as the quality of several of the datasets has improved

  19. Oscillatory Stokes Flow Past a Slip Cylinder

    Science.gov (United States)

    Palaniappan, D.

    2013-11-01

    Two-dimensional transient slow viscous flow past a circular cylinder with Navier slip boundary conditions is considered in the limit of low-Reynolds number. The oscillatory Stokes flow problem around a cylinder is solved using the stream function method leading to an analytic solution in terms of modified Bessel functions of the second kind. The corresponding steady-state behavior yields the familiar paradoxical result first detected by Stokes. It is noted that the two key parameters, viz., the frequency λ, and the slip coefficient ξ have a significant impact on the flow field in the vicinity of the cylinder contour. In the limit of very low frequency, the flow is dominated by a term containing a well-known biharmonic function found by Stokes that has a singular behavior at infinity. Local streamlines for small times show interesting flow patterns. Attached eddies due to flow separation - observed in the no-slip case - either get detached or pushed away from the cylinder surface as ξ is varied. Computed asymptotic results predict that the flow exhibits inviscid behavior far away from the cylinder in the frequency range 0 < λ << 1 . Although the frequency of oscillations is finite, our exact solutions reveal fairly rapid transitions in the flow domain. Research Enhancement grant, TAMUCC.

  20. UF{sub 6} cylinder fire test

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H. [Oak Ridge K-25 Site, Oak Ridge, TN (United States)

    1991-12-31

    With the increasing number of nuclear reactors for power generation, there is a comparable increase in the amount of UF{sub 6} being transported. Likewise, the probability of having an accident involving UF{sub 6}-filled cylinders also increases. Accident scenarios which have been difficult to assess are those involving a filled UF{sub 6} cylinder subjected to fire. A study is underway at the Oak Ridge K-25 Site, as part of the US DOE Enrichment Program, to provide empirical data and a computer model that can be used to evaluate various cylinder-in-fire scenarios. It is expected that the results will provide information leading to better handling of possible fire accidents as well as show whether changes should be made to provide different physical protection during shipment. The computer model being developed will be capable of predicting the rupture of various cylinder sizes and designs as well as the amount of UF{sub 6}, its distribution in the cylinder, and the conditions of the fire.

  1. Corrosion of breached UF6 storage cylinders

    International Nuclear Information System (INIS)

    Barber, E.J.; Taylor, M.S.; DeVan, J.H.

    1993-01-01

    This paper describes the corrosion processes that occurred following the mechanical failure of two steel 14-ton storage cylinders containing depleted UF 6 . The failures both were traced to small mechanical tears that occurred during stacking of the cylinders. Although subsequent corrosion processes greatly extended the openings in the wall. the reaction products formed were quite protective and prevented any significant environmental insult or loss of uranium. The relative sizes of the two holes correlated with the relative exposure times that had elapsed from the time of stacking. From the sizes and geometries of the two holes, together with analyses of the reaction products, it was possible to determine the chemical reactions that controlled the corrosion process and to develop a scenario for predicting the rate of hydrolysis of UF 6 , the loss rate of HF, and chemical attack of a breached UF 6 storage cylinder

  2. Stability of cylinder arrangement in potential flow

    International Nuclear Information System (INIS)

    Benaouicha, M.; Longatte, E.; Baj, F.

    2014-01-01

    Fluid-structure interaction and flow-induced vibration in square cylinder arrangement under incompressible, ideal and irrotational cross flow are investigated in the present paper. The purpose of this study is to contribute to better understanding of external fluid loads exerted on long thin cylinders inducing the flow perturbations. Indeed, in presence of high flow confinement, the thin cylinders could be subjected to strong vibrations, which may lead to instability development and therefore to a risk of break or collision. The dynamic instability of the mobile tube, according to some geometric and flow parameters such as reduced velocity and pitch ratio, is then studied. A semi-analytical approach is used to determine a stability criterion of the dynamical system. In addition, the influence of key physical parameters on fluid-solid dynamics interaction is quantified in the studied configuration. (authors)

  3. Free Vibration of Thick Multilayer Cylinders

    Directory of Open Access Journals (Sweden)

    H. R. Hamidzadeh

    1995-01-01

    Full Text Available In this study of the free vibration of multilayer thick cylinders, the medium is modeled by laminated linear viscoelastic cylinders of an infinite extent. The analytical modeling is based on three-dimensional wave propagation utilizing constant complex elastic moduli. The solution is achieved by determining the displacements and stresses for each interface and by complying with requirements at the interfaces. A propagator matrix relating the boundary displacements to boundary stresses is developed. Dimensionless natural frequencies and modal loss factors for different circumferential and axial wave numbers are determined. The validity of the proposed method is verified by comparing the results for one-, two-, and three-layer elastic cylinders with properties similar to those reported for an equivalent single layer.

  4. Collapsing of Thick-Walled Cylinders Using Electro-Magnetic Driving Forces

    Science.gov (United States)

    Lovinger, Zev; Rikanati, Avi; Rittel, Daniel; Rosenberg, Zvi

    2009-06-01

    The Thick-Walled Cylinder technique, reported in the literature, uses explosive loading to enforce collapsing of the cylindrical sample. This experimental set-up has been established as a controlled and repeatable technique to create and study multiple adiabatic shear bands. Searching to establish a simpler experimental platform to perform large sets of experiments, we have designed an Electro-Magnetic (EM) set-up for the collapsing of thick walled cylinders. The EM set-up is based on a pulsed current generator using a capacitor bank system. The specimen is an assembly of coaxial cylinders, where the inner and outer cylinders, each attached to an opposite pole, are short-circuited. Upon discharge, a high current flows through the cylinders, in opposite directions, creating repulsive magnetic forces between them. This work presents the design procedure of the specimens using numerical simulations and some experimental results for SS304L thick-walled samples, using this set-up. The spatial distribution of the multiple adiabatic shear bands in these experiments is in good agreement with that reported in the literature for the explosive driven experiments with a similar material.

  5. UF{sub 6} cylinder inspections at PGDP

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, G.W.; Whinnery, W.N. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    Routine inspections of all UF{sub 6} cylinders at the Paducah Gaseous Diffusion Plant have been mandated by the Department of Energy. A specific UF{sub 6} cylinder inspection procedure for what items to inspect and training for the operators prior to inspection duty are described. The layout of the cylinder yards and the forms used in the inspections are shown. The large number of cylinders (>30,000) to inspect and the schedule for completion on the mandated time table are discussed. Results of the inspections and the actions to correct the deficiencies are explained. Future inspections and movement of cylinders for relocation of certain cylinder yards are defined.

  6. Evaluation of Concrete Cylinder Tests Using Finite Elements

    DEFF Research Database (Denmark)

    Saabye Ottosen, Niels

    1984-01-01

    Nonlinear axisymmetric finite element analyses are performed on the uniaxial compressive test of concrete cylinders. The models include thick steel loading plates, and cylinders with height‐to‐diameter ratios (h/d) ranging from 1‐3 are treated. A simple constitutive model of the concrete...... cylinders the strain softening is more pronounced along the surface of the cylinder middle, whereas longer cylinders exhibit a more uniform distribution of strain softening. The failure modes for force and displacement controlled tests are found to be similar. If long cylinders are to provide the true...

  7. Electromagnetic Invisibility of Elliptic Cylinder Cloaks

    International Nuclear Information System (INIS)

    Kan, Yao; Chao, Li; Fang, Li

    2008-01-01

    Structures with unique electromagnetic properties are designed based on the approach of spatial coordinate transformations of Maxwell's equations. This approach is applied to scheme out invisible elliptic cylinder cloaks, which provide more feasibility for cloaking arbitrarily shaped objects. The transformation expressions for the anisotropic material parameters and the field distribution are derived. The cloaking performances of ideal and lossy elliptic cylinder cloaks are investigated by finite element simulations. It is found that the cloaking performance will degrade in the forward direction with increasing loss. (fundamental areas of phenomenology (including applications))

  8. EC Hidraulic Drive Cylinder Relief Vlave Test

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.; /Fermilab

    1991-04-03

    This engineering note documents the testing of the set pressure of the EC hydraulic drive cylinder relief valve. The purpose of the relief valve is to provide a safety measure in the event that oil becomes trapped in the rod side of the cylinder and pressure is applied to the cap side. The note includes an explanation of the procedure used and a summary of the result of the testing done on February 14, 1991 by Gary Trotter. The result was that the cylinder relief valve relieved at the correct set pressure of 10,500 psig. The basic concern is for the protection of the cylinder. The pump is capable of providing up to 10,500 psi of pressure to either side of the cylinder. The cylinder is rated for 10,500 psi. Under normal operating conditions, the valves would be open, and the pumping pressure would automatically flow oil into one side, and remove oil from the other side. If, however, the valve for the other side was closed, so that oil could not be removed, then the pressure would build in that side. If the rod side is pressurized to the maximum pump pressure of 10,500 psi, the cross sectional area ratio of 2.29 results in a pressure of approximately 4600 psi in the cap side, which is well under the rated pressure. If, however, the cap side is pressurized to 10,500 psi, the cross sectional area would produce a pressure of approximately 24,000 psi in the rod side, which could damage the cylinder. Therefore, the pressure on the rod side must be limited to the rated pressure of 10,500 psi. In reality, the maximum operating force on the piston would be under 11,000 Ibs., which would result in the maximum cylinder pressure being under 8000 psi to the rod side, and under 3500 psi to the cap side. Therefore, the relief is only needed as a safety precaution in the case that oil becomes trapped.

  9. On certain geodesic conjugacies of flat cylinders

    Indian Academy of Sciences (India)

    called Cr-conjugacy rigid if whenever (M,g) is Cr geodesically conjugate to a complete. Riemannian manifold (N , h), ... to an infinite right circular cylinder in the three dimensional Euclidean space. Moreover, the radius of ... Also, it follows from the geodesic equation that a parallel r = r0 of S is a closed geodesic if and only if.

  10. UF6 cylinder lifting equipment enhancements

    International Nuclear Information System (INIS)

    Hortel, J.M.

    1991-01-01

    This paper presents numerous enhancements that have been made to the Portsmouth lifting equipment to ensure the safe handling of cylinders containing liquid uranium hexafluoride (UF 6 ). The basic approach has been to provide redundancy to all components of the lift path so that any one component failure would not cause the load to drop or cause any undesirable movement. 4 figs

  11. A jumping cylinder in an incline

    Science.gov (United States)

    Gomez, Raul W.; Hernandez, Jorge; Marquina, Vivianne

    2012-02-01

    The problem of a cylinder of mass m and radius r, with its center of mass out of the cylinder axis, rolling in an incline that makes an angle α respect to the horizontal is analyzed. The equation of motion is solved to obtain the site where the cylinder loses contact with the incline (jumps). Several simplifications are made: the analyzed system consists of an homogeneous disc with a one dimensional straight line of mass parallel to the disc axis at a distance d Styrofoam cylinder of radius r = 10.0 ± 0.05 cm, high h = 5.55 ± 0.05 cm and a mass m1 = 24.45 ± 0.05 g, to which a 9.50 ± 0.01 mm diameter and 5.10 ± 0.001 cm long brass road of mass m2 = 30.75 ± 0.05 g was imbibed parallel to the disc axis at a distance of 5.40 ± 0.05 cm from it. Then the disc rolls on a 3.20 m long wooden ramp inclined at 30 and 45 respect to the horizontal. To determine the jumping site, the movements were recorded with a high-speed video camera (Casio EX ZR100) at 400 frames per second. The experimental results agree well with the theoretical predictions.

  12. The Experience Cylinder, an immersive interactive platform

    DEFF Research Database (Denmark)

    Andreasen, Troels; Gallagher, John Patrick; Møbius, Nikolaj

    2011-01-01

    This paper describes the development of an experimental interactive installation, a so-called "experience cylinder", intended as a travelogue and developed specifically to provide a narrative about the Viking ship Sea Stallion’s (Havhingst) voyage from Roskilde to Dublin and back. The installatio...

  13. Cylindrical vortex wake model: right cylinder

    DEFF Research Database (Denmark)

    Branlard, Emmanuel; Gaunaa, Mac

    2015-01-01

    The vortex system consisting of a bound vortex disk, a root vortex and a vortex cylinder as introduced by Joukowski in 1912 is further studied in this paper. This system can be used for simple modeling of rotors (e.g. wind turbines) with infinite number of blades and finite tip-speed ratios. For ...

  14. Over cylinders en eiwit in urine

    NARCIS (Netherlands)

    Meyler, Leopold

    1932-01-01

    Bij de chronische nefritis ziet men heel vaak onder invloed van eiwitarm voedsel, dat de albuminurie teruggaat en dat de cylinders geheel uit de urine verdwijnen. Men mag dit niet aan een verbetering van den toestand toeschrijven, immers de nierfunctie wordt ondertusschen vaak nog slechter. Als

  15. Reshaping the perfect electrical conductor cylinder arbitrarily

    International Nuclear Information System (INIS)

    Chen Huanyang; Zhang Xiaohe; Luo Xudong; Ma Hongru; Chan Cheting

    2008-01-01

    A general method is proposed to design a cylindrical cloak, concentrator and superscatterer with an arbitrary cross section. The method is demonstrated by the design of a perfect electrical conductor (PEC) reshaper which is able to reshape a PEC cylinder arbitrarily by combining the concept of cloak, concentrator and superscatterer together. Numerical simulations are performed to demonstrate its properties.

  16. Breached cylinder incident at the Portsmouth gaseous diffusion plant

    Energy Technology Data Exchange (ETDEWEB)

    Boelens, R.A. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    On June 16, 1990, during an inspection of valves on partially depleted product storage cylinders, a 14-ton partially depleted product cylinder was discovered breached. The cylinder had been placed in long-term storage in 1977 on the top row of Portsmouth`s (two rows high) storage area. The breach was observed when an inspector noticed a pile of green material along side of the cylinder. The breach was estimated to be approximately 8- inches wide and 16-inches long, and ran under the first stiffening ring of the cylinder. During the continuing inspection of the storage area, a second 14-ton product cylinder was discovered breached. This cylinder was stacked on the bottom row in the storage area in 1986. This breach was also located adjacent to a stiffening ring. This paper will discuss the contributing factors of the breaching of the cylinders, the immediate response, subsequent actions in support of the investigation, and corrective actions.

  17. Analysis of fatigue life for tube trailer cylinders

    OpenAIRE

    Xinqi YU; Bolong SONG; Zhao ZHANG; Qinggang LIU

    2015-01-01

    Risk of fatigue failure exists in the tube trailer cylinders under the condition of internal pressure variation and inertial load caused through road transport. In order to estimate the safety state of the cylinders under the action of alternating load, the model of certain geometry sizes is built based on the widely used tube trailer cylinders. The fatigue analysis of tube trailer gas cylinders is made aiming at the action of the internal pressure and the inertial load. The fatigue life dist...

  18. Inner and outer cylinders of the CMS vacuum tank.

    CERN Document Server

    Patrice Loïez

    2002-01-01

    The vacuum tank of the CMS magnet system consists of inner and outer stainless-steel cylinders and houses the superconducting coil. The inner cylinder contains all the barrel sub-detectors, which it supports via a system of horizontal rails. The cylinder is pictured here in the vertical position on a yellow platform mounted on the ferris-wheel support structure. This will allow it to be pivoted and inserted into the already installed outer cylinder, through which this photo was taken.

  19. Open revolver cylinder at the suicide death scene.

    Science.gov (United States)

    Wetli, Charles V; Krivosta, George; Sturiano, Jack V

    2002-09-01

    Revolvers with an open cylinder were found at three death scenes of apparently self-inflicted gunshot wounds. All three handguns were Smith & Wesson.38 or.357 revolvers. Investigation revealed that firing the gun with the thumb on the cylinder release latch could disengage the cylinder. A combination of gravity and recoil impact against the thumb would open the cylinder and even allow the casing and the unspent cartridges to fall from the gun, creating a confusing death scene.

  20. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 2

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.

    1975-10-01

    Model 2 in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. Both the cylinder and the nozzle of model 2 had outside diameters of 10 in., giving a d 0 /D 0 ratio of 1.0, and both had outside diameter/thickness ratios of 100. Sixteen separate loading cases in which one end of the cylinder was rigidly held were analyzed. An internal pressure loading, three mutually perpendicular force components, and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. In addition to these 13 loadings, 3 additional loads were applied to the nozzle (in-plane bending moment, out-of-plane bending moment, and axial force) with the free end of the cylinder restrained. The experimental stress distributions for each of the 16 loadings were obtained using 152 three-gage strain rosettes located on the inner and outer surfaces. All the 16 loading cases were also analyzed theoretically using a finite-element shell analysis. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good general agreement, and it is felt that the analysis would be satisfactory for most engineering purposes. (auth)

  1. 30 CFR 57.16005 - Securing gas cylinders.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Securing gas cylinders. 57.16005 Section 57.16005 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Storage and Handling § 57.16005 Securing gas cylinders. Compressed and liquid gas cylinders shall be...

  2. 46 CFR 197.338 - Compressed gas cylinders.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compressed gas cylinders. 197.338 Section 197.338... STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.338 Compressed gas cylinders. Each compressed gas cylinder must— (a) Be stored in a ventilated area; (b) Be protected from excessive heat; (c...

  3. 30 CFR 56.16005 - Securing gas cylinders.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Securing gas cylinders. 56.16005 Section 56.16005 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... and Handling § 56.16005 Securing gas cylinders. Compressed and liquid gas cylinders shall be secured...

  4. Image analysis of moving seeds in an indented cylinder

    DEFF Research Database (Denmark)

    Buus, Ole; Jørgensen, Johannes Ravn

    2010-01-01

    inspection in seed cleaning equipment. A prototype of an indented cylinder will be constructed. To make it more dynamic, the cylinder itself will be manufactured using 3D printing technology. The input will come either from 3D scans of existing cylinders or by defining their topology using parametric B...

  5. Investigation of breached depleted UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    DeVan, J.H. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31

    In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. An investigation team was immediately formed to determine the cause of the failures and their impact on future storage procedures and to recommend corrective actions. Subsequent investigation showed that the failures most probably resulted from mechanical damage that occurred at the time that the cylinders had been placed in the storage yard. In both cylinders evidence pointed to the impact of a lifting lug of an adjacent cylinder near the front stiffening ring, where deflection of the cylinder could occur only by tearing the cylinder. The impacts appear to have punctured the cylinders and thereby set up corrosion processes that greatly extended the openings in the wall and obliterated the original crack. Fortunately, the reaction products formed by this process were relatively protective and prevented any large-scale loss of uranium. The main factors that precipitated the failures were inadequate spacing between cylinders and deviations in the orientations of lifting lugs from their intended horizontal position. After reviewing the causes and effects of the failures, the team`s principal recommendation for remedial action concerned improved cylinder handling and inspection procedures. Design modifications and supplementary mechanical tests were also recommended to improve the cylinder containment integrity during the stacking operation.

  6. Imperfection effects on the buckling of hydrostatically loaded cylinders

    DEFF Research Database (Denmark)

    Pinna, Rodney; Madsen, Søren

    2015-01-01

    imperfection sensitivity. Work on cylinders with other loading conditions, such as hydrostatic loading, is more limited. Similarly, there is limited work on cylinders with boundary conditions other than simply-supported ends. This paper looks at the case of cylinders under hydrostatic load, which is often...

  7. Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders

    NARCIS (Netherlands)

    De Kanter, J.L.C.G.

    2006-01-01

    Summary accompanying the thesis: Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders by Jens de Kanter This thesis presents the investigation of the crush behaviour of both monolithic aluminium cylinders and externally fibre reinforced aluminium cylinders. The research is based

  8. Stabilization of flow past a cylinder with rounded corners

    Science.gov (United States)

    Zhang, Wei; Samtaney, Ravi

    2015-11-01

    We present results of global linear stability analysis for flow past a cylinder in the low Reynolds number regime Re = 50 - 110 . The four corners of the square cylinder are rounded with a radius of curvature R+ = R / D in which R is the rounding radius and D is the cylinder diameter. Analysis is carried out for R+ = 0 . 00 (square cylinder with sharp corners) to R+ = 0 . 50 (circular cylinder) to investigate its effect on the stability characteristics of the flow. The results reveal that the flow may be stabilized by the rounding of the corners for Re Gene/P Shaheen at KAUST was utilized for the simulations.

  9. Variable Structure Compensation PID Control of Asymmetrical Hydraulic Cylinder Trajectory Tracking

    OpenAIRE

    Liu, Difei; Tang, Zhiyong; Pei, Zhongcai

    2015-01-01

    A novel variable structure compensation PID control, VSCPID in short, is proposed for trajectory tracking of asymmetrical hydraulic cylinder systems. This new control method improves the system robustness by adding a variable structure compensation term to the conventional PID control. The variable structure term is designed according to sliding mode control method and therefore could compensate the disturbance and uncertainty. Meanwhile, the proposed control method avoids the requirements fo...

  10. Upgraded Analytical Model of the Cylinder Test

    Energy Technology Data Exchange (ETDEWEB)

    Souers, P. Clark [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center; Lauderbach, Lisa [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center; Garza, Raul [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center; Ferranti, Louis [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center; Vitello, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center

    2013-03-15

    A Gurney-type equation was previously corrected for wall thinning and angle of tilt, and now we have added shock wave attenuation in the copper wall and air gap energy loss. Extensive calculations were undertaken to calibrate the two new energy loss mechanisms across all explosives. The corrected Gurney equation is recommended for cylinder use over the original 1943 form. The effect of these corrections is to add more energy to the adiabat values from a relative volume of 2 to 7, with low energy explosives having the largest correction. The data was pushed up to a relative volume of about 15 and the JWL parameter ω was obtained directly. Finally, the total detonation energy density was locked to the v = 7 adiabat energy density, so that the Cylinder test gives all necessary values needed to make a JWL.

  11. Upgraded Analytical Model of the Cylinder Test

    Energy Technology Data Exchange (ETDEWEB)

    Souers, P. Clark; Lauderbach, Lisa; Garza, Raul; Ferranti, Louis; Vitello, Peter

    2013-03-15

    A Gurney-type equation was previously corrected for wall thinning and angle of tilt, and now we have added shock wave attenuation in the copper wall and air gap energy loss. Extensive calculations were undertaken to calibrate the two new energy loss mechanisms across all explosives. The corrected Gurney equation is recommended for cylinder use over the original 1943 form. The effect of these corrections is to add more energy to the adiabat values from a relative volume of 2 to 7, with low energy explosives having the largest correction. The data was pushed up to a relative volume of about 15 and the JWL parameter ω was obtained directly. The total detonation energy density was locked to the v=7 adiabat energy density, so that the Cylinder test gives all necessary values needed to make a JWL.

  12. Fluid structural response of axially cracked cylinders

    International Nuclear Information System (INIS)

    Garnich, M.R.; Simoneh, F.A.

    1985-01-01

    The fluid structural (FS) response of a cylindrical pressure vessel to a suddenly occurring longitudinal through-wall crack is predicted. The effects of vessel internals and depressurization of the compressed water on dynamic crack opening displacements are investigated. A three dimensional (3D) structural finite element model is used as a basis for the development of a two dimensional (2D) FS model. A slice of the vessel taken at the crack midspan and normal to the cylinder axis is modeled. Crack opening displacements are compared between the 2D and 3D models, between the different assumptions about fluid depressurization, and between the static and dynamic solutions. The results show that effects of dynamic amplification associated with the sudden opening of the crack in the cylinder are largely offset by the local depressurization of the fluid adjacent to the crack

  13. Analysis of fatigue life for tube trailer cylinders

    Directory of Open Access Journals (Sweden)

    Xinqi YU

    2015-08-01

    Full Text Available Risk of fatigue failure exists in the tube trailer cylinders under the condition of internal pressure variation and inertial load caused through road transport. In order to estimate the safety state of the cylinders under the action of alternating load, the model of certain geometry sizes is built based on the widely used tube trailer cylinders. The fatigue analysis of tube trailer gas cylinders is made aiming at the action of the internal pressure and the inertial load. The fatigue life distribution of cylinders is obtained under the condition of different loads through the numerical simulation by ANSYS Workbench. The analysis results show that under internal pressure, gas cylinders have limited fatigue life, but can satisfy the requirements; when the inertial load exceeds a certain value, natural gas cylinders of tube trailer is under finite life state, which does not meet the requirements of strength, therefore the inertial load should be controlled.

  14. Carbon fiber reinforced hierarchical orthogrid stiffened cylinder: Fabrication and testing

    Science.gov (United States)

    Wu, Hao; Lai, Changlian; Sun, Fangfang; Li, Ming; Ji, Bin; Wei, Weiyi; Liu, Debo; Zhang, Xi; Fan, Hualin

    2018-04-01

    To get strong, stiff and light cylindrical shell, carbon fiber reinforced hierarchical orthogrid stiffened cylinders are designed and fabricated. The cylinder is stiffened by two-scale orthogrid. The primary orthogrid has thick and high ribs and contains several sub-orthogrid cells whose rib is much thinner and lower. The primary orthogrid stiffens the bending rigidity of the cylinder to resist the global instability while the sub-orthogrid stiffens the bending rigidity of the skin enclosed by the primary orthogrid to resist local buckling. The cylinder is fabricated by filament winding method based on a silicone rubber mandrel with hierarchical grooves. Axial compression tests are performed to reveal the failure modes. With hierarchical stiffeners, the cylinder fails at skin fracture and has high specific strength. The cylinder will fail at end crushing if the end of the cylinder is not thickened. Global instability and local buckling are well restricted by the hierarchical stiffeners.

  15. Mechanical Cushion Design Influence on Cylinder Dynamics

    DEFF Research Database (Denmark)

    Borghi, Massimo; Milani, Massimo; Conrad, Finn

    2005-01-01

    The paper deals with the simulation and the experimental verification of the dynamic behaviour of a linear actuator equipped with different configurations of mechanical cushion. A numerical model, developed and tailored to describe the influence of different modulation of the discharged flow....... experimental comparison, involving the piston velocity and the cylinder chambers pressure. After, with the aim of highlighting the effect of mechanical cushions design on a two effect linear actuator dynamic performances, the characteristics modulation of four alternative cushioning systems are determined...

  16. Chaotic Rotation of a Towed Elliptical Cylinder

    OpenAIRE

    Weymouth, G D

    2013-01-01

    In this paper I consider the self-excited rotation of an elliptical cylinder towed in a viscous fluid as a canonical model of nonlinear fluid structure interactions with possible applications in the design of sensors and energy extraction devices. First, the self-excited ellipse system is shown to be analogous to the forced bistable oscillators studied in classic chaos theory. A single variable, the distance between the pivot and the centroid, governs the system bifurcation into bi-stability....

  17. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 3

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Bolt, S.E.; Corum, J.M.; Bryson, J.W.

    1975-06-01

    The third in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: the experimental data provide design information directly applicable to nozzles in cylindrical vessels; and the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 3 had a 10 in. OD and the nozzle had a 1.29 in. OD, giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios for the cylinder and the nozzle were 50 and 7.68 respectively. Thirteen separate loading cases were analyzed. In each, one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for all the loadings were obtained using 158 three-gage strain rosettes located on the inner and outer surfaces. The loading cases were also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)

  18. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 4

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.

    1975-06-01

    The last in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models in the series are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: (1) the experimental data provide design information directly applicable to nozzles in cylindrical vessels, and (2) the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 4 had an outside diameter of 10 in., and the nozzle had an outside diameter of 1.29 in., giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios were 50 and 20.2 for the cylinder and nozzle respectively. Thirteen separate loading cases were analyzed. For each loading condition one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for each of the 13 loadings were obtained using 157 three-gage strain rosettes located on the inner and outer surfaces. Each of the 13 loading cases was also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)

  19. Measurements of the Flowfield Interaction Between Tandem Cylinders

    Science.gov (United States)

    Neuhart, Dan H.; Jenkins, Luther N.; Choudhari, Meelan M.; Khorrami, Mehdi R.

    2009-01-01

    This paper presents the most recent measurements from an ongoing investigation of the unsteady wake interference between a pair of circular cylinders in tandem. The purpose of this investigation is to help build an in-depth experimental database for this canonical flow configuration that embodies the effects of component interaction in landing gear noise. This new set of measurements augments the previous database at the primary Reynolds number (based on tunnel speed and cylinder diameter) of 1.66 105 in four important respects. First, better circumferential resolution of surface pressure fluctuations is obtained via cylinder "clocking". Second, higher resolution particle image velocimetry measurements of the shear layer separating from the cylinders are achieved. Third, the effects of simultaneous boundary layer trips along both the front and rear cylinders, versus front cylinder alone in the previous measurements, are studied. Lastly, on-surface and off-surface characteristics of unsteady flow near the "critical" cylinder spacing, wherein the flow switches intermittently between two states that are characteristic of lower and higher spacings, are examined. This critical spacing occurs in the middle of a relatively sudden change in the drag of either cylinder and is characterized by a loud intermittent noise and a flow behavior that randomly transitions between shear layer attachment to the rear cylinder and constant shedding and rollup in front of it. Analysis of this bistable flow state reveals much larger spanwise correlation lengths of surface pressure fluctuations than those at larger and smaller values of the cylinder spacing.

  20. Differences in scour around a single surface-piercing cylinder and a submerged cylinder

    Science.gov (United States)

    Beninati, M. L.; Volpe, M. A.; Riley, D. R.; Krane, M.

    2011-12-01

    The equilibrium state of scour for a single surface piercing cylinder and a submerged cylinder of specific aspect ratio are presented. The equilibrium state is defined by a scour depth and associated time interval for a given set of flow conditions. Control variables such as sediment coarseness (or grain size) and cylinder size are held constant, while the flow intensity is varied. Sediment bed form topology is characterized with a series of two-dimensional slices across the bed for both the surface-piercing and submerged cylinder cases. Test results will help identify the geometry and pattern of the scour around the cylinders to aid in the optimal design of marine hydrokinetic (MHK) support structures in an effort to help minimize the deleterious impact of these devices on the local substrate. This study is performed in the small-scale testing platform in the hydraulic flume facility (32 ft long, 4 ft wide and 1.25 ft deep) in the Environmental Fluid Mechanics and Hydraulics Laboratory (EFM&H) at Bucknell University. The cylinders, of the same material and diameter, are placed centrally in the sediment filled test section (2.5 ft long, 2 ft wide and 0.75 ft deep) of the platform. Flow field measurements are taken with a 16-MHz Micro Acoustic Doppler Velocimeter while water depth is acquired using an ultrasonic distance sensor. These devices are attached to a gantry system that can be accurately positioned anywhere in the test section. Clear-water conditions (in the absence of live-bed scour) are maintained to study the effect of the horseshoe and wake vortices on the displacement of sediment around the cylinder as well as downstream of the device. Bed form topology is measured using an HR Wallingford 2D Sediment Bed Profiler with a low-powered laser distance sensor to accurately characterize changes in bed form around the cylinders. Additionally, specifications for testing such as operational procedures for start-up and shut-down of the facility are given.

  1. Adaptronic tools for superfinishing of cylinder bores

    Science.gov (United States)

    Roscher, Hans-Jürgen; Hochmuth, Carsten; Hoffmann, Michael; Praedicow, Michael

    2012-04-01

    Today in the production of internal combustion engines it is possible to make pistons as well as cylinders, for all practical purposes, perfectly round. The negative consequences of the subsequent assembly processes and operation of the engine is that the cylinders and pistons are deformed, resulting in a loss of power and an increase in fuel consumption. This problem can be solved by using an adaptronic tool, which can machine the cylinder to a predetermined nonround geometry, which will deform to the required geometry during assembly and operation of the engine. The article describes the actuatory effect of the tool in conjunction with its measuring and controlling algorithms. The adaptronic tool consists out the basic tool body and three axially-staggered floating cutter groups, these cutter groups consist out of guides, actuators and honing stones. The selective expansion of the tool is realised by 3 piezoelectric multilayer-actuators deployed in a series - parallel arrangement. It is also possible to superimpose actuator expansion on the conventional expansion. A process matrix is created during the processing of the required and actual contour data in a technology module. This is then transferred over an interface to the machine controller where it is finally processed and the setting values for the piezoelectric actuators are derived, after which an amplifier generates the appropriate actuator voltages. A slip ring system on the driveshaft is used to transfer the electricity to the actuators in the machining head. The functioning of the adaptronic form-honing tool and process were demonstrated with numerous experiments. The tool provides the required degrees of freedom to generate a contour that correspond to the inverse compound contour of assembled and operational engines.

  2. Active aerodynamic drag reduction on morphable cylinders

    Science.gov (United States)

    Guttag, M.; Reis, P. M.

    2017-12-01

    We study a mechanism for active aerodynamic drag reduction on morphable grooved cylinders, whose topography can be modified pneumatically. Our design is inspired by the morphology of the Saguaro cactus (Carnegiea gigantea), which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. Our analog experimental samples comprise a spoked rigid skeleton with axial cavities, covered by a stretched elastomeric film. Decreasing the inner pressure of the sample produces axial grooves, whose depth can be accurately varied, on demand. First, we characterize the relation between groove depth and pneumatic loading through a combination of precision mechanical experiments and finite element simulations. Second, wind tunnel tests are used to measure the aerodynamic drag coefficient (as a function of Reynolds number) of the grooved samples, with different levels of periodicity and groove depths. We focus specifically on the drag crisis and systematically measure the associated minimum drag coefficient and the critical Reynolds number at which it occurs. The results are in agreement with the classic literature of rough cylinders, albeit with an unprecedented level of precision and resolution in varying topography using a single sample. Finally, we leverage the morphable nature of our system to dynamically reduce drag for varying aerodynamic loading conditions. We demonstrate that actively controlling the groove depth yields a drag coefficient that decreases monotonically with Reynolds number and is significantly lower than the fixed sample counterparts. These findings open the possibility for the drag reduction of grooved cylinders to be operated over a wide range of flow conditions.

  3. Effect of Surface Coatings on Cylinders Exposed to Underwater Shock

    Directory of Open Access Journals (Sweden)

    Y.W. Kwon

    1994-01-01

    Full Text Available The response of a coated cylinder (metallic cylinder coated with a rubber material subjected to an underwater explosion is analyzed numerically. The dynamic response of the coated cylinder appears to be adversely affected when impacted by an underwater shock wave under certain conditions of geometry and material properties of the coating. When adversely affected, significant deviations in values of axial stress, hoop stress, and strain are observed. The coated cylinder exhibits a larger deformation and higher internal energy in the metallic material. Rubber coatings appeared to inhibit energy dissipation from the metallic material to the surrounding water medium. A parametric study of various coatings was performed on both aluminum and steel cylinders. The adverse effect of the coating decreased when the stiffness of the rubber layer increased, indicating the existence of a threshold value. The results of this study indicate that the stiffness of the coating is a critical factor to the shock hardening of the coated cylinder.

  4. Numerical Study of Shock-Cylinder Banks Interactions

    International Nuclear Information System (INIS)

    Wang, S.P.; Anderson, M.H.; Oakley, J.G.; Bonazza, R.

    2003-01-01

    A numerical parametric study of shock-cylinder banks interactions is presented using a high resolution Euler solver. Staggered cylinder banks of five rows are chosen with the purpose of modeling IFE reactor cooling tube banks. The effect of the aspect ratio of the intercylinder pitch to the distance between successive cylinder rows on the vertical pressure forces acting on the cylinders with different geometries is investigated. Preliminary results show that the largest vertical force develops on the cylinders of the second or third row. This peak pressure force increases with decreasing values of the aspect ratio. It is shown that an increasing second force peak also appears on the successive rows, starting with the second one, with decreasing aspect ratio. It is also observed that the force on the last-row cylinders basically decreases to the level of that on the first row. The results are useful for the optimal design of the cooling tubes system of IFE reactors

  5. Acoustics and Surface Pressure Measurements from Tandem Cylinder Configurations

    Science.gov (United States)

    Hutcheson, Florence V.; Brooks, Thomas F.; Lockard, David P.; Choudhari, Meelan M.; Stead, Daniel J.

    2014-01-01

    Acoustic and unsteady surface pressure measurements from two cylinders in tandem configurations were acquired to study the effect of spacing, surface trip and freestream velocity on the radiated noise. The Reynolds number ranged from 1.15x10(exp 5) to 2.17x10(exp 5), and the cylinder spacing varied between 1.435 and 3.7 cylinder diameters. The acoustic and surface pressure spectral characteristics associated with the different flow regimes produced by the cylinders' wake interference were identified. The dependence of the Strouhal number, peak Sound Pressure Level and spanwise coherence on cylinder spacing and flow velocity was examined. Directivity measurements were performed to determine how well the dipole assumption for the radiation of vortex shedding noise holds for the largest and smallest cylinder spacing tested.

  6. Mounting with compliant cylinders for deformable mirrors.

    Science.gov (United States)

    Reinlein, Claudia; Goy, Matthias; Lange, Nicolas; Appelfelder, Michael

    2015-04-01

    A method is presented to mount large aperture unimorph deformable mirrors by compliant cylinders (CC). The CCs are manufactured from a soft silicone, and shear testing is performed in order to evaluate the Young's modulus. A scale mirror model is assembled to evaluate mount-induced change of piezoelectric deformation, and its applicability for tightly focusing mirrors. Experiments do not show any decrease of piezoelectric stroke. Further it is shown that the changes of surface fidelity by the attachment of the deformable mirror to its mount are neglectable.

  7. Scattering by closely spaced infinite cylinders in an absorbing medium

    Directory of Open Access Journals (Sweden)

    S.-C. Lee

    2011-09-01

    Full Text Available Scattering by closely spaced parallel infinite cylinders in an absorbing medium is considered in this paper. The source wave is arbitrarily polarized and propagates in a general direction at the cylinders. The formulation utilizes the Hertz potential approach, and the scattering cross section and intensity distribution in the far-field are developed. Numerical results are presented to illustrate the influence of the absorbing medium on the scattering properties of two configurations of closely-spaced cylinders.

  8. Electromagnetic forces on type-II superconducting rotating cylinders

    International Nuclear Information System (INIS)

    Saif, A.G.; Refai, T.F.; El-Sabagh, M.A.

    1995-01-01

    Analytical solutions of the electromagnetic fields are presented for a system composed of an infinitely long superconducting cylinder rotating about its axis and placed parallel to two infinitely long normal conducting wires. Both wires carry the same alternating current. From the obtained electromagnetic fields the electromagnetic power loss on the cylinder surface, electromagnetic forces due to induced currents, electromagnetic torque, and the work opposing the rotation of the cylinder are calculated. (orig.)

  9. A model of filament-wound thin cylinders

    Science.gov (United States)

    Calius, Emilio P.; Springer, George S.

    1990-01-01

    A model was developed for simulating he manufacturing process of filament-wound cylinders made of a thermoset matrix composite. The model relates the process variables (winding speed, fiber tension, applied temperature) to the parameters characterizing the composite cylinder and the mandrel. The model is applicable to cylinders for which the diameter is large compared to the wall thickness. The model was implemented by a user-friendly computer code suitable for generating numerical results.

  10. PIV Measurements of He II Counterflow Around a Cylinder

    International Nuclear Information System (INIS)

    Fuzier, S.; Van Stiver, S. W.; Zhang, T.

    2006-01-01

    The induced flow field of counterflow He II across a circular cylinder has been quantitatively studied using the particle image velocimetry (PIV) technique. Two different size cylinders (6.35 mm and 2 mm in diameter) were used and placed in a 20 mm wide rectangular channel. In these experiments, large-scale eddy motion generated by the He II counterflow was observed both in front of and behind the cylinder, an effect which has no analogue in classical fluids

  11. Stability assessment of gas mixtures containing monoterpenes in varying cylinder materials and treatments.

    Science.gov (United States)

    Rhoderick, George C; Lin, Janice

    2013-05-07

    Studies of climate change increasingly recognize the diverse influences exerted by monoterpenes in the atmosphere, including roles in particulates, ozone formation, and oxidizing potential. Measurements of key monoterpenes suggest atmospheric mole fractions ranging from low pmol/mol (parts-per-trillion; ppt) to nmol/mol (parts-per-billion; ppb), depending on location and compound. To accurately establish the mole fraction trends, assess the role of monoterpenes in atmospheric chemistry, and relate measurement records from many laboratories and researchers, it is essential to have good calibration standards. The feasibility of preparing well-characterized, stable gas cylinder standards for monoterpenes at the nmol/mol level was previously tested using treated (Aculife IV) aluminum gas cylinders at NIST. Results for 4 of the 11 monoterpenes, monitored versus an internal standard of benzene, indicated stability in these treated aluminum gas cylinders for over 6 months and projected long-term (years) stability. However, the mole fraction of the key monoterpene β-pinene decreased, while the mole fractions of α-pinene, d-limonene (R-(+)-limonene), p-cymene, and camphene (a terpene not present in the initial gas mixture) increased, indicating a chemical transformation of β-pinene to these species. A similar pattern of decreasing mole fraction was observed in α-pinene where growth of d-limonene, p-cymene, and camphene has been observed in treated gas cylinders prepared with a mixture of just α-pinene and benzene as the internal standard. The current research discusses the testing of other cylinders and treatments for the potential of long-term stability of monoterpenes in a gas mixture. In this current study, a similar pattern of decreasing mole fraction, although somewhat improved short-term stability, was observed for β-pinene and α-pinene, with growth of d-limonene, p-cymene, and camphene, in nickel-plated carbon steel cylinders. β-Pinene and α-pinene showed

  12. Medical Gas Cylinder with Mismatched Colour and Pin Index

    Directory of Open Access Journals (Sweden)

    Mukherjee S

    2014-08-01

    Full Text Available The medical gas cylinders have various safety features to prevent the administration of wrong gas to the patient. Most of the features have visual impact (colour, label, markings on the cylinder body except pin index system on the cylinder valve, so error in this feature is difficult to analyze and is highly unpredictable. We had received one such cylinder in our institution where all other features (label, colour, marking pointed to nitrous oxide except the pin index which resembled with that of oxygen

  13. An update on corrosion monitoring in cylinder storage yards

    Energy Technology Data Exchange (ETDEWEB)

    Henson, H.M.; Newman, V.S.; Frazier, J.L. [Oak Ridge K-25 Site, TN (United States)

    1991-12-31

    Depleted uranium, from US uranium isotope enrichment activities, is stored in the form of solid uranium hexafluoride (UF{sub 6}) in A285 and A516 steel cylinders designed and manufactured to ASME Boiler and Pressure Vessel Code criteria. In general, storage facilities are open areas adjacent to the enrichment plants where the cylinders are exposed to weather. This paper describes the Oak Ridge program to determine the general corrosion behavior of UF{sub 6} cylinders, to determine cylinder yard conditions which are likely to affect long term storage of this material, and to assess cylinder storage yards against these criteria. This program is targeted at conditions specific to the Oak Ridge cylinder yards. Based on (a) determination of the current cylinder yard conditions, (b) determination of rusting behavior in regions of the cylinders showing accelerated attack, (c) monitoring of corrosion rates through periodic measurement of test coupons placed within the cylinder yards, and (d) establishment of a computer base to incorporate and retain these data, the technical division is working with the enrichment sites to implement an upgraded system for storage of this material until such time as it is used or converted.

  14. Self-accelerating parabolic cylinder waves in 1-D

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C., E-mail: cyuce@anadolu.edu.tr

    2016-11-25

    Highlights: • We find a new class of self-accelerating waves. • We show that parabolic cylinder waves self-accelerates in a parabolic potential. • We discuss that truncated parabolic cylinder waves propagates large distance without almost being non-diffracted in free space. - Abstract: We introduce a new self-accelerating wave packet solution of the Schrodinger equation in one dimension. We obtain an exact analytical parabolic cylinder wave for the inverted harmonic potential. We show that truncated parabolic cylinder waves exhibits their accelerating feature.

  15. Enrichment Assay Methods Development for the Integrated Cylinder Verification System

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leon E.; Misner, Alex C.; Hatchell, Brian K.; Curtis, Michael M.

    2009-10-22

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility's entire product-cylinder inventory. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100 percent product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The three main objectives of this FY09 project are summarized here and described in more detail in the report: (1) Develop a preliminary design for a prototype NDA system, (2) Refine PNNL's MCNP models of the NDA system, and (3) Procure and test key pulse-processing components. Progress against these tasks to date, and next steps, are discussed.

  16. Flow past two tandem square cylinders vibrating transversely in phase

    International Nuclear Information System (INIS)

    Mithun, M G; Tiwari, Shaligram

    2014-01-01

    Numerical investigations have been carried out to study the wake characteristics of flow past two tandem square cylinders vibrating in phase. Both the cylinders vibrate in a transverse direction, i.e., perpendicular to the incoming flow with the same frequency and amplitude. The frequency of vibration of the cylinders and the inter-cylinder spacing are varied for fixed values of the Reynolds number (Re = 100) and the amplitude ratio (A/D = 0.4). The synchronous or lock-in regime for the oscillatory wake of the vibrating cylinders has been identified by varying the frequency of the vibration from f e  = 0.4 f 0 to 1.6 f 0 (f 0 being the frequency of vortex shedding behind a stationary square cylinder). The characteristics of lift and drag and the mechanism of vortex shedding are studied by varying the excitation frequency within the lock-in range for each value of inter-cylinder spacing. The complex interaction of flow between the cylinders gives rise to a variety of characteristically different shedding patterns in their wake. For values of inter-cylinder spacing equal to 2D and 3D, periodic, as well as quasi-periodic, lock-in behaviors are observed in the synchronous range. (paper)

  17. Numerical study of a cylinder model of the diffusion MRI signal for neuronal dendrite trees

    Science.gov (United States)

    Van Nguyen, Dang; Grebenkov, Denis; Le Bihan, Denis; Li, Jing-Rebecca

    2015-03-01

    We study numerically how the neuronal dendrite tree structure can affect the diffusion magnetic resonance imaging (dMRI) signal in brain tissue. For a large set of randomly generated dendrite trees, synthetic dMRI signals are computed and fitted to a cylinder model to estimate the effective longitudinal diffusivity DL in the direction of neurites. When the dendrite branches are short compared to the diffusion length, DL depends significantly on the ratio between the average branch length and the diffusion length. In turn, DL has very weak dependence on the distribution of branch lengths and orientations of a dendrite tree, and the number of branches per node. We conclude that the cylinder model which ignores the connectivity of the dendrite tree, can still be adapted to describe the apparent diffusion coefficient in brain tissue.

  18. Detonation velocity of melt-cast ADN and ADN/nano-diamond cylinders

    Science.gov (United States)

    Doherty, R. M.; Forbes, J. W.; Lawrence, G. W.; Deiter, J. S.; Baker, R. N.; Ashwell, K. D.; Sutherland, G. T.

    2000-04-01

    Detonation velocities of confined cylinders of melt-cast ADN/ZnO (99.5/0.5 by weight), ADN/nano-diamond/ZnO (92.4/7.2/0.4), ADN/AN/ZnO (95.5/4.0/0.5) and ADN/AN/ZnO/nano-diamond (88.0/4.5/0.5/7.0) have been measured using a streak camera. Velocities ranging between 3.9 and 4.5 mm/μs were obtained for 1.3 cm diameter samples confined by steel and a 2.5 cm diameter ADN/AN/ZnO cylinder. In one of the samples the detonation was failing as it proceeded through the charge. For the other shots reported, the shock velocities appeared to be steady through the last half of the charge, though the lengths were too short for any definitive statement about the failure diameter to be made.

  19. Terminal project heat convection in thin cylinders

    International Nuclear Information System (INIS)

    Morales Corona, J.

    1992-01-01

    Heat convection in thin cylinders and analysis about natural convection for straight vertical plates, and straight vertical cylinders submersed in a fluid are presented some works carry out by different authors in the field of heat transfer. In the part of conduction, deduction of the equation of heat conduction in cylindrical coordinates by means of energy balance in a control volume is presented. Enthalpy and internal energy are used for the outlining of the equation and finally the equation in its vectorial form is obtained. In the convection part development to calculate the Nusselt number for a straight vertical plate by a forces analysis, an energy balance and mass conservation over a control volume is outlined. Several empiric correlations to calculate the Nusselt number and its relations with other dimensionless numbers are presented. In the experimental part the way in which a prototype rode is assembled is presented measurements of temperatures attained in steady state and in free convection for working fluids as air and water are showed in tables. Also graphs of Nusselt numbers obtained in the experimental way through some empiric correlations are showed (Author)

  20. The capillary interaction between two vertical cylinders

    KAUST Repository

    Cooray, Himantha

    2012-06-27

    Particles floating at the surface of a liquid generally deform the liquid surface. Minimizing the energetic cost of these deformations results in an inter-particle force which is usually attractive and causes floating particles to aggregate and form surface clusters. Here we present a numerical method for determining the three-dimensional meniscus around a pair of vertical circular cylinders. This involves the numerical solution of the fully nonlinear Laplace-Young equation using a mesh-free finite difference method. Inter-particle force-separation curves for pairs of vertical cylinders are then calculated for different radii and contact angles. These results are compared with previously published asymptotic and experimental results. For large inter-particle separations and conditions such that the meniscus slope remains small everywhere, good agreement is found between all three approaches (numerical, asymptotic and experimental). This is as expected since the asymptotic results were derived using the linearized Laplace-Young equation. For steeper menisci and smaller inter-particle separations, however, the numerical simulation resolves discrepancies between existing asymptotic and experimental results, demonstrating that this discrepancy was due to the nonlinearity of the Laplace-Young equation. © 2012 IOP Publishing Ltd.

  1. 77 FR 26738 - High Pressure Steel Cylinders From the People's Republic of China: Final Affirmative...

    Science.gov (United States)

    2012-05-07

    ... liquefied gas (``high pressure steel cylinders''). High pressure steel cylinders are fabricated of chrome... Cylinders From the People's Republic of China: Final Affirmative Countervailing Duty Determination AGENCY... producers and exporters of high pressure steel cylinders (steel cylinders) from the People's Republic of...

  2. 49 CFR 173.303 - Charging of cylinders with compressed gas in solution (acetylene).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Charging of cylinders with compressed gas in....303 Charging of cylinders with compressed gas in solution (acetylene). (a) Cylinder, filler and... specification cylinders, the pressure in the cylinder containing acetylene gas may not exceed 250 psig at 70 °F...

  3. Selective laser melting of hypereutectic Al-Si40-powder using ultra-short laser pulses

    Science.gov (United States)

    Ullsperger, T.; Matthäus, G.; Kaden, L.; Engelhardt, H.; Rettenmayr, M.; Risse, S.; Tünnermann, A.; Nolte, S.

    2017-12-01

    We investigate the use of ultra-short laser pulses for the selective melting of Al-Si40-powder to fabricate complex light-weight structures with wall sizes below 100 μ {m} combined with higher tensile strength and lower thermal expansion coefficient in comparison to standard Al-Si alloys. During the cooling process using conventional techniques, large primary silicon particles are formed which impairs the mechanical and thermal properties. We demonstrate that these limitations can be overcome using ultra-short laser pulses enabling the rapid heating and cooling in a non-thermal equilibrium process. We analyze the morphology characteristics and micro-structures of single tracks and thin-walled structures depending on pulse energy, repetition rate and scanning velocity utilizing pulses with a duration of 500 {fs} at a wavelength of 1030 {nm}. The possibility to specifically change and optimize the microstructure is shown.

  4. Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders

    International Nuclear Information System (INIS)

    Supe, Sanjay S.; Bijina, T.K.; Varatharaj, C.; Shwetha, B.; Arunkumar, T.; Sathiyan, S.; Ganesh, K.M.; Ravikumar, M.

    2009-01-01

    Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of this study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome

  5. Prediction of External Corrosion for Steel Cylinders--2004 Report

    International Nuclear Information System (INIS)

    Schmoyer, RLS

    2004-01-01

    Depleted uranium hexafluoride (UF 6 ) is stored in over 60,000 steel cylinders at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee, at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and at the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. The cylinders range in age from 4 to 53 years. Although when new the cylinders had wall thicknesses specified to within manufacturing tolerances, over the years corrosion has reduced their actual wall thicknesses. The UF 6 Cylinder Project is managed by the United States Department of Energy (DOE) to safely maintain the UF 6 and the cylinders containing it. This report documents activities that address UF 6 Cylinder Project requirements and actions involving forecasting cylinder wall thicknesses. These requirements are delineated in the System Requirements Document (LMES 1997a), and the actions needed to fulfill them are specified in the System Engineering Management Plan (LMES 1997b). The report documents cylinder wall thickness projections based on models fit to ultrasonic thickness (UT) measurement data. UT data is collected at various locations on randomly sampled cylinders. For each cylinder sampled, the minimum UT measurement approximates the actual minimum thickness of the cylinder. Projections of numbers of cylinders expected to fail various thickness criteria are computed from corrosion models relating minimum wall thickness to cylinder age, initial thickness estimates, and cylinder subpopulations defined in terms of plant site, yard, top or bottom storage positions, nominal thickness, etc. In this report, UT data collected during FY03 is combined with UT data collected in earlier years (FY94-FY02), and all of the data is inventoried chronologically and by various subpopulations. The UT data is used to fit models of maximum pit depth and minimum thickness, and the fitted models are used to extrapolate minimum thickness estimates into the future and in turn to compute

  6. Prediction of External Corrosion for Steel Cylinders--2004 Report

    Energy Technology Data Exchange (ETDEWEB)

    Schmoyer, RLS

    2004-07-07

    Depleted uranium hexafluoride (UF{sub 6}) is stored in over 60,000 steel cylinders at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee, at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and at the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. The cylinders range in age from 4 to 53 years. Although when new the cylinders had wall thicknesses specified to within manufacturing tolerances, over the years corrosion has reduced their actual wall thicknesses. The UF{sub 6} Cylinder Project is managed by the United States Department of Energy (DOE) to safely maintain the UF{sub 6} and the cylinders containing it. This report documents activities that address UF{sub 6} Cylinder Project requirements and actions involving forecasting cylinder wall thicknesses. These requirements are delineated in the System Requirements Document (LMES 1997a), and the actions needed to fulfill them are specified in the System Engineering Management Plan (LMES 1997b). The report documents cylinder wall thickness projections based on models fit to ultrasonic thickness (UT) measurement data. UT data is collected at various locations on randomly sampled cylinders. For each cylinder sampled, the minimum UT measurement approximates the actual minimum thickness of the cylinder. Projections of numbers of cylinders expected to fail various thickness criteria are computed from corrosion models relating minimum wall thickness to cylinder age, initial thickness estimates, and cylinder subpopulations defined in terms of plant site, yard, top or bottom storage positions, nominal thickness, etc. In this report, UT data collected during FY03 is combined with UT data collected in earlier years (FY94-FY02), and all of the data is inventoried chronologically and by various subpopulations. The UT data is used to fit models of maximum pit depth and minimum thickness, and the fitted models are used to extrapolate minimum thickness estimates into the future and in

  7. UF{sub 6} pressure excursions during cylinder heating

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.G. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    As liquid UF{sub 6} inside a cylinder changes from a liquid to a solid, it forms a porous solid which occupies approximately the same volume as that of the liquid before cooling. Simultaneously as the liquid cools, UF{sub 6} vapor in the cylinder ullage above the liquid desublimes on the upper region of the inner cylinder wall. This solid is a dense, glass-like material which can accumulate to a significant thickness. The thickness of the solid coating on the upper cylinder wall and directly behind the cylinder valve area will vary depending on the conditions during the cooling stage. The amount of time lapsed between UF{sub 6} solidification and UF{sub 6} liquefaction can also affect the UF{sub 6} coating. This is due to the daily ambient heat cycle causing the coating to sublime from the cylinder wall to cooler areas, thus decreasing the thickness. Structural weakening of the dense UF{sub 6} layer also occurs due to cylinder transport vibration and thermal expansion. During cylinder heating, the UF{sub 6} nearest the cylinder wall will liquefy first. As the solid coating behind the cylinder valve begins to liquefy, it results in increased pressure depending upon the available volume for expansion. At the Paducah Gaseous Diffusion Plant (PGDP) during the liquefaction of the UF{sub 6} in cylinders in the UF{sub 6} feed and sampling autoclaves, this pressure increase has resulted in the activation of the systems rupture discs which are rated at 100 pounds per square inch differential.

  8. The ideal dimensions of a Halbach cylinder of finite length

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    2011-01-01

    In this paper the smallest or optimal dimensions of a Halbach cylinder of a finite length for a given sample volume and desired flux density are determined using numerical modeling and parameter variation. A sample volume that is centered in and shaped as the Halbach cylinder bore but with a poss...

  9. Corotating light cylinders and Alfv\\'en waves

    OpenAIRE

    Gourgouliatos, K. N.; Lynden-Bell, D.

    2010-01-01

    Exact relativistic force free fields with cylindrical symmetry are explored. Such fields are generated in the interstellar gas via their connection to pulsar magnetospheres both inside and outside their light cylinders. The possibility of much enhanced interstellar fields wound on cylinders of Solar system dimensions is discussed but these are most likely unstable.

  10. Facial and eye injury following a fridge cylinder gas explosion

    African Journals Online (AJOL)

    and then diclofenac (Cataflam) tablets 50mg 8 hourly, metronidazole tablets 200mg 8 hourly and cefuroxime. (Zinnat) ... The mechanism of cylinder gas explosion injury are mainly divided into 4 stages [1]. 1. ... Another possible mechanism may be secondary injury. Facial abrasion from flying fragment of the gas cylinder.

  11. Torsional vibrations of infinite composite poroelastic cylinders | Shah ...

    African Journals Online (AJOL)

    The displacements of second and third torsional modes are determined and presented graphically for the ratio of radius of composite poroelastic solid cylinder to the radius of the inner solid cylinder. Results of previous works are shown as special case of the present analysis. By ignoring liquid effects, the results of purely ...

  12. Minimization of material volume of three layer compound cylinder ...

    African Journals Online (AJOL)

    This paper introduces the methodology for minimization of volume of shrink-fitted three layer compound cylinder and to get equal maximum hoop stresses in all the cylinders. The analytical results are validated in comparison with FEM in ANSYS Workbench. Both the results agree with each other. Thus methodology can be ...

  13. Strength Tests on Paper Cylinder in Compression, Bending and Shear

    Science.gov (United States)

    Rhodes, Richard V; Lundquist, Eugene E

    1931-01-01

    Static tests on paper cylinders were conducted at the Langley Memorial Aeronautical Laboratory at Langley Field, Virginia, to obtain qualitative information in connection with a study of the strength of stressed-skin fuselages. The effects of radius-thickness ratio and bulkhead spacing were investigated with the cylinders in compression, bending, combined bending and shear, and torsion.

  14. Clean Air Program : cylinder issues associated with alternative fuels

    Science.gov (United States)

    1999-01-01

    A number of incidents of compressed natural gas (CNG) cylinder leaks have occurred while transit buses were either in service or at a bus maintenance facility. This study was initiated to determine the degree to which cylinder problems still exist in...

  15. Robust cylinder fitting in three-dimensional point cloud data

    NARCIS (Netherlands)

    Nurunnabi, Abdul; Sadahiro, Yukio; Lindenbergh, R.C.

    2017-01-01

    This paper investigates the problems of cylinder fitting in laser scanning three-dimensional Point Cloud Data (PCD). Most existing methods require full cylinder data, do not study the presence of outliers, and are not statistically robust. But especially mobile laser scanning often has incomplete

  16. Curing A Large Composite Cylinder Without An Autoclave

    Science.gov (United States)

    Frazer, Robert E.

    1992-01-01

    Proposed technique provides application of heat and pressure to cure fiber-wound composite cylinder too large to fit in autoclave. Tube wound around cylinder applies pressure. Blanket distributes pressure. Pressure expels gas bubbles from material. Heat applied by conventional methods.

  17. 30 CFR 57.4601 - Oxygen cylinder storage.

    Science.gov (United States)

    2010-07-01

    ....4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Welding/cutting/compressed Gases § 57.4601 Oxygen cylinder storage. Oxygen cylinders shall...

  18. 30 CFR 56.4601 - Oxygen cylinder storage.

    Science.gov (United States)

    2010-07-01

    ....4601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control Welding/cutting/compressed Gases § 56.4601 Oxygen cylinder storage. Oxygen cylinders shall not be...

  19. Faraday effect in hollow quantum cylinder of finite thickness

    International Nuclear Information System (INIS)

    Ismailov, T.G.; Jabrailova, G.G.

    2009-01-01

    The interband Faraday rotation in hollow quantum cylinder of finite thickness is theoretically investigated. Faraday rotation in the dependence on incident light energy for different values of cylinder thickness. It is seen that the resonance peaks appear on Faraday rotation curve. The roles of selection are obtained

  20. Investigation on carbon nanomaterials: Coaxial CNT-cylinders and ...

    Indian Academy of Sciences (India)

    The macroscopic coaxial carbon cylinders (dia. ∼ 0.5 cm with varying lengths, ∼ 7–10 cm) consisting of aligned carbon nanotube (CNT) stacks have been prepared by controlled spray pyrolysis method. The coaxial carbon cylinders of CNT stacks have been formed directly inside the quartz tube. Another study is done on ...

  1. Investigation on carbon nanomaterials: Coaxial CNT-cylinders and ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. The macroscopic coaxial carbon cylinders (dia. ~0⋅5 cm with varying lengths, ~7–10 cm) consisting of aligned carbon nanotube (CNT) stacks have been prepared by controlled spray pyrolysis method. The coaxial carbon cylinders of CNT stacks have been formed directly inside the quartz tube. Another study is ...

  2. Mechanical Integrity of Copper Canister Lid and Cylinder. Sensitivity study

    International Nuclear Information System (INIS)

    Karlsson, Marianne

    2002-08-01

    This report is part of a study of the mechanical integrity of canisters used for disposal of nuclear fuel waste. The overall objective is to determine and ensure the static and long-term strength of the copper canister lid and cylinder casing. The canisters used for disposal nuclear fuel waste of type BWR consists of an inner part (insert) of ductile cast iron and an outer part of copper. The copper canister is to provide a sealed barrier between the contents of the canister and the surroundings. The study in this report complements the finite element analyses performed in an earlier study. The analyses aim to evaluate the sensitivity of the canister to tolerances regarding the gap between the copper cylinder and the cast iron insert. Since great uncertainties regarding the material's long term creep properties prevail, analyses are also performed to evaluate the effect of different creep data on the resulting strain and stress state. The report analyses the mechanical response of the lid and flange of the copper canister when subjected to loads caused by pressure from swelling bentonite and from groundwater at a depth of 500 meter. The loads acting on the canister are somewhat uncertain and the cases investigated in this report are possible cases. Load cases analysed are: Pressure 15 MPa uniformly distributed on lid and 5 MPa uniformly distributed on cylinder; Pressure 5 MPa uniformly distributed on lid and 15 MPa uniformly distributed on cylinder; Pressure 20 MPa uniformly distributed on lid and cylinder; and Side pressures 10 MPa and 20 MPa uniformly distributed on part of the cylinder. Creep analyses are performed for two of the load cases. For all considered designs high principal stresses appear on the outside of the copper cylinder in the region from the weld down to the level of the lid lower edge. Altering the gap between lid and cylinder and/or between cylinder and insert only marginally affects the resulting stress state. Fitting the lid in the cylinder

  3. Modeling a High Explosive Cylinder Experiment

    Science.gov (United States)

    Zocher, Marvin A.

    2017-06-01

    Cylindrical assemblies constructed from high explosives encased in an inert confining material are often used in experiments aimed at calibrating and validating continuum level models for the so-called equation of state (constitutive model for the spherical part of the Cauchy tensor). Such is the case in the work to be discussed here. In particular, work will be described involving the modeling of a series of experiments involving PBX-9501 encased in a copper cylinder. The objective of the work is to test and perhaps refine a set of phenomenological parameters for the Wescott-Stewart-Davis reactive burn model. The focus of this talk will be on modeling the experiments, which turned out to be non-trivial. The modeling is conducted using ALE methodology.

  4. Topograph for inspection of engine cylinder walls.

    Science.gov (United States)

    Franz, S; Leonhardt, K; Windecker, R; Tiziani, H J

    1999-12-20

    The microstructural inspection of engine cylinder walls is an important task for quality management in the automotive industry. Until recently, mainly tactile methods were used for this purpose. We present an optical instrument based on microscopic fringe projection that permits fast, reliable, and nondestructive measurements of microstructure. The field of view is 0.8 mm x 1.2 mm, with a spatial sampling of 1100 x 700 pixels. In contrast to conventional tactile sensors, the optical method provides fast in situ three-dimensional surface characterizations that provide more information about the surface than do line profiles. Measurements are presented, and advantages of this instrument for characterization of a surface are discussed.

  5. Switchable and Tunable Aerodynamic Drag on Cylinders

    Science.gov (United States)

    Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  6. Mechanical Cushion Design Influence on Cylinder Dynamics

    DEFF Research Database (Denmark)

    Borghi, Massimo; Milani, Massimo; Conrad, Finn

    2005-01-01

    The paper deals with the simulation and the experimental verification of the dynamic behaviour of a linear actuator equipped with different configurations of mechanical cushion. A numerical model, developed and tailored to describe the influence of different modulation of the discharged flow....... experimental comparison, involving the piston velocity and the cylinder chambers pressure. After, with the aim of highlighting the effect of mechanical cushions design on a two effect linear actuator dynamic performances, the characteristics modulation of four alternative cushioning systems are determined...... and deeply analyzed. Finally, a sensitivity analysis about the influence of the variation of the main geometrical parameters is introduced and, thanks to the introduction of some dimensional and non-dimensional parameters of engineering interest, some useful guidelines in selecting the most effective cushion...

  7. Mechanical Cushion Design Influence on Cylinder Dynamics

    DEFF Research Database (Denmark)

    Borghi, Massimo; Milani, Massimo; Conrad, Finn

    2005-01-01

    . experimental comparison, involving the piston velocity and the cylinder chambers pressure. After, with the aim of highlighting the effect of mechanical cushions design on a two effect linear actuator dynamic performances, the characteristics modulation of four alternative cushioning systems are determined......The paper deals with the simulation and the experimental verification of the dynamic behaviour of a linear actuator equipped with different configurations of mechanical cushion. A numerical model, developed and tailored to describe the influence of different modulation of the discharged flow......-rate (and of the correspondent discharging orifice design) on the cushioning characteristics variation is firstly introduced. Then, with respect to the case of the cylindrical cushioning engagement, both the reliability and the limits of the numerical approach are highlighted through a numerical vs...

  8. Biologic Collagen Cylinder with Skate Flap Technique for Nipple Reconstruction

    Directory of Open Access Journals (Sweden)

    Brian P. Tierney

    2014-01-01

    Full Text Available A surgical technique using local tissue skate flaps combined with cylinders made from a naturally derived biomaterial has been used effectively for nipple reconstruction. A retrospective review of patients who underwent nipple reconstruction using this technique was performed. Comorbidities and type of breast reconstruction were collected. Outcome evaluation included complications, surgical revisions, and nipple projection. There were 115 skate flap reconstructions performed in 83 patients between July 2009 and January 2013. Patients ranged from 32 to 73 years old. Average body mass index was 28.0. The most common comorbidities were hypertension (39.8% and smoking (16.9%. After breast reconstruction, 68.7% of the patients underwent chemotherapy and 20.5% underwent radiation. Seventy-one patients had immediate breast reconstruction with expanders and 12 had delayed reconstruction. The only reported complications were extrusions (3.5%. Six nipples (5.2% in 5 patients required surgical revision due to loss of projection; two patients had minor loss of projection but did not require surgical revision. Nipple projection at time of surgery ranged from 6 to 7 mm and average projection at 6 months was 3–5 mm. A surgical technique for nipple reconstruction using a skate flap with a graft material is described. Complications are infrequent and short-term projection measurements are encouraging.

  9. Rotating cylinder drag balance with application to riblets

    Science.gov (United States)

    Hall, T.; Joseph, D.

    2000-12-01

    Experimental results are reported and discussed for a rotating cylinder drag balance designed to predict drag reduction by surfaces like riblets. The apparatus functions by measuring the torque applied to the inner cylinder by a fluid, such as water, that is set in motion by the controlled rotation of the outer cylinder. The instrument was validated by calibration for laminar flow and comparison of turbulent flow results to the those of G. I. Taylor. The ability to predict drag reduction was demonstrated by testing 114 m symmetric sawtooth riblets, which gave a maximum reduction of about 5% and an overall drag reduction range of 5cylinder surface and to use cylinders for which the curvature of the flow is minimized.

  10. Network design for cylinder gas distribution

    Directory of Open Access Journals (Sweden)

    Tejinder Pal Singh

    2015-01-01

    Full Text Available Purpose: Network design of the supply chain is an important and strategic aspect of logistics management. In this paper, we address the network design problem specific to packaged gases (cylinder supply chain. We propose an integrated framework that allows for the determination of the optimal facility locations, the filling plant production capacities, the inventory at plants and hubs, and the number of packages to be routed in primary and secondary transportation. Design/methodology/approach: We formulate the problem as a mixed integer program and then develop a decomposition approach to solve it. We illustrate the proposed framework with numerical examples from real-life packaged gases supply chain. The results show that the decomposition approach is effective in solving a broad range of problem sizes. Findings: The main finding of this paper is that decomposing the network design problem into two sub-problems is very effective to tackle the real-life large scale network design problems occurring in cylinder gas distribution by optimizing strategic and tactical decisions and approximating the operational decisions. We also benchmark the results from the decomposition approach by solving the complete packaged gases network design model for smaller test cases. Originality/value: The main contribution of our work is that it integrates supply chain network design decisions without fixing the fillings plant locations with inventory and resource allocation decisions required at the plants. We also consider the transportation costs for the entire supply chain including the transhipment costs among different facilities by deciding the replenishment frequency.

  11. The Federal Cylinder Project: A Guide to Field Cylinder Collections in Federal Agencies. Volume 8, Early Anthologies.

    Science.gov (United States)

    Lee, Dorothy Sara, Ed; And Others

    This catalog describes wax cylinder recordings of music collected by two pioneers in ethnomusicology. The 101 cylinders in the Benjamin Ives Gilman Collection recorded at the 1893 World's Columbian Exposition in Chicago contain Fijian, Samoan, Uvean, Javanese, Turkish, and Kwakiutl or Vancouver Island Indian music. The Gilman Collection is…

  12. Design for a Simple and Inexpensive Cylinder-within-a-Cylinder Gradient Maker for the Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Sims, Paul A.; O'Mealey, Gary B.; Khan, Nabeel A.; Larabee, Chelsea M.

    2011-01-01

    A design for a simple and inexpensive gradient maker is described. The gradient maker is assembled by (i) cutting the tops off two plastic bottles of differing diameters to produce two cylinders with intact bottoms; (ii) drilling a small hole toward the bottom of the smaller diameter cylinder and plugging the hole with a size 00 cork stopper; and…

  13. A methodology to identify the intake charge cylinder-to-cylinder distribution in turbocharged direct injection Diesel engines

    Science.gov (United States)

    Luján, José M.; Galindo, José; Serrano, José R.; Pla, Benjamín

    2008-06-01

    Exhaust gas recirculation (EGR) is currently the most important NOx emission control system. During the last few years the EGR rate has increased progressively as pollutant emission regulations have become more restrictive. High EGR rate levels have given the effect of the unsuitable EGR and air distribution between cylinders away, which causes undesirable engine behavior. In this sense, the study of the EGR distribution between cylinders achieves high importance. However, despite the fact that the EGR is continuously under study, not many studies have been undertaken to approach its distribution between cylinders. In concordance with the aspects outlined before, the aim of this paper is to propose a methodology that permits us to identify the EGR cylinder-to-cylinder dispersion in a commercial engine. In order to achieve this objective, experimental tests have been combined with both one-dimensional and three-dimensional fluid dynamic models.

  14. Application of the exact solution for scattering by an infinite cylinder to the estimation of scattering by a finite cylinder.

    Science.gov (United States)

    Wang, R T; van de Hulst, H C

    1995-05-20

    A new algorithm for cylindrical Bessel functions that is similar to the one for spherical Bessel functions allows us to compute scattering functions for infinitely long cylinders covering sizes ka = 2πa/λ up to 8000 through the use of only an eight-digit single-precision machine computation. The scattering function and complex extinction coefficient of a finite cylinder that is seen near perpendicular incidence are derived from those of an infinitely long cylinder by the use of Huygens's principle. The result, which contains no arbitrary normalization factor, agrees quite well with analog microwave measurements of both extinction and scattering for such cylinders, even for an aspect ratio p = l/(2a) as low as 2. Rainbows produced by cylinders are similar to those for spherical drops but are brighter and have a lower contrast.

  15. Electrogravitational stability of oscillating streaming fluid cylinder ambient with a transverse varying electric field

    Directory of Open Access Journals (Sweden)

    Hasan Alfaisal

    2011-01-01

    Full Text Available Abstract The electrogravitational instability of a dielectric oscillating streaming fluid cylinder surrounded by tenuous medium of negligible motion pervaded by transverse varying electric field has been investigated for all the perturbation modes. The model is governed by Mathieu second-order integro-differential equation. Some limiting cases are recovering from the present general one. The self-gravitating force is destabilizing only in the axisymmetric perturbation for long wavelengths, while, the axial electric field interior, the fluid has strong destabilizing effect for all short and long wavelengths. The transverse field is strongly stabilizing. In the case of non-axisymmetric perturbation, the self-gravitating force is stabilizing for short and long waves, while the electric field has stabilizing effect on short waves.

  16. Vortex suppression in the wake of counter rotating cylinders

    Science.gov (United States)

    Dewey, Peter; Smits, Alexander J.

    2009-11-01

    Digital particle image velocimetry is used to study the flow past a pair of counter rotating cylinders placed side-by-side normal to the freestream flow direction. The Reynolds numbers based on cylinder diameter is varied from 100 to 200 and gap-to-diameter ratios of 1, 3 and 5 are considered. An unsteady wake consisting of a pair of von K'arm'an vortex streets is present in the flow field when the cylinders are rotated below a critical value. Above this critical value, counter rotation of the cylinders suppresses vortex formation. The critical rotational speed varies only slightly with Reynolds number but exhibits a strong dependence on the gap-to-diameter ratio. As the gap-to-diameter ratio increases, the critical rotational speed approaches values expected to suppress vortex formation for a single rotating cylinder, indicating that the wakes of the cylinder pair have more interaction for small gap-to-diameter ratios. At sufficiently high rotational speeds the streamlines around the cylinder pair resemble a doublet potential flow. The experiments were inspired by the computations performed by Andy Chan and Antony Jameson at Stanford University.

  17. Habitat Demonstration Unit (HDU) Vertical Cylinder Habitat

    Science.gov (United States)

    Howe, Alan; Kennedy, Kriss J.; Gill, Tracy R.; Tri, Terry O.; Toups, Larry; Howard, Robert I.; Spexarth, Gary R.; Cavanaugh, Stephen; Langford, William M.; Dorsey, John T.

    2014-01-01

    NASA's Constellation Architecture Team defined an outpost scenario optimized for intensive mobility that uses small, highly mobile pressurized rovers supported by portable habitat modules that can be carried between locations of interest on the lunar surface. A compact vertical cylinder characterizes the habitat concept, where the large diameter maximizes usable flat floor area optimized for a gravity environment and allows for efficient internal layout. The module was sized to fit into payload fairings for the Constellation Ares V launch vehicle, and optimized for surface transport carried by the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) mobility system. Launch and other loads are carried through the barrel to a top and bottom truss that interfaces with a structural support unit (SSU). The SSU contains self-leveling feet and docking interfaces for Tri-ATHLETE grasping and heavy lift. A pressurized module needed to be created that was appropriate for the lunar environment, could be easily relocated to new locations, and could be docked together in multiples for expanding pressurized volume in a lunar outpost. It was determined that horizontally oriented pressure vessels did not optimize floor area, which takes advantage of the gravity vector for full use. Hybrid hard-inflatable habitats added an unproven degree of complexity that may eventually be worked out. Other versions of vertically oriented pressure vessels were either too big, bulky, or did not optimize floor area. The purpose of the HDU vertical habitat module is to provide pressurized units that can be docked together in a modular way for lunar outpost pressurized volume expansion, and allow for other vehicles, rovers, and modules to be attached to the outpost to allow for IVA (intra-vehicular activity) transfer between them. The module is a vertically oriented cylinder with a large radius to allow for maximal floor area and use of volume. The modular, 5- m-diameter HDU vertical habitat

  18. Heat transfer measurements for Stirling machine cylinders

    Science.gov (United States)

    Kornhauser, Alan A.; Kafka, B. C.; Finkbeiner, D. L.; Cantelmi, F. C.

    1994-01-01

    The primary purpose of this study was to measure the effects of inflow-produced heat turbulence on heat transfer in Stirling machine cylinders. A secondary purpose was to provide new experimental information on heat transfer in gas springs without inflow. The apparatus for the experiment consisted of a varying-volume piston-cylinder space connected to a fixed volume space by an orifice. The orifice size could be varied to adjust the level of inflow-produced turbulence, or the orifice plate could be removed completely so as to merge the two spaces into a single gas spring space. Speed, cycle mean pressure, overall volume ratio, and varying volume space clearance ratio could also be adjusted. Volume, pressure in both spaces, and local heat flux at two locations were measured. The pressure and volume measurements were used to calculate area averaged heat flux, heat transfer hysteresis loss, and other heat transfer-related effects. Experiments in the one space arrangement extended the range of previous gas spring tests to lower volume ratio and higher nondimensional speed. The tests corroborated previous results and showed that analytic models for heat transfer and loss based on volume ratio approaching 1 were valid for volume ratios ranging from 1 to 2, a range covering most gas springs in Stirling machines. Data from experiments in the two space arrangement were first analyzed based on lumping the two spaces together and examining total loss and averaged heat transfer as a function of overall nondimensional parameter. Heat transfer and loss were found to be significantly increased by inflow-produced turbulence. These increases could be modeled by appropriate adjustment of empirical coefficients in an existing semi-analytic model. An attempt was made to use an inverse, parameter optimization procedure to find the heat transfer in each of the two spaces. This procedure was successful in retrieving this information from simulated pressure-volume data with artificially

  19. Competitive dynamics of two erosion patterns around a cylinder

    Science.gov (United States)

    Lachaussée, F.; Bertho, Y.; Morize, C.; Sauret, A.; Gondret, P.

    2018-01-01

    We investigate experimentally the local erosion of a granular bed near a fixed vertical cylinder that emerges from the bed. The onset of erosion arising at the base of the cylinder and usually ascribed to the wrapping horseshoe vortex is determined and rationalized by a flow contraction effect. We report another erosion pattern visible downstream of the cylinder that consists of two side-by-side elongated holes. This pattern is observed for flow regimes close to the horseshoe scour onset, whose growth usually inhibits its spatiotemporal development.

  20. CYLINDER OF THE DISPOSABLE MASS EXCHANGE DEVICE FOR HEMOSORPTION

    Directory of Open Access Journals (Sweden)

    F. I. Kazakov

    2015-01-01

    Full Text Available BACKGROUND. Hemocarboperfusion, previously widely used in our country, can universally pass out of use due to the lack of industrial production of disposable mass exchange devices.MATERIAl AND METHODS. Physicochemical properties of materials and design features of the body samples elements of various sizes have been studied.RESULTS. The elements and materials properties of the hemosorption mass exchanger cylinder have been studied. Hydrodynamic parameters of manipulation using the developed cylinders at different perfusion rates have been studied in bench experiments.CONCLUSION. The original cylinder of the disposable mass exchange device for hemosorption, which meets the current clinical needs, has been developed. 

  1. Oscillatory flow about a cylinder pair with unequal radii

    Energy Technology Data Exchange (ETDEWEB)

    Coenen, W, E-mail: wcoenen@ing.uc3m.es [Área de Mecánica de Fluidos, Universidad Carlos III de Madrid, Avenida Universidad 30, E-28911 Leganés, Madrid (Spain)

    2013-10-15

    We consider the oscillating flow about a pair of circular cylinders of unequal diameter. In addition to the relative size of the cylinders, the distance between them can be varied, as can the angle that the undisturbed oscillatory flow makes with the line joining the cylinder centres. For small-amplitude vibrations a time-independent, or steady streaming, motion develops that persists beyond the Stokes layer that forms at the solid boundary. This persistent streaming is considered for large values of a suitably defined streaming Reynolds number. (paper)

  2. Flow instability in flow past O-grooved circular cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehee; Yang, Kyungsoo [Inha University, Inchun (Korea, Republic of)

    2015-04-15

    This study was devoted to elucidating the change in the flow characteristics of a laminar flow past a circular cylinder by modifying the cylinder shape with O-grooves. A numerical analysis was performed in a two-dimensional framework. The cylinder was represented using an immersed boundary method and marker particles on a Cartesian grid system. The number and locations of the O-grooves were the key parameters. An analysis of the flow pattern and flow induced forces was performed at Re = 40 and 50. In addition, we calculated the critical Reynolds number depending on the number of O-grooves and their locations.

  3. Electromagnetic Fields at the Surface of Human-Body Cylinders

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper

    2016-01-01

    The electromagnetic fields around an infinitely long cylinder with different material parameters are analyzed. The cylinder is modeled as muscle, skin, fat, and perfect electric conductor respectively. The cylinder is illuminated by a plane wave incident from different angles and with both...... transverse electric and transverse magnetic polarization. The results show that the material assumption when modeling the human body as a homogeneous material is very important. Furthermore, it is shown that one assumption might lead to higher fields for a specific polarization, angle of incidence...

  4. Coulomb problem on single- and double-wall cylinders

    International Nuclear Information System (INIS)

    Deinega, Alexei; Voronova, Nina; Lozovik, Yurii

    2012-01-01

    In this paper we calculate the energies of ground and excited states of two opposite charge carriers confined on a single- or double-wall cylindrical surface. A nontrivial dependence of excited state energies on cylinder radius value (for the case of a single-wall cylinder) is found, and the explanation of this behavior is based on symmetry properties of the corresponding wavefunctions. The crossover from a one-dimensional problem to a two-dimensional one with increase of the radius value is discussed in detail. For the double-wall cylinder, we obtain and analyze the dependence of ground state energy on interwall distance and ratio between particle masses. (paper)

  5. Flow around a confined cylinder: LES and PIV study

    Directory of Open Access Journals (Sweden)

    Palkin Egor

    2017-01-01

    Full Text Available We study the flow over a cylinder placed between two parallel rigid walls using Large-eddy simulations and Particle Image Velocimetry. The Reynolds number based on the inflow velocity and diameter of the cylinder is 3750 corresponding to the subcritical regime with laminar separation. Three-dimensional visualization shows the presence of the horseshoe vortex system prior to the cylinder. The comparison of time-averaged velocity fields and fluctuations shows good agreement between simulations and experiments. Spectral analysis suggests the presence of low-frequency modulations of the recirculating bubble.

  6. Cylinder gauge measurement using a position sensitive detector

    International Nuclear Information System (INIS)

    St John, W. Doyle

    2007-01-01

    A position sensitive detector (PSD) has been used to determine the diameter of cylindrical pins based on the shift in a laser beam's centroid. The centroid of the light beam is defined here as the weighted average of position by the local intensity. A shift can be observed in the centroid of an otherwise axially symmetric light beam, which is partially obstructed. Additionally, the maximum shift in the centroid is a unique function of the obstructing cylinder diameter. Thus to determine the cylinder diameter, one only needs to detect this maximum shift as the cylinder is swept across the beam

  7. Modal Structures in flow past a cylinder

    Science.gov (United States)

    Murshed, Mohammad

    2017-11-01

    With the advent of data, there have been opportunities to apply formalism to detect patterns or simple relations. For instance, a phenomenon can be defined through a partial differential equation which may not be very useful right away, whereas a formula for the evolution of a primary variable may be interpreted quite easily. Having access to data is not enough to move on since doing advanced linear algebra can put strain on the way computations are being done. A canonical problem in the field of aerodynamics is the transient flow past a cylinder where the viscosity can be adjusted to set the Reynolds number (Re). We observe the effect of the critical Re on the certain modes of behavior in time scale. A 2D-velocity field works as an input to analyze the modal structure of the flow using the Proper Orthogonal Decomposition and Koopman Mode/Dynamic Mode Decomposition. This will enable prediction of the solution further in time (taking into account the dependence on Re) and help us evaluate and discuss the associated error in the mechanism.

  8. Stability of a rolling fluid filled cylinder

    Science.gov (United States)

    Supekar, Rohit; Panchagnula, Mahesh

    2014-11-01

    We present an analytical solution to the problem of a fluid filled hollow cylindrical shell rolling on an inclined plane and then investigate the temporal stability of the system using linear stability analysis. We study the motion in two dimensions by analyzing the interaction between the fluid and the hollow cylinder. We show that the terminal state is associated with a constant acceleration, similar to a rigid body motion. Surprisingly, it is independent of the liquid viscosity and only depends on the ratio of the mass of the shell to the mass of the fluid contained (say, πm) . We analyze this base flow for its stability behavior using the frozen-time approximation. In this approach, we treat time as a parameter, the evolution of which causes the flow to transition from a stable to an unstable state. The point of neutral stability is noted and the spatial modes that show the maximum growth rate are analyzed. It was observed that instability sets in due to long wavelength axial waves, which are transverse to the flow direction. We find a critical Reynolds number based on the time to instability, above which the flow becomes unstable. Again, this Reynolds number appears to be only a function of πm.

  9. Reluctance Machine for a Hollow Cylinder Flywheel

    Directory of Open Access Journals (Sweden)

    Magnus Hedlund

    2017-03-01

    Full Text Available A hollow cylinder flywheel rotor with a novel outer rotor switched reluctance machine (SRM mounted on the interior rim is presented, with measurements, numerical analysis and analytical models. Practical experiences from the construction process are also discussed. The flywheel rotor does not have a shaft and spokes and is predicted to store 181 Wh / kg at ultimate tensile strength (UTS according to simulations. The novel SRM is an axial flux machine, chosen due to its robustness and tolerance for high strain. The computed maximum tip speed of the motor at UTS is 1050 m / s . A small-scale proof-of-concept electric machine prototype has been constructed, and the machine inductance has been estimated from measurements of voltage and current and compared against results from analytical models and finite element analysis (FEA. The prototype measurements were used to simulate operation during maximal speed for a comparison towards other high-speed electric machines, in terms of tip speed and power. The mechanical design of the flywheel was performed with an analytical formulation assuming planar stress in concentric shells of orthotropic (unidirectionally circumferentially wound carbon composites. The analytical approach was verified with 3D FEA in terms of stress and strain.

  10. Convectively driven flow past an infinite moving vertical cylinder with ...

    Indian Academy of Sciences (India)

    , free convective flow over an infinite moving vertical cylinder under combined buoyancy effects of heat and mass transfer with thermal and mass stratifications. Laplace transform technique is adopted for finding solutions for velocity, ...

  11. Steady particulate flows in a horizontal rotating cylinder

    Science.gov (United States)

    Yamane, K.; Nakagawa, M.; Altobelli, S. A.; Tanaka, T.; Tsuji, Y.

    1998-06-01

    Results of discrete element method (DEM) simulation and magnetic resonance imaging (MRI) experiments are compared for monodisperse granular materials flowing in a half-filled horizontal rotating cylinder. Because opacity is not a problem for MRI, a long cylinder with an aspect ratio ˜7 was used and the flow in a thin transverse slice near the center was studied. The particles were mustard seeds and the ratio of cylinder diameter to particle diameter was approximately 50. The parameters compared were dynamic angle of repose, velocity field in a plane perpendicular to the cylinder axis, and velocity fluctuations at rotation rates up to 30 rpm. The agreement between DEM and MRI was good when the friction coefficient and nonsphericity were adjusted in the simulation for the best fit.

  12. Nonlinear Fracture Mechanics and Plasticity of the Split Cylinder Test

    DEFF Research Database (Denmark)

    Olesen, John Forbes; Østergaard, Lennart; Stang, Henrik

    2006-01-01

    The split cylinder testis subjected to an analysis combining nonlinear fracture mechanics and plasticity. The fictitious crack model is applied for the analysis of splitting tensile fracture, and the Mohr-Coulomb yield criterion is adopted for modelling the compressive crushing/sliding failure. Two...... demonstrates the influence of varying geometry or constitutive properties. For a split cylinder test in load control it is shown how the ultimate load is either plasticity dominated or fracture mechanics dominated. The transition between the two modes is related to changes in geometry or constitutive...... properties. This implies that the linear elastic interpretation of the ultimate splitting force in term of the uniaxial tensile strength of the material is only valid for special situations, e.g. for very large cylinders. Furthermore, the numerical analysis suggests that the split cylinder test is not well...

  13. Erosion patterns on a granular bed around a vertical cylinder

    Directory of Open Access Journals (Sweden)

    Lachaussée Florent

    2017-01-01

    Full Text Available We report on two different patterns that can be observed at the bed surface close to a vertical cylinder when submitted to a strong enough steady water flow. The classical scour pattern observed at the cylinder foot and due to the “horseshoe” vortex around occurs at a critical velocity Uc1 below the critical velocity Uc0 for erosion without any cylinder, thus under clear-water conditions. But we observe also another pattern downstream the cylinder which consists of two symmetrical ovoid holes that look like “bunny ears”. This new scour pattern referred as BES can be observed at lower velocities that the horseshoe scour (HSS, above a critical velocity Uc2 < Uc1 , with a timescale formation much higher that the one of HSS.

  14. The optimal spacing for cylinders in crossflow forced convection

    International Nuclear Information System (INIS)

    Bejan, A.

    1995-01-01

    In this note I draw attention to a new fundamental aspect of the heat transfer performance of a bundle of parallel cylinders with crossflow forced convection, namely, the maximization of the thermal contact between the bundle and the fluid, when the volume occupied by the bundle is fixed. In the experiments described by Jubran et al. we have seen empirical evidence that the total heat transfer rate is maximum when the cylinder-to-cylinder spacing S has a certain value. This finding is important because it has been overlooked for decades, while forced convection from cylinders in crossflow grew into one of the most researched topics in heat transfer. 8 refs., 3 figs

  15. Experimental and Computational Investigations of Flow past Spinning Cylinders

    Science.gov (United States)

    Carlucci, Pasquale; Mehmedagic, Igbal; Buckley, Liam; Carlucci, Donald; Thangam, Siva

    2011-11-01

    Experiments are performed in a low speed subsonic wind tunnel to analyze flow past spinning cylinders. The sting-mounted cylinders are oriented such that their axis of rotation is aligned with the mean flow. Data from spinning cylinders with both rear-mounted and fore-mounted stings are presented for a Reynolds numbers of up to 260000 and rotation numbers of up to 1.2 (based on cylinder diameter). Computations are performed using a two-equation turbulence model that is capable of capturing the effects of swirl and curvature. The model performance was validated with benchmark experimental flows and implemented for analyzing the flow configuration used in the experimental study. The results are analyzed and the predictive capability of the model is discussed. Funded in part by U. S. Army, ARDEC.

  16. The Friction of Vehicle Brake Tandem Master Cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Kao, M J [Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, 1 Sec.3, Chung Hsiao E. Rd. 10608, Taipei, Taiwan (China); Chang, H [Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, 1 Sec.3, Chung Hsiao E. Rd. 10608, Taipei, Taiwan (China); Tsung, T T [Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, 1 Sec.3, Chung Hsiao E. Rd. 10608, Taipei, Taiwan (China); Lin, H M [Department of Materials Engineering, Tatung University, Taipei, Taiwan (China)

    2006-10-15

    The behaviour of an elastomeric seal for vehicle brake Tandem master cylinder is measured and analyzed in temperature and brake fluids changed. Working conditions are simulated for different piston rod velocity and cylinder supply pressure, in temperature rising, brakefluid boundary and Nanoaluminum oxide brakefluid oxide brakefluid lubrication. The result shows that Nanoaluminum oxide brakefluid with its ball shape can highly reduce friction coefficient to avoid seal excessive wear and reduce slick slip in brake applications.

  17. The Friction of Vehicle Brake Tandem Master Cylinder

    Science.gov (United States)

    Kao, M. J.; Chang, H.; Tsung, T. T.; Lin, H. M.

    2006-10-01

    The behaviour of an elastomeric seal for vehicle brake Tandem master cylinder is measured and analyzed in temperature and brake fluids changed. Working conditions are simulated for different piston rod velocity and cylinder supply pressure, in temperature rising, brakefluid boundary and Nanoaluminum oxide brakefluid oxide brakefluid lubrication. The result shows that Nanoaluminum oxide brakefluid with its ball shape can highly reduce friction coefficient to avoid seal excessive wear and reduce slick slip in brake applications.

  18. Robust Cylinder Fitting in Three-Dimensional Point Cloud Data

    Science.gov (United States)

    Nurunnabi, A.; Sadahiro, Y.; Lindenbergh, R.

    2017-05-01

    This paper investigates the problems of cylinder fitting in laser scanning three-dimensional Point Cloud Data (PCD). Most existing methods require full cylinder data, do not study the presence of outliers, and are not statistically robust. But especially mobile laser scanning often has incomplete data, as street poles for example are only scanned from the road. Moreover, existence of outliers is common. Outliers may occur as random or systematic errors, and may be scattered and/or clustered. In this paper, we present a statistically robust cylinder fitting algorithm for PCD that combines Robust Principal Component Analysis (RPCA) with robust regression. Robust principal components as obtained by RPCA allow estimating cylinder directions more accurately, and an existing efficient circle fitting algorithm following robust regression principles, properly fit cylinder. We demonstrate the performance of the proposed method on artificial and real PCD. Results show that the proposed method provides more accurate and robust results: (i) in the presence of noise and high percentage of outliers, (ii) for incomplete as well as complete data, (iii) for small and large number of points, and (iv) for different sizes of radius. On 1000 simulated quarter cylinders of 1m radius with 10% outliers a PCA based method fit cylinders with a radius of on average 3.63 meter (m); the proposed method on the other hand fit cylinders of on average 1.02 m radius. The algorithm has potential in applications such as fitting cylindrical (e.g., light and traffic) poles, diameter at breast height estimation for trees, and building and bridge information modelling.

  19. Cylinder expansion test and gas gun experiment comparison

    Energy Technology Data Exchange (ETDEWEB)

    Harrier, Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-30

    This is a summer internship presentation by the Hydro Working Group at Los Alamos National Laboratory (LANL) and goes into detail about their cylinder expansion test and gas gun experiment comparison. Specifically, the gas gun experiment is detailed along with applications, the cylinder expansion test is detailed along with applications, there is a comparison of the methods with pros and cons and limitations listed, the summer project is detailed, and future work is talked about.

  20. Radiation dose rates from UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Friend, P.J. [Urenco, Capenhurst (United Kingdom)

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  1. Longitudinal Weld Land Buckling in Compression-Loaded Orthogrid Cylinders

    Science.gov (United States)

    Thornburgh, Robert P.; Hilburger, Mark W.

    2010-01-01

    Large stiffened cylinders used in launch vehicles (LV), such as the Space Shuttle External Tank, are manufactured by welding multiple curved panel sections into complete cylinders. The effects of the axial weld lands between the panel sections on the buckling load were studied, along with the interaction between the acreage stiffener arrangement and the weld land geometry. This document contains the results of the studies.

  2. MATHEMATICAL METHODS TO DETERMINE THE INTERSECTION CURVES OF THE CYLINDERS

    Directory of Open Access Journals (Sweden)

    POPA Carmen

    2010-07-01

    Full Text Available The aim of this paper is to establish the intersection curves between cylinders, by using the Mathematica program. This thing can be obtained by introducing the curves equations, which are inferred, in Mathematica program. This paper take into discussion three right cylinders and another inclined to 45 degrees. The intersection curves can also be obtained by using the classical methods of the descriptive geometry.

  3. Relaxation of Thick-Walled Cylinders and Spheres

    DEFF Research Database (Denmark)

    Saabye Ottosen, N.

    1982-01-01

    Using the nonlinear creep law proposed by Soderberg, (1936) closed-form solutions are derived for the relaxation of incompressible thick-walled spheres and cylinders in plane strain. These solutions involve series expressions which, however, converge very quickly. By simply ignoring these series...... expressions, extremely simple approximate solutions are obtained. Despite their simplicity these approximations possess an accuracy that is superior to approximations currently in use. Finally, several physical aspects related to the relaxation of cylinders and spheres are discussed...

  4. ROBUST CYLINDER FITTING IN THREE-DIMENSIONAL POINT CLOUD DATA

    Directory of Open Access Journals (Sweden)

    A. Nurunnabi

    2017-05-01

    Full Text Available This paper investigates the problems of cylinder fitting in laser scanning three-dimensional Point Cloud Data (PCD. Most existing methods require full cylinder data, do not study the presence of outliers, and are not statistically robust. But especially mobile laser scanning often has incomplete data, as street poles for example are only scanned from the road. Moreover, existence of outliers is common. Outliers may occur as random or systematic errors, and may be scattered and/or clustered. In this paper, we present a statistically robust cylinder fitting algorithm for PCD that combines Robust Principal Component Analysis (RPCA with robust regression. Robust principal components as obtained by RPCA allow estimating cylinder directions more accurately, and an existing efficient circle fitting algorithm following robust regression principles, properly fit cylinder. We demonstrate the performance of the proposed method on artificial and real PCD. Results show that the proposed method provides more accurate and robust results: (i in the presence of noise and high percentage of outliers, (ii for incomplete as well as complete data, (iii for small and large number of points, and (iv for different sizes of radius. On 1000 simulated quarter cylinders of 1m radius with 10% outliers a PCA based method fit cylinders with a radius of on average 3.63 meter (m; the proposed method on the other hand fit cylinders of on average 1.02 m radius. The algorithm has potential in applications such as fitting cylindrical (e.g., light and traffic poles, diameter at breast height estimation for trees, and building and bridge information modelling.

  5. Magnus effect on laminar flow around a rotating cylinder

    International Nuclear Information System (INIS)

    Amarante, J.C.A.

    1989-01-01

    The laminar flow around a rotating cylinder is studied, through the numerical solution of the full Navier-Stokes equations, for Reynolds number, based on cylinder radius, varying between 0.5 and 25 and for non-dimensional tangential velocities of the body surface between zero and 8. The Taylor and Hughes method is employed in the theoretical investigation. The Magnus lift coefficient and the drag coefficient are obtained and the presure and vorticity distribution are calculated. (author)

  6. Optimization of In-Cylinder Pressure Filter for Engine Research

    Science.gov (United States)

    2017-06-01

    ARL-TR-8034 ● JUN 2017 US Army Research Laboratory Optimization of In-Cylinder Pressure Filter for Engine Research by Kenneth...Destroy this report when it is no longer needed. Do not return it to the originator. ARL-TR-8034 ● JUN 2017 US Army Research ...Laboratory Optimization of In-Cylinder Pressure Filter for Engine Research by Kenneth S Kim, Michael T Szedlmayer, Kurt M Kruger, and Chol-Bum M

  7. Mathematic modelling of circular cylinder deformation under inner grouwth

    Directory of Open Access Journals (Sweden)

    A. V. Siasiev

    2009-09-01

    Full Text Available A task on the intensive deformed state (IDS of a viscoelastic declivous cylinder, which is grown under the action of inner pressure, is considered. The process of continuous increase takes a place on an internal radius so, that a radius and pressure change on set to the given law. The special case of linear law of creeping is considered, and also numeral results are presented as the graphs of temporal dependence of tensions and moving for different points of cylinder.

  8. Criticality concerns in cleaning large uranium hexafluoride cylinders

    International Nuclear Information System (INIS)

    Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.

    1995-06-01

    Cleaning large cylinders used to transport low-enriched uranium hexafluoride (UF 6 ) presents several challenges to nuclear criticality safety. This paper presents a brief overview of the cleaning process, the criticality controls typically employed and their bases. Potential shortfalls in implementing these controls are highlighted, and a simple example to illustrate the difficulties in complying with the Double Contingency Principle is discussed. Finally, a summary of recommended criticality controls for large cylinder cleaning operations is presented

  9. A characteristic analysis of the fluidic muscle cylinder

    Science.gov (United States)

    Kim, Dong-Soo; Bae, Sang-Kyu; Hong, Sung-In

    2005-12-01

    The fluidic muscle cylinder consists of an air bellows tube, flanges and lock nuts. It's features are softness of material and motion, simplicity of structure, low production cost and high power efficiency. Recently, unlikely the pneumatic cylinder, the fluidic muscle cylinder without air leakage, stick slip, friction, and seal was developed as a new concept actuator. It has the characteristics such as light weight, low price, high response, durable design, long life, high power, high contraction, which is innovative product fulfilling RT(Robot Technology) which is one of the nation-leading next generation strategy technologies 6T as well as cleanness technology. The application fields of the fluidic muscle cylinder are so various like fatigue tester, brake, accelerator, high technology testing device such as driving simulator, precise position, velocity, intelligent servo actuator under special environment such as load controlling system, and intelligent robot. In this study, we carried out the finite element modeling and analysis about the main design variables such as contraction ration and force, diameter increment of fluidic muscle cylinder. On the basis of finite element analysis, the prototype of fluidic muscle cylinder was manufactured and tested. Finally, we compared the results between the test and the finite element analysis.

  10. Passively Enhancing Convection Heat Transfer Around Cylinder Using Shrouds

    Science.gov (United States)

    Samaha, Mohamed A.; Kahwaji, Ghalib Y.

    2017-11-01

    Natural convection heat transfer around a horizontal cylinder has received considerable attention through decades since it has been used in several viable applications. However, investigations into passively enhancement of the free convective cooling using external walls and chimney effect are lacking. In this work, a numerical simulation to study natural convection from a horizontal cylinder configured with semicircular shrouds with an expended chimney is employed. The fluid flow and convective heat transfer around the cylinder are modeled. The bare cylinder is also simulated for comparison. The present study are aimed at improving our understanding of the parameters advancing the free convective cooling of the cylinder implemented with the shrouds configuration. For validation, the present results for the bare tube are compared with data reported in the literature. The numerical simulations indicate that applying the shrouds configuration with extended chimney to a tube promotes the convection heat transfer from the cylinder. Such a method is less expensive and simpler in design than other configurations (e.g. utilizing extended surfaces, fins), making the technology more practical for industrial productions, especially for cooling systems. Dubai Silicon Oasis Authority (DSOA) Grants.

  11. Universal SCFs and optimal chamfering in cross-bored cylinders

    International Nuclear Information System (INIS)

    Kihiu, J.M.; Rading, G.O.; Mutuli, S.M.

    2007-01-01

    A three-dimensional finite element computer program was developed to establish the stress distributions and stress concentration factors (SCFs) in chamfered cross-bored cylinders under internal pressure. The displacement formulation using eight noded brick and four noded tetrahedron isoparametric elements was used. The Frontal solution technique was used due to limited computing facilities. For several thickness ratios and cross bore to main bore radius ratios, the variation of SCF with chamfer angle for various chamfer length (clr) ratios was investigated. In each case, a universal SCF value corresponding to a unique value of chamfer angle was established. For most clr and chamfer angle combinations, the SCF was higher than that of a plain cross-bored cylinder. However, for some combinations, the SCF curve had an optimum value lower than that of a plain cross-bored cylinder. In optimal chamfered cylinders with thickness ratio between 2.25 and 3, the SCF was found to increase with decrease of thickness ratio. Where thickness ratio was between 1.25 and 2, a cross bore to main bore radius ratio of 0.075 was found to be a geometrical constant with a corresponding SCF of 2.65. Thick cylinders were found to be more suited to chamfering than thin cylinders. The resulting data in this work provides a useful and quick design tool

  12. Universal SCFs and optimal chamfering in cross-bored cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Kihiu, J.M. [Department of Mechanical Engineering, Jomo Kenyatta University of Agriculture and Technology, PO Box 62000, 00200 Nairobi (Kenya); Rading, G.O. [University of Nairobi (Kenya); Mutuli, S.M. [University of Nairobi (Kenya)

    2007-06-15

    A three-dimensional finite element computer program was developed to establish the stress distributions and stress concentration factors (SCFs) in chamfered cross-bored cylinders under internal pressure. The displacement formulation using eight noded brick and four noded tetrahedron isoparametric elements was used. The Frontal solution technique was used due to limited computing facilities. For several thickness ratios and cross bore to main bore radius ratios, the variation of SCF with chamfer angle for various chamfer length (clr) ratios was investigated. In each case, a universal SCF value corresponding to a unique value of chamfer angle was established. For most clr and chamfer angle combinations, the SCF was higher than that of a plain cross-bored cylinder. However, for some combinations, the SCF curve had an optimum value lower than that of a plain cross-bored cylinder. In optimal chamfered cylinders with thickness ratio between 2.25 and 3, the SCF was found to increase with decrease of thickness ratio. Where thickness ratio was between 1.25 and 2, a cross bore to main bore radius ratio of 0.075 was found to be a geometrical constant with a corresponding SCF of 2.65. Thick cylinders were found to be more suited to chamfering than thin cylinders. The resulting data in this work provides a useful and quick design tool.

  13. Flow induced vibrations in arrays of irregularly spaced cylinders

    Science.gov (United States)

    Taub, Gordon; Michelin, Sébastien

    2014-11-01

    Historically the main industrial applications of cylinder arrays in cross flows favored regular arrangements of cylinders. For this reason, most past studies of Flow Induced Vibrations (FIV) in large cylinder arrays have focused on such arrangements. Recently there has been some interest in generating renewable energy using FIV of bluff bodies. In such applications it will likely be beneficial to enhance, rather than suppress FIV. It is not known a priori if regular or irregularly spaced arrays are most adequate for this type of application. In this study, wind tunnel experiments were conducted on one regularly spaced array and four different irregularly spaced arrays of cylinders in a cross flow. Each arrangement of cylinders was examined under eight different orientations to a cross flow ranging between 10 m/s and 17 m/s. The average amplitude of vibration of the cylinders was found to highly depend on arrangement and orientation. The typical amplitude of vibration of the rods in the irregular arrangements were found to be an order of magnitude larger than that of the regular array. A simple model was proposed in order to predict if a given arrangement was likely to produce large oscillations, and the validity of the model was examined. This research was supported by a Marie Curie International Reintegration Grant within the 7th European Community Framework Program (Grant PIRG08-GA-2010-276762).

  14. 76 FR 71124 - Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders

    Science.gov (United States)

    2011-11-16

    .... PHMSA-2011-0241, (Notice No. 11-10)] Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders... Notice. SUMMARY: An undetermined number of high pressure DOT specification cylinders were improperly... these cylinders, a person must verify that the cylinder has been properly requalified by an authorized...

  15. 77 FR 1975 - Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders

    Science.gov (United States)

    2012-01-12

    .... PHMSA-2011-0328; Notice No. 11-15] Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders... Jackson Plaza, Ann Arbor, MI improperly requalified and marked high pressure compressed gas cylinders... DOT specification cylinders after its authority to requalifiy high pressure cylinders expired on...

  16. 76 FR 33023 - Safety Advisory; Unauthorized Marking of Compressed Gas Cylinders

    Science.gov (United States)

    2011-06-07

    .... PHMSA-2011-0122, Notice No. 11-4] Safety Advisory; Unauthorized Marking of Compressed Gas Cylinders... of certain (aluminum) cylinders were improperly marked and represented as DOT specification 3AL cylinders. The cylinders were neither marked nor certified by an authorized independent inspection agency...

  17. 30 CFR 75.1106-4 - Use of liquefied and nonliquefied compressed gas cylinders; general requirements.

    Science.gov (United States)

    2010-07-01

    ... gas cylinders; general requirements. 75.1106-4 Section 75.1106-4 Mineral Resources MINE SAFETY AND...-UNDERGROUND COAL MINES Fire Protection § 75.1106-4 Use of liquefied and nonliquefied compressed gas cylinders... compressed gas unit, consisting of one oxygen cylinder and one additional gas cylinder, shall be used to...

  18. 78 FR 16045 - Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders

    Science.gov (United States)

    2013-03-13

    .... PHMSA-2013-0019; Notice No. 13-03] Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders... specification cylinders. Cylinders described in this safety advisory that are filled with an atmospheric gas... of certain high pressure DOT specification cylinders marked with a requalification identification...

  19. Compression Tests on Circular Cylinders Stiffened Longitudinally by Closely Spaced Z-Section Stringers

    Science.gov (United States)

    Peterson, James P.; Dow, Marvin B.

    1959-01-01

    Six circular cylinders stiffened longitudinally by closely spaced Z-section stringers were loaded to failure in compression. The results obtained are presented and compared with available theoretical results for the buckling of orthotropic cylinders. The results indicate that the large disparity that exists between theory and experiment for unstiffened compression cylinders may be significantly smaller for stiffened cylinders.

  20. Modelling and numerical simulation of vortex induced vibrations of single cylinder or cylinder arrays

    International Nuclear Information System (INIS)

    Jus, Y.

    2011-01-01

    This research thesis fits into the frame of researches achieved in the nuclear field in order to optimize the predictive abilities of sizing models of nuclear plant components. It more precisely addresses the modelling of the action exerted by the flowing fluid and the induced feedback by the structure dynamics. The objective is herein to investigate the interaction between the turbulence at the wall vicinity and the effects of non-conservative and potentially destabilizing unsteady coupling. The peculiar case of a single cylinder in infinite environment, and submitted to a transverse flow, is studied statically and then dynamically. The influence of flow regimes on dynamic response is characterized, and the quantification of fluid-structure interaction energy is assessed. The author then addresses the case of an array of cylinders, and highlights the contribution of three-dimensional macro-simulations for the analysis of flow-induced structure vibrations in subcritical regime within a High Performance Calculation (HPC) framework, and the interest of a CFD/CSM (computational fluid dynamics/computational structure mechanics) coupling in the case of turbulent flows in an industrial environment

  1. Short philtrum

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003302.htm Short philtrum To use the sharing features on this page, please enable JavaScript. A short philtrum is a shorter than normal distance between ...

  2. Mechanism of drag reduction for circular cylinders with patterned surface

    International Nuclear Information System (INIS)

    Butt, U.; Jehring, L.; Egbers, C.

    2014-01-01

    Highlights: • Reduced drag of patterned cylinders over a wide range of Re numbers. • Hexagonal patterns cannot be characterized as roughness structures. • Hexagonal bumps affect the flow like spherical dimples of smaller k/d ratio do. • Main separation is delayed caused by a partial separation. • Angle of a separation line is not constant over the length of cylinder. -- Abstract: In this paper, the flow over cylinders with a patterned surface (k/d = 1.98 × 10 −2 ) is investigated in a subsonic wind tunnel over Reynolds numbers ranging from 3.14 × 10 4 to 2.77 × 10 5 by measuring drag, flow visualization and measuring velocity profiles above the surface of the cylinders, to observe the effect of hexagonal patterns on the flow of air. These patterns can also be referred as hexagonal dimples or bumps depending on their configuration. The investigations revealed that a patterned cylinder with patterns pressed outwards has a drag coefficient of about 0.65 times of a smooth one. Flow visualization techniques including surface oil-film technique and velocity profile measurement were employed to elucidate this effect, and hence present the mechanism of drag reduction. The measurement of velocity profiles using hot-wire anemometry above the surface reveal that a hexagonal bump cause local separation generating large turbulence intensity along the separating shear layer. Due to this increased turbulence, the flow reattaches to the surface with higher momentum and become able to withstand the pressure gradient delaying the main separation significantly. Besides that, the separation does not appear to occur in a straight line along the length of the cylinder as in case of most passive drag control methods, but follow exactly the hexagonal patterns forming a wave with its crest at 115° and trough at 110°, in contrast to the laminar separation line at 85° for a smooth cylinder

  3. Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder.

    Science.gov (United States)

    Mukundakrishnan, Karthik; Quan, Shaoping; Eckmann, David M; Ayyaswamy, Portonovo S

    2007-09-01

    The wall effects on the axisymmetric rise and deformation of an initially spherical gas bubble released from rest in a liquid-filled, finite circular cylinder are numerically investigated. The bulk and gas phases are considered incompressible and immiscible. The bubble motion and deformation are characterized by the Morton number (Mo), Eötvös number (Eo), Reynolds number (Re), Weber number (We), density ratio, viscosity ratio, the ratios of the cylinder height and the cylinder radius to the diameter of the initially spherical bubble ( H*=H/d0, R*=R/d0). Bubble rise in liquids described by Eo and Mo combinations ranging from (1,0.01) to (277.5,0.092), as appropriate to various terminal state Reynolds numbers (ReT) and shapes have been studied. The range of terminal state Reynolds numbers includes 0.02cylinders of height H*=8 and R*> or =3 , is noted to correspond to the rise in an infinite medium, both in terms of Reynolds number and shape at terminal state. In a thin cylindrical vessel (small R*), the motion of the bubble is retarded due to increased total drag and the bubble achieves terminal conditions within a short distance from release. The wake effects on bubble rise are reduced, and elongated bubbles may occur at appropriate conditions. For a fixed volume of the bubble, increasing the cylinder radius may result in the formation of well-defined rear recirculatory wakes that are associated with lateral bulging and skirt formation. The paper includes figures of bubble shape regimes for various values of R*, Eo, Mo, and ReT. Our predictions agree with existing results reported in the literature.

  4. Conversion of low BMEP 4-cylinder to high BMEP 2-cylinder large bore natural gas engine

    Science.gov (United States)

    Ladd, John

    There are more than 6,000 integral compressor engines in use on US natural gas pipelines, operating 24 hours a day, 365 days a year. Many of these engines have operated continuously for more than 50 years, with little to no modifications. Due to recent emission regulations at the local, state and federal levels much of the aging infrastructure requires retrofit technology to remain within compliance. The Engines and Energy Conversion Laboratory was founded to test these retrofit technologies on its large bore engine testbed (LBET). The LBET is a low brake mean effective pressure (BMEP) Cooper Bessemer GMVTF-4. Newer GMV models, constructed in 1980's, utilize turbocharging to increase the output power, achieving BMEP's nearly double that of the LBET. To expand the lab's testing capability and to reduce the LBET's running cost: material testing, in-depth modeling, and on engine testing was completed to evaluate the feasibility of uprating the LBET to a high BMEP two cylinder engine. Due to the LBET's age, the crankcase material properties were not known. Material samples were removed from engine to conduct an in-depth material analysis. It was found that the crankcase was cast out of a specific grade of gray iron, class 25 meehanite. A complete three dimensional model of the LBET's crankcase and power cylinders was created. Using historical engine data, the force inputs were created for a finite element analysis model of the LBET, to determine the regions of high stress. The areas of high stress were instrumented with strain gauges to iterate and validate the model's findings. Several test cases were run at the high and intermediate BMEP engine conditions. The model found, at high BMEP conditions the LBET would operate at the fatigue limit of the class 25 meehanite, operating with no factor of safety but the intermediate case were deemed acceptable.

  5. AFM tip-sample convolution effects for cylinder protrusions

    Science.gov (United States)

    Shen, Jian; Zhang, Dan; Zhang, Fei-Hu; Gan, Yang

    2017-11-01

    A thorough understanding about the AFM tip geometry dependent artifacts and tip-sample convolution effect is essential for reliable AFM topographic characterization and dimensional metrology. Using rigid sapphire cylinder protrusions (diameter: 2.25 μm, height: 575 nm) as the model system, a systematic and quantitative study about the imaging artifacts of four types of tips-two different pyramidal tips, one tetrahedral tip and one super sharp whisker tip-is carried out through comparing tip geometry dependent variations in AFM topography of cylinders and constructing the rigid tip-cylinder convolution models. We found that the imaging artifacts and the tip-sample convolution effect are critically related to the actual inclination of the working cantilever, the tip geometry, and the obstructive contacts between the working tip's planes/edges and the cylinder. Artifact-free images can only be obtained provided that all planes and edges of the working tip are steeper than the cylinder sidewalls. The findings reported here will contribute to reliable AFM characterization of surface features of micron or hundreds of nanometers in height that are frequently met in semiconductor, biology and materials fields.

  6. Spatial damping of propagating sausage waves in coronal cylinders

    Science.gov (United States)

    Guo, Ming-Zhe; Chen, Shao-Xia; Li, Bo; Xia, Li-Dong; Yu, Hui

    2015-09-01

    Context. Sausage modes are important in coronal seismology. Spatially damped propagating sausage waves were recently observed in the solar atmosphere. Aims: We examine how wave leakage influences the spatial damping of sausage waves propagating along coronal structures modeled by a cylindrical density enhancement embedded in a uniform magnetic field. Methods: Working in the framework of cold magnetohydrodynamics, we solve the dispersion relation (DR) governing sausage waves for complex-valued, longitudinal wavenumber k at given real angular frequencies ω. For validation purposes, we also provide analytical approximations to the DR in the low-frequency limit and in the vicinity of ωc, the critical angular frequency separating trapped from leaky waves. Results: In contrast to the standing case, propagating sausage waves are allowed for ω much lower than ωc. However, while able to direct their energy upward, these low-frequency waves are subject to substantial spatial attenuation. The spatial damping length shows little dependence on the density contrast between the cylinder and its surroundings, and depends only weakly on frequency. This spatial damping length is of the order of the cylinder radius for ω ≲ 1.5vAi/a, where a and vAi are the cylinder radius and the Alfvén speed in the cylinder, respectively. Conclusions: If a coronal cylinder is perturbed by symmetric boundary drivers (e.g., granular motions) with a broadband spectrum, wave leakage efficiently filters out the low-frequency components.

  7. Hydrogen Bubbles as a Visualization Tool for Cylinder Shedding

    Science.gov (United States)

    Sigurdson, Lorenz; Gilbert, Stuart

    2004-11-01

    We examine the behavior of hydrogen bubbles formed by electrolysis of water on a 2.54 mm cylindrical electrode in a water tunnel. The Reynolds Number based on cylinder diameter varies from 400 to 1100, and tunnel velocities range from 17 to 50 cm/s. At the lowest velocity buoyancy is a strong effect which inhibits accurate flow tracking by the bubbles. This effect largely disappears by 25 cm/s. As the tunnel velocity increases, bubble size decreases, reflected light for photography is reduced, and bubbles begin to track the von Karman vortex street vortex cores near the cylinder. The vortex cores have a sufficiently low pressure to capture the bubbles. Vortex street wavelength is seen to discretely increase as vortices proceed downstream. The location of this scale-change becomes nearer the cylinder as Re increases. Voids of bubbles occur in continuous linear downstream segments originating near the cylinder. They seem to be due to vortex modification in the wake similar to what other cylinder shedding researchers have found.

  8. Performance of a Horizontal Triple Cylinder Type Pulping Machine

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2011-05-01

    Full Text Available Pulping is one important step in wet coffee processing method. Pulping process usually uses a machine which constructed by wood or metal materials. A horizontal single cylinder type of fresh coffee cherries pulping machine is the most popular machine in coffee processing. One of the weaknesses of a horizontal single cylinder type of fresh coffee cherries pulping machine is higher in broken beans. Broken bean is one of mayor aspects in defect system that contribute to low quality. Indonesian Coffee and Cocoa Research Institute has designed and tested a horizontal double cylinder type of fresh coffee cherries pulping machine which resulted in 12.6—21.4% of broken beans. To reduce percentage of broken beans, Indonesian Coffee and Cocoa Research Institute has developed and tested a horizontal triple cylinder type of fresh coffee cherries pulping machine. Material tested was fresh mature Robusta coffee cherries, 60—65% (wet basis moisture content; has classified on 3 levels i.e. unsorted, small and medium, and clean from metal and foreign materials. The result showed that the machine produced 6,340 kg/h in optimal capacity for operational conditions, 1400 rpm rotor rotation speed for unsorted coffee cherries with composition 55.5% whole parchment coffee, 3.66% broken beans, and 1% beans in wet skin.Key words : coffee, pulp, pulper, cylinder, quality.

  9. Composite reinforced metallic cylinder for high-speed rotation

    Science.gov (United States)

    Pradhan, Sahadev, , Dr.

    The objective of the present study is to design and development of the composite reinforced thin metallic cylinder to increase the peripheral speed significantly and thereby? improve the separation performance in a centrifugal gas separation processes through? proper optimization of the internal parameters. According to Dirac equation (Cohen? (1951)), the maximum separative work for a centrifugal gas separation process increases? with 4th power of the peripheral speed. Therefore, it has been intended to reinforce the? metallic cylinder with composites (carbon fibers: T-700 and T- 1000 grade with suitable? epoxy resin) to increase the stiffness and hoop stress so that the peripheral speed can? be increased significantly, and thereby enhance the separative output. Here, we have developed the mathematical model to investigate the elastic stresses of? a laminated cylinder subjected to mechanical, thermal and thermo-mechanical loading.? A detailed analysis is carried out to underline the basic hypothesis of each formulation.? Further, we evaluate the steady state creep response of the rotating cylinder and analyze? the stresses and strain rates in the cylinder. Dr. Sahadev Pradhan Department of Chemical Engineering, Indian Institute of Science, Bangalore-560 012, India.

  10. Composite reinforced metallic cylinder for? high-speed rotation

    Science.gov (United States)

    Pradhan, Sahadev, , Dr.

    2017-01-01

    The objective of the present study is to design and development of the composite reinforced thin metallic cylinder to increase the peripheral speed significantly and thereby? improve the separation performance in a centrifugal gas separation processes through? proper optimization of the internal parameters. According to Dirac equation (Cohen? (1951)), the maximum separative work for a centrifugal gas separation process increase? with 4th power of the peripheral speed. Therefore, it has been intended to reinforce the? metallic cylinder with composites (carbon fibers: T-700 and T- 1000 grade with suitable? epoxy resin) to increase the stiffness and hoop stress so that the peripheral speed can? be increased significantly, and thereby enhance the separative output. Here, we have developed the mathematical model to investigate the elastic stresses of? a laminated cylinder subjected to mechanical, thermal and thermo-mechanical loading? A detailed analysis is carried out to underline the basic hypothesis of each formulation? Further, we evaluate the steady state creep response of the rotating cylinder and analyze? the stresses and strain rates in the cylinder.

  11. Composite reinforced metallic cylinder for high speed rotation

    Science.gov (United States)

    Pradhan, Sahadev

    2017-11-01

    The objective of the present study is to design and development of the composite reinforced thin metallic cylinder to increase the peripheral speed significantly and thereby improve the separation performance in a centrifugal gas separation processes through proper optimization of the internal parameters. According to Dirac equation (Cohen (1951)), the maximum separative work for a centrifugal gas separation process increase with 4th power of the peripheral speed. Therefore, it has been intended to reinforce the metallic cylinder with composites (carbon fibers: T-700 and T- 1000 grade with suitable epoxy resin) to increase the stiffness and hoop stress so that the peripheral speed can be increased significantly, and thereby enhance the separative output. Here, we have developed the mathematical model to investigate the elastic stresses of a laminated cylinder subjected to mechanical, thermal and thermo-mechanical loading. A detailed analysis is carried out to underline the basic hypothesis of each formulation. Further, we evaluate the steady state creep response of the rotating cylinder and analyze the stresses and strain rates in the cylinder.

  12. Experimental study on flow past a rotationally oscillating cylinder

    Science.gov (United States)

    Gao, Yang-yang; Yin, Chang-shan; Yang, Kang; Zhao, Xi-zeng; Tan, Soon Keat

    2017-08-01

    A series of experiments was carried out to study the flow behaviour behind a rotationally oscillating cylinder at a low Reynolds number (Re=300) placed in a recirculation water channel. A stepper motor was used to rotate the cylinder clockwise- and- counterclockwise about its longitudinal axis at selected frequencies. The particle image velocimetry (PIV) technique was used to capture the flow field behind a rotationally oscillating cylinder. Instantaneous and timeaveraged flow fields such as the vorticity contours, streamline topologies and velocity distributions were analyzed. The effects of four rotation angle and frequency ratios F r ( F r= f n/ f v, the ratio of the forcing frequency f n to the natural vortex shedding frequency f v) on the wake in the lee of a rotationally oscillating cylinder were also examined. The significant wake modification was observed when the cylinder undergoes clockwise-and-counterclockwise motion with amplitude of π, especially in the range of 0.6≤ F r≤1.0.

  13. Atilt rolling movement of a gas cylinder: a case study.

    Science.gov (United States)

    Chen, Yi-Lang; Chiang, Hsi-Ting

    2014-01-01

    We analyzed a case study for rolling gas cylinders for a large technology company in Taiwan. Four experienced employees participated in this study. The cylinder transporting postures of participants were photographed for Rapid Upper Limb Assessment (RULA) and a goniometer was used for data gathering. The results showed that for atilt rolling movement and positioning of gas cylinders, the postures assessed by RULA all exceeded Action Level 3. The repetitive activity for each wrist was as high as 1 time/s. The radial deviation for each wrist and the dorsiflexion on the right wrist nearly reached the maximum range of motion. This suggested that the tasks might potentially cause injury to the upper limbs (particularly the wrists) and require action "investigation and changes are required soon", as suggested by RULA. The results of this case analysis can be preliminarily used as a reference for related operation evaluation and improvement.

  14. Hoop Tensile Properties of Ceramic Matrix Composite Cylinders

    Science.gov (United States)

    Verrilli, Michael J.; DiCarlo, James A.; Yun, HeeMan; Barnett, Terry

    2004-01-01

    Tensile stress-strain properties in the hoop direction were obtained for 100-mm diameter SiC/SiC ceramic matrix composite cylinders using ring specimens machined form the cylinder ends. The cylinders were fabricated from 2D balanced SiC fabric with several material variants, including wall thickness (6,8, and 12 plies), SiC fiber type (Sylramic, Sylramic-iBN, Hi-Nicalon, and Hi-Nicalon S), fiber sizing type, and matrix type (full CVI SiC, and partial CVI SiC plus slurry cast + melt-infiltrated SiC-Si). Fiber ply splices existed in all the hoops. Tensile hoop measurements are made at room temperature and 1200 C using hydrostatic ring test facilities. The failure mode of the hoops, determined through microstructural examination, is presented. The hoop properties are compared with in-plane data measured on flat panels using same material variants, but containing no splices.

  15. Mathematical modeling of a hydrophilic cylinder floating on water.

    Science.gov (United States)

    Mao, Zai-Sha; Yang, Chao; Chen, Jiayong

    2012-07-01

    In this paper, a hydrostatic model of the surface profile anchored to the upper edge of a vertical cylinder is proposed to explain why coins can float on water surface. The sharp edge of a cylinder is thus modeled as a round smooth surface on which the contact line may be anchored at a position according to the weight of the cylinder. The mathematical model of the surface profile is established based on the hydrostatics and a third order ordinary differential equation is resulted. Numerical solution of the model demonstrates under practical conditions the existence of the surface profiles that provide reasonable uplifting force at the contact line so that the force is available for floating coins on water surface. The proposed model explains the obviously enlarged apparent contact angle and the edge effect in the literature. The numerical simulation is found in very good agreement with the experimental data in the literature. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Analysis of residual stresses in a long hollow cylinder

    International Nuclear Information System (INIS)

    Tokovyy, Yuriy V.; Ma, Chien-Ching

    2011-01-01

    This paper presents an analytical method for solving the axisymmetric stress problem for a long hollow cylinder subjected to locally-distributed residual (incompatible) strains. This method is based on direct integration of the equilibrium and compatibility equations, which thereby have been reduced to the set of two governing equations for two key functions with corresponding boundary and integral conditions. The governing equations were solved by making use of the Fourier integral transformation. Application of the method is illustrated with an analysis of the welding residual stresses in a butt-welded thick-walled pipe. - Highlights: → A solution to the axisymmetric stress problem for a hollow cylinder is constructed. → The cylinder is subjected to a field of locally-distributed residual strains. → The method is based on direct integration of the equilibrium equations. → An application of our solution to analysis of welding residual stresses is considered.

  17. Filament winding cylinders. II - Validation of the process model

    Science.gov (United States)

    Calius, Emilio P.; Lee, Soo-Yong; Springer, George S.

    1990-01-01

    Analytical and experimental studies were performed to validate the model developed by Lee and Springer for simulating the manufacturing process of filament wound composite cylinders. First, results calculated by the Lee-Springer model were compared to results of the Calius-Springer thin cylinder model. Second, temperatures and strains calculated by the Lee-Springer model were compared to data. The data used in these comparisons were generated during the course of this investigation with cylinders made of Hercules IM-6G/HBRF-55 and Fiberite T-300/976 graphite-epoxy tows. Good agreement was found between the calculated and measured stresses and strains, indicating that the model is a useful representation of the winding and curing processes.

  18. Flow past an axially aligned spinning cylinder: Experimental Study

    Science.gov (United States)

    Carlucci, Pasquale; Buckley, Liam; Mehmedagic, Igbal; Carlucci, Donald; Thangam, Siva

    2017-11-01

    Experimental investigation of flow past a spinning cylinder is presented in the context of its application and relevance to flow past projectiles. A subsonic wind tunnel is used to perform experiments on the flow past a spinning cylinder that is mounted on a forward sting and oriented such that its axis of rotation is aligned with the mean flow. The experiments cover a Reynolds number of range of up to 45000 and rotation numbers of up to 2 (based on cylinder diameter). Time-averaged mean flow and turbulence profiles in the wake flow are presented with and without spin along with comparison to published experimental data. Funded in part by the U. S. Army ARDEC, Picatinny Arsenal, NJ.

  19. Pulsatility role in cylinder flow dynamics at low Reynolds number

    KAUST Repository

    Qamar, Adnan

    2012-01-01

    We present dynamics of pulsatile flow past a stationary cylinder characterized by three non-dimensional parameters: the Reynolds number (Re), non-dimensional amplitude (A) of the pulsatile flow velocity, and Keulegan-Carpenter number (KC = Uo/Dωc). This work is motivated by the development of total artificial lungs (TAL) device, which is envisioned to provide ambulatory support to patients. Results are presented for 0.2 ≤ A ≤ 0.6 and 0.57 ≤ KC ≤ 2 at Re = 5 and 10, which correspond to the operating range of TAL. Two distinct fluid regimes are identified. In both regimes, the size of the separated zone is much greater than the uniform flow case, the onset of separation is function of KC, and the separation vortex collapses rapidly during the last fraction of the pulsatile cycle. The vortex size is independent of KC, but with an exponential dependency on A. In regime I, the separation point remains attached to the cylinder surface. In regime II, the separation point migrates upstream of the cylinder. Two distinct vortex collapse mechanisms are observed. For A < 0.4 and all KC and Re values, collapse occurs on the cylinder surface, whereas for A > 0.4 the separation vortex detaches from the cylinder surface and collapses at a certain distance downstream of the cylinder. The average drag coefficient is found to be independent of A and KC, and depends only on Re. However, for A > 0.4, for a fraction of the pulsatile cycle, the instantaneous drag coefficient is negative indicating a thrust production. © 2012 American Institute of Physics.

  20. Light diffusion in a radially N-layered cylinder.

    Science.gov (United States)

    Liemert, André; Kienle, Alwin

    2011-10-01

    Analytical solutions of the diffusion equation for a radially N-layered cylinder were derived in the steady-state, frequency, and time domains. Solutions for axially infinite and finite cylinders are presented. The derived formulas were compared to a known solution of the diffusion equation for a layered semi-infinite geometry and to Monte Carlo simulations, showing excellent and good agreement, respectively. The analytical solutions were applied to calculate the light propagation in models of the forearm and the finger, demonstrating the improvement in analysis of hemodynamics measurements compared to the formulas used so far.

  1. Plasmonic modes and extinction properties of a random nanocomposite cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2014-04-15

    We study the properties of surface plasmon-polariton waves of a random metal-dielectric nanocomposite cylinder, consisting of bulk metal embedded with dielectric nanoparticles. We use the Maxwell-Garnett formulation to model the effective dielectric function of the composite medium and show that there exist two surface mode bands. We investigate the extinction properties of the system, and obtain the dependence of the extinction spectrum on the nanoparticles’ shape and concentration as well as the cylinder radius and the incidence angle for both TE and TM polarization.

  2. An experiment in heat conduction using hollow cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Ortuno, M; Marquez, A; Gallego, S; Neipp, C; Belendez, A, E-mail: a.belendez@ua.es [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2011-07-15

    An experimental apparatus was designed and built to allow students to carry out heat conduction experiments in hollow cylinders made of different materials, as well as to determine the thermal conductivity of these materials. The evolution of the temperature difference between the inner and outer walls of the cylinder as a function of time is analysed, and when the process reaches the steady state regime the thermal conductivity can be easily calculated. Several materials such as wood, plastic and metals are considered and the values of their thermal conductivities, obtained experimentally, are compared with those given in the reference list.

  3. Transverse magnetic scattering by parallel conducting elliptic cylinders

    Science.gov (United States)

    Sebak, A.

    1991-10-01

    A boundary value solution to the problem of transverse magnetic multiple scattering by M parallel perfectly conducting elliptic cylinders is presented. The solution is an exact one and based on the separation-of-variables technique and the addition theorem for Mathieu functions. It is expressed in terms of a system of simultaneous linear equations of infinite order, which is then truncated for numerical computations. Representative numerical results for the scattered field by two cylinders are then generated, for some selected sizes and orientations parameters, and presented.

  4. Basic tests on 48Y-Cylinder for integrity evaluation

    International Nuclear Information System (INIS)

    Wataru, M.; Ozaki, S.; Kobayashi, S.; Gomi, Y.; Kosaki, A.; Yamakawa, H.; Fujiwara, H.

    1993-01-01

    In this study, tension test was carried out of carbon steel for moderate-/lower-temperature that is used for structural material of 48Y-cylinder at high temperature, and material strength data were obtained. By the test results, it was confirmed that measured strength data at temperature above 500degC did not make much difference from the former extrapolated data. The surface emissivity of the cylinder was measured at temperature up to 800degC, and it was confirmed that the emissivity is about 0.6 at temperature above 400degC. (J.P.N.)

  5. Black holes on cylinders are not algebraically special

    International Nuclear Information System (INIS)

    Smet, Pieter-Jan de

    2002-01-01

    We give a Petrov classification for five-dimensional metrics. We give an almost complete classification of Ricci-flat metrics that are static, have an SO(3) isometry group and have Petrov type 22. We use this classification to look for the metric of a black hole on a cylinder, i.e., a black hole with asymptotic geometry four-dimensional Minkowski space times a circle. Although a black string wrapped around the S 1 and the five-dimensional black hole are both algebraically special, it turns out that the black hole on a cylinder is not

  6. Assembly for electrical conductivity measurements in the piston cylinder device

    Science.gov (United States)

    Watson, Heather Christine [Dublin, CA; Roberts, Jeffrey James [Livermore, CA

    2012-06-05

    An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.

  7. Cylinder head fastening structure for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Futakuchi, Y.; Oshiro, N.

    1988-01-26

    In a construction for an overhead cam internal combustion engine comprising a cylinder head adapted to be affixed to another component of the engine by at least one fastener having a tool receiving portion for tightening thereof and having a bearing cap affixed to the cylinder head and rotatably journaling the overhead camshaft, the improvement is described comprising the bearing cap having a portion overlying the fastener tool receiving portion, and means defining an access opening passing through the bearing cap and adapted to pass a tool for tightening of the fastener without removal of the bearing cap.

  8. Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders

    DEFF Research Database (Denmark)

    Dirksen, A.; Arslanagic, Samel; Breinbjerg, Olav

    2011-01-01

    An eigenfunction solution to the problem of plane wave scattering by dielectric, magnetic, and magnetodielectric cylinders is used for a systematic investigation of their resonances. An overview of the resonances with electric and magnetic dipole moments, needed in, e.g., the synthesis of metamat......An eigenfunction solution to the problem of plane wave scattering by dielectric, magnetic, and magnetodielectric cylinders is used for a systematic investigation of their resonances. An overview of the resonances with electric and magnetic dipole moments, needed in, e.g., the synthesis...

  9. Refractive cylinder outcomes after calculating toric intraocular lens cylinder power using total corneal refractive power

    Directory of Open Access Journals (Sweden)

    Davison JA

    2015-08-01

    Full Text Available James A Davison,1 Richard Potvin21Wolfe Eye Clinic, Marshalltown, IA, USA; 2Science in Vision, Akron, NY, USAPurpose: To determine whether the total corneal refractive power (TCRP value, which is based on measurement of both anterior and posterior corneal astigmatism, is effective for toric intraocular lens (IOL calculation with AcrySof® Toric IOLsPatients and methods: A consecutive series of cataract surgery cases with AcrySof toric IOL implantation was studied retrospectively. The IOLMaster® was used for calculation of IOL sphere, the Pentacam® TCRP 3.0 mm apex/ring value was used as the keratometry input to the AcrySof Toric IOL Calculator and the VERION™ Digital Marker for surgical orientation. The keratometry readings from the VERION reference unit were recorded but not used in the actual calculation. Vector differences between expected and actual residual refractive cylinder were calculated and compared to simulated vector errors using the collected VERION keratometry data.Results: In total, 83 eyes of 56 patients were analyzed. Residual refractive cylinder was 0.25 D or lower in 58% of eyes and 0.5 D or lower in 80% of eyes. The TCRP-based calculation resulted in a statistically significantly lower vector error (P<0.01 and significantly more eyes with a vector error ≤0.5 D relative to the VERION-based calculation (P=0.02. The TCRP and VERION keratometry readings suggested a different IOL toric power in 53/83 eyes. In these 53 eyes the TCRP vector error was lower in 28 cases, the VERION error was lower in five cases, and the error was equal in 20 cases. When the anterior cornea had with-the-rule astigmatism, the VERION was more likely to suggest a higher toric power and when the anterior cornea had against-the-rule astigmatism, the VERION was less likely to suggest a higher toric power.Conclusion: Using the TCRP keratometry measurement in the AcrySof toric calculator may improve overall postoperative refractive results

  10. Effect of High Porosity Screen on the Near Wake of a Circular Cylinder

    Directory of Open Access Journals (Sweden)

    Sahin B.

    2013-04-01

    Full Text Available The change in flow characteristics downstream of a circular cylinder (inner cylinder surrounded by a permeable cylinder (outer cylinder made of a high porosity screen was investigated in shallow water using Particle Image Velocimetry (PIV technique. The diameter of the inner cylinder, outer cylinder and the water height were kept constant during the experiments as d = 50 mm, D = 100 mm and hw = 50 mm, respectively. The depth-averaged free stream velocity was also kept constant as U = 180 mm/s which corresponded to a Reynolds number of Red = 9000 based on the inner cylinder diameter. It was shown that the outer permeable cylinder had a substantialeffect on the vortex formation and consequent vortex shedding downstream of the circular cylinder, especially in the near wake. The time averaged vorticity layers, streamlines and velocity vector field depict that the location of the interaction of vortices considerably changed by the presence of the outer cylinder. Turbulent statistics clearly demonstrated that in comparison to the natural cylinder, turbulent kinetic energy and Reynolds stresses decreased remarkably downstream of the inner cylinder. Moreover, spectra of streamwise velocity fluctuations showed that the vortex shedding frequency significantly reduced compared to the natural cylinder case.

  11. Impedance of finite length resistive cylinder

    Directory of Open Access Journals (Sweden)

    S. Krinsky

    2004-11-01

    Full Text Available We determine the impedance of a cylindrical metal tube (resistor of radius a, length g, and conductivity σ attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency (k≫1/a. In the equilibrium regime, ka^{2}≪g, the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity σ. In the transient regime, ka^{2}≫g, where the contribution of transition radiation arising from the discontinuity in conductivity is important, we derive an analytic expression for the impedance and compute the short-range wakefield. The analytic results are shown to agree with numerical evaluation of the impedance.

  12. Heat convection in a set of three vertical cylinders

    International Nuclear Information System (INIS)

    Serrano Ramirez, M.L. de.

    1993-01-01

    Experimental results on temperature and heat flow in a set of three vertical cylinders with internal generation of heat, water submerged and in free convection are presented in this work . Temperature distribution, Nusselt number and convective coefficient (h) for each rod, developed for the distance between the axis of cylinders in vertical position, as a consequence of the application of power in its outside, are analyzed. Experimental information about heat transfer by free convection in vertical cylinders and surfaces is analyzed. Information of the several author who have carried out studies about the heat transfer on vertical cylinders was compiled, and the proposed equations with the experimental data obtained in the thermo fluids laboratory of National Institute of Nuclear Research (ININ) were tested. The way in which separation distance, s, distribution temperature array, Nusselt number, and convective coefficient calculated for the proposed channel with the Keyhani, Dutton and experimental equations are tabulated and they are plotted for each power value and for each separation between rods. The scheme of the used equipment and the experimentation description as well as the observations of tests and graphical results are included. (Author)

  13. Lift of a rotating circular cylinder in unsteady flows

    DEFF Research Database (Denmark)

    Carstensen, Stefan; Mandviwalla, Xerxes; Vita, Luca

    2012-01-01

    A cylinder rotating in steady current experiences a lift known as the Magnus effect. In the present study the effect of waves on the Magnus effect has been investigated. This situation is experienced with the novel floating offshore vertical axis wind turbine (VAWT) concept called the DEEPWIND...

  14. 49 CFR 178.35 - General requirements for specification cylinders.

    Science.gov (United States)

    2010-10-01

    ... of part 107 of this chapter; or (2) For DOT Specifications 3B, 3BN, 3E, 4B, 4BA, 4D (water capacity...) The word “spun” or “plug” must be placed near the DOT specification marking when an end closure in the... certifies that the processes of manufacture and heat treatment of cylinders were observed and found...

  15. 49 CFR 173.316 - Cryogenic liquids in cylinders.

    Science.gov (United States)

    2010-10-01

    ... filling density for hydrogen, cryogenic liquid is defined as the percent ratio of the weight of lading in... 49 Transportation 2 2010-10-01 2010-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in...

  16. UF{sub 6} cylinder lifting equipment enhancements

    Energy Technology Data Exchange (ETDEWEB)

    Hortel, J.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    This paper presents numerous enhancements that have been made to the Portsmouth lifting equipment to ensure the safe handling of cylinders containing liquid uranium hexafluoride (UF{sub 6}). The basic approach has been to provide redundancy to all components of the lift path so that any one component failure would not cause the load to drop or cause any undesirable movement.

  17. Alternative method of retesting UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Christ, R. [Nuclear Crago + Service GmbH, Hanau (Germany)

    1991-12-31

    The paper describes an alternative method to perform the periodic inspection of UF{sub 6} cylinders. The hydraulic test is replaced by ultrasonic checking of wall thickness and by magnetic particle testing of all the weld seams. Information about the legal background, the air leak test and the qualification of inspectors is also given.

  18. Temporary patching of damaged UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, A.L. [Martin Marietta Energy Systems, Inc., OH (United States)

    1991-12-31

    Patching techniques based on application of epoxy resins have been developed for temporarily repairing UF{sub 6} cylinders which have sustained relatively minor damage and must be safely emptied. The method is considerably faster and simpler than metallurgical weld repairs. Laboratory tests, detailed operational procedures, and case histories of experience at the Portsmouth Gaseous Diffusion Plant are described.

  19. Suppression of vortex shedding around a square cylinder using ...

    Indian Academy of Sciences (India)

    Direct numerical simulation (DNS) of flow past a square cylinder at a Reynolds number of 100 has been carried out to explore the effect of blowing in the form of jet(s) on vortex shedding. Higher order spatial as well as temporal discretization has been employed for the discretization of governing equations. The varying ...

  20. Facial and eye injury following a fridge cylinder gas explosion ...

    African Journals Online (AJOL)

    Facial and eye injury following a fridge cylinder gas explosion. Monsudi Kehinde Fasasi, Ehumadu Chioma Nwabugwu, Gero Na'allah Rumu. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO ...

  1. 2D Flow around a Rectangular Cylinder: A Computational Study ...

    African Journals Online (AJOL)

    The velocity across the rectangular cylinders varies from 0.089 to 1.02m/s. The forces caused by vortex shedding phenomenon must be taken into account when designing buildings for safe, effective and economical engineering designs. Keywords: Vortex shedding, laminar, Aerodynamic, Strouhal number, Wake and Von ...

  2. 3D Flow around a Rectangular Cylinder: a review | Odesola ...

    African Journals Online (AJOL)

    Different simulations around bluff bodies were reviewed and the results obtained through different methodologies are presented. The effect of change by vortex shedding on the magnitude of fluid forces of rectangular cylinders are examined and reported. The aerodynamic integral parameters obtained from different papers ...

  3. Experimental and numerical thermal buckling studies on cylinders

    International Nuclear Information System (INIS)

    Brochard, J.; Combescure, A.; Locatelli, T.; Tomassian, R.

    1989-01-01

    An important program of buckling experiments is carried out by C.E.A./D.E.M.T on thin cylinders subjected to a very strong axial gradient of temperature, an axial tension stress, and an external pressure, in order to evaluate: - damage due to thermal buckling, - influence of a thermal load on reduction of buckling pressure, - progressive buckling under a cyclic thermal load

  4. Design of nested Halbach cylinder arrays for magnetic refrigeration applications

    Energy Technology Data Exchange (ETDEWEB)

    Trevizoli, Paulo V., E-mail: trevizoli@polo.ufsc.br; Lozano, Jaime A.; Peixer, Guilherme F.; Barbosa Jr, Jader R.

    2015-12-01

    We present an experimentally validated analytical procedure to design nested Halbach cylinder arrays for magnetic cooling applications. The procedure aims at maximizing the magnetic flux density variation in the core of the array for a given set of design parameters, namely the inner diameter of the internal magnet, the air gap between the magnet cylinders, the number of segments of each magnet and the remanent flux density of the Nd{sub 2}Fe{sub 14}B magnet grade. The design procedure was assisted and verified by 3-D numerical modeling using a commercial software package. An important aspect of the optimal design is to maintain an uniform axial distribution of the magnetic flux density in the region of the inner gap occupied by the active magnetocaloric regenerator. An optimal nested Halbach cylinder array was manufactured and experimentally evaluated for the magnetic flux density in the inner gap. The analytically calculated magnetic flux density variation agreed to within 5.6% with the experimental value for the center point of the magnet gap. - Highlights: • An analytical procedure to design nested Halbach cylinder arrays is proposed. • An optimal magnet configuration was built based on the analytical procedure. • The procedure was validated with 3D COMSOL simulations and experimental data.

  5. Foucault Dissipation in a Rolling Cylinder: A Webcam Quantitative Study

    Science.gov (United States)

    Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P.

    2011-01-01

    In this paper we present an experimental strategy to measure the micro power dissipation due to Foucault "eddy" currents in a copper cylinder rolling on two parallel conductive rails in the presence of a magnetic field. Foucault power dissipation is obtained from kinematical measurements carried out by using a common PC webcam and video analysis…

  6. Infinitely long cylinder in a sinusoidal field (Problem 2)

    International Nuclear Information System (INIS)

    Ida, N.

    1986-01-01

    The results presented here were obtained with a 2-D (and axisymmetric) eddy current program called EDDYNDT. The program uses the magnetic vector potential formulation and was specifically designed for the calculation of coil impedances in NDT applications. For normal applications, flux densities, forces, eddy current densities and stored and dissipated energies are not calculated. The program required minor modifications to calculated these quantities form the magnetic vector potential. In its present form, program EDDYNDT cannot handle flux normal boundary conditions. To avoid this, half the cylinder was modeled as opposed to the quarter cylinder in the mesh recommended in the problem outline. This increased the number of elements and nodes but did not change their density or location. Both a solution without the cylinder and a solution with the cylinder are presented. The fields presented are calculated at the center of each element. For this reason, the values presented are interpolated between neighboring elements. This creates a problem, particularly at discontinuities where the errors are largest

  7. Unbalance and Balancing of the 4 Cylinder Engine: A Critical ...

    African Journals Online (AJOL)

    The 4 cylinder 4 stroke engine is the most widely used IC engine type for cars, light and medium commerical vehicles and tractors as well as for small and medium stationary applications. These engines work with either the Otto (spark ignition) or Diesel (compression ignition) operation cycles. The large scale of application ...

  8. Bubbly flows around a two-dimensional circular cylinder

    Science.gov (United States)

    Lee, Jubeom; Park, Hyungmin

    2016-11-01

    Two-phase cross flows around a bluff body occur in many thermal-fluid systems like steam generators, heat exchangers and nuclear reactors. However, our current knowledge on the interactions among bubbles, bubble-induced flows and the bluff body are limited. In the present study, the gas-liquid bubbly flows around a solid circular cylinder are experimentally investigated while varying the mean void fraction from 5 to 27%. The surrounding liquid (water) is initially static and the liquid flow is only induced by the air bubbles. For the measurements, we use the high-speed two-phase particle image velocimetry techniques. First, depending on the mean void fraction, two regimes are classified with different preferential concentration of bubbles in the cylinder wake, which are explained in terms of hydrodynamic force balances acting on rising bubbles. Second, the differences between the two-phase and single-phase flows (while matching their Reynolds numbers) around a circular cylinder will be discussed in relation to effects of bubble dynamics and the bubble-induced turbulence on the cylinder wake. Supported by a Grant (MPSS-CG-2016-02) through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  9. Suppression of vortex shedding around a square cylinder using ...

    Indian Academy of Sciences (India)

    Abstract. Direct numerical simulation (DNS) of flow past a square cylinder at a. Reynolds number of 100 has been carried out to explore the effect of blowing in the form of jet(s) on vortex shedding. Higher order spatial as well as temporal discretiza- tion has been employed for the discretization of governing equations.

  10. Viscoelastic flow simulations through an array of cylinders

    NARCIS (Netherlands)

    Gillissen, J.J.J.

    2013-01-01

    Polymer solution flow is studied numerically in a periodic, hexagonal array of cylinders as a model for a porous medium. We use a lattice Boltzmann method supplemented by a polymer stress, where the polymers are modeled as finitely extensible, nonlinear, elastic dumbbells. The simulated,

  11. Inflation of polymer melts into elliptic and circular cylinders

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Christensen, Jens Horslund; Gøttsche, Søren

    2000-01-01

    of the inflating membrane is detected by fibreoptic sensors positioned in the cylinder. The pressure difference across the inflating membrane is measured as well. Measurements were performed on a polyisobutylene melt. As the deformation in this device is highly non-uniform, the response of the material is modelled...... simulations and experimental measurements of the membrane inflation....

  12. Closed-loop-manipulated wake of a stationary square cylinder

    Science.gov (United States)

    Zhang, M. M.; Zhou, Y.; Cheng, L.

    2005-07-01

    Vortex shedding from a fixed rigid square cylinder in a cross flow was manipulated by perturbing the cylinder surface using piezo-ceramic actuators, which were activated by a feedback hot-wire signal via a proportional integral derivative (PID) controller. The manipulated flow was measured at a Reynolds number (Re) of 7,400 using particle image velocimetry (PIV), laser-induced fluorescence (LIF) flow visualisation, two-component laser Doppler anemometry (LDA), hot wires and load cells. It is observed that the vortex circulation, fluctuating streamwise velocity, lift and drag coefficients and mean drag coefficient may decrease by 71%, 40%, 51%, 42% and 20%, respectively, compared with the unperturbed flow, if the perturbation velocity of the cylinder surface is anti-phased with the flow lateral velocity associated with vortex shedding. On the other hand, these quantities may increase by 152%, 90%, 60%, 67% and 37%, respectively, given in-phased cylinder surface perturbation and vortex shedding. Similar effects are obtained at Re=3,200 and 9,500, respectively. The relationship between the perturbation and flow modification is examined, which provides insight into the physics behind the observation.

  13. Large eight.cylinder Stirling engine for biofuels

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Biedermann, F.; Bovin, Jonas Kabell

    2003-01-01

    A large Stirling engine with an electric power output of 70 kW has been developed for small-scale CHP using wood chips and other sorts of biomass as fuel. The development of the engine is based on the results from the development of a four-cylinder Stirling engine with a power output of 35 k......W, which has been reported before. The new 70 kW engine has eight cylinders, which are connected in a 2 x 4 double acting configuration. Like the four-cylinder engine, the eight-cylinder engine is designed as a hermetically sealed unit. A 75 kW asynchronous generator, which is incorporated...... transfer by radiation and heat transfer by convection. The convection part the heater has been optimised in order to obtain an equal distribution of heat transfer on each tube and at the same time maximise the heat transfer from the combustion products to the engine. In a double acting Stirling engine...

  14. Controlling a negative loaded hydraulic cylinder using pressure feedback

    DEFF Research Database (Denmark)

    Hansen, M.R.; Andersen, T.O.

    2010-01-01

    This paper is concerned with the inherent oscillatory nature of pressure compensated velocity control of a hydraulic cylinder subjected to a negative load and suspended by means of an over-center valve. Initially, a linearized stability analysis of such a hydraulic circuit is carried out clearly ...... in a nonlinear time domain simulation model validating the linear stability analysis....

  15. Natural convection heat transfer from horizontal concentric and eccentric cylinder systems cooling in the ambient air and determination of inner cylinder location

    Science.gov (United States)

    Atayılmaz, Ş. Özgür; Demir, Hakan; Sevindir, Mustafa Kemal; Ağra, Özden; Teke, İsmail; Dalkılıç, Ahmet Selim

    2017-08-01

    Heat transfer characteristics of horizontal copper concentric cylinders in the case of natural convection was investigated numerically and experimentally. While the inner cylinder had an electric heater to keep it at a constant temperature, annulus was filled with water. There were two different test sections as bare and concentric cylinder systems located in different ambient temperatures in a conditioned room for the comparison of the results. Comparison of average Nusselt numbers for the air side of the concentric cylinder system and the effective thermal conductivity of the annulus were calculated with both experimental data, numerical results and a well-known correlation. Annulus and the air side isotherms and streamlines are shown for RaL = 9 × 105-5 × 106 and Ra = 2 × 105-7 × 105 respectively. Additionally, a numerical study was conducted by forming eccentric cylinder systems to determine the optimum location of inner cylinder to maximize the heat transfer rate. Comparison of heat transfer rates from bare and concentric horizontal cylinders were done under steady state conditions. Heat transfer enhancement, the effect of the decrease in condensing temperature of the inner cylinder surface on COP of an ideal Carnot refrigeration cycle and rise in COP were determined in the study. Also the optimum location of inner cylinder to maximize the heat transfer rate was determined as at the bottom quadrant of outer cylinder.

  16. Short stature

    Science.gov (United States)

    ... as her parents. Providers call this "constitutional growth delay." If one or both parents are short, your ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  17. SHORT COMMUNICATION

    African Journals Online (AJOL)

    PROF P.T. KAYE

    . SHORT COMMUNICATION. Formation and Structural Analysis of Novel Dibornyl Ethers. Perry T. Kaye*, Andrew R. Duggan, Joseph M. Matjila, Warner E. Molema, and. Swarnam S. Ravindran. Department of Chemistry, Rhodes University, Grahamstown, ...

  18. Gas cylinder disposal pit remediation waste minimization and management

    International Nuclear Information System (INIS)

    Alas, C.A.; Solow, A.; Criswell, C.W.; Spengler, D.; Brannon, R.; Schwender, J.M.; Eckman, C.K.; Rusthoven, T.

    1995-01-01

    A remediation of a gas cylinder disposal pit at Sandia National Laboratories, New Mexico has recently been completed. The cleanup prevented possible spontaneous releases of hazardous gases from corroded cylinders that may have affected nearby active test areas at Sandia's Technical Area III. Special waste management, safety, and quality plans were developed and strictly implemented for this project. The project was conceived from a waste management perspective, and waste minimization and management were built into the planning and implementation phases. The site layout was planned to accommodate light and heavy equipment, storage of large quantities of suspect soil, and special areas to stage and treat gases and reactive chemicals removed from the pit, as well as radiation protection areas. Excavation was a tightly controlled activity using experienced gas cylinder and reactive chemical specialists. Hazardous operations were conducted at night under lights, to allow nearby daytime operations to function unhindered. The quality assurance plan provided specific control of, and documentation for, critical decisions, as well as the record of daily operations. Both hand and heavy equipment excavation techniques were utilized. Hand excavation techniques were utilized. Hand excavation techniques allows sealed glass containers to be exhumed unharmed. In the end, several dozen thermal batteries; 5 pounds (2.3 kg) of lithium metal; 6.6 pounds (3.0 kg) of rubidium metal; several kilograms of unknown chemicals; 140 cubic yards (107 cubic meters) of thorium-contaminated soil; 270 cubic yards (205 cubic meters) of chromium-contaminated soil; and 450 gas cylinders, including 97 intact cylinders containing inert, flammable, toxic, corrosive, or oxidizing gases were removed and effectively managed to minimize waste

  19. Fracture analysis of the NESC-1 spinning cylinder experiment

    International Nuclear Information System (INIS)

    Keeney, J.A.; Bass, B.R.

    1995-01-01

    This paper presents finite-element analyses of the cylinder specimen being used in the international Network for Evaluating Steel Components (NESC) large-scale spinning-cylinder project (NESC-1). The objective of the NESC-1 project is to focus on a complete process for assessing the structural integrity of aged reactor pressure vessels. A new cylinder specimen was reconstituted from segments of the previously tested SC-4 and SC-6 specimens because the relatively high fracture toughness of the original specimen might preclude achieving the test objectives. The wall thickness is greater for the reconstituted specimen when compared with the previous specimen geometry (175 vs 150 mm). Also, the initial and coolant temperatures for the proposed thermal shock may be reduced as much as 25 C to increase the probability of achieving cleavage initiation. Analyses were carried out to determine the combined effects of increasing the wall thickness and lowering the initial and coolant temperatures in the experiment. Estimates were made of the change in hoop strain on the clad inner surface directly above a subclad crack due to initiation and axial propagation of cladded cylinder were generated with 6:1 and 2:1 semielliptical 70-mm-deep subclad cracks. The cylinder specimen was subjected to thermal-shock and centrifugal loading conditions and analyzed with a thermo-elastic-plastic material model. The analytical results indicate that lowering the initial and coolant temperatures by 25 C will not significantly change the peak driving force, but will shift the stress-intensity factor (K I ) vs temperature curves so that the crack will become critical at an earlier time in the transient. The peak K I value occurs at a lower temperature, which increases the probability of achieving cleavage initiation. Also, the calculated hoop strains for the two crack aspect ratios provide an estimated change in hoop strain inn the range of 3 to 4% on the clad inner surface

  20. Fracture analysis of the NESC-1 spinning cylinder experiment

    International Nuclear Information System (INIS)

    Keeney, J.A.; Bass, B.R.

    1995-01-01

    This paper presents finite-element analyses of the cylinder specimen being used in the international Network for Evaluating Steel Components (NESC) large-scale spinning-cylinder project (NESC-1). The objective of the NESC-1 project is to focus on a complete process for assessing the structural integrity of aged reactor pressure vessels. A new cylinder specimen was reconstituted from segments of the previously tested SC-4 and SC-6 specimens because the relatively high fracture toughness of the original specimen might preclude achieving the test objectives. Also, the initial and coolant temperatures for the proposed thermal shock may be reduced as much as 25 C to increase the probability of achieving cleavage initiation. Analyses were carried out to determine the combined effects of increasing the wall thickness and lowering the initial and coolant temperatures in the experiment. Estimates were made of the change in hoop strain on the clad inner surface directly above a subclad crack due to initiation and axial propagation of the crack. Three-dimensional finite-element models of the cladded cylinder were generated with 6:1 and 2:1 semielliptical 70-mm-deep subclad cracks. The cylinder specimen was subjected to thermal-shock and centrifugal loading conditions and analyzed with a thermo-elastic-plastic material model. The analytical results indicate that lowering the initial and coolant temperatures by 25 C will not significantly change the peak driving force, but will shift the stress-intensity factor (K I ) vs temperature curves so that the crack will become critical at an earlier time in the transient. The peak K I value occurs at a lower temperature which increases the probability of achieving cleavage initiation

  1. Experimental Study of Wave Forces on Vertical Circular Cylinders in Long and Short Crested Sea

    DEFF Research Database (Denmark)

    Høgedal, Michael

    The three-dimensional structure of ocean waves is generally ignored in favour of two-dimensional waves, which are easier to handle from a theoretical and computational point of view. For design fixed structures where horizontal in-line and resultant wave forces are important, this is normally on ...... with miniature pressure transducers. The experiments were carried out in the 3-D wave tank in the Hydraulics & Coastal Engineering Laboratory at Aalborg University and in the off-shore basin at the Danish Hydraulic Institute....

  2. Shaping the Microstructure of Cast Iron Automobile Cylinder Liners Aimed at Providing High Service Properties

    Directory of Open Access Journals (Sweden)

    Orłowicz A.W.

    2015-06-01

    Full Text Available The paper presents an analysis of factors affecting the wear of cylinder liners. The effect of the graphite precipitation morphology on the cylinder liner wear mechanism is presented. Materials used to cast cylinder liners mounted in a number of engines have been examined for their conformity with requirements set out in applicable Polish industrial standard. A casting for a prototype cylinder liner has been made with a microstructure guaranteeing good service properties of the part.

  3. Analysis of xRAGE and flag high explosive burn models with PBX 9404 cylinder tests

    Energy Technology Data Exchange (ETDEWEB)

    Harrier, Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersen, Kyle Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-05

    High explosives are energetic materials that release their chemical energy in a short interval of time. They are able to generate extreme heat and pressure by a shock driven chemical decomposition reaction, which makes them valuable tools that must be understood. This study investigated the accuracy and performance of two Los Alamos National Laboratory hydrodynamic codes, which are used to determine the behavior of explosives within a variety of systems: xRAGE which utilizes an Eulerian mesh, and FLAG with utilizes a Lagrangian mesh. Various programmed and reactive burn models within both codes were tested using a copper cylinder expansion test. The test was based on a recent experimental setup which contained the plastic bonded explosive PBX 9404. Detonation velocity versus time curves for this explosive were obtained using Photon Doppler Velocimetry (PDV). The modeled results from each of the burn models tested were then compared to one another and to the experimental results. This study validate

  4. Conceptual Ideas for New Nondestructive UF6 Cylinder Assay Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Karen A. [Los Alamos National Laboratory

    2012-05-02

    Nondestructive assay (NDA) measurements of uranium cylinders play an important role in helping the International Atomic Energy Agency (IAEA) safeguard uranium enrichment plants. Traditionally, these measurements have consisted of a scale or load cell to determine the mass of UF{sub 6} in the cylinder combined with a gamma-ray measurement of the 186 keV peak from {sup 235}U to determine enrichment. More recently, Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL) have developed systems that exploit the passive neutron signal from UF{sub 6} to determine uranium mass and/or enrichment. These include the Uranium Cylinder Assay System (UCAS), the Passive Neutron Enrichment Meter (PNEM), and the Hybrid Enrichment Verification Array (HEVA). The purpose of this report is to provide the IAEA with new ideas on technologies that may or may not be under active development but could be useful for UF{sub 6} cylinder assay. To begin, we have included two feasibility studies of active interrogation techniques. There is a long history of active interrogation in the field of nuclear safeguards, especially for uranium assay. Both of the active techniques provide a direct measure of {sup 235}U content. The first is an active neutron method based on the existing PNEM design that uses a correlated {sup 252}Cf interrogation source. This technique shows great promise for UF{sub 6} cylinder assay and is based on advanced technology that could be implemented in the field in the near term. The second active technique is nuclear resonance fluorescence (NRF). In the NRF technique, a bremsstrahlung photon beam could be used to illuminate the cylinder, and high-resolution gamma-ray detectors would detect the characteristic de-excitation photons. The results of the feasibility study show that under certain measurement geometries, NRF is impractical for UF6 cylinder assay, but the 'grazing transmission' and 'secant transmission' geometries

  5. Gas-lubricated seal for sealing between a piston and a cylinder wall

    Science.gov (United States)

    Hoult, D.P.

    1985-09-10

    A piston-cylinder seal uses gas for a lubricant and has a runner supported on a gapless structure and placed in the space between the piston and the cylinder wall. The runner is deformed elastically under the influence of the operating pressures to follow and compensate for variations in the piston-cylinder fit and maintain a seal. 4 figs.

  6. 77 FR 64590 - Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders

    Science.gov (United States)

    2012-10-22

    .... PHMSA-2012-0170, Notice No. 12-7] Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders... of high pressure compressed gas cylinders by George Welding & Supply Co., Inc. located at 205 Tombs... compressed gas cylinders as being properly requalified in accordance with the Hazardous Materials Regulations...

  7. 30 CFR 75.1106-3 - Storage of liquefied and nonliquefied compressed gas cylinders; requirements.

    Science.gov (United States)

    2010-07-01

    ... compressed gas cylinders; requirements. 75.1106-3 Section 75.1106-3 Mineral Resources MINE SAFETY AND HEALTH... Fire Protection § 75.1106-3 Storage of liquefied and nonliquefied compressed gas cylinders; requirements. (a) Liquefied and nonliquefied compressed gas cylinders stored in an underground coal mine shall...

  8. 41 CFR 50-204.65 - Inspection of compressed gas cylinders.

    Science.gov (United States)

    2010-07-01

    ... gas cylinders. 50-204.65 Section 50-204.65 Public Contracts and Property Management Other Provisions... FEDERAL SUPPLY CONTRACTS Gases, Vapors, Fumes, Dusts, and Mists § 50-204.65 Inspection of compressed gas cylinders. Each contractor shall determine that compressed gas cylinders under his extent that this can be...

  9. 30 CFR 75.1106-2 - Transportation of liquefied and nonliquefied compressed gas cylinders; requirements.

    Science.gov (United States)

    2010-07-01

    ... compressed gas cylinders; requirements. 75.1106-2 Section 75.1106-2 Mineral Resources MINE SAFETY AND HEALTH... Fire Protection § 75.1106-2 Transportation of liquefied and nonliquefied compressed gas cylinders; requirements. (a) Liquefied and nonliquefied compressed gas cylinders transported into or through an...

  10. 78 FR 42817 - Safety Advisory: Unauthorized Filling of Compressed Gas Cylinders

    Science.gov (United States)

    2013-07-17

    .... PHMSA-2013-0176, Notice No. 13-11] Safety Advisory: Unauthorized Filling of Compressed Gas Cylinders... transportation high pressure compressed gas cylinders without verifying that they met the appropriate safety... high pressure US DOT and special permit cylinders with compressed gases without verifying that they met...

  11. 49 CFR 180.209 - Requirements for requalification of specification cylinders.

    Science.gov (United States)

    2010-10-01

    ... mixtures of these gases with up to 30 percent by volume of carbon dioxide, provided the gas has a dew point....205(i). This provision does not apply to cylinders used for carbon dioxide, fire extinguisher or other... all traces of water. (v) The cylinder is not used for underwater breathing. (vi) Each cylinder is...

  12. Conditions for pure rolling of a heavy cylinder along a brachistochrone

    Science.gov (United States)

    Legeza, V. P.

    2010-11-01

    Algebraic equations for the line of steepest descent of a cylinder are derived in parametric form. Conditions for rolling without slipping and separation of the cylinder along a brachistochrone are established based on the equations of motion with constraint reaction. The important conclusion is drawn that the center of mass of a cylinder moving along a brachistochrone describes a cycloid

  13. Vorticity generation and wake transition for a translating circular cylinder: Wall proximity and rotation effects

    DEFF Research Database (Denmark)

    Hourigan, K.; Rao, A.; Brøns, Morten

    2013-01-01

    dramatically under the influence of cylinder rotation and wall proximity. At gaps between the cylinder and the wall of less than approximately 0.25 cylinder diameter, the wake becomes three dimensional prior to becoming unsteady, while for larger gaps the initial transition is to an unsteady two...

  14. Classification of gap flow regimes in two side-by-side circular cylinders

    CSIR Research Space (South Africa)

    Atkins, M

    2014-02-01

    Full Text Available at an intermediate gap spacing ranging between e.g., 1.2 = T/D = 2.2. The flow passing between the cylinders - gap flow - is biased towards one cylinder (Fig.1.(b)). The wake pattern behind that cylinder has a narrow near-wake (n) with a higher vortex shedding...

  15. Formation of whispering gallery modes by scattering of an electromagnetic plane wave by two cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, Arnold, E-mail: qulaser@gmail.com [Kuang-Chi Institute of Advanced Technology, Shenzhen, 518057 (China); Kostikov, Alexander [Donbass State Engineering Academy, 84303, Kramatorsk, Donetsk (Ukraine)

    2017-03-26

    We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder. - Highlights: • We consider scattering of electromagnetic plane waves by two cylinders. • WGMs occur because of the presence of additional cylinder at specific location. • The accuracy for the locations is much less than required for specific values of single cylinder. • The interference of waves scattered by additional cylinders and incident on the main is responsible for the effect.

  16. Stokes flow past a swarm of porous circular cylinders with Happel ...

    Indian Academy of Sciences (India)

    The problem of creeping flow past a swarm of porous circular cylinders with Happel and Kuwabara boundary conditions is investigated. The Brinkman equation for the flow inside the porous cylinder and the Stokes equation outside the porous cylinder in their stream function formulations are used. The force experienced by ...

  17. Instrument for measurement of vacuum in sealed thin wall packets

    Science.gov (United States)

    Kollie, T.G.; Thacker, L.H.; Fine, H.A.

    1995-04-18

    An instrument is disclosed for the measurement of vacuum within sealed packets, the packets having a wall that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head. 4 figs.

  18. Concrete Cover in Thin-Wall Reinforced Concrete Floating Piers

    Science.gov (United States)

    1976-07-01

    application of a waterproof material to the exterior surface of the concrete vessel, before immersion in seawater or brine solutions, will prevent...introduction to prestressed concrete: Volume 1. Concrete Publications Ltd., London. pp. 343-344. 17. Chapman, C. M. (1911). The effect of electrolysis on...of concrete in brine storage tanks. Proc. ACT, 44:141-147; discussion, 44:148-1 thru 148-3. 35. Kuenning, W. H. et al. (1966). Guide for the

  19. Solidification and microstructure of thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin

    2006-01-01

    In the recent years there has been an increasing interest in light constructions in order to save weight in e.g. cars. Ductile cast iron has good mechanical properties but it is necessary to re­duce the wall thicknesses of the castings in order to reduce the weight. Reducing the wall thicknesses...... of the casting will increase the cooling rates and by that change the conditions for nucleation and growth during solidification....

  20. Solidification of Hypereutectic Thin Wall Ductile Cast Iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2006-01-01

    Hypereutectic ductile iron was cast in green sand moulds with four plates with thickness of 1.5, 2, 3 and 4 mm in each mould. Temperatures were measured in the 3 and 4 mm plate. The temperature curves showed that eutectic solidification was divided into two stages: primary and secondary eutectic...