WorldWideScience

Sample records for thin-film decoupling capacitors

  1. Electrical characterization of thin film ferroelectric capacitors

    NARCIS (Netherlands)

    Tiggelman, M.P.J.; Reimann, K.; Klee, M.; Beelen, D.; Keur, W.; Schmitz, Jurriaan; Hueting, Raymond Josephus Engelbart

    2006-01-01

    Tunable capacitors can be used to facilitate the reduction of components in wireless technologies. The tunability of the capacitors is caused by the sensitivity of the relative dielectric constant to a change in polarization with electric field. Thin film ferroelectric MIM capacitors on silicon

  2. Cellulose triacetate, thin film dielectric capacitor

    Science.gov (United States)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1995-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  3. Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors.

    Science.gov (United States)

    Torabi, Solmaz; Cherry, Megan; Duijnstee, Elisabeth A; Le Corre, Vincent M; Qiu, Li; Hummelen, Jan C; Palasantzas, George; Koster, L Jan Anton

    2017-08-16

    The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest.

  4. PLD of X7R for thin film capacitors

    International Nuclear Information System (INIS)

    Hino, Takanori; Matsumoto, Noriyuki; Nishida, Minoru; Araki, Takao

    2008-01-01

    Thin film capacitors with a thickness of 200 nm were prepared on SrTiO 3 (1 0 0), (1 1 0) and (1 1 1) single crystal substrates at a temperature of 973 K by pulsed laser deposition (PLD) using a KrF excimer laser in an O 2 -O 3 atmosphere with a gas pressure of 1 Pa using an X7R sintered target. As a result, perovskite BaTiO 3 solid solution films were obtained. In the X7R thin films on (1 0 0) and (1 1 0) SrTiO 3 , only diffraction peaks with strong intensities from BaTiO 3 (1 0 0) and (1 1 0), respectively, were observed. X7R films on SrTiO 3 (1 1 1) were grown epitaxially oriented to the crystal plane direction of the substrate by inserting an initial homoepitaxial SrTiO 3 layer with a thickness of 4 nm. The X7R/SrTiO 3 film capacitors yielded a large volumetric efficiency of 50 μF/mm 3 and a temperature coefficient of capacitance (TCC) of -1.3% to 1.3% which satisfies the EIA standard specifications for X7R

  5. High energy density capacitors fabricated by thin film technology

    International Nuclear Information System (INIS)

    Barbee, T W; Johnson, G W; Wagner, A V.

    1999-01-01

    Low energy density in conventional capacitors severely limits efforts to miniaturize power electronics and imposes design limitations on electronics in general. We have successfully applied physical vapor deposition technology to greatly increase capacitor energy density. The high dielectric breakdown strength we have achieved in alumina thin films allows high energy density to be achieved with this moderately low dielectric constant material. The small temperature dependence of the dielectric constant, and the high reliability, high resistivity, and low dielectric loss of Al 2 O 3 , make it even more appealing. We have constructed single dielectric layer thin film capacitors and shown that they can be stacked to form multilayered structures with no loss in yield for a given capacitance. Control of film growth morphology is critical for achieving the smooth, high quality interfaces between metal and dielectric necessary for device operation at high electric fields. Most importantly, high rate deposition with extremely low particle generation is essential for achieving high energy storage at a reasonable cost. This has been achieved by reactive magnetron sputtering in which the reaction to form the dielectric oxide has been confined to the deposition surface. By this technique we have achieved a yield of over 50% for 1 cm 2 devices with an energy density of 14 J per cubic centimeter of Al 2 O 3 dielectric material in 1.2 kV, 4 nF devices. By further reducing defect density and increasing the dielectric constant of the material, we will be able to increase capacitance and construct high energy density devices to meet the requirements of applications in power electronics

  6. Sputtered Modified Barium Titanate for Thin-Film Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba0.96Ca0.04Ti0.82Zr0.18O3 (BCZTO target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. Film texture and crystallinity were found to depend on both deposition temperature and substrate: above 600 °C, the as-deposited films consisted of well-facetted crystallites with the cubic perovskite structure. A strongly textured Pt (111 underlayer enhanced the (001 orientation of BCZTO films deposited at 900 °C, 10 mtorr pressure and 10% oxygen in argon. Similar films deposited onto a Pt (111 textured film at 700 °C and directly onto (100 Si wafers showed relatively larger (011 and diminished intensity (00ℓ diffraction peaks. Sputter ambients containing oxygen caused the Ni underlayers to oxidize even at 700 °C: Raising the process temperature produced more diffraction peaks of NiO with increased intensities. Thin-film capacitors were fabricated using ~500 nm thick BCZTO dielectrics and both Pt and Ni top and bottom electrodes. Small signal capacitance measurements were carried out to determine capacitance and parallel resistance at low frequencies and from these data, the relative permittivity (er and resistivity (r of the dielectric films were calculated; values ranged from ~50 to >2,000, and from ~104 to ~1010 Ω∙cm, respectively.

  7. Thin film barium strontium titanate capacitors for tunable RF front-end applications

    NARCIS (Netherlands)

    Tiggelman, M.P.J.

    2009-01-01

    In this thesis, the results of intensive electrical characterization, modeling and the design of hardware with thin film tunable capacitors, i.e., dielectric varactors, has been presented and discussed. Especially the quality factor Q and the tuning ratio of the tunable capacitors have been studied,

  8. Ferroelectric Thin-Film Capacitors and Piezoelectric Switches for Mobile Communication Applications

    NARCIS (Netherlands)

    Klee, Mareike; van Esch, Harry; Keur, Wilco; Kumar, Biju; van Leuken-Peters, Linda; Liu, Jin; Mauczok, Rüdiger; Neumann, Kai; Reimann, Klaus; Renders, Christel; Roest, Aarnoud L.; Tiggelman, M.P.J.; de Wild, Marco; Wunnicke, Olaf; Zhao, Jing

    2009-01-01

    Thin-film ferroelectric capacitors have been integrated with resistors and active functions such as ESD protection into small, miniaturized modules, which enable a board space saving of up to 80%. With the optimum materials and processes, integrated capacitors with capacitance densities of up to 100

  9. Evaluation of unencapsulated ceramic monolithic and MOS thin-film capacitors (25 to 3000C)

    International Nuclear Information System (INIS)

    Nance, W.R.

    1982-01-01

    Several commercial monolithic ceramic and thin-film MOS chip capacitors were evaluated for use in high temperature (300 0 C) geothermal instrumentation. Characteristics of the commonly used dielectric materials (NPO, X7R, BX) and temperature dependence of the insulation resistance are briefly discussed. Some ceramic capacitors with NPO dielectric materials had insulation resistances above 10 megohms at 300 0 C and less than 2% change in capacitance from 25 0 C to 300 0 C, while the X7R and BX dielectric materials exhibited insulation resistances below 10 megohm and changes in capacitance greater then 50%. The thin-film capacitors showed good stability at 300 0 C. However, during aging, bonds and bond pads presented a problem causing intermittently open circuits for some of the devices

  10. Ferroelectric and piezoelectric thin films and their applications for integrated capacitors, piezoelectric ultrasound transducers and piezoelectric switches

    International Nuclear Information System (INIS)

    Klee, M; Boots, H; Kumar, B; Heesch, C van; Mauczok, R; Keur, W; Wild, M de; Esch, H van; Roest, A L; Reimann, K; Leuken, L van; Wunnicke, O; Zhao, J; Schmitz, G; Mienkina, M; Mleczko, M; Tiggelman, M

    2010-01-01

    Ferroelectric and piezoelectric thin films are gaining more and more importance for the integration of high performance devices in small modules. High-K 'Integrated Discretes' devices have been developed, which are based on thin film ferroelectric capacitors integrated together with resistors and ESD protection diodes in a small Si-based chip-scale package. Making use of ferroelectric thin films with relative permittivity of 950-1600 and stacking processes of capacitors, extremely high capacitance densities of 20-520 nF/mm 2 , high breakdown voltages up to 140 V and lifetimes of more than 10 years at operating voltages of 5 V and 85 deg. C are achieved. Thin film high-density capacitors play also an important role as tunable capacitors for applications such as tuneable matching circuits for RF sections of mobile phones. The performance of thin film tuneable capacitors at frequencies between 1 MHz and 1 GHz is investigated. Finally thin film piezoelectric ultrasound transducers, processed in Si- related processes, are attractive for medical imaging, since they enable large bandwidth (>100%), high frequency operation and have the potential to integrate electronics. With these piezoelectric thin film ultrasound transducers real time ultrasound images have been realized. Finally, piezoelectric thin films are used to manufacture galvanic MEMS switches. A model for the quasi-static mechanical behaviour is presented and compared with measurements.

  11. Dielectric relaxation of barium strontium titanate and application to thin films for DRAM capacitors

    Science.gov (United States)

    Baniecki, John David

    This thesis examines the issues associated with incorporating the high dielectric constant material Barium Strontium Titanate (BSTO) in to the storage capacitor of a dynamic random access memory (DRAM). The research is focused on two areas: characterizing and understanding the factors that control charge retention in BSTO thin films and modifying the electrical properties using ion implantation. The dielectric relaxation of BSTO thin films deposited by metal-organic chemical vapor deposition (MOCVD) is investigated in the time and frequency domains. It is shown that the frequency dispersion of the complex capacitance of BSTO thin films can be understood in terms of a power-law frequency dependence from 1mHz to 20GHz. From the correspondence between the time and frequency domain measurements, it is concluded that the power-law relaxation currents extend back to the nano second regime of DRAM operation. The temperature, field, and annealing dependence of the dielectric relaxation currents are also investigated and mechanisms for the observed power law relaxation are explored. An equivalent circuit model of a high dielectric constant thin film capacitor is developed based on the electrical measurements and implemented in PSPICE. Excellent agreement is found between the experimental and simulated electrical characteristics showing the utility of the equivalent circuit model in simulating the electrical properties of high dielectric constant thin films. Using the equivalent circuit model, it is shown that the greatest charge loss due to dielectric relaxation occurs during the first read after a refresh time following a write to the opposite logic state for a capacitor that has been written to the same logic state for a long time (opposite state write charge loss). A theoretical closed form expression that is a function of three material parameters is developed which estimates the opposite state write charge loss due to dielectric relaxation. Using the closed form

  12. Effect of ultraviolet light on fatigue of lead zirconate titanate thin-film capacitors

    Science.gov (United States)

    Lee, J.; Esayan, S.; Safari, A.; Ramesh, R.

    1994-07-01

    Fatigue of Pb(Zr0.52Ti0.48)O3 (PZT) thin-film capacitors was studied under UV light (He-Cd laser, λ=325 nm). The remanent polarization of the PZT film capacitors increased upon light illumination. Fatigue resistance was also improved under UV light. During fatigue test, the change in polarization of PZT films upon UV light illumination increased gradually with cycling. These results were examined within the framework of the polarization screening model, which is suggested as an essential process for fatigue. This leads to a conclusion that more charged defects are involved in the fatigue process through internal screening of polarization.

  13. Thickness dependence of the switching voltage in all-oxide ferroelectric thin-film capacitors prepared by pulsed laser deposition

    NARCIS (Netherlands)

    Cillessen, J.F.M.; Prins, M.W.J.; Wolf, R.M.

    1997-01-01

    Thin-film ferroelectric capacitors consisting of PbZr0.53Ti0.47O3 sandwiched between La0.5Sr0.5CoO3 electrodes have been deposited using pulsed laser deposition. The combination of oxidic perovskite-type materials results in capacitors with a coercive field (Ec) which is comparable with values for

  14. Structural and dielectric characterization of sputtered Tantalum Titanium Oxide thin films for high temperature capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Rouahi, A., E-mail: rouahi_ahlem@yahoo.fr [Univ. Grenoble Alpes, G2Elab, F-38000 (France); Laboratoire Matériaux Organisation et Propriétés (LMOP), Université de Tunis El Manar, 2092 Tunis (Tunisia); Challali, F. [Laboratoire des Sciences des Procédés et des Matériaux (LSPM)-CNRS-UPR3407, Université Paris13, 99 Avenue Jean-Baptiste Clément, 93430, Villetaneuse (France); Dakhlaoui, I. [Laboratoire Matériaux Organisation et Propriétés (LMOP), Université de Tunis El Manar, 2092 Tunis (Tunisia); Vallée, C. [CNRS, LTM, CEA-LETI, F-38000 Grenoble (France); Salimy, S. [Institut des Matériaux Jean Rouxel (IMN) UMR CNRS 6502, Université de Nantes, 2, rue de la Houssinière, B.P. 32229, 44322, Nantes, Cedex 3 (France); Jomni, F.; Yangui, B. [Laboratoire Matériaux Organisation et Propriétés (LMOP), Université de Tunis El Manar, 2092 Tunis (Tunisia); Besland, M.P.; Goullet, A. [Institut des Matériaux Jean Rouxel (IMN) UMR CNRS 6502, Université de Nantes, 2, rue de la Houssinière, B.P. 32229, 44322, Nantes, Cedex 3 (France); Sylvestre, A. [Univ. Grenoble Alpes, G2Elab, F-38000 (France)

    2016-05-01

    In this study, the dielectric properties of metal-oxide-metal capacitors based on Tantalum Titanium Oxide (TiTaO) thin films deposited by reactive magnetron sputtering on aluminum bottom electrode are investigated. The structure of the films was characterized by Atomic Force Microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The dielectric properties of TiTaO thin films were studied by complex impedance spectroscopy over a wide frequency range (10{sup -2} - to 10{sup 5} Hz) and temperatures in -50 °C to 325 °C range. The contributions of different phases, phases’ boundaries and conductivity effect were highlighted by Cole – Cole diagram (ε” versus ε’). Two relaxation processes have been identified in the electric modulus plot. A first relaxation process appears at low temperature with activation energy of 0.37 eV and it is related to the motion of Ti{sup 4+} (Skanavi’s model). A second relaxation process at high temperature is related to Maxwell-Wagner-Sillars relaxation with activation energy of 0.41 eV. - Highlights: • Titanium Tantalum Oxide thin films are grown on Aluminum substrate. • The existence of phases was confirmed by X-ray photoelectron spectroscopy. • Conductivity effect appears in Cole-Cole plot. • At low temperatures, a relaxation phenomenon obeys to Skanavi’s model. • Maxwell-Wagner-Sillars polarization is processed at high temperatures.

  15. Thermal Vapor Deposition and Characterization of Polymer-Ceramic Nanoparticle Thin Films and Capacitors

    Science.gov (United States)

    Iwagoshi, Joel A.

    Research on alternative energies has become an area of increased interest due to economic and environmental concerns. Green energy sources, such as ocean, wind, and solar power, are subject to predictable and unpredictable generation intermittencies which cause instability in the electrical grid. This problem could be solved through the use of short term energy storage devices. Capacitors made from composite polymer:nanoparticle thin films have been shown to be an economically viable option. Through thermal vapor deposition, we fabricated dielectric thin films composed of the polymer polyvinylidine fluoride (PVDF) and the ceramic nanoparticle titanium dioxide (TiO2). Fully understanding the deposition process required an investigation of electrode and dielectric film deposition. Film composition can be controlled by the mass ratio of PVDF:TiO2 prior to deposition. An analysis of the relationship between the ratio of PVDF:TiO2 before and after deposition will improve our understanding of this novel deposition method. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy were used to analyze film atomic concentrations. The results indicate a broad distribution of deposited TiO2 concentrations with the highest deposited amount at an initial mass concentration of 17% TiO2. The nanoparticle dispersion throughout the film is analyzed through atomic force microscopy and energy dispersive x-ray spectroscopy. Images from these two techniques confirm uniform TiO2 dispersion with cluster size less than 300 nm. These results, combined with spectroscopic analysis, verify control over the deposition process. Capacitors were fabricated using gold parallel plates with PVDF:TiO 2 dielectrics. These capacitors were analyzed using the atomic force microscope and a capacohmeter. Atomic force microscope images confirm that our gold films are acceptably smooth. Preliminary capacohmeter measurements indicate capacitance values of 6 nF and break down voltages of 2.4 V

  16. Thermally tunable VO2-SiO2 nanocomposite thin-film capacitors

    Science.gov (United States)

    Sun, Yifei; Narayanachari, K. V. L. V.; Wan, Chenghao; Sun, Xing; Wang, Haiyan; Cooley, Kayla A.; Mohney, Suzanne E.; White, Doug; Duwel, Amy; Kats, Mikhail A.; Ramanathan, Shriram

    2018-03-01

    We present a study of co-sputtered VO2-SiO2 nanocomposite dielectric thin-film media possessing continuous temperature tunability of the dielectric constant. The smooth thermal tunability is a result of the insulator-metal transition in the VO2 inclusions dispersed within an insulating matrix. We present a detailed comparison of the dielectric characteristics of this nanocomposite with those of a VO2 control layer and of VO2/SiO2 laminate multilayers of comparable overall thickness. We demonstrated a nanocomposite capacitor that has a thermal capacitance tunability of ˜60% between 25 °C and 100 °C at 1 MHz, with low leakage current. Such thermally tunable capacitors could find potential use in applications such as sensing, thermal cloaks, and phase-change energy storage devices.

  17. Total-dose radiation-induced degradation of thin film ferroelectric capacitors

    International Nuclear Information System (INIS)

    Schwank, J.R.; Nasby, R.D.; Miller, S.L.; Rodgers, M.S.; Dressendorfer, P.V.

    1990-01-01

    Thin film PbZr y Ti 1-y O 3 (PZT) ferroelectric memories offer the potential for radiation-hardened, high-speed nonvolatile memories with good retention and fatigue properties. In this paper we explore in detail the radiation hardness of PZT ferroelectric capacitors. Ferroelectric capacitors were irradiated using x-ray and Co-60 sources to dose levels up to 16 Mrad(Si). The capacitors were characterized for their memory properties both before and after irradiation. The radiation hardness was process dependent. Three out of four processes resulted in capacitors that showed less than 30% radiation-induced degradation in retained polarization charge and remanent polarization after irradiating to 16 Mrad(Si). On the other hand, one of the processes showed significant radiation-induced degradation in retained polarization charge and remanent polarization at dose levels above 1 Mrad(Si). The decrease in retained polarization charge appears to be due to an alteration of the switching characteristics of the ferroelectric due to changes in the internal fields. The radiation-induced degradation is recoverable by a postirradiation biased anneal and can be prevented entirely if devices are cycled during irradiation. The authors have developed a model to simulate the observed degradation

  18. Thin-film composite materials as a dielectric layer for flexible metal-insulator-metal capacitors.

    Science.gov (United States)

    Tiwari, Jitendra N; Meena, Jagan Singh; Wu, Chung-Shu; Tiwari, Rajanish N; Chu, Min-Ching; Chang, Feng-Chih; Ko, Fu-Hsiang

    2010-09-24

    A new organic-organic nanoscale composite thin-film (NCTF) dielectric has been synthesized by solution deposition of 1-bromoadamantane and triblock copolymer (Pluronic P123, BASF, EO20-PO70-EO20), in which the precursor solution has been achieved with organic additives. We have used a sol-gel process to make a metal-insulator-metal capacitor (MIM) comprising a nanoscale (10 nm-thick) thin-film on a flexible polyimide (PI) substrate at room temperature. Scanning electron microscope and atomic force microscope revealed that the deposited NCTFs were crack-free, uniform, highly resistant to moisture absorption, and well adhered on the Au-Cr/PI. The electrical properties of 1-bromoadamantane-P123 NCTF were characterized by dielectric constant, capacitance, and leakage current measurements. The 1-bromoadamantane-P123 NCTF on the PI substrate showed a low leakage current density of 5.5 x 10(-11) A cm(-2) and good capacitance of 2.4 fF at 1 MHz. In addition, the calculated dielectric constant of 1-bromoadamantane-P123 NCTF was 1.9, making them suitable candidates for use in future flexible electronic devices as a stable intermetal dielectric. The electrical insulating properties of 1-bromoadamantane-P123 NCTF have been improved due to the optimized dipole moments of the van der Waals interactions.

  19. Building a Better Capacitor with Thin-Film Atomic Layer Deposition Processing

    Energy Technology Data Exchange (ETDEWEB)

    Pike, Christopher [North Seattle College, WA (United States)

    2015-08-28

    The goal of this research is to determine procedures for creating ultra-high capacity supercapacitors by using nanofabrication techniques and high k-value dielectrics. One way to potentially solve the problem of climate change is to switch the source of energy to a source that doesn’t release many tons of greenhouse gases, gases which cause global warming, into the Earth’s atmosphere. These trap in more heat from the Sun’s solar energy and cause global temperatures to rise. Atomic layer deposition will be used to create a uniform thin-film of dielectric to greatly enhance the abilities of our capacitors and will build them on the nanoscale.

  20. On-Orbit Demonstration of a Lithium-Ion Capacitor and Thin-Film Multijunction Solar Cells

    Science.gov (United States)

    Kukita, Akio; Takahashi, Masato; Shimazaki, Kazunori; Kobayashi, Yuki; Sakai, Tomohiko; Toyota, Hiroyuki; Takahashi, Yu; Murashima, Mio; Uno, Masatoshi; Imaizumi, Mitsuru

    2014-08-01

    This paper describes an on-orbit demonstration of the Next-generation Small Satellite Instrument for Electric power systems (NESSIE) on which an aluminum- laminated lithium-ion capacitor (LIC) and a lightweight solar panel called KKM-PNL, which has space solar sheets using thin-film multijunction solar cells, were installed. The flight data examined in this paper covers a period of 143 days from launch. We verified the integrity of an LIC constructed using a simple and lightweight mounting method: no significant capacitance reduction was observed. We also confirmed that inverted metamorphic multijunction triple-junction thin-film solar cells used for evaluation were healthy at 143 days after launch, because their degradation almost matched the degradation predictions for dual-junction thin-film solar cells.

  1. Electrical Properties of Thin-Film Capacitors Fabricated Using High Temperature Sputtered Modified Barium Titanate

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available Simple thin-film capacitor stacks were fabricated from sputter-deposited doped barium titanate dielectric films with sputtered Pt and/or Ni electrodes and characterized electrically. Here, we report small signal, low frequency capacitance and parallel resistance data measured as a function of applied DC bias, polarization versus applied electric field strength and DC load/unload experiments. These capacitors exhibited significant leakage (in the range 8–210 μA/cm2 and dielectric loss. Measured breakdown strength for the sputtered doped barium titanate films was in the range 200 kV/cm −2 MV/cm. For all devices tested, we observed clear evidence for dielectric saturation at applied electric field strengths above 100 kV/cm: saturated polarization was in the range 8–15 μC/cm2. When cycled under DC conditions, the maximum energy density measured for any of the capacitors tested here was ~4.7 × 10−2 W-h/liter based on the volume of the dielectric material only. This corresponds to a specific energy of ~8 × 10−3 W-h/kg, again calculated on a dielectric-only basis. These results are compared to those reported by other authors and a simple theoretical treatment provided that quantifies the maximum energy that can be stored in these and similar devices as a function of dielectric strength and saturation polarization. Finally, a predictive model is developed to provide guidance on how to tailor the relative permittivities of high-k dielectrics in order to optimize their energy storage capacities.

  2. Interaction between depolarization effects, interface layer, and fatigue behavior in PZT thin film capacitors

    Science.gov (United States)

    Böttger, U.; Waser, R.

    2017-07-01

    The existence of non-ferroelectric regions in ferroelectric thin films evokes depolarization effects leading to a tilt of the P(E) hysteresis loop. The analysis of measured hysteresis of lead zirconate titanate (PZT) thin films is used to determine a depolarization factor which contains quantitative information about interfacial layers as well as ferroelectrically passive zones in the bulk. The derived interfacial capacitance is smaller than that estimated from conventional extrapolation techniques. In addition, the concept of depolarization is used for the investigation of fatigue behavior of PZT thin films indicating that the mechanism of seed inhibition, which is responsible for the effect, occurs in the entire film.

  3. An Auger electron spectroscopy study on the anodization process of high-quality thin-film capacitors made of hafnium

    International Nuclear Information System (INIS)

    Noya, Atsushi; Sasaki, Katsutaka; Umezawa, Toshiji

    1989-01-01

    Formation process of the anodic oxide film of hafnium for use as a thin-film capacitor has been examined by the current-voltage characteristics of the anodization and the in-depth analysis of formed oxide using Auger electron spectroscopy. It is found that the oxide growth obeys three different rate laws such as the linear rate law at first and next the parabolic rate law during the constant current anodization, and then the reciprocal logarithmic rate law during the constant voltage anodization following after the constant current process. From the Auger electron spectroscopy analysis, it is found that the shape of the compositional depth profile of the grown oxide film varies associating with the rate law of oxidation obeyed. The variation of depth profile correlating with the rate law is discussed with respect to each elementary process such as the transport and/or the reaction of chemical species interpreted from the over-all behavior of anodization process. It is revealed that the stoichiometric film having an interface with sharp transition, which is favorable for obtaining excellent electrical properties of the capacitor, can be obtained under the condition that the phase-boundary reaction is the rate-determining step of the anodization. The constant voltage anodization process also satisfies such circumstances and therefore can be favorable method for preparing highquality thin-film capacitors. (author)

  4. Discontinuous Galerkin Time-Domain Analysis of Power-Ground Planes Taking Into Account Decoupling Capacitors

    KAUST Repository

    Li, Ping; Jiang, Li Jun; Bagci, Hakan

    2017-01-01

    In this paper, a discontinuous Galerkin time-domain (DGTD) method is developed to analyze the power-ground planes taking into account the decoupling capacitors. In the presence of decoupling capacitors, the whole physical system can be split

  5. Fabrication and Characteristics of High Capacitance Al Thin Films Capacitor Using a Polymer Inhibitor Bath in Electroless Plating Process.

    Science.gov (United States)

    Cho, Young-Lae; Lee, Jung-Woo; Lee, Chang-Hyoung; Choi, Hyung-Seon; Kim, Sung-Su; Song, Young Il; Park, Chan; Suh, Su-Jeong

    2015-10-01

    An aluminum (Al) thin film capacitor was fabricated for a high capacitance capacitor using electrochemical etching, barrier-type anodizing, and electroless Ni-P plating. In this study, we focused on the bottom-up filling of Ni-P electrodes on Al2O3/Al with etched tunnels. The Al tunnel pits were irregularly distributed on the Al foil, diameters were in the range of about 0.5~1 μm, the depth of the tunnel pits was approximately 35~40 μm, and the complex structure was made full filled hard metal. To control the plating rate, the experiment was performed by adding polyethyleneimine (PEI, C2H5N), a high molecular substance. PEI forms a cross-link at the etching tunnel inlet, playing the role of delaying the inlet plating. When the PEI solution bath was used after activation, the Ni-P layer was deposited selectively on the bottoms of the tunnels. The characteristics were analyzed by adding the PEI addition quantity rate of 100~600 mg/L into the DI water. The capacitance of the Ni-P/Al2O3 (650~700 nm)/Al film was measured at 1 kHz using an impedance/gain phase analyzer. For the plane film without etch tunnels the capacitance was 12.5 nF/cm2 and for the etch film with Ni-P bottom-up filling the capacitance was 92 nF/cm2. These results illustrate a remarkable maximization of capacitance for thin film metal capacitors.

  6. Inkjet-printed thin film radio-frequency capacitors based on sol-gel derived alumina dielectric ink

    KAUST Repository

    McKerricher, Garret

    2017-05-03

    There has been significant interest in printing radio frequency passives, however the dissipation factor of printed dielectric materials has limited the quality factor achievable. Al2O3 is one of the best and widely implemented dielectrics for RF passive electronics. The ability to spatially pattern high quality Al2O3 thin films using, for example, inkjet printing would tremendously simplify the incumbent fabrication processes – significantly reducing cost and allowing for the development of large area electronics. To-date, particle based Al2O3 inks have been explored as dielectrics, although several drawbacks including nozzle clogging and grain boundary formation in the films hinder progress. In this work, a particle free Al2O3 ink is developed and demonstrated in RF capacitors. Fluid and jetting properties are explored, along with control of ink spreading and coffee ring suppression. The liquid ink is heated to 400 °C decomposing to smooth Al2O3 films ~120 nm thick, with roughness of <2 nm. Metal-insulator-metal capacitors, show high capacitance density >450 pF/mm2, and quality factors of ~200. The devices have high break down voltages, >25 V, with extremely low leakage currents, <2×10−9 A/cm2 at 1 MV/cm. The capacitors compare well with similar Al2O3 devices fabricated by atomic layer deposition.

  7. Chemical mechanical polishing of BTO thin film for vertical sidewall patterning of high-density memory capacitor

    International Nuclear Information System (INIS)

    Kim, Nam-Hoon; Ko, Pil-Ju; Seo, Yong-Jin; Lee, Woo-Sun

    2006-01-01

    Most high-k materials cannot to be etched easily. Problems such as low etch rate, poor sidewall angle, plasma damage, and process complexity have emerged in high-density DRAM fabrication. Chemical mechanical polishing (CMP) by the damascene process has been used to pattern high-k materials for high-density capacitor. Barium titanate (BTO) thin film, a typical high-k material, was polished with three types of silica slurry having different pH values. Sufficient removal rate with adequate selectivity to realize the pattern mask of tetra-ethyl ortho-silicate (TEOS) film for the vertical sidewall angle was obtained. The changes of X-ray diffraction pattern and dielectric constant by CMP process were negligible. Planarization was also achieved for the subsequent multilevel processes. Our new CMP approach will provide a guideline for effective patterning of high-k materials by CMP

  8. Robust Power Decoupling Control Scheme for DC Side Split Decoupling Capacitor Circuit with Mismatched Capacitance in Single Phase System

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi

    2016-01-01

    dc capacitor to realize power decoupling, but the conventional power decoupling control scheme for this half-bridge circuit is developed with equal storage capacitances, which may vary in practice and degrade the ac and dc performance. The intention of this paper is to quantify ac and dc...... imperfections when storage mismatch occurs, which may break the standard requirement such as IEEE 1547. As a consequence, a robust control scheme is then proposed for half-bridge circuit, which realized power decoupling by generating second order harmonic voltage on the split dc decoupling capacitor instead...

  9. Comparative analysis of the planar capacitor and IDT piezoelectric thin-film micro-actuator models

    International Nuclear Information System (INIS)

    Myers, Oliver J; Anjanappa, M; Freidhoff, Carl B

    2011-01-01

    A comparison of the analysis of similarly developed microactuators is presented. Accurate modeling and simulation techniques are vital for piezoelectrically actuated microactuators. Coupling analytical and numerical modeling techniques with variational design parameters, accurate performance predictions can be realized. Axi-symmetric two-dimensional and three-dimensional static deflection and harmonic models of a planar capacitor actuator are presented. Planar capacitor samples were modeled as unimorph diaphragms with sandwiched piezoelectric material. The harmonic frequencies were calculated numerically and compared well to predicted values and deformations. The finite element modeling reflects the impact of the d 31 piezoelectric constant. Two-dimensional axi-symmetric models of circularly interdigitated piezoelectrically membranes are also presented. The models include the piezoelectric material and properties, the membrane materials and properties, and incorporates various design considerations of the model. These models also include the electro-mechanical coupling for piezoelectric actuation and highlight a novel approach to take advantage of the higher d 33 piezoelectric coupling coefficient. Performance is evaluated for varying parameters such as electrode pitch, electrode width, and piezoelectric material thickness. The models also showed that several of the design parameters were naturally coupled. The static numerical models correlate well with the maximum static deflection of the experimental devices. Finally, this paper deals with the development of numerical harmonic models of piezoelectrically actuated planar capacitor and interdigitated diaphragms. The models were able to closely predict the first two harmonics, conservatively predict the third through sixth harmonics and predict the estimated values of center deflection using plate theory. Harmonic frequency and deflection simulations need further correlation by conducting extensive iterative

  10. Imprint and oxygen deficiency in (Pb,La)(Zr,Ti)O3 thin-film capacitors with La-Sr-Co-O electrodes

    International Nuclear Information System (INIS)

    Lee, J.; Ramesh, R.; Keramidas, V.G.; Warren, W.L.; Pike, G.E.; Evans, J.T. Jr.

    1995-01-01

    La-Sr-Co-O/Pb-La-Zr-Ti-O/La-Sr-Co-O thin-film capacitors have been grown in various oxygen ambients by pulsed laser deposition. As the oxygen ambient became more reducing, the capacitors developed more voltage asymmetry in hysteresis loops and a more preferred polarization state directed towards the top electrode. PLZT capacitors cooled in a fully oxidizing atmosphere (i.e., 1 atm oxygen pressure) exhibited nominally symmetric hysteresis loops and also showed little imprint both with and without fully saturating bias fields. We find that ambient oxygen pressure is an important process parameter and the imprint behavior is closely related with ambient oxygen induced effects such as oxygen vacancies, its related defect-dipole complexes and trapping of free charges. The different imprint behavior under negative and positive bias also suggests that the dipolar-defect complexes tend to cause imprint in PLZT capacitors

  11. A Robust DC-Split-Capacitor Power Decoupling Scheme for Single-Phase Converter

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi

    2017-01-01

    Instead of bulky electrolytic capacitors, active power decoupling circuit can be introduced to a single-phase converter for diverting second harmonic ripple away from its dc source or load. One possible circuit consists of a half-bridge and two capacitors in series for forming a dc-split capacitor......, instead of the usual single dc-link capacitor bank. Methods for regulating this power decoupler have earlier been developed, but almost always with equal capacitances assumed for forming the dc-split capacitor, even though it is not realistic in practice. The assumption should, hence, be evaluated more...... thoroughly, especially when it is shown in the paper that even a slight mismatch can render the power decoupling scheme ineffective and the IEEE 1547 standard to be breached. A more robust compensation scheme is, thus, needed for the dc-split capacitor circuit, as proposed and tested experimentally...

  12. Facile chemical synthesis of nanoporous layered δ-MnO{sub 2} thin film for high-performance flexible electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yu; Wang, Jun; Jiang, Xionghua; Zheng, Yanfeng [The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Chen, Zhenxing, E-mail: chenzx65@mail.sysu.edu.cn [The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2013-04-15

    Layered δ-MnO{sub 2} thin films with a three-dimensional nanostructure are successfully fabricated on stainless steel foil substrates for flexible electrochemical capacitors by a facile and effective chemical bath deposition technology from ethanol and potassium permanganate solution at 15 °C. The as-prepared thin films display nanoporous morphology and a water contact angle of 20°. Energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy analyses reveal that the thin films are composed of δ-MnO{sub 2}. Electrochemical data demonstrate that the δ-MnO{sub 2} thin film electrodes can deliver a high special capacitance of 447 F/g at 2 mV/s, and provide a good capacitance retention ratio of 87% after 1000 continuous cycles at 10 mV/s in 0.5 M Na{sub 2}SO{sub 4}. Compressive and tensile bending tests show that the as-prepared electrodes can steadily work over a wide range of applied curvatures between −2.5 cm{sup −1} (tension) and 2.5 cm{sup −1} (compression). Only a small decrease in special capacitance (0.9% at a curvature of 2.5 cm{sup −1} under compressive strain, or 1.2% at a curvature of −2.5 cm{sup −1} under tensile strain) is observed even after bending for 200 cycles, indicating the excellent mechanical flexibility and electrochemical stability of the δ-MnO{sub 2} thin film electrodes.

  13. Materials science and integration bases for fabrication of (BaxSr1-x)TiO3 thin film capacitors with layered Cu-based electrodes

    Science.gov (United States)

    Fan, W.; Kabius, B.; Hiller, J. M.; Saha, S.; Carlisle, J. A.; Auciello, O.; Chang, R. P. H.; Ramesh, R.

    2003-11-01

    The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 °C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlOx, while the oxide layer at the TiAl/Cu interface is an Al2O3-rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlOx interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 °C followed by a rapid thermal annealing at 700 °C. This process significantly reduced the thickness of the TiAlOx layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high dielectric constant (280), low

  14. Materials science and integration bases for fabrication of (BaxSr1-x)TiO3 thin film capacitors with layered Cu-based electrodes

    International Nuclear Information System (INIS)

    Fan, W.; Kabius, B.; Hiller, J.M.; Saha, S.; Carlisle, J.A.; Auciello, O.; Chang, R.P.H.; Ramesh, R.

    2003-01-01

    The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (Ba x Sr 1-x )TiO 3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 deg. C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlO x , while the oxide layer at the TiAl/Cu interface is an Al 2 O 3 -rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlO x interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 deg. C followed by a rapid thermal annealing at 700 deg. C. This process significantly reduced the thickness of the TiAlO x layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high

  15. Effects of post-deposition oxygen annealing on tuning properties of Ba0.8Sr0.2TiO3 thin-film capacitors for microwave integrated circuits

    International Nuclear Information System (INIS)

    Liu, Y.R.; Lai, P.T.; Li, G.Q.; Li, B.; Peng, J.B.; Lo, H.B.

    2005-01-01

    Barium strontium titanate (BST) thin-films deposited on a SiO 2 /Si substrate by argon ion-beam sputtering technique were annealed at 400, 500 and 600 deg. C in oxygen for 30 min, respectively, and were used to fabricate integrated parallel-plate capacitors by standard integrated-circuit technology. These capacitors can achieve tunability greater than 60% at an applied dc voltage of 2 V and a frequency of 100 kHz at room temperature. Considering tunability, loss factor and hysteresis effect, the BST thin-film annealed at 500 deg. C is superior for making tunable microwave integrated capacitors. The effects of annealing treatment in oxygen on the tuning properties of the thin-film capacitors are analyzed, and the results indicate that the tunability is strongly dependent on both oxygen vacancies and negatively charged oxygen, trapped at the grain boundary and/or at the electrode/dielectric interface

  16. Inkjet-printed thin film radio-frequency capacitors based on sol-gel derived alumina dielectric ink

    KAUST Repository

    McKerricher, Garret; Maller, Robert; Vaseem, Mohammad; McLachlan, Martyn A.; Shamim, Atif

    2017-01-01

    passive electronics. The ability to spatially pattern high quality Al2O3 thin films using, for example, inkjet printing would tremendously simplify the incumbent fabrication processes – significantly reducing cost and allowing for the development of large

  17. Effects of the top-electrode preparation method on the ferroelectric properties of Pt/Pb(Zr,Ti)O3/Pt thin film capacitors

    International Nuclear Information System (INIS)

    Lee, Eun Gu; Lee, Jae Gab; Kim, Sun Jae

    2006-01-01

    The deformation in the hysteresis loop of Pt/PZT/Pt thin-film capacitors due to deposition and patterning of the top electrode has been investigated. The PZT film was aged during the deposition of the top electrode and was positively poled during reactive ion etching (RIE). The PZT film having sputtered top electrode was very sensitive to the RIE process. The film with a thinner top electrode showed less initial switching polarization due to less compressive stress, but better fatigue characteristics due to an enhanced partial-switching region.

  18. Broadband dielectric characterization of sapphire/TiOx/Ba₀.₃Sr₀.₇TiO₃ (111)-oriented thin films for the realization of a tunable interdigitated capacitor.

    Science.gov (United States)

    Ghalem, Areski; Ponchel, Freddy; Remiens, Denis; Legier, Jean-Francois; Lasri, Tuami

    2013-05-01

    A complete microwave characterization up to 67 GHz using specific coplanar waveguides was performed to determine the dielectric properties (permittivity, losses, and tunability) of sapphire/TiOx/Ba0.3Sr0.7TiO3 (BST) (111)-oriented thin films. To that end, BaxSr1-xTiO3 thin films were deposited by RF magnetron sputtering on sapphire (0001) substrate. To control the preferred (111) orientation, a TiOx buffer layer was deposited on sapphire. According to the detailed knowledge of the material properties, it has been possible to conceive, fabricate, and test interdigitated capacitors, the basic element for future microwave tunable applications. Retention of capacitive behavior up to 67 GHz and a tunability of 32% at 67 GHz at an applied voltage of 30 V (150 kV/cm) were observed. The Q-factor remains greater than 30 over the entire frequency band. The possibility of a complete characterization of the material for the realization of high-performance interdigitated capacitors opens the door to microwave device fabrication.

  19. thin films

    Indian Academy of Sciences (India)

    microscopy (SEM) studies, respectively. The Fourier transform ... Thin films; chemical synthesis; hydrous tin oxide; FTIR; electrical properties. 1. Introduction ... dehydrogenation of organic compounds (Hattori et al 1987). .... SEM images of (a) bare stainless steel and (b) SnO2:H2O thin film on stainless steel substrate at a ...

  20. Electrostatically assisted fabrication of silver-dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing.

    Science.gov (United States)

    Li, Xue; Niitsoo, Olivia; Couzis, Alexander

    2016-03-01

    An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Interface depolarization field as common denominator of fatigue and size effect in Pb(Zr0.54Ti0.46)O3 ferroelectric thin film capacitors

    Science.gov (United States)

    Bouregba, R.; Sama, N.; Soyer, C.; Poullain, G.; Remiens, D.

    2010-05-01

    Dielectric, hysteresis and fatigue measurements are performed on Pb(Zr0.54Ti0.46)O3 (PZT) thin film capacitors with different thicknesses and different electrode configurations, using platinum and LaNiO3 conducting oxide. The data are compared with those collected in a previous work devoted to study of size effect by R. Bouregba et al., [J. Appl. Phys. 106, 044101 (2009)]. Deterioration of the ferroelectric properties, consecutive to fatigue cycling and thickness downscaling, presents very similar characteristics and allows drawing up a direct correlation between the two phenomena. Namely, interface depolarization field (Edep) resulting from interface chemistry is found to be the common denominator, fatigue phenomena is manifestation of strengthen of Edep in the course of time. Change in dielectric permittivity, in remnant and coercive values as well as in the shape of hysteresis loops are mediated by competition between degradation of dielectric properties of the interfaces and possible accumulation of interface space charge. It is proposed that presence in the band gap of trap energy levels with large time constant due to defects in small nonferroelectric regions at the electrode—PZT film interfaces ultimately governs the aging process. Size effect and aging process may be seen as two facets of the same underlying mechanism, the only difference lies in the observation time of the phenomena.

  2. Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor

    Directory of Open Access Journals (Sweden)

    Yuki Kojima

    2016-08-01

    Full Text Available Soil moisture is an important property for agriculture, but currently commercialized soil moisture sensors are too expensive for many farmers. The objective of this study is to develop a low-cost soil moisture sensor using capacitors on a film substrate and a capacitive touch integrated circuit. The performance of the sensor was evaluated in two field experiments: a grape field and a mizuna greenhouse field. The developed sensor captured dynamic changes in soil moisture at 10, 20, and 30 cm depth, with a period of 10–14 days required after sensor installation for the contact between capacitors and soil to settle down. The measured soil moisture showed the influence of individual sensor differences, and the influence masked minor differences of less than 0.05 m3·m−3 in the soil moisture at different locations. However, the developed sensor could detect large differences of more than 0.05 m3·m−3, as well as the different magnitude of changes, in soil moisture. The price of the developed sensor was reduced to 300 U.S. dollars and can be reduced even more by further improvements suggested in this study and by mass production. Therefore, the developed sensor will be made more affordable to farmers as it requires low financial investment, and it can be utilized for decision-making in irrigation.

  3. Investigation about decoupling capacitors of PMT voltage divider effects on neutron-gamma discrimination

    International Nuclear Information System (INIS)

    Divani, Nazila; Firoozabadi, Mohammad M.; Bayat, Esmail

    2014-01-01

    Scintillators are almost used in any nuclear laboratory. These detectors combine of scintillation materials, PMT and a voltage divider. Voltage dividers are different in resistive ladder design. But the effect of decoupling capacitors and damping resistors haven’t discussed yet. In this paper at first a good equilibrium circuit designed for PMT, and it was used for investigating about capacitors and resistors in much manner. Results show that decoupling capacitors have great effect on PMT output pulses. In this research, it was tried to investigate the effect of Capacitor’s value and places on PMT voltage divider in Neutron-Gamma discrimination capability. Therefore, the voltage divider circuit for R329-02 Hamamatsu PMT was made and Zero Cross method used for neutron-gamma discrimination. The neutron source was a 20Ci Am-Be. Anode and Dynode pulses and discrimination spectrum were saved. The results showed that the pulse height and discrimination quality change with the value and setting of capacitors

  4. Characterization of the high density plasma etching process of CCTO thin films for the fabrication of very high density capacitors

    International Nuclear Information System (INIS)

    Altamore, C; Tringali, C; Sparta', N; Marco, S Di; Grasso, A; Ravesi, S

    2010-01-01

    In this work the feasibility of CCTO (Calcium Copper Titanate) patterning by etching process is demonstrated and fully characterized in a hard to etch materials etcher. CCTO sintered in powder shows a giant relative dielectric constant (10 5 ) measured at 1 MHz at room temperature. This feature is furthermore coupled with stability from 10 1 Hz to 10 6 Hz in a wide temperature range (100K - 600K). In principle, this property can allow to fabricate very high capacitance density condenser. Due to its perovskite multi-component structure, CCTO can be considered a hard to etch material. For high density capacitor fabrication, CCTO anisotropic etching is requested by using high density plasma. The behavior of etched CCTO was studied in a HRe- (High Density Reflected electron) plasma etcher using Cl 2 /Ar chemistry. The relationship between the etch rate and the Cl 2 /Ar ratio was also studied. The effects of RF MHz, KHz Power and pressure variation, the impact of HBr addiction to the Cl 2 /Ar chemistry on the CCTO etch rate and on its selectivity to Pt and photo resist was investigated.

  5. Characterization of the high density plasma etching process of CCTO thin films for the fabrication of very high density capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Altamore, C; Tringali, C; Sparta' , N; Marco, S Di; Grasso, A; Ravesi, S [STMicroelectronics, Industial and Multi-segment Sector R and D, Catania (Italy)

    2010-02-15

    In this work the feasibility of CCTO (Calcium Copper Titanate) patterning by etching process is demonstrated and fully characterized in a hard to etch materials etcher. CCTO sintered in powder shows a giant relative dielectric constant (10{sup 5}) measured at 1 MHz at room temperature. This feature is furthermore coupled with stability from 10{sup 1} Hz to 10{sup 6} Hz in a wide temperature range (100K - 600K). In principle, this property can allow to fabricate very high capacitance density condenser. Due to its perovskite multi-component structure, CCTO can be considered a hard to etch material. For high density capacitor fabrication, CCTO anisotropic etching is requested by using high density plasma. The behavior of etched CCTO was studied in a HRe- (High Density Reflected electron) plasma etcher using Cl{sub 2}/Ar chemistry. The relationship between the etch rate and the Cl{sub 2}/Ar ratio was also studied. The effects of RF MHz, KHz Power and pressure variation, the impact of HBr addiction to the Cl{sub 2}/Ar chemistry on the CCTO etch rate and on its selectivity to Pt and photo resist was investigated.

  6. Thin film circuits for future applications. Pt. 2. Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Haug, G; Houska, K H; Schmidt, H J; Sprengel, H P; Wohak, K

    1976-06-01

    Investigations of thin film diffusion processes and reactions with encapsulation materials resulted in improved long term stability of evaporated NiCr resistors, SiO capacitors and NiCr/Au conductors for thin film circuits. Stable NiCr resistor networks can be formed on ceramic substrates, and SiO capacitors of good quality can be deposited on the new very smooth ceramic substrates. The knowledge of the influence of evaporation parameters make the production of SiO capacitors with definite properties and good reproducibility possible. The range of capacitance of tantalum thin film circuits can be extended by integration with evaporated SiO capacitors.

  7. Lifetime Estimation of DC-link Capacitors in a Single-phase Converter with an Integrated Active Power Decoupling Module

    DEFF Research Database (Denmark)

    Ma, Siyuan; Wang, Haoran; Tang, Junchaojie

    2016-01-01

    In single-phase inverters, DC-link capacitors are installed at the DC-link to buffer the ripple power between the AC side and DC side. Active decoupling methods introduce additional circuits at the DC side or AC side to partially or fully supply the ripple power. So that the demanded DC-link capa......In single-phase inverters, DC-link capacitors are installed at the DC-link to buffer the ripple power between the AC side and DC side. Active decoupling methods introduce additional circuits at the DC side or AC side to partially or fully supply the ripple power. So that the demanded DC......-link capacitor capacitance can be decreased. However, few research is about the effect of DC side and AC side decoupling on the DC-link capacitor reliability considering its electro-thermal stresses. This paper presents a quantitative analysis on the lifetime of capacitors with power decoupling circuits...... at the DC side and AC side, respectively. The ripple current spectrum of the capacitors is obtained by double Fourier analysis of a H-bridge inverter with natural sampling PWM modulation. A study case is demonstrated by a 2,000 W H-bridge inverter with 400 V DC-link voltage....

  8. Discontinuous Galerkin Time-Domain Analysis of Power-Ground Planes Taking Into Account Decoupling Capacitors

    KAUST Repository

    Li, Ping

    2017-03-22

    In this paper, a discontinuous Galerkin time-domain (DGTD) method is developed to analyze the power-ground planes taking into account the decoupling capacitors. In the presence of decoupling capacitors, the whole physical system can be split into two subsystems: 1) the field subsystem that is governed by Maxwell\\'s equations that will be solved by the DGTD method, and 2) the circuit subsystem including the capacitor and its parasitic inductor and resistor, which is going to be characterized by the modified nodal analysis algorithm constructed circuit equations. With the aim to couple the two subsystems together, a lumped port is defined over a coaxial surface between the via barrel and the ground plane. To reach the coupling from the field to the circuit subsystem, a lumped voltage source calculated by the integration of electric field along the radial direction is introduced. On the other hand, to facilitate the coupling from the circuit to field subsystem, a lumped port current source calculated from the circuit equation is introduced, which serves as an impressed current source for the field subsystem. With these two auxiliary terms, a hybrid field-circuit matrix equation is established, which enables the field and circuit subsystems are solved in a synchronous scheme. Furthermore, the arbitrarily shaped antipads are considered by enforcing the proper wave port excitation using the magnetic surface current source derived from the antipads supported electric eigenmodes. In this way, the S-parameters corresponding to different modes can be conveniently extracted. To further improve the efficiency of the proposed algorithm in handling multiscale meshes, the local time-stepping marching scheme is applied. The proposed algorithm is verified by several representative examples.

  9. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  10. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  11. Nanosphere lithography applied to magnetic thin films

    Science.gov (United States)

    Gleason, Russell

    Magnetic nanostructures have widespread applications in many areas of physics and engineering, and nanosphere lithography has recently emerged as promising tool for the fabrication of such nanostructures. The goal of this research is to explore the magnetic properties of a thin film of ferromagnetic material deposited onto a hexagonally close-packed monolayer array of polystyrene nanospheres, and how they differ from the magnetic properties of a typical flat thin film. The first portion of this research focuses on determining the optimum conditions for depositing a monolayer of nanospheres onto chemically pretreated silicon substrates (via drop-coating) and the subsequent characterization of the deposited nanosphere layer with scanning electron microscopy. Single layers of permalloy (Ni80Fe20) are then deposited on top of the nanosphere array via DC magnetron sputtering, resulting in a thin film array of magnetic nanocaps. The coercivities of the thin films are measured using a home-built magneto-optical Kerr effect (MOKE) system in longitudinal arrangement. MOKE measurements show that for a single layer of permalloy (Py), the coercivity of a thin film deposited onto an array of nanospheres increases compared to that of a flat thin film. In addition, the coercivity increases as the nanosphere size decreases for the same deposited layer. It is postulated that magnetic exchange decoupling between neighboring nanocaps suppresses the propagation of magnetic domain walls, and this pinning of the domain walls is thought to be the primary source of the increase in coercivity.

  12. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  13. Improved electrical properties after post annealing of Ba0.7Sr0.3TiO3 thin films for MIM capacitor applications

    Science.gov (United States)

    Rouahi, A.; Kahouli, A.; Sylvestre, A.; Jomni, F.; Defaÿ, E.; Yangui, B.

    2012-11-01

    Dielectric measurements have been performed on ion beam sputtering (IBS) barium strontium titanate Ba0.7Sr0.3TiO3 thin films at annealing temperatures 470 and 700 °C using impedance spectroscopy. The effect of the annealing temperature upon the electrical properties of the films is also investigated using capacitance-voltage techniques. Increasing annealing temperature suggested the increases of density and grain size, whereas the density of the trapped oxygen vacancy may be decreasing with increasing annealing temperature. The barrier height ( E a) of the oxygen vacancy decreases with increasing annealing temperature. The C- V characteristics were investigated in relation to the annealing temperature to identify the anomalous capacitance in the MIM configuration films. Among all measurement temperatures, it was observed that the data fit well by the "LGD" model. The interfacial effect and its dependence of morphology structure have been studied, and the results are discussed.

  14. Improved electrical properties after post annealing of Ba0.7Sr0.3TiO3 thin films for MIM capacitor applications

    International Nuclear Information System (INIS)

    Rouahi, A.; Kahouli, A.; Sylvestre, A.; Jomni, F.; Yangui, B.; Defay, E.

    2012-01-01

    Dielectric measurements have been performed on ion beam sputtering (IBS) barium strontium titanate Ba 0.7 Sr 0.3 TiO 3 thin films at annealing temperatures 470 and 700 C using impedance spectroscopy. The effect of the annealing temperature upon the electrical properties of the films is also investigated using capacitance-voltage techniques. Increasing annealing temperature suggested the increases of density and grain size, whereas the density of the trapped oxygen vacancy may be decreasing with increasing annealing temperature. The barrier height (E a ) of the oxygen vacancy decreases with increasing annealing temperature. The C-V characteristics were investigated in relation to the annealing temperature to identify the anomalous capacitance in the MIM configuration films. Among all measurement temperatures, it was observed that the data fit well by the ''LGD'' model. The interfacial effect and its dependence of morphology structure have been studied, and the results are discussed. (orig.)

  15. Microstructural and dielectric properties of Ba0.6Sr0.4Ti1-xZrxO3 based combinatorial thin film capacitors library

    International Nuclear Information System (INIS)

    Liu Guozhen; Wolfman, Jerome; Autret-Lambert, Cecile; Sakai, Joe; Roger, Sylvain; Gervais, Monique; Gervais, Francois

    2010-01-01

    Epitaxial growth of Ba 0.6 Sr 0.4 Ti 1-x Zr x O 3 (0≤x≤0.3) composition spread thin film library on SrRuO 3 /SrTiO 3 layer by combinatorial pulsed laser deposition (PLD) is reported. X-ray diffraction and energy dispersive x-ray spectroscopy studies showed an accurate control of the film phase and composition by combinatorial PLD. A complex evolution of the microstructure and morphology with composition of the library is described, resulting from the interplay between epitaxial stress, increased chemical pressure, and reduced elastic energy upon Zr doping. Statistical and temperature-related capacitive measurements across the library showed unexpected variations in the dielectric properties. Doping windows with enhanced permittivity and tunability are identified, and correlated to microstructural properties.

  16. Decoupling

    NARCIS (Netherlands)

    Fletcher, Robert; Rammelt, Crelis

    2017-01-01

    Central to the United Nations’ post-2015 development agenda grounded in the Sustainable Development Goals is the notion of ‘decoupling’: the need to divorce economic growth from its ecological impact. For proponents, decoupling entails increasing the efficiency with which value is derived from

  17. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  18. Thermal phase separation of ZrSiO4 thin films and frequency- dependent electrical characteristics of the Al/ZrSiO4/p-Si/Al MOS capacitors

    Science.gov (United States)

    Lok, R.; Kaya, S.; Yilmaz, E.

    2018-05-01

    In this work, the thermal phase separation and annealing optimization of ZrSiO4 thin films have been carried out. Following annealing optimization, the frequency-dependent electrical characteristics of the Al/ZrSiO4/p-Si/Al MOS capacitors were investigated in detail. The chemical evolution of the films under various annealing temperatures was determined by Fourier transform infrared spectroscopy (FTIR) measurements. The phase separation was determined by x-ray diffraction (XRD) measurements. The electrical parameters were determined via the capacitance–voltage (C–V), conductance–voltage (G/ω) and leakage-current–voltage (Ig–Vg ). The results demonstrate that zirconium silicate formations are present at 1000 °C annealing with the SiO2 interfacial layer. The film was in amorphous form after annealing at 250 °C. The tetragonal phases of ZrO2 were obtained after annealing at 500 °C. When the temperature approaches 750 °C, transitions from the tetragonal phase to the monoclinic phase were observed. The obtained XRD peaks after 1000 °C annealing matched the crystalline peaks of ZrSiO4. This means that the crystalline zirconium dioxide in the structure has been converted into a crystalline silicate phase. The interface states increased to 5.71 × 1010 and the number of border traps decreased to 7.18 × 1010 cm‑2 with the increasing temperature. These results indicate that an excellent ZrSiO4/Si interface has been fabricated. The order of the leakage current varied from 10‑9 Acm‑2 to 10‑6 Acm‑2. The MOS capacitor fabricated with the films annealed at 1000 °C shows better behavior in terms of its structural, chemical and electrical properties. Hence, detailed frequency-dependent electrical characteristics were performed for the ZrSiO4 thin film annealed at 1000 °C. Very slight capacitance variations were observed under the frequency variations. This shows that the density of frequency-dependent charges is very low at the ZrSiO4/Si interface. The

  19. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  20. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  1. Thin film tritium dosimetry

    Science.gov (United States)

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  2. Control of magnetism by electrical charge doping or redox reactions in a surface-oxidized Co thin film with a solid-state capacitor structure

    Science.gov (United States)

    Hirai, T.; Koyama, T.; Chiba, D.

    2018-03-01

    We have investigated the electric field (EF) effect on magnetism in a Co thin film with a naturally oxidized surface. The EF was applied to the oxidized Co surface through a gate insulator layer made of HfO2, which was formed using atomic layer deposition (ALD). The efficiency of the EF effect on the magnetic anisotropy in the sample with the HfO2 layer deposited at the appropriate temperature for the ALD process was relatively large compared to the previously reported values with an unoxidized Co film. The coercivity promptly and reversibly followed the variation in gate voltage. The modulation of the channel resistance was at most ˜0.02%. In contrast, a dramatic change in the magnetic properties including the large change in the saturation magnetic moment and a much larger EF-induced modulation of the channel resistance (˜10%) were observed in the sample with a HfO2 layer deposited at a temperature far below the appropriate temperature range. The response of these properties to the gate voltage was very slow, suggesting that a redox reaction dominated the EF effect on the magnetism in this sample. The frequency response for the capacitive properties was examined to discuss the difference in the mechanism of the EF effect observed here.

  3. Effects of in-plane compressive stress on electrical properties of (Ba,Sr)TiO3 thin film capacitors prepared by on- and off-axis rf magnetron sputtering

    International Nuclear Information System (INIS)

    Park, Woo Young; Ahn, Kun Ho; Hwang, Cheol Seong

    2003-01-01

    This study investigated the structural and electrical properties of (Ba,Sr)TiO 3 (BST) thin film capacitors with thicknesses ranging from 18 to 215 nm, which were prepared by on- and off-axis rf magnetron sputtering technique on Pt/SiO 2 /Si substrates. The deposition rate and cation composition ratios of the films were controlled to be the same regardless of the sputtering geometry. All the films show elongations in the out-of-plane lattice spacing, suggesting the presence of compressive stress with a smaller value by on-axis sputtering than by the off-axis system. There was no thickness dependence of the strain in the polycrystalline BST films. The BST films deposited using the on-axis system showed a higher bulk dielectric constant with a higher interfacial capacitance and a lower leakage current level than the films produced by the off-axis system. The strain effect was proposed to explain the correlations between the structural and electrical properties

  4. Optical thin film deposition

    International Nuclear Information System (INIS)

    Macleod, H.A.

    1979-01-01

    The potential usefulness in the production of optical thin-film coatings of some of the processes for thin film deposition which can be classified under the heading of ion-assisted techniques is examined. Thermal evaporation is the process which is virtually universally used for this purpose and which has been developed to a stage where performance is in almost all respects high. Areas where further improvements would be of value, and the possibility that ion-assisted deposition might lead to such improvements, are discussed. (author)

  5. Thin Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.

    1998-11-19

    The motivation to develop thin film technologies dates back to the inception of photovoltaics. It is an idea based on achieving truly low-cost photovoltaics appropriate for mass production and energy significant markets. The key to the idea is the use of pennies worth of active materials. Since sunlight carries relatively little energy in comparison with combustion-based energy sources, photovoltaic (PV) modules must be cheap to produce energy that can be competitive. Thin films are presumed to be the answer to that low-cost requirement. But how cheap do they have to be? The following is an oversimplified analysis that allows some insight into this question.

  6. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    Jayakumar, S.; Kannan, M.D.; Prasanna, S.

    2012-01-01

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  7. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  8. Capacitors.

    Science.gov (United States)

    Trotter, Donald M., Jr.

    1988-01-01

    Presents a historical backdrop for a discussion of capacitor design and function. Discusses the production, importance, and function of two types of miniature capacitors; electrolytic and multilayer ceramic capacitors. Describes the function of these miniature capacitors in comparison to the Leyden jar, a basic demonstration of capacitance. (CW)

  9. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  10. NMR characterization of thin films

    Science.gov (United States)

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  11. NMR characterization of thin films

    Science.gov (United States)

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  12. Strain quantification in epitaxial thin films

    International Nuclear Information System (INIS)

    Cushley, M

    2008-01-01

    Strain arising in epitaxial thin films can be beneficial in some cases but devastating in others. By altering the lattice parameters, strain may give a thin film properties hitherto unseen in the bulk material. On the other hand, heavily strained systems are prone to develop lattice defects in order to relieve the strain, which can cause device failure or, at least, a decrease in functionality. Using convergent beam electron diffraction (CBED) and high-resolution transmission electron microscopy (HRTEM), it is possible to determine local strains within a material. By comparing the results from CBED and HRTEM experiments, it is possible to gain a complete view of a material, including the strain and any lattice defects present. As well as looking at how the two experimental techniques differ from each other, I will also look at how results from different image analysis algorithms compare. Strain in Si/SiGe samples and BST/SRO/MgO capacitor structures will be discussed.

  13. Room temperature ferroelectricity in continuous croconic acid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xuanyuan; Lu, Haidong; Yin, Yuewei; Ahmadi, Zahra; Costa, Paulo S. [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Zhang, Xiaozhe [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Department of Physics, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Xiao; Yu, Le; Cheng, Xuemei [Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010 (United States); DiChiara, Anthony D. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Gruverman, Alexei, E-mail: alexei-gruverman@unl.edu, E-mail: a.enders@me.com, E-mail: xiaoshan.xu@unl.edu; Enders, Axel, E-mail: alexei-gruverman@unl.edu, E-mail: a.enders@me.com, E-mail: xiaoshan.xu@unl.edu; Xu, Xiaoshan, E-mail: alexei-gruverman@unl.edu, E-mail: a.enders@me.com, E-mail: xiaoshan.xu@unl.edu [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States)

    2016-09-05

    Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages ≥20 nm, quasi 2D and polycrystalline films, with an average grain size of 50–100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structures of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.

  14. Electroresistance Effect in Gold Thin Film Induced by Ionic-Liquid-Gated Electric Double Layer

    NARCIS (Netherlands)

    Nakayama, Hiroyasu; Ye, Jianting; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Iwasa, Yoshihiro; Saitoh, Eiji

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with

  15. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  16. Thin Film Microbatteries

    International Nuclear Information System (INIS)

    Dudney, Nancy J.

    2008-01-01

    Thin film batteries are built layer by layer by vapor deposition. The resulting battery is formed of parallel plates, much as an ordinary battery construction, just much thinner. The figure (Fig. 1) shows an example of a thin film battery layout where films are deposited symmetrically onto both sides of a supporting substrate. The full stack of films is only 10 to 15 (micro)m thick, but including the support at least doubles the overall battery thickness. When the support is thin, the entire battery can be flexible. At least six companies have commercialized or are very close to commercializing such all-solid-state thin film batteries and market research predicts a growing market and a variety of applications including sensors, RFID tags, and smarter cards. In principle with a large deposition system, a thin film battery might cover a square meter, but in practice, most development is targeting individual cells with active areas less than 25 cm 2 . For very small battery areas, 2 , microfabrication processes have been developed. Typically the assembled batteries have capacities from 0.1 to 5 mAh. The operation of a thin film battery is depicted in the schematic diagram (Fig. 2). Very simply, when the battery is allowed to discharge, a Li + ion migrates from the anode to the cathode film by diffusing through the solid electrolyte. When the anode and cathode reactions are reversible, as for an intercalation compound or alloy, the battery can be recharged by reversing the current. The difference in the electrochemical potential of the lithium determines the cell voltage. Most of the thin films used in current commercial variations of this thin film battery are deposited in vacuum chambers by RF and DC magnetron sputtering and by thermal evaporation onto unheated substrates. In addition, many publications report exploring a variety of other physical and chemical vapor deposition processes, such as pulsed laser deposition, electron cyclotron resonance sputtering, and

  17. Resistivity behavior of optimized PbTiO3 thin films prepared by spin coating method

    Science.gov (United States)

    Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Alrokayan, S. A. H.; Khan, H. A.; Rusop, M.

    2018-05-01

    Th is study presents the resistivity behavior of PbTiO3 thin films which were prepared towards metal-insulator-metal capacitor device fabrication. The PbTiO3 thin films were prepared through sol-gel spin coating method that involved various deposition parameters that is (1) different molar concentration of PbTiO3 solutions, (2) various additional PbAc-content in PbTiO3 solutions, and (3) various annealing temperature on PbTiO3 thin films. Hence, an electrical measurement of current versus voltage was done to determine the resistivity behavior of PbTiO3 thin films.

  18. Microstructure of Thin Films

    Science.gov (United States)

    1990-02-07

    Proceedings, Thin film Technologies II, 652, 256-263, (1986) B. Schmitt, J.P. Borgogno, G. Albrand and E. Pelletier, "In situ and air index measurements...34 SPIE Proceedings, "Optical Components and Systems", 805, 128 (1987) 11 B. Schmitt, J.P. Borgogno, G. Albrand and E. Pelletier. "In situ and air index...aT , m..a, lot,, o ,,f,02,d I4 k -1-1..... autocovariance lengths, less than 0.5 um, indicate that , 514n, ob0 o p’,Ofclllc....,,o,,oy0,1- agua sblrt

  19. Superconducting oxypnictide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Reisner, Andreas; Kidszun, Martin; Reich, Elke; Holzapfel, Bernhard; Schultz, Ludwig; Haindl, Silvia [IFW Dresden, Institute of Metallic Materials (Germany); Thersleff, Thomas [Uppsala University, Angstrom Laboratory (Sweden)

    2012-07-01

    We present an overview on the oxypnictide thin film preparation. So far, only LaAlO{sub 3} (001) single crystalline substrates provided a successful growth using pulsed laser deposition in combination with a post annealing process. Further experiments on the in-situ deposition will be reported. The structure of the films was investigated by X-ray diffractometry and transmission electron microscopy. Transport properties were measured with different applied fields to obtain a magnetic phase diagram for this new type of superconductor.

  20. Mechanics of Thin Films

    Science.gov (United States)

    1992-02-06

    and the second geometry was that of squat cylinders (diameter 6.4 mm, height 6.4 mm). These two geometries were tested in thermal shock tests, and a...milder [13]. More recently, Lau, Rahman and stressa nce ntrati, tha n films of lmalla rat ve spc Delale calculated the free edge singularity for stress...thickness of 3 mm); the second geometry was that As an example of the shielding effect of thin films, we of squat cylinders (diameter 6.4 mm, height 6.4

  1. Thin films: Past, present, future

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K

    1995-04-01

    This report describes the characteristics of the thin film photovoltaic modules necessary for an acceptable rate of return for rural areas and underdeveloped countries. The topics of the paper include a development of goals of cost and performance for an acceptable PV system, a review of current technologies for meeting these goals, issues and opportunities in thin film technologies.

  2. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with

  3. Thin-film photovoltaic technology

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, R.N. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-07-01

    The high material and processing costs associated with single-crystal and polycrystalline silicon wafers that are commonly used in photovoltaic cells render these modules expensive. This presentation described thin-film solar cell technology as a promising alternative to silicon solar cell technology. Cadmium telluride (CdTe) thin films along with copper, indium, gallium, and selenium (CIGS) thin films have become the leaders in this field. Their large optical absorption coefficient can be attributed to a direct energy gap that allows the use of thin layers (1-2 {mu}m) of active material. The efficiency of thin-film solar cell devices based on CIGS is 20 per cent, compared to 16.7 per cent for thin-film solar cell devices based on CdTe. IBM recently reported an efficiency of 9.7 per cent for a new type of inorganic thin-film solar cell based on a Cu{sub 2}ZnSn(S, Se){sub 4} compound. The efficiency of an organic thin-film solar cell is 7.9 per cent. This presentation included a graph of PV device efficiencies and discussed technological advances in non-vacuum deposited, CIGS-based thin-film solar cells. 1 fig.

  4. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  5. Thermal stability of pulsed laser deposited iridium oxide thin films at low oxygen atmosphere

    Science.gov (United States)

    Gong, Yansheng; Wang, Chuanbin; Shen, Qiang; Zhang, Lianmeng

    2013-11-01

    Iridium oxide (IrO2) thin films have been regarded as a leading candidate for bottom electrode and diffusion barrier of ferroelectric capacitors, some process related issues need to be considered before integrating ferroelectric capacitors into memory cells. This paper presents the thermal stability of pulsed laser deposited IrO2 thin films at low oxygen atmosphere. Emphasis was given on the effect of post-deposition annealing temperature at different oxygen pressure (PO2) on the crystal structure, surface morphology, electrical resistivity, carrier concentration and mobility of IrO2 thin films. The results showed that the thermal stability of IrO2 thin films was strongly dependent on the oxygen pressure and annealing temperature. IrO2 thin films can stably exist below 923 K at PO2 = 1 Pa, which had a higher stability than the previous reported results. The surface morphology of IrO2 thin films depended on PO2 and annealing temperature, showing a flat and uniform surface for the annealed films. Electrical properties were found to be sensitive to both the annealing temperature and oxygen pressure. The room-temperature resistivity of IrO2 thin films with a value of 49-58 μΩ cm increased with annealing temperature at PO2 = 1 Pa. The thermal stability of IrO2 thin films as a function of oxygen pressure and annealing temperature was almost consistent with thermodynamic calculation.

  6. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  7. Interfaces and thin films physics

    International Nuclear Information System (INIS)

    Equer, B.

    1988-01-01

    The 1988 progress report of the Interfaces and Thin Film Physics laboratory (Polytechnic School France) is presented. The research program is focused on the thin films and on the interfaces of the amorphous semiconductor materials: silicon and silicon germanium, silicon-carbon and silicon-nitrogen alloys. In particular, the following topics are discussed: the basic processes and the kinetics of the reactive gas deposition, the amorphous materials manufacturing, the physico-chemical characterization of thin films and interfaces and the electron transport in amorphous semiconductors. The construction and optimization of experimental devices, as well as the activities concerning instrumentation, are also described [fr

  8. Thin-film solar cells

    International Nuclear Information System (INIS)

    Aberle, Armin G.

    2009-01-01

    The rapid progress that is being made with inorganic thin-film photovoltaic (PV) technologies, both in the laboratory and in industry, is reviewed. While amorphous silicon based PV modules have been around for more than 20 years, recent industrial developments include the first polycrystalline silicon thin-film solar cells on glass and the first tandem solar cells based on stacks of amorphous and microcrystalline silicon films ('micromorph cells'). Significant thin-film PV production levels are also being set up for cadmium telluride and copper indium diselenide.

  9. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  10. Characterization of organic thin films

    CERN Document Server

    Ulman, Abraham; Evans, Charles A

    2009-01-01

    Thin films based upon organic materials are at the heart of much of the revolution in modern technology, from advanced electronics, to optics to sensors to biomedical engineering. This volume in the Materials Characterization series introduces the major common types of analysis used in characterizing of thin films and the various appropriate characterization technologies for each. Materials such as Langmuir-Blodgett films and self-assembled monolayers are first introduced, followed by analysis of surface properties and the various characterization technologies used for such. Readers will find detailed information on: -Various spectroscopic approaches to characterization of organic thin films, including infrared spectroscopy and Raman spectroscopy -X-Ray diffraction techniques, High Resolution EELS studies, and X-Ray Photoelectron Spectroscopy -Concise Summaries of major characterization technologies for organic thin films, including Auger Electron Spectroscopy, Dynamic Secondary Ion Mass Spectrometry, and Tra...

  11. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  12. A Novel Offset Cancellation Based on Parasitic-Insensitive Switched-Capacitor Sensing Circuit for the Out-of-Plane Single-Gimbaled Decoupled CMOS-MEMS Gyroscope

    Science.gov (United States)

    Chang, Ming-Hui; Huang, Han-Pang

    2013-01-01

    This paper presents a novel parasitic-insensitive switched-capacitor (PISC) sensing circuit design in order to obtain high sensitivity and ultra linearity and reduce the parasitic effect for the out-of-plane single-gimbaled decoupled CMOS-MEMS gyroscope (SGDG). According to the simulation results, the proposed PISC circuit has better sensitivity and high linearity in a wide dynamic range. Experimental results also show a better performance. In addition, the PISC circuit can use signal processing to cancel the offset and noise. Thus, this circuit is very suitable for gyroscope measurement. PMID:23493122

  13. Thin films for precision optics

    International Nuclear Information System (INIS)

    Araujo, J.F.; Maurici, N.; Castro, J.C. de

    1983-01-01

    The technology of producing dielectric and/or metallic thin films for high precision optical components is discussed. Computer programs were developed in order to calculate and register, graphically, reflectance and transmittance spectra of multi-layer films. The technology of vacuum evaporation of several materials was implemented in our thin-films laboratory; various films for optics were then developed. The possibility of first calculate film characteristics and then produce the film is of great advantage since it reduces the time required to produce a new type of film and also reduces the cost of the project. (C.L.B.) [pt

  14. Enhanced dielectric and electrical properties of annealed PVDF thin film

    Science.gov (United States)

    Arshad, A. N.; Rozana, M. D.; Wahid, M. H. M.; Mahmood, M. K. A.; Sarip, M. N.; Habibah, Z.; Rusop, M.

    2018-05-01

    Poly (vinylideneflouride) (PVDF) thin films were annealed at various annealing temperatures ranging from 70°C to 170°C. This study demonstrates that PVDF thin films annealed at temperature of 70°C (AN70) showed significant enhancement in their dielectric constant (14) at frequency of 1 kHz in comparison to un-annealed PVDF (UN-PVDF), dielectric constant (10) at the same measured frequency. As the annealing temperature was increased from 90°C (AN90) to 150°C (AN150), the dielectric constant value of PVDF thin films was observed to decrease gradually to 11. AN70 also revealed low tangent loss (tan δ) value at similar frequency. With respect to its resistivity properties, the values were found to increase from 1.98×104 Ω.cm to 3.24×104 Ω.cm for AN70 and UN-PVDF films respectively. The improved in dielectric constant, with low tangent loss and high resistivity value suggests that 70°C is the favorable annealing temperature for PVDF thin films. Hence, AN70 is a promising film to be utilized for application in electronic devices such as low frequency capacitor.

  15. Semiconductor-nanocrystal/conjugated polymer thin films

    Science.gov (United States)

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  16. Nanocrystal thin film fabrication methods and apparatus

    Science.gov (United States)

    Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk; Lai, Yuming

    2018-01-09

    Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.

  17. Solar control on irradiated Ta2O2 thin films

    International Nuclear Information System (INIS)

    Baydogan, N. D.; Zayim, E. Oe.

    2007-01-01

    Thin films consisting of Ta 2 O 5 have been used in industry in applications related to thin-film capacitors, optical waveguides, and antireflection coatings on solar cells. Ta 2 O 5 films are used for several special applications as highly refractive material and show different optical properties depending on the deposition methods. Sol-gel technique has been used for the preparation of Ta 2 O 5 thin films. Ta 2 O 5 thin films were prepared by sol-gel proses on glass substrates to obtain good quality films. These films were exposed to gamma radiation from Co-60 radioisotope. Ta 2 O 5 coated thin films were placed against the source and irradiated for 8 different gamma doses; between 0.35 and 21.00 kGy at room temperature. Energetic gamma ray can affect the samples and change its colour. On the other hand some of the Ta 2 O 5 coated thin films were irradiated with beta radiation from Sr-90 radioisotope. The effect of gamma irradiation on the solar properties of Ta 2 O 5 films is compared with that of beta irradiation. The solar properties of the irradiated thin films differ significantly from those of the unirradiated ones. After the irradiation of the samples transmittance and reflectance are measured for solar light between 300 and 2100 nm, by using Perkin Elmer Lambda 9 UV/VIS/NIR Spectrophotometer. Change in the direct solar transmittance, reflectance and absorptance with absorbed dose are determined. Using the optical properties, the redistribution of the absorbed component of the solar radiation and the shading coefficient (SC) are calculated as a function of the convective heat-transfer coefficient. Solar parameters are important for the determination of the shading coefficient. When the secondary internal heat transfer factor (qi), direct solar transmittance (□ e ), and solar factor (g) are known, it is possible to determine shading coefficient via the dose rates. The shading coefficient changes as the dose rate is increased. In this study, the shading

  18. Thin films of soft matter

    CERN Document Server

    Kalliadasis, Serafim

    2007-01-01

    A detailed overview and comprehensive analysis of the main theoretical and experimental advances on free surface thin film and jet flows of soft matter is given. At the theoretical front the book outlines the basic equations and boundary conditions and the derivation of low-dimensional models for the evolution of the free surface. Such models include long-wave expansions and equations of the boundary layer type and are analyzed via linear stability analysis, weakly nonlinear theories and strongly nonlinear analysis including construction of stationary periodic and solitary wave and similarity solutions. At the experimental front a variety of very recent experimental developments is outlined and the link between theory and experiments is illustrated. Such experiments include spreading drops and bubbles, imbibitions, singularity formation at interfaces and experimental characterization of thin films using atomic force microscopy, ellipsometry and contact angle measurements and analysis of patterns using Minkows...

  19. Review of thin film superconductivity

    International Nuclear Information System (INIS)

    Kihlstrom, K.E.

    1989-01-01

    Advances in thin film superconductivity are critical to the success of many proposed applications. The authors review several of the prominent techniques currently used to produce thin films of the high temperature superconductors including electron beam co-deposition, sputtering (both multiple and composite source configurations) and laser ablation. The authors look at the relevant parameters for each and evaluate the advantages and disadvantages of each technique. In addition, promising work on in situ oxidation is discussed. Also addressed are efforts to find optimum substrate materials and substrate buffer layers for various applications. The current state of the art for T c , J c and H c2 is presented for the yttrium, bismuth, and thallium compounds

  20. Thin-Film Power Transformers

    Science.gov (United States)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  1. Magnetization in permalloy thin films

    Indian Academy of Sciences (India)

    Thin films of permalloy (Ni80Fe20) were prepared using an Ar+N2 mixture with magnetron ... alloys of Ni and Fe) take an important place. NiFe alloy with a ... room temperature (∼298 K, without intentional heating) on Si(100) substrates. A base pressure of 1×10−6 mbar was achieved prior to the deposition. Three different ...

  2. Improved electrical properties after post annealing of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin films for MIM capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Rouahi, A.; Kahouli, A. [University of Grenoble (UJF), Grenoble Electrical Engineering Laboratory (G2ELab), CNRS, 25 Rue de Martyrs, BP166, Grenoble Cedex 9 (France); Campus Universities, Laboratory of Materials, Organization and Properties (LMOP), Tunis (Tunisia); Sylvestre, A. [University of Grenoble (UJF), Grenoble Electrical Engineering Laboratory (G2ELab), CNRS, 25 Rue de Martyrs, BP166, Grenoble Cedex 9 (France); Jomni, F.; Yangui, B. [Campus Universities, Laboratory of Materials, Organization and Properties (LMOP), Tunis (Tunisia); Defay, E. [CEA-LETI, Minatec Campus, Grenoble Cedex 7 (France)

    2012-11-15

    Dielectric measurements have been performed on ion beam sputtering (IBS) barium strontium titanate Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin films at annealing temperatures 470 and 700 C using impedance spectroscopy. The effect of the annealing temperature upon the electrical properties of the films is also investigated using capacitance-voltage techniques. Increasing annealing temperature suggested the increases of density and grain size, whereas the density of the trapped oxygen vacancy may be decreasing with increasing annealing temperature. The barrier height (E{sub a}) of the oxygen vacancy decreases with increasing annealing temperature. The C-V characteristics were investigated in relation to the annealing temperature to identify the anomalous capacitance in the MIM configuration films. Among all measurement temperatures, it was observed that the data fit well by the ''LGD'' model. The interfacial effect and its dependence of morphology structure have been studied, and the results are discussed. (orig.)

  3. Structural and electrical properties of Ta2O5 thin films prepared by ...

    Indian Academy of Sciences (India)

    The dielectric constant and leakage current density of the Ta2O5 thin films increase with increasing powers of the UV- lamps. Effects of UV- lamp powers on the structural and electrical properties were discussed. Keywords. Chemical vapour deposition processes; oxides; dielectric material; MOS capacitor. 1. Introduction.

  4. Nanostructured manganese oxide thin films as electrode material for supercapacitors

    Science.gov (United States)

    Xia, Hui; Lai, Man On; Lu, Li

    2011-01-01

    Electrochemical capacitors, also called supercapacitors, are alternative energy storage devices, particularly for applications requiring high power densities. Recently, manganese oxides have been extensively evaluated as electrode materials for supercapacitors due to their low cost, environmental benignity, and promising supercapacitive performance. In order to maximize the utilization of manganese oxides as the electrode material for the supercapacitors and improve their supercapacitive performance, the nanostructured manganese oxides have therefore been developed. This paper reviews the synthesis of the nanostructured manganese oxide thin films by different methods and the supercapacitive performance of different nanostructures.

  5. Thin films for emerging applications v.16

    CERN Document Server

    Francombe, Maurice H

    1992-01-01

    Following in the long-standing tradition of excellence established by this serial, this volume provides a focused look at contemporary applications. High Tc superconducting thin films are discussed in terms of ion beam and sputtering deposition, vacuum evaporation, laser ablation, MOCVD, and other deposition processes in addition to their ultimate applications. Detailed treatment is also given to permanent magnet thin films, lateral diffusion and electromigration in metallic thin films, and fracture and cracking phenomena in thin films adhering to high-elongation substrates.

  6. Beryllium thin films for resistor applications

    Science.gov (United States)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  7. Analysis of Hard Thin Film Coating

    Science.gov (United States)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  8. Thin Film Photovoltaic Partnership Project | Photovoltaic Research | NREL

    Science.gov (United States)

    Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed

  9. Thin-Film Material Science and Processing | Materials Science | NREL

    Science.gov (United States)

    Thin-Film Material Science and Processing Thin-Film Material Science and Processing Photo of a , a prime example of this research is thin-film photovoltaics (PV). Thin films are important because cadmium telluride thin film, showing from top to bottom: glass, transparent conducting oxide (thin layer

  10. Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers

    Science.gov (United States)

    Best, James P.; Michler, Johann; Liu, Jianxi; Wang, Zhengbang; Tsotsalas, Manuel; Maeder, Xavier; Röse, Silvana; Oberst, Vanessa; Liu, Jinxuan; Walheim, Stefan; Gliemann, Hartmut; Weidler, Peter G.; Redel, Engelbert; Wöll, Christof

    2015-09-01

    Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials (EITO ≈ 96.7 GPa, EHKUST-1 ≈ 22.0 GPa). For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices.

  11. Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Best, James P., E-mail: james.best@empa.ch, E-mail: engelbert.redel@kit.edu, E-mail: christof.woell@kit.edu; Michler, Johann; Maeder, Xavier [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Liu, Jianxi; Wang, Zhengbang; Tsotsalas, Manuel; Liu, Jinxuan; Gliemann, Hartmut; Weidler, Peter G.; Redel, Engelbert, E-mail: james.best@empa.ch, E-mail: engelbert.redel@kit.edu, E-mail: christof.woell@kit.edu; Wöll, Christof, E-mail: james.best@empa.ch, E-mail: engelbert.redel@kit.edu, E-mail: christof.woell@kit.edu [Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Röse, Silvana [Preparative Macromolecular Chemistry, Institute for Chemical Technology and Polymer Chemistry (ICTP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe (Germany); Institute for Biological Interfaces (IBG), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Oberst, Vanessa [Institute of Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Walheim, Stefan [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2015-09-07

    Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials (E{sub ITO} ≈ 96.7 GPa, E{sub HKUST−1} ≈ 22.0 GPa). For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices.

  12. Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers

    International Nuclear Information System (INIS)

    Best, James P.; Michler, Johann; Maeder, Xavier; Liu, Jianxi; Wang, Zhengbang; Tsotsalas, Manuel; Liu, Jinxuan; Gliemann, Hartmut; Weidler, Peter G.; Redel, Engelbert; Wöll, Christof; Röse, Silvana; Oberst, Vanessa; Walheim, Stefan

    2015-01-01

    Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials (E ITO  ≈ 96.7 GPa, E HKUST−1  ≈ 22.0 GPa). For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices

  13. Minerals deposited as thin films

    International Nuclear Information System (INIS)

    Vazquez, Cristina; Leyt, D.V. de; Custo, Graciela

    1987-01-01

    Free matrix effects are due to thin film deposits. Thus, it was decided to investigate this technique as a possibility to use pure oxide of the desired element, extrapolating its concentration from analytical curves made with avoiding, at the same time, mathematical corrections. The proposed method was employed to determine iron and titanium concentrations in geological samples. The range studied was 0.1-5%m/m for titanium and 5-20%m/m for iron. For both elements the reproducibility was about 7% and differences between this method and other chemical determinations were 15% for titanium and 7% for iron. (Author) [es

  14. Flexible thin film magnetoimpedance sensors

    International Nuclear Information System (INIS)

    Kurlyandskaya, G.V.; Fernández, E.; Svalov, A.; Burgoa Beitia, A.; García-Arribas, A.; Larrañaga, A.

    2016-01-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz. - Highlights: • [FeNi/Ti] 3 /Cu/[FeNi/Ti] 3 films were prepared by sputtering at different deposition rates. • Polymer substrates insure sufficiently accurate reproducibility of the film structure. • High deposition rate of 28 nm/min insures the highest values of the magnetoimpedance sensitivity. • Deposition onto polymer results in the satisfactory magnetoimpedance sensitivity of 45%/Oe.

  15. Flexible thin film magnetoimpedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kurlyandskaya, G.V., E-mail: galina@we.lc.ehu.es [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Fernández, E. [BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Svalov, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Burgoa Beitia, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); García-Arribas, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain)

    2016-10-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz. - Highlights: • [FeNi/Ti]{sub 3}/Cu/[FeNi/Ti]{sub 3} films were prepared by sputtering at different deposition rates. • Polymer substrates insure sufficiently accurate reproducibility of the film structure. • High deposition rate of 28 nm/min insures the highest values of the magnetoimpedance sensitivity. • Deposition onto polymer results in the satisfactory magnetoimpedance sensitivity of 45%/Oe.

  16. Electroresistance effect in gold thin film induced by ionic-liquid-gated electric double layer

    International Nuclear Information System (INIS)

    Nakayama, Hiroyasu; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Saitoh, Eiji; Ye, Jianting; Iwasa, Yoshihiro

    2012-01-01

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with 27 (-25) MV cm -1 of electric field by applying only 1.7 V of positive (negative) gate voltage. The experimental results indicate that the ionic-liquid-gated EDLT technique can be used for controlling the surface electronic states on metallic systems. (author)

  17. In-Plane Impedance Spectroscopy measurements in Vanadium Dioxide thin films

    Science.gov (United States)

    Ramirez, Juan; Patino, Edgar; Schmidt, Rainer; Sharoni, Amos; Gomez, Maria; Schuller, Ivan

    2012-02-01

    In plane Impedance Spectroscopy measurements have been done in Vanadium Dioxide thin films in the range of 100 Hz to 1 MHz. Our measurements allows distinguishing between the resistive and capacitive response of the Vanadium Dioxide films across the metal-insulator transition. A non ideal RC behavior was found in our thin films from room temperature up to 334 K. Around the MIT, an increase of the total capacitance is observed. A capacitor-network model is able to reproduce the capacitance changes across the MIT. Above the MIT, the system behaves like a metal as expected, and a modified equivalent circuit is necessary to describe the impedance data adequately.

  18. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Unknown

    tion method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films ... By conducting several trials optimization of the adsorption, reaction and rinsing time duration for CdTe thin film .... The electrical resistivity of CdTe films was studied in air. Figure 3 shows the variation of log ...

  19. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity...

  20. Excimer Laser Deposition of PLZT Thin Films

    National Research Council Canada - National Science Library

    Petersen, GAry

    1991-01-01

    .... In order to integrate these devices into optical systems, the production of high quality thin films with high transparency and perovskite crystal structure is desired. This requires development of deposition technologies to overcome the challenges of depositing and processing PLZT thin films.

  1. Thin films of mixed metal compounds

    Science.gov (United States)

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  2. Field ion microscope studies on thin films

    International Nuclear Information System (INIS)

    Cavaleru, A.; Scortaru, A.

    1976-01-01

    A review of the progress made in the last years in FIM application to thin film structure studies and adatom properties important in the nucleation stage of thin film growth: substrate binding and mobility of individual adatoms, behaviour of adatoms clusters is presented. (author)

  3. Progress in thin film techniques

    International Nuclear Information System (INIS)

    Weingarten, W.

    1996-01-01

    Progress since the last Workshop is reported on superconducting accelerating RF cavities coated with thin films. The materials investigated are Nb, Nb 3 Sn, NbN and NbTiN, the techniques applied are diffusion from the vapour phase (Nb 3 Sn, NbN), the bronze process (Nb 3 Sn), and sputter deposition on a copper substrate (Nb, NbTiN). Specially designed cavities for sample evaluation by RF methods have been developed (triaxial cavity). New experimental techniques to assess the RF amplitude dependence of the surface resistance are presented (with emphasis on niobium films sputter deposited on copper). Evidence is increasing that they are caused by magnetic flux penetration into the surface layer. (R.P.)

  4. BDS thin film damage competition

    Science.gov (United States)

    Stolz, Christopher J.; Thomas, Michael D.; Griffin, Andrew J.

    2008-10-01

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  5. Polycrystalline thin films : A review

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V [Charles Univ., Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Polycrystalline thin films can be described in terms of grain morphology and in terms of their packing by the Thornton`s zone model as a function of temperature of deposition and as a function of energy of deposited atoms. Grain size and preferred grain orientation (texture) can be determined by X-ray diffraction (XRD) methods. A review of XRD analytical methods of texture analysis is given with main attention paid to simple empirical functions used for texture description and for structure analysis by joint texture refinement. To illustrate the methods of detailed structure analysis of thin polycrystalline films, examples of multilayers are used with the aim to show experiments and data evaluation to determine layer thickness, periodicity, interface roughness, lattice spacing, strain and the size of diffraction coherent volumes. The methods of low angle and high angle XRD are described and discussed with respect to their complementary information content.

  6. High temperature superconductor thin films

    International Nuclear Information System (INIS)

    Correra, L.

    1992-01-01

    Interdisciplinary research on superconducting oxides is the main focus of the contributors in this volume. Several aspects of the thin film field from fundamental properties to applications are examined. Interesting results for the Bi system are also reviewed. The 132 papers, including 8 invited, report mainly on the 1-2-3 system, indicating that the Y-Ba-Cu-O and related compounds are still the most intensively studied materials in this field. The volume attests to the significant progress that has been made in this field, as well as reporting on the challenging problems that still remain to be solved. The papers are presented in five chapters, subsequently on properties, film growth and processing, substrates and multilayers, structural characterization, and applications

  7. Structure and electrical properties of Pb(ZrxTi1-x)O3 deposited on textured Pt thin films

    International Nuclear Information System (INIS)

    Hong, Jongin; Song, Han Wook; Lee, Hee Chul; Lee, Won Jong; No, Kwangsoo

    2001-01-01

    The texturing of the bottom electrode plays a key role in the structure and electrical properties of Pb(Zr,Ti)O 3 (PZT) thin films. We fabricated Pt bottom electrodes having a different thickness on MgO single crystals at 600 o C by rf magnetron sputtering. As the thickness of platinum (Pt) thin film increased, the preferred orientation of Pt thin film changed from (200) to (111). PZT thin films were fabricated at 450 o C by electron cyclotron resonance-plasma enhanced metal organic chemical vapor deposition on the textured Pt thin films. The texturing of the bottom electrode caused drastic changes in the C--V characteristics, P--E characteristics, and fatigue characteristics of metal/ferroelectric material/metal (MFM) capacitors. The difference of the electrical properties between the PZT thin films having different texturing was discussed in terms-of the x--y alignment and the interface between electrode and PZT in MFM capacitors. copyright 2001 American Institute of Physics

  8. Thermal recrystallization of physical vapor deposition based germanium thin films on bulk silicon (100)

    KAUST Repository

    Hussain, Aftab M.

    2013-08-16

    We demonstrate a simple, low-cost, and scalable process for obtaining uniform, smooth surfaced, high quality mono-crystalline germanium (100) thin films on silicon (100). The germanium thin films were deposited on a silicon substrate using plasma-assisted sputtering based physical vapor deposition. They were crystallized by annealing at various temperatures ranging from 700 °C to 1100 °C. We report that the best quality germanium thin films are obtained above the melting point of germanium (937 °C), thus offering a method for in-situ Czochralski process. We show well-behaved high-κ /metal gate metal-oxide-semiconductor capacitors (MOSCAPs) using this film. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Design and characteristics of L-C thin films filter at microwave frequency band

    Science.gov (United States)

    Kim, In-Sung; Min, Bok-Ki; Song, Jae-Sung

    2005-12-01

    Multifunction corresponding to multimedia age has furthermore required high integration to the devices at microwave band, so more evolution for multi-layer integration like system on chip(SoC) becomes to be necessary. In wireless mobile communication, portable mobile phones grew up to a huge market. Microwave devices have played an important role in the wireless communication systems. One challenge in the implementation of circuit integration is in the design of micro wave band pass filter with thin film MOM capacitor and spiral inductor. In this paper, Cu and TaO thin film with RF sputtering was deposited for inductor and capacitor on the SiO II/Si(100) substrate. MIM capacitor and spiral inductor was fabricated for L-C band pass filter by sputtering and lift-off. We are analyzed and designed thin films L-C passive components for band pass filter at 900 MHz and 1.8 GHz, an important devices for mobile communication. Based on the high-Q values of passive components, MIM capacitor and spiral inductors for L-C band pass filter, a low insertion loss of L-C passive components can be realized with a minimized chip area. The insertion loss was 3 dB for a 1.8 GHz filter, and was 5 dB for a 900 MHz filter. This paper also discusses a theoretical analysis and practical design to L-C band pass filter.

  10. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors.

    Science.gov (United States)

    Yao, Kui; Chen, Shuting; Rahimabady, Mojtaba; Mirshekarloo, Meysam Sharifzadeh; Yu, Shuhui; Tay, Francis Eng Hock; Sritharan, Thirumany; Lu, Li

    2011-09-01

    Although batteries possess high energy storage density, their output power is limited by the slow movement of charge carriers, and thus capacitors are often required to deliver high power output. Dielectric capacitors have high power density with fast discharge rate, but their energy density is typically much lower than electrochemical supercapacitors. Increasing the energy density of dielectric materials is highly desired to extend their applications in many emerging power system applications. In this paper, we review the mechanisms and major characteristics of electric energy storage with electrochemical supercapacitors and dielectric capacitors. Three types of in-house-produced ferroic nonlinear dielectric thin film materials with high energy density are described, including (Pb(0.97)La(0.02))(Zr(0.90)Sn(0.05)Ti(0.05))O(3) (PLZST) antiferroelectric ceramic thin films, Pb(Zn(1/3)Nb(2/3))O(3-)Pb(Mg(1/3)Nb(2/3))O(3-)PbTiO(3) (PZN-PMN-PT) relaxor ferroelectric ceramic thin films, and poly(vinylidene fluoride) (PVDF)-based polymer blend thin films. The results showed that these thin film materials are promising for electric storage with outstandingly high power density and fairly high energy density, comparable with electrochemical supercapacitors.

  11. Macro stress mapping on thin film buckling

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, P.; Villain, P.; Renault, P.-O.; Tamura, N.; Celestre, R.S.; Padmore, H.A.

    2002-11-06

    Thin films deposited by Physical Vapour Deposition techniques on substrates generally exhibit large residual stresses which may be responsible of thin film buckling in the case of compressive stresses. Since the 80's, a lot of theoretical work has been done to develop mechanical models but only a few experimental work has been done on this subject to support these theoretical approaches and nothing concerning local stress measurement mainly because of the small dimension of the buckling (few 10th mm). This paper deals with the application of micro beam X-ray diffraction available on synchrotron radiation sources for stress mapping analysis of gold thin film buckling.

  12. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  13. Fabrication of thermally evaporated Al thin film on cylindrical PET monofilament for wearable computing devices

    Science.gov (United States)

    Liu, Yang; Kim, Eunju; Han, Jeong In

    2016-01-01

    During the initial development of wearable computing devices, the conductive fibers of Al thin film on cylindrical PET monofilament were fabricated by thermal evaporation. Their electrical current-voltage characteristics curves were excellent for incorporation into wearable devices such as fiber-based cylindrical capacitors or thin film transistors. Their surfaces were modified by UV exposure and dip coating of acryl or PVP to investigate the surface effect. The conductive fiber with PVP coating showed the best conductivities because the rough surface of the PET substrate transformed into a smooth surface. The conductivities of PET fiber with and without PVP were 6.81 × 103 Ω-1cm-1 and 5.62 × 103 Ω-1cm-1, respectively. In order to understand the deposition process of Al thin film on cylindrical PET, Al thin film on PET fiber was studied using SEM (Scanning Electron Microscope), conductivities and thickness measurements. Hillocks on the surface of conductive PET fibers were observed and investigated by AFM on the surface. Hillocks were formed and grown during Al thermal evaporation because of severe compressive strain and plastic deformation induced by large differences in thermal expansion between PET substrate and Al thin film. From the analysis of hillock size distribution, it turns out that hillocks grew not transversely but longitudinally. [Figure not available: see fulltext.

  14. Solid thin film materials for use in thin film charge-coupled devices

    International Nuclear Information System (INIS)

    Lynch, S.J.

    1983-01-01

    Solid thin films deposited by vacuum deposition were evaluated to ascertain their effectiveness for use in the manufacturing of charge-coupled devices (CCDs). Optical and electrical characteristics of tellurium and Bi 2 Te 3 solid thin films were obtained in order to design and to simulate successfully the operation of thin film (TF) CCDs. In this article some of the material differences between single-crystal material and the island-structured thin film used in TFCCDs are discussed. The electrical parameters were obtained and tabulated, e.g. the mobility, conductivity, dielectric constants, permittivity, lifetime of holes and electrons in the thin films and drift diffusion constants. The optical parameters were also measured and analyzed. After the design was complete, experimental TFCCDs were manufactured and were successfully operated utilizing the aforementioned solid thin films. (Auth.)

  15. Conformal Thin Film Packaging for SiC Sensor Circuits in Harsh Environments

    Science.gov (United States)

    Scardelletti, Maximilian C.; Karnick, David A.; Ponchak, George E.; Zorman, Christian A.

    2011-01-01

    In this investigation sputtered silicon carbide annealed at 300 C for one hour is used as a conformal thin film package. A RF magnetron sputterer was used to deposit 500 nm silicon carbide films on gold metal structures on alumina wafers. To determine the reliability and resistance to immersion in harsh environments, samples were submerged in gold etchant for 24 hours, in BOE for 24 hours, and in an O2 plasma etch for one hour. The adhesion strength of the thin film was measured by a pull test before and after the chemical immersion, which indicated that the film has an adhesion strength better than 10(exp 8) N/m2; this is similar to the adhesion of the gold layer to the alumina wafer. MIM capacitors are used to determine the dielectric constant, which is dependent on the SiC anneal temperature. Finally, to demonstrate that the SiC, conformal, thin film may be used to package RF circuits and sensors, an LC resonator circuit was fabricated and tested with and without the conformal SiC thin film packaging. The results indicate that the SiC coating adds no appreciable degradation to the circuits RF performance. Index Terms Sputter, silicon carbide, MIM capacitors, LC resonators, gold etchants, BOE, O2 plasma

  16. Epitaxy, thin films and superlattices

    International Nuclear Information System (INIS)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au)

  17. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  18. Misfit strain dependence of ferroelectric and piezoelectric properties of clamped (001) epitaxial Pb(Zr0.52,Ti0.48)O3 thin films

    Science.gov (United States)

    Nguyen, Minh D.; Dekkers, Matthijn; Houwman, Evert; Steenwelle, Ruud; Wan, Xin; Roelofs, Andreas; Schmitz-Kempen, Thorsten; Rijnders, Guus

    2011-12-01

    A study on the effects of the residual strain in Pb(Zr0.52Ti0.48)O3 (PZT) thin films on the ferroelectric and piezoelectric properties is presented. Epitaxial (001)-oriented PZT thin film capacitors are sandwiched between SrRuO3 electrodes. The thin film stacks are grown on different substrate-buffer-layer combinations by pulsed laser deposition. Compressive or tensile strain caused by the difference in thermal expansion of the PZT film and substrate influences the ferroelectric and piezoelectric properties. All the PZT stacks show ferroelectric and piezoelectric behavior that is consistent with the theoretical model for strained thin films in the ferroelectric r-phase. We conclude that clamped (001) oriented Pb(Zr0.52Ti0.48)O3 thin films strained by the substrate always show rotation of the polarization vector.

  19. Flush Mounting Of Thin-Film Sensors

    Science.gov (United States)

    Moore, Thomas C., Sr.

    1992-01-01

    Technique developed for mounting thin-film sensors flush with surfaces like aerodynamic surfaces of aircraft, which often have compound curvatures. Sensor mounted in recess by use of vacuum pad and materials selected for specific application. Technique involves use of materials tailored to thermal properties of substrate in which sensor mounted. Together with customized materials, enables flush mounting of thin-film sensors in most situations in which recesses for sensors provided. Useful in both aircraft and automotive industries.

  20. Thin film description by wavelet coefficients statistics

    Czech Academy of Sciences Publication Activity Database

    Boldyš, Jiří; Hrach, R.

    2005-01-01

    Roč. 55, č. 1 (2005), s. 55-64 ISSN 0011-4626 Grant - others:GA UK(CZ) 173/2003 Institutional research plan: CEZ:AV0Z10750506 Keywords : thin films * wavelet transform * descriptors * histogram model Subject RIV: BD - Theory of Information Impact factor: 0.360, year: 2005 http://library.utia.cas.cz/separaty/2009/ZOI/boldys-thin film description by wavelet coefficients statistics .pdf

  1. Production and study of mixed Al-Al2O3 thin films for passive electronic circuits

    International Nuclear Information System (INIS)

    Pruniaux, B.

    1966-09-01

    A new vacuum deposition process, named reactive evaporation, is used to realize passive thin film circuits. Using aluminium, oxidized at various steps in its vapor phase, we obtain: - Al-Al 2 O 3 cermet resistors (R □ = 10000 Ω □ , CTR 2 O 3 capacitors (C □ = 60000 pf/cm 2 , tg δ [fr

  2. Pyroelectricity of silicon-doped hafnium oxide thin films

    Science.gov (United States)

    Jachalke, Sven; Schenk, Tony; Park, Min Hyuk; Schroeder, Uwe; Mikolajick, Thomas; Stöcker, Hartmut; Mehner, Erik; Meyer, Dirk C.

    2018-04-01

    Ferroelectricity in hafnium oxide thin films is known to be induced by various doping elements and in solid-solution with zirconia. While a wealth of studies is focused on their basic ferroelectric properties and memory applications, thorough studies of the related pyroelectric properties and their application potential are only rarely found. This work investigates the impact of Si doping on the phase composition and ferro- as well as pyroelectric properties of thin film capacitors. Dynamic hysteresis measurements and the field-free Sharp-Garn method were used to correlate the reported orthorhombic phase fractions with the remanent polarization and pyroelectric coefficient. Maximum values of 8.21 µC cm-2 and -46.2 µC K-1 m-2 for remanent polarization and pyroelectric coefficient were found for a Si content of 2.0 at%, respectively. Moreover, temperature-dependent measurements reveal nearly constant values for the pyroelectric coefficient and remanent polarization over the temperature range of 0 ° C to 170 ° C , which make the material a promising candidate for IR sensor and energy conversion applications beyond the commonly discussed use in memory applications.

  3. Photoluminescence properties of perovskite multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Macario, Leilane Roberta; Longo, Elson, E-mail: leilanemacario@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil); Mazzo, Tatiana Martelli [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil); Bouquet, Valerie; Deputier, Stephanie; Ollivier, Sophie; Guilloux-Viry, Maryline [Universite de Rennes (France)

    2016-07-01

    Full text: The knowledge of the optical properties of thin films is important in many scientific, technological and industrial applications of thin films such as photoconductivity, solar energy, photography, and numerous other applications [1]. In this study, perovskite type oxides were grown by pulsed laser deposition [2] in order to obtain thin films with applicable optical properties. The LaNiO{sub 3} (LN), BaTiO{sub 3} (BT) and KNbO{sub 3} (KNb) targets were prepared by solid-state reaction. The X-ray Diffraction revealed the presence of the desired phases, containing the elements of interest in the targets and in the thin films that were produced. The LN, BT and KNb thin films were polycrystalline and the corresponding diffraction peaks were indexed in the with JCPDS cards n. 00-033-0711, n. 00-005-0626, and n. 00-009-0156, respectively. The multilayers films were polycrystalline. The majority of the micrographs obtained by scanning electron microscopy presented films with a thickness from 100 to 400 nm. The photoluminescent (PL) emission spectra of thin films show different broad bands that occupies large region of the visible spectrum, ranging from about 300-350 to 600-650 nm of the electromagnetic spectrum. The PL emission is associated with the order-disorder structural, even small structural changes can modify the interactions between electronic states. The structural disorder results in formation of new energy levels in the forbidden region. The proximity or distance of these new energy levels formed in relation to valence band and to the conduction band results in PL spectra located at higher or lower energies. These interactions change the electronic states which can be influenced by defects, particularly the interface defects between the layers of the thin films. The presence of defects results in changes in the broad band matrix intensity and in displacement of the PL emission maximum. (author)

  4. Dielectric property study of poly(4-vinylphenol)-graphene oxide nanocomposite thin film

    Science.gov (United States)

    Roy, Dhrubojyoti

    2018-05-01

    Thin film capacitor device having a sandwich structure of indium tin oxide (ITO)-coated glass/polymer or polymer nanocomposite /silver has been fabricated and their dielectric and leakage current properties has been studied. The dielectric properties of the capacitors were characterized for frequencies ranging from 1 KHz to 1 MHz. 5 wt% Poly(4-vinylphenol)(PVPh)-Graphene (GO) nanocomposite exhibited an increase in dielectric constant to 5.6 and small rise in dielectric loss to around˜0.05 at 10 KHz w.r.t polymer. The DC conductivity measurements reveal rise of leakage current in nanocomposite.

  5. DC magnetron sputtering prepared Ag-C thin film anode for thin film lithium ion microbatteries

    International Nuclear Information System (INIS)

    Li, Y.; Tu, J.P.; Shi, D.Q.; Huang, X.H.; Wu, H.M.; Yuan, Y.F.; Zhao, X.B.

    2007-01-01

    An Ag-C thin film was prepared by DC magnetron co-sputtering, using pure silver and graphite as the targets. The microstructure and morphology of the deposited thin film were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Electrochemical performances of the Ag-C thin film anode were investigated by means of discharge/charge and cyclic voltammogram (CV) tests in model cells. The electrochemical impedance spectrum (EIS) characteristics and the chemical diffusion coefficient, D Li of the Ag-C thin film electrode at different discharging states were discussed. It was believed that the excellent cycling performance of the Ag-C electrode was ascribed to the good conductivity of silver and the volume stability of the thin film

  6. ZnO Thin Film Electronics for More than Displays

    Science.gov (United States)

    Ramirez, Jose Israel

    Zinc oxide thin film transistors (TFTs) are investigated in this work for large-area electronic applications outside of display technology. A constant pressure, constant flow, showerhead, plasma-enhanced atomic layer deposition (PEALD) process has been developed to fabricate high mobility TFTs and circuits on rigid and flexible substrates at 200 °C. ZnO films and resulting devices prepared by PEALD and pulsed laser deposition (PLD) have been compared. Both PEALD and PLD ZnO films result in densely packed, polycrystalline ZnO thin films that were used to make high performance devices. PEALD ZnO TFTs deposited at 300 °C have a field-effect mobility of ˜ 40 cm2/V-s (and > 20 cm2/V-S deposited at 200 °C). PLD ZnO TFTs, annealed at 400 °C, have a field-effect mobility of > 60 cm2/V-s (and up to 100 cm2/V-s). Devices, prepared by either technique, show high gamma-ray radiation tolerance of up to 100 Mrad(SiO2) with only a small radiation-induced threshold voltage shift (VT ˜ -1.5 V). Electrical biasing during irradiation showed no enhanced radiation-induced effects. The study of the radiation effects as a function of material stack thicknesses revealed the majority of the radiation-induced charge collection happens at the semiconductor-passivation interface. A simple sheet-charge model at that interface can describe the radiation-induced charge in ZnO TFTs. By taking advantage of the substrate-agnostic process provided by PEALD, due to its low-temperature and excellent conformal coatings, ZnO electronics were monolithically integrated with thin-film complex oxides. Application-based examples where ZnO electronics provide added functionality to complex oxide-based devices are presented. In particular, the integration of arrayed lead zirconate titanate (Pb(Zr, Ti)O3 or PZT) thin films with ZnO electronics for microelectromechanical systems (MEMs) and deformable mirrors is demonstrated. ZnO switches can provide voltage to PZT capacitors with fast charging and slow

  7. Thin Films in the Photovoltaic Industry

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2008-03-01

    In the past years, the yearly world market growth rate for Photovoltaics was an average of more than 40%, which makes it one of the fastest growing industries at present. Business analysts predict the market volume to increase to 40 billion euros in 2010 and expect rising profit margins and lower prices for consumers at the same time. Today PV is still dominated by wafer based Crystalline Silicon Technology as the 'working horse' in the global market, but thin films are gaining market shares. For 2007 around 12% are expected. The current silicon shortage and high demand has kept prices higher than anticipated from the learning curve experience and has widened the windows of opportunities for thin film solar modules. Current production capacity estimates for thin films vary between 3 and 6 GW in 2010, representing a 20% market share for these technologies. Despite the higher growth rates for thin film technologies compared with the industry average, Thin Film Photovoltaic Technologies are still facing a number of challenges to maintain this growth and increase market shares. The four main topics which were discussed during the workshop were: Potential for cost reduction; Standardization; Recycling; Performance over the lifetime.

  8. Dielectric materials for use in thin-film capacitors

    Science.gov (United States)

    Carr, H. E.; Foster, W. D.; Fromhold, A. T., Jr.; Harbuck, T. A.

    1969-01-01

    Investigation report presents details of dielectric properties of various metals measured at 300 degrees K for thermally evaporated oxides from 300 to 6000 A in thickness. It is relevant to the medium of integrated circuitry.

  9. Organic thin films and surfaces directions for the nineties

    CERN Document Server

    Ulman, Abraham

    1995-01-01

    Physics of Thin Films has been one of the longest running continuing series in thin film science consisting of 20 volumes since 1963. The series contains some of the highest quality studies of the properties ofvarious thin films materials and systems.In order to be able to reflect the development of todays science and to cover all modern aspects of thin films, the series, beginning with Volume 20, will move beyond the basic physics of thin films. It will address the most important aspects of both inorganic and organic thin films, in both their theoretical as well as technological aspects. Ther

  10. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  11. Simulated Thin-Film Growth and Imaging

    Science.gov (United States)

    Schillaci, Michael

    2001-06-01

    Thin-films have become the cornerstone of the electronics, telecommunications, and broadband markets. A list of potential products includes: computer boards and chips, satellites, cell phones, fuel cells, superconductors, flat panel displays, optical waveguides, building and automotive windows, food and beverage plastic containers, metal foils, pipe plating, vision ware, manufacturing equipment and turbine engines. For all of these reasons a basic understanding of the physical processes involved in both growing and imaging thin-films can provide a wonderful research project for advanced undergraduate and first-year graduate students. After producing rudimentary two- and three-dimensional thin-film models incorporating ballsitic deposition and nearest neighbor Coulomb-type interactions, the QM tunneling equations are used to produce simulated scanning tunneling microscope (SSTM) images of the films. A discussion of computational platforms, languages, and software packages that may be used to accomplish similar results is also given.

  12. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  13. Thin films for the manipulation of light

    International Nuclear Information System (INIS)

    Piegari, Angela; Sytchkova, Anna

    2015-01-01

    The manipulation of light is typically accomplished by a series of optical surfaces on which the incident beam is reflected, or through which the beam is transmitted. Thin film coatings help to modify the behavior of such surfaces for obtaining the desired result: antireflection coatings to reduce reflection losses, high-reflectance mirrors, filters to divide or combine beams of different wavelengths, and many other types. The amount of light that is transmitted or reflected depends on the optical parameters of the materials and on interference phenomena in thin-film structures. Dedicated software is available to design the proper coating for each requirement. There are several applications of optical thin films, many of them are useful in the everyday life, many others are dedicated to scientific purposes, as will be described in this paper [it

  14. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  15. Restructuring in block copolymer thin films

    DEFF Research Database (Denmark)

    Posselt, Dorthe; Zhang, Jianqi; Smilgies, Detlef-M.

    2017-01-01

    Block copolymer (BCP) thin films have been proposed for a number of nanotechnology applications, such as nanolithography and as nanotemplates, nanoporous membranes and sensors. Solvent vapor annealing (SVA) has emerged as a powerful technique for manipulating and controlling the structure of BCP...... thin films, e.g., by healing defects, by altering the orientation of the microdomains and by changing the morphology. Due to high time resolution and compatibility with SVA environments, grazing-incidence small-angle X-ray scattering (GISAXS) is an indispensable technique for studying the SVA process......, providing information of the BCP thin film structure both laterally and along the film normal. Especially, state-of-the-art combined GISAXS/SVA setups at synchrotron sources have facilitated in situ and real-time studies of the SVA process with a time resolution of a few seconds, giving important insight...

  16. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  17. Nanostructured thin films as functional coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, Manoj A; Tadvani, Jalil K; Tung, Wing Sze; Lopez, Lorena; Daoud, Walid A, E-mail: Walid.Daoud@sci.monash.edu.au [School of Applied Sciences and Engineering, Monash University, Churchill, VIC 3842 (Australia)

    2010-06-15

    Nanostructured thin films is one of the highly exploiting research areas particularly in applications such as photovoltaics, photocatalysis and sensor technologies. Highly tuned thin films, in terms of thickness, crystallinity, porosity and optical properties, can be fabricated on different substrates using the sol-gel method, chemical solution deposition (CSD), electrochemical etching, along with other conventional methods such as chemical vapour deposition (CVD) and physical vapour deposition (PVD). The above mentioned properties of these films are usually characterised using surface analysis techniques such as XRD, SEM, TEM, AFM, ellipsometry, electrochemistry, SAXS, reflectance spectroscopy, STM, XPS, SIMS, ESCA, X-ray topography and DOSY-NMR. This article presents a short review of the preparation and characterisation of thin films of nanocrystalline titanium dioxide and modified silicon as well as their application in solar cells, water treatment, water splitting, self cleaning fabrics, sensors, optoelectronic devices and lab on chip systems.

  18. Solid Surfaces, Interfaces and Thin Films

    CERN Document Server

    Lüth, Hans

    2010-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure physics particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures as well as to superconductor/semiconductor interfaces and magnetic thin films. The latter topic was significantly extended in this new edition by more details about the giant magnetoresistance and a section about the spin-transfer torque mechanism including one new problem as exercise. Two new panels about Kerr-effect and spin-polarized scanning tunnelling microscopy were added, too. Furthermore, the meanwhile important group III-nitride surfaces and high-k oxide/semiconductor interfaces are shortly discu...

  19. Domains in Ferroic Crystals and Thin Films

    CERN Document Server

    Tagantsev, Alexander K; Fousek, Jan

    2010-01-01

    Domains in Ferroic Crystals and Thin Films presents experimental findings and theoretical understanding of ferroic (non-magnetic) domains developed during the past 60 years. It addresses the situation by looking specifically at bulk crystals and thin films, with a particular focus on recently-developed microelectronic applications and methods for observation of domains with techniques such as scanning force microscopy, polarized light microscopy, scanning optical microscopy, electron microscopy, and surface decorating techniques. Domains in Ferroic Crystals and Thin Films covers a large area of material properties and effects connected with static and dynamic properties of domains, which are extremely relevant to materials referred to as ferroics. In most solid state physics books, one large group of ferroics is customarily covered: those in which magnetic properties play a dominant role. Numerous books are specifically devoted to magnetic ferroics and cover a wide spectrum of magnetic domain phenomena. In co...

  20. Quantum-dot size and thin-film dielectric constant: precision measurement and disparity with simple models.

    Science.gov (United States)

    Grinolds, Darcy D W; Brown, Patrick R; Harris, Daniel K; Bulovic, Vladimir; Bawendi, Moungi G

    2015-01-14

    We study the dielectric constant of lead sulfide quantum dot (QD) films as a function of the volume fraction of QDs by varying the QD size and keeping the ligand constant. We create a reliable QD sizing curve using small-angle X-ray scattering (SAXS), thin-film SAXS to extract a pair-distribution function for QD spacing, and a stacked-capacitor geometry to measure the capacitance of the thin film. Our data support a reduced dielectric constant in nanoparticles.

  1. Electrochemical fabrication of nanoporous polypyrrole thin films

    International Nuclear Information System (INIS)

    Li Mei; Yuan Jinying; Shi Gaoquan

    2008-01-01

    Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. σ rt ∼ 20.5 s/cm and can be driven to bend during redox processes in 1.0 M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90 o /s at a driving potential of 0.8 V (vs. Ag/AgCl)

  2. Feasibility Study of Thin Film Thermocouple Piles

    Science.gov (United States)

    Sisk, R. C.

    2001-01-01

    Historically, thermopile detectors, generators, and refrigerators based on bulk materials have been used to measure temperature, generate power for spacecraft, and cool sensors for scientific investigations. New potential uses of small, low-power, thin film thermopiles are in the area of microelectromechanical systems since power requirements decrease as electrical and mechanical machines shrink in size. In this research activity, thin film thermopile devices are fabricated utilizing radio frequency sputter coating and photoresist lift-off techniques. Electrical characterizations are performed on two designs in order to investigate the feasibility of generating small amounts of power, utilizing any available waste heat as the energy source.

  3. Tuning polymorphism and orientation in organic semiconductor thin films via post-deposition processing.

    Science.gov (United States)

    Hiszpanski, Anna M; Baur, Robin M; Kim, Bumjung; Tremblay, Noah J; Nuckolls, Colin; Woll, Arthur R; Loo, Yueh-Lin

    2014-11-05

    Though both the crystal structure and molecular orientation of organic semiconductors are known to impact charge transport in thin-film devices, separately accessing different polymorphs and varying the out-of-plane molecular orientation is challenging, typically requiring stringent control over film deposition conditions, film thickness, and substrate chemistry. Here we demonstrate independent tuning of the crystalline polymorph and molecular orientation in thin films of contorted hexabenzocoronene, c-HBC, during post-deposition processing without the need to adjust deposition conditions. Three polymorphs are observed, two of which have not been previously reported. Using our ability to independently tune the crystal structure and out-of-plane molecular orientation in thin films of c-HBC, we have decoupled and evaluated the effects that molecular packing and orientation have on device performance in thin-film transistors (TFTs). In the case of TFTs comprising c-HBC, polymorphism and molecular orientation are equally important; independently changing either one affects the field-effect mobility by an order of magnitude.

  4. Miniaturized and reconfigurable notch antenna based on a BST ferroelectric thin film

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Hung Viet [Institut d' Electronique et de Télécommunications de Rennes (IETR), IUT Saint-Brieuc, Université de Rennes 1, 22004 Saint-Brieuc (France); CEA-LETI, Minatec, 17 avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Benzerga, Ratiba, E-mail: ratiba.benzerga@univ-rennes1.fr [Institut d' Electronique et de Télécommunications de Rennes (IETR), IUT Saint-Brieuc, Université de Rennes 1, 22004 Saint-Brieuc (France); Borderon, Caroline [IETR, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes (France); Delaveaud, Christophe [CEA-LETI, Minatec, 17 avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Sharaiha, Ala [Institut d' Electronique et de Télécommunications de Rennes (IETR), IUT Saint-Brieuc, Université de Rennes 1, 22004 Saint-Brieuc (France); Renoud, Raphael [IETR, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes (France); Paven, Claire Le [Institut d' Electronique et de Télécommunications de Rennes (IETR), IUT Saint-Brieuc, Université de Rennes 1, 22004 Saint-Brieuc (France); Pavy, Sabrina; Nadaud, Kevin; Gundel, Hartmut W. [IETR, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes (France)

    2015-07-15

    Highlights: • A miniature and agile antenna based on a BST MIM capacitor is simulated and made. • Mn{sup 2+} doped BST thin films are synthesized by chemical deposition and spin coating. • Permittivity and losses of the BST thin film are respectively 225 and 0.02 at 1 GHz. • A miniaturization rate of 70% is obtained with a MIM capacitance of 3.7 pF. • A frequency tunability of 14.5% and a tunability performance of 0.04 are measured. - Abstract: This work deals with the design, realization and characterization of a miniature and frequency agile antenna based on a ferroelectric Ba{sub 0,80}Sr{sub 0,20}TiO{sub 3} thin film. The notch antenna is loaded with a variable metal/insulator/metal (MIM) capacitor and is achieved by a monolithic method. The MIM capacitance is 3.7 pF, which results in a resonant frequency of 670 MHz compared to 2.25 GHz for the unloaded simulated antenna; the resulting miniaturization rate is 70%. The characterization of the antenna prototype shows a frequency tunable rate of 14.5% under an electric field of 375 kV/cm, with a tunability performance η = 0.04.

  5. Thermal conductivity model for nanoporous thin films

    Science.gov (United States)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  6. Intelligent Processing of Ferroelectric Thin Films

    Science.gov (United States)

    1994-05-31

    unsatisfactory. To detect the electroopic effects of thin films deposited on opaque substrates a waveguide refractometry of category 3 was reported. An advantage...of the waveguide refractometry is its capability of resolving the change in ordinary index from the change in the extraordinary index. Some successes

  7. Tailored piezoelectric thin films for energy harvester

    NARCIS (Netherlands)

    Wan, X.

    2013-01-01

    Piezoelectric materials are excellent materials to transfer mechanical energy into electrical energy, which can be stored and used to power other devices. PiezoMEMS is a good way to combine silicon wafer processing and piezoelectric thin film technology and lead to a variety of miniaturized and

  8. Amperometric Noise at Thin Film Band Electrodes

    DEFF Research Database (Denmark)

    Larsen, Simon T.; Heien, Michael L.; Taboryski, Rafael

    2012-01-01

    Background current noise is often a significant limitation when using constant-potential amperometry for biosensor application such as amperometric recordings of transmitter release from single cells through exocytosis. In this paper, we fabricated thin-film electrodes of gold and conductive...

  9. Stabilized thin film heterostructure for electrochemical applications

    DEFF Research Database (Denmark)

    2015-01-01

    The invention provides a method for the formation of a thin film multi-layered heterostructure upon a substrate, said method comprising the steps of: a. providing a substrate; b. depositing a buffer layer upon said substrate, said buffer layer being a layer of stable ionic conductor (B); c. depos...

  10. Reliability growth of thin film resistors contact

    Directory of Open Access Journals (Sweden)

    Lugin A. N.

    2010-10-01

    Full Text Available Necessity of resistive layer growth under the contact and in the contact zone of resistive element is shown in order to reduce peak values of current flow and power dissipation in the contact of thin film resistor, thereby to increase the resistor stability to parametric and catastrophic failures.

  11. Novel chemical analysis for thin films

    International Nuclear Information System (INIS)

    Usui, Toshio; Kamei, Masayuki; Aoki, Yuji; Morishita, Tadataka; Tanaka, Shoji

    1991-01-01

    Scanning electron microscopy and total-reflection-angle X-ray spectroscopy (SEM-TRAXS) was applied for fluorescence X-ray analysis of 50A- and 125A-thick Au thin films on Si(100). The intensity of the AuM line (2.15 keV) emitted from the Au thin films varied as a function of the take-off angle (θ t ) with respect to the film surface; the intensity of AuM line from the 125A-thick Au thin film was 1.5 times as large as that of SiK α line (1.74 keV) emitted from the Si substrate when θ t = 0deg-3deg, in the vicinity of a critical angle for total external reflection of the AuM line at Si (0.81deg). In addition, the intensity of the AuM line emitted from the 50A-thick Au thin film was also sufficiently strong for chemical analysis. (author)

  12. Flexible thin-film NFC tags

    NARCIS (Netherlands)

    Myny, K.; Tripathi, A.K.; Steen, J.L. van der; Cobb, B.

    2015-01-01

    Thin-film transistor technologies have great potential to become the key technology for leafnode Internet of Things by utilizing the NFC protocol as a communication medium. The main requirements are manufacturability on flexible substrates at a low cost while maintaining good device performance

  13. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  14. Thin film bismuth iron oxides useful for piezoelectric devices

    Science.gov (United States)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  15. Nanostructured thin film coatings with different strengthening effects

    Directory of Open Access Journals (Sweden)

    Panfilov Yury

    2017-01-01

    Full Text Available A number of articles on strengthening thin film coatings were analyzed and a lot of unusual strengthening effects, such as super high hardness and plasticity simultaneously, ultra low friction coefficient, high wear-resistance, curve rigidity increasing of drills with small diameter, associated with process formation of nanostructured coatings by the different thin film deposition methods were detected. Vacuum coater with RF magnetron sputtering system and ion-beam source and arc evaporator for nanostructured thin film coating manufacture are represented. Diamond Like Carbon and MoS2 thin film coatings, Ti, Al, Nb, Cr, nitride, carbide, and carbo-nitride thin film materials are described as strengthening coatings.

  16. Dielectric properties of DC reactive magnetron sputtered Al2O3 thin films

    International Nuclear Information System (INIS)

    Prasanna, S.; Mohan Rao, G.; Jayakumar, S.; Kannan, M.D.; Ganesan, V.

    2012-01-01

    Alumina (Al 2 O 3 ) thin films were sputter deposited over well-cleaned glass and Si substrates by DC reactive magnetron sputtering under various oxygen gas pressures and sputtering powers. The composition of the films was analyzed by X-ray photoelectron spectroscopy and an optimal O/Al atomic ratio of 1.59 was obtained at a reactive gas pressure of 0.03 Pa and sputtering power of 70 W. X-ray diffraction results revealed that the films were amorphous until 550 °C. The surface morphology of the films was studied using scanning electron microscopy and the as-deposited films were found to be smooth. The topography of the as-deposited and annealed films was analyzed by atomic force microscopy and a progressive increase in the rms roughness of the films from 3.2 nm to 4.53 nm was also observed with increase in the annealing temperature. Al-Al 2 O 3 -Al thin film capacitors were then fabricated on glass substrates to study the effect of temperature and frequency on the dielectric property of the films. Temperature coefficient of capacitance, AC conductivity and activation energy were determined and the results are discussed. - Highlights: ► Al 2 O 3 thin films were deposited by DC reactive magnetron sputtering. ► The films were found to be amorphous up to annealing temperature of 550 C. ► An increase in rms roughness of the films was observed with annealing. ► Al-Al 2 O 3 -Al thin film capacitors were fabricated and dielectric constant was 7.5. ► The activation energy decreased with increase in frequency.

  17. Optical thin films and coatings from materials to applications

    CERN Document Server

    Flory, Francois

    2013-01-01

    Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. This book provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.$bOptical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings...

  18. Temperature dependence of LRE-HRE-TM thin films

    Science.gov (United States)

    Li, Zuoyi; Cheng, Xiaomin; Lin, Gengqi; Li, Zhen; Huang, Zhixin; Jin, Fang; Wang, Xianran; Yang, Xiaofei

    2003-04-01

    Temperature dependence of the properties of RE-TM thin films is very important for MO recording. In this paper, we studied the temperature dependence of the magnetic and magneto-optical properties of the amorphous LRE-HRE-TM single layer thin films and LRE-HRE-TM/HRE-TM couple-bilayered thin films. For LRE-HRE-TM single layer thin films, the temperature dependence of the magnetization was investigated by using the mean field theory. The experimental and theoretical results matched very well. With the LRE substitution in HRE-TM thin film, the compensation temperature Tcomp decreased and the curie temperature Tc remained unchanged. Kerr rotation angle became larger and the saturation magnetization Ms at room temperature increased. For LRE-HRE-TM/HRE-TM couple-bilayered thin films, comparisons of the temperature dependences of the coercivities and Kerr rotation angles were made between isolated sublayers and couple-bilayered thin film.

  19. Application-related properties of giant magnetostrictive thin films

    International Nuclear Information System (INIS)

    Lim, S.H.; Kim, H.J.; Na, S.M.; Suh, S.J.

    2002-01-01

    In an effort to facilitate the utilization of giant magnetostrictive thin films in microdevices, application-related properties of these thin films, which include induced anisotropy, residual stress and corrosion properties, are investigated. A large induced anisotropy with an energy of 6x10 4 J/m 3 is formed in field-sputtered amorphous Sm-Fe-B thin films, resulting in a large magnetostriction anisotropy. Two components of residual stress, intrinsic compressive stress and tensile stress due to the difference of the thermal expansion coefficients between the substrate and thin film, are identified. The variation of residual stress with fabrication parameter and annealing temperature, and its influence on mechanical bending and magnetic properties are examined. Better corrosion properties are observed in Sm-Fe thin films than in Tb-Fe. Corrosion properties of Tb-Fe thin films, however, are much improved with the introduction of nitrogen to the thin films without deteriorating magnetostrictive properties

  20. A Reactive-Ion Etch for Patterning Piezoelectric Thin Film

    Science.gov (United States)

    Yang, Eui-Hyeok; Wild, Larry

    2003-01-01

    Reactive-ion etching (RIE) under conditions described below has been found to be a suitable means for patterning piezoelectric thin films made from such materials as PbZr(1-x)Ti(x)O3 or Ba(x)Sr(1.x)TiO3. In the original application for which this particular RIE process was developed, PbZr(1-x)Ti(x)O3 films 0.5 microns thick are to be sandwiched between Pt electrode layers 0.1 microns thick and Ir electrode layers 0.1 microns thick to form piezoelectric capacitor structures. Such structures are typical of piezoelectric actuators in advanced microelectromechanical systems now under development or planned to be developed in the near future. RIE of PbZr(1-x)Ti(x)O3 is usually considered to involve two major subprocesses: an ion-assisted- etching reaction, and a sputtering subprocess that removes reactive byproducts. RIE is favored over other etching techniques because it offers a potential for a high degree of anisotropy, high-resolution pattern definition, and good process control. However, conventional RIE is not ideal for patterning PbZr(1-x)Ti(x)O3 films at a thickness as great as that in the original intended application. In order to realize the potential benefits mentioned above, it is necessary to optimize process conditions . in particular, the composition of the etching gas and the values of such other process parameters as radio-frequency power, gas pressure, gas-flow rate, and duration of the process. Guidelines for determining optimum conditions can be obtained from experimental determination of etch rates as functions of these parameters. Etch-gas mixtures of BCl3 and Cl2, some also including Ar, have been found to offer a high degree of selectivity as needed for patterning of PbZr(1-x)Ti(x)O3 films on top of Ir electrode layers in thin-film capacitor structures. The selectivity is characterized by a ratio of approx.10:1 (rate of etching PbZr(1-x)Ti(x)O3 divided by rate of etching Ir and IrO(x)). At the time of reporting the information for this article

  1. Multiferroic oxide thin films and heterostructures

    KAUST Repository

    Lu, Chengliang

    2015-05-26

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  2. Electrochemical fabrication of nanoporous polypyrrole thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li Mei [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China); Yuan Jinying [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China)], E-mail: yuanjy@mail.tsinghua.edu.cn; Shi Gaoquan [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China)], E-mail: gshi@mail.tsinghua.edu.cn

    2008-04-30

    Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. {sigma}{sub rt} {approx} 20.5 s/cm and can be driven to bend during redox processes in 1.0 M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90{sup o}/s at a driving potential of 0.8 V (vs. Ag/AgCl)

  3. Magnetite thin films: A simulational approach

    International Nuclear Information System (INIS)

    Mazo-Zuluaga, J.; Restrepo, J.

    2006-01-01

    In the present work the study of the magnetic properties of magnetite thin films is addressed by means of the Monte Carlo method and the Ising model. We simulate LxLxd magnetite thin films (d being the film thickness and L the transversal linear dimension) with periodic boundary conditions along transversal directions and free boundary conditions along d direction. In our model, both the three-dimensional inverse spinel structure and the interactions scheme involving tetrahedral and octahedral sites have been considered in a realistic way. Results reveal a power-law dependence of the critical temperature with the film thickness accordingly by an exponent ν=0.81 and ruled out by finite-size scaling theory. Estimates for the critical exponents of the magnetization and the specific heat are finally presented and discussed

  4. Domain switching of fatigued ferroelectric thin films

    Science.gov (United States)

    Tak Lim, Yun; Yeog Son, Jong; Shin, Young-Han

    2014-05-01

    We investigate the domain wall speed of a ferroelectric PbZr0.48Ti0.52O3 (PZT) thin film using an atomic force microscope incorporated with a mercury-probe system to control the degree of electrical fatigue. The depolarization field in the PZT thin film decreases with increasing the degree of electrical fatigue. We find that the wide-range activation field previously reported in ferroelectric domains result from the change of the depolarization field caused by the electrical fatigue. Domain wall speed exhibits universal behavior to the effective electric field (defined by an applied electric field minus the depolarization field), regardless of the degree of the electrical fatigue.

  5. Domain switching of fatigued ferroelectric thin films

    International Nuclear Information System (INIS)

    Tak Lim, Yun; Yeog Son, Jong; Shin, Young-Han

    2014-01-01

    We investigate the domain wall speed of a ferroelectric PbZr 0.48 Ti 0.52 O 3 (PZT) thin film using an atomic force microscope incorporated with a mercury-probe system to control the degree of electrical fatigue. The depolarization field in the PZT thin film decreases with increasing the degree of electrical fatigue. We find that the wide-range activation field previously reported in ferroelectric domains result from the change of the depolarization field caused by the electrical fatigue. Domain wall speed exhibits universal behavior to the effective electric field (defined by an applied electric field minus the depolarization field), regardless of the degree of the electrical fatigue

  6. Microscopic local fatigue in PZT thin films

    International Nuclear Information System (INIS)

    Li, B S; Wu, A; Vilarinho, P M

    2007-01-01

    The reduction in switchable polarization during fatigue largely limits the application of PZT thin films in ferroelectric nonvolatile memories. So, it is very important to understand the fatigue mechanism in PZT films, especially at a nanoscale level. In this paper, nanoscale fatigue properties in PZT thin films have been studied by piezoresponse force microscopy and local piezoloops. It has been found that a piezoloop obtained on a fatigued point exhibits a much more pinched shape and a local imprint phenomenon is observed after severe fatigue. Furthermore, the domain structure evolves from a simple single-peak profile to a complex fluctuant one. However, there is only some shift of the piezoloop when a unipolar field with the same amplitude is applied on the film. The available experimental data show that there exist obvious domain wall pinning and injection of electrons into the film during fatigue. Finally, a schematic illustration is suggested to explain the possible fatigue mechanism

  7. Highly coercive thin-film nanostructures

    International Nuclear Information System (INIS)

    Zhou, J.; Skomski, R.; Kashyap, A.; Sorge, K.D.; Sui, Y.; Daniil, M.; Gao, L.; Yan, M.L.; Liou, S.-H.; Kirby, R.D.; Sellmyer, D.J.

    2005-01-01

    The processing, structure, and magnetism of highly coercive Sm-Co and FePt thin-film nanostructures are investigated. The structures include 1:5 based Sm-Co-Cu-Ti magnets, particulate FePt:C thin films, and FePt nanotubes. As in other systems, the coercivity depends on texture and imperfections, but there are some additional features. A specific coercivity mechanism in particulate media is a discrete pinning mode intermediate between Stoner-Wohlfarth rotation and ordinary domain-wall pinning. This mechanism yields a coercivity maximum for intermediate intergranular exchange and explains the occurrence of coercivities of 5 T in particulate Sm-Co-Cu-Ti magnets

  8. High efficiency thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Hans-Werner [Helmholtz Zentrum Berlin (Germany). Solar Energy

    2012-11-01

    Production of photovoltaics is growing worldwide on a gigawatt scale. Among the thin film technologies, Cu(In,Ga)S,Se{sub 2} (CIS or CIGS) based solar cells have been the focus of more and more attention. This paper aims to analyze the success of CIGS based solar cells and the potential of this technology for future photovoltaics large-scale production. Specific material properties make CIS unique and allow the preparation of the material with a wide range of processing options. The huge potential lies in the possibility to take advantage of modern thin film processing equipment and combine it with very high efficiencies beyond 20% already achieved on the laboratory scale. A sustainable development of this technology could be realized by modifying the materials and replacing indium by abundant elements. (orig.)

  9. Quantifying clustering in disordered carbon thin films

    International Nuclear Information System (INIS)

    Carey, J.D.

    2006-01-01

    The quantification of disorder and the effects of clustering in the sp 2 phase of amorphous carbon thin films are discussed. The sp 2 phase is described in terms of disordered nanometer-sized conductive sp 2 clusters embedded in a less conductive sp 3 matrix. Quantification of the clustering of the sp 2 phase is estimated from optical as well as from electron and nuclear magnetic resonance methods. Unlike in other disordered group IV thin film semiconductors, we show that care must be exercised in attributing a meaning to the Urbach energy extracted from absorption measurements in the disordered carbon system. The influence of structural disorder, associated with sp 2 clusters of similar size, and topological disorder due to undistorted clusters of different sizes is also discussed. Extensions of this description to other systems are also presented

  10. Thin film photovoltaic panel and method

    Science.gov (United States)

    Ackerman, Bruce; Albright, Scot P.; Jordan, John F.

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  11. Magnetostrictive thin films prepared by RF sputtering

    International Nuclear Information System (INIS)

    Carabias, I.; Martinez, A.; Garcia, M.A.; Pina, E.; Gonzalez, J.M.; Hernando, A.; Crespo, P.

    2005-01-01

    Fe 80 B 20 thin films have been prepared by ion beam sputtering magnetron on room temperature. The films were fabricated on different substrates to compare the different magnetic and structural properties. In particular the growth of films on flexible substrates (PDMS, Kapton) has been studied to allow a simple integration of the system in miniaturized magnetostrictive devices. X-ray diffraction patterns indicate that films are mainly amorphous although the presence of some Fe nanoparticles cannot be ruled out. The coercive field of thin films ranges between 15 and 35 Oe, depending on substrate. Magnetostriction measurements indicate the strong dependence of the saturation magnetostriction with the substrate. Samples on flexible substrates exhibit a better performance than samples deposited onto glass substrates

  12. Critical behavior of ferromagnetic Ising thin films

    International Nuclear Information System (INIS)

    Cossio, P.; Mazo-Zuluaga, J.; Restrepo, J.

    2006-01-01

    In the present work, we study the magnetic properties and critical behavior of simple cubic ferromagnetic thin films. We simulate LxLxd films with semifree boundary conditions on the basis of the Monte Carlo method and the Ising model with nearest neighbor interactions. A Metropolis dynamics was implemented to carry out the energy minimization process. For different film thickness, in the nanometer range, we compute the temperature dependence of the magnetization, the magnetic susceptibility and the fourth order Binder's cumulant. Bulk and surface contributions of these quantities are computed in a differentiated fashion. Additionally, according to finite size scaling theory, we estimate the critical exponents for the correlation length, magnetic susceptibility, and magnetization. Results reveal a strong dependence of critical temperature and critical exponents on the film thickness. The obtained critical exponents are finally compared to those reported in literature for thin films

  13. Method of formation of thin film component

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Chikara; Kato, Kinya

    1988-04-16

    In the production process of component which is carrying thin film device, such as thin film transistor, acid treatment is applied for etching or for preventing contamination. In case of barium borsilicate glass base, the base is affected by the acid treatment resulting the decrease of transparency. To avoid the effect, deposition of SiO/sub 2/ layer on the surface of the base is usually applied. This invention relates to the protective method of barium borosilicate surface by harnessing the effect of coexisting ion in the acid treatment bath. The method is to add 0.03-5 mol/l of phosphoric acid or its salt in the bath. By the effect of coexisting ion, barium borsilicate glass surface was protected from the damage. (2 figs)

  14. Tailoring electronic structure of polyazomethines thin films

    OpenAIRE

    J. Weszka; B. Hajduk; M. Domański; M. Chwastek; J. Jurusik; B. Jarząbek; H. Bednarski; P. Jarka

    2010-01-01

    Purpose: The aim of this work is to show how electronic properties of polyazomethine thin films deposited by chemical vapor deposition method (CVD) can be tailored by manipulating technological parameters of pristine films preparation as well as modifying them while the as-prepared films put into iodine atmosphere.Design/methodology/approach: The recent achievements in the field of designing and preparation methods to be used while preparing polymer photovoltaic solar cells or optoelectronic ...

  15. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.; Hoogland, Sjoerd; Adachi, Michael M.; Kanjanaboos, Pongsakorn; Wong, Chris T. O.; McDowell, Jeffrey J.; Xu, Jixian; Voznyy, Oleksandr; Ning, Zhijun; Houtepen, Arjan J.; Sargent, Edward H.

    2014-01-01

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  16. Thin film solar cell technology in Germany

    International Nuclear Information System (INIS)

    Diehl, W.; Sittinger, V.; Szyszka, B.

    2005-01-01

    Within the scope of limited nonrenewable energy resources and the limited capacity of the ecosystem for greenhouse gases and nuclear waste, sustainability is one important target in the future. Different energy scenarios showed the huge potential for photovoltaics (PV) to solve this energy problem. Nevertheless, in the last decade, PV had an average growth rate of over 20% per year. In 2002, the solar industry delivered more than 500 MWp/year of photovoltaic generators [A. Jaeger-Waldau, A European Roadmap for PV R and D, E-MRS Spring Meeting, (2003)]. More than 85% of the current production involves crystalline silicon technologies. These technologies still have a high cost reduction potential, but this will be limited by the silicon feedstock. On the other hand the so-called second generation thin film solar cells based on a-Si, Cu(In,Ga)(Se,S 2 (CIGS) or CdTe have material thicknesses of a few microns as a result of their direct band gap. Also, the possibility of circuit integration offers an additional cost reduction potential. Especially in Germany, there are a few companies who focus on thin film solar cells. Today, there are two manufacturers with production lines: the Phototronics (PST) division of RWE-Schott Solar with a-Si thin film technology and the former Antec Solar GmbH (now Antec Solar Energy GmbH) featuring the CdTe technology. A pilot line based on CIGS technology is run by Wuerth Solar GmbH. There is also a variety of research activity at other companies, namely, at Shell Solar, Sulfurcell Solartechnik GmbH, Solarion GmbH and the CIS-Solartechnik GmbH. We will give an overview on research activity on various thin film technologies, as well as different manufacturing and production processes in the companies mentioned above. (Author)

  17. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  18. Thin-film silicon solar cell technology

    Czech Academy of Sciences Publication Activity Database

    Shah, A. V.; Schade, H.; Vaněček, Milan; Meier, J.; Vallat-Sauvain, E.; Wyrsch, N.; Kroll, U.; Droz, C.; Bailat, J.

    2004-01-01

    Roč. 12, - (2004), s. 113-142 ISSN 1062-7995 R&D Projects: GA MŽP SN/320/11/03 Institutional research plan: CEZ:AV0Z1010914 Keywords : thin-film silicon modules * hydrogenerated amorphous silicon(a-Si:H) * hydrogenerated microcrystalline (ćc-Si:H) * transparent conductive oxydes(TCOs) * building-integrated photovoltaics(BIPV) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.196, year: 2004

  19. Mesoscale simulations of confined Nafion thin films

    Science.gov (United States)

    Vanya, P.; Sharman, J.; Elliott, J. A.

    2017-12-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains, with carbon and quartz as confining materials, for a wide range of operational water contents and film thicknesses. We found confinement-induced clustering of water perpendicular to the thin film. Hydrophobic carbon forms a water depletion zone near the film interface, whereas hydrophilic quartz results in a zone with excess water. There are, on average, oscillating water-rich and fluorocarbon-rich regions, in agreement with experimental results from neutron reflectometry. Water diffusivity shows increasing directional anisotropy of up to 30% with decreasing film thickness, depending on the hydrophilicity of the confining material. A percolation analysis revealed significant differences in water clustering and connectivity with the confining material. These findings indicate the fundamentally different nature of ionomer thin films, compared to membranes, and suggest explanations for increased ionic resistances observed in the catalyst layer.

  20. Preventing Thin Film Dewetting via Graphene Capping.

    Science.gov (United States)

    Cao, Peigen; Bai, Peter; Omrani, Arash A; Xiao, Yihan; Meaker, Kacey L; Tsai, Hsin-Zon; Yan, Aiming; Jung, Han Sae; Khajeh, Ramin; Rodgers, Griffin F; Kim, Youngkyou; Aikawa, Andrew S; Kolaczkowski, Mattew A; Liu, Yi; Zettl, Alex; Xu, Ke; Crommie, Michael F; Xu, Ting

    2017-09-01

    A monolayer 2D capping layer with high Young's modulus is shown to be able to effectively suppress the dewetting of underlying thin films of small organic semiconductor molecule, polymer, and polycrystalline metal, respectively. To verify the universality of this capping layer approach, the dewetting experiments are performed for single-layer graphene transferred onto polystyrene (PS), semiconducting thienoazacoronene (EH-TAC), gold, and also MoS 2 on PS. Thermodynamic modeling indicates that the exceptionally high Young's modulus and surface conformity of 2D capping layers such as graphene and MoS 2 substantially suppress surface fluctuations and thus dewetting. As long as the uncovered area is smaller than the fluctuation wavelength of the thin film in a dewetting process via spinodal decomposition, the dewetting should be suppressed. The 2D monolayer-capping approach opens up exciting new possibilities to enhance the thermal stability and expands the processing parameters for thin film materials without significantly altering their physical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Physical Vapor Deposition of Thin Films

    Science.gov (United States)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  2. Flexible magnetic thin films and devices

    Science.gov (United States)

    Sheng, Ping; Wang, Baomin; Li, Runwei

    2018-01-01

    Flexible electronic devices are highly attractive for a variety of applications such as flexible circuit boards, solar cells, paper-like displays, and sensitive skin, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Due to magnetic devices being important parts of electronic devices, it is essential to study the magnetic properties of magnetic thin films and devices fabricated on flexible substrates. In this review, we mainly introduce the recent progress in flexible magnetic thin films and devices, including the study on the stress-dependent magnetic properties of magnetic thin films and devices, and controlling the properties of flexible magnetic films by stress-related multi-fields, and the design and fabrication of flexible magnetic devices. Project supported by the National Key R&D Program of China (No. 2016YFA0201102), the National Natural Science Foundation of China (Nos. 51571208, 51301191, 51525103, 11274321, 11474295, 51401230), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2016270), the Key Research Program of the Chinese Academy of Sciences (No. KJZD-EW-M05), the Ningbo Major Project for Science and Technology (No. 2014B11011), the Ningbo Science and Technology Innovation Team (No. 2015B11001), and the Ningbo Natural Science Foundation (No. 2015A610110).

  3. Nanocomposite thin films for triggerable drug delivery.

    Science.gov (United States)

    Vannozzi, Lorenzo; Iacovacci, Veronica; Menciassi, Arianna; Ricotti, Leonardo

    2018-05-01

    Traditional drug release systems normally rely on a passive delivery of therapeutic compounds, which can be partially programmed, prior to injection or implantation, through variations in the material composition. With this strategy, the drug release kinetics cannot be remotely modified and thus adapted to changing therapeutic needs. To overcome this issue, drug delivery systems able to respond to external stimuli are highly desirable, as they allow a high level of temporal and spatial control over drug release kinetics, in an operator-dependent fashion. Areas covered: On-demand drug delivery systems actually represent a frontier in this field and are attracting an increasing interest at both research and industrial level. Stimuli-responsive thin films, enabled by nanofillers, hold a tremendous potential in the field of triggerable drug delivery systems. The inclusion of responsive elements in homogeneous or heterogeneous thin film-shaped polymeric matrices strengthens and/or adds intriguing properties to conventional (bare) materials in film shape. Expert opinion: This Expert Opinion review aims to discuss the approaches currently pursued to achieve an effective on-demand drug delivery, through nanocomposite thin films. Different triggering mechanisms allowing a fine control on drug delivery are described, together with current challenges and possible future applications in therapy and surgery.

  4. Thin films prepared from tungstate glass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, B.; Ribeiro, S.J.L.; Messaddeq, Y. [Departamento de Quimica Geral e Inorganica, Instituto de Quimica, Sao Paulo State University-UNESP, CP 355, CEP 14800-900, Araraquara, SP (Brazil); Li, M.S. [Instituto de Fisica, USP, CP 369, CEP 13560-970, Sao Carlos, SP (Brazil); Poirier, G. [Departamento de Ciencias Exatas, UNIFAL-MG, CEP 37130-000, Alfenas-MG (Brazil)], E-mail: gael@unifal-mg.edu.br

    2008-01-30

    Vitreous samples containing high concentrations of WO{sub 3} (above 40% M) have been used as a target to prepare thin films. Such films were deposited using the electron beam evaporation method onto soda-lime glass substrates. These films were characterized by X-ray diffraction (XRD), perfilometry, X-ray energy dispersion spectroscopy (EDS), M-Lines and UV-vis absorption spectroscopy. In this work, experimental parameters were established to obtain stable thin films showing a chemical composition close to the glass precursor composition and with a high concentration of WO{sub 3}. These amorphous thin films of about 4 {mu}m in thickness exhibit a deep blue coloration but they can be bleached by thermal treatment near the glass transition temperature. Such bleached films show several guided modes in the visible region and have a high refractive index. Controlled crystallization was realized and thus it was possible to obtain WO{sub 3} microcrystals in the amorphous phase.

  5. Magnetic surfaces, thin films, and multilayers

    International Nuclear Information System (INIS)

    Parkin, S.S.P.; Renard, J.P.; Shinjo, T.; Zinn, W.

    1992-01-01

    This paper details recent developments in the magnetism of surfaces, thin films and multilayers. More than 20 invited contributions and more than 60 contributed papers attest to the great interest and vitality of this subject. In recent years the study of magnetic surfaces, thin films and multilayers has undergone a renaissance, partly motivated by the development of new growth and characterization techniques, but perhaps more so by the discovery of many exciting new properties, some quite unanticipated. These include, most recently, the discovery of enormous values of magnetoresistance in magnetic multilayers far exceeding those found in magnetic single layer films and the discovery of oscillatory interlayer coupling in transition metal multilayers. These experimental studies have motivated much theoretical work. However these developments are to a large extent powered by materials engineering and our ability to control and understand the growth of thin layers just a few atoms thick. The preparation of single crystal thin film layers and multilayers remains important for many studies, in particular, for properties dependent. These studies obviously require engineering not just a layer thicknesses but of lateral dimensions as well. The properties of such structures are already proving to be a great interest

  6. Aluminum nitride and nanodiamond thin film microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Knoebber, Fabian; Bludau, Oliver; Roehlig, Claus-Christian; Williams, Oliver; Sah, Ram Ekwal; Kirste, Lutz; Cimalla, Volker; Lebedev, Vadim; Nebel, Christoph; Ambacher, Oliver [Fraunhofer-Institute for Applied Solid State Physics, Freiburg (Germany)

    2010-07-01

    In this work, aluminum nitride (AlN) and nanocrystalline diamond (NCD) thin film microstructures have been developed. Freestanding NCD membranes were coated with a piezoelectrical AlN layer in order to build tunable micro-lens arrays. For the evaluation of the single material quality, AlN and NCD thin films on silicon substrates were fabricated using RF magnetron sputtering and microwave chemical vapor deposition techniques, respectively. The crystal quality of AlN was investigated by X-ray diffraction. The piezoelectric constant d{sub 33} was determined by scanning laser vibrometry. The NCD thin films were optimized with respect to surface roughness, mechanical stability, intrinsic stress and transparency. To determine the mechanical properties of the materials, both, micromechanical resonator and membrane structures were fabricated and measured by magnetomotive resonant frequency spectroscopy and bulging experiments, respectively. Finally, the behavior of AlN/NCD heterostructures was modeled using the finite element method and the first structures were characterized by piezoelectrical measurements.

  7. Lead-free (K0.5Na0.5)NbO3 thin films by pulsed laser deposition driving MEMS-based piezoelectric cantilevers

    NARCIS (Netherlands)

    Nguyen, Duc Minh; Dekkers, Jan M.; Houwman, Evert Pieter; Vu, H.T.; Vu, Hung N.; Rijnders, Augustinus J.H.M.

    2016-01-01

    Thin film capacitors of the lead-free (K0.5Na0.5)NbO3 (KNN) with (100) orientation were grown on Pt/Ti/SiO2/SOI (silicon-on-insulator) substrates by pulsed laser deposition. The films are pure phases and do not show other crystal orientations. The remnant polarization Pr, saturation polarization

  8. Elastically stretchable thin film conductors on an elastomeric substrate

    Science.gov (United States)

    Jones Harris, Joyelle Elizabeth

    Imagine a large, flat screen television that can be rolled into a small cylinder after purchase in the store and then unrolled and mounted onto the wall of a home. The electronic devices within the television must be able to withstand large deformation and tensile strain. Consider a robot that is covered with an electronic skin that simulates human skin. The skin would enable the machine to lift an elderly person with care and sensitivity. The skin will endure repeated deformation with the highest tensile strains being experienced at the robot's joints. These applications and many others will benefit from stretchable electronic circuitry. While several different methods have been employed to create stretchable electronics, all methods use a common tool -- stretchable conductors. Therefore, the goal of this thesis work was to fabricate elastically stretchable conductors that can be used in stretchable electronics. We deposited Au thin films on an elastomeric substrate, and the resulting conductors remained electrically continuous when stretched by 30% and more. We developed photolithographic processes that can be used to pattern elastically stretchable conductors with a 10 mum resolution. We fabricated bi-level stretchable conductors that are separated by an elastomeric insulator and are electrically connected through via holes in the insulator. We applied our bi-level conductors to create a stretchable resistor-inductor-capacitor (RLC) circuit with a tunable resonant frequency. We also used stretchable conductors to measure action potentials in biological samples. This thesis describes the fabrication and application of our elastically stretchable conductors.

  9. Impedance spectroscopy of CdTe thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Charlotte; Heisler, Christoph; Reisloehner, Udo; Ronning, Carsten; Wesch, Werner [Institute of Solid State Physics, University of Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2012-07-01

    Impedance Spectroscopy (IS) is a widely used method to analyze dielectric properties of specimen as a function of frequency. Typically this characterization method delivers an equivalent circuit diagram of the device under examination to describe its electrical properties. Traditionally IS is used in coating evaluation, corrosion monitoring and in electrochemistry. During the last years the method became more important also in the field of electrical characterization of solar cells. In our work we use IS for the electrical characterization of thin film CdTe solar cells. The measurement is done at room temperature without illumination in a frequency domain from 20 Hz to 2 MHz. The samples are measured under variable forward bias. The results match insufficiently with the model of two resistor-capacitor circuits in series which is commonly used to describe the p-n junction and the blocking back contact. For better consistency, other models from the literature are used and discussed. From the results a conclusion is drawn about the properties of the solar cell such as the nature of the p-n junction or the performance of the back contact.

  10. Theoretical investigation of the thermodynamic properties of metallic thin films

    International Nuclear Information System (INIS)

    Hung, Vu Van; Phuong, Duong Dai; Hoa, Nguyen Thi; Hieu, Ho Khac

    2015-01-01

    The thermodynamic properties of metallic thin films with face-centered cubic structure at ambient conditions were investigated using the statistical moment method including the anharmonicity effects of thermal lattice vibrations. The analytical expressions of Helmholtz free energy, lattice parameter, linear thermal expansion coefficient, specific heats at the constant volume and constant pressure were derived in terms of the power moments of the atomic displacements. Numerical calculations of thermodynamic properties have been performed for Au and Al thin films and compared with those of bulk metals. This research proposes that thermodynamic quantities of thin films approach the values of bulk when the thickness of thin film is about 70 nm. - Highlights: • Thermodynamic properties of thin films were investigated using the moment method. • Expressions of Helmholtz energy, expansion coefficient, specific heats were derived. • Calculations for Au, Al thin films were performed and compared with those of bulks

  11. Theoretical investigation of the thermodynamic properties of metallic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Vu Van [Vietnam Education Publishing House, 81 Tran Hung Dao, Hanoi (Viet Nam); Phuong, Duong Dai [Hanoi National University of Education, 136 Xuan Thuy, Hanoi (Viet Nam); Hoa, Nguyen Thi [University of Transport and Communications, Lang Thuong, Dong Da, Hanoi (Viet Nam); Hieu, Ho Khac, E-mail: hieuhk@duytan.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam)

    2015-05-29

    The thermodynamic properties of metallic thin films with face-centered cubic structure at ambient conditions were investigated using the statistical moment method including the anharmonicity effects of thermal lattice vibrations. The analytical expressions of Helmholtz free energy, lattice parameter, linear thermal expansion coefficient, specific heats at the constant volume and constant pressure were derived in terms of the power moments of the atomic displacements. Numerical calculations of thermodynamic properties have been performed for Au and Al thin films and compared with those of bulk metals. This research proposes that thermodynamic quantities of thin films approach the values of bulk when the thickness of thin film is about 70 nm. - Highlights: • Thermodynamic properties of thin films were investigated using the moment method. • Expressions of Helmholtz energy, expansion coefficient, specific heats were derived. • Calculations for Au, Al thin films were performed and compared with those of bulks.

  12. Magnetic coupling mechanisms in particle/thin film composite systems

    Directory of Open Access Journals (Sweden)

    Giovanni A. Badini Confalonieri

    2010-12-01

    Full Text Available Magnetic γ-Fe2O3 nanoparticles with a mean diameter of 20 nm and size distribution of 7% were chemically synthesized and spin-coated on top of a Si-substrate. As a result, the particles self-assembled into a monolayer with hexagonal close-packed order. Subsequently, the nanoparticle array was coated with a Co layer of 20 nm thickness. The magnetic properties of this composite nanoparticle/thin film system were investigated by magnetometry and related to high-resolution transmission electron microscopy studies. Herein three systems were compared: i.e. a reference sample with only the particle monolayer, a composite system where the particle array was ion-milled prior to the deposition of a thin Co film on top, and a similar composite system but without ion-milling. The nanoparticle array showed a collective super-spin behavior due to dipolar interparticle coupling. In the composite system, we observed a decoupling into two nanoparticle subsystems. In the ion-milled system, the nanoparticle layer served as a magnetic flux guide as observed by magnetic force microscopy. Moreover, an exchange bias effect was found, which is likely to be due to oxygen exchange between the iron oxide and the Co layer, and thus forming of an antiferromagnetic CoO layer at the γ-Fe2O3/Co interface.

  13. Magnetron sputtered TiN thin films toward enhanced performance supercapacitor electrodes

    KAUST Repository

    Wei, Binbin

    2018-04-09

    Supercapacitors as a new type of energy storage devices bridging the gap between conventional capacitors and batteries have aroused widespread concern. Herein, binder-free titanium nitride (TiN) thin film electrodes for supercapacitors prepared by reactive magnetron sputtering technology are reported. The effect of N2 content on the supercapacitor performance is evaluated. A highest specific capacitance of 27.3 mF cm−2 at a current density of 1.0 mA cm−2, together with excellent cycling performance (98.2% capacitance retention after 20,000 cycles at 2.0 mA cm−2) is achieved in a 0.5 M H2SO4 aqueous electrolyte. More importantly, a symmetric supercapacitor device assembled on the basis of TiN thin films can deliver a maximum energy density of 17.6 mWh cm−3 at a current density of 0.2 mA cm−2 and a maximum power density of 10.8 W cm−3 at a current density of 2 mA cm−2 with remarkable cycling stability. As a consequence, TiN thin films demonstrate great potential as promising supercapacitor electrode materials.

  14. Magnetron sputtered TiN thin films toward enhanced performance supercapacitor electrodes

    KAUST Repository

    Wei, Binbin; Liang, Hanfeng; Zhang, Dongfang; Qi, Zhengbing; Shen, Hao; Wang, Zhoucheng

    2018-01-01

    Supercapacitors as a new type of energy storage devices bridging the gap between conventional capacitors and batteries have aroused widespread concern. Herein, binder-free titanium nitride (TiN) thin film electrodes for supercapacitors prepared by reactive magnetron sputtering technology are reported. The effect of N2 content on the supercapacitor performance is evaluated. A highest specific capacitance of 27.3 mF cm−2 at a current density of 1.0 mA cm−2, together with excellent cycling performance (98.2% capacitance retention after 20,000 cycles at 2.0 mA cm−2) is achieved in a 0.5 M H2SO4 aqueous electrolyte. More importantly, a symmetric supercapacitor device assembled on the basis of TiN thin films can deliver a maximum energy density of 17.6 mWh cm−3 at a current density of 0.2 mA cm−2 and a maximum power density of 10.8 W cm−3 at a current density of 2 mA cm−2 with remarkable cycling stability. As a consequence, TiN thin films demonstrate great potential as promising supercapacitor electrode materials.

  15. Solution processed pentacene thin films and their structural properties

    International Nuclear Information System (INIS)

    Tao Chunlan; Zhang Xuhui; Zhang Fujia; Liu Yiyang; Zhang Haoli

    2007-01-01

    The paper reported the solution process of pentacene thin films from organic solvent O-dichlorobenzene. The pentacene thin films obtained from different conditions were characterized by X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), and UV-vis spectroscopy. The result shows that the pentacene solution was successfully obtained at a minimum temperature of 40 deg. C. The optimum temperature of forming pentacene thin films was 100 deg. C

  16. Polarized Neutron Reflectivity Simulation of Ferromagnet/ Antiferromagnet Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yeon; Lee, Jeong Soo

    2008-02-15

    This report investigates the current simulating and fitting programs capable of calculating the polarized neutron reflectivity of the exchange-biased ferromagnet/antiferromagnet magnetic thin films. The adequate programs are selected depending on whether nonspin flip and spin flip reflectivities of magnetic thin films and good user interface are available or not. The exchange-biased systems such as Fe/Cr, Co/CoO, CoFe/IrMn/Py thin films have been simulated successfully with selected programs.

  17. Physics of thin films advances in research and development

    CERN Document Server

    Hass, Georg; Vossen, John L

    2013-01-01

    Physics of Thin Films: Advances in Research and Development, Volume 12 reviews advances that have been made in research and development concerning the physics of thin films. This volume covers a wide range of preparative approaches, physics phenomena, and applications related to thin films. This book is comprised of four chapters and begins with a discussion on metal coatings and protective layers for front surface mirrors used at various angles of incidence from the ultraviolet to the far infrared. Thin-film materials and deposition conditions suitable for minimizing reflectance changes with

  18. Sputtering materials for VLSI and thin film devices

    CERN Document Server

    Sarkar, Jaydeep

    2010-01-01

    An important resource for students, engineers and researchers working in the area of thin film deposition using physical vapor deposition (e.g. sputtering) for semiconductor, liquid crystal displays, high density recording media and photovoltaic device (e.g. thin film solar cell) manufacturing. This book also reviews microelectronics industry topics such as history of inventions and technology trends, recent developments in sputtering technologies, manufacturing steps that require sputtering of thin films, the properties of thin films and the role of sputtering target performance on overall p

  19. Preparation and properties of antimony thin film anode materials

    Institute of Scientific and Technical Information of China (English)

    SU Shufa; CAO Gaoshao; ZHAO Xinbing

    2004-01-01

    Metallic antimony thin films were deposited by magnetron sputtering and electrodeposition. Electrochemical properties of the thin film as anode materials for lithium-ion batteries were investigated and compared with those of antimony powder. It was found that both magnetron sputtering and electrodeposition are easily controllable processes to deposit antimony films with fiat charge/discharge potential plateaus. The electrochemical performances of antimony thin films, especially those prepared with magnetron sputtering, are better than those of antimony powder. The reversible capacities of the magnetron sputtered antimony thin film are above 400 mA h g-1 in the first 15 cycles.

  20. Thin-Film Materials Synthesis and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a wide capability for deposition and processing of thin films, including sputter and ion-beam deposition, thermal evaporation, electro-deposition,...

  1. Characterizations of photoconductivity of graphene oxide thin films

    Directory of Open Access Journals (Sweden)

    Shiang-Kuo Chang-Jian

    2012-06-01

    Full Text Available Characterizations of photoresponse of a graphene oxide (GO thin film to a near infrared laser light were studied. Results showed the photocurrent in the GO thin film was cathodic, always flowing in an opposite direction to the initial current generated by the preset bias voltage that shows a fundamental discrepancy from the photocurrent in the reduced graphene oxide thin film. Light illumination on the GO thin film thus results in more free electrons that offset the initial current. By examining GO thin films reduced at different temperatures, the critical temperature for reversing the photocurrent from cathodic to anodic was found around 187°C. The dynamic photoresponse for the GO thin film was further characterized through the response time constants within the laser on and off durations, denoted as τon and τoff, respectively. τon for the GO thin film was comparable to the other carbon-based thin films such as carbon nanotubes and graphenes. τoff was, however, much larger than that of the other's. This discrepancy was attributable to the retardation of exciton recombination rate thanks to the existing oxygen functional groups and defects in the GO thin films.

  2. Thin film structures and phase stability

    International Nuclear Information System (INIS)

    Clemens, B.M.; Johnson, W.L.

    1990-01-01

    This was a two day symposium, with invited and contributed papers as well as an evening poster session. The first day concentrated on solid state reactions with invited talks by Lindsay Greer from the University of Cambridge, King Tu from IBM Yorktown Heights, and Carl Thompson from MIT. Professor Greer observed that the diffusion of Zr is 10 6 times slower than that of Ni in amorphous NiZr, confirming that Ni is the mobile species in solid state amorphization. King Tu explained the formation of metastable phases in this film diffusion couples by the concept of maximum rate of free energy change. Carl Thompson discussed the formation of amorphous phases in metal silicon systems, and discussed a two stage nucleation and growth process. The contributed papers also generated discussion on topics such as phase segregation, amorphous silicide formation, room temperature oxidation of silicon, and nucleation during ion beam irradiation. There was a lively poster session on Monday evening with papers on a wide variety of topics covering the general area of thin film science. The second day had sessions Epitaxy and Multilayer Structure I and II, with the morning focussing on epitaxial and heteroepitaxial growth of thin films. Robin Farrow of IBM Almaden led off with an invited talk where he reported on some remarkable success he and his co-workers have had in growing single crystal epitaxial thin films and superlattices of silver, iron, cobalt and platinum on GaAs. This was followed by several talks on epitaxial growth and characterization. The afternoon focused on interfaces and structure of multilayered materials. A session on possible stress origins of the supermodulus effect was highlighted by lively interaction from the audience. Most of the papers presented at the symposium are presented in this book

  3. Magnetic characterisation of longitudinal thin film media

    International Nuclear Information System (INIS)

    Dova, P.

    1998-09-01

    Magnetic characterisation techniques, as applied to longitudinal thin film media, have been investigated. These included the study of the differentials of the remanence curves, the delta-M plot and the examination of the critical volumes. Several thin film structures, which are currently used or are being considered for future media applications, have been examined using these techniques. Most of the films were Co-alloys with the exception of a set of Barium ferrite films. Both monolayer and multilayer structures were studied. It was found that the study of activation volumes provides a better insight into the reversal mechanisms of magnetic media, especially in the case of complex structures such as multilayer films and films with bicrystal microstructure. Furthermore, an evaluation study of different methods of determining critical volumes showed that the method using time dependence measurements and the micromagnetic approach is the most appropriate. The magnetic characteristics of the thin film media under investigation were correlated with their microstructure and, where possible, with their noise performance. Magnetic force microscopy was also used for acquiring quasi-domain images in the ac-demagnetised state. It was found that in all Co-alloy films the dominant intergranular coupling is magnetising in nature, the level of which is governed by the Cr content in the magnetic layer. In the case of laminated media it was found that when non-magnetic spacers are used, the nature of the interlayer coupling depends on the spacer thickness. In double layer structures with no spacer, the top layer replicates the crystallographic texture of the bottom layer, and the overall film properties are a combination of the two layers. In bicrystal films the coupling is determined by the Cr segregation in the grain boundaries. Furthermore, the presence of stacking faults in bicrystal films deteriorates their thermal stability, but can be prevented by improving the epitaxial

  4. Studies of tantalum nitride thin film resistors

    International Nuclear Information System (INIS)

    Langley, R.A.

    1975-01-01

    Backscattering of 2-MeV He ions was used to correlate the electrical properties of sputtered TaN/sub x/ thin-film resistors with their N content. The properties measured were sheet resistance, differential Seebeck potential (DSP), thermal coefficient of resistance (TCR), and stability. Resistivity and DSP are linearly dependent on N content for N/Ta ratios of 0.25 to 0.55. TCR decreases sharply below N/Ta = 0.35 and is relatively constant from 0.35 to 0.55. Stability is independent of N content. (DLC)

  5. Lithium ion intercalation into thin film anatase

    International Nuclear Information System (INIS)

    Kundrata, I.; Froehlich, K.; Ballo, P.

    2015-01-01

    The aim of this work is to find the optimal parameters for thin film TiO 2 anatase grown by Atomic layer deposition (ALD) for use as electrode in lithium ion batteries. Two parameters, the optimal film thickness and growth conditions are aimed for. Optimal film thickness for achieving optimum between capacity gained from volume and capacity gained by changing of the intercalation constant and optimal growth conditions for film conformity on structured substrates with high aspect ratio. Here we presents first results from this ongoing research and discuss future outlooks. (authors)

  6. Optical characterization of niobium pentoxide thin films

    International Nuclear Information System (INIS)

    Pawlicka, A.

    1996-01-01

    Thin films of Nb 2 O 5 were obtained by sol-gel method using ultrasonic irradiation and deposited by dip-coating technique. After calcination at temperatures superior than 500 deg C these films (300 nm thick) were characterized by cyclic voltametry and cronoamperometry. The memory measurements, color efficiency, optical density as a function of wave number and applied potential were effectuated to determine their electrochromic properties. The study of electrochromic properties of these films shows that the insertion process of lithium is reversible and changes their coloration from transparent (T=80%) to dark blue (T=20%). (author)

  7. Passivation Effects in Copper Thin Films

    International Nuclear Information System (INIS)

    Wiederhirn, G.; Nucci, J.; Richter, G.; Arzt, E.; Balk, T. J.; Dehm, G.

    2006-01-01

    We studied the influence of a 10 nm AlxOy passivation on the stress-temperature behavior of 100 nm and 1 μm thick Cu films. At low temperatures, the passivation induces a large tensile stress increase in the 100 nm film; however, its effect on the 1 μm film is negligible. At high temperatures, the opposite behavior is observed; while the passivation does not change the 100 nm film behavior, it strengthens the 1 μm film by driving it deeper into compression. These observations are explained in light of a combination of constrained diffusional creep and dislocation dynamics unique to ultra-thin films

  8. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  9. Electrical resistivity of ferrimagnetic magnetite thin film

    International Nuclear Information System (INIS)

    Varshney, Dinesh; Yogi, A.; Kaurav, N.; Gupta, R.P.; Phase, D.M.

    2006-01-01

    We have grown Fe 3 O 4 (III) epitaxial film on Al 2 O 3 (0001) substrate by pulsed laser deposition, with thickness of 130 nm. X-ray diffraction studies of magnetite show the spinel cubic structure of film with preferential (III) orientation. The electrical resistivity measurement demonstrates that the properties of thin film of magnetite are basically similar to those of bulk magnetite and clearly shows semiconductor-insulator transition at Verwey transition temperature (≅140 K). We have found higher Verwey transition temperature when compared with earlier reports on similar type of system. Possible causes for increase in transition temperature are discussed. (author)

  10. Polymer surfaces, interfaces and thin films

    International Nuclear Information System (INIS)

    Stamm, M.

    1996-01-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs

  11. Process for forming thin film, heat treatment process of thin film sheet, and heat treatment apparatus therefor

    International Nuclear Information System (INIS)

    Watanabe, S.

    1984-01-01

    The invention provides a process for forming a magnetic thin film on a base film, a heat treatment process of a thin film sheet consisting of the base film and the magnetic thin film, and an apparatus for performing heat treatment of the thin film sheet. Tension applied to the thin film sheet is substantially equal to that applied to the base film when the magnetic thin film is formed thereon. Then, the thin film sheet is treated with heat. The thin film sheet is heated with a given temperature gradient to a reactive temperature at which heat shrinkage occurs, while the tension is being applied thereto. Thereafter, the thin film sheet to which the tension is still applied is cooled with substantially the same temperature gradient as applied in heating. The heat treatment apparatus has a film driving unit including a supply reel, a take-up reel, a drive source and guide rollers; a heating unit including heating plates, heater blocks and a temperature controller for heating the sheet to the reactive temperature; and a heat insulating unit including a thermostat and another temperature controller for maintaining the sheet at the nonreactive temperature which is slightly lower than the reactive temperature

  12. Room Temperature Tunable Multiferroic Properties in Sol-Gel-Derived Nanocrystalline Sr(Ti1−xFexO3−δ Thin Films

    Directory of Open Access Journals (Sweden)

    Yi-Guang Wang

    2017-09-01

    Full Text Available Sr(Ti1−xFexO3−δ (0 ≤ x ≤ 0.2 thin films were grown on Si(100 substrates with LaNiO3 buffer-layer by a sol-gel process. Influence of Fe substitution concentration on the structural, ferroelectric, and magnetic properties, as well as the leakage current behaviors of the Sr(Ti1−xFexO3−δ thin films, were investigated by using the X-ray diffractometer (XRD, atomic force microscopy (AFM, the ferroelectric test system, and the vibrating sample magnetometer (VSM. After substituting a small amount of Ti ion with Fe, highly enhanced ferroelectric properties were obtained successfully in SrTi0.9Ti0.1O3−δ thin films, with a double remanent polarization (2Pr of 1.56, 1.95, and 9.14 μC·cm−2, respectively, for the samples were annealed in air, oxygen, and nitrogen atmospheres. The leakage current densities of the Fe-doped SrTiO3 thin films are about 10−6–10−5 A·cm−2 at an applied electric field of 100 kV·cm−1, and the conduction mechanism of the thin film capacitors with various Fe concentrations has been analyzed. The ferromagnetic properties of the Sr(Ti1−xFexO3−δ thin films have been investigated, which can be correlated to the mixed valence ions and the effects of the grain boundary. The present results revealed the multiferroic nature of the Sr(Ti1−xFexO3−δ thin films. The effect of the annealing environment on the room temperature magnetic and ferroelectric properties of Sr(Ti0.9Fe0.1O3−δ thin films were also discussed in detail.

  13. In situ annealing of hydroxyapatite thin films

    International Nuclear Information System (INIS)

    Johnson, Shevon; Haluska, Michael; Narayan, Roger J.; Snyder, Robert L.

    2006-01-01

    Hydroxyapatite is a bioactive ceramic that mimics the mineral composition of natural bone. Unfortunately, problems with adhesion, poor mechanical integrity, and incomplete bone ingrowth limit the use of many conventional hydroxyapatite surfaces. In this work, we have developed a novel technique to produce crystalline hydroxyapatite thin films involving pulsed laser deposition and postdeposition annealing. Hydroxyapatite films were deposited on Ti-6Al-4V alloy and Si (100) using pulsed laser deposition, and annealed within a high temperature X-ray diffraction system. The transformation from amorphous to crystalline hydroxyapatite was observed at 340 deg. C. Mechanical and adhesive properties were examined using nanoindentation and scratch adhesion testing, respectively. Nanohardness and Young's modulus values of 3.48 and 91.24 GPa were realized in unannealed hydroxyapatite films. Unannealed and 350 deg. C annealed hydroxyapatite films exhibited excellent adhesion to Ti-6Al-4V alloy substrates. We anticipate that the adhesion and biological properties of crystalline hydroxyapatite thin films may be enhanced by further consideration of deposition and annealing parameters

  14. Superconducting properties of iron chalcogenide thin films

    Directory of Open Access Journals (Sweden)

    Paolo Mele

    2012-01-01

    Full Text Available Iron chalcogenides, binary FeSe, FeTe and ternary FeTexSe1−x, FeTexS1−x and FeTe:Ox, are the simplest compounds amongst the recently discovered iron-based superconductors. Thin films of iron chalcogenides present many attractive features that are covered in this review, such as: (i easy fabrication and epitaxial growth on common single-crystal substrates; (ii strong enhancement of superconducting transition temperature with respect to the bulk parent compounds (in FeTe0.5Se0.5, zero-resistance transition temperature Tc0bulk = 13.5 K, but Tc0film = 19 K on LaAlO3 substrate; (iii high critical current density (Jc ~ 0.5 ×106 A cm2 at 4.2 K and 0 T for FeTe0.5Se0.5 film deposited on CaF2, and similar values on flexible metallic substrates (Hastelloy tapes buffered by ion-beam assisted deposition with a weak dependence on magnetic field; (iv high upper critical field (~50 T for FeTe0.5Se0.5, Bc2(0, with a low anisotropy, γ ~ 2. These highlights explain why thin films of iron chalcogenides have been widely studied in recent years and are considered as promising materials for applications requiring high magnetic fields (20–50 T and low temperatures (2–10 K.

  15. Thin film preparation of semiconducting iron pyrite

    Science.gov (United States)

    Smestad, Greg P.; Ennaoui, Ahmed; Fiechter, Sebastian; Hofmann, Wolfgang; Tributsch, Helmut; Kautek, Wolfgang

    1990-08-01

    Pyrite (Fe52) has been investigated as a promising new absorber material for thin film solar cell applications because of its high optical absorption coefficient of 1OL cm1, and its bandgap of 0.9 to 1.0 eV. Thin layers have been prepared by Metal Organic Chemical Vapor Deposition, MOCVD, Chemical Spray Pyrolysis, CSP, Chemical Vapor Transport, CVT, and Sulfurization of Iron Oxide films, 510. It is postulated that for the material FeS2, if x is not zero, a high point defect concentration results from replacing 2 dipoles by single S atoms. This causes the observed photovoltages and solar conversion efficiencies to be lower than expected. Using the Fe-O-S ternary phase diagram and the related activity plots, a thermodynamic understanding is formulated for the resulting composition of each of these types of films. It is found that by operating in the oxide portion of the phase diagram, the resulting oxidation state favors pyrite formation over FeS. By proper orientation of the grains relative to the film surface, and by control of pinholes and stoichiometry, an efficient thin film photovolatic solar cell material could be achieved.

  16. Stable organic thin-film transistors

    Science.gov (United States)

    Jia, Xiaojia; Fuentes-Hernandez, Canek; Wang, Cheng-Yin; Park, Youngrak; Kippelen, Bernard

    2018-01-01

    Organic thin-film transistors (OTFTs) can be fabricated at moderate temperatures and through cost-effective solution-based processes on a wide range of low-cost flexible and deformable substrates. Although the charge mobility of state-of-the-art OTFTs is superior to that of amorphous silicon and approaches that of amorphous oxide thin-film transistors (TFTs), their operational stability generally remains inferior and a point of concern for their commercial deployment. We report on an exhaustive characterization of OTFTs with an ultrathin bilayer gate dielectric comprising the amorphous fluoropolymer CYTOP and an Al2O3:HfO2 nanolaminate. Threshold voltage shifts measured at room temperature over time periods up to 5.9 × 105 s do not vary monotonically and remain below 0.2 V in microcrystalline OTFTs (μc-OTFTs) with field-effect carrier mobility values up to 1.6 cm2 V−1 s−1. Modeling of these shifts as a function of time with a double stretched-exponential (DSE) function suggests that two compensating aging mechanisms are at play and responsible for this high stability. The measured threshold voltage shifts at temperatures up to 75°C represent at least a one-order-of-magnitude improvement in the operational stability over previous reports, bringing OTFT technologies to a performance level comparable to that reported in the scientific literature for other commercial TFTs technologies. PMID:29340301

  17. PZT Thin Film Piezoelectric Traveling Wave Motor

    Science.gov (United States)

    Shen, Dexin; Zhang, Baoan; Yang, Genqing; Jiao, Jiwei; Lu, Jianguo; Wang, Weiyuan

    1995-01-01

    With the development of micro-electro-mechanical systems (MEMS), its various applications are attracting more and more attention. Among MEMS, micro motors, electrostatic and electromagnetic, are the typical and important ones. As an alternative approach, the piezoelectric traveling wave micro motor, based on thin film material and integrated circuit technologies, circumvents many of the drawbacks of the above mentioned two types of motors and displays distinct advantages. In this paper we report on a lead-zirconate-titanate (PZT) piezoelectric thin film traveling wave motor. The PZT film with a thickness of 150 micrometers and a diameter of 8 mm was first deposited onto a metal substrate as the stator material. Then, eight sections were patterned to form the stator electrodes. The rotor had an 8 kHz frequency power supply. The rotation speed of the motor is 100 rpm. The relationship of the friction between the stator and the rotor and the structure of the rotor on rotation were also studied.

  18. Properties of superconducting thin-film microbridges

    International Nuclear Information System (INIS)

    Pei, S.S.

    1978-01-01

    This work reports investigations upon the dependences of critical current and current phase relation on the dimensions of a superconducting thin-film microbridge. A model has been developed upon the Volkov's hyperbolic bridges and the Zaitsev's boundary conditions to calculate the spatial variation of the order parameter for given bridge dimensions. The results indicate that the rigid boundary conditions are good approximations to narrow bridges (W much less than L) only. The critical current density of the bridge has been calculated also as a function of the bridge dimensions. It is found that the critical current density of small bridges is enhanced above its mean field critical value due to the proximity effects of the banks. Very good agreement is found between the calculated enhancement of the critical current density and the experimental results. Direct measurements have been made on the current phase relation of indium bridges with width smaller than 0.6 μm. The difficulties due to the extra phase shifts from the series thin film electrodes are overcome by a specially designed double loop configuration which has an extra low effective inductance. It is found that the current phase relation of small bridges (W,L, xi, the results agree with the predictions of rigid boundary calculations as expected by our model

  19. Function and application of ultra thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sasabe, Hiroyuki

    1988-02-01

    A film 10-100mm thick which is strong dynamically to some extent and has possibility to manifest fuctions of high degree different from the nature extrapolated from the normal thin film is called an ultra thin film. As an example of its concrete application, there is an electro-luminescence element which is made by laminating 5 layers of LB films of poly-L-phenylalanine on a n-GaP and has vapor-deposited gold electrodes. When voltage of 5V is imposed to it, light emission of 565nm can be observed and the emission efficiency of 2% is obtained. Besides, it has an excellent stability through the lapse of time. There is also a junction element and the ion concentration injected into macromolecule films of this element has a Gaussian distribution from the surface towards the direction of depth. Accordingly, the most active domain in terms of semiconductor as the result of doping is the location in the neighborhood of the peak. Furthermore, a photo memory is also proposed. It is applied to the artificial hemoglobine which is made of LB films, suggesting the feasibility of creating the artificial protein capable of functioning in the conditions in which the natural protein is unable to function. (5 figs, 1 tab, 7 refs)

  20. Optimized grid design for thin film solar panels

    NARCIS (Netherlands)

    Deelen, J. van; Klerk, L.; Barink, M.

    2014-01-01

    There is a gap in efficiency between record thin film cells and mass produced thin film solar panels. In this paper we quantify the effect of monolithic integration on power output for various configurations by modeling and present metallization as a way to improve efficiency of solar panels. Grid

  1. Plastic response of thin films due to thermal cycling

    NARCIS (Netherlands)

    Nicola, L.; van der Giessen, E.; Needleman, A.; Ahzi, S; Cherkaoui, M; Khaleel, MA; Zbib, HM; Zikry, MA; Lamatina, B

    2004-01-01

    Discrete dislocation simulations of thin films on semi-infinite substrates under cyclic thermal loading are presented. The thin film is modelled as a two-dimensional single crystal under plane strain conditions. Dislocations of edge character can be generated from initially present sources and glide

  2. Cadmium sulphide thin film for application in gamma radiation ...

    African Journals Online (AJOL)

    Cadmium Sulphide (CdS) thin film was prepared using pyrolytic spraying technique and then irradiated at varied gamma dosage. The CdS thin film absorption before gamma irradiation was 0.6497. Absorbed doses were computed using standard equation established for an integrating dosimeter. The plot of absorbed dose ...

  3. Electrical properties of epitaxially grown VOx thin films

    NARCIS (Netherlands)

    Rata, A.D.; Chezan, A.R; Presura, C.N.; Hibma, T

    2003-01-01

    High quality VOx thin films on MgO(100) substrates were prepared and studied from the structural and electronic point of view. Epitaxial growth was confirmed by RHEED and XRD techniques. The oxygen content of VOx thin films as a function of oxygen flux was determined using RBS. The upper and lower

  4. Structural characterization of vacuum evaporated ZnSe thin films

    Indian Academy of Sciences (India)

    The lattice parameter, grain size, average internal stress, microstrain, dislocation density and degree of pre- ferred orientation in the film are calculated and correlated with Ts. Keywords. ZnSe thin films; X-ray diffraction; average internal stress; microstrain; dislocation density. 1. Introduction. Thin films of ZnSe has attracted ...

  5. Thin films of metal-organic compounds and metal nanoparticle

    Indian Academy of Sciences (India)

    Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications. S Philip Anthony Shatabdi Porel D ... Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which ...

  6. Fabrication and Performance Study of Uniform Thin Film Integrated ...

    African Journals Online (AJOL)

    The transmission line model of a uniform rectangular thin film R-C-KR structure consisting of a dielectric layer of constant per unit shunt capacitance C sandwiched between two resistive thin films of constant per unit length resistances R and KR has been analysed using the concept of matrix parameter functions. The above ...

  7. Thermal stability of gold-PS nanocomposites thin films

    Indian Academy of Sciences (India)

    Low-temperature transmission electron microscopy (TEM) studies were performed on polystyrene (PS, w = 234 K) – Au nanoparticle composite thin films that were annealed up to 350°C under reduced pressure conditions. The composite thin films were prepared by wet chemical approach and the samples were then ...

  8. Self-Limited Growth in Pentacene Thin Films.

    Science.gov (United States)

    Pachmajer, Stefan; Jones, Andrew O F; Truger, Magdalena; Röthel, Christian; Salzmann, Ingo; Werzer, Oliver; Resel, Roland

    2017-04-05

    Pentacene is one of the most studied organic semiconducting materials. While many aspects of the film formation have already been identified in very thin films, this study provides new insight into the transition from the metastable thin-film phase to bulk phase polymorphs. This study focuses on the growth behavior of pentacene within thin films as a function of film thickness ranging from 20 to 300 nm. By employing various X-ray diffraction methods, combined with supporting atomic force microscopy investigations, one crystalline orientation for the thin-film phase is observed, while three differently tilted bulk phase orientations are found. First, bulk phase crystallites grow with their 00L planes parallel to the substrate surface; second, however, crystallites tilted by 0.75° with respect to the substrate are found, which clearly dominate the former in ratio; third, a different bulk phase polymorph with crystallites tilted by 21° is found. The transition from the thin-film phase to the bulk phase is rationalized by the nucleation of the latter at crystal facets of the thin-film-phase crystallites. This leads to a self-limiting growth of the thin-film phase and explains the thickness-dependent phase behavior observed in pentacene thin films, showing that a large amount of material is present in the bulk phase much earlier during the film growth than previously thought.

  9. Thermal properties and stabilities of polymer thin films

    International Nuclear Information System (INIS)

    Kanaya, Toshiji; Kawashima, Kazuko; Inoue, Rintaro; Miyazaki, Tsukasa

    2009-01-01

    Recent extensive studies have revealed that polymer thin films showed very interesting but unusual thermal properties and stabilities. In the article we show that X-ray reflectivity and neutron reflectivity are very powerful tools to study the anomalous properties of polymer thin films. (author)

  10. Piezoelectric MEMS: Ferroelectric thin films for MEMS applications

    Science.gov (United States)

    Kanno, Isaku

    2018-04-01

    In recent years, piezoelectric microelectromechanical systems (MEMS) have attracted attention as next-generation functional microdevices. Typical applications of piezoelectric MEMS are micropumps for inkjet heads or micro-gyrosensors, which are composed of piezoelectric Pb(Zr,Ti)O3 (PZT) thin films and have already been commercialized. In addition, piezoelectric vibration energy harvesters (PVEHs), which are regarded as one of the key devices for Internet of Things (IoT)-related technologies, are promising future applications of piezoelectric MEMS. Significant features of piezoelectric MEMS are their simple structure and high energy conversion efficiency between mechanical and electrical domains even on the microscale. The device performance strongly depends on the function of the piezoelectric thin films, especially on their transverse piezoelectric properties, indicating that the deposition of high-quality piezoelectric thin films is a crucial technology for piezoelectric MEMS. On the other hand, although the difficulty in measuring the precise piezoelectric coefficients of thin films is a serious obstacle in the research and development of piezoelectric thin films, a simple unimorph cantilever measurement method has been proposed to obtain precise values of the direct or converse transverse piezoelectric coefficient of thin films, and recently this method has become to be the standardized testing method. In this article, I will introduce fundamental technologies of piezoelectric thin films and related microdevices, especially focusing on the deposition of PZT thin films and evaluation methods for their transverse piezoelectric properties.

  11. Density functional study of ferromagnetism in alkali metal thin films

    Indian Academy of Sciences (India)

    thickness uniform jellium model (UJM), and it is argued that within LSDA or GGA, alkali metal thin films cannot be claimed to have an FM ground state. Relevance of these results to the experiments on transition metal-doped alkali metal thin films ...

  12. Operating method of amorphous thin film semiconductor element

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Koshiro; Ono, Masaharu; Hanabusa, Akira; Osawa, Michio; Arita, Takashi

    1988-05-31

    The existing technologies concerning amorphous thin film semiconductor elements are the technologies concerning the formation of either a thin film transistor or an amorphous Si solar cell on a substrate. In order to drive a thin film transistor for electronic equipment control by the output power of an amorphous Si solar cell, it has been obliged to drive the transistor weth an amorphous solar cell which was formed on a substrate different from that for the transistor. Accordingly, the space for the amorphous solar cell, which was formed on the different substrate, was additionally needed on the substrate for the thin film transistor. In order to solve the above problem, this invention proposes an operating method of an amorphous thin film semiconductor element that after forming an amorphous Si solar cell through lamination on the insulation coating film which covers the thin film transistor formed on the substrate, the thin film transistor is driven by the output power of this solar cell. The invention eliminates the above superfluous space and reduces the size of the amorphous thin film semiconductor element including the electric source. (3 figs)

  13. Nanocoatings and ultra-thin films technologies and applications

    CERN Document Server

    Tiginyanu, Ion

    2011-01-01

    Gives a comprehensive account of the developments of nanocoatings and ultra-thin films. This book covers the fundamentals, processes of deposition and characterisation of nanocoatings, as well as the applications. It is suitable for the glass and glazing, automotive, electronics, aerospace, construction and biomedical industries in particular.$bCoatings are used for a wide range of applications, from anti-fogging coatings for glass through to corrosion control in the aerospace and automotive industries. Nanocoatings and ultra-thin films provides an up-to-date review of the fundamentals, processes of deposition, characterisation and applications of nanocoatings. Part one covers technologies used in the creation and analysis of thin films, including chapters on current and advanced coating technologies in industry, nanostructured thin films from amphiphilic molecules, chemical and physical vapour deposition methods and methods for analysing nanocoatings and ultra-thin films. Part two focuses on the applications...

  14. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  15. Tension Tests of Copper Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Jo; Kim, Chung Youb [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)

    2017-08-15

    Tension tests for copper thin films with thickness of 12 μm were performed by using a digital image correlation method based on consecutive digital images. When calculating deformation using digital image correlation, a large deformation causes errors in the calculated result. In this study, the calculation procedure was improved to reduce the error, so that the full field deformation and the strain of the specimen could be accurately and directly measured on its surface. From the calculated result, it can be seen that the strain distribution is not uniform and its variation is severe, unlike the distribution in a common bulk specimen. This might result from the surface roughness introduced in the films during the fabrication process by electro-deposition.

  16. Simple turbulence measurements with azopolymer thin films.

    Science.gov (United States)

    Barillé, Regis; Pérez, Darío G; Morille, Yohann; Zielińska, Sonia; Ortyl, Ewelina

    2013-04-01

    A simple method to measure the influence on the laser beam propagation by a turbid medium is proposed. This measurement is based on the inscription of a surface relief grating (SRG) on an azopolymer thin film. The grating obtained with a single laser beam after propagation into a turbulent medium is perturbed and directly analyzed by a CCD camera through its diffraction pattern. Later, by scanning the surface pattern with an atomic force microscope, the inscribed SRG is analyzed with the Radon transform. This method has the advantage of using a single beam to remotely inscribe a grating detecting perturbations during the beam path. A method to evaluate the refractive index constant structure is developed.

  17. Seebeck effect of some thin film carbides

    International Nuclear Information System (INIS)

    Beensh-Marchwicka, G.; Prociow, E.

    2002-01-01

    Several materials have been investigated for high-temperature thin film thermocouple applications. These include silicon carbide with boron (Si-C-B), ternary composition based on Si-C-Mn, fourfold composition based on Si-C-Zr-B and tantalum carbide (TaC). All materials were deposited on quartz or glass substrates using the pulse sputter deposition technique. Electrical conduction and thermoelectric power were measured for various compositions at 300-550 K. It has been found, that the efficiency of thermoelectric power of films containing Si-C base composition was varied from 0.0015-0.034 μW/cmK 2 . However for TaC the value about 0.093 μW/cmK 2 was obtained. (author)

  18. Internal stress control of boron thin film

    International Nuclear Information System (INIS)

    Satomi, N.; Kitamura, M.; Sasaki, T.; Nishikawa, M.

    1998-01-01

    The occurrence of stress in thin films has led to serious stability problems in practical use. We have investigated the stress in the boron films to find the deposition condition of the boron films with less stress. It was found that the stress in the boron film varies sufficiently from compressive to tensile stress, that is from -1.0 to 1.4 GPa, depending on the evaporation conditions, such as deposition rate and the substrate temperature. Hydrogen ion bombardment resulted in the enhancement of the compressive stress, possibly due to ion peening effect, while under helium ion bombardment, stress relief was observed. The boron film with nearly zero stress was obtained by the evaporation at a deposition rate of 0.5 nm s -1 and substrate temperature of 300 C. (orig.)

  19. Tin oxide transparent thin-film transistors

    International Nuclear Information System (INIS)

    Presley, R E; Munsee, C L; Park, C-H; Hong, D; Wager, J F; Keszler, D A

    2004-01-01

    A SnO 2 transparent thin-film transistor (TTFT) is demonstrated. The SnO 2 channel layer is deposited by RF magnetron sputtering and then rapid thermal annealed in O 2 at 600 deg. C. The TTFT is highly transparent, and enhancement-mode behaviour is achieved by employing a very thin channel layer (10-20 nm). Maximum field-effect mobilities of 0.8 cm 2 V -1 s -1 and 2.0 cm 2 V -1 s -1 are obtained for enhancement- and depletion-mode devices, respectively. The transparent nature and the large drain current on-to-off ratio of 10 5 associated with the enhancement-mode behaviour of these devices may prove useful for novel gas-sensor applications

  20. Internal stress control of boron thin film

    Energy Technology Data Exchange (ETDEWEB)

    Satomi, N.; Kitamura, M.; Sasaki, T.; Nishikawa, M. [Osaka Univ., Suita (Japan). Graduate Sch. of Eng.

    1998-09-01

    The occurrence of stress in thin films has led to serious stability problems in practical use. We have investigated the stress in the boron films to find the deposition condition of the boron films with less stress. It was found that the stress in the boron film varies sufficiently from compressive to tensile stress, that is from -1.0 to 1.4 GPa, depending on the evaporation conditions, such as deposition rate and the substrate temperature. Hydrogen ion bombardment resulted in the enhancement of the compressive stress, possibly due to ion peening effect, while under helium ion bombardment, stress relief was observed. The boron film with nearly zero stress was obtained by the evaporation at a deposition rate of 0.5 nm s{sup -1} and substrate temperature of 300 C. (orig.) 12 refs.

  1. Thin film femtosecond laser damage competition

    Science.gov (United States)

    Stolz, Christopher J.; Ristau, Detlev; Turowski, Marcus; Blaschke, Holger

    2009-10-01

    In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

  2. Thin film oxygen partial pressure sensor

    Science.gov (United States)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  3. Scanning tunneling spectroscopy of Pb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Michael

    2010-12-13

    The present thesis deals with the electronic structure, work function and single-atom contact conductance of Pb thin films, investigated with a low-temperature scanning tunneling microscope. The electronic structure of Pb(111) thin films on Ag(111) surfaces is investigated using scanning tunneling spectroscopy (STS). Quantum size effects, in particular, quantum well states (QWSs), play a crucial role in the electronic and physical properties of these films. Quantitative analysis of the spectra yields the QWS energies as a function of film thickness, the Pb bulk-band dispersion in {gamma}-L direction, scattering phase shifts at the Pb/Ag interface and vacuum barrier as well as the lifetime broadening at anti {gamma}. The work function {phi} is an important property of surfaces, which influences catalytic reactivity and charge injection at interfaces. It controls the availability of charge carriers in front of a surface. Modifying {phi} has been achieved by deposition of metals and molecules. For investigating {phi} at the atomic scale, scanning tunneling microscopy (STM) has become a widely used technique. STM measures an apparent barrier height {phi}{sub a}, which is commonly related to the sample work function {phi}{sub s} by: {phi}{sub a}=({phi}{sub s}+{phi}{sub t}- vertical stroke eV vertical stroke)/2, with {phi}{sub t} the work function of the tunneling tip, V the applied tunneling bias voltage, and -e the electron charge. Hence, the effect of the finite voltage in STM on {phi}{sub a} is assumed to be linear and the comparison of {phi}{sub a} measured at different surface sites is assumed to yield quantitative information about work function differences. Here, the dependence of {phi}{sub a} on the Pb film thickness and applied bias voltage V is investigated. {phi}{sub a} is found to vary significantly with V. This bias dependence leads to drastic changes and even inversion of contrast in spatial maps of {phi}{sub a}, which are related to the QWSs in the Pb

  4. PZT thin film actuated elastic fin micromotor.

    Science.gov (United States)

    Dubois, M A; Muralt, P

    1998-01-01

    A piezoelectric elastic fin micromotor based on a PbZr(0.53 )Ti(0.47)O(3) thin film driving a micromachined silicon membrane was fabricated and studied. The stator was characterized by interferometry, and a laser set-up was used to measure the angular velocity and acceleration of the motor. The torque, the output power, and the efficiency of the device were extracted from these measurements. Values up to 1020 rpm and 0.94 microNm were observed for the velocity and the torque, respectively, which would be sufficient for a wristwatch application. The present version exhibited an efficiency of 0.17%, which could theoretically be increased to 4.8%

  5. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  6. Collective Behavior of Amoebae in Thin Films

    Science.gov (United States)

    Bae, Albert

    2005-03-01

    We have discovered new aspects of social behavior in Dictyostelium discoideum by culturing high density colonies in liquid media depleted of nutrients in confined geometries by using three different preparations: I. thin (15-40um thick) and II. ultrathin (behavior of cells despite flattening that increased their areas by over an order of magnitude. We also observed that the earliest synchronized response of cells following the onset of starvation, a precursor to aggregation, was hastened by reducing the thickness of the aqueous culture layer. We were surprised to find that the threshold concentration for aggregation was raised by thin film confinement when compared to bulk behavior. Finally, both the ultra thin and microfluidic preparations reveal, with new clarity, vortex states of aggregation.

  7. Quantitative MFM on superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stopfel, Henry; Vock, Silvia; Shapoval, Tetyana; Neu, Volker; Wolff, Ulrike; Haindl, Silvia; Engelmann, Jan; Schaefer, Rudolf; Holzapfel, Bernhard; Schultz, Ludwig [IFW Dresden, Institute for Metallic Material (Germany); Inosov, Dmytro S. [Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2012-07-01

    Quantitative interpretation of magnetic force microscopy (MFM) data is a challenge, because the measured signal is a convolution between the magnetization of the tip and the stray field emanated by the sample. It was established theoretically that the field distribution just above the surface of the superconductor can be well approximated by the stray field of a magnetic monopole. The description of the MFM tip, however, needs a second approximation. The temperature-dependent vortex-distribution images on a NbN thin film were fitted using two different tip models. Firstly, the magnetic tip was assumed to be a monopole that leads to the simple monopole-monopole model for the tip-sample interaction force. Performing a 2D fitting of the data with this model, we extracted λ, Δ and the vortex pinning force. Secondly, a geometrical model was applied to calculate the tip-transfer-function of the MFM tip using the numerical BEM method.

  8. Multiferroics and magnetoelectrics: thin films and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L W; Crane, S P; Chu, Y-H; Holcomb, M B; Gajek, M; Huijben, M; Yang, C-H; Balke, N; Ramesh, R [Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: lwmartin@lbl.gov

    2008-10-29

    Multiferroic materials, or materials that simultaneously possess two or more ferroic order parameters, have returned to the forefront of materials research. Driven by the desire to achieve new functionalities-such as electrical control of ferromagnetism at room temperature-researchers have undertaken a concerted effort to identify and understand the complexities of multiferroic materials. The ability to create high quality thin film multiferroics stands as one of the single most important landmarks in this flurry of research activity. In this review we discuss the basics of multiferroics including the important order parameters and magnetoelectric coupling in materials. We then discuss in detail the growth of single phase, horizontal multilayer, and vertical heterostructure multiferroics. The review ends with a look to the future and how multiferroics can be used to create new functionalities in materials.

  9. Multiferroics and magnetoelectrics: thin films and nanostructures

    Science.gov (United States)

    Martin, L. W.; Crane, S. P.; Chu, Y.-H.; Holcomb, M. B.; Gajek, M.; Huijben, M.; Yang, C.-H.; Balke, N.; Ramesh, R.

    2008-10-01

    Multiferroic materials, or materials that simultaneously possess two or more ferroic order parameters, have returned to the forefront of materials research. Driven by the desire to achieve new functionalities—such as electrical control of ferromagnetism at room temperature—researchers have undertaken a concerted effort to identify and understand the complexities of multiferroic materials. The ability to create high quality thin film multiferroics stands as one of the single most important landmarks in this flurry of research activity. In this review we discuss the basics of multiferroics including the important order parameters and magnetoelectric coupling in materials. We then discuss in detail the growth of single phase, horizontal multilayer, and vertical heterostructure multiferroics. The review ends with a look to the future and how multiferroics can be used to create new functionalities in materials.

  10. Multiferroics and magnetoelectrics: thin films and nanostructures

    International Nuclear Information System (INIS)

    Martin, L W; Crane, S P; Chu, Y-H; Holcomb, M B; Gajek, M; Huijben, M; Yang, C-H; Balke, N; Ramesh, R

    2008-01-01

    Multiferroic materials, or materials that simultaneously possess two or more ferroic order parameters, have returned to the forefront of materials research. Driven by the desire to achieve new functionalities-such as electrical control of ferromagnetism at room temperature-researchers have undertaken a concerted effort to identify and understand the complexities of multiferroic materials. The ability to create high quality thin film multiferroics stands as one of the single most important landmarks in this flurry of research activity. In this review we discuss the basics of multiferroics including the important order parameters and magnetoelectric coupling in materials. We then discuss in detail the growth of single phase, horizontal multilayer, and vertical heterostructure multiferroics. The review ends with a look to the future and how multiferroics can be used to create new functionalities in materials.

  11. TEM characterization of nanodiamond thin films.

    Energy Technology Data Exchange (ETDEWEB)

    Qin, L.-C.; Zhou, D.; Krauss, A. R.; Gruen, D. M.; Chemistry

    1998-05-01

    The microstructure of thin films grown by microwave plasma-enhanced chemical vapor deposition (MPCVD) from fullerene C{sub 60} precursors has been characterized by scanning electron microscopy (SEM), selected-area electron diffraction (SAED), bright-field electron microscopy, high-resolution electron microscopy (HREM), and parallel electron energy loss spectroscopy (PEELS). The films are composed of nanosize crystallites of diamond, and no graphitic or amorphous phases were observed. The diamond crystallite size measured from lattice images shows that most grains range between 3-5 nm, reflecting a gamma distribution. SAED gave no evidence of either sp2-bonded glassy carbon or sp3-bonded diamondlike amorphous carbon. The sp2-bonded configuration found in PEELS was attributed to grain boundary carbon atoms, which constitute 5-10% of the total. Occasionally observed larger diamond grains tend to be highly faulted.

  12. Thin Film Approaches to the SRF Cavity Problem Fabrication and Characterization of Superconducting Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Beringer, Douglas [College of William and Mary, Williamsburg, VA (United States)

    2017-08-01

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory’s CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater performance benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency – 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m – there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (≈ 45 MV/m for Nb) where inevitable thermodynamic breakdown occurs. With state of the art Nb based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio frequency applications. Correlated studies on structure, surface morphology and superconducting properties of epitaxial Nb and MgB2 thin films are presented.

  13. Dielectric loss of strontium titanate thin films

    Science.gov (United States)

    Dalberth, Mark Joseph

    1999-12-01

    Interest in strontium titanate (STO) thin films for microwave device applications continues to grow, fueled by the telecommunications industry's interest in phase shifters and tunable filters. The optimization of these devices depends upon increasing the phase or frequency tuning and decreasing the losses in the films. Currently, the dielectric response of thin film STO is poorly understood through lack of data and a theory to describe it. We have studied the growth of STO using pulsed laser deposition and single crystal substrates like lanthanum aluminate and neodymium gallate. We have researched ways to use ring resonators to accurately measure the dielectric response as a function of temperature, electric field, and frequency from low radio frequencies to a few gigahertz. Our films grown on lanthanum aluminate show marked frequency dispersion in the real part of the dielectric constant and hints of thermally activated loss behavior. We also found that films grown with conditions that optimized the dielectric constant showed increased losses. In an attempt to simplify the system, we developed a technique called epitaxial lift off, which has allowed us to study films removed from their growth substrates. These free standing films have low losses and show obvious thermally activated behavior. The "amount of tuning," as measured by a figure of merit, KE, is greater in these films than in the films still attached to their growth substrates. We have developed a theory that describes the real and imaginary parts of the dielectric constant. The theory models the real part using a mean field description of the ionic motion in the crystal and includes the loss by incorporating the motion of charged defects in the films.

  14. Thin Film Approaches to the SRF Cavity Problem: Fabrication and Characterization of Superconducting Thin Films

    Science.gov (United States)

    Beringer, Douglas B.

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory's CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency - 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m - there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (approximately 45 MV/m for Niobium) where inevitable thermodynamic breakdown occurs. With state of the art niobium based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio-frequency applications.

  15. Effect of crystal structure on strontium titanate thin films and their dielectric properties

    Science.gov (United States)

    Kampangkeaw, Satreerat

    Strontium titanate (SrTiO3 or STO) has application in radio and microwave-frequency tunable capacitor devices particularly at low temperatures due to its high dielectric constant, low loss and the electric field tunability of its dielectric constant. The main goal of improving the performance in these devices is to increase the tunability and decrease the dielectric loss at the same time, especially at microwave frequencies. Thin films of STO however, show dramatic differences compared to the bulk. The dielectric constant of bulk STO increases nonlinearly from 300 at room temperature to 30000 at 4 K and the loss range is 10-3--10 -4. On the other hand. STO thin films, while showing a dielectric constant close to 300 at room temperature, typically reach a maximum between 1000 and 10000 in the 30 K to 100 K range before decreasing, and the high-loss range is 10-2--10-3. We have grown strontium titanate thin films using a pulsed laser deposition technique on substrates selected to have a small lattice mismatch between the film and substrate. Neodymium gallate (NdGaO3 or NGO) and lanthanum aluminate (LaAlO3 or LAO) substrates were good candidates due to only 1--2% mismatching. Film capacitor devices were fabricated with 25 micron gap separation. 1.5 mm total gap length and an overall 1 x 2 mm dimension using standard lithography and gold metal evaporative techniques. Their nonlinear dielectric constant and loss tangent were measured at low frequencies and also at 2 GHz, and from room temperature down to 4 K. The resulting films show significant variations of dielectric properties with position on the substrates with respect to the deposition plume axis. In the presence of DC electric fields up to +/-4 V/mum, STO films show improved dielectric tunability and low loss in regions far from the plume axis. We found that the films grown on NCO have lower dielectric loss than those on LAO due to a closer match of the NCO lattice to that of STO. We investigated the possible

  16. Multiferroic BiFeO3 thin films and nanodots grown on highly oriented pyrolytic graphite substrates

    Science.gov (United States)

    Shin, Hyun Wook; Son, Jong Yeog

    2017-12-01

    Multiferroic BiFeO3 (BFO) thin films and nanodots are deposited on highly oriented pyrolytic graphite (HOPG) substrates via a pulsed laser deposition technique, where the HOPG surface has a honeycomb lattice structure made of carbon atoms, similar to graphene. A graphene/BFO/HOPG capacitor exhibited multiferroic properties, namely ferroelectricity (a residual polarization of 26.8 μC/cm2) and ferromagnetism (a residual magnetization of 1.1 × 10-5 emu). The BFO thin film had high domain wall energies and demonstrated switching time of approximately 82 ns. An 8-nm BFO nanodot showed a typical piezoelectric hysteresis loop with an effective residual piezoelectric constant of approximately 110 pm/V and exhibited two clearly separated current curves depending on the ferroelectric polarization direction.

  17. The Characterization of Thin Film Nickel Titanium Shape Memory Alloys

    Science.gov (United States)

    Harris Odum, Nicole Latrice

    Shape memory alloys (SMA) are able to recover their original shape through the appropriate heat or stress exposure after enduring mechanical deformation at a low temperature. Numerous alloy systems have been discovered which produce this unique feature like TiNb, AgCd, NiAl, NiTi, and CuZnAl. Since their discovery, bulk scale SMAs have undergone extensive material property investigations and are employed in real world applications. However, its thin film counterparts have been modestly investigated and applied. Researchers have introduced numerous theoretical microelectromechanical system (MEMS) devices; yet, the research community's overall unfamiliarity with the thin film properties has delayed growth in this area. In addition, it has been difficult to outline efficient thin film processing techniques. In this dissertation, NiTi thin film processing and characterization techniques will be outlined and discussed. NiTi thin films---1 mum thick---were produced using sputter deposition techniques. Substrate bound thin films were deposited to analysis the surface using Scanning Electron Microscopy; the film composition was obtained using Energy Dispersive Spectroscopy; the phases were identified using X-ray diffraction; and the transformation temperatures acquired using resistivity testing. Microfabrication processing and sputter deposition were employed to develop tensile membranes for membrane deflection experimentation to gain insight on the mechanical properties of the thin films. The incorporation of these findings will aid in the movement of SMA microactuation devices from theory to fruition and greatly benefit industries such as medicinal and aeronautical.

  18. Magnetic damping phenomena in ferromagnetic thin-films and multilayers

    Science.gov (United States)

    Azzawi, S.; Hindmarch, A. T.; Atkinson, D.

    2017-11-01

    Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.

  19. Thermoelectric effects of amorphous Ga-Sn-O thin film

    Science.gov (United States)

    Matsuda, Tokiyoshi; Uenuma, Mutsunori; Kimura, Mutsumi

    2017-07-01

    The thermoelectric effects of an amorphous Ga-Sn-O (a-GTO) thin film have been evaluated as a physical parameter of a novel oxide semiconductor. Currently, a-GTO thin films are greatly desired not only because they do not contain rare metals and are therefore free from problems on the exhaustion of resources and the increase in cost but also because their initial characteristics and performance stabilities are excellent when they are used in thin-film transistors. In this study, an a-GTO thin film was deposited on a quartz substrate by RF magnetron sputtering and postannealing was performed in air at 350 °C for 1 h using an annealing furnace. The Seebeck coefficient and electrical conductivity of the a-GTO thin film were -137 µV/K and 31.8 S/cm at room temperature, and -183 µV/K and 43.8 S/cm at 397 K, respectively, and as a result, the power factor was 1.47 µW/(cm·K2) at 397 K; these values were roughly as high as those of amorphous In-Ga-Zn-O (a-IGZO) thin films. Therefore, a-GTO thin films will be a candidate material for thermoelectric devices fabricated in a large area at a low cost by controlling the carrier mobility, carrier density, device structures, and so forth.

  20. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S

    2015-05-27

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly characterized and their spectral properties well established. We report the successful growth of a three- dimensional, vitreous silicon dioxide thin film on the Pt(111) surface and reproduce the closed bilayer structure previously reported. The confirmation of the three dimensional nature of the film is unequivocally shown by the infrared absorption band at 1252 cm−1. Temperature programmed desorption was used to show that this three-dimensional thin film covers the Pt(111) surface to such an extent that its application as a catalyst support for clusters/nanoparticles is possible. The growth of a three-dimensional film was seen to be directly correlated with the amount of oxygen present on the surface after the silicon evaporation process. This excess of oxygen is tentatively attributed to atomic oxygen being generated in the evaporator. The identification of atomic oxygen as a necessary building block for the formation of a three-dimensional thin film opens up new possibilities for thin film growth on metal supports, whereby simply changing the type of oxygen enables thin films with different atomic structures to be synthesized. This is a novel approach to tune the synthesis parameters of thin films to grow a specific structure and expands the options for modeling common amorphous silica supports under ultra high vacuum conditions.

  1. Nanoscale Thermoelectrics: A Study of the Absolute Seebeck Coefficient of Thin Films

    Science.gov (United States)

    Mason, Sarah J.

    The worlds demand for energy is ever increasing. Likewise, the environmental impact of climate change due generating that energy through combustion of fossil fuels is increasingly alarming. Due to these factors new sources of renewable energies are constantly being sought out. Thermoelectric devices have the ability to generate clean, renewable, energy out of waste heat. However promising that is, their inefficiency severely inhibits applicability and practical use. The usefulness of a thermoelectric material increases with the dimensionless quantity, ZT, which depends on the Seebeck coefficient and electrical and thermal conductivity. These characteristic material parameters have interdependent energy transport contributions that classically prohibit the optimization of one with out the detriment of another. Encouraging advancements of ZT have occurred in the past ten years due to the decoupling of the thermal and electrical conductivity. Further advancements are necessary in order to produce applicable devices. One auspicious way of decoupling or tuning energy transport properties, is through size reduction to the nanoscale. However, with reduced dimensions come complications in measuring material properties. Measurements of properties such as the Seebeck coefficient, S, are primarily contingent upon the measurement apparatus. The Seebeck coefficient is defined as the amount of voltage generated by a thermal gradient. Measuring a thermally generated voltage by traditional methods gives, the voltage measured as a linear function of the Seebeck coefficient of the leads and of the material being tested divided by the applied thermal gradient. If accurate values of the Seebeck coefficients of the leads are available, simple subtraction provides the answer. This is rarely the case in nanoscale measurement devices with leads exclusively made from thin film materials that do not have well known bulk-like thermopower values. We have developed a technique to directly

  2. Dielectric properties of DC reactive magnetron sputtered Al{sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Prasanna, S. [Thin Film Center, Department of Physics, PSG College of Technology, Coimbatore, 641 004 (India); Mohan Rao, G. [Department of Instrumentation, Indian Institute of Science (IISc), Bangalore, 560 012 (India); Jayakumar, S., E-mail: s_jayakumar_99@yahoo.com [Thin Film Center, Department of Physics, PSG College of Technology, Coimbatore, 641 004 (India); Kannan, M.D. [Thin Film Center, Department of Physics, PSG College of Technology, Coimbatore, 641 004 (India); Ganesan, V. [Low Temperature Lab, UGC-DAE Consortium for Scientific Research (CSR), Indore, 452 017 (India)

    2012-01-31

    Alumina (Al{sub 2}O{sub 3}) thin films were sputter deposited over well-cleaned glass and Si < 100 > substrates by DC reactive magnetron sputtering under various oxygen gas pressures and sputtering powers. The composition of the films was analyzed by X-ray photoelectron spectroscopy and an optimal O/Al atomic ratio of 1.59 was obtained at a reactive gas pressure of 0.03 Pa and sputtering power of 70 W. X-ray diffraction results revealed that the films were amorphous until 550 Degree-Sign C. The surface morphology of the films was studied using scanning electron microscopy and the as-deposited films were found to be smooth. The topography of the as-deposited and annealed films was analyzed by atomic force microscopy and a progressive increase in the rms roughness of the films from 3.2 nm to 4.53 nm was also observed with increase in the annealing temperature. Al-Al{sub 2}O{sub 3}-Al thin film capacitors were then fabricated on glass substrates to study the effect of temperature and frequency on the dielectric property of the films. Temperature coefficient of capacitance, AC conductivity and activation energy were determined and the results are discussed. - Highlights: Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} thin films were deposited by DC reactive magnetron sputtering. Black-Right-Pointing-Pointer The films were found to be amorphous up to annealing temperature of 550 C. Black-Right-Pointing-Pointer An increase in rms roughness of the films was observed with annealing. Black-Right-Pointing-Pointer Al-Al{sub 2}O{sub 3}-Al thin film capacitors were fabricated and dielectric constant was 7.5. Black-Right-Pointing-Pointer The activation energy decreased with increase in frequency.

  3. Copper zinc tin sulfide-based thin film solar cells

    CERN Document Server

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  4. Optical modeling and simulation of thin-film photovoltaic devices

    CERN Document Server

    Krc, Janez

    2013-01-01

    In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models

  5. Characterization of ultrasonic spray pyrolysed ruthenium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.S.; Ennaoui, E.A.; Lokhande, C.D.; Mueller, M.; Giersig, M.; Diesner, K.; Tributsch, H. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Physikalische Chemie

    1997-11-21

    The ultrasonic spray pyrolysis (USP) technique was employed to deposit ruthenium oxide thin films. The films were prepared at 190 C substrate temperature and further annealed at 350 C for 30 min in air. The films were 0.22 {mu} thick and black grey in color. The structural, compositional and optical properties of ruthenium oxide thin films are reported. Contactless transient photoconductivity measurement was carried out to calculate the decay time of excess charge carriers in ruthenium oxide thin films. (orig.) 28 refs.

  6. The state of the art of thin-film photovoltaics

    International Nuclear Information System (INIS)

    Surek, T.

    1993-10-01

    Thin-film photovoltaic technologies, based on materials such as amorphous or polycrystalline silicon, copper indium diselenide, cadmium telluride, and gallium arsenide, offer the potential for significantly reducing the cost of electricity generated by photovoltaics. The significant progress in the technologies, from the laboratory to the marketplace, is reviewed. The common concerns and questions raised about thin films are addressed. Based on the progress to date and the potential of these technologies, along with continuing investments by the private sector to commercialize the technologies, one can conclude that thin-film PV will provide a competitive alternative for large-scale power generation in the future

  7. Preparation and characterization of vanadium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Monfort, O.; Plesch, G. [Comenius University of Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, 84215 Bratislava (Slovakia); Roch, T. [Comenius University of Bratislava, Faculty of Mathematics Physics and Informatics, Department of Experimental Physics, 84248 Bratislava (Slovakia)

    2013-04-16

    The thermotropic VO{sub 2} films have many applications, since they exhibit semiconductor-conductor switching properties at temperature around 70 grad C. Vanadium oxide thin films were prepared via sol-gel method. Spin coater was used to depose these films on Si/SiO{sub 2} and lime glass substrates. Thin films of V{sub 2}O{sub 5} can be reduced to metastable VO{sub 2} thin films at the temperature of 450 grad C under the pressure of 10{sup -2} Pa. These films are then converted to thermotropic VO{sub 2} at 700 grad C in argon under normal pressure. (authors)

  8. Nitrogen incorporation in sputter deposited molybdenum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stöber, Laura, E-mail: laura.stoeber@tuwien.ac.at; Patocka, Florian, E-mail: florian.patocka@tuwien.ac.at; Schneider, Michael, E-mail: michael.schneider@tuwien.ac.at; Schmid, Ulrich, E-mail: ulrich.e366.schmid@tuwien.ac.at [Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27-29, A-1040 Vienna (Austria); Konrath, Jens Peter, E-mail: jenspeter.konrath@infineon.com; Haberl, Verena, E-mail: verena.haberl@infineon.com [Infineon Technologies Austria AG, Siemensstraße 2, 9500 Villach (Austria)

    2016-03-15

    In this paper, the authors report on the high temperature performance of sputter deposited molybdenum (Mo) and molybdenum nitride (Mo{sub 2}N) thin films. Various argon and nitrogen gas compositions are applied for thin film synthetization, and the amount of nitrogen incorporation is determined by Auger measurements. Furthermore, effusion measurements identifying the binding conditions of the nitrogen in the thin film are performed up to 1000 °C. These results are in excellent agreement with film stress and scanning electron microscope analyses, both indicating stable film properties up to annealing temperatures of 500 °C.

  9. XRay Study of Transfer Printed Pentacene Thin Films

    International Nuclear Information System (INIS)

    Shao, Y.; Solin, S. A.; Hines, D. R.; Williams, E. D.

    2007-01-01

    We investigated the structural properties and transfer properties of pentacene thin films fabricated by thermal deposition and transfer printing onto SiO2 and plastic substrates, respectively. The dependence of the crystallite size on the printing time, temperature and pressure were measured. The increases of crystalline size were observed when pentacene thin films were printed under specific conditions, e.g. 120 deg. C and 600 psi and can be correlated with the improvement of the field effect mobility of pentacene thin-film transistors

  10. Room temperature multiferroic properties of (Fe{sub x}, Sr{sub 1−x})TiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung-Tae; Kim, Cheolbok; Fang, Sheng-Po; Yoon, Yong-Kyu, E-mail: ykyoon@ece.ufl.edu [Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611 (United States)

    2014-09-08

    This letter reports the structural, dielectric, ferroelectric, and magnetic properties of Fe substituted SrTiO{sub 3} thin films in room temperature. The structural data obtained from x-ray diffraction indicates that (Fe{sub x},Sr{sub 1−x})TiO{sub 3}, the so called FST, transforms from pseudocubic to tetragonal structures with increase of the Fe content in SrTiO{sub 3} thin films, featuring the ferroelectricity, while vibrating sample magnetometer measurements show magnetic hysteresis loops for the samples with low iron contents indicating their ferromagnetism. The characterized ferroelectricity and ferromagnetism confirms strong multiferroitism of the single phase FST thin films in room temperature. Also, an FST thin film metal-insulator-metal multiferroic capacitor has been fabricated and characterized in microwave frequencies between 10 MHz and 5 GHz. A capacitor based on Fe{sub 0.1}Sr{sub 0.9}TiO{sub 3} with a thickness of 260 nm shows a high electric tunability of 18.6% at 10 V and a maximum magnetodielectric value of 1.37% at 0.4 mT with a loss tangent of 0.021 at 1 GHz. This high tuning and low loss makes this material as a good candidate for frequency agile microwave devices such as tunable filters, phase shifters, and antennas.

  11. Broadband back grating design for thin film solar cells

    KAUST Repository

    Janjua, Bilal; Jabbour, Ghassan E.

    2013-01-01

    In this paper, design based on tapered circular grating structure was studied, to provide broadband enhancement in thin film amorphous silicon solar cells. In comparison to planar structure an absorption enhancement of ~ 7% was realized.

  12. The Structure and Stability of Molybdenum Ditelluride Thin Films

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Molybdenum-tellurium alloy thin films were fabricated by electron beam evaporation and the films were annealed in different conditions in N2 ambient. The hexagonal molybdenum ditelluride thin films with well crystallization annealed at 470°C or higher were obtained by solid state reactions. Thermal stability measurements indicate the formation of MoTe2 took place at about 350°C, and a subtle weight-loss was in the range between 30°C and 500°C. The evolution of the chemistry for Mo-Te thin films was performed to investigate the growth of the MoTe2 thin films free of any secondary phase. And the effect of other postdeposition treatments on the film characteristics was also investigated.

  13. Laser-Printed Organic Thin-Film Transistors

    KAUST Repository

    Diemer, Peter J.; Harper, Angela F.; Niazi, Muhammad Rizwan; Petty, Anthony J.; Anthony, John E.; Amassian, Aram; Jurchescu, Oana D.

    2017-01-01

    their incorporation in large-scale manufacturing processes. Here, the first ever organic thin-film transistor fabricated with an electrophotographic laser printing process using a standard office laser printer is reported. This completely solvent-free additive

  14. Preparation of Nb thin films with bulk transition temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Peirce, L H [Florida State Univ., Tallahassee (USA). Dept. of Physics

    1984-08-01

    Thin films (1000-2000 A) of Nb were prepared with bulk transition temperatures (9.25 K) by evaporation from an electron gun. Necessary substrate temperatures, evaporation rates and H/sub 2/O pressures were determined.

  15. Investigation of ferromagnetism in oxygen deficient hafnium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Krockenberger, Yoshiharu; Alff, Lambert [Institut fuer Materialwissenschaft, TU Darmstadt (Germany); Suter, Andreas [PSI, Villingen (Switzerland); Wilhelm, Fabrice; Rogalev, Andrei [ESRF, Grenoble (France)

    2008-07-01

    Oxygen deficient thin films of hafnium oxide were grown on single crystal r-cut and c-cut sapphire by reactive molecular beam epitaxy. RF-activated oxygen was used for the in situ oxidation of hafnium oxide thin films. Oxidation conditions were varied substantially in order to create oxygen deficiency in hafnium oxide films intentionally. The films were characterized by X-ray and magnetic measurements. X-ray diffraction studies show an increase in lattice parameter with increasing oxygen deficiency. Oxygen deficient hafnium oxide thin films also showed a decreasing bandgap with increase in oxygen deficiency. The magnetisation studies carried out with SQUID did not show any sign of ferromagnetism in the whole oxygen deficiency range. X-ray magnetic circular dichroism measurements also confirmed the absence of ferromagnetism in oxygen deficient hafnium oxide thin films.

  16. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José ; Burriel, Mó nica

    2010-01-01

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation

  17. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S; Ridge, Claron J.; Rö tzer, Marian David; Zwaschka, Gregor; Braun, Thomas; D'Elia, Valerio; Basset, Jean-Marie; Schweinberger, Florian Frank; Gü nther, Sebastian; Heiz, Ueli

    2015-01-01

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly

  18. A Variational approach to thin film hydrodynamics of binary mixtures

    KAUST Repository

    Xu, Xinpeng; Thiele, Uwe; Qian, Tiezheng

    2015-01-01

    In order to model the dynamics of thin films of mixtures, solutions, and suspensions, a thermodynamically consistent formulation is needed such that various coexisting dissipative processes with cross couplings can be correctly described

  19. Chemical solution deposition of functional oxide thin films

    CERN Document Server

    Schneller, Theodor; Kosec, Marija

    2014-01-01

    Chemical Solution Deposition (CSD) is a highly-flexible and inexpensive technique for the fabrication of functional oxide thin films. Featuring nearly 400 illustrations, this text covers all aspects of the technique.

  20. Resistivity of thiol-modified gold thin films

    International Nuclear Information System (INIS)

    Correa-Puerta, Jonathan; Del Campo, Valeria; Henríquez, Ricardo; Häberle, Patricio

    2014-01-01

    In this work, we study the effect of thiol self assembled monolayers on the electrical resistivity of metallic thin films. The analysis is based on the Fuchs–Sondheimer–Lucas theory and on electrical transport measurements. We determined resistivity change due to dodecanethiol adsorption on gold thin films. For this purpose, we controlled the deposition and annealing temperatures of the films to change the surface topography and to diminish the effect of electron grain boundary scattering. Results show that the electrical response to the absorption of thiols strongly depends on the initial topography of the surface. - Highlights: • We study the effect of self assembled monolayers on the resistivity of thin films. • Fuchs–Sondheimer theory reproduces the resistivity increase due to thiol deposition. • We determined resistivity change due to dodecanethiol deposition on gold thin films. • The electrical response strongly depends on the substrate surface topography

  1. In vitro behaviour of nanocrystalline silver-sputtered thin films

    International Nuclear Information System (INIS)

    Piedade, A P; Vieira, M T; Martins, A; Silva, F

    2007-01-01

    Silver thin films were deposited with different preferential orientations and special attention was paid to the bioreactivity of the surfaces. The study was essentially focused on the evaluation of the films by x-ray diffraction (XRD), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), electron probe microanalysis (EPMA) and contact angle measurements. The deposited thin films were characterized before and after immersion in S-enriched simulated human plasma in order to estimate the influence of the preferential crystallographic orientation on the in vitro behaviour. Silver thin films with and without (111) preferential crystallographic orientation were deposited by r.f. magnetron sputtering to yield nanocrystalline coatings, high compact structures, very hydrophobic surfaces and low roughness. These properties reduce the chemisorption of reactive species onto the film surface. The in vitro tests indicate that silver thin films can be used as coatings for biomaterials applications

  2. Electrochemical Deposition of Lanthanum Telluride Thin Films and Nanowires

    Science.gov (United States)

    Chi, Su (Ike); Farias, Stephen; Cammarata, Robert

    2013-03-01

    Tellurium alloys are characterized by their high performance thermoelectric properties and recent research has shown nanostructured tellurium alloys display even greater performance than bulk equivalents. Increased thermoelectric efficiency of nanostructured materials have led to significant interests in developing thin film and nanowire structures. Here, we report on the first successful electrodeposition of lanthanum telluride thin films and nanowires. The electrodeposition of lanthanum telluride thin films is performed in ionic liquids at room temperature. The synthesis of nanowires involves electrodepositing lanthanum telluride arrays into anodic aluminum oxide (AAO) nanoporous membranes. These novel procedures can serve as an alternative means of simple, inexpensive and laboratory-environment friendly methods to synthesize nanostructured thermoelectric materials. The thermoelectric properties of thin films and nanowires will be presented to compare to current state-of-the-art thermoelectric materials. The morphologies and chemical compositions of the deposited films and nanowires are characterized using SEM and EDAX analysis.

  3. Effect of solution concentration on MEH-PPV thin films

    Science.gov (United States)

    Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    MEH-PPV thin films were prepared with a mixture of THF (tetrahydrofuran) solution deposited by spin coating method. The surface topology of MEH-PPV thin film were characterize by atomic force microscopy (AFM) and optical properties of absorption spectra were characterized by using Ultraviolet-visible-near-infrared (UV-Vis-NIR). The MEH-PPV concentration variation affects the surface and optical properties of the thin film where 0.5 mg/ml MEH-PPV concentration have a good surface topology provided the same film also gives the highest absorption coefficient were then deposited to a TiO2 thin film forming composite layer. The composite layer then shows low current flow of short circuit current of Isc = -5.313E-7 A.

  4. Resistivity of thiol-modified gold thin films

    Energy Technology Data Exchange (ETDEWEB)

    Correa-Puerta, Jonathan [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso (Chile); Del Campo, Valeria [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile); Henríquez, Ricardo, E-mail: ricardo.henriquez@usm.cl [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile); Häberle, Patricio [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile)

    2014-11-03

    In this work, we study the effect of thiol self assembled monolayers on the electrical resistivity of metallic thin films. The analysis is based on the Fuchs–Sondheimer–Lucas theory and on electrical transport measurements. We determined resistivity change due to dodecanethiol adsorption on gold thin films. For this purpose, we controlled the deposition and annealing temperatures of the films to change the surface topography and to diminish the effect of electron grain boundary scattering. Results show that the electrical response to the absorption of thiols strongly depends on the initial topography of the surface. - Highlights: • We study the effect of self assembled monolayers on the resistivity of thin films. • Fuchs–Sondheimer theory reproduces the resistivity increase due to thiol deposition. • We determined resistivity change due to dodecanethiol deposition on gold thin films. • The electrical response strongly depends on the substrate surface topography.

  5. CO2 gas sensitivity of sputtered zinc oxide thin films

    Indian Academy of Sciences (India)

    TECS

    Gas sensitivity; ZnO; sputtering; XRD patterns; structure; thin films. 1. Introduction. Because zinc ... voltage and absorption properties of those fabricated films have been ... tations are useful in many physical applications. The in- plane (Hegde ...

  6. Valence control of cobalt oxide thin films by annealing atmosphere

    International Nuclear Information System (INIS)

    Wang Shijing; Zhang Boping; Zhao Cuihua; Li Songjie; Zhang Meixia; Yan Liping

    2011-01-01

    The cobalt oxide (CoO and Co 3 O 4 ) thin films were successfully prepared using a spin-coating technique by a chemical solution method with CH 3 OCH 2 CH 2 OH and Co(NO 3 ) 2 .6H 2 O as starting materials. The grayish cobalt oxide films had uniform crystalline grains with less than 50 nm in diameter. The phase structure is able to tailor by controlling the annealing atmosphere and temperature, in which Co 3 O 4 thin film was obtained by annealing in air at 300-600, and N 2 at 300, and transferred to CoO thin film by raising annealing temperature in N 2 . The fitted X-ray photoelectron spectroscopy (XPS) spectra of the Co2p electrons are distinguishable from different valence states of cobalt oxide especially for their satellite structure. The valence control of cobalt oxide thin films by annealing atmosphere contributes to the tailored optical absorption property.

  7. Simple gun for vapor deposition of organic thin films

    International Nuclear Information System (INIS)

    Sato, N.; Seki, K.; Inokuchi, H.

    1987-01-01

    A simple evaporation gun for preparing organic thin films was fabricated using commercially available parts of an electron gun for a TV Braun tube. The device permits sample heating to be easily controlled because of the small heat capacity

  8. Multiferroic iron oxide thin films at room temperature

    Czech Academy of Sciences Publication Activity Database

    Gich, M.; Fina, I.; Morelli, Alessio; Sánchez, F.; Alexe, M.; Gazquez, J.; Fontcuberta, J.; Roig, A.

    2014-01-01

    Roč. 26, č. 27 (2014), s. 4645-4652 ISSN 0935-9648 Institutional support: RVO:68378271 Keywords : multiferroic * iron oxide * thin film Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 17.493, year: 2014

  9. Bandtail characteristics in InN thin films

    International Nuclear Information System (INIS)

    Shen, W.Z.; Jiang, L.F.; Yang, H.F.; Meng, F.Y.; Ogawa, H.; Guo, Q.X.

    2002-01-01

    The Urbach bandtail characteristics in InN thin films grown by radio-frequency magnetron sputtering on sapphire (0001) substrates have been investigated both theoretically and experimentally. The bandtail parameter in InN thin films has been obtained by temperature-dependent transmission spectra, with the aid of a detailed calculation of the transmission profile. A bandtail model based on the calculation of density of occupied states and the carrier-phonon interaction has been employed to analyze the temperature-dependent bandtail characteristics. The bandtail parameter is in the range of 90-120 meV in the InN thin film. It is found that the carrier-phonon interaction in InN is weak and the structural disorder contribution (∼90 meV) dominates over the interactive terms. The high structural disorder in InN thin films may relate to the high nonradiative recombination centers

  10. High Performance Thin-Film Composite Forward Osmosis Membrane

    KAUST Repository

    Yip, Ngai Yin; Tiraferri, Alberto; Phillip, William A.; Schiffman, Jessica D.; Elimelech, Menachem

    2010-01-01

    obstacle hindering further advancements of this technology. This work presents the development of a high performance thin-film composite membrane for forward osmosis applications. The membrane consists of a selective polyamide active layer formed

  11. A thin film hydroponic system for plant studies

    Science.gov (United States)

    Hines, Robert; Prince, Ralph; Muller, Eldon; Schuerger, Andrew

    1990-01-01

    The Land Pavillion, EPCOT Center, houses a hydroponic, thin film growing system identical to that residing in NASA's Biomass Production Chamber at Kennedy Space Center. The system is targeted for plant disease and nutrition studies. The system is described.

  12. P-type CuxS thin films: Integration in a thin film transistor structure

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Parreira, P.; Lavareda, G.; Brogueira, P.; Amaral, A.

    2013-01-01

    Cu x S thin films, 80 nm thick, are deposited by vacuum thermal evaporation of sulfur-rich powder mixture, Cu 2 S:S (50:50 wt.%) with no intentional heating of the substrate. The process of deposition occurs at very low deposition rates (0.1–0.3 nm/s) to avoid the formation of Cu or S-rich films. The evolution of Cu x S films surface properties (morphology/roughness) under post deposition mild annealing in air at 270 °C and their integration in a thin film transistor (TFT) are the main objectives of this study. Accordingly, Scanning Electron Microscopy studies show Cu x S films with different surface morphologies, depending on the post deposition annealing conditions. For the shortest annealing time, the Cu x S films look to be constructed of grains with large dimension at the surface (approximately 100 nm) and consequently, irregular shape. For the longest annealing time, films with a fine-grained surface are found, with some randomly distributed large particles bound to this fine-grained surface. Atomic Force Microscopy results indicate an increase of the root-mean-square roughness of Cu x S surface with annealing time, from 13.6 up to 37.4 nm, for 255 and 345 s, respectively. The preliminary integration of Cu x S films in a TFT bottom-gate type structure allowed the study of the feasibility and compatibility of this material with the remaining stages of a TFT fabrication as well as the determination of the p-type characteristic of the Cu x S material. - Highlights: • Surface properties of annealed Cu x S films. • Variation of conductivity with annealing temperatures of Cu x S films. • Application of evaporated Cu x S films in a thin film transistor (TFT) structure. • Determination of Cu x S p-type characteristic from TFT behaviour

  13. Inverse bilayer magnetoelectric thin film sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yarar, E.; Piorra, A.; Quandt, E., E-mail: eq@tf.uni-kiel.de [Chair for Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany); Salzer, S.; Höft, M.; Knöchel, R. [Microwave Laboratory, Institute of Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany); Hrkac, V.; Kienle, L. [Chair for Synthesis and Real Structure, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany)

    2016-07-11

    Prior investigations on magnetoelectric (ME) thin film sensors using amorphous FeCoSiB as a magnetostrictive layer and AlN as a piezoelectric layer revealed a limit of detection (LOD) in the range of a few pT/Hz{sup 1/2} in the mechanical resonance. These sensors are comprised of a Si/SiO{sub 2}/Pt/AlN/FeCoSiB layer stack, as dictated by the temperatures required for the deposition of the layers. A low temperature deposition route of very high quality AlN allows the reversal of the deposition sequence, thus allowing the amorphous FeCoSiB to be deposited on the very smooth Si substrate. As a consequence, the LOD could be enhanced by almost an order of magnitude reaching 400 fT/Hz{sup 1/2} at the mechanical resonance of the sensor. Giant ME coefficients (α{sub ME}) as high as 5 kV/cm Oe were measured. Transmission electron microscopy investigations revealed highly c-axis oriented growth of the AlN starting from the Pt-AlN interface with local epitaxy.

  14. Photoinduced conductivity in tin dioxide thin films

    International Nuclear Information System (INIS)

    Muraoka, Y.; Takubo, N.; Hiroi, Z.

    2009-01-01

    The effects of ultraviolet light irradiation on the conducting properties of SnO 2-x thin films grown epitaxially on TiO 2 or Al 2 O 3 single-crystal substrates are studied at room temperature. A large increase in conductivity by two to four orders of magnitude is observed with light irradiation in an inert atmosphere and remains after the light is removed. The high-conducting state reverts to the original low-conducting state by exposing it to oxygen gas. These reversible phenomena are ascribed to the desorption and adsorption of negatively charged oxygen species at the grain boundaries, which critically change the mobility of electron carriers already present inside grains by changing the potential barrier height at the grain boundary. The UV light irradiation provides us with an easy and useful route to achieve a high-conducting state even at low carrier density in transparent conducting oxides and also to draw an invisible conducting wire or a specific pattern on an insulating film.

  15. Degradation analysis of thin film photovoltaic modules

    International Nuclear Information System (INIS)

    Radue, C.; Dyk, E.E. van

    2009-01-01

    Five thin film photovoltaic modules were deployed outdoors under open circuit conditions after a thorough indoor evaluation. Two technology types were investigated: amorphous silicon (a-Si:H) and copper indium gallium diselenide (CIGS). Two 14 W a-Si:H modules, labelled Si-1 and Si-2, were investigated. Both exhibited degradation, initially due to the well-known light-induced degradation described by Staebler and Wronski [Applied Physics Letters 31 (4) (1977) 292], and thereafter due to other degradation modes such as cell degradation. The various degradation modes contributing to the degradation of the a-Si:H modules will be discussed. The initial maximum power output (P MAX ) of Si-1 was 9.92 W, with the initial light-induced degradation for Si-1 ∼30% and a total degradation of ∼42%. For Si-2 the initial P MAX was 7.93 W, with initial light-induced degradation of ∼10% and a total degradation of ∼17%. Three CIGS modules were investigated: two 20 W modules labelled CIGS-1 and CIGS-2, and a 40 W module labelled CIGS-3. CIGS-2 exhibited stable performance while CIGS-1 and CIGS-3 exhibited degradation. CIGS is known to be stable over long periods of time, and thus the possible reasons for the degradation of the two modules are discussed.

  16. Degradation analysis of thin film photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Radue, C., E-mail: chantelle.radue@nmmu.ac.z [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Dyk, E.E. van [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2009-12-01

    Five thin film photovoltaic modules were deployed outdoors under open circuit conditions after a thorough indoor evaluation. Two technology types were investigated: amorphous silicon (a-Si:H) and copper indium gallium diselenide (CIGS). Two 14 W a-Si:H modules, labelled Si-1 and Si-2, were investigated. Both exhibited degradation, initially due to the well-known light-induced degradation described by Staebler and Wronski [Applied Physics Letters 31 (4) (1977) 292], and thereafter due to other degradation modes such as cell degradation. The various degradation modes contributing to the degradation of the a-Si:H modules will be discussed. The initial maximum power output (P{sub MAX}) of Si-1 was 9.92 W, with the initial light-induced degradation for Si-1 approx30% and a total degradation of approx42%. For Si-2 the initial P{sub MAX} was 7.93 W, with initial light-induced degradation of approx10% and a total degradation of approx17%. Three CIGS modules were investigated: two 20 W modules labelled CIGS-1 and CIGS-2, and a 40 W module labelled CIGS-3. CIGS-2 exhibited stable performance while CIGS-1 and CIGS-3 exhibited degradation. CIGS is known to be stable over long periods of time, and thus the possible reasons for the degradation of the two modules are discussed.

  17. Microbridge tests on gallium nitride thin films

    International Nuclear Information System (INIS)

    Huang, Hai-You; Li, Zhi-Ying; Lu, Jun-Yong; Wang, Zhi-Jia; Zhang, Tong-Yi; Wang, Chong-Shun; Lau, Kei-May; Chen, Kevin Jing

    2009-01-01

    In this work, we develop further the microbridge testing method by deriving a closed formula of deflection versus load, which is applied at an arbitrary position on the microbridge beam. Testing a single beam at various positions allows us to characterize simultaneouslyYoung's modulus and residual stress of the beam. The developed method was then used to characterize the mechanical properties of GaN thin films on patterned-Si (1 1 1) substrates grown by metal organic chemical vapor deposition (MOCVD). The microbridge samples were fabricated by using the microelectromechanical fabrication technique and tested with a nanoindentation system. Young's modulus and residual stress of the GaN films were determined to be 287 ± 190 GPa and 851 ± 155 MPa, respectively. In addition, alternative measurements of the residual stress, Young's modulus and hardness of the GaN films, were conducted with micro-Raman spectroscopy and the nanoindentation test, yielding the corresponding values of 847 ± 46 MPa, 269.0 ± 7.0 GPa and 17.8 ± 1.1 GPa

  18. Infrared characterization of strontium titanate thin films

    International Nuclear Information System (INIS)

    Almeida, B.G.; Pietka, A.; Mendes, J.A.

    2004-01-01

    Strontium titanate thin films have been prepared at different oxygen pressures with various post-deposition annealing treatments. The films were deposited by pulsed laser ablation at room temperature on Si(0 0 1) substrates with a silica buffer layer. Infrared reflectance measurements were performed in order to determine relevant film parameters such as layer thicknesses and chemical composition. The infrared reflectance spectra were fitted by using adequate dielectric function forms for each layer. The fitting procedure provided the extraction of the dielectric functions of the strontium titanate film, the silica layer and the substrate. The as-deposited films are found to be amorphous, and their infrared spectra present peaks corresponding to modes with high damping constants. As the annealing time and temperature increases the strontium titanate layer becomes more ordered so that it can be described by its SrTiO 3 bulk mode parameters. Also, the silica layer grows along with the ordering of the strontium titanate film, due to oxidation during annealing

  19. Electromagnetic properties of thin film lead superconductors

    International Nuclear Information System (INIS)

    Moriyama, K.

    1978-01-01

    The dependence of critical film magnetic field H/sub cf/ on temperature, thickness, and surface texture of lead superconducting films was investigated, as well as the relationship between the applied magnetic field and the applied current at the critical field. Temperature and thickness dependence data were consistent with the predictions of London, of Ginzburg, and of Bardeen, Cooper, and Schreiffer. The values of H/sub cf/ of lead films deposited on a rough surface were consistently lower than for those on a smooth surface and so were not in agreement with any currently accepted theory. The degree of lowering of H/sub cf/ by a rough surface was greater in thin films than in thick films. The expected dependence of penetration depth lambda on thickness d was not observed, and the range of lambda was somewhat greater than expected. The range of coherence length was greater than predicted. The prediction for temperature dependence of critical current by Glover and Coffey was found to involve some oversimplification, and a suggested correction is supported by the data. For applied magnetic fields perpendicular to the applied current and parallel to the film surface, the relationship between the critical values of the magnetic field and the current was as predicted for lead films by Alphonse and Bergstein

  20. Product reliability and thin-film photovoltaics

    Science.gov (United States)

    Gaston, Ryan; Feist, Rebekah; Yeung, Simon; Hus, Mike; Bernius, Mark; Langlois, Marc; Bury, Scott; Granata, Jennifer; Quintana, Michael; Carlson, Carl; Sarakakis, Georgios; Ogden, Douglas; Mettas, Adamantios

    2009-08-01

    Despite significant growth in photovoltaics (PV) over the last few years, only approximately 1.07 billion kWhr of electricity is estimated to have been generated from PV in the US during 2008, or 0.27% of total electrical generation. PV market penetration is set for a paradigm shift, as fluctuating hydrocarbon prices and an acknowledgement of the environmental impacts associated with their use, combined with breakthrough new PV technologies, such as thin-film and BIPV, are driving the cost of energy generated with PV to parity or cost advantage versus more traditional forms of energy generation. In addition to reaching cost parity with grid supplied power, a key to the long-term success of PV as a viable energy alternative is the reliability of systems in the field. New technologies may or may not have the same failure modes as previous technologies. Reliability testing and product lifetime issues continue to be one of the key bottlenecks in the rapid commercialization of PV technologies today. In this paper, we highlight the critical need for moving away from relying on traditional qualification and safety tests as a measure of reliability and focus instead on designing for reliability and its integration into the product development process. A drive towards quantitative predictive accelerated testing is emphasized and an industrial collaboration model addressing reliability challenges is proposed.

  1. Controlled nanostructuration of polycrystalline tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    Girault, B. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), LUNAM Universite, Universite de Nantes, Centrale Nantes, CRTT, 37 Bd de l' Universite, BP 406, 44602 Saint-Nazaire Cedex (France); Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Sauvage, T. [CEMHTI/CNRS (UPR 3079 CNRS), Universite d' Orleans, 3A rue de la Ferollerie, 45071 Orleans Cedex 2 (France)

    2013-05-07

    Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

  2. Thin Films for X-ray Optics

    Science.gov (United States)

    Conley, Raymond

    Focusing x-rays with refraction requires an entire array of lens instead of a single element, each contributing a minute amount of focusing to the system. In contrast to their visible light counterparts, diffractive optics require a certain depth along the optical axis in order to provide sufficient phase shift. Mirrors reflect only at very shallow angles. In order to increase the angle of incidence, contribution from constructive interference within many layers needs to be collected. This requires a multilayer coating. Thin films have become a central ingredient for many x-ray optics due to the ease of which material composition and thickness can be controlled. Chapter 1 starts with a short introduction and survey of the field of x-ray optics. This begins with an explanation of reflective multilayers. Focusing optics are presented next, including mirrors, zone plates, refractive lenses, and multilayer Laue lens (MLL). The strengths and weaknesses of each "species" of optic are briefly discussed, alongside fabrication issues and the ultimate performance for each. Practical considerations on the use of thin-films for x-ray optics fabrication span a wide array of topics including material systems selection and instrumentation design. Sputter deposition is utilized exclusively for the work included herein because this method of thin-film deposition allows a wide array of deposition parameters to be controlled. This chapter also includes a short description of two deposition systems I have designed. Chapter 2 covers a small sampling of some of my work on reflective multilayers, and outlines two of the deposition systems I have designed and built at the Advanced Photon Source. A three-stripe double multilayer monochromator is presented as a case study in order to detail specifications, fabrication, and performance of this prolific breed of x-ray optics. The APS Rotary Deposition System was the first deposition system in the world designed specifically for multilayer

  3. Thin film deposition using rarefied gas jet

    Science.gov (United States)

    Pradhan, Sahadev, , Dr.

    2017-06-01

    The rarefied gas jet of aluminium is studied at Mach number Ma = (Uj /√{ kbTj / mg }) in the range .01 PVD) process for the development of the highly oriented pure metallic aluminum thin film with uniform thickness and strong adhesion on the surface of the substrate in the form of ionic plasma, so that the substrate can be protected from corrosion and oxidation and thereby enhance the lifetime and safety, and to introduce the desired surface properties for a given application. Here, H is the characteristic dimension, U_j and T_j are the jet velocity and temperature, n_d is the number density of the jet, m and d are the molecular mass and diameter, and kbis the Boltzmann constant. An important finding is that the capture width (cross-section of the gas jet deposited on the substrate) is symmetric around the centerline of the substrate, and decreases with increased Mach number due to an increase in the momentum of the gas molecules. DSMC simulation results reveals that at low Knudsen number ((Kn=0.01); shorter mean free paths), the atoms experience more collisions, which direct them toward the substrate. However, the atoms also move with lower momentum at low Mach number, which allows scattering collisions to rapidly direct the atoms to the substrate.

  4. Nanopolar reorientation in ferroelectric thin films

    International Nuclear Information System (INIS)

    Hubert, C.; Levy, J.; Rivkin, T. V.; Carlson, C.; Parilla, P. A.; Perkins, J. D.; Ginley, D. S.

    2001-01-01

    The influence of varying oxygen pressure P(O 2 ) during the growth of Ba 0.4 Sr 0.6 TiO 3 thin films is investigated using dielectric and local optical probes. A transition from in-plane to out-of-plane ferroelectricity is observed with increasing P(O 2 ). Signatures of in-plane and out-of-plane ferroelectricity are identified using dielectric response and time-resolved confocal scanning optical microscopy (TRCSOM). At the crossover pressure between in-plane and out-of-plane polarization (P c =85 mTorr), TRCSOM measurements reveal a soft, highly dispersive out-of-plane polarization that reorients in plane under modest applied electric fields. At higher deposition pressures, the out-of-plane polarization is hardened and is less dispersive at microwave frequencies, and the dielectric tuning is suppressed. Nanopolar reorientation is believed to be responsible for the marked increase in dielectric tuning at P(O 2 )=P c

  5. Trends and new applications in thin films

    International Nuclear Information System (INIS)

    1996-01-01

    The proceedings of this symposium comprise 95 communications from which 64 were selected and fall into the scope of INIS subject categories, and 1 was selected for ETDE indexing. The selected communications deal with the techniques used for thin films preparation using chemical or physical vapor deposition techniques (plasma-arc or jet spraying, cathode sputtering, reactive DC or RF magnetron sputtering, plasma-ion deposition, ion implantation, electron or ion beam spraying, ion beam assisted plasma etching, dynamic ion mixing, distributed electron cyclotron resonance plasma sputtering, laser induced plasma sputtering etc..). The effects and interactions with the substrates (ion implantation, crystal growth, crystal-phase transformations, microstructures, penetration depth, changes in lattice parameters etc..) are analysed using various techniques such as grazing incidence X-ray diffraction, X-ray reflectometry, X-ray and angle resolved electron spectroscopy, Auger electron spectroscopy, Rutherford backscattering spectroscopy, SEM, TEM, IR absorption spectroscopy, UV or visible emission spectroscopy, conversion electron Moessbauer spectroscopy, X-ray fluorescence, mass spectroscopy, optical ellipsometry etc.. Mechanical tests such as scratch, microhardness and wear tests are also performed on the coatings to analyse their mechanical properties. (J.S.)

  6. Thermal decomposition of titanium deuteride thin films

    International Nuclear Information System (INIS)

    Malinowski, M.E.

    1983-01-01

    The thermal desorption spectra of deuterium from essentially clean titanium deuteride thin films were measured by ramp heating the films in vacuum; the film thicknesses ranged from 20 to 220 nm and the ramp rates varied from 0.5 to about 3 0 C s - 1 . Each desorption spectrum consisted of a low nearly constant rate at low temperatures followed by a highly peaked rate at higher temperatures. The cleanliness and thinness of the films permitted a description of desorption rates in terms of a simple phenomenological model based on detailed balancing in which the low temperature pressure-composition characteristics of the two-phase (α-(α+#betta#)-#betta#) region of the Ti-D system were used as input data. At temperatures below 340 0 C the model predictions were in excellent agreement with the experimentally measured desorption spectra. Interpretations of the spectra in terms of 'decomposition trajectories'' are possible using this model, and this approach is also used to explain deviations of the spectra from the model at temperatures of 340 0 C and above. (Auth.)

  7. Lasing in liquid crystal thin films

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)], E-mail: palto@online.ru

    2006-09-15

    A lasing condition is formulated in matrix form for optically anisotropic thin films. Lasing behavior of liquid-crystal slabs is analyzed. In particular, it is shown that if the spatial extent of a liquid crystal slab is much larger than its thickness, then laser emission is feasible not only along the normal to the slab, but also in the entire angular sector. The generated laser light can be observed experimentally as a spot or as concentric rings on a screen. The lowest lasing threshold corresponds to in-plane sliding modes leaking into the substrate. The feedback required for lasing is provided by reflection from the interfaces, rather than edges, of the liquid-crystal slab operating as a planar Fabry-Perot cavity. For cholesteric liquid crystals, it is shown that energy loss to the sliding modes leaking into the substrates and escaping through their edges is a key factor that limits the efficiency of band-edge emission along the normal to the slab.

  8. Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Guy Beaucarne

    2007-01-01

    with plasma-enhanced chemical vapor deposition (PECVD. In spite of the fundamental limitation of this material due to its disorder and metastability, the technology is now gaining industrial momentum thanks to the entry of equipment manufacturers with experience with large-area PECVD. Microcrystalline Si (also called nanocrystalline Si is a material with crystallites in the nanometer range in an amorphous matrix, and which contains less defects than amorphous silicon. Its lower bandgap makes it particularly appropriate as active material for the bottom cell in tandem and triple junction devices. The combination of an amorphous silicon top cell and a microcrystalline bottom cell has yielded promising results, but much work is needed to implement it on large-area and to limit light-induced degradation. Finally thin-film polysilicon solar cells, with grain size in the micrometer range, has recently emerged as an alternative photovoltaic technology. The layers have a grain size ranging from 1 μm to several tens of microns, and are formed at a temperature ranging from 600 to more than 1000∘C. Solid Phase Crystallization has yielded the best results so far but there has recently been fast progress with seed layer approaches, particularly those using the aluminum-induced crystallization technique.

  9. Nanostructured refractory thin films for solar applications

    Science.gov (United States)

    Ollier, E.; Dunoyer, N.; Dellea, O.; Szambolics, H.

    2014-08-01

    Selective solar absorbers are key elements of all solar thermal systems. Solar thermal panels and Concentrated Solar Power (CSP) systems aim respectively at producing heat and electricity. In both cases, a surface receives the solar radiation and is designed to have the highest optical absorption (lowest optical reflectivity) of the solar radiation in the visible wavelength range where the solar intensity is the highest. It also has a low emissivity in the infrared (IR) range in order to avoid radiative thermal losses. Current solutions in the state of the art usually consist in deposited interferential thin films or in cermets [1]. Structured surfaces have been proposed and have been simulated because they are supposed to be more efficient when the solar radiation is not normal to the receiving surface and because they could potentially be fabricated with refractory materials able to sustain high operating temperatures. This work presents a new method to fabricate micro/nanostructured surfaces on molybdenum (refractory metal with a melting temperature of 2623°C). This method now allows obtaining a refractory selective surface with an excellent optical selectivity and a very high absorption in the visible range. This high absorption performance was obtained by achieving a double structuration at micro and nano scales thanks to an innovative process flow.

  10. Application of HTSC-thin films in microwave bandpass filters

    International Nuclear Information System (INIS)

    Jha, A.R.

    1993-01-01

    This paper reveals unique performance capabilities of High-Temperature Superconducting Thin-Film (HTSCTFs) for possible applications in microwave bandpass filters (BPFs). Microwave filters fabricated with HTSCTFs have demonstrated lowest insertion loss, highest rejection, and sharpest skirt selectivity. Thin films of Yttrium Barium Copper Oxide (YBCO), Bismuth Strontium Calcium Copper Oxide (BSCCO) and Thallium Calcium Barium Copper Oxide (TCBCO) will be most attractive for filters

  11. Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films

    KAUST Repository

    Chernikova, Valeriya; Shekhah, Osama; Spanopoulos, Ioannis; Trikalitis, Pantelis N.; Eddaoudi, Mohamed

    2017-01-01

    Precise control of epitaxial growth of MOF-on-MOF thin films, for ordered hierarchical tbo-type structures is demonstrated. The heterostructured MOF thin film was fabricated by successful sequential deposition of layers from two different MOFs. The 2-periodic layers, edge-transitive 4,4-square lattices regarded as supermolecular building layers, were commendably cross-linked using a combination of inorganic/organic and organic pillars.

  12. Novel photon management for thin-film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Rajesh [Univ. of Utah, Salt Lake City, UT (United States)

    2016-11-11

    The objective of this project is to enable commercially viable thin-film photovoltaics whose efficiencies are increased by over 10% using a novel optical spectral-separation technique. A thin planar diffractive optic is proposed that efficiently separates the solar spectrum and assigns these bands to optimal thin-film sub-cells. An integrated device that is comprised of the optical element, an array of sub-cells and associated packaging is proposed.

  13. Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films

    KAUST Repository

    Chernikova, Valeriya

    2017-05-10

    Precise control of epitaxial growth of MOF-on-MOF thin films, for ordered hierarchical tbo-type structures is demonstrated. The heterostructured MOF thin film was fabricated by successful sequential deposition of layers from two different MOFs. The 2-periodic layers, edge-transitive 4,4-square lattices regarded as supermolecular building layers, were commendably cross-linked using a combination of inorganic/organic and organic pillars.

  14. Methods for producing thin film charge selective transport layers

    Science.gov (United States)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    2018-01-02

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  15. Thin film coatings for space electrical power system applications

    Science.gov (United States)

    Gulino, Daniel A.

    1988-01-01

    This paper examines some of the ways in which thin film coatings can play a role in aerospace applications. Space systems discussed include photovoltaic and solar dynamic electric power generation systems, including applications in environmental protection, thermal energy storage, and radiator emittance enhancement. Potential applications of diamondlike films to both atmospheric and space based systems are examined. Also, potential uses of thin films of the recently discovered high-temperature superconductive materials are discussed.

  16. Preparation and optical characterization of DNA-riboflavin thin films

    Science.gov (United States)

    Paulson, Bjorn; Shin, Inchul; Kong, Byungjoo; Sauer, Gregor; Dugasani, Sreekantha Reddy; Khazaeinezhad, Reza; Jung, Woohyun; Joo, Boram; Oh, Kyunghwan

    2016-09-01

    Thin films of DNA biopolymer thin film are fabricated by a drop casting process on glass and silicon substrates, as well as freestanding. The refractive index is measured by elliposmetry and in bulk DNA film the refractive index is shown to be increased in the 600 to 900 nm DNA transparency window by doping with riboflavin. Further analysis with FT-IR, Raman, and XRD are used to determine whether binding between riboflavin and DNA occurs.

  17. Simple flash evaporator for making thin films of compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hemanadhan, M.; Bapanayya, Ch.; Agarwal, S. C. [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)

    2010-07-15

    A simple and compact arrangement for flash evaporation is described. It uses a cell phone vibrator for powder dispensing that can be incorporated into a vacuum deposition chamber without any major alterations. The performance of the flash evaporation system is checked by making thin films of the optical memory chalcogenide glass Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Energy dispersive x-ray analysis shows that the flash evaporation preserves the stoichiometry in thin films.

  18. Molecular simulation of freestanding amorphous nickel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.Q. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France); Hoang, V.V., E-mail: vvhoang2002@yahoo.com [Department of Physics, Institute of Technology, National University of Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Lauriat, G. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France)

    2013-10-31

    Size effects on glass formation in freestanding Ni thin films have been studied via molecular dynamics simulation with the n-body Gupta interatomic potential. Atomic mechanism of glass formation in the films is determined via analysis of the spatio-temporal arrangements of solid-like atoms occurred upon cooling from the melt. Solid-like atoms are detected via the Lindemann ratio. We find that solid-like atoms initiate and grow mainly in the interior of the film and grow outward. Their number increases with decreasing temperature and at a glass transition temperature they dominate in the system to form a relatively rigid glassy state of a thin film shape. We find the existence of a mobile surface layer in both liquid and glassy states which can play an important role in various surface properties of amorphous Ni thin films. We find that glass formation is size independent for models containing 4000 to 108,000 atoms. Moreover, structure of amorphous Ni thin films has been studied in details via coordination number, Honeycutt–Andersen analysis, and density profile which reveal that amorphous thin films exhibit two different parts: interior and surface layer. The former exhibits almost the same structure like that found for the bulk while the latter behaves a more porous structure containing a large amount of undercoordinated sites which are the origin of various surface behaviors of the amorphous Ni or Ni-based thin films found in practice. - Highlights: • Glass formation is analyzed via spatio-temporal arrangements of solid-like atoms. • Amorphous Ni thin film exhibits two different parts: surface and interior. • Mobile surface layer enhances various surface properties of the amorphous Ni thin films. • Undercoordinated sites play an important role in various surface activities.

  19. Chemical vapour deposition of thin-film dielectrics

    International Nuclear Information System (INIS)

    Vasilev, Vladislav Yu; Repinsky, Sergei M

    2005-01-01

    Data on the chemical vapour deposition of thin-film dielectrics based on silicon nitride, silicon oxynitride and silicon dioxide and on phosphorus- and boron-containing silicate glasses are generalised. The equipment and layer deposition procedures are described. Attention is focussed on the analysis and discussion of the deposition kinetics and on the kinetic models for film growth. The film growth processes are characterised and data on the key physicochemical properties of thin-film covalent dielectric materials are given.

  20. Chapter 23. Single and Heterostructure Multiferroic Thin Films

    OpenAIRE

    Barbier , Antoine

    2018-01-01

    International audience; Multiferroic oxide materials exhibiting several long range ferroic orders are of high interest because of their wide range of potential applications. The incorporation of their genuine properties in new devices, offering additional physical properties, requires often elaborating them in form of thin films. Retaining their multiferroic characteristics is very challenging. However, thin films can be structured on the nanometer scale and additional degrees of freedom, suc...

  1. PREFACE: Proceedings Symposium G of E-MRS Spring Meeting on Fundamentals and Technology of Multifunctional Oxide Thin Films

    Science.gov (United States)

    2010-07-01

    Oxide materials exhibit a large variety of functional properties that are useful in a plethora of applications. Symposium G focused on oxide thin films that include dielectric or switching properties. Its program mirrored very well the strong worldwide search for high-K thin films for gate, memory, and on-chip capacitors, as well as the emerging field of functional thin films for MEMS. A complete session was devoted to the colossal effect of dielectric response in (Ca,Cu)TiO3, representing the major European research groups in this field. A comprehensive overview on this phenomenon was given by D Sinclair J Wolfman presented the latest results on CCTO thin films obtained by wafer scale pulsed laser deposition. A Loidl showed the analytical power of dielectric spectroscopy when covering the complete frequency range from 1-1012 Hz, i.e. from space charge to phonon contributions at the example of CCTO. Another session was devoted to applications in non-volatile memories, covering various effects including ferroelectric and resistive switching, the complex behavior of oxide tunnel junctions (H Kohlstedt), the possibility to manipulate the magnetic state of a 2d-electron gas by the polarization of an adjacent ferroelectric gate (I Stolitchnov). Latest advancements in ALD processing for high-K thin films in dynamic RAM were reported by S Ramanathan. The advancement of piezoelectric PZT thin film MEMS devices was well documented by outstanding talks on their developments in industry (M Klee, F Tyholdt), new possibilities in GHz filters (T Matshushima), advancements in sol-gel processing (B Tuttle, H Suzuki), and low temperature integration approaches by UV light curing (S Trolier-McKinstry). Recent advances in incipient ferroelectric thin films and nano composites for tunable capacitors in microwave applications were present by A Vorobiev and T Yamada. Integrated electro-optics is another field to be conquered by thin film structures. The impressive progress made in this

  2. Photoinduced hydrophobic surface of graphene oxide thin films

    International Nuclear Information System (INIS)

    Zhang Xiaoyan; Song Peng; Cui Xiaoli

    2012-01-01

    Graphene oxide (GO) thin films were deposited on transparent conducting oxide substrates and glass slides by spin coating method at room temperature. The wettability of GO thin films before and after ultraviolet (UV) irradiation was characterized with water contact angles, which increased from 27.3° to 57.6° after 3 h of irradiation, indicating a photo-induced hydrophobic surface. The UV–vis absorption spectra, Raman spectroscopy, X-ray photoelectron spectroscopy, and conductivity measurements of GO films before and after UV irradiation were taken to study the mechanism of photoinduced hydrophobic surface of GO thin films. It is demonstrated that the photoinduced hydrophobic surface is ascribed to the elimination of oxygen-containing functional groups on GO molecules. This work provides a simple strategy to control the wettability properties of GO thin films by UV irradiation. - Highlights: ► Photoinduced hydrophobic surface of graphene oxide thin films has been demonstrated. ► Elimination of oxygen-containing functional groups in graphene oxide achieved by UV irradiation. ► We provide novel strategy to control surface wettability of GO thin films by UV irradiation.

  3. Thin films as an emerging platform for drug delivery

    Directory of Open Access Journals (Sweden)

    Sandeep Karki

    2016-10-01

    Full Text Available Pharmaceutical scientists throughout the world are trying to explore thin films as a novel drug delivery tool. Thin films have been identified as an alternative approach to conventional dosage forms. The thin films are considered to be convenient to swallow, self-administrable, and fast dissolving dosage form, all of which make it as a versatile platform for drug delivery. This delivery system has been used for both systemic and local action via several routes such as oral, buccal, sublingual, ocular, and transdermal routes. The design of efficient thin films requires a comprehensive knowledge of the pharmacological and pharmaceutical properties of drugs and polymers along with an appropriate selection of manufacturing processes. Therefore, the aim of this review is to provide an overview of the critical factors affecting the formulation of thin films, including the physico-chemical properties of polymers and drugs, anatomical and physiological constraints, as well as the characterization methods and quality specifications to circumvent the difficulties associated with formulation design. It also highlights the recent trends and perspectives to develop thin film products by various companies.

  4. Tools to synthesize the learning of thin films

    International Nuclear Information System (INIS)

    Rojas, Roberto; Fuster, Gonzalo; Sluesarenko, Viktor

    2011-01-01

    After a review of textbooks written for undergraduate courses in physics, we have found that discussions on thin films are mostly incomplete. They consider the reflected and not the transmitted light for two instead of the four types of thin films. In this work, we complement the discussion in elementary textbooks, by analysing the phase differences required to match the conditions for constructive and destructive interference, in the reflected and transmitted light in four types of thin films. We consider thin films with varied sequences in the refractive index, which we identify as barriers, wells and stairs (up and down). Also, we use the conservation of energy in order to understand the complementary colour fringes observed in the reflected and transmitted light through thin films. We analyse systematically the phase changes by introducing a phase table and we synthesize the results in a circular diagram matching 16 physical situations of interference and their corresponding conditions on the film thickness. The phase table and the circular diagram are a pair of tools easily assimilated by students, and useful to organize, analyse and activate the knowledge about thin films.

  5. Oxidation of ruthenium thin films using atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, A.P.; Bogan, J.; Brady, A.; Hughes, G.

    2015-12-31

    In this study, the use of atomic oxygen to oxidise ruthenium thin films is assessed. Atomic layer deposited (ALD) ruthenium thin films (~ 3 nm) were exposed to varying amounts of atomic oxygen and the results were compared to the impact of exposures to molecular oxygen. X-ray photoelectron spectroscopy studies reveal substantial oxidation of metallic ruthenium films to RuO{sub 2} at exposures as low as ~ 10{sup 2} L at 575 K when atomic oxygen was used. Higher exposures of molecular oxygen resulted in no metal oxidation highlighting the benefits of using atomic oxygen to form RuO{sub 2}. Additionally, the partial oxidation of these ruthenium films occurred at temperatures as low as 293 K (room temperature) in an atomic oxygen environment. - Highlights: • X-ray photoelectron spectroscopy study of the oxidation of Ru thin films • Oxidation of Ru thin films using atomic oxygen • Comparison between atomic oxygen and molecular oxygen treatments on Ru thin films • Fully oxidised RuO{sub 2} thin films formed with low exposures to atomic oxygen.

  6. Suppression of slow capacitance relaxation phenomenon in Pt/Ba0.3Sr0.7TiO3/Pt thin film ferroelectric structures by annealing in oxygen atmosphere

    KAUST Repository

    Altynnikov, A. G.; Gagarin, A. G.; Gaidukov, M. M.; Tumarkin, A. V.; Petrov, P. K.; Alford, N.; Kozyrev, A. B.

    2014-01-01

    The impact of oxygen annealing on the switching time of ferroelectric thin film capacitor structures Pt/Ba0.3Sr0.7TiO3/Pt was investigated. The response of their capacitance on pulsed control voltages before and after annealing was experimentally

  7. Structure and properties of PZT thin films on strontium ruthenate and calcium ruthenate electrodes

    International Nuclear Information System (INIS)

    Wu, T.-J.; Tsai, D.-S.

    2004-01-01

    PZT thin films have been prepared via metalorganic CVD (MOCVD) on four substrates of conducting oxides of ruthenates, SrRuO 3 /Pt/Ti/SiO 2 /Si(1 0 0), SrRuO 3 /SiO 2 /Si(1 0 0), CaRuO 3 /Pt/Ti/SiO 2 /Si(1 0 0), CaRuO 3 /SiO 2 /Si(1 0 0). The conducting ruthenate layers were also grown using MOCVD. Ferroelectric properties of polarization fatigue and leakage current density are measured. The internal strain of PZT thin crystal which is mainly constrained by the bottom electrode seems to be the decisive factor in ferroelectric properties. The internal strain of PZT is represented by its tetragonality ratio. The PZT thin film in the capacitor Au/PZT/SrRuO 3 /Pt/Ti/SiO 2 /Si, with the largest tetragonality ratio 1.026, exhibits an optimum combination of large polarization, less fatigue, and low leakage current density. Both SrRuO 3 and CaRuO 3 are good diffusion barriers to prevent interdiffusion of cations between the ferroelectric and the electrode. The slightly higher intermixing at the CaRuO 3 -to-Pt/Ti interface is owing to the high annealing temperature needed in CaRuO 3 synthesis

  8. Thin Film Energy Storage Device with Spray‐Coated Sliver Paste Current Collector

    Directory of Open Access Journals (Sweden)

    Seong Man Yoon

    2017-12-01

    Full Text Available This paper challenges the fabrication of a thin film energy storage device on a flexible polymer substrate specifically by replacing most commonly used metal foil current collectors with coated current collectors. Mass‐manufacturable spray‐coating technology enables the fabrication of two different half‐cell electric double layer capacitors (EDLC with a spray‐coated silver paste current collector and a Ni foil current collector. The larger specific capacitances of the half‐cell EDLC with the spray‐coated silver current collector are obtained as 103.86 F/g and 76.8 F/g for scan rates of 10 mV/s and 500 mV/s, respectively. Further, even though the half‐cell EDLC with the spray‐coated current collector is heavier than that with the Ni foil current collector, smaller Warburg impedance and contact resistance are characterized from Nyquist plots. For the applied voltages ranging from −0.5 V to 0.5 V, the spray‐coated thin film energy storage device exhibits a better performance.

  9. An easy way to measure accurately the direct magnetoelectric voltage coefficient of thin film devices

    Energy Technology Data Exchange (ETDEWEB)

    Poullain, Gilles, E-mail: gilles.poullain@ensicaen.fr; More-Chevalier, Joris; Cibert, Christophe; Bouregba, Rachid

    2017-01-15

    Tb{sub x}Dy{sub 1−x}Fe{sub 2}/Pt/Pb(Zr{sub x}, Ti{sub 1−x})O{sub 3} thin films were grown on Pt/TiO{sub 2}/SiO{sub 2}/Si substrate by multi-target sputtering. The magnetoelectric voltage coefficient α{sup Η}{sub ΜΕ} was determined at room temperature using a lock-in amplifier. By adding, in series in the circuit, a capacitor of the same value as that of the device under test, we were able to demonstrate that the magnetoelectric device behaves as a voltage source. Furthermore, a simple way to subtract the stray voltage arising from the flow of eddy currents in the measurement set-up, is proposed. This allows the easy and accurate determination of the true magnetoelectric voltage coefficient. A large α{sup Η}{sub ΜΕ} of 8.3 V/cm. Oe was thus obtained for a Terfenol-D/Pt/PZT thin film device, without DC magnetic field nor mechanical resonance. - Highlights: • Magnetoelectric device behaves as a voltage source. • A simple way to subtract eddy currents during the measurement, is proposed.

  10. Conductance Thin Film Model of Flexible Organic Thin Film Device using COMSOL Multiphysics

    Science.gov (United States)

    Carradero-Santiago, Carolyn; Vedrine-Pauléus, Josee

    We developed a virtual model to analyze the electrical conductivity of multilayered thin films placed above a graphene conducting and flexible polyethylene terephthalate (PET) substrate. The organic layers of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a hole conducting layer, poly(3-hexylthiophene-2,5-diyl) (P3HT), as a p-type, phenyl-C61-butyric acid methyl ester (PCBM) and as n-type, with aluminum as a top conductor. COMSOL Multiphysics was the software we used to develop the virtual model to analyze potential variations and conductivity through the thin-film layers. COMSOL Multiphysics software allows simulation and modeling of physical phenomena represented by differential equations such as heat transfer, fluid flow, electromagnetism, and structural mechanics. In this work, using the AC/DC, electric currents module we defined the geometry of the model and properties for each of the six layers: PET/graphene/PEDOT:PSS/P3HT/PCBM/aluminum. We analyzed the model with varying thicknesses of graphene and active layers (P3HT/PCBM). This simulation allowed us to analyze the electrical conductivity, and visualize the model with varying voltage potential, or bias across the plates, useful for applications in solar cell devices.

  11. Polycystalline silicon thin films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Christian Claus

    2012-01-15

    with an activation energy of E{sub A}{sup poly-Si}=1.1 eV. By long-lasting tempering or a short high-temperature step finally the stable layer configuration substrate/Al+Si islands(hillocks)/poly-Si can be reached (E{sub A}{sup hillocks}=2.4 eV). The further main topic of this thesis is the study of the applicability of the poly-silicon layers fabricated by means of the ALILE and R-ALILE process for electronic applications. First thin-film transistors were studied. Additionally thin-film solar cells with microcrystalline silicon as absorber material on polycrystalline R-ALILE seed layers were fabricated. Finally the suitedness of the fabricated poly-silicon layers for crytographic applications were studied.

  12. Multiferroicity in oxide thin films and heterostructures

    International Nuclear Information System (INIS)

    Glavic, Artur

    2012-01-01

    In this work a variety of different systems of transition metal oxides ABO 3 (perovskite materials, where B stands for a transition metal and A for a rare earth element) were produced as thin films and heterostructures and analyzed for the structural, magnetic and ferroelectric properties. For the epitaxial film preparation mostly pulse laser deposition (PLD) was applied. For one series high pressure oxide sputter deposition was used as well. The bulk multiferroics TbMnO 3 and DyMnO 3 , which develop their electric polarization due to a cycloidal magnetic order, have been prepared as single layers with thicknesses between 2 and 200 nm on YAlO 3 substrates using PLD and sputter deposition. The structural characterization of the surfaces and crystal structure where performed using X-ray reflectometry and diffraction, respectively. These yielded low surface roughness and good epitaxial growth. The magnetic behavior was macroscopically measured with SQUID magnetometry and microscopically with polarized neutron diffraction and resonant magnetic X-ray scattering. While all investigated samples showed antiferromagnetic order, comparable with the collinear magnetic phase of their bulk materials, only the sputter deposited samples exhibited the multiferroic low temperature cycloidal order. The investigation of the optical second harmonic generation in a TbMnO 3 sample could proof the presence of a ferroelectric order in the low temperature phase. The respective transition temperatures of the thin films have been very similar to those of the bulk materials. In contrast an increase in the rare earth ordering temperature has been observed, which reduces the Mn order slightly, an effect not known from bulk TbMnO 3 crystals. The coupling of the antiferromagnetic order in TbMnO 3 to ferromagnetic layers of LaCoO 3 was investigated in super-lattices containing 20 bilayers produced with PLD on the same substrates. The SQUID magnetometry yielded a strong influence of the

  13. Influence of irradiation on the switching behavior in PZT thin films

    International Nuclear Information System (INIS)

    Baturin, I.; Menou, N.; Shur, V.; Muller, C.; Kuznetsov, D.; Hodeau, J.-L.; Sternberg, A.

    2005-01-01

    Spatially nonuniform imprint behavior induced by X-ray synchrotron, electron and neutron irradiation has been investigated in sol-gel Pb(Zr,Ti)O 3 thin films. The analysis of the switching current data reveals the strong influence of irradiation on the switching current shape. The obtained effects have been explained as a result of acceleration of the bulk screening process induced by irradiation. It was shown that the spatial distribution of the internal bias field is determined by the domain structure existing during irradiation. The changes in the structural characteristics during fatigue cycling have been reveled by high resolution synchrotron X-ray diffraction experiments on (1 1 1)-oriented PZT-based capacitors with a composition in the morphotropic region. From both ex situ and in situ measurements, microstructural changes with cyclic switching during fatigue have been evidenced and correlated with the evolution of the switching characteristics

  14. Low temperature dielectric relaxation and charged defects in ferroelectric thin films

    Directory of Open Access Journals (Sweden)

    A. Artemenko

    2013-04-01

    Full Text Available We report a dielectric relaxation in BaTiO3-based ferroelectric thin films of different composition and with several growth modes: sputtering (with and without magnetron and sol-gel. The relaxation was observed at cryogenic temperatures (T < 100 K for frequencies from 100 Hz up to 10 MHz. This relaxation activation energy is always lower than 200 meV and is very similar to the relaxation that we reported in the parent bulk perovskites. Based on our Electron Paramagnetic Resonance (EPR investigation, we ascribe this dielectric relaxation to the hopping of electrons among Ti3+-V(O charged defects. Being dependent on the growth process and on the amount of oxygen vacancies, this relaxation can be a useful probe of defects in actual integrated capacitors with no need for specific shaping.

  15. Thin-Film Magnetic-Field-Response Fluid-Level Sensor for Non-Viscous Fluids

    Science.gov (United States)

    Woodard, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2008-01-01

    An innovative method has been developed for acquiring fluid-level measurements. This method eliminates the need for the fluid-level sensor to have a physical connection to a power source or to data acquisition equipment. The complete system consists of a lightweight, thin-film magnetic-field-response fluid-level sensor (see Figure 1) and a magnetic field response recorder that was described in Magnetic-Field-Response Measurement-Acquisition System (LAR-16908-1), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 28. The sensor circuit is a capacitor connected to an inductor. The response recorder powers the sensor using a series of oscillating magnetic fields. Once electrically active, the sensor responds with its own harmonic magnetic field. The sensor will oscillate at its resonant electrical frequency, which is dependent upon the capacitance and inductance values of the circuit.

  16. Retention Characteristics of CBTi144 Thin Films Explained by Means of X-Ray Photoemission Spectroscopy

    Directory of Open Access Journals (Sweden)

    G. Biasotto

    2010-01-01

    Full Text Available CaBi4Ti4O15 (CBTi144 thin films were grown on Pt/Ti/SiO2/Si substrates using a soft chemical solution and spin-coating method. Structure and morphology of the films were characterized by the X-ray Diffraction (XRD, Fourier-transform infrared spectroscopy (FT-IR, Raman analysis, X-ray photoemission spectroscopy (XPS, and transmission electron microscopy (TEM. The films present a single phase of layered-structured perovskite with polar axis orient. The a/b-axis orientation of the ferroelectric film is considered to be associated with the preferred orientation of the Pt bottom electrode. XPS measurements were employed to understand the nature of defects on the retention behavior of CBTi144 films. We have observed that the main source of retention-free characteristic of the capacitors is the oxygen environment in the CBTi144 lattice.

  17. Thin Films for Advanced Glazing Applications

    Directory of Open Access Journals (Sweden)

    Ann-Louise Anderson

    2016-09-01

    Full Text Available Functional thin films provide many opportunities for advanced glazing systems. This can be achieved by adding additional functionalities such as self-cleaning or power generation, or alternately by providing energy demand reduction through the management or modulation of solar heat gain or blackbody radiation using spectrally selective films or chromogenic materials. Self-cleaning materials have been generating increasing interest for the past two decades. They may be based on hydrophobic or hydrophilic systems and are often inspired by nature, for example hydrophobic systems based on mimicking the lotus leaf. These materials help to maintain the aesthetic properties of the building, help to maintain a comfortable working environment and in the case of photocatalytic materials, may provide external pollutant remediation. Power generation through window coatings is a relatively new idea and is based around the use of semi-transparent solar cells as windows. In this fashion, energy can be generated whilst also absorbing some solar heat. There is also the possibility, in the case of dye sensitized solar cells, to tune the coloration of the window that provides unheralded external aesthetic possibilities. Materials and coatings for energy demand reduction is highly desirable in an increasingly energy intensive world. We discuss new developments with low emissivity coatings as the need to replace scarce indium becomes more apparent. We go on to discuss thermochromic systems based on vanadium dioxide films. Such systems are dynamic in nature and present a more sophisticated and potentially more beneficial approach to reducing energy demand than static systems such as low emissivity and solar control coatings. The ability to be able to tune some of the material parameters in order to optimize the film performance for a given climate provides exciting opportunities for future technologies. In this article, we review recent progress and challenges in

  18. Modifying thin film diamond for electronic applications

    International Nuclear Information System (INIS)

    Baral, B.

    1999-01-01

    The unique combination of properties that diamond possesses are being exploited in both electronic and mechanical applications. An important step forward in the field has been the ability to grow thin film diamond by chemical vapour deposition (CVD) methods and to control parameters such as crystal orientation, dopant level and surface roughness. An extensive understanding of the surface of any potential electronic material is vital to fully comprehend its behaviour within device structures. The surface itself ultimately controls key aspects of device performance when interfaced with other materials. This study has provided insight into important chemical reactions on polycrystalline CVD diamond surfaces, addressing how certain surface modifications will ultimately affect the properties of the material. A review of the structure, bonding, properties and potential of diamond along with an account of the current state of diamond technology and CVD diamond growth is provided. The experimental chapter reviews bulk material and surface analytical techniques employed in this work and is followed by an investigation of cleaning treatments for polycrystalline CVD diamond aimed at removing non-diamond carbon from the surface. Selective acid etch treatments are compared and contrasted for efficacy with excimer laser irradiation and hydrogen plasma etching. The adsorption/desorption kinetics of potential dopant-containing precursors on polycrystalline CVD diamond surfaces have been investigated to compare their effectiveness at introducing dopants into the diamond during the growth stage. Both boron and sulphur-containing precursor compounds have been investigated. Treating polycrystalline CVD diamond in various atmospheres / combination of atmospheres has been performed to enhance electron field emission from the films. Films which do not emit electrons under low field conditions can be modified such that they emit at fields as low as 10 V/μm. The origin of this enhancement

  19. Optical conductivity of topological insulator thin films

    International Nuclear Information System (INIS)

    Li, L. L.; Xu, W.; Peeters, F. M.

    2015-01-01

    We present a detailed theoretical study on the optoelectronic properties of topological insulator thin film (TITFs). The k·p approach is employed to calculate the energy spectra and wave functions for both the bulk and surface states in the TITF. With these obtained results, the optical conductivities induced by different electronic transitions among the bulk and surface states are evaluated using the energy-balance equation derived from the Boltzmann equation. We find that for Bi 2 Se 3 -based TITFs, three characteristic regimes for the optical absorption can be observed. (i) In the low radiation frequency regime (photon energy ℏω<200 meV), the free-carrier absorption takes place due to intraband electronic transitions. An optical absorption window can be observed. (ii) In the intermediate radiation frequency regime (200<ℏω<300 meV), the optical absorption is induced mainly by interband electronic transitions from surface states in the valance band to surface states in the conduction band and an universal value σ 0 =e 2 /(8ℏ) for the optical conductivity can be obtained. (iii) In the high radiation frequency regime (ℏω>300 meV), the optical absorption can be achieved via interband electronic transitions from bulk and surface states in the valance band to bulk and surface states in the conduction band. A strong absorption peak can be observed. These interesting findings indicate that optical measurements can be applied to identify the energy regimes of bulk and surface states in the TITF

  20. Dimensional scaling of perovskite ferroelectric thin films

    Science.gov (United States)

    Keech, Ryan R.

    Dimensional size reduction has been the cornerstone of the exponential improvement in silicon based logic devices for decades. However, fundamental limits in the device physics were reached ˜2003, halting further reductions in clock speed without significant penalties in power consumption. This has motivated the research into next generation transistors and switching devices to reinstate the scaling laws for clock speed. This dissertation aims to support the scaling of devices that are based on ferroelectricity and piezoelectricity and to provide a roadmap for the corresponding materials performance. First, a scalable growth process to obtain highly {001}-oriented lead magnesium niobate - lead titanate (PMN-PT) thin films was developed, motivated by the high piezoelectric responses observed in bulk single crystals. It was found that deposition of a 2-3 nm thick PbO buffer layer on {111} Pt thin film bottom electrodes, prior to chemical solution deposition of PMN-PT reduces the driving force for Pb diffusion from the PMN-PT to the bottom electrode, and facilitates nucleation of {001}-oriented perovskite grains. Energy dispersive spectroscopy demonstrated that up to 10% of the Pb from a PMN-PT precursor solution may diffuse into the bottom electrode. PMN-PT grains with a mixed {101}/{111} orientation in a matrix of Pb-deficient pyrochlore phase were then promoted near the interface. When this is prevented, phase pure films with {001} orientation with Lotgering factors of 0.98-1.0, can be achieved. The resulting films of only 300 nm in thickness exhibit longitudinal effective d33,f coefficients of ˜90 pm/V and strain values of ˜1% prior to breakdown. 300 nm thick epitaxial and polycrystalline lead magnesium niobate - lead titanate (70PMN-30PT) blanket thin films were studied for the relative contributions to property thickness dependence from interfacial and grain boundary low permittivity layers. Epitaxial PMN-PT films were grown on SrRuO 3 /(001)SrTiO3, while

  1. Low-temperature atomic layer deposition of MgO thin films on Si

    International Nuclear Information System (INIS)

    Vangelista, S; Mantovan, R; Lamperti, A; Tallarida, G; Kutrzeba-Kotowska, B; Spiga, S; Fanciulli, M

    2013-01-01

    Magnesium oxide (MgO) films have been grown by atomic layer deposition in the wide deposition temperature window of 80–350 °C by using bis(cyclopentadienyl)magnesium and H 2 O precursors. MgO thin films are deposited on both HF-last Si(1 0 0) and SiO 2 /Si substrates at a constant growth rate of ∼0.12 nm cycle −1 . The structural, morphological and chemical properties of the synthesized MgO thin films are investigated by x-ray reflectivity, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectrometry and atomic force microscopy measurements. MgO layers are characterized by sharp interface with the substrate and limited surface roughness, besides good chemical uniformity and polycrystalline structure for thickness above 7 nm. C–V measurements performed on Al/MgO/Si MOS capacitors, with MgO in the 4.6–11 nm thickness range, allow determining a dielectric constant (κ) ∼ 11. Co layers are grown by chemical vapour deposition in direct contact with MgO without vacuum-break (base pressure 10 −5 –10 −6  Pa). The as-grown Co/MgO stacks show sharp interfaces and no elements interdiffusion among layers. C–V and I–V measurements have been conducted on Co/MgO/Si MOS capacitors. The dielectric properties of MgO are not influenced by the further process of Co deposition. (paper)

  2. Thermodynamic and kinetic anisotropies in octane thin films

    Energy Technology Data Exchange (ETDEWEB)

    Haji-Akbari, Amir; Debenedetti, Pablo G., E-mail: pdebene@exchange.princeton.edu [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-12-07

    Confinement breaks the translational symmetry of materials, making all thermodynamic and kinetic quantities functions of position. Such symmetry breaking can be used to obtain configurations that are not otherwise accessible in the bulk. Here, we use computer simulations to explore the effect of substrate-liquid interactions on thermodynamic and kinetic anisotropies induced by a solid substrate. We consider n-octane nano-films that are in contact with substrates with varying degrees of attraction, parameterized by an interaction parameter ϵ{sub S}. Complete freezing of octane nano-films is observed at low temperatures, irrespective of ϵ{sub S}, while at intermediate temperatures, a frozen monolayer emerges at solid-liquid and vapor-liquid interfaces. By carefully inspecting the profiles of translational and orientational relaxation times, we confirm that the translational and orientational degrees of freedom are decoupled at these frozen monolayers. At sufficiently high temperatures, however, free interfaces and solid-liquid interfaces close to loose (low-ϵ{sub S}) substrates undergo “pre-freezing,” characterized by mild peaks in several thermodynamic quantities. Two distinct dynamic regimes are observed at solid-liquid interfaces. The dynamics is accelerated in the vicinity of loose substrates, while sticky (high-ϵ{sub S}) substrates decelerate dynamics, sometimes by as much as two orders of magnitude. These two distinct dynamical regimes have been previously reported by Haji-Akbari and Debenedetti [J. Chem. Phys. 141, 024506 (2014)] for a model atomic glass-forming liquid. We also confirm the existence of two correlations—proposed in the above-mentioned work—in solid-liquid subsurface regions of octane thin films, i.e., a correlation between atomic density and normal stress, and between atomic translational relaxation time and lateral stress. Finally, we inspect the ability of different regions of an octane film to explore the potential energy

  3. Thermodynamic and kinetic anisotropies in octane thin films.

    Science.gov (United States)

    Haji-Akbari, Amir; Debenedetti, Pablo G

    2015-12-07

    Confinement breaks the translational symmetry of materials, making all thermodynamic and kinetic quantities functions of position. Such symmetry breaking can be used to obtain configurations that are not otherwise accessible in the bulk. Here, we use computer simulations to explore the effect of substrate-liquid interactions on thermodynamic and kinetic anisotropies induced by a solid substrate. We consider n-octane nano-films that are in contact with substrates with varying degrees of attraction, parameterized by an interaction parameter ϵS. Complete freezing of octane nano-films is observed at low temperatures, irrespective of ϵS, while at intermediate temperatures, a frozen monolayer emerges at solid-liquid and vapor-liquid interfaces. By carefully inspecting the profiles of translational and orientational relaxation times, we confirm that the translational and orientational degrees of freedom are decoupled at these frozen monolayers. At sufficiently high temperatures, however, free interfaces and solid-liquid interfaces close to loose (low-ϵS) substrates undergo "pre-freezing," characterized by mild peaks in several thermodynamic quantities. Two distinct dynamic regimes are observed at solid-liquid interfaces. The dynamics is accelerated in the vicinity of loose substrates, while sticky (high-ϵS) substrates decelerate dynamics, sometimes by as much as two orders of magnitude. These two distinct dynamical regimes have been previously reported by Haji-Akbari and Debenedetti [J. Chem. Phys. 141, 024506 (2014)] for a model atomic glass-forming liquid. We also confirm the existence of two correlations-proposed in the above-mentioned work-in solid-liquid subsurface regions of octane thin films, i.e., a correlation between atomic density and normal stress, and between atomic translational relaxation time and lateral stress. Finally, we inspect the ability of different regions of an octane film to explore the potential energy landscape by performing inherent

  4. Thermodynamic and kinetic anisotropies in octane thin films

    International Nuclear Information System (INIS)

    Haji-Akbari, Amir; Debenedetti, Pablo G.

    2015-01-01

    Confinement breaks the translational symmetry of materials, making all thermodynamic and kinetic quantities functions of position. Such symmetry breaking can be used to obtain configurations that are not otherwise accessible in the bulk. Here, we use computer simulations to explore the effect of substrate-liquid interactions on thermodynamic and kinetic anisotropies induced by a solid substrate. We consider n-octane nano-films that are in contact with substrates with varying degrees of attraction, parameterized by an interaction parameter ϵ S . Complete freezing of octane nano-films is observed at low temperatures, irrespective of ϵ S , while at intermediate temperatures, a frozen monolayer emerges at solid-liquid and vapor-liquid interfaces. By carefully inspecting the profiles of translational and orientational relaxation times, we confirm that the translational and orientational degrees of freedom are decoupled at these frozen monolayers. At sufficiently high temperatures, however, free interfaces and solid-liquid interfaces close to loose (low-ϵ S ) substrates undergo “pre-freezing,” characterized by mild peaks in several thermodynamic quantities. Two distinct dynamic regimes are observed at solid-liquid interfaces. The dynamics is accelerated in the vicinity of loose substrates, while sticky (high-ϵ S ) substrates decelerate dynamics, sometimes by as much as two orders of magnitude. These two distinct dynamical regimes have been previously reported by Haji-Akbari and Debenedetti [J. Chem. Phys. 141, 024506 (2014)] for a model atomic glass-forming liquid. We also confirm the existence of two correlations—proposed in the above-mentioned work—in solid-liquid subsurface regions of octane thin films, i.e., a correlation between atomic density and normal stress, and between atomic translational relaxation time and lateral stress. Finally, we inspect the ability of different regions of an octane film to explore the potential energy landscape by performing

  5. Characterization of RuO sub 2 electrodes for ferroelectric thin films prepared by metal-organic chemical-vapor deposition using Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3

    CERN Document Server

    Lee, J M; Shin, J C; Hwang, C S; Kim, H J; Suk, C G

    1999-01-01

    Pure and conducting RuO sub 2 thin films were deposited on Si substrates at 250 approx 450 .deg. C using Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3 as a precursor by low-pressure metal-organic chemical-vapor deposition (LP-MOCVD). At a lower deposition temperature,smoother and denser RuO sub 2 thin films were deposited. The RuO sub 2 thin films, which were crack free, adhered well onto the substrates and showed very low resistivities around 45 approx 60 mu OMEGA cm. RuO sub 2 thin films on (Ba, Sr)/TiO sub 3 /Pt/SiO sub 2 /Si showed good properties, indicating that MOCVD RuO sub 2 thin films from Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3 can be applied as electrodes of high-dielectric thin films for capacitors in ultra-large-scale DRAMs.

  6. Polycaprolactone thin films for retinal tissue engineering and drug delivery

    Science.gov (United States)

    Steedman, Mark Rory

    This dissertation focuses on the development of polycaprolactone thin films for retinal tissue engineering and drug delivery. We combined these thin films with techniques such as micro and nanofabrication to develop treatments for age-related macular degeneration (AMD), a disease that leads to the death of rod and cone photoreceptors. Current treatments are only able to slow or limit the progression of the disease, and photoreceptors cannot be regenerated or replaced by the body once lost. The first experiments presented focus on a potential treatment for AMD after photoreceptor death has occurred. We developed a polymer thin film scaffold technology to deliver retinal progenitor cells (RPCs) to the affected area of the eye. Earlier research showed that RPCs destined to become photoreceptors are capable of incorporating into a degenerated retina. In our experiments, we showed that RPC attachment to a micro-welled polycaprolactone (PCL) thin film surface enhanced the differentiation of these cells toward a photoreceptor fate. We then used our PCL thin films to develop a drug delivery device capable of sustained therapeutic release over a multi-month period that would maintain an effective concentration of the drug in the eye and eliminate the need for repeated intraocular injections. We first investigated the biocompatibility of PCL in the rabbit eye. We injected PCL thin films into the anterior chamber or vitreous cavity of rabbit eyes and monitored the animals for up to 6 months. We found that PCL thin films were well tolerated in the rabbit eye, showing no signs of chronic inflammation due to the implant. We then developed a multilayered thin film device containing a microporous membrane. We loaded these devices with lyophilized proteins and quantified drug elution for 10 weeks, finding that both bovine serum albumin and immunoglobulin G elute from these devices with zero order release kinetics. These experiments demonstrate that PCL is an extremely useful

  7. Thermochemical hydrogen generation of indium oxide thin films

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2017-03-01

    Full Text Available Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  8. Thermionic vacuum arc (TVA) technique for magnesium thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Balbag, M.Z., E-mail: zbalbag@ogu.edu.t [Eskisehir Osmangazi University, Education Faculty, Primary Education, Meselik Campus, Eskisehir 26480 (Turkey); Pat, S.; Ozkan, M.; Ekem, N. [Eskisehir Osmangazi University, Art and Science Faculty, Physics Department, Eskisehir 26480 (Turkey); Musa, G. [Ovidius University, Physics Department, Constanta (Romania)

    2010-08-15

    In this study, magnesium thin films were deposited on glass substrate by the Thermionic Vacuum Arc (TVA) technique for the first time. We present a different technique for deposition of high-quality magnesium thin films. By means of this technique, the production of films is achieved by condensing the plasma of anode material generated using Thermionic Vacuum Arc (TVA) under high vacuum conditions onto the surface to be coated. The crystal orientation and morphology of the deposited films were investigated by using XRD, EDX, SEM and AFM. The aim of this study is to search the use of TVA technique to coat magnesium thin films and to determine some of the physical properties of the films generated. Furthermore, this study will contribute to the scientific studies which search the thin films of magnesium or the compounds containing magnesium. In future, this study will be preliminary work to entirely produce magnesium diboride (MgB{sub 2}) superconductor thin film with the TVA technique.

  9. Porous Zinc Oxide Thin Films: Synthesis Approaches and Applications

    Directory of Open Access Journals (Sweden)

    Marco Laurenti

    2018-02-01

    Full Text Available Zinc oxide (ZnO thin films have been widely investigated due to their multifunctional properties, i.e., catalytic, semiconducting and optical. They have found practical use in a wide number of application fields. However, the presence of a compact micro/nanostructure has often limited the resulting material properties. Moreover, with the advent of low-dimensional ZnO nanostructures featuring unique physical and chemical properties, the interest in studying ZnO thin films diminished more and more. Therefore, the possibility to combine at the same time the advantages of thin-film based synthesis technologies together with a high surface area and a porous structure might represent a powerful solution to prepare ZnO thin films with unprecedented physical and chemical characteristics that may find use in novel application fields. Within this scope, this review offers an overview on the most successful synthesis methods that are able to produce ZnO thin films with both framework and textural porosities. Moreover, we discuss the related applications, mainly focused on photocatalytic degradation of dyes, gas sensor fabrication and photoanodes for dye-sensitized solar cells.

  10. Altering properties of cerium oxide thin films by Rh doping

    International Nuclear Information System (INIS)

    Ševčíková, Klára; Nehasil, Václav; Vorokhta, Mykhailo; Haviar, Stanislav; Matolín, Vladimír

    2015-01-01

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO x thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO x thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffraction techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce 4+ and Ce 3+ and rhodium occurs in two oxidation states, Rh 3+ and Rh n+ . We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO x thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO x thin films leads to preparing materials with different properties

  11. Characterization of Sucrose Thin Films for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    S. L. Iconaru

    2011-01-01

    Full Text Available Sucrose is a natural osmolyte accumulated in the cells of organisms as they adapt to environmental stress. In vitro sucrose increases protein stability and forces partially unfolded structures to refold. Thin films of sucrose (C12H22O11 were deposited on thin cut glass substrates by the thermal evaporation technique (P∼10−5 torr. Characteristics of thin films were put into evidence by Fourier Transform Infrared Spectroscopy (FTIR, X-ray Photoelectron Spectroscopy (XPS, scanning electron microscopy (SEM, and differential thermal analysis and thermal gravimetric analysis (TG/DTA. The experimental results confirm a uniform deposition of an adherent layer. In this paper we present a part of the characteristics of sucrose thin films deposited on glass in medium vacuum conditions, as a part of a culture medium for osteoblast cells. Osteoblast cells were used to determine proliferation, viability, and cytotoxicity interactions with sucrose powder and sucrose thin films. The osteoblast cells have been provided from the American Type Culture Collection (ATCC Centre. The outcome of this study demonstrated the effectiveness of sucrose thin films as a possible nontoxic agent for biomedical applications.

  12. Buckling of Thin Films in Nano-Scale

    Directory of Open Access Journals (Sweden)

    Li L.A.

    2010-06-01

    Full Text Available Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.

  13. Aluminosilicate glass thin films elaborated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Thibault [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Saitzek, Sébastien [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Méar, François O., E-mail: francois.mear@univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Blach, Jean-François; Ferri, Anthony [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Huvé, Marielle; Montagne, Lionel [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-03-01

    Highlights: • Successfully deposition of a glassy thin film by PLD. • A good homogeneity and stoichiometry of the coating. • Influence of the deposition temperature on the glassy thin-film structure. - Abstract: In the present work, we report the elaboration of aluminosilicate glass thin films by Pulsed Laser Deposition at various temperatures deposition. The amorphous nature of glass thin films was highlighted by Grazing Incidence X-Ray Diffraction and no nanocristallites were observed in the glassy matrix. Chemical analysis, obtained with X-ray Photoelectron Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy, showed a good transfer and homogeneous elementary distribution with of chemical species from the target to the film a. Structural studies performed by Infrared Spectroscopy showed that the substrate temperature plays an important role on the bonding configuration of the layers. A slight shift of Si-O modes to larger wavenumber was observed with the synthesis temperature, assigned to a more strained sub-oxide network. Finally, optical properties of thins film measured by Spectroscopic Ellipsometry are similar to those of the bulk aluminosilicate glass, which indicate a good deposition of aluminosilicate bulk glass.

  14. Structural and electrical properties of CZTS thin films by electrodeposition

    Science.gov (United States)

    Rao, M. C.; Basha, Sk. Shahenoor

    2018-06-01

    CZTS (Cu2ZnSnS4) thin films were coated on ITO glass substrates by single bath electrodeposition technique. The prepared films were subsequently characterized by XRD, SEM, FTIR, UV-visible spectroscopy and Raman studies. The thickness of the thin films was measured by wedge method. X-ray diffraction studies revealed the formation of polycrystalline phase. The morphological surface of the prepared thin films was examined by SEM and AFM and showed the presence of microcrystals on the surface of the samples. The elemental analysis and their compositional ratios present in the samples were confirmed by the energy dispersive X-ray analysis. Functional groups and the position of band structure involved in the materials were confirmed by FTIR. Optical absorption studies were performed on the prepared thin films in the wavelength ranging from 300 to 1000 nm and the energy bandgap values were found to be in the range from 1.39 to 1.60 eV. Raman spectral peak which was observed at 360 cm-1 correspond to kesterite phase, was formed due to the vibration of the molecules. Electrical measurements confirmed the nature of the thin film depending on the charge concentration present in the samples.

  15. Emergent Topological Phenomena in Thin Films of Pyrochlore Iridates

    Science.gov (United States)

    Yang, Bohm-Jung; Nagaosa, Naoto

    2014-06-01

    Because of the recent development of thin film and artificial superstructure growth techniques, it is possible to control the dimensionality of the system, smoothly between two and three dimensions. In this Letter we unveil the dimensional crossover of emergent topological phenomena in correlated topological materials. In particular, by focusing on the thin film of pyrochlore iridate antiferromagnets grown along the [111] direction, we demonstrate that the thin film can have a giant anomalous Hall conductance, proportional to the thickness of the film, even though there is no Hall effect in 3D bulk material. Moreover, in the case of ultrathin films, a quantized anomalous Hall conductance can be observed, despite the fact that the system is an antiferromagnet. In addition, we uncover the emergence of a new topological phase, the nontrivial topological properties of which are hidden in the bulk insulator and manifest only in thin films. This shows that the thin film of correlated topological materials is a new platform to search for unexplored novel topological phenomena.

  16. Repulsive effects of hydrophobic diamond thin films on biomolecule detection

    Energy Technology Data Exchange (ETDEWEB)

    Ruslinda, A. Rahim, E-mail: ruslindarahim@gmail.com [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Jln Kgr-Alor Setar, Seriab, 01000 Kangar, Perlis (Malaysia); Department of Nano Science and Nano Engineering, School of Advance Science and Engineering, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo (Japan); Ishiyama, Y. [Department of Nano Science and Nano Engineering, School of Advance Science and Engineering, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo (Japan); Penmatsa, V. [Department of Mechanical and Materials Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174 (United States); Ibori, S.; Kawarada, H. [Department of Nano Science and Nano Engineering, School of Advance Science and Engineering, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo (Japan)

    2015-02-15

    Highlights: • We report the effect of fluorine plasma treatment on diamond thin film to resist the nonspecific adsorption of biomolecules. • The diamond thin film were highly hydrophobic with a surface energy value of ∼25 mN/m. • The repulsive effect shows excellent binding efficiency for both DNA and HIV-1 Tat protein. - Abstract: The repulsive effect of hydrophobic diamond thin film on biomolecule detection, such as single-nucleotide polymorphisms and human immunodeficiency virus type 1 trans-activator of transcription peptide protein detection, was investigated using a mixture of a fluorine-, amine-, and hydrogen-terminated diamond surfaces. These chemical modifications lead to the formation of a surface that effectively resists the nonspecific adsorption of proteins and other biomolecules. The effect of fluorine plasma treatment on elemental composition was also investigated via X-ray photoelectron spectroscopy (XPS). XPS results revealed a fluorocarbon layer on the diamond thin films. The contact angle measurement results indicated that the fluorine-treated diamond thin films were highly hydrophobic with a surface energy value of ∼25 mN/m.

  17. Repulsive effects of hydrophobic diamond thin films on biomolecule detection

    International Nuclear Information System (INIS)

    Ruslinda, A. Rahim; Ishiyama, Y.; Penmatsa, V.; Ibori, S.; Kawarada, H.

    2015-01-01

    Highlights: • We report the effect of fluorine plasma treatment on diamond thin film to resist the nonspecific adsorption of biomolecules. • The diamond thin film were highly hydrophobic with a surface energy value of ∼25 mN/m. • The repulsive effect shows excellent binding efficiency for both DNA and HIV-1 Tat protein. - Abstract: The repulsive effect of hydrophobic diamond thin film on biomolecule detection, such as single-nucleotide polymorphisms and human immunodeficiency virus type 1 trans-activator of transcription peptide protein detection, was investigated using a mixture of a fluorine-, amine-, and hydrogen-terminated diamond surfaces. These chemical modifications lead to the formation of a surface that effectively resists the nonspecific adsorption of proteins and other biomolecules. The effect of fluorine plasma treatment on elemental composition was also investigated via X-ray photoelectron spectroscopy (XPS). XPS results revealed a fluorocarbon layer on the diamond thin films. The contact angle measurement results indicated that the fluorine-treated diamond thin films were highly hydrophobic with a surface energy value of ∼25 mN/m

  18. Stability of tetraphenyl butadiene thin films in liquid xenon

    International Nuclear Information System (INIS)

    Sanguino, P.; Balau, F.; Botelho do Rego, A.M.; Pereira, A.; Chepel, V.

    2016-01-01

    Tetraphenyl butadiene (TPB) is widely used in particle detectors as a wavelength shifter. In this work we studied the stability of TPB thin films when immersed in liquid xenon (LXe). The thin films were deposited on glass and quartz substrates by thermal evaporation. Morphological and chemical surface properties were monitored before and after immersion into LXe by scanning electron microscopy and X-ray photoelectron spectroscopy. No appreciable changes have been detected with these two methods. Grain size and surface chemical composition were found to be identical before and after submersion into LXe. However, the film thickness, measured via optical transmission in the ultraviolet–visible wavelength regions, decreased by 1.6 μg/cm 2 (24%) after immersion in LXe during 20 h. These results suggest the necessity of using a protective thin film over the Tetraphenyl butadiene when used as a wavelength shifter in LXe particle detectors. - Highlights: • Stability of tetraphenyl butadiene (TPB) thin films immersed in liquid xenon (LXe). • Thermally evaporated TPB thin films were immersed in LXe for 20 h. • Film morphology and chemical surface properties remained unchanged. • Surface density of the films decreased by 1.6 μg/cm 2 (24%) after immersion in LXe. • For using in LXe particle detectors, TPB films should be protected with a coating.

  19. Self-assembly of dodecaphenyl POSS thin films

    Science.gov (United States)

    Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor

    2017-12-01

    The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.

  20. Hydrophobicity studies of polymer thin films with varied CNT concentration

    Science.gov (United States)

    M. Rodzi, N. H.; M. Shahimin, M.; Poopalan, P.; Man, B.; M. Nor, M. N.

    2013-12-01

    Surface functionalization studies for re-creating a `Lotus Leaf' effect (superhydrophobic) have been carried out for the past decade; looking for the material which can provide high transparency, low energy surface and high surface roughness. Fabrication of polydimethylsiloxane (PDMS) and multiwalled carbon nanotubes (MWCNT) hybrid thin film variations on glass to produce near-superhydrophobic surfaces is presented in this paper. There are three important parameters studied in producing hydrophobic surfaces based on the hybrid thin films; concentration of PDMS, concentration of MWCNT and droplet sizes. The study is carried out by using PDMS of varied cross linker ratio (10:1, 30:1 and 50:1) with MWCNT concentration of 1mg, 10mg and 15mg for 0.5 μl, 2.0 μl, 5.0 μl and 10 μl droplet sizes. The resulting hybrid thin films show that hydrophobicity increased with increasing cross linker ratio and MWCNT percentage in the PDMS solution. A near superhydrophobic surface can be created when using 15 mg of MWCNT with 50:1 cross linker ratio PDMS thin films, measured on 10 μl droplet size. The hybrid thin films produced can be potentially tailored to the application of biosensors, MEMS and even commercial devices.

  1. Structural and Electrochemical Properties of Lithium Nickel Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Gyu-bong Cho

    2014-01-01

    Full Text Available LiNiO2 thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2 thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4 oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2 thin film. The ZrO2-coated LiNiO2 thin film provided an improved discharge capacity compared to bare LiNiO2 thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2 coating layer.

  2. A Variational approach to thin film hydrodynamics of binary mixtures

    KAUST Repository

    Xu, Xinpeng

    2015-02-04

    In order to model the dynamics of thin films of mixtures, solutions, and suspensions, a thermodynamically consistent formulation is needed such that various coexisting dissipative processes with cross couplings can be correctly described in the presence of capillarity, wettability, and mixing effects. In the present work, we apply Onsager\\'s variational principle to the formulation of thin film hydrodynamics for binary fluid mixtures. We first derive the dynamic equations in two spatial dimensions, one along the substrate and the other normal to the substrate. Then, using long-wave asymptotics, we derive the thin film equations in one spatial dimension along the substrate. This enables us to establish the connection between the present variational approach and the gradient dynamics formulation for thin films. It is shown that for the mobility matrix in the gradient dynamics description, Onsager\\'s reciprocal symmetry is automatically preserved by the variational derivation. Furthermore, using local hydrodynamic variables, our variational approach is capable of introducing diffusive dissipation beyond the limit of dilute solute. Supplemented with a Flory-Huggins-type mixing free energy, our variational approach leads to a thin film model that treats solvent and solute in a symmetric manner. Our approach can be further generalized to include more complicated free energy and additional dissipative processes.

  3. Mechanics of evolving thin film structures

    Science.gov (United States)

    Liang, Jim

    In the Stranski-Krastanov system, the lattice mismatch between the film and the substrate causes the film to break into islands. During annealing, both the surface energy and the elastic energy drive the islands to coarsen. Motivated by several related studies, we suggest that stable islands should form when a stiff ceiling is placed at a small gap above the film. We show that the role of elasticity is reversed: with the ceiling, the total elastic energy stored in the system increases as the islands coarsen laterally. Consequently, the islands select an equilibrium size to minimize the combined elastic energy and surface energy. In lithographically-induced self-assembly, when a two-phase fluid confined between parallel substrates is subjected to an electric field, one phase can self-assemble into a triangular lattice of islands in another phase. We describe a theory of the stability of the island lattice. The islands select the equilibrium diameter to minimize the combined interface energy and electrostatic energy. Furthermore, we study compressed SiGe thin film islands fabricated on a glass layer, which itself lies on a silicon wafer. Upon annealing, the glass flows, and the islands relax. A small island relaxes by in-plane expansion. A large island, however, wrinkles at the center before the in-plane relaxation arrives. The wrinkles may cause significant tensile stress in the island, leading to fracture. We model the island by the von Karman plate theory and the glass layer by the Reynolds lubrication theory. Numerical simulations evolve the in-plane expansion and the wrinkles simultaneously. We determine the critical island size, below which in-plane expansion prevails over wrinkling. Finally, in devices that integrate dissimilar materials in small dimensions, crack extension in one material often accompanies inelastic deformation in another. We analyze a channel crack advancing in an elastic film under tension, while an underlayer creeps. We use a two

  4. Nonlinear dielectric response in ferroelectric thin films

    Directory of Open Access Journals (Sweden)

    Lente, M. H.

    2004-08-01

    Full Text Available Electrical permittivity dependence on electric external bias field was investigated in PZT thin films. The results revealed the existence of two mechanisms contributing to the electrical permittivity. The first one was related to the domain reorientation, which was responsible for a strong no linear dielectric behavior, acting only during the poling process. The second mechanism was associated with the domain wall vibrations, which presented a reasonable linear electrical behavior with the applied bias field, contributing always to the permittivity independently of the poling state of the sample. The results also indicated that the gradual reduction of the permittivity with the increase of the bias field strength may be related to the gradual bending of the domain walls. It is believed that the domain wall bending induces a hardening and/or a thinning of the walls, thus reducing the electrical permittivity. A reinterpretation of the model proposed in the literature to explain the dielectric characteristics of ferroelectric materials at high electric field regime is proposed.

    Se ha estudiado la dependencia de la permitividad eléctrica con un campo bias externo en láminas delgadas de PZT. Los resultados revelaron la existencia de dos mecanismos que contribuyen a la permitividad eléctrica. El primero está relacionado con la reorientación de dominios, actúa sólo durante el proceso de polarización y es responsable de un comportamiento dieléctrico fuertemente no lineal. El segundo mecanismo se asocia a las vibraciones de las paredes de dominio, presentando un comportamiento eléctrico razonablemente lineal con el campo bias aplicado, contribuyendo siempre a la permitividad independientemente del estado de polarización de la muestra. Los resultados indicaron también que la reducción gradual de la permitividad con el aumento de la fuerza del campo bias podría estar relacionada con el “bending” gradual de las paredes de dominio

  5. Thin film Heusler compounds manganese nickel gallium

    Science.gov (United States)

    Jenkins, Catherine Ann

    Multiferroic Heusler compounds Mn3--xNi xGa (x=0,1,2) have a tetragonal unit cell that can variously be used for magneto-mechanically coupled shape memory ( x=1,2) and spin-mechanical applications (x=0). The first fabrication of fully epitaxial thin films of these and electronically related compounds by sputtering is discussed. Traditional and custom lab characterization of the magnetic and temperature driven multiferroic behavior is augmented by more detailed synchrotron-based high energy photoemission spectroscopic techniques to describe the atomic and electronic structure. Integration of the MnNi2Ga magnetic shape memory compound in microwave patch antennas and active free-standing structures represents a fraction of the available and promising applications for these compounds. Prototype magnetic tunnel junctions are demonstrated by Mn3Ga electrodes with perpendicular anisotropy for spin torque transfer memory structures. The main body of the work concentrates on the definition and exploration of the material series Mn3--xNi xGa (x=0,1,2) and the relevant multiferroic phenomena exhibited as a function of preparation and external stimuli. Engineering results on each x=0,1,2 are presented with device prototypes where relevant. In the appendices the process of the materials design undertaken with the goal of developing new ternary intermetallics with enhanced properties is presented with a full exploration of the road from band structure calculations to device implementation. Cobalt based compounds in single crystal and nanoparticle form are fabricated with an eye to developing the production methods for new cobalt- and iron-based magnetic shape memory compounds for device applications in different forms. Mn2CoSn, a compound isolectronic and with similar atomic ordering to Mn2NiGa is experimentally determined to be a nearly half-metallic ferromagnet in contrast to the metallic ferrimagnetism in the parent compound. High energy photoemission spectroscopy is shown to

  6. Thin film-XRF determination of uranium following thin-film solid phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Jalal, E-mail: jalalhassan@ut.ac.ir [Department of Toxicology, Faculty of Veterinary Medicine, University of Tehran (Iran, Islamic Republic of); Hosseini, Seyed M.; Mozaffari, Shahla [Department of Chemistry, Payame Noor University, Tehran (Iran, Islamic Republic of); Jahanparast, Babak; Karbasi, Mohammad H. [Iranian Mineral Processing Research Center, Ministry of Industry and Mineral, Karaj (Iran, Islamic Republic of)

    2014-07-01

    A sensitive method based on the preconcentration of uranium on modified filter paper (thin film) has been developed to determinate this element in water and soil samples by wavelength dispersive X-ray fluorescence. Uranium (VI) extraction from nitric acid medium by trioctyl phosphine (TOPO) from 100 mL of sample was carried out. The effects of nitric acid concentration, TOPO concentration and sample breakthrough on uranium extraction were investigated in this study. The proposed method provided good linearity from 7 to 1000 μg and the limit of detection (LOD), based on a signal-to noise ratio (S/N) of 3, was 2.5 μg. (author)

  7. Multifunctional Parylene-C Microfibrous Thin Films

    Science.gov (United States)

    Chindam, Chandraprakash

    Towards sustainable development, multifunctional products have many advantageous over single-function products: reduction in number of parts, raw material, assembly time, and cost involved in a product's life cycle. My goal for this thesis was to demonstrate the multifunctionalities of Parylene-C microfibrous thin films. To achieve this goal, I chose Parylene C, a polymer, because the fabrication of periodic mediums of Parylene C in the form of microfibrous thin films (muFTFs) was already established. A muFTFs is a parallel arrangement of identical micrometer-sized fibers of shapes cylindrical, chevronic, or helical. Furthermore, Parylene C had three existing functions: in medical-device industries as corrosion-resistive coatings, in electronic industries as electrically insulating coatings, and in biomedical research for tissue-culture substrates. As the functionalities of a material are dependent on the microstructure and physical properties, the investigation made for this thesis was two-fold: (1) Experimentally, I determined the wetting, mechanical, and dielectric properties of columnar muFTFs and examined the microstructural and molecular differences between bulk films and muFTFs. (2) Using physical properties of bulk film, I computationally determined the elastodynamic and determined the electromagnetic filtering capabilities of Parylene-C muFTFs. Several columnar muFTFs of Parylene C were fabricated by varying the monomer deposition angle. Following are the significant experimental findings: 1. Molecular and microstructural characteristics: The dependence of the microfiber inclination angle on the monomer deposition angle was classified into four regimes of two different types. X-ray diffraction experiments indicated that the columnar muFTFs contain three crystal planes not evident in bulk Parylene-C films and that the columnar muFTFs are less crystalline than bulk films. Infrared absorbance spectra revealed that the atomic bonding is the same in all

  8. Preparation and properties of thin films treatise on materials science and technology

    CERN Document Server

    Tu, K N

    1982-01-01

    Treatise on Materials Science and Technology, Volume 24: Preparation and Properties of Thin Films covers the progress made in the preparation of thin films and the corresponding study of their properties. The book discusses the preparation and property correlations in thin film; the variation of microstructure of thin films; and the molecular beam epitaxy of superlattices in thin film. The text also describes the epitaxial growth of silicon structures (thermal-, laser-, and electron-beam-induced); the characterization of grain boundaries in bicrystalline thin films; and the mechanical properti

  9. Proceedings of the international conference on thin films and applications: book of abstracts

    International Nuclear Information System (INIS)

    2013-01-01

    In the era of miniaturization, the role of thin films is highly significant to achieve smaller devices with higher speed especially in new generation of integrated circuits, sensors, flat panel displays, Micro-Electro-Mechanical Systems (MEMS), biomedical devices, optical instruments and microwave communications. Thin films as a nano-scale dimensional system have great importance to many challenging applications. Biological coatings, clean energy, ferroelectric and piezoelectric thin films, ion beam thin films, magnetic thin films, nanostructured and nano composite coatings, NEMS, sensors, thin film preparation and characterization are the topics covered in this symposium. Papers relevant to INIS are indexed separately

  10. Cell adhesion to cathodic arc plasma deposited CrAlSiN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Kyu, E-mail: skim@ulsan.ac.kr [School of Materials Science and Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Pham, Vuong-Hung [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Kim, Chong-Hyun [Department of Food Science, Cornell University, Ithaca, NY 14853 (United States)

    2012-07-01

    Osteoblast cell response (cell adhesion, actin cytoskeleton and focal contact adhesion as well as cell proliferation) to CrN, CrAlSiN and Ti thin films was evaluated in vitro. Cell adhesion and actin stress fibers organization depended on the film composition significantly. Immunofluorescent staining of vinculin in osteoblast cells showed good focal contact adhesion on the CrAlSiN and Ti thin films but not on the CrN thin films. Cell proliferation was significantly greater on the CrAlSiN thin films as well as on Ti thin films than on the CrN thin films.

  11. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José

    2010-10-24

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation and strain in oxide ionic conducting materials used as electrolytes, such as fluorites, and in mixed ionic and electronic conducting materials used as electrodes, typically oxides with perovskite or perovskite-related layered structures. The recent effort towards the enhancement of the electrochemical performance of SOFC materials through the deposition of artificial film heterostructures is also presented. These thin films have been engineered at a nanoscale level, such as the case of epitaxial multilayers or nanocomposite cermet materials. The recent progress in the implementation of thin films in SOFC devices is also reported. © 2010 Springer-Verlag.

  12. Thin-film Rechargeable Lithium Batteries for Implantable Devices

    Science.gov (United States)

    Bates, J. B.; Dudney, N. J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001%/cycle or less. The reliability and performance of Li LiCoO{sub 2} thin film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  13. Dielectric and acoustical high frequency characterisation of PZT thin films

    International Nuclear Information System (INIS)

    Conde, Janine; Muralt, Paul

    2010-01-01

    Pb(Zr, Ti)O 3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  14. Dielectric and acoustical high frequency characterisation of PZT thin films

    Science.gov (United States)

    Conde, Janine; Muralt, Paul

    2010-02-01

    Pb(Zr, Ti)O3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  15. Thin film silicon photovoltaics: Architectural perspectives and technological issues

    Energy Technology Data Exchange (ETDEWEB)

    Mercaldo, Lucia Vittoria; Addonizio, Maria Luisa; Noce, Marco Della; Veneri, Paola Delli; Scognamiglio, Alessandra; Privato, Carlo [ENEA, Portici Research Center, Piazzale E. Fermi, 80055 Portici (Napoli) (Italy)

    2009-10-15

    Thin film photovoltaics is a particularly attractive technology for building integration. In this paper, we present our analysis on architectural issues and technological developments of thin film silicon photovoltaics. In particular, we focus on our activities related to transparent and conductive oxide (TCO) and thin film amorphous and microcrystalline silicon solar cells. The research on TCO films is mainly dedicated to large-area deposition of zinc oxide (ZnO) by low pressure-metallorganic chemical vapor deposition. ZnO material, with a low sheet resistance (<8 {omega}/sq) and with an excellent transmittance (>82%) in the whole wavelength range of photovoltaic interest, has been obtained. ''Micromorph'' tandem devices, consisting of an amorphous silicon top cell and a microcrystalline silicon bottom cell, are fabricated by using the very high frequency plasma enhanced chemical vapor deposition technique. An initial efficiency of 11.1% (>10% stabilized) has been obtained. (author)

  16. NbN thin films for superconducting radio frequency cavities

    Science.gov (United States)

    Roach, W. M.; Skuza, J. R.; Beringer, D. B.; Li, Z.; Clavero, C.; Lukaszew, R. A.

    2012-12-01

    NbN thin films have the potential to be incorporated into radio frequency cavities in a multilayer coating to overcome the fundamental field gradient limit of 50 MV m-1 for the bulk niobium based technology that is currently implemented in particle accelerators. In addition to having a larger critical field value than bulk niobium, NbN films develop smoother surfaces which are optimal for cavity performance and lead to fewer losses. Here, we present a study on the correlation of film deposition parameters, surface morphology, microstructure, transport properties and superconducting properties of NbN thin films. We have achieved films with bulk-like lattice parameters and superconducting transition temperatures. These NbN films have a lower surface roughness than similarly grown niobium films of comparable thickness. The potential application of NbN thin films in accelerator cavities is discussed.

  17. Modification of thin film properties by ion bombardment during deposition

    International Nuclear Information System (INIS)

    Harper, J.M.E.; Cuomo, J.J.; Gambino, R.J.; Kaufman, H.R.

    1984-01-01

    Many thin film deposition techniques involve some form of energetic particle bombardment of the growing film. The degree of bombardment greatly influences the film composition, structure and other properties. While in some techniques the degree of bombardment is secondary to the original process design, in recent years more deposition systems are being designed with the capability for controlled ion bombardment of thin films during deposition. The highest degree of control is obtained with ion beam sources which operate independently of the vapor source providing the thin film material. Other plasma techniques offer varying degrees of control of energetic particle bombardment. Deposition methods involving ion bombardment are described, and the basic processes with which film properties are modified by ion bombardment are summarized. (Auth.)

  18. Thin Film Solar Cells and their Optical Properties

    Directory of Open Access Journals (Sweden)

    Stanislav Jurecka

    2006-01-01

    Full Text Available In this work we report on the optical parameters of the semiconductor thin film for solar cell applications determination. The method is based on the dynamical modeling of the spectral reflectance function combined with the stochastic optimization of the initial reflectance model estimation. The spectral dependency of the thin film optical parameters computations is based on the optical transitions modeling. The combination of the dynamical modeling and the stochastic optimization of the initial theoretical model estimation enable comfortable analysis of the spectral dependencies of the optical parameters and incorporation of the microstructure effects on the solar cell properties. The results of the optical parameters ofthe i-a-Si thin film determination are presented.

  19. Electrochromic properties of nanocrystalline MoO3 thin films

    International Nuclear Information System (INIS)

    Hsu, C.-S.; Chan, C.-C.; Huang, H.-T.; Peng, C.-H.; Hsu, W.-C.

    2008-01-01

    Electrochromic MoO 3 thin films were prepared by a sol-gel spin-coating technique. The spin-coated films were initially amorphous; they were calcined, producing nanocrystalline MoO 3 thin films. The effects of annealing temperatures ranging from 100 o C to 500 o C were investigated. The electrochemical and electrochromic properties of the films were measured by cyclic voltammetry and by in-situ optical transmittance techniques in 1 M LiClO 4 /propylene carbonate electrolyte. Experimental results showed that the transmittance of MoO 3 thin films heat-treated at 350 o C varied from 80% to 35% at λ = 550 nm (ΔT = ∼ 45%) and from 86% to 21% at λ ≥ 700 nm (ΔT = ∼ 65%) after coloration. Films heat-treated at 350 deg. C exhibited the best electrochromic properties in the present study

  20. Electroluminescence Spectrum Shift with Switching Behaviour of Diamond Thin Films

    Institute of Scientific and Technical Information of China (English)

    王小平; 王丽军; 张启仁; 姚宁; 张兵临

    2003-01-01

    We report a special phenomenon on switching behaviour and the electroluminescence (EL) spectrum shift of doped diamond thin films. Nitrogen and cerium doped diamond thin films were deposited on a silicon substrate by microwave plasma-assisted chemical vapour deposition system and other special techniques. An EL device with a three-layer structure of nitrogen doped diamond/cerium doped diamond/SiO2 thin films was made. The EL device was driven by a direct-current power supply. Its EL character has been investigated, and a switching behaviour was observed. The EL light emission colour of diamond films changes from yellow (590nm) to blue (454 nm) while the switching behaviour appears.

  1. Thin film microelectrodes for electrochemical detection of neurotransmitters

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard

    An important signaling process in the nervous system is the release of chemical messengers called neurotransmitters from neurons. In this thesis alternative thin film electrode materials for applications targeting electrochemical detection of neurotransmitters in chip devices were evaluated...... and conductive polymer microelectrodes made of Pedot:Pss were also fabricated and used successfully to measure transmitter release from cells. The use of different thin film electrodes for low-noise amperometric measurements of single events of transmitter release from neuronal cells was studied....... For this application a very low current noise is needed together with a large temporal resolution. It was shown, that resistive and capacitive properties of thin film electrode materials are determining their usefulness in low-noise amperometric measurements. An analytical expression for the noise was derived...

  2. Surface scattering mechanisms of tantalum nitride thin film resistor.

    Science.gov (United States)

    Chen, Huey-Ru; Chen, Ying-Chung; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Chu, Tian-Jian; Shih, Chih-Cheng; Chuang, Nai-Chuan; Wang, Kao-Yuan

    2014-01-01

    In this letter, we utilize an electrical analysis method to develop a TaN thin film resistor with a stricter spec and near-zero temperature coefficient of resistance (TCR) for car-used electronic applications. Simultaneously, we also propose a physical mechanism mode to explain the origin of near-zero TCR for the TaN thin film resistor (TFR). Through current fitting, the carrier conduction mechanism of the TaN TFR changes from hopping to surface scattering and finally to ohmic conduction for different TaN TFRs with different TaN microstructures. Experimental data of current-voltage measurement under successive increasing temperature confirm the conduction mechanism transition. A model of TaN grain boundary isolation ability is eventually proposed to influence the carrier transport in the TaN thin film resistor, which causes different current conduction mechanisms.

  3. Recent progress of obliquely deposited thin films for industrial applications

    Science.gov (United States)

    Suzuki, Motofumi; Itoh, Tadayoshi; Taga, Yasunori

    1999-06-01

    More than 10 years ago, birefringent films of metal oxides were formed by oblique vapor deposition and investigated with a view of their application to optical retardation plates. The retardation function of the films was explained in terms of the birefringence caused by the characteristic anisotropic nanostructure inside the films. These films are now classified in the genre of the so-called sculptured thin films. However, the birefringent films thus prepared are not yet industrialized even now due to the crucial lack of the durability and the yield of products. In this review paper, we describe the present status of application process of the retardation films to the information systems such as compact disc and digital versatile disc devices with a special emphasis on the uniformity of retardation properties in a large area and the stability of the optical properties of the obliquely deposited thin films. Finally, further challenges for wide application of the obliquely deposited thin films are also discussed.

  4. Sensing of volatile organic compounds by copper phthalocyanine thin films

    Science.gov (United States)

    Ridhi, R.; Saini, G. S. S.; Tripathi, S. K.

    2017-02-01

    Thin films of copper phthalocyanine have been deposited by thermal evaporation technique. We have subsequently exposed these films to the vapours of methanol, ethanol and propanol. Optical absorption, infrared spectra and electrical conductivities of these films before and after exposure to chemical vapours have been recorded in order to study their sensing mechanisms towards organic vapours. These films exhibit maximum sensing response to methanol while low sensitivities of the films towards ethanol and propanol have been observed. The changes in sensitivities have been correlated with presence of carbon groups in the chemical vapours. The effect of different types of electrodes on response-recovery times of the thin film with organic vapours has been studied and compared. The electrodes gap distance affects the sensitivity as well as response-recovery time values of the thin films.

  5. Unidirectional oxide hetero-interface thin-film diode

    International Nuclear Information System (INIS)

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee; Kim, Youn Sang

    2015-01-01

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10 5 at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10 2  Hz < f < 10 6  Hz, providing a high feasibility for practical applications

  6. Unidirectional oxide hetero-interface thin-film diode

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Youn Sang, E-mail: younskim@snu.ac.kr [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institute of Convergence Technology, Gyeonggi-do 443-270 (Korea, Republic of)

    2015-10-05

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10{sup 5} at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10{sup 2} Hz < f < 10{sup 6} Hz, providing a high feasibility for practical applications.

  7. NbN thin films for superconducting radio frequency cavities

    International Nuclear Information System (INIS)

    Roach, W M; Clavero, C; Lukaszew, R A; Skuza, J R; Beringer, D B; Li, Z

    2012-01-01

    NbN thin films have the potential to be incorporated into radio frequency cavities in a multilayer coating to overcome the fundamental field gradient limit of 50 MV m −1 for the bulk niobium based technology that is currently implemented in particle accelerators. In addition to having a larger critical field value than bulk niobium, NbN films develop smoother surfaces which are optimal for cavity performance and lead to fewer losses. Here, we present a study on the correlation of film deposition parameters, surface morphology, microstructure, transport properties and superconducting properties of NbN thin films. We have achieved films with bulk-like lattice parameters and superconducting transition temperatures. These NbN films have a lower surface roughness than similarly grown niobium films of comparable thickness. The potential application of NbN thin films in accelerator cavities is discussed. (paper)

  8. Residual stress in spin-cast polyurethane thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong; Zhang, Li, E-mail: lizhang@mae.cuhk.edu.hk [Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong (China); Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong (China)

    2015-01-19

    Residual stress is inevitable during spin-casting. Herein, we report a straightforward method to evaluate the residual stress in as-cast polyurethane thin films using area shrinkage measurement of films in floating state, which shows that the residual stress is independent of radial location on the substrate and decreased with decreasing film thickness below a critical value. We demonstrate that the residual stress is developed due to the solvent evaporation after vitrification during spin-casting and the polymer chains in thin films may undergo vitrification at an increased concentration. The buildup of residual stress in spin-cast polymer films provides an insight into the size effects on the nature of polymer thin films.

  9. Nanoporous cerium oxide thin film for glucose biosensor.

    Science.gov (United States)

    Saha, Shibu; Arya, Sunil K; Singh, S P; Sreenivas, K; Malhotra, B D; Gupta, Vinay

    2009-03-15

    Nanoporous cerium oxide (CeO(2)) thin film deposited onto platinum (Pt) coated glass plate using pulsed laser deposition (PLD) has been utilized for immobilization of glucose oxidase (GOx). Atomic force microscopy studies reveal the formation of nanoporous surface morphology of CeO(2) thin film. Response studies carried out using differential pulsed voltammetry (DPV) and optical measurements show that the GOx/CeO(2)/Pt bio-electrode shows linearity in the range of 25-300 mg/dl of glucose concentration. The low value of Michaelis-Menten constant (1.01 mM) indicates enhanced enzyme affinity of GOx to glucose. The observed results show promising application of the nanoporous CeO(2) thin film for glucose sensing application without any surface functionalization or mediator.

  10. Recent progress in Si thin film technology for solar cells

    Science.gov (United States)

    Kuwano, Yukinori; Nakano, Shoichi; Tsuda, Shinya

    1991-11-01

    Progress in Si thin film technology 'specifically amorphous Si (a-Si) and polycrystalline Si (poly-Si) thin film' for solar cells is summarized here from fabrication method, material, and structural viewpoints. In addition to a-Si, primary results on poly-Si thin film research are discussed. Various applications for a-Si solar cells are mentioned, and consumer applications and a-Si solar cell photovoltaic systems are introduced. New product developments include see-through solar cells, solar cell roofing tiles, and ultra-light flexible solar cells. As for new systems, air conditioning equipment powered by solar cells is described. Looking to the future, the proposed GENESIS project is discussed.

  11. Glass transition and thermal expansivity of polystyrene thin films

    International Nuclear Information System (INIS)

    Inoue, R.; Kanaya, T.; Miyazaki, T.; Nishida, K.; Tsukushi, I.; Shibata, K.

    2006-01-01

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T g and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements

  12. Glass transition and thermal expansivity of polystyrene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, R. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Kanaya, T. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan)]. E-mail: kanaya@scl.kyoto-u.ac.jp; Miyazaki, T. [Nitto Denko Corporation, 1-1-2 Shimohozumi, Ibaraki, Osaka-fu 567-8680 (Japan); Nishida, K. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Tsukushi, I. [Chiba Institute of Technology, Narashino, Chiba-ken 275-0023 (Japan); Shibata, K. [Japan Atomic Energy Research Institute, Tokai, Ibaraki-ken 319-1195 (Japan)

    2006-12-20

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T {sub g} and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements.

  13. Thin film eddy current impulse deicer

    Science.gov (United States)

    Smith, Samuel O.; Zieve, Peter B.

    1990-01-01

    Two new styles of electrical impulse deicers has been developed and tested in NASA's Icing Research Tunnel. With the Eddy Current Repulsion Deicing Boot (EDB), a thin and flexible spiral coil is encapsulated between two thicknesses of elastomer. The coil, made by an industrial printed circuit board manufacturer, is bonded to the aluminum aircraft leading edge. A capacitor bank is discharged through the coil. Induced eddy currents repel the coil from the aluminum aircraft structure and shed accumulated ice. A second configuration, the Eddy Current Repulsion Deicing-Strip (EDS) uses an outer metal erosion strip fastened over the coil. Opposite flowing eddy currents repel the strip and create the impulse deicing force. The outer strip serves as a surface for the collection and shedding of ice and does not require any structural properties. The EDS is suitable for composite aircraft structures. Both systems successfully dispelled over 95 percent of the accumulated ice from airfoils over the range of the FAA icing envelope.

  14. Characteristics of Reduced Graphene Oxide Quantum Dots for a Flexible Memory Thin Film Transistor.

    Science.gov (United States)

    Kim, Yo-Han; Lee, Eun Yeol; Lee, Hyun Ho; Seo, Tae Seok

    2017-05-17

    Reduced graphene oxide quantum dot (rGOQD) devices in formats of capacitor and thin film transistor (TFT) were demonstrated and examined as the first trial to achieve nonambipolar channel property. In addition, through a gold nanoparticle (Au NP) layer embedded between the rGOQD active channel and dielectric layer, memory capacitor and TFT performances were realized by capacitance-voltage (C-V) hysteresis and gate program, erase, and reprogram biases. First, capacitor structure of the rGOQD memory device was constructed to examine memory charging effect featured in hysteretic C-V behavior with a 30 nm dielectric layer of cross-linked poly(vinyl alcohol). For the intervening Au NP charging layer, self-assembled monolayer (SAM) formation of the Au NP was executed to utilize electrostatic interaction by a dip-coating process under ambient environments with a conformal fabrication uniformity. Second, the rGOQD memory TFT device was also constructed in the same format of the Au NPs SAMs on a flexible substrate. Characteristics of the rGOQD TFT output showed novel saturation curves unlike typical graphene-based TFTs. However, The rGOQD TFT device reveals relatively low on/off ratio of 10 1 and mobility of 5.005 cm 2 /V·s. For the memory capacitor, the flat-band voltage shift (ΔV FB ) was measured as 3.74 V for ±10 V sweep, and for the memory TFT, the threshold voltage shift (ΔV th ) by the Au NP charging was detected as 7.84 V. In summary, it was concluded that the rGOQD memory device could accomplish an ideal graphene-based memory performance, which could have provided a wide memory window and saturated output characteristics.

  15. The optical properties of plasma polymerized polyaniline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Goktas, Hilal, E-mail: hilal_goktas@yahoo.com [Canakkale Onsekiz Mart University, Physics Department, 17020 Canakkale (Turkey); Demircioglu, Zahide; Sel, Kivanc [Canakkale Onsekiz Mart University, Physics Department, 17020 Canakkale (Turkey); Gunes, Taylan [Yalova University, Energy Systems Engineering Department, 77100 Yalova (Turkey); Kaya, Ismet [Canakkale Onsekiz Mart University, Chemistry Department, 17020 Canakkale (Turkey)

    2013-12-02

    We report herein the characterizations of polyaniline thin films synthesized using double discharge plasma system. Quartz glass substrates were coated at a pressure of 80 Pa, 19.0 kV pulsed and 1.5 kV dc potential. The substrates were located at different regions in the reactor to evaluate the influence of the position on the morphological and molecular structure of the obtained thin films. The molecular structure of the thin films was investigated by Fourier transform infrared (FTIR) and UV–visible photospectrometers (UV–vis), and the morphological studies were carried out by scanning electron microscope. The FTIR and UV–vis data revealed that the molecular structures of the synthesized thin films were in the form of leuocoemeraldine and exhibited similar structures with the films produced via chemical or electrochemical methods. The optical energy band gap values of the as-grown samples ranged from 2.5 to 3.1 eV, which indicated that these materials have potential applications in semiconductor devices. The refractive index in the transparent region (from 650 to 1000 nm) steadily decreased from 1.9 to 1.4 and the extinction coefficient was found to be on order of 10{sup −4}. The synthesized thin films showed various degrees of granular morphologies depending on the location of the substrate in the reactor. - Highlights: • Polyaniline thin films were synthesized for the first time via double discharge plasma system. • The films have similar structure to that of the chemically synthesized films. • The morphology of the films could be tuned by this technique. • These materials would have potential applications at semiconductor devices.

  16. Hall effect of K-doped superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Son, Eunseon; Lee, Nam Hoon; Kang, Won Nam [Dept. of physics, Sungkyunkwan University, Suwon (Korea, Republic of); Hwang, Tae Jong; Kim, Dong Ho [Dept. of physics, Yeungnam University, Gyeongsan(Korea, Republic of)

    2013-09-15

    We have studied Hall effect for potassium (K)-doped BaFe{sub 2}As{sub 2}superconducting thin films by analyzing the relation between the longitudinal resistivity (ρ{sub xy}) and the Hall resistivity (ρ{sub xy}). The thin films used in this study were fabricated on Al{sub O3} (000l) substrates by using an ex-situ pulsed laser deposition (PLD) technique under a high-vacuum condition of ∼10{sup -6} Torr. The samples showed the high superconducting transition temperatures (T{sub C}) of ∼40 K. The ρ{sub xx} and ρ{sub xy}the for K-doped BaFeAs{sub 2} thin films were measured by using a physical property measurement system (PPMS) with a temperature sweep (T-sweep) mode at an applied current density of 100 A/cm{sup 2} and at magnetic fields from 0 up to 9 T. We report the T-sweep results of the ρ{sub xx} and the ρ{sub xy} to investigate Hall scaling behavior on the basis of the relation of ρ{sub xy} = A(ρ{sub xy}){sup β}. The ρ{sub xx} values are 3.0 ± 0.2 in the c-axis-oriented K-doped BaFeAs{sub 2} thin films, whereas the thin films with various oriented-directions like a polycrystal showed slightly lower β than that of c-axis-oriented thin films. Interestingly, the β value is decreased with increasing magnetic fields.

  17. Unraveling the Dynamics of Nanoscopically Confined PVME in Thin Films of a Miscible PVME/PS Blend.

    Science.gov (United States)

    Madkour, Sherif; Szymoniak, Paulina; Radnik, Jörg; Schönhals, Andreas

    2017-10-25

    Broadband dielectric spectroscopy (BDS) was employed to investigate the glassy dynamics of thin films (7-200 nm) of a poly(vinyl methyl ether) (PVME)/polystyrene (PS) blend (50:50 wt %). For BDS measurements, nanostructured capacitors (NSCs) were employed, where films are allowed a free surface. This method was applied for film thicknesses up to 36 nm. For thicker films, samples were prepared between crossed electrode capacitors (CECs). The relaxation spectra of the films showed multiple processes. The first process was assigned to the α-relaxation of a bulklike layer. For films measured by NSCs, the rates of α-relaxation were higher compared to those of the bulk blend. This behavior was related to the PVME-rich free surface layer at the polymer/air interface. The second process was observed for all films measured by CECs (process X) and the 36 nm film measured by NSCs (process X2). This process was assigned to fluctuations of constraint PVME segments by PS. Its activation energy was found to be thickness-dependent because of the evidenced thickness dependency of the compositional heterogeneity. Finally, a third process with an activated temperature dependence was observed for all films measured by NSCs (process X1). It resembled the molecular fluctuations in an adsorbed layer found for thin films of pure PVME, and thus, it is assigned accordingly. This process undergoes an extra confinement because of frozen adsorbed PS segments at the polymer/substrate interface. To our knowledge, this is the first example where confinement-induced changes were observed by BDS for blend thin films.

  18. Nanosecond Characterization of Regional Domain Imprint from Fast Domain Switching Currents in Pb(Zr,Ti)O_3 Thin Films

    International Nuclear Information System (INIS)

    Jun Jiang; An-Quan Jiang

    2016-01-01

    The traditional imprint characterization of ferroelectric thin films estimates imprint time dependence of the mean coercive voltage of all domains from a polarization-voltage hysteresis loop, which shows a semilogarithmic time dependence above an initial imprint time of τ_0 > 1 μs at room temperature. Below τ_0, the imprint effect is believed to be weak. In consideration of region-by-region domain reversal under a rising pulsed voltage with ordered coercive voltages increasing from zero up to the maximum applied voltage during capacitor charging time, we can estimate the imprinted coercive voltage of each domain from domain switching current transient separately with imprint time as short as 20 ns. In disagreement with the previous observations, all imprinted coercive voltages for the domains in Pt/Pb(Zr_0_._4Ti_0_._6)O_3/Pt thin-film capacitors show step-like increases at two characteristic times of 300 ns and 0.27s. The imprint effect is surprisingly strong enough even at shortened time down to 20 ns without any evidence of weakening. (paper)

  19. Resistance switching induced by electric fields in manganite thin films

    International Nuclear Information System (INIS)

    Villafuerte, M; Juarez, G; Duhalde, S; Golmar, F; Degreef, C L; Heluani, S P

    2007-01-01

    In this work, we investigate the polarity-dependent Electric Pulses Induced Resistive (EPIR) switching phenomenon in thin films driven by electric pulses. Thin films of 0.5 Ca 0.5 MnO 3 (manganite) were deposited by PLD on Si substrate. The transport properties at the interface between the film and metallic electrode are characterized in order to study the resistance switching. Sample thermal treatment and electrical field history are important to be considered for get reproducible EPIR effect. Carriers trapping at the interfaces are considered as a possible explanation of our results

  20. Infrared reflectance measurement for InN thin film characterization

    International Nuclear Information System (INIS)

    Fukui, K.; Kugumiya, Y.; Nakagawa, N.; Yamamoto, A.

    2006-01-01

    Infrared reflectance measurements of a series of InN thin films have been performed and attempt to derive carrier concentration and other physical constants for InN thin film characterization. Fitting calculations are performed by use of the dielectric function equation based on phonon-plasmon coupling model. Longitudinal and transverse optical phonon frequencies, plasma frequency and their damping parameters can be derived from fitting. From those results, electrical and phonon properties of InN and characterization of films are discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Morphology selection for cupric oxide thin films by electrodeposition.

    Science.gov (United States)

    Dhanasekaran, V; Mahalingam, T; Chandramohan, R

    2011-10-01

    Polycrystalline cupric oxide thin films were deposited using alkaline solution bath employing cathodic electrodeposition method. The thin films were electrodeposited at various solution pH. The surface morphology and elemental analyzes of the films were studied using scanning electron microscopy (SEM) and energy dispersive X-ray analysis, respectively. SEM studies revealed that the surface morphology could be tailored suitably by adjusting the pH value during deposition. Mesh average on multiple lattice mode atomic force microscopy image was obtained and reported. Copyright © 2011 Wiley-Liss, Inc.

  2. Properties of electropolymerised polypyrrole thin film on silver

    Science.gov (United States)

    Jamadade, Shivaji A.; Puri, Vijaya

    2009-07-01

    This paper reports the properties of electropolymerised polypyrrole thin film on silver. The transmission, reflection, conductivity and dielectric behavior of polypyrrole coated silver has been studied in the 8-12 GHz frequency range of the electromagnetic spectrum. The polypyrrole thin film makes silver a better conductor for microwaves. The microwave conductivity is larger than the DC conductivity by many orders of magnitude. The real and imaginary part of dielectric constant increases in magnitude with increasing doping level and also it decreases in magnitude with increasing frequency.

  3. All-solution-processed flexible thin film piezoelectric nanogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Sung Yun; Kim, Sunyoung; Kim, Kyongjun [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-744 (Korea, Republic of); Lee, Ju-Hyuck; Kim, Sang-Woo [SKKU Advanced Institute of Nanotechnology, School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Kang, Chong-Yun; Yoon, Seok-Jin [Electronic Materials Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Kim, Youn Sang [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-744 (Korea, Republic of); Advanced Institutes of Convergence Technology, 864-1 Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270 (Korea, Republic of)

    2012-11-27

    An all-solution-processed flexible thin film piezoelectric nanogenerator is demonstrated using reactive zinc hydroxo-condensation and a screen-printing method. The highly elastic thin film allows the piezoelectric energy to be generated through the mechanical rolling and muscle stretching of the piezoelectric unit. This flexible all solution-processed nanogenerator is promising for use in future energy harvesters such as wearable human patches and mobile electronics. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo, K L; Rodriguez, C A [Grupo Plasma Laser y Aplicaciones, Ingenieria Fisica, Universidad Tecnologica de Pereira (Colombia); Perez, F A [WNANO, West Virginia University (United States); Riascos, H [Grupo Plasma Laser y Aplicaciones, Departamento de Fisica, Universidad Tecnologica de Pereira (Colombia)

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al{sub 2}O{sub 3}) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  5. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    International Nuclear Information System (INIS)

    Salcedo, K L; Rodriguez, C A; Perez, F A; Riascos, H

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al 2 O 3 ) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  6. Properties of Nanostructure Bismuth Telluride Thin Films Using Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Swati Arora

    2017-01-01

    Full Text Available Bismuth telluride has high thermoelectric performance at room temperature; in present work, various nanostructure thin films of bismuth telluride were fabricated on silicon substrates at room temperature using thermal evaporation method. Tellurium (Te and bismuth (Bi were deposited on silicon substrate in different ratio of thickness. These films were annealed at 50°C and 100°C. After heat treatment, the thin films attained the semiconductor nature. Samples were studied by X-ray diffraction (XRD and scanning electron microscopy (SEM to show granular growth.

  7. Progress and issues in polycrystalline thin-film PV technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.; Ullal, H.S.; Roedern, B. von [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    Substantial progress has occurred in polycrystalline thin-film photovoltaic technologies in the past 18 months. However, the transition to first-time manufacturing is still under way, and technical problems continue. This paper focuses on the promise and the problems of the copper indium diselenide and cadmium telluride technologies, with an emphasis on continued R&D needs for the near-term transition to manufacturing and for next-generation improvements. In addition, it highlights the joint R&D efforts being performed in the U.S. Department of Energy/National Renewable Energy Laboratory Thin-Film Photovoltaic Partnership Program.

  8. Transition metal carbide nanocomposite and amorphous thin films

    OpenAIRE

    Tengstrand, Olof

    2014-01-01

    This thesis explores thin films of binary and ternary transition metal carbides, in the Nb-C, Ti-Si-C, Nb-Si-C, Zr-Si-C, and Nb-Ge-C systems. The electrical and mechanical properties of these systems are affected by their structure and here both nanocomposite and amorphous thin films are thus investigated. By appropriate choice of transition metal and composition the films can be designed to be multifunctional with a combination of properties, such as low electric resistivity, low contact res...

  9. Thin film solar cells: research in an industrial perspective.

    Science.gov (United States)

    Edoff, Marika

    2012-01-01

    Electricity generation by photovoltaic conversion of sunlight is a technology in strong growth. The thin film technology is taking market share from the dominant silicon wafer technology. In this article, the market for photovoltaics is reviewed, the concept of photovoltaic solar energy conversion is discussed and more details are given about the present technological limitations of thin film solar cell technology. Special emphasis is given for solar cells which employ Cu(In,Ga)Se(2) and Cu(2)ZnSn(S,Se)(4) as the sunlight-absorbing layer.

  10. Synthesis of thin films by the pyrosol process

    Directory of Open Access Journals (Sweden)

    Tucić Aleksandar

    2002-01-01

    Full Text Available Among many aerosol routes, the Pyrosol process, due to its simplicity, low cost and quality of obtained films, represents a promising technique for the synthesis of thin films. The pyrosol process is based on the transport and pyrolysls of an aerosol of processor solution, generated in an ultrasonic atomizer, on a heated substrate. The theoretical principles of the pyrosol process are presented in this paper, as well as the influence of some synthesis parameters on the deposition of SnO2 thin films.

  11. Soft Magnetic Multilayered Thin Films for HF Applications

    Science.gov (United States)

    Loizos, George; Giannopoulos, George; Serletis, Christos; Maity, Tuhin; Roy, Saibal; Lupu, Nicoleta; Kijima, Hanae; Yamaguchi, Masahiro; Niarchos, Dimitris

    Multilayered thin films from various soft magnetic materials were successfully prepared by magnetron sputtering in Ar atmosphere. The magnetic properties and microstructure were investigated. It is found that the films show good soft magnetic properties: magnetic coercivity of 1-10 Oe and saturation magnetization higher than 1T. The initial permeability of the films is greater than 300 and flattens up to 600 MHz. The multilayer thin film properties in combination with their easy, fast and reproducible fabrication indicate that they are potential candidates for high frequency applications.

  12. Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinay [Carbon Technology Unit, Engineering Materials Division, National Physical Laboratory, New-Delhi, 110012 (India); Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka, 816-8580 (Japan); Japan Science and Technology Agency, Kawaguchi-shi, Saitama, 332-0012 (Japan); Gupta, Shubhra; Miura, Norio [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka, 816-8580 (Japan)

    2010-06-01

    Spinels are not known for their supercapacitive nature. Here, we have explored electrochemically synthesized nanostructured NiCo{sub 2}O{sub 4} spinel thin-film electrode for electrochemical supercapacitors. The nanostructured NiCo{sub 2}O{sub 4} spinel thin film exhibited a high specific capacitance value of 580 F g{sup -1} and an energy density of 32 Wh kg{sup -1} at the power density of 4 kW kg{sup -1}, accompanying with good cyclic stability. (author)

  13. Fluorine doped vanadium dioxide thin films for smart windows

    International Nuclear Information System (INIS)

    Kiri, Pragna; Warwick, Michael E.A.; Ridley, Ian; Binions, Russell

    2011-01-01

    Thermochromic fluorine doped thin films of vanadium dioxide were deposited from the aerosol assisted chemical vapour deposition reaction of vanadyl acetylacetonate, ethanol and trifluoroacetic acid on glass substrates. The films were characterised with scanning electron microscopy, variable temperature Raman spectroscopy and variable temperature UV/Vis spectroscopy. The incorporation of fluorine in the films led to an increase in the visible transmittance of the films whilst retaining the thermochromic properties. This approach shows promise for improving the aesthetic properties of vanadium dioxide thin films.

  14. Thin films growth parameters in MAPLE; application to fibrinogen

    International Nuclear Information System (INIS)

    Jelinek, M; Cristescu, R; Kocourek, T; Vorlicek, V; Remsa, J; Stamatin, L; Mihaiescu, D; Stamatin, I; Mihailescu, I N; Chrisey, D B

    2007-01-01

    Increasingly requirements on the thin film quality of functionalized materials are efficiently met by a novel laser processing technique - Matrix Assisted Pulsed Laser Evaporation (MAPLE). Examples of deposition conditions and main features characteristic to film growth rate of MAPLE-fabricated organic materials are summarized. MAPLE experimental results are compared with ones corresponding to the classical Pulsed Laser Deposition (PLD). In particular, the results of investigation of MAPLE-deposited fibrinogen blood protein thin films using a KrF* excimer laser and characterized by FTIR and Raman spectrometry are reported

  15. Preparation of Ta Te2 thin films by laser ablation

    International Nuclear Information System (INIS)

    Zidan, M.D.; Alkhwam, M.; Alkhasm, M.

    2006-03-01

    The laser ablation system consisting of a vacuum chamber and Nd-YAG laser has been built for deposition TaTe 2 on three different substrates (Silicon, glass, and Aluminium). The surface topography of the prepared thin films has been studied by atomic force microscopy (AFM). TaTe 2 powder was characterized by using x-ray diffraction. The crystallinity of the thin films was examined by x-ray diffraction (XRD). The results show no peaks corresponding TaTe 2 , but there are some indications to the Ta 3 N 5 . (author)

  16. Thin film characterisation by advanced X-ray diffraction techniques

    International Nuclear Information System (INIS)

    Cappuccio, G.; Terranova, M.L.

    1996-09-01

    The Fifth School on X-ray diffraction from polycrystalline materials was devoted to thin film characterization by advanced X-ray diffraction techniques. Twenty contributions are contained in this volume; all twenty are recorded in the INIS Database. X-ray diffraction is known to be a powerful analytical tool for characterizing materials and understanding their structural features. The aim of these articles is to illustrate the fundamental contribution of modern diffraction techniques (grazing incidence, surface analysis, standing waves, etc.) to the characterization of thin and ultra-thin films, which have become important in many advanced technologies

  17. Microwave Josephson generation in thin film superconducting bridges

    International Nuclear Information System (INIS)

    Gubankov, V.N.; Koshelets, V.P.; Ovsyannikov, G.A.

    1975-01-01

    Thin-film bridges have some advantage over other types of superconducting weak links: good definition of electromagnetic parameters and of weak region geometry. Up to now Josephson properties of bridges have been investigated by using indirect methods (the effect of magnetic field on the critical current I 0 , the bridge behavior in a microwave field, etc.). Direct experimental observation of Josephson radiation from autonomous thin film bridges is reported. Microwave radiation in tin bridges of 'variable' thickness has been investigated where the thickness of the film forming the bridge is far less than the thickness of the bank films. (Auth.)

  18. Domain structure and magnetotransport in epitaxial colossal magnetoresistance thin films

    OpenAIRE

    Suzuki, Yuri; Wu, Yan; Yu, Jun; Rüdiger, Ulrich; Kent, Andrew D.; Nath, Tapan K.; Eom, Chang-Beom

    2000-01-01

    Our studies of compressively strained La0.7 Sr0.3 MnO7 (LSMO) thin films reveal the importance of domain structure and strain effects in the magnetization reversal and magnetotransport. Normal and grazing incidence x-ray diffraction indicate that the compressive strain on these LSMO thin films on (100) LaAlO3 is not completely relaxed up to thicknesses on the order of 1000 Å. The effect of the compressive strain is evident in the shape of the magnetization loops and the magnetotransport measu...

  19. Room temperature deposition of magnetite thin films on organic substrate

    International Nuclear Information System (INIS)

    Arisi, E.; Bergenti, I.; Cavallini, M.; Murgia, M.; Riminucci, A.; Ruani, G.; Dediu, V.

    2007-01-01

    We report on the growth of magnetite films directly on thin layers of organic semiconductors by means of an electron beam ablation method. The deposition was performed at room temperature in a reactive plasma atmosphere. Thin films show ferromagnetic (FM) hysteresis loops and coercive fields of hundreds of Oersted. Micro Raman analysis indicates no presence of spurious phases. The morphology of the magnetite film is strongly influenced by the morphology of the underlayer of the organic semiconductor. These results open the way for the application of magnetite thin films in the field of organic spintronics

  20. Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering

    KAUST Repository

    Pergolesi, Daniele; Roddatis, Vladimir; Fabbri, Emiliana; Schneider, Christof W; Lippert, Thomas; Traversa, Enrico; Kilner, John A

    2015-01-01

    Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used

  1. Electric-field modulation of ferromagnetism in hexagonal chromium telluride thin film

    International Nuclear Information System (INIS)

    Akiyama, Ryota; Oikawa, Haruyoshi; Yamawaki, Kazuma; Kuroda, Shinji

    2014-01-01

    We report the electric-field modulation of magnetism of a hexagonal Cr 1-δ Te thin film. A gate voltage V G is ap-plied in the field effect capacitor (FEC) structure consisting of electric double-layer capacitor (EDLC) of an ion liquid and a 2nm-thick Cr 1-δ Te layer grown by molecular beam epitaxy (MBE) and the magnetization of the layer is directly measured using a superconducting quantum interference device (SQUID) magnetometer in the both configurations with magnetic fields perpendicular or parallel to the film plane. As a result, we observe a clear change in the magnetization vs. magnetic field (M-H) curves by applying VG at a low temperature of 15 K in the perpendicular field configuration; the magnetization increases and the coercivity decreases by applying either positive or negative gate voltage. When the temperature is increased up to 160K, slightly lower than the Curie temperature, or the magnetization was measured in the in-plane field configuration, the magnetization increases similarly by applying either positive or negative gate voltage, but the amount of the increase becomes much smaller. A possible mechanism of the electric-field modulation is discussed in relation to the Cr vacancies in the Cr 1-δ Te layer. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Electric-field modulation of ferromagnetism in hexagonal chromium telluride thin film

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Ryota; Oikawa, Haruyoshi; Yamawaki, Kazuma; Kuroda, Shinji [Institute of Materials Science, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-07-15

    We report the electric-field modulation of magnetism of a hexagonal Cr{sub 1-δ}Te thin film. A gate voltage V{sub G} is ap-plied in the field effect capacitor (FEC) structure consisting of electric double-layer capacitor (EDLC) of an ion liquid and a 2nm-thick Cr{sub 1-δ}Te layer grown by molecular beam epitaxy (MBE) and the magnetization of the layer is directly measured using a superconducting quantum interference device (SQUID) magnetometer in the both configurations with magnetic fields perpendicular or parallel to the film plane. As a result, we observe a clear change in the magnetization vs. magnetic field (M-H) curves by applying VG at a low temperature of 15 K in the perpendicular field configuration; the magnetization increases and the coercivity decreases by applying either positive or negative gate voltage. When the temperature is increased up to 160K, slightly lower than the Curie temperature, or the magnetization was measured in the in-plane field configuration, the magnetization increases similarly by applying either positive or negative gate voltage, but the amount of the increase becomes much smaller. A possible mechanism of the electric-field modulation is discussed in relation to the Cr vacancies in the Cr{sub 1-δ}Te layer. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Materials science, integration, and performance characterization of high-dielectric constant thin film based devices

    Science.gov (United States)

    Fan, Wei

    To overcome the oxidation and diffusion problems encountered during Copper integration with oxide thin film-based devices, TiAl/Cu/Ta heterostructure has been first developed in this study. Investigation on the oxidation and diffusion resistance of the laminate structure showed high electrical conductance and excellent thermal stability in oxygen environment. Two amorphous oxide layers that were formed on both sides of the TiAl barrier after heating in oxygen have been revealed as the structure that effectively prevents oxygen penetration and protects the integrity of underlying Cu layer. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were subsequently deposited on the Cu-based bottom electrode by RF magnetron sputtering to investigate the interaction between the oxide and Cu layers. The thickness of the interfacial layer and interface roughness play critical roles in the optimization of the electrical performance of the BST capacitors using Cu-based electrode. It was determined that BST deposition at moderate temperature followed by rapid thermal annealing in pure oxygen yields BST/Cu capacitors with good electrical properties for application to high frequency devices. The knowledge obtained on the study of barrier properties of TiAl inspired a continuous research on the materials science issues related to the application of the hybrid TiAlOx, as high-k gate dielectric in MOSFET devices. Novel fabrication process such as deposition of ultra-thin TiAl alloy layer followed by oxidation with atomic oxygen has been established in this study. Stoichiometric amorphous TiAlOx layers, exhibiting only Ti4+ and Al3+ states, were produced with a large variation of oxidation temperature (700°C to room temperature). The interfacial SiOx formation between TiAlOx and Si was substantially inhibited by the use of the low temperature oxidation process. Electrical characterization revealed a large permittivity of 30 and an improved band structure for the produced TiAlOx layers

  4. Photoinduced changes in the fatigue behavior of SrBi2Ta2O9 and Pb(Zr,Ti)O3 thin films

    International Nuclear Information System (INIS)

    Dimos, D.; Al-Shareef, H.N.; Warren, W.L.; Tuttle, B.A.

    1996-01-01

    It is shown that SrBi 2 Ta 2 O 9 (SBT) thin films can be made to exhibit significant polarization fatigue by electric-field cycling under broad-band, optical illumination. Photoinduced fatigue is also observed for Pb(Zr,Ti)O 3 (PZT) thin-film capacitors with (La,Sr)CoO 3 (LSCO) electrodes. These results demonstrate that both the Pt/SBT/Pt and the LSCO/PZT/LSCO systems are susceptible to fatigue effects, which are attributed primarily to pinning of domain walls due to charge trapping. Capacitors that have been fatigued under illumination can be fully rejuvinated by applying a dc saturating bias with light or by electric-field cycling without light, which indicates an intrinsic, field-assisted recovery mechanism. We suggest that fatigue is essentially a competition between domain wall pinning and unpinning and that domain pinning is not necessarily absent in these nominally fatigue-free systems, but rather these systems are ones in which unpinning occurs at least as rapidly as any pinning. In both cases, the extent of photoinduced fatigue decreases with increased cycling voltage, indicating the relative importance of field-assisted unpinning. Finally, the observation of photoinduced fatigue implies that increased injection rates, potentially due to oxygen vacancy accumulation, may account for the electrode dependence on fatigue in PZT thin films

  5. Thin Film Magnetless Faraday Rotators for Compact Heterogeneous Integrated Optical Isolators (Postprint)

    Science.gov (United States)

    2017-06-15

    AFRL-RX-WP-JA-2017-0348 THIN-FILM MAGNETLESS FARADAY ROTATORS FOR COMPACT HETEROGENEOUS INTEGRATED OPTICAL ISOLATORS (POSTPRINT) Dolendra Karki...Interim 9 May 2016 – 1 December 2016 4. TITLE AND SUBTITLE THIN-FILM MAGNETLESS FARADAY ROTATORS FOR COMPACT HETEROGENEOUS INTEGRATED OPTICAL...transfer of ultra-compact thin-film magnetless Faraday rotators to silicon photonic substrates. Thin films of magnetization latching bismuth

  6. Characterization of thin films using local magneometer

    CERN Document Server

    Katyan N.

    2016-01-01

    SIS nanocomposite (Superconductor/Insulator/Superconductor) could improve efficiency of accelerating cavities. The SRF multilayers concept focuses on the enhancement of HC1 using thin layers (d~λ). The use of thin layers makes it easier to avoid avalanche penetration of vortices in case of local defects. Several layers are needed in order to attenuate the external field to values below Nb HC1, decoupled using dielectric layers. We don’t know yet how the predicted properties evolve in realistic conditions; hence it seems reasonable to do their optimization. Two parameters need to be measured to study their behavior in cavity operating conditions: HC1 and Rs surface resistance (especially residual). For that purpose two instruments were developed in Saclay and in Orsay. A local magnetometer allows measuring the vortex penetration on samples without the orientation and edge effects encountered in SQUID magnetometers. Its operating conditions range from 2-40 K, with field up to 150 mT, and upgradation to highe...

  7. Characterization of Pb(Zr, Ti)O3 thin films fabricated by plasma enhanced chemical vapor deposition on Ir-based electrodes

    International Nuclear Information System (INIS)

    Lee, Hee-Chul; Lee, Won-Jong

    2002-01-01

    Structural and electrical characteristics of Pb(Zr, Ti)O 3 (PZT) ferroelectric thin films deposited on various Ir-based electrodes (Ir, IrO 2 , and Pt/IrO 2 ) using electron cyclotron resonance plasma enhanced chemical vapor deposition were investigated. On the Ir electrode, stoichiometric PZT films with pure perovskite phase could be obtained over a very wide range of processing conditions. However, PZT films prepared on the IrO 2 electrode contain a large amount of PbO x phases and exhibited high Pb-excess composition. The deposition characteristics were dependent on the behavior of PbO molecules on the electrode surface. The PZT thin film capacitors prepared on the Ir bottom electrode showed different electrical properties depending on top electrode materials. The PZT capacitors with Ir, IrO 2 , and Pt top electrodes showed good leakage current characteristics, whereas those with the Ru top electrode showed a very high leakage current density. The PZT capacitor exhibited the best fatigue endurance with an IrO 2 top electrode. An Ir top electrode provided better fatigue endurance than a Pt top electrode. The PZT capacitor with an Ir-based electrode is thought to be attractive for the application to ferroelectric random access memory devices because of its wide processing window for a high-quality ferroelectric film and good polarization, fatigue, and leakage current characteristics

  8. Acoustic emission generated during scratch test of various thin films

    Czech Academy of Sciences Publication Activity Database

    Boháč, Petr; Tomáštík, J.; Čtvrtlík, R.; Dráb, M.; Koula, V.; Cvrk, K.; Jastrabík, Lubomír

    2014-01-01

    Roč. 19, č. 12 (2014), s. 16635 ISSN 1435-4934 R&D Projects: GA TA ČR TA03010743 Institutional support: RVO:68378271 Keywords : acoustic emission * scratch test * thin films * AE data analysis * mechanical toughness Subject RIV: BI - Acoustics

  9. Mobility activation in thermally deposited CdSe thin films

    Indian Academy of Sciences (India)

    Effect of illumination on mobility has been studied from the photocurrent decay characteristics of thermally evaporated CdSe thin films deposited on suitably cleaned glass substrate held at elevated substrate temperatures. The study indicates that the mobilities of the carriers of different trap levels are activated due to the ...

  10. Deposition of magnetoelectric hexaferrite thin films on substrates of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Saba; Izadkhah, Hessam; Vittoria, Carmine

    2016-12-15

    Magnetoelectric M-type hexaferrite thin films (SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19}) were deposited using Pulsed Laser Deposition (PLD) technique on Silicon substrate. A conductive oxide layer of Indium-Tin Oxide (ITO) was deposited as a buffer layer with the dual purposes of 1) to reduce lattice mismatch between the film and silicon and 2) to lower applied voltages to observe magnetoelectric effects at room temperature on Silicon based devices. The film exhibited magnetoelectric effects as confirmed by vibrating sample magnetometer (VSM) techniques in voltages as low as 0.5 V. Without the oxide conductive layer the required voltages to observe magnetoelectric effects was typically about 1000 times larger. The magnetoelectric thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance techniques. We measured saturation magnetization of 650 G, and coercive field of about 150 Oe for these thin films. The change in remanence magnetization was measured in the presence of DC voltages and the changes in remanence were in the order of 15% with the application of only 0.5 V (DC voltage). We deduced a magnetoelectric coupling, α, of 1.36×10{sup −9} s m{sup −1} in SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} thin films.

  11. Optical characterisation of thin film cadmium oxide prepared by a ...

    African Journals Online (AJOL)

    The optical transmission spectra of transparent conducting cadmium oxide (CdO) thin films deposited by a modified reactive evaporation process onto glass substrates have been measured. The interference fringes were used to calculate the refractive index, thickness variation, average thickness and absorption coefficient ...

  12. Exciton Recombination in Formamidinium Lead Triiodide : Nanocrystals versus Thin Films

    NARCIS (Netherlands)

    Fang, Hong-Hua; Protesescu, Loredana; Balazs, Daniel M.; Adjokatse, Sampson; Kovalenko, Maksym V.; Loi, Maria Antonietta

    2017-01-01

    The optical properties of the newly developed near-infrared emitting formamidinium lead triiodide (FAPbI(3)) nanocrystals (NCs) and their polycrystalline thin film counterpart are comparatively investigated by means of steady-state and time-resolved photoluminescence. The excitonic emission is

  13. Asymmetric block copolymers confined in a thin film

    NARCIS (Netherlands)

    Huinink, HP; Brokken-Zijp, JCM; van Dijk, MA; Sevink, GJA

    2000-01-01

    We have used a dynamic density functional theory (DDFT) for polymeric systems, to simulate the formation of micro phases in a melt of an asymmetric block copolymer, A(n)B(m)(f(A) = 1/3), both in the bulk and in a thin film. In the DDFT model a polymer is represented as a chain of springs and beads.

  14. Thin-film voltammetry and its analytical applications: A review

    International Nuclear Information System (INIS)

    Tian, Huihui; Li, Yunchao; Shao, Huibo; Yu, Hua-Zhong

    2015-01-01

    Highlights: • Electrochemistry at immiscible liquid–liquid interfaces is fundamentally important. • Methods for studying redox processes at liquid–liquid interfaces are reviewed. • Thin-film voltammetry is simple in experimental operation and kinetic data analysis. • Thin-film voltammetry’s analytical applications are prevailing and comprehensive. - Abstract: Electrochemical reactions at the interfaces of immiscible electrolyte solutions (ITIES) are of fundamental importance in the fields of chemical, biological and pharmaceutical sciences. Four-electrode cell setup, scanning electrochemical microscopy (SECM) and thin-film voltammetry are the three most frequently used methods for studying the electrochemical processes at these interfaces. The principle, experimental design, advantages and challenges of the three methods are described and compared. The thin-film voltammetry is highlighted for its simplicity in experimental operation and kinetic data analysis. Its versatile analytical applications are discussed in detail, including the study of redox properties of hydrophobic compounds, evaluation of interfacial electron transfer kinetics, synthesis of nanoparticles/nanostructures, and illustration of cross-membrane ion transport phenomena

  15. Thin films of metal-organic compounds and metal nanoparticle ...

    Indian Academy of Sciences (India)

    Optical limiting capability of the nanoparticle-embedded polymer film is demonstrated. Keywords. Polar crystal; uniaxial orientational order; thin film; second harmonic gen- eration; silver ... able content of metal nanoparticles would be of considerable value from an appli- ... polar chain and perpendicular to it [10].

  16. Ferrofluid thin films as optical gaussmeters proposed for field and ...

    Indian Academy of Sciences (India)

    Department of Physics, Cochin University of Science and Technology, Cochin 682 022, India ... Magnetic field induced laser transmission through these ... An optical gaussmeter can be formulated with these ferrofluid thin films with the help of an LDR, and a laser (a diode laser or a cheaper torch laser which gives a stream ...

  17. Property elucidation of vacuum-evaporated zinc telluride thin film ...

    Indian Academy of Sciences (India)

    J U Ahamed

    2017-08-31

    Aug 31, 2017 ... method for the deposition of ZnTe thin film as compared to other methods. ... the advantages and disadvantages of different deposition process, it was ... by a spiral resistance heater and the temperature was measured by a ...

  18. solution growth and characterization of copper oxide thin films ...

    African Journals Online (AJOL)

    Thin films of copper oxide (CuO) were grown on glass slides by using the solution growth technique. Copper cloride (CuCl ) and potassium telluride (K T O ) were used. Buffer 2 2e 3 solution was used as complexing agent. The solid state properties and optical properties were obtained from characterization done using PYE ...

  19. Tribology of Ge Thin Films on Stainless Steel.

    Czech Academy of Sciences Publication Activity Database

    Krabáč, Lubomír; Pejaković, V.; Dřínek, Vladislav; Dörr, N.; Badisch, E.

    2017-01-01

    Roč. 69, č. 2 (2017), s. 182-189 ISSN 0036-8792 R&D Projects: GA ČR GC15-08842J Institutional support: RVO:67985858 Keywords : germanium * thin films * nanovires Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 0.605, year: 2016

  20. Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films

    Science.gov (United States)

    Yilixiati, Subinuer; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek

    Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freestanding thin films. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm are visualized and analyzed using IDIOM protocols. We distinguish nanoscopic rims, mesas and craters and show that the non-flat features are sculpted by oscillatory, periodic, supramolecular structural forces that arise in confined fluids

  1. Nanoscale reduction of graphene oxide thin films and its characterization

    KAUST Repository

    Lorenzoni, M.; Giugni, Andrea; Di Fabrizio, Enzo M.; Pé rez-Murano, Francesc; Mescola, A.; Torre, Bruno

    2015-01-01

    In this paper, we report on a method to reduce thin films of graphene oxide (GO) to a spatial resolution better than 100 nm over several tens of micrometers by means of an electrochemical scanning probe based lithography. In situ tip

  2. Dynamics of a spreading thin film with gravitational counterflow ...

    Indian Academy of Sciences (India)

    film climbing up on a vertical substrate against gravity shows interesting dynamics ... For the spreading of a thin film several theoretical studies have shown quantitative agree- ..... The two critical values of this param- ... Davis J M, Fischer B J and Troian S M 2003 A general approach to the linear stability of thin spreading.

  3. Transparent conducting oxide layers for thin film silicon solar cells

    NARCIS (Netherlands)

    Rath, J.K.; Liu, Y.; de Jong, M.M.; de Wild, J.; Schuttauf, J.A.; Brinza, M.; Schropp, R.E.I.

    2009-01-01

    Texture etching of ZnO:1%Al layers using diluted HCl solution provides excellent TCOs with crater type surface features for the front contact of superstrate type of thin film silicon solar cells. The texture etched ZnO:Al definitely gives superior performance than Asahi SnO2:F TCO in case of

  4. Gamma Radiation Dosimetry Using Tellurium Dioxide Thin Film Structures

    Directory of Open Access Journals (Sweden)

    Olga Korostynska

    2002-08-01

    Full Text Available Thin films of Tellurium dioxide (TeO2 were investigated for γ-radiation dosimetry purposes. Samples were fabricated using thin film vapour deposition technique. Thin films of TeO2 were exposed to a 60Co γ-radiation source at a dose rate of 6 Gy/min at room temperature. Absorption spectra for TeO2 films were recorded and the values of the optical band gap and energies of the localized states for as-deposited and γ-irradiated samples were calculated. It was found that the optical band gap values were decreased as the radiation dose was increased. Samples with electrical contacts having a planar structure showed a linear increase in current values with the increase in radiation dose up to a certain dose level. The observed changes in both the optical and the electrical properties suggest that TeO2 thin film may be considered as an effective material for room temperature real time γ-radiation dosimetry.

  5. Photoelectrochemical (PEC) studies on CdSe thin films ...

    Indian Academy of Sciences (India)

    TECS

    Thin films of CdSe were deposited by potentiostatic mode on different substrates such as ... trodeposited from aqueous acidic baths, but very few ... washed with liquid detergent (labolene) followed by ul- .... increases the ionic mobilities and hence the conductivity ... A PEC cell of configuration, CdSe/1 M polysulphide/.

  6. A novel diagnostic approach for studying silicon thin film growth

    NARCIS (Netherlands)

    Hoefnagels, J.P.M.

    2005-01-01

    In the deposition of thin films, the material properties are formed through the interaction of gas phase species with the growing surface. The resulting surface kinetics and chemistry is determined by the reactivity of the different gas phase species as well as by the surface chemical nature and may

  7. Second harmonic generation from corona-poled polymer thin films ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... thin films of Y-shape chromophore with different isolation groups. MUKESH P JOSHI1 ... Pramana – J. Phys., Vol. 82, No. ... C. The main advantage of the Y shape is the stability similar to linear polymer and a processing ability ...

  8. Subtractive fabrication of ferroelectric thin films with precisely controlled thickness

    Science.gov (United States)

    Ievlev, Anton V.; Chyasnavichyus, Marius; Leonard, Donovan N.; Agar, Joshua C.; Velarde, Gabriel A.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro; Ovchinnikova, Olga S.

    2018-04-01

    The ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses. To accomplish this we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass spectrometry with atomic force microscopy to a unique fabrication tool that allows for precise sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with in situ feedback and control on film thickness and functionality we systematically studied thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single epitaxial film. Our results demonstrate that through a subtractive film fabrication process we can control the piezoelectric response as a function of film thickness as well as improve on the overall piezoelectric response versus an untreated film.

  9. Evaluation of residual stress in sputtered tantalum thin-film

    Energy Technology Data Exchange (ETDEWEB)

    Al-masha’al, Asa’ad, E-mail: asaad.al@ed.ac.uk; Bunting, Andrew; Cheung, Rebecca

    2016-05-15

    Highlights: • Tantalum thin-films have been deposited by DC magnetron sputtering system. • Thin-film stress is observed to be strongly influenced by sputtering pressure. • Transition towards the compressive stress is ascribed to the annealing at 300 °C. • Expose thin-film to air ambient or ion bombardment lead to a noticeable change in the residual stress. - Abstract: The influence of deposition conditions on the residual stress of sputtered tantalum thin-film has been evaluated in the present study. Films have been deposited by DC magnetron sputtering and curvature measurement method has been employed to calculate the residual stress of the films. Transitions of tantalum film stress from compressive to tensile state have been observed as the sputtering pressure increases. Also, the effect of annealing process at temperature range of 90–300 °C in oxygen ambient on the residual stress of the films has been studied. The results demonstrate that the residual stress of the films that have been deposited at lower sputtering pressure has become more compressive when annealed at 300 °C. Furthermore, the impact of exposure to atmospheric ambient on the tantalum film stress has been investigated by monitoring the variation of the residual stress of both annealed and unannealed films over time. The as-deposited films have been exposed to pure Argon energy bombardment and as result, a high compressive stress has been developed in the films.

  10. Removable polytetrafluoroethylene template based epitaxy of ferroelectric copolymer thin films

    Science.gov (United States)

    Xia, Wei; Chen, Qiusong; Zhang, Jian; Wang, Hui; Cheng, Qian; Jiang, Yulong; Zhu, Guodong

    2018-04-01

    In recent years ferroelectric polymers have shown their great potentials in organic and flexible electronics. To meet the requirements of high-performance and low energy consumption of novel electronic devices and systems, structural and electrical properties of ferroelectric polymer thin films are expected to be further optimized. One possible way is to realize epitaxial growth of ferroelectric thin films via removable high-ordered polytetrafluoroethylene (PTFE) templates. Here two key parameters in epitaxy process, annealing temperature and applied pressure, are systematically studied and thus optimized through structural and electrical measurements of ferroelectric copolymer thin films. Experimental results indicate that controlled epitaxial growth is realized via suitable combination of both parameters. Annealing temperature above the melting point of ferroelectric copolymer films is required, and simultaneously moderate pressure (around 2.0 MPa here) should be applied. Over-low pressure (around 1.0 MPa here) usually results in the failure of epitaxy process, while over-high pressure (around 3.0 MPa here) often results in residual of PTFE templates on ferroelectric thin films.

  11. Sputtered thin films for high density tape recording

    NARCIS (Netherlands)

    Nguyen, L.T.

    This thesis describes the investigation of sputtered thin film media for high density tape recording. As discussed in Chapter 1, to meet the tremendous demand of data storage, the density of recording tape has to be increased continuously. For further increasing the bit density the key factors are:

  12. Low resistance polycrystalline diamond thin films deposited by hot ...

    Indian Academy of Sciences (India)

    Administrator

    silicon wafers using a hydrocarbon gas (CH4) highly diluted with H2 at low pressure in a hot filament chemi- cal vapour ... the laser spot was focused on the sample surface using a ... tative spectra of diamond thin films with a typical dia-.

  13. Stability analysis of magnetic flux in thin-film superconductors

    International Nuclear Information System (INIS)

    Denisov, Dmitry

    2007-01-01

    This work presents theoretical results in the physics of superconductivity. The first part of the work is dedicated to the problem of thermomagnetic instabilities and flux avalanches in thin film superconductors. The second part describes the problem of flux trapped in the hole of the superconducting ring (author)

  14. Electrodeposited Cu2ZnSnS4 thin films

    CSIR Research Space (South Africa)

    Valdes, M

    2014-05-01

    Full Text Available Cu(sub2)ZnSnS(sub4)(CZTS) thin films have been prepared using Electrochemical Atomic Layer Deposition (EC-ALD)and also by one-step conventional constant potential electrodeposition. Optimal deposition conditionswere investigated using cyclic...

  15. Grid-based Simulation of Industrial Thin Film Production

    NARCIS (Netherlands)

    Krzhizhanovskaya, V.V.; Sloot, P.M.A.; Gorbachev, Y.E.

    2005-01-01

    In this article, the authors introduce a Grid-based virtual reactor, a High Level Architecture (HLA)-supported problem-solving environment that allows for detailed numerical study of industrial thin-film production in plasma-enhanced chemical vapor deposition (PECVD) reactors. They briefly describe

  16. Memory and threshold switching in thin film PMMA polymer

    International Nuclear Information System (INIS)

    Rabah, K.V.O.

    1995-05-01

    Threshold switching between two impedance states have been observed at room temperature in a polymethylmethacrylate (PMMA) thin film sandwiched between two evaporated Al-metal electrodes. The cell's I-V characteristics were found to exhibit memory property. (author). 19 refs, 4 figs

  17. Properties of Spray Pyrolysied Copper Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2017-02-01

    Full Text Available Copper oxide (CuO thin films were deposited on well cleaned glass substrates by spray pyrolysis technique (SPT from cupric acetate (Cu(CH3COO2.H2O precursor solutions of 0.05 – 0.15 M molar concentrations (MC at a substrate temperature of 350 °C and at an air pressure of 1 bar. Effect of varying MC on the surface morphology, structural optical and electrical properties of CuO thin films were investigated. XRD patterns of the prepared films revealed the formation of CuO thin films having monoclinic structure with the main CuO (111 orientation and crystalline size ranging from 8.02 to 9.05 nm was observed. The optical transmission of the film was found to decrease with the increase of MC. The optical band gap of the thin films for 0.10 M was fond to be 1.60 eV. The room temperature electrical resistivity varies from 31 and 24 ohm.cm for the films grown with MC of 0.05 and 0.10 M respectively. The change in resistivity of the films was studied with respect to the change in temperature was shown that semiconductor nature is present. This information is expected to underlie the successful development of CuO films for solar windows and other semi-conductor applications including gas sensors.

  18. Laser-induced damage to thin film dielectric coatings

    International Nuclear Information System (INIS)

    Walker, T.W.

    1980-01-01

    The laser-induced damage thresholds of dielectric thin film coatings have been found to be more than an order of magnitude lower than the bulk material damage thresholds. Prior damage studies have been inconclusive in determining the damage mechanism which is operative in thin films. A program was conducted in which thin film damage thresholds were measured as a function of laser wavelength (1.06 μm, 0.53 μm, 0.35 μm and 0.26 μm), laser pulse length (5 and 15 nanoseconds), film materials and film thickness. The large matrix of data was compared to predictions given by avalanche ionization, multiphoton ionization and impurity theories of laser damage. When Mie absorption cross-sections and the exact thermal equations were included into the impurity theory excellent agreement with the data was found. The avalanche and multiphoton damage theories could not account for most parametric variations in the data. For example, the damage thresholds for most films increased as the film thickness decreased and only the impurity theory could account for this behavior. Other observed changes in damage threshold with changes in laser wavelength, pulse length and film material could only be adequately explained by the impurity theory. The conclusion which results from this study is that laser damage in thin film coatings results from absorbing impurities included during the deposition process

  19. Front and backside processed thin film electronic devices

    Science.gov (United States)

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2010-10-12

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  20. Method for double-sided processing of thin film transistors

    Science.gov (United States)

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2008-04-08

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  1. Electrical characteristics of top contact pentacene organic thin film

    Indian Academy of Sciences (India)

    Organic thin film transistors (OTFTs) were fabricated using pentacene as the active layer with two different gate dielectrics, namely SiO2 and poly(methyl methacrylate) (PMMA), in top contact geometry for comparative studies. OTFTs with SiO2 as dielectric and gold deposited on the rough side of highly doped silicon (n+ -Si) ...

  2. Catalytic EC′ reaction at a thin film modified electrode

    International Nuclear Information System (INIS)

    Gerbino, Leandro; Baruzzi, Ana M.; Iglesias, Rodrigo A.

    2013-01-01

    Numerical simulations of cyclic voltammograms corresponding to a catalytic EC′ reaction taking place at a thin film modified electrode are performed by way of finite difference method. Besides considering the chemical kinetic occurring inside the thin film, the model takes into account the different diffusion coefficients for each species at each of the involved phases, i.e. the thin film layer and bulk solution. The theoretical formulation is given in terms of dimensionless model parameters but a brief discussion of each of these parameters and their relationship to experimental variables is presented. Special emphasis is given to the use of working curve characteristics to quantify diffusion coefficient, homogeneous kinetic constant and thickness of the thin layer in a real system. Validation of the model is made by comparison of experimental results corresponding to the electron charge transfer of Ru(NH 3 ) 6 3+ /Ru(NH 3 ) 6 2+ hemi-couple at a thin film of a cross-linked chitosan film containing an immobilized redox dye

  3. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,

  4. Luminescent thin films by the chemical aerosol deposition technology (CADT)

    NARCIS (Netherlands)

    Martin, F.J.; Martin, F.J.; Albers, H.; Lambeck, Paul; Popma, T.J.A.; van de Velde, G.M.H.

    1992-01-01

    Zinc sulphide thin films have been deposited with CART using zinc chlorideand zinc acetylacetonate as Zn compounds and thiourea and 1,1,3,3-tetramethylthiourea as S compounds soluted in methanol, ethanol, isopropanol and cellosolve. After optimalization of the deposition process homogeneous layers

  5. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    NARCIS (Netherlands)

    Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Yakshin, Andrey; Bijkerk, Frederik

    2015-01-01

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO2 films were found to show Arrhenius behaviour. However, a

  6. Development of A Thin Film Crystalline Silicon Solar Cell

    International Nuclear Information System (INIS)

    Sopori, B.; Chen, W.; Zhang, Y.

    1998-01-01

    A new design for a single junction, thin film Si solar cell is presented. The cell design is compatible with low-temperature processing required for the use of a low-cost glass substrate, and includes effective light trapping and impurity gettering. Elements of essential process steps are discussed

  7. Functional Properties of Polydomain Ferroelectric Oxide Thin Films

    NARCIS (Netherlands)

    Houwman, Evert Pieter; Vergeer, Kurt; Koster, Gertjan; Rijnders, Augustinus J.H.M.; Nishikawa, H.; Iwata, N.; Endo, T.; Takamura, Y.; Lee, G-H.; Mele, P.

    2017-01-01

    The properties of a ferroelectric, (001)-oriented, thin film clamped to a substrate are investigated analytically and numerically. The emphasis is on the tetragonal, polydomain, ferroelectric phase, using a three domain structure, as is observed experimentally, instead of the two-domain structure

  8. Deposition of metal chalcogenide thin films by successive ionic layer

    Indian Academy of Sciences (India)

    ) method, has emerged as one of the solution methods to deposit a variety of compound materials in thin film form. The SILAR method is inexpensive, simple and convenient for large area deposition. A variety of substrates such as insulators, ...

  9. Structuring of thin-film polymer mixtures upon solvent evaporation

    NARCIS (Netherlands)

    Schaefer, C.; Michels, J.J.; van der Schoot, P.P.A.M.

    2016-01-01

    We theoretically study the impact of solvent evaporation on the dynamics of isothermal phase separation of ternary polymer solutions in thin films. In the early stages we obtain a spinodal length scale that decreases with time under the influence of ongoing evaporation. After that rapid demixing

  10. Structuring of Thin-Film Polymer Mixtures upon Solvent Evaporation

    NARCIS (Netherlands)

    Schaefer, C.; Michels, J. J.; van der Schoot, P.

    2016-01-01

    We theoretically study the impact of solvent evaporation on the dynamics of isothermal phase separation of ternary polymer solutions in thin films. In the early stages we obtain a spinodal length scale that decreases with time under the influence of ongoing evaporation. After that rapid demixing

  11. Quantitative evaluation about property of thin-film formation

    Energy Technology Data Exchange (ETDEWEB)

    Chen Huawei [Department of Mechanical Sciences and Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo (Japan) and School of Mechanical Engineering, Tianjin University (China)]. E-mail: chen_hua_wei@yahoo.com; Hagiwara, Ichiro [Department of Mechanical Sciences and Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo (Japan); Huang Tian [Department of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); School of Mechanical Engineering, Tianjin University (China); Zhang Dawei [School of Mechanical Engineering, Tianjin University (China)

    2006-03-15

    Chemical vapor deposition (CVD) is gradually emphasized as one promising method for nanomaterial formation. Such growth mechanism has been mainly investigated on basis of experiment. Due to large cost of the equipment of experiment and low level of current measurement, the comprehension about authentic effect of formation condition on properties of nanomaterial is limited in qualitative manner. Three quantitative items: flatness of primary deposition, adhesion between cluster and substrate, and degree of epitaxial growth were proposed to evaluate the property of thin film. In this simulation, three different cluster sizes of 203, 653, 1563 atoms with different velocities (0, 10, 100, 1000, 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Within one velocity range, not only the speed of epitaxial growth and adhesion between thin film and substrate were enhanced, but also the degree of epitaxy increased and the shape of thin film became more flat with velocity increasing. Moreover, the epitaxial growth became well as the temperature of substrate was raised within a certain range, and the degree of epitaxy of small cluster was larger than larger cluster. The results indicated that the property of thin film could be controlled if the effect of situations of process was made clear.

  12. Quantitative evaluation about property of thin-film formation

    International Nuclear Information System (INIS)

    Chen Huawei; Hagiwara, Ichiro; Huang Tian; Zhang Dawei

    2006-01-01

    Chemical vapor deposition (CVD) is gradually emphasized as one promising method for nanomaterial formation. Such growth mechanism has been mainly investigated on basis of experiment. Due to large cost of the equipment of experiment and low level of current measurement, the comprehension about authentic effect of formation condition on properties of nanomaterial is limited in qualitative manner. Three quantitative items: flatness of primary deposition, adhesion between cluster and substrate, and degree of epitaxial growth were proposed to evaluate the property of thin film. In this simulation, three different cluster sizes of 203, 653, 1563 atoms with different velocities (0, 10, 100, 1000, 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Within one velocity range, not only the speed of epitaxial growth and adhesion between thin film and substrate were enhanced, but also the degree of epitaxy increased and the shape of thin film became more flat with velocity increasing. Moreover, the epitaxial growth became well as the temperature of substrate was raised within a certain range, and the degree of epitaxy of small cluster was larger than larger cluster. The results indicated that the property of thin film could be controlled if the effect of situations of process was made clear

  13. Valence control of cobalt oxide thin films by annealing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shijing [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 100083 (China); Zhang Boping, E-mail: bpzhang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 100083 (China); Zhao Cuihua; Li Songjie; Zhang Meixia; Yan Liping [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 100083 (China)

    2011-02-01

    The cobalt oxide (CoO and Co{sub 3}O{sub 4}) thin films were successfully prepared using a spin-coating technique by a chemical solution method with CH{sub 3}OCH{sub 2}CH{sub 2}OH and Co(NO{sub 3}){sub 2}.6H{sub 2}O as starting materials. The grayish cobalt oxide films had uniform crystalline grains with less than 50 nm in diameter. The phase structure is able to tailor by controlling the annealing atmosphere and temperature, in which Co{sub 3}O{sub 4} thin film was obtained by annealing in air at 300-600, and N{sub 2} at 300, and transferred to CoO thin film by raising annealing temperature in N{sub 2}. The fitted X-ray photoelectron spectroscopy (XPS) spectra of the Co2p electrons are distinguishable from different valence states of cobalt oxide especially for their satellite structure. The valence control of cobalt oxide thin films by annealing atmosphere contributes to the tailored optical absorption property.

  14. Thin film characterization by resonantly excited internal standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Di Fonzio, S [SINCROTRONE TRIESTE, Trieste (Italy)

    1996-09-01

    This contribution describes how a standing wave excited in a thin film can be used for the characterization of the properties of the film. By means of grazing incidence X-ray reflectometry one can deduce the total film thickness. On the other hand in making use of a strong resonance effect in the electric field intensity distribution inside a thin film on a bulk substrate one can learn more about the internal structure of the film. The profile of the internal standing wave is proven by diffraction experiments. The most appropriate non-destructive technique for the subsequent thin film characterization is angularly dependent X-ray fluorescence analysis. The existence of the resonance makes it a powerful tool for the detection of impurities and of ultra-thin maker layers, for which the position can be determined with very high precision (about 1% of the total film thickness). This latter aspect will be discussed here on samples which had a thin Ti marker layer at different positions in a carbon film. Due to the resonance enhancement it was still possible to perform these experiments with a standard laboratory x-ray tube and with standard laboratory tool for marker or impurity detection in thin films.

  15. Numerical simulations of rarefied gas flows in thin film processes

    NARCIS (Netherlands)

    Dorsman, R.

    2007-01-01

    Many processes exist in which a thin film is deposited from the gas phase, e.g. Chemical Vapor Deposition (CVD). These processes are operated at ever decreasing reactor operating pressures and with ever decreasing wafer feature dimensions, reaching into the rarefied flow regime. As numerical

  16. Inhomogeneous strain states in sputter deposited tungsten thin films

    International Nuclear Information System (INIS)

    Noyan, I.C.; Shaw, T.M.; Goldsmith, C.C.

    1997-01-01

    The results of an x-ray diffraction study of dc-magnetron sputtered tungsten thin films are reported. It is shown that the phase transformation from the β to α W can cause multilayered single-phase films where the layers have very different stress states even if the films are in the 500 nm thickness range. copyright 1997 American Institute of Physics

  17. Organic thin film transistor integration: a hybrid approach

    National Research Council Canada - National Science Library

    Li, F. M

    2011-01-01

    .... Her research interests are in the field of nanoand thin-film technology for applications in large area and flexible electronics, including displays, sensors, photovoltaics, circuits and systems. Dr. Li has co-authored a book entitled CCD Image Sensors in Deep-Ultraviolet (2005), and has published articles in various scientific journals. Arokia Nathan holds the...

  18. Strain-induced properties of epitaxial VOx thin films

    NARCIS (Netherlands)

    Rata, AD; Hibma, T

    We have grown VOx thin films on different substrates in order to investigate the influence of epitaxial strain on the transport properties. We found that the electric conductivity is much larger for films grown under compressive strain on SrTiO3 substrates, as compared to bulk material and VOx films

  19. Thin-film antifuses for pellistor type gas sensors

    NARCIS (Netherlands)

    Kovalgin, Alexeij Y.; Holleman, J.; van den Berg, Albert; Wallinga, Hans

    2001-01-01

    This work extends our previously reported idea of using the nano-scale conductive link (antifuse) as a combined heating /detecting element in a Pellistor-type gas sensor. Our new thin-film antifuse is designed in such a way that the oxide, for minimising the bulk influence on surface temperature,

  20. Optical and electrical properties of nickel xanthate thin films

    Indian Academy of Sciences (India)

    Administrator

    metal-xanthate thin films' production, nor their optical, electrical properties and .... vibration of –CH3 at 894 cm–1, (vii) the symmetric bend- ing vibration of C–O–C at 458 .... vity values are the two most important factors, affecting band width.