WorldWideScience

Sample records for thin fe films

  1. MFM study of NdFeB and NdFeB/Fe/NdFeB thin films

    International Nuclear Information System (INIS)

    Gouteff, P.C.; Folks, L.; Street, R.

    1998-01-01

    Domain structures of NdFeB thin films, ranging in thickness between 1500 and 29 nm, have been studied qualitatively by magnetic force microscopy (MFM). Samples were prepared using a range of sputtering conditions resulting in differences in properties such as texture, coercivity and magnetic saturation. MFM images of all the films showed extensive interaction domain structures, similar to those observed in nanocrystalline bulk NdFeB. An exchange-coupled NdFeB/Fe/NdFeB trilayer with layer thicknesses 18 nm/15 nm/18 nm, respectively, was also examined using MFM. (orig.)

  2. Photoconductivity in BiFeO3 thin films

    Science.gov (United States)

    Basu, S. R.; Martin, L. W.; Chu, Y. H.; Gajek, M.; Ramesh, R.; Rai, R. C.; Xu, X.; Musfeldt, J. L.

    2008-03-01

    The optical properties of epitaxial BiFeO3 thin films have been characterized in the visible range. Variable temperature spectra show an absorption onset near 2.17eV, a direct gap (2.667±0.005eV at 300K), and charge transfer excitations at higher energy. Additionally, we report photoconductivity in BiFeO3 films under illumination from a 100mW /cm2 white light source. A direct correlation is observed between the magnitude of the photoconductivity and postgrowth cooling pressure. Dark conductivities increased by an order of magnitude when comparing films cooled in 760 and 0.1Torr. Large increases in photoconductivity are observed in light.

  3. High magnetic field properties of Fe-pnictide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, Fritz

    2015-11-20

    The recent discovery of high-temperature superconductivity in Fe-based materials triggered worldwide efforts to investigate their fundamental properties. Despite a lot of similarities to cuprates and MgB{sub 2}, important differences like near isotropic behaviour in contrast to cuprates and the peculiar pairing symmetry of the order parameter (OP) have been reported. The OP symmetry of Fe-based superconductors (FBS) was theoretically predicted to be of so-called s± state prior to various experimental works. Still, most of the experimental results favour the s± scenario; however, definitive evidence has not yet been reported. Although no clear understanding of the superconducting mechanisms yet exists, potential applications such as high-field magnets and Josephson devices have been explored. Indeed, a lot of reports about FBS tapes, wires, and even SQUIDs have been published to this date. In this thesis, the feasibility of high-field magnet applications of FBS is addressed by studying their transport properties, involving doped BaFe{sub 2}As{sub 2} (Ba-122) and LnFeAs(O,F) [Ln=Sm and Nd]. Particularly, it is important to study physical properties in a sample form (i.e. thin films) that is close to the conditions found in applications. However, the realisation of epitaxial FBS thin films is not an easy undertaking. Recent success in growing epitaxial FBS thin films opens a new avenue to delve into transport critical current measurements. The information obtained through this research will be useful for exploring high-field magnet applications. This thesis consists of 7 chapters: Chapter 1 describes the motivation of this study, the basic background of superconductivity, and a brief summary of the thin film growth of FBS. Chapter 2 describes experimental methods employed in this study. Chapter 3 reports on the fabrication of Co-doped Ba-122 thin films on various substrates. Particular emphasis lies on the discovery of fluoride substrates to be beneficial for

  4. Magneto-thermoelectric effects in NiFe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Maximilian

    2015-11-01

    In this thesis magneto-thermoelectric effects are investigated in a systematic way to separate the transverse spin Seebeck effect from other parasitic effects like the anomalous Nernst effect. In contrast to the first studies found in the literature, in NiFe thin films a contribution of the transverse spin Seebeck effect can be excluded. This surprising outcome was crosschecked in a variety of different sample layouts and collaborations with other universities to ensure the validity of these results. In general, this thesis solves a long time discussion about the existence of the transverse spin Seebeck effect in NiFe films and supports the importance of control measurements for the scientific community. Even if such ''negative'' results may not be the award winning ones, new discoveries should be treated with constructive criticism and be checked carefully by the scientific community.

  5. Magnetic domains in epitaxial (100) Fe thin films

    International Nuclear Information System (INIS)

    Florczak, J.M.; Dahlberg, E.D.; Ryan, P.J.; White, R.M.; Kuznia, J.N.; Wowchak, A.M.; Cohen, P.I.

    1989-01-01

    This paper discusses the investigation of the domain patterns of thin Fe films (10 nm) grown on In x Ga 1 - x As (0.09< x<0.25)/GaAs substrates by use of Kerr microscopy. For this investigation, two types of InGaAs buffer layers were prepared. One consisted of a single, thick InGaAs layer and the second composed of an InGaAs strained layer superlattice. Both were grown on (100) GaAs substrates. The study showed that many of the domain walls were approximately parallel to the easy axis of Fe for those films grown on the low x alloy, e.g. x = 0.1, InGaAs buffer layers

  6. Coercivity scaling in antidot lattices in Fe, Ni, and NiFe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gräfe, Joachim, E-mail: graefe@is.mpg.de; Schütz, Gisela; Goering, Eberhard J., E-mail: goering@is.mpg.de

    2016-12-01

    Antidot lattices can be used to artificially engineer magnetic properties in thin films, however, a conclusive model that describes the coercivity enhancement in this class of magnetic nano-structures has so far not been found. We prepared Fe, Ni, and NiFe thin films and patterned each with 21 square antidot lattices with different geometric parameters and measured their hysteretic behavior. On the basis of this extensive dataset we are able to provide a model that can describe both the coercivity scaling over a wide range of geometric lattice parameters and the influence of different materials.

  7. Magnetic studies of Fe-Y compositionally modulated thin films

    International Nuclear Information System (INIS)

    Badia, F.; Ferrater, C.; Lousa, A.; Martinez, B.; Labarta, A.; Tejada, J.

    1990-01-01

    Compositionally modulated thin films of Y/Fe have been studied by using SQUID magnetometry. Samples were grown by electron-beam evaporation onto Kapton substrates. In the low applied field regime, the samples show irreversible behavior when they are submitted to ZFC-FC magnetization processes, increasing the irreversibility zone as the thickness of the Fe layers increases. In the high applied magnetic field regime (H≥10 000 Oe), samples show ferromagnetic behavior. The temperature dependence of the saturation magnetization has been studied, and it was found that both spin-wave excitations and Stoner excitations occur at temperatures higher than 40 K, and a marked deviation from the T 3/2 law was noted below 30 K

  8. Structural and optical properties of cobalt doped multiferroics BiFeO3 nanostructure thin films

    Science.gov (United States)

    Prasannakumara, R.; Naik, K. Gopalakrishna

    2018-05-01

    Bismuth ferrite (BiFeO3) and Cobalt doped BiFeO3 (BiFe1-XCoXO3) nanostructure thin films were deposited on glass substrates by the sol-gel spin coating method. The X-ray diffraction patterns (XRD) of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films showed distorted rhombohedral structure. The shifting of peaks to higher angles was observed in cobalt doped BiFeO3. The surface morphology of the BiFeO3 and BiFe1-XCoXO3 nanostructure thin films were studied using FESEM, an increase in grain size was observed as Co concentration increases. The thickness of the nanostructure thin films was examined using FESEM cross-section. The EDX studies confirmed the elemental composition of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films. The optical characterizations of the grown nanostructure thin films were carried out using FTIR, it confirms the existence of Fe-O and Bi-O bands and UV-Visible spectroscopy shows the increase in optical band gap of the BiFeO3 nanostructure thin films with Co doping by ploting Tauc plot.

  9. Fe-Vacancy-Induced Ferromagnetism in Tetragonal FeSe Thin Films

    International Nuclear Information System (INIS)

    Yong-Feng, Li; Gui-Bin, Liu; Li-Jie, Shi; Bang-Gui, Liu

    2009-01-01

    Motivated by recent experiments, we investigate structural, electronic, and magnetic properties of tetragonal FeSe with Fe vacancies using the state-of-the-art first-principles method. We show that Fe vacancies tend to stay in the same one of the two sublattices and thus induce ferromagnetism in the ground-state phase. Our calculated net moment is in good agreement with the experimental data available. Therefore, the ferromagnetism observed in tetragonal FeSe thin films is explained. It could be made controllable soon for spintronic applications

  10. Epitaxial growth of Fe-based superconductor thin films

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Sven; Haenisch, Jens; Holzapfel, Bernhard [Institut fuer Technische Physik, Karlsruher Institut fuer Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-07-01

    The Fe-based superconductors (FBS), discovered in 2008, are not only interesting for possible applications due to their large upper critical fields and low anisotropies, but also for basic understanding of unconventional superconductivity. With their properties, they constitute a link between the classic low-T{sub c} superconductors (low anisotropies, low thermal fluctuations, s-wave type symmetry) and the oxocuprates (T{sub c} up to 55 K, large H{sub c2}, unconventional pairing). Their multi-band nature reminds of MgB{sub 2}. We prepare thin films of FBS in the so called 122 family, namely Co- and P-doped BaFe{sub 2}As{sub 2} to investigate application relevant properties, such as critical current density J{sub c}, by pulsed laser deposition using a frequency-tripled Nd:YAG laser (λ = 355 nm). Microstructure and chemical composition will be investigated by XRD, AFM and SEM, and electrical transport using a 14 T PPMS. The results are compared to literature data on films grown at different wavelengths.

  11. BiFeO3 thin films: Novel effects

    Indian Academy of Sciences (India)

    photolithography followed by etching of the silver film. Saturation ... Fe in +3 state. Films thus obtained are therefore highly resistive (ρ ∼ 108–109 cm) and hence exhibit saturated ferroelectric hysteresis loop (figure 3). Anomaly in ... BiFeO3 bulk sample by Rogniskaya et al [4] had indicated abrupt change in lattice parame-.

  12. Magnetization process in FePd thin films

    International Nuclear Information System (INIS)

    Klein, O.; Samson, Y.; Marty, A.; Guillous, S.; Viret, M.; Fermon, C.; Alloul, H.

    2001-01-01

    A custom made magnetic force microscope is used to study the magnetization process in thin films of FePd throughout the entire hysteresis loop. The 40 nm thick sample has a strong perpendicular anisotropy, which leads to a maze of 80 nm wide stripes of opposite polarity in the remanent state. The growth of M, when H increases, happens through an unwinding of the reversed domain along their axis. Together with the length recession, the reversed domain width also contracts with increasing field. The later effect is estimated by comparison of our images with magneto-optical Kerr measurements. A large disorder in the propagation process of the domain walls is observed. It is also found that the bubble configuration near the saturation field is unstable. [copyright] 2001 American Institute of Physics

  13. Thermomagnetically written domains in TbFeCo thin films

    International Nuclear Information System (INIS)

    Reim, W.; Weller, D.

    1988-01-01

    Characteristic features of thermomagnetically written domains in amorphous Tb x (Fe 90 Co 10 ) 100-x alloy thin films having different magnetic properties are reported. In particular, the writing process in materials with low Tb content chi ≤ 21 dominated by the demagnetizing field is compared to the bias field dominated process in Tb rich samples 22 ≤ chi ≤ 25. Domain wall movement over lateral dimensions of the bit size is found for Tb poor materials while for chi ≥ 22 domain boundaries are primarily determined by the area heated up to the Curie-temperature. The importance of mechanical stress on domain formation and irreversible changes of the storage medium due to overheating in the writing process are reported

  14. Fe3O4 thin films sputter deposited from iron oxide targets

    International Nuclear Information System (INIS)

    Peng, Yingguo; Park, Chandro; Laughlin, David E.

    2003-01-01

    Fe 3 O 4 thin films have been directly sputter deposited from a target consisting of a mixture of Fe 3 O 4 and Fe 2 O 3 onto Si and glass substrates. The magnetic properties and microstructures of the films have been characterized and correlated. The columnar growth of the Fe 3 O 4 grains was found to be initialized from the substrate surface without any critical thickness. Substrate bias was found to be a very effective means of improving the crystal quality and magnetic properties of the thin films. The crystallographic defects revealed by high resolution transmission electron microscopy seem to be a characteristic of the films prepared by this method

  15. All-optical measurement of interlayer exchange coupling in Fe/Pt/FePt thin films

    Science.gov (United States)

    Berk, C.; Ganss, F.; Jaris, M.; Albrecht, M.; Schmidt, H.

    2018-01-01

    Time Resolved Magneto Optic Kerr Effect spectroscopy was used to all-optically study the dynamics in exchange coupled Fe(10 nm)/Pt(x = 0-5 nm)/FePt (10 nm) thin films. As the Pt spacer decreases, the effective magnetization of the layers is seen to evolve towards the strong coupling limit where the two films can be described by a single effective magnetization. The coupling begins at x = 1.5 nm and reaches a maximum exchange coupling constant of 2.89 erg/cm2 at x = 0 nm. The films are ferromagnetically coupled at all Pt thicknesses in the exchange coupled regime (x ≤ 1.5 nm). A procedure for extracting the interlayer exchange constant by measuring the magnetic precession frequencies at multiple applied fields and angles is outlined. The dynamics are well reproduced using micromagnetic simulations.

  16. High Temperature Magnetic Properties of Indirect Exchange Spring FePt/M(Cu,C/Fe Trilayer Thin Films

    Directory of Open Access Journals (Sweden)

    Anabil Gayen

    2013-01-01

    Full Text Available We report the investigation of temperature dependent magnetic properties of FePt and FePt(30/M(Cu,C/Fe(5 trilayer thin films prepared by using magnetron sputtering technique at ambient temperature and postannealed at different temperatures. L10 ordering, hard magnetic properties, and thermal stability of FePt films are improved with increasing postannealing temperature. In FePt/M/Fe trilayer, the formation of interlayer exchange coupling between magnetic layers depends on interlayer materials and interface morphology. In FePt/C/Fe trilayer, when the C interlayer thickness was about 0.5 nm, a strong interlayer exchange coupling between hard and soft layers was achieved, and saturation magnetization was enhanced considerably after using interlayer exchange coupling with Fe. In addition, incoherent magnetization reversal process observed in FePt/Fe films changes into coherent switching process in FePt/C/Fe films giving rise to a single hysteresis loop. High temperature magnetic studies up to 573 K reveal that the effective reduction in the coercivity decreases largely from 34 Oe/K for FePt/Fe film to 13 Oe/K for FePt/C(0.5/Fe film demonstrating that the interlayer exchange coupling seems to be a promising approach to improve the stability of hard magnetic properties at high temperatures, which is suitable for high-performance magnets and thermally assisted magnetic recording media.

  17. Residual stress change by thermal annealing in amorphous Sm-Fe-B thin films

    International Nuclear Information System (INIS)

    Na, S.M.; Suh, S.J.; Kim, H.J.; Lim, S.H.

    2002-01-01

    The change in the residual stress and its effect on mechanical bending and magnetic properties of sputtered amorphous Sm-Fe-B thin films are investigated as a function of annealing temperature. Two stress components of intrinsic compressive stress and tensile stress due to the difference of the thermal expansion coefficients between the substrate and thin film are used to explain the stress state in as-deposited thin films, and the annealing temperature dependence of residual stress, mechanical bending and magnetic properties

  18. Soft Magnetic Properties of High-Entropy Fe-Co-Ni-Cr-Al-Si Thin Films

    Directory of Open Access Journals (Sweden)

    Pei-Chung Lin

    2016-08-01

    Full Text Available Soft magnetic properties of Fe-Co-Ni-Al-Cr-Si thin films were studied. As-deposited Fe-Co-Ni-Al-Cr-Si nano-grained thin films showing no magnetic anisotropy were subjected to field-annealing at different temperatures to induce magnetic anisotropy. Optimized magnetic and electrical properties of Fe-Co-Ni-Al-Cr-Si films annealed at 200 °C are saturation magnetization 9.13 × 105 A/m, coercivity 79.6 A/m, out-of-plane uniaxial anisotropy field 1.59 × 103 A/m, and electrical resistivity 3.75 μΩ·m. Based on these excellent properties, we employed such films to fabricate magnetic thin film inductor. The performance of the high entropy alloy thin film inductors is superior to that of air core inductor.

  19. Columnar grain growth of FePt(L10) thin films

    International Nuclear Information System (INIS)

    Yang En; Ho Hoan; Laughlin, David E.; Zhu Jiangang

    2012-01-01

    An experimental approach for obtaining perpendicular FePt-SiOx thin films with a large height to diameter ratio FePt(L1 0 ) columnar grains is presented in this work. The microstructure for FePt-SiOx composite thin films as a function of oxide volume fraction, substrate temperature, and film thickness is studied by plan view and cross section TEM. The relations between processing, microstructure, epitaxial texture, and magnetic properties are discussed. By tuning the thickness of the magnetic layer and the volume fraction of oxide in the film at a sputtering temperature of 410 deg. C, a 16 nm thick perpendicular FePt film with ∼8 nm diameter of FePt grains was obtained. The height to diameter ratio of the FePt grains was as large as 2. Ordering at lower temperature can be achieved by introducing a Ag sacrificial layer.

  20. Nanoscale Control of Exchange Bias with BiFeO3 Thin Films

    NARCIS (Netherlands)

    Martin, Lane W.; Chu, Ying-Hao; Holcomb, Mikel B.; Huijben, Mark; Yu, Pu; Han, Shu-Jen; Lee, Donkoun; Wang, Shan X.; Ramesh, R.

    2008-01-01

    We demonstrate a direct correlation between the domain structure of multiferroic BiFeO3 thin films and exchange bias of Co0.9Fe0.1/BiFeO3 heterostructures. Two distinct types of interactions − an enhancement of the coercive field (exchange enhancement) and an enhancement of the coercive field

  1. Magnetic and magneto-optical properties of FeRh thin films

    International Nuclear Information System (INIS)

    Inoue, Sho; Nam, Nguyen T.; Phuoc, Nguyen N.; Cao Jiangwei; Yu Ko, Hnin Yu; Suzuki, Takao

    2008-01-01

    The magnetic and magneto-optical properties of FeRh thin films epitaxially deposited onto MgO(1 0 0) substrates by RF sputter-deposition system have been investigated in conjunction with the structure. An intriguing virgin effect has been found in the M-T curves of the as-deposited FeRh thin films, which is presumably interpreted in term of a change in structural phase when heating. Also, a (negative) maximum peak of Kerr rotation at around 3.8 eV has been observed when FeRh thin films are in ferromagnetic state. The polar Kerr rotation angle is found to increase at temperatures above 100 deg. C, which corresponds to the antiferromagnet (AF)-ferromagnet (FM) transition of FeRh thin films

  2. Polarization-tuned diode behaviour in multiferroic BiFeO3 thin films

    KAUST Repository

    Yao, Yingbang; Zhang, Bei; Chen, Long; Yang, Yang; Wang, Zhihong; Alshareef, Husam N.; Zhang, Xixiang

    2012-01-01

    Asymmetric rectifying I-V behaviour of multiferroic BiFeO3 (BFO) thin films grown on transparent ITO-coated glass was quantitatively studied as a function of ferroelectric polarization. Different polarized states were established by unipolar

  3. Magnetic Properties of FeNi-Based Thin Film Materials with Different Additives

    Directory of Open Access Journals (Sweden)

    Cai Liang

    2014-07-01

    Full Text Available This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B.

  4. Magnetic properties of FeNi-based thin film materials with different additives

    KAUST Repository

    Liang, C.

    2014-07-04

    This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B. 2014 by the authors.

  5. Theoretical investigation of electronic, magnetic and optical properties of Fe doped GaN thin films

    International Nuclear Information System (INIS)

    Salmani, E.; Mounkachi, O.; Ez-Zahraouy, H.; Benyoussef, A.; Hamedoun, M.; Hlil, E.K.

    2013-01-01

    Highlights: •Magnetic and optical properties Fe-doped GaN thin films are studied using DFT. •The band gaps of GaN thin films are larger than the one of the bulk. •The layer thickness and acceptor defect can switch the magnetic ordering. -- Abstract: Using first principles calculations based on spin-polarized density functional theory, the magnetic and optical properties of GaN and Fe-doped GaN thin films with and without acceptor defect is studied. The band structure calculations show that the band gaps of GaN thin films with 2, 4 and 6 layers are larger than the one of the bulk with wurtzite structure and decreases with increasing the film thickness. In Fe doped GaN thin films, we show that layer of thickness and acceptor defect can switch the magnetic ordering from disorder local moment (DLM) to ferromagnetic (FM) order. Without acceptor defect Fe doped GaN exhibits spin glass phase in 4 layers form and ferromagnetic state for 2 layers form of the thin films, while it exhibits ferromagnetic phase with acceptor defect such as vacancies defect for 2 and 4 layers. In the FM ordering, the thin films is half-metallic and is therefore ideal for spin application. The different energy between ferromagnetic state and disorder local moment state was evaluated. Moreover, the optical absorption spectra obtained by ab initio calculations confirm the ferromagnetic stability based on the charge state of magnetic impurities

  6. First-principles-based study of transport properties of Fe thin films on Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Tomoya [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Kasai, Hideaki [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Nakanishi, Hiroshi [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Dino, Wilson Agerico [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Komori, Fumio [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8587 (Japan)

    2004-12-08

    We investigate the transport properties of Fe thin films on Cu(111) based on first principles calculation. We calculate the electron current through these Fe thin films, which can be observed by using a double-tipped scanning tunnelling microscope. We find that the conductance is majority spin polarized. On the basis of the band structures for this system, we discuss the origin of these interesting transport properties.

  7. First-principles-based study of transport properties of Fe thin films on Cu surfaces

    International Nuclear Information System (INIS)

    Kishi, Tomoya; Kasai, Hideaki; Nakanishi, Hiroshi; Dino, Wilson Agerico; Komori, Fumio

    2004-01-01

    We investigate the transport properties of Fe thin films on Cu(111) based on first principles calculation. We calculate the electron current through these Fe thin films, which can be observed by using a double-tipped scanning tunnelling microscope. We find that the conductance is majority spin polarized. On the basis of the band structures for this system, we discuss the origin of these interesting transport properties

  8. L1{sub 0} phase transition in FePt thin films via direct interface reaction

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaohong; Sun Hongyu; Wang Fengqing; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China); Liu Baoting; Guo Jianxin [College of Physics Science and Technology, Hebei University, 071002 Baoding (China)], E-mail: xyzh66@ysu.edu.cn

    2008-12-07

    Lowering the L1{sub 0} ordering temperature of FePt films is of great significance for their application as an ultrahigh density magnetic recording medium. In this study, the L1{sub 0} ordering process of FePt thin films deposited directly on Si substrates has been significantly accelerated by the interface reaction between the thin film and the Si substrate, and thus the thin films show a low L1{sub 0} ordering temperature of T = 310 deg. C as compared with those deposited on Si/SiO{sub 2} substrates. The accelerated L1{sub 0} ordering transition is predominantly dependent on the rapid growth of the ordered domains during the interface reaction. The film thickness has an important effect on the interface reaction and thus can be used to tune the L1{sub 0} ordering process of the FePt films.

  9. L10 phase transition in FePt thin films via direct interface reaction

    International Nuclear Information System (INIS)

    Li Xiaohong; Sun Hongyu; Wang Fengqing; Li Wei; Zhang Xiangyi; Liu Baoting; Guo Jianxin

    2008-01-01

    Lowering the L1 0 ordering temperature of FePt films is of great significance for their application as an ultrahigh density magnetic recording medium. In this study, the L1 0 ordering process of FePt thin films deposited directly on Si substrates has been significantly accelerated by the interface reaction between the thin film and the Si substrate, and thus the thin films show a low L1 0 ordering temperature of T = 310 deg. C as compared with those deposited on Si/SiO 2 substrates. The accelerated L1 0 ordering transition is predominantly dependent on the rapid growth of the ordered domains during the interface reaction. The film thickness has an important effect on the interface reaction and thus can be used to tune the L1 0 ordering process of the FePt films.

  10. Thickness-modulated anisotropic ferromagnetism in Fe-doped epitaxial HfO2 thin films

    Science.gov (United States)

    Liu, Wenlong; Liu, Ming; Zhang, Ruyi; Ma, Rong; Wang, Hong

    2017-10-01

    Epitaxial tetragonal Fe-doped Hf0.95Fe0.05O2 (FHO) thin films with various thicknesses were deposited on (001)-oriented NdCaAlO4 (NCAO) substrates by using a pulsed laser deposition (PLD) system. The crystal structure and epitaxial nature of the FHO thin films were confirmed by typical x-ray diffraction (XRD) θ-2θ scan and reciprocal space mapping (RSM). The results indicate that two sets of lattice sites exist with two different crystal orientations [(001) and (100)] in the thicker FHO thin films. Further, the intensity of the (100) direction increases with the increase in thicknesses, which should have a significant effect on the anisotropic magnetization of the FHO thin films. Meanwhile, all the FHO thin films possess a tetragonal phase structure. An anisotropy behavior in magnetization has been observed in the FHO thin films. The anisotropic magnetization of the FHO thin films is slowly weakened as the thickness increases. Meanwhile, the saturation magnetization (Ms) of both in-plane and out-of-plane decreases with the increase in the thickness. The change in the anisotropic magnetization and Ms is attributed to the crystal lattice and the variation in the valence of Fe ions. These results indicate that the thickness-modulated anisotropic ferromagnetism of the tetragonal FHO epitaxial thin films is of potential use for the integration of metal-oxide semiconductors with spintronics.

  11. Photoelectrochemical Performance Observed in Mn-Doped BiFeO3 Heterostructured Thin Films

    Directory of Open Access Journals (Sweden)

    Hao-Min Xu

    2016-11-01

    Full Text Available Pure BiFeO3 and heterostructured BiFeO3/BiFe0.95Mn0.05O3 (5% Mn-doped BiFeO3 thin films have been prepared by a chemical deposition method. The band structures and photosensitive properties of these films have been investigated elaborately. Pure BiFeO3 films showed stable and strong response to photo illumination (open circuit potential kept −0.18 V, short circuit photocurrent density was −0.023 mA·cm−2. By Mn doping, the energy band positions shifted, resulting in a smaller band gap of BiFe0.95Mn0.05O3 layer and an internal field being built in the BiFeO3/BiFe0.95Mn0.05O3 interface. BiFeO3/BiFe0.95Mn0.05O3 and BiFe0.95Mn0.05O3 thin films demonstrated poor photo activity compared with pure BiFeO3 films, which can be explained by the fact that Mn doping brought in a large amount of defects in the BiFe0.95Mn0.05O3 layers, causing higher carrier combination and correspondingly suppressing the photo response, and this negative influence was more considerable than the positive effects provided by the band modulation.

  12. Molecular and electronic structure of thin films of protoporphyrin(IX)Fe(III)Cl

    Science.gov (United States)

    Snyder, Shelly R.; White, Henry S.

    1991-11-01

    Electrochemical, scanning tunneling microscopy (STM), and tunneling spectroscopy studies of the molecular and electronic properties of thin films of protoporphyrin(IX)Fe(III)Cl (abbreviated as PP(IX)Fe(III)Cl) on highly oriented pyrolytic graphite (HOPG) electrodes are reported. PP(IX)Fe(III)Cl films are prepared by two different methods: (1) adsorption, yielding an electrochemically-active film, and (2) irreversible electrooxidative polymerization, yielding an electrochemically-inactive film. STM images, in conjunction with electro-chemical results, indicate that adsorption of PP(IX)Fe(III)Cl from aqueous solutions onto freshly cleaved HOPG results in a film comprised of molecular aggregates. In contrast, films prepared by irreversible electrooxidative polymerization of PP(IX)Fe(III)Cl have a denser, highly structured morphology, including what appear to be small pinholes (approx. 50A diameter) in an otherwise continuous film.

  13. Nanocrystalline Pd:NiFe2O4 thin films: A selective ethanol gas sensor

    International Nuclear Information System (INIS)

    Rao, Pratibha; Godbole, R.V.; Bhagwat, Sunita

    2016-01-01

    In this work, Pd:NiFe 2 O 4 thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe 2 O 4 thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost. - Highlights: • Ethanol gas sensors based on Pd:NiFe 2 O 4 nanoparticle thin film were fabricated. • Pd incorporation in NiFe 2 O 4 matrix inhibits grain growth. • The sensors were more selective to ethanol gas. • Sensors exhibited fast response and recovery when doped with palladium. • Pd:NiFe 2 O 4 thin film sensor displays excellent long–term stability.

  14. Synthesis and characterization of Fe doped cadmium selenide thin films by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Abhijit A., E-mail: aay_physics@yahoo.co.in [Thin Film Physics Laboratory, Department of Physics, Electronics and Photonics, Rajarshi Shahu Mahavidyalaya, Latur 413 512, Maharashtra (India)

    2012-12-05

    Highlights: Black-Right-Pointing-Pointer Simple and inexpensive method to dope trivalent Fe in CdSe thin films. Black-Right-Pointing-Pointer Fe doped CdSe thin films are highly photosensitive. Black-Right-Pointing-Pointer AFM analysis shows uniform deposition of film over the entire substrate surface. Black-Right-Pointing-Pointer The band gap energy decreases from 1.74 to 1.65 eV with Fe doping. Black-Right-Pointing-Pointer Film resistivity decreases to 6.76 Multiplication-Sign 10{sup 4} {Omega}-cm with Fe doping in CdSe thin films. - Abstract: Undoped and Fe doped CdSe thin films have been deposited onto the amorphous and fluorine doped tin oxide coated glass substrates by spray pyrolysis. The Fe doping concentration has been optimized by photoelectrochemical (PEC) characterization technique. The structural, surface morphological, compositional, optical and electrical properties of undoped and Fe doped CdSe thin films have been studied. X-ray diffraction study reveals that the as deposited CdSe films possess hexagonal crystal structure with preferential orientation along (1 0 0) plane. AFM analysis shows uniform deposition of the film over the entire substrate surface with minimum surface roughness of 7.90 nm. Direct allowed type of transition with band gap decreasing from 1.74 to 1.65 eV with Fe doping has been observed. The activation energy of the films has been found to be in the range of 0.14-0.19 eV at low temperature and 0.27-0.44 eV at high temperature. Semi-conducting behavior has been observed from resistivity measurements. The thermoelectric power measurements reveal that the films are of n type.

  15. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    International Nuclear Information System (INIS)

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-01-01

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 μA mM -1 cm -2 and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  16. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    Science.gov (United States)

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-09-01

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 μA mM-1 cm-2 and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  17. Influences of annealing temperature on sprayed CuFeO2 thin films

    Science.gov (United States)

    Abdelwahab, H. M.; Ratep, A.; Abo Elsoud, A. M.; Boshta, M.; Osman, M. B. S.

    2018-06-01

    Delafossite CuFeO2 thin films were successfully prepared onto quartz substrates using simple spray pyrolysis technique. Post annealing under nitrogen atmosphere for 2 h was necessary to form delafossite CuFeO2 phase. The effect of alteration in annealing temperature (TA) 800, 850 and 900 °C was study on structural, morphology and optical properties. The XRD results for thin film annealed at TA = 850 °C show single phase CuFeO2 with rhombohedral crystal system and R 3 bar m space group with preferred orientation along (0 1 2). The prepared copper iron oxide thin films have an optical transmission ranged ∼40% in the visible region. The optical direct optical band gap of the prepared thin films was ranged ∼2.9 eV.

  18. Magnetoelastic coupling in TbFe2 (110) thin films

    International Nuclear Information System (INIS)

    Ciria, M.; Arnaudas, J.I.; Dufour, C.; Oderno, V.; Dumesnil, K.; del Moral, A.

    1997-01-01

    We have determined the rhombohedral magnetoelastic stress of a Laves phase TbFe 2 (110) single-crystal film, grown by molecular-beam epitaxy. The film thickness was 1300 Angstrom. The magnetoelastic stress was directly measured by using a low-temperature cantilever capacitive method, between 300 and 10 K. The isotherms clearly display the coercive field but, unlike bulk alloy behavior, do not saturate even at the maximum field of 12 T. The determined rhombohedral magnetoelastic parameter of the film is B ε,2 =-0.43 GPa, at 0 K and 12 T, which is 0.67 times the value for bulk TbFe 2 . B ε,2 follows a power m 3 of the reduced magnetization m, indicating a single-ion volume origin for the rhombohedral magnetoelastic stress of this film. Measurements performed in a 300 Angstrom TbFe 2 (110) film deposited onto a YFe 2 buffer show that the coercive field is drastically lowered and that the magnetoelastic distortion is negligible. copyright 1997 American Institute of Physics

  19. Direct growth of superconducting NdFeAs(O,F) thin films by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Chihara, Masashi, E-mail: chihara@iku.xtal.nagoya-u.ac.jp [Department of Crystalline Materials Science, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan); Sumiya, Naoki; Arai, Kenta [Department of Crystalline Materials Science, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan); Ichinose, Ataru; Tsukada, Ichiro [Central Research Institute of Electric Power Industry, Yokosuka-shi, Kanagawa 240-0101 (Japan); Hatano, Takafumi; Iida, Kazumasa; Ikuta, Hiroshi [Department of Crystalline Materials Science, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-11-15

    Highlights: • Highly textured NdFeAs(O,F) thin films were obtained by a direct growth method. • Enhancing the migration was crucial to realize the direct growth. • The critical current density exceeded 3 MA/cm{sup 2} at self-field and 1 MA/cm{sup 2} at 9 T. • A two-dimensional growth was confirmed by the observation of surface morphology. - Abstract: We report on the growth of NdFeAs(O,F) superconducting thin films by molecular beam epitaxy without having a NdOF secondary layer that was necessary for fluorine doping in our previous studies. The key to realizing the direct growth of a superconducting film was the enhancement of migration of the raw materials on the substrate, which was accomplished by two steps. Firstly, we increased the growth temperature that improved the crystalline quality of parent NdFeAsO thin films. Secondly, the atmosphere in the chamber during the growth was improved by changing the crucible material of the Fe source cell. Highly textured NdFeAs(O,F) thin films with critical temperatures up to 50 K were obtained, and terraces were observed by atomic force microscope, indicating a two-dimensional growth. However, precipitates were also found on the surface, which suggests that enhancing further the migration is necessary for obtaining a NdFeAs(O,F) thin film with a better quality.

  20. Structural, mechanical and magnetic study on galvanostatic electroplated nanocrystalline NiFeP thin films

    Science.gov (United States)

    Kalaivani, A.; Senguttuvan, G.; Kannan, R.

    2018-03-01

    Nickel based alloys has a huge applications in microelectronics and micro electromechanical systems owing to its superior soft magnetic properties. With the advantages of simplicity, cost-effectiveness and controllable patterning, electroplating processes has been chosen to fabricate thin films in our work. The soft magnetic NiFeP thin film was successfully deposited over the surface of copper plate through galvanostatic electroplating method by applying constant current density of 10 mA cm-2 for a deposition rate for half an hour. The properties of the deposited NiFeP thin films were analyzed by subjecting it into different physio-chemical characterization such as XRD, SEM, EDAX, AFM and VSM. XRD pattern confirms the formation of NiFeP particles and the structural analysis reveals that the NiFeP particles were uniformly deposited over the surface of copper substrate. The surface roughness analysis of the NiFeP films was done using AFM analysis. The magnetic studies and the hardness of the thin film were evaluated from the VSM and hardness test. The NiFeP thin films possess lower coercivity with higher magnetization value of 69. 36 × 10-3 and 431.92 Gauss.

  1. Magnetoresistance anomaly in DyFeCo thin films

    International Nuclear Information System (INIS)

    Wu, J. C.; Wu, C. S.; Wu, Te-ho; Chen, Bing-Mau; Shieh, Han-Ping D.

    2001-01-01

    Microstructured rare-earth - transition-metal DyFeCo films have been investigated using magnetoresistance and extraordinary Hall-effect measurements. The Hall loops reveal variation of coercive fields depending on the linewidth and the composition of the films. The magnetoresistance curves, with changes up to as high as 1.3%, show positive/negative magnetoresistance peaks centered on the coercive fields depending on the linewidth of the films only. The variation of the coercivity can be attributed to the magnetic moment canting between the Dy and FeCo subcomponents and the existence of the diverged magnetization on the edges, and the anomalous magnetoresistance peaks observed are discussed with the existing theories. [copyright] 2001 American Institute of Physics

  2. Electrosynthesis and characterization of Fe doped CdSe thin films from ethylene glycol bath

    International Nuclear Information System (INIS)

    Pawar, S.M.; Moholkar, A.V.; Rajpure, K.Y.; Bhosale, C.H.

    2007-01-01

    The CdSe and Fe doped CdSe (Fe:CdSe) thin films have been electrodeposited potentiostatically onto the stainless steel and fluorine doped tin oxide (FTO) glass substrates, from ethylene glycol bath containing (CH 3 COO) 2 .Cd.2H 2 O, SeO 2 , and FeCl 3 at room temperature. The doping concentration of Fe is optimized by using (photo) electrochemical (PEC) characterization technique. The deposition mechanism and Fe incorporation are studied by cyclic voltammetry. The structural, surface morphological and optical properties of the deposited CdSe and Fe:CdSe thin films have been studied by X-ray diffraction, scanning electron microscopy (SEM) and optical absorption techniques respectively. The PEC study shows that Fe:CdSe thin films are more photosensitive than that of undoped CdSe thin films. The X-ray diffraction analysis shows that the films are polycrystalline with hexagonal crystal structure. SEM studies reveal that the films with uniformly distributed grains over the entire surface of the substrate. The complete surface morphology has been changed after doping. Optical absorption study shows the presence of direct transition and a considerable decrease in bandgap, E g from 1.95 to 1.65 eV

  3. Studies on electrodeposited Cd1-xFe xS thin films

    International Nuclear Information System (INIS)

    Deshmukh, S.K.; Kokate, A.V.; Sathe, D.J.

    2005-01-01

    Thin films of Cd 1-x Fe x S have been prepared on stainless steel and fluorine doped tin oxide (FTO) coated glass substrates using electrodeposition technique. Double distilled water containing precursors of Cd, Fe and S are used with ethylene diamine tetra-acetic acid (EDTA) disodium salt as a complexing agent to obtain good quality deposits by controlling the rate of reactions. The different preparative parameters like concentration of bath, deposition time, pH of the bath and Fe content in the bath have been optimized by photoelectrochemical (PEC) technique in order to get good quality thin films. Different techniques have been used to characterize electrodeposited Cd 1-x Fe x S thin films. The X-ray diffraction (XRD) analysis reveals that the films Cd 1-x Fe x S are polycrystalline in nature with crystallite size 282 A for the films deposited with optimized preparative parameters. Scanning electron microscopy (SEM) study for the sample deposited at optimized preparative parameters reveals that all grains uniformly distributed over the surface of stainless steel substrate indicates well defined growth of polycrystalline Cd-Fe-S material. Optical absorption shows the presence of direct transition and band gap energy decreases from 2.43 to 0.81 eV with the increase of Fe content from 0 to 1. PEC study shows the films of Cd 1-x Fe x S with x = 0.2 are more photosensitive than other compositions

  4. Nanocrystalline Pd:NiFe2O4 thin films: A selective ethanol gas sensor

    Science.gov (United States)

    Rao, Pratibha; Godbole, R. V.; Bhagwat, Sunita

    2016-10-01

    In this work, Pd:NiFe2O4 thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe2O4 thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost.

  5. Magnetic properties of electroplated nano/microgranular NiFe thin films for rf application

    NARCIS (Netherlands)

    Zhuang, Y.; Vroubel, M.; Rejaei, B.; Burghartz, J.N.; Attenborough, K.

    2005-01-01

    A granular NiFe thin film with large in-plane magnetic anisotropy and high ferromagnetic-resonance frequency developed for radio-frequency integrated circuit (IC) applications is presented. During the deposition, three-dimensional (3D) growth occurs, yielding NiFe grains (? ? 1.0??m). Nanonuclei (?

  6. Formation of β-FeSi 2 thin films by partially ionized vapor deposition

    Science.gov (United States)

    Harada, Noriyuki; Takai, Hiroshi

    2003-05-01

    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of β-FeSi 2 thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of β-FeSi 2 films deposited on Si substrates. It was confirmed that β-FeSi 2 can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of β-FeSi 2 depends strongly on the content and the acceleration energy of ions.

  7. Formation of {beta}-FeSi{sub 2} thin films by partially ionized vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Noriyuki; Takai, Hiroshi

    2003-05-01

    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of {beta}-FeSi{sub 2} thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of {beta}-FeSi{sub 2} films deposited on Si substrates. It was confirmed that {beta}-FeSi{sub 2} can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of {beta}-FeSi{sub 2} depends strongly on the content and the acceleration energy of ions.

  8. Ferromagnetic resonance linewidth and two-magnon scattering in Fe1-xGdx thin films

    Directory of Open Access Journals (Sweden)

    Sheng Jiang

    2017-05-01

    Full Text Available Magnetization dynamics of Fe1-xGdx thin films (0 ≤ x ≤ 22% has been investigated by ferromagnetic resonance (FMR. Out-of-plane magnetic field orientation dependence of resonance field and linewidth has been measured. Resonance field and FMR linewidth have been fitted by the free energy of our system and Landau-Lifshitz-Gilbert (LLG equation. It is found that FMR linewidth contains huge extrinsic components including two-magnon scattering contribution and inhomogeneous broadening for FeGd alloy thin films. In addition, the intrinsic linewidth and real damping constants have been obtained by extracting the extrinsic linewidth. The damping constant enhanced from 0.011 to 0.038 as Gd dopants increase from 0 to 22% which originates from the enhancement of L-S coupling in FeGd thin films. Besides, gyromagnetic ratio, Landé factor g and magnetic anisotropy of our films have also been determined.

  9. Engineering Gilbert damping by dilute Gd doping in soft magnetic Fe thin Films

    NARCIS (Netherlands)

    Zhang, W.; Jiang, S.; Wong, P.K.J.; Sun, Li; Wang, Y.K.; Wang, Kai; de Jong, Machiel Pieter; van der Wiel, Wilfred Gerard; van der Laan, G.; Zhai, Y.

    2014-01-01

    By analyzing the ferromagnetic resonance linewidth, we show that the Gilbert damping constant in soft magnetic Fe thin films can be enhanced by ∼6 times with Gd doping of up to 20%. At the same time, the magnetic easy axis remains in the film plane while the coercivity is strongly reduced after Gd

  10. Magnetic properties and microstructure of low ordering temperature L10 FePt thin films

    International Nuclear Information System (INIS)

    Sun, A.C.; Kuo, P.C.; Chen, S.C.; Chou, C.Y.; Huang, H.L.; Hsu, J.H.

    2004-01-01

    Polycrystalline Fe 52 Pt 48 alloy thin films were prepared by dc magnetron sputtering on preheated natural-oxidized silicon wafer substrates. The film thickness was varied from 10 to 100 nm. The as-deposited film was encapsulated in a quartz tube and postannealed in vacuum at various temperatures for 1 h, then furnace cooled. It is found that the ordering temperature from as-deposited soft magnetic fcc FePt phase to hard magnetic fct L1 0 FePt phase could be reduced to about 350 deg. C by preheating substrate and furnace cooling treatment. The magnetic properties measurements indicated that the in-plane coercivity of the films was increased rapidly as annealing temperature is increased from 300 to 400 deg. C, but it decreased when the annealing temperature is higher than 400 deg. C. X-ray diffraction analysis shown that the as-deposited FePt thin film was a disorder fcc FePt phase. The magnetic measurement indicated that the transformation of disorder fcc FePt to fct L1 0 FePt phase was started at about 350 deg. C, which is consistent with the analysis of x-ray diffraction patterns. From scanning electron microscopy observation and selected area energy disperse spectrum analysis, the distributions of Fe and Pt elements in the films became nonuniform when the annealing temperature was higher than 500 deg. C due to the formation of the Fe 3 Pt phase. After annealing at 400 deg. C, the in plane coercivity of Fe 52 Pt 48 thin film with film thickness of 100 nm is 10 kOe, M s is 580 emu/cm3, and grain size is about 12 nm

  11. Fabrication and properties of SmFe2-PZT magnetoelectric thin films

    KAUST Repository

    Giouroudi, Ioanna

    2013-05-17

    Magnetoelectric (ME) thin film composites are attracting a continually increasing interest due to their unique features and potential applications in multifunctional microdevices and integrated units such as sensors, actuators and energy harvesting modules. By combining piezoelectric and highly magnetostrictive thin films, the potentialities of these materials increase. In this paper we report the fabrication of SmFe2 and PZT thin films and the investigation of their properties. First of all, a ~ 400 nm thin SmFe film was deposited on top of Si/SiO2 substrate by magnetron sputter deposition. Afterwards, a 140 nm Pt bottom electrode was sputtered on top of the SmFe film forming a bottom electrode. Spin coating was employed for the deposition of the 150 nm thin PZT layer. A PZT solution with 10 %Pb excess was utilized for this fabrication step. Finally, circular Pt top electrodes were sputtered as top electrodes. This paper focuses on the microstructure of the individual films characterized by X-Ray diffractometer (XRD) and scanning electron microscopy (SEM). A piezoelectric evaluation system, aixPES, with TF2000E analyzer component was used for the electric hysteresis measurements of PZT thin films and a vibrating sample magnetometer (VSM) was employed for the magnetic characterization of the SmFe. The developed thin films and the fabricated double layer SmFe-PZT exhibit both good ferromagnetic and piezoelectric responses which predict a promising ME composite structure. The quantitative chemical composition of the samples was confirmed by energy dispersive spectroscopy (EDX). © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  12. Fabrication and properties of SmFe2-PZT magnetoelectric thin films

    KAUST Repository

    Giouroudi, Ioanna; Alnassar, Mohammed; Kosel, Jü rgen

    2013-01-01

    Magnetoelectric (ME) thin film composites are attracting a continually increasing interest due to their unique features and potential applications in multifunctional microdevices and integrated units such as sensors, actuators and energy harvesting modules. By combining piezoelectric and highly magnetostrictive thin films, the potentialities of these materials increase. In this paper we report the fabrication of SmFe2 and PZT thin films and the investigation of their properties. First of all, a ~ 400 nm thin SmFe film was deposited on top of Si/SiO2 substrate by magnetron sputter deposition. Afterwards, a 140 nm Pt bottom electrode was sputtered on top of the SmFe film forming a bottom electrode. Spin coating was employed for the deposition of the 150 nm thin PZT layer. A PZT solution with 10 %Pb excess was utilized for this fabrication step. Finally, circular Pt top electrodes were sputtered as top electrodes. This paper focuses on the microstructure of the individual films characterized by X-Ray diffractometer (XRD) and scanning electron microscopy (SEM). A piezoelectric evaluation system, aixPES, with TF2000E analyzer component was used for the electric hysteresis measurements of PZT thin films and a vibrating sample magnetometer (VSM) was employed for the magnetic characterization of the SmFe. The developed thin films and the fabricated double layer SmFe-PZT exhibit both good ferromagnetic and piezoelectric responses which predict a promising ME composite structure. The quantitative chemical composition of the samples was confirmed by energy dispersive spectroscopy (EDX). © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  13. EXAFS study of the stability of amorphous TbFe thin films

    International Nuclear Information System (INIS)

    Samant, M.G.; Marinero, E.E.; Robinson, C.; Cargill, G.S.

    1989-01-01

    This paper discusses the measurement of the local atomic structure of Fe in Au doped Tb-Fe thin film alloys by the use of EXAFS. The as deposited sample shows structural features which are essentially identical to those of the undoped films. Au additions stabilizes the amorphous structure against recrystallization, however, the loss of magnetic anisotropy under thermal annealing is not reduced. This demonstrates that magnetic relaxation in these alloys does not involve crystallization of the amorphous structure

  14. Analysis of NdFeB thin films prepared by facing target sputtering

    International Nuclear Information System (INIS)

    Shivalingappa, L.; Mohan, S.; Ghantasala, M.K.; Sood, D.K.

    1999-01-01

    In this paper, we present the details of our work on the deposition and characterization of NdFeB thin films. These films were prepared using facing target sputtering technique. The silicon(100) substrates were maintained at a substrate temperature of 400 to 600 deg C during deposition. Film structure, composition and magnetic properties are analyzed using Rutherford Backscattering Spectroscopy (RBS) and X-ray Diffraction (XRD) techniques. Films deposited below 400 deg C were x-ray amorphous, while the onset of crystallinity was observed with the films deposited at 500 deg C. Typical film composition was Nd:Fe:B = 2.2:12.5:2. Film composition appear to be a function of deposition conditions. Oxygen has been found to be the main impurity in the films. Oxygen content in the film reduced as the substrate temperature is increased

  15. Effect of anisotropy on anomalous Hall effect in Tb-Fe thin films

    International Nuclear Information System (INIS)

    Babu, V. Hari; Markandeyulu, G.; Subrahmanyam, A.

    2009-01-01

    The electrical and Hall resistivities of Tb x Fe 100-x thin films in the temperature range 13-300 K were investigated. The sign of Hall resistivity at 300 K is found to change from positive for x=28 film to negative for x=30 film, in accordance with the compensation of Tb and Fe moments. All the films are seen to have planar magnetic anisotropy at 13 K. The temperature coefficients of electrical resistivities of the amorphous films with 19≤x≤51 are seen to be negative. The temperature dependence of Hall resistivity of these films is explained on the basis of random magnetic anisotropy model. The temperature dependences of Hall resistivities of the x=22 and 41 films are seen to exhibit a nonmonotonous behavior due to change in anisotropy from perpendicular to planar. The same behavior is considered for the explanation regarding the probable formation of Berry phase curvature in these films.

  16. Epitaxial growth and characterization of CoO/Fe(001) thin film layered structures

    International Nuclear Information System (INIS)

    Brambilla, A.; Sessi, P.; Cantoni, M.; Duo, L.; Finazzi, M.; Ciccacci, F.

    2008-01-01

    By means of X-ray photoemission spectroscopy and low energy electron diffraction, we show that it is possible to grow good quality thin epitaxial CoO films on Fe(001) substrates, through deposition in oxygen atmosphere. In particular, the composition and the structure of CoO(001)/Fe(001) bilayer systems and Fe(001)/CoO(001)/Fe(001) trilayer systems have been investigated by monitoring the evolution of the chemical interactions at the interfaces as a function of CoO thickness and growth temperature. We observe the presence of Fe oxides at the CoO/Fe interface and of a thin layer of metallic cobalt at the upper Fe/CoO interface of trilayer systems

  17. High-coercivity FePt nanoparticle assemblies embedded in silica thin films

    International Nuclear Information System (INIS)

    Yan, Q; Purkayastha, A; Singh, A P; Li, H; Ramanath, G; Li, A; Ramanujan, R V

    2009-01-01

    The ability to process assemblies using thin film techniques in a scalable fashion would be a key to transmuting the assemblies into manufacturable devices. Here, we embed FePt nanoparticle assemblies into a silica thin film by sol-gel processing. Annealing the thin film composite at 650 deg. C transforms the chemically disordered fcc FePt phase into the fct phase, yielding magnetic coercivity values H c >630 mT. The positional order of the particles is retained due to the protection offered by the silica host. Such films with assemblies of high-coercivity magnetic particles are attractive for realizing new types of ultra-high-density data storage devices and magneto-composites.

  18. Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials.

    Science.gov (United States)

    Yang, Minghong; Dai, Jixiang; Zhou, Ciming; Jiang, Desheng

    2009-11-09

    Different from usually-used bulk magnetostrictive materials, magnetostrictive TbDyFe thin films were firstly proposed as sensing materials for fiber-optic magnetic field sensing characterization. By magnetron sputtering process, TbDyFe thin films were deposited on etched side circle of a fiber Bragg Grating (FBG) as sensing element. There exists more than 45pm change of FBG wavelength when magnet field increase up to 50 mT. The response to magnetic field is reversible, and could be applicable for magnetic and current sensing.

  19. Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivas Puli, Venkata, E-mail: pvsri123@gmail.com [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States); Kumar Pradhan, Dhiren [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States); Gollapudi, Sreenivasulu [Department of Physics, Oakland University, Rochester, MI 48309-4401 (United States); Coondoo, Indrani [Department of Materials and Ceramic and CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Panwar, Neeraj [Department of Physics, Central University of Rajasthan, Bandar Sindri, Kishangarh 305801, Rajasthan (India); Adireddy, Shiva; Chrisey, Douglas B. [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Katiyar, Ram S. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States)

    2014-11-15

    Rare-earth (Sm) and transition metal (Co) modified polycrystalline BiFeO{sub 3} (BFO) thin films have been deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrate successfully through pulsed laser deposition (PLD) technique. Piezoelectric, leakage current and temperature dependent dielectric and magnetic behaviour were investigated for the films. Typical “butterfly-shaped” loop were observed in BSFCO films with an effective piezoelectric constant (d{sub 33}) ∼94 pm/V at 0.6 MV/cm. High dielectric constant ∼900 and low dielectric loss ∼0.25 were observed at room temperature. M–H loops have shown relatively high saturation magnetization ∼35 emu/cm{sup 3} at a maximum field of H ∼20 kOe. Enhanced magnetoelectric coupling response is observed under applied magnetic field. The multiferroic, piezoelectric, leakage current behaviours were explored. Such studies should be helpful in designing multiferroic materials based on BSFCO films. - Highlights: • Transition metal modified polycrystalline BiFeO{sub 3} thin films prepared using PLD. • High ME-coupling response was observed in co-substituted BiFeO{sub 3} thin films. • High magnetization ∼35 emu/cm{sup 3} at a maximum field of H ∼20 kOe. • Low leakage current might be due to co-substitution in BiFeO{sub 3} thin films. • A notable piezoelectric constant d{sub 33} ∼94 pm/V was found in BiFeO{sub 3} thin films.

  20. Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO3 thin films

    International Nuclear Information System (INIS)

    Sreenivas Puli, Venkata; Kumar Pradhan, Dhiren; Gollapudi, Sreenivasulu; Coondoo, Indrani; Panwar, Neeraj; Adireddy, Shiva; Chrisey, Douglas B.; Katiyar, Ram S.

    2014-01-01

    Rare-earth (Sm) and transition metal (Co) modified polycrystalline BiFeO 3 (BFO) thin films have been deposited on Pt/TiO 2 /SiO 2 /Si substrate successfully through pulsed laser deposition (PLD) technique. Piezoelectric, leakage current and temperature dependent dielectric and magnetic behaviour were investigated for the films. Typical “butterfly-shaped” loop were observed in BSFCO films with an effective piezoelectric constant (d 33 ) ∼94 pm/V at 0.6 MV/cm. High dielectric constant ∼900 and low dielectric loss ∼0.25 were observed at room temperature. M–H loops have shown relatively high saturation magnetization ∼35 emu/cm 3 at a maximum field of H ∼20 kOe. Enhanced magnetoelectric coupling response is observed under applied magnetic field. The multiferroic, piezoelectric, leakage current behaviours were explored. Such studies should be helpful in designing multiferroic materials based on BSFCO films. - Highlights: • Transition metal modified polycrystalline BiFeO 3 thin films prepared using PLD. • High ME-coupling response was observed in co-substituted BiFeO 3 thin films. • High magnetization ∼35 emu/cm 3 at a maximum field of H ∼20 kOe. • Low leakage current might be due to co-substitution in BiFeO 3 thin films. • A notable piezoelectric constant d 33 ∼94 pm/V was found in BiFeO 3 thin films

  1. TiFeCoNi oxide thin film - A new composition with extremely low electrical resistivity at room temperature

    International Nuclear Information System (INIS)

    Yang, Ya-Chu; Tsau, Chun-Huei; Yeh, Jien-Wei

    2011-01-01

    We show the electrical resistivity of a TiFeCoNi oxide thin film. The electrical resistivity of the TiFeCoNi thin film decreased sharply after a suitable period of oxidation at high temperature. The lowest resistivity of the TiFeCoNi oxide film was 35 ± 3 μΩ-cm. The low electrical resistivity of the TiFeCoNi oxide thin film was attributed to Ti, which is more reactive than the other elements, reacting with oxygen at the initial stage of annealing. The low resistivity is caused by the remaining electrons.

  2. Double switching hysteresis loop in a single layer Fe3Pt alloy thin films

    International Nuclear Information System (INIS)

    Nahid, M.A.I.; Suzuki, Takao

    2008-01-01

    The Fe 3 Pt alloy thin films were epitaxially grown on MgO(100) substrate by e-beam evaporation. The films were partially ordered at the substrate deposition temperature above 350 deg. C. These partially ordered films exhibit very large biaxial magnetic anisotropy constant in the order of 10 5 J/m 3 and produce double switching in the hysteresis loops. The difference of the switching field of these films can be up to about 3 x 10 5 A/m by tuning the angle of the applied field with respect to the easy axes. This double switching behavior stems from the large biaxial magnetic anisotropy of the films

  3. Epitaxial Fe16N2 thin film on nonmagnetic seed layer

    Science.gov (United States)

    Hang, Xudong; Zhang, Xiaowei; Ma, Bin; Lauter, Valeria; Wang, Jian-Ping

    2018-05-01

    Metastable α″ -Fe16N2 has attracted much interest as a candidate for rare-earth-free hard magnetic materials. We demonstrate that Fe16N2 thin films were grown epitaxially on Cr seed layers with MgO (001) substrates by facing-target sputtering. Good crystallinity with the epitaxial relation MgO (001 )[110 ] ∥ Cr (001 )[100 ] ∥ Fe16N2 (001 )[100 ] was obtained. The chemical order parameter, which quantifies the degree of N ordering in the Fe16N2 (the N-disordered phase is α' -Fe8N martensite), reaches 0.75 for Cr-seeded samples. Cr has a perfect lattice constant match with Fe16N2, and no noticeable strain can be assigned to Fe16N2. The intrinsic saturation magnetization of this non-strained Fe16N2 thin film at room temperature is determined to be 2.31 T by polarized neutron reflectometry and confirmed with vibrating sample magnetometry. Our work provides a platform to directly study the magnetic properties of high purity Fe16N2 films with a high order parameter.

  4. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    International Nuclear Information System (INIS)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-01-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB. - Highlights: • The same thick Al, SiC and SiC/Al films are deposited on NdFeB by magnetron sputtering. • 510 nm SiC/Al bilayer films can improve the corrosion resistance of the NdFeB evidently. • Al buffer layer improves effectively the surface roughness of the SiC thin film. • SiC/Al bilayer films do not deteriorate the magnetic properties of NdFeB.

  5. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yiqin [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Li, Heqin, E-mail: lhqjs@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zuo, Min; Tao, Lei; Wang, Wei [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zhang, Jing; Tang, Qiong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009 (China); Bai, Peiwen [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China)

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB. - Highlights: • The same thick Al, SiC and SiC/Al films are deposited on NdFeB by magnetron sputtering. • 510 nm SiC/Al bilayer films can improve the corrosion resistance of the NdFeB evidently. • Al buffer layer improves effectively the surface roughness of the SiC thin film. • SiC/Al bilayer films do not deteriorate the magnetic properties of NdFeB.

  6. Magnetic properties of amorphous Tb-Fe thin films with an artificially layered structure

    International Nuclear Information System (INIS)

    Sato, N.

    1986-01-01

    An alternating terbium-iron (Tb-Fe) multilayer structure artificially made in amorphous Tb-Fe thin films gives rise to excellent magnetic properties of large perpendicular uniaxial anisotropy, large saturation magnetization, and large coercivity over a wide range of Tb composition in the films. The films are superior to amorphous Tb-Fe alloy thin films, especially when they are piled up with a monatomic layer of Tb and several atomic layers of Fe in an alternating fashion. Small-angle x-ray diffraction analysis confirmed the layering of monatomic layers of Tb and Fe, where the periodicity of the layers was found to be about 5.9 A. Direct evidence for an artificially layered structure was obtained by transmission electron microscopic and Auger electron spectroscopic observations. Together with magnetic measurements of hysteresis loops and torque curves, it has been concluded that the most important origin of the large magnetic uniaxial anisotropy can be attributed to the Tb-Fe pairs aligned perpendicular to the films

  7. Chemical synthesis of Fe{sub 2}O{sub 3} thin films for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Kulal, P.M.; Dubal, D.P.; Lokhande, C.D. [Holography and Material Research Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Fulari, V.J., E-mail: vijayfulari@gmail.com [Holography and Material Research Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)

    2011-02-03

    Research highlights: > Simple chemical synthesis of Fe{sub 2}O{sub 3}. > Formation of amorphous and hydrous Fe{sub 2}O{sub 3}. > Potential candidate for supercapacitors. - Abstract: Fe{sub 2}O{sub 3} thin films have been prepared by novel chemical successive ionic layer adsorption and reaction (SILAR) method. Further these films were characterized for their structural, morphological and optical properties by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrum, scanning electron microscopy (SEM), wettability test and optical absorption studies. The XRD pattern showed that the Fe{sub 2}O{sub 3} films exhibit amorphous in nature. Formation of iron oxide compound was confirmed from FTIR studies. The optical absorption showed existence of direct optical band gap of energy 2.2 eV. Fe{sub 2}O{sub 3} film surface showed superhydrophilic nature with water contact angle less than 10{sup o}. The supercapacitive properties of Fe{sub 2}O{sub 3} thin film investigated in 1 M NaOH electrolyte showed supercapacitance of 178 F g{sup -1} at scan rate 5 mV/s.

  8. Effect of carbon additive on microstructure evolution and magnetic properties of epitaxial FePt (001) thin films

    International Nuclear Information System (INIS)

    Ding, Y.F.; Chen, J.S.; Liu, E.; Lim, B.C.; Hu, J.F.; Liu, B.

    2009-01-01

    FePt:C thin films were deposited on CrRu underlayers by DC magnetron co-sputtering. The effects of C content, FePt:C film thickness and substrate temperature on the microstructural and magnetic properties of the epitaxial FePt (001) films were studied. Experimental results showed that even with 30 vol.% C doping, the FePt films could keep a (001) preferred orientation at 350 deg. C . When a FePt:C film was very thin (< 5 nm), the film had a continuous microstructure instead of a granual structure with C diffused onto the film surface. With further increased film thickness, the film started to nucleate and formed a column microstructure over continuous FePt films. A strong exchange coupling in the FePt:C films was believed to be due to the presence of a thin continuous FePt layer attributed to the carbon diffusion during the initial stage of the FePt:C film growth. Despite the presence of a strong exchange coupling in the FePt:C (20 vol.% C) film, the SNR ratio of the FePt:C media was about 10 dB better than that of the pure FePt media. The epitaxial growth of the FePt:C films on the Pt layers was observed from high resolution TEM cross sectional images even for the films grown at about 200 deg. C . The TEM images did not show an obvious change in the morphology of the FePt:C films deposited at different temperatures (from 200 deg. C to 350 deg. C ), though the ordering degree and coercivity of the films increased with increased substrate temperature

  9. Zn Thin Film Deposition for Fe Layer Shielding Use the Sputtering Technique on Cylindrical Form

    International Nuclear Information System (INIS)

    Yunanto; Tjipto Sujitno, BA; Suprapto; Simbolon, Sahat

    2002-01-01

    Deposition of thin film on Fe substrate use sputtering technique on cylindrical form was carried out. The purpose of this research is to protect Fe due to the corrosion with Zn thin film. Sputtering method was proposed to protect a component of complex form. Substrate has functioned as anode, meanwhile target in cylindrical form as a cathode. Argon ion from anode bombard Zn with enough energy for releasing Zn. Zn atom would scatter and some of then was focused on the anode. For testing Zn atom on Fe by using XRF and corrosion rate with potentiostat. It was found that corrosion rate was decreased from 0.051 mpy to 0.031 mpy on 0.63 % of Fe substrate. (author)

  10. Multiferroic BiFeO{sub 3} thin films: Structural and magnetic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Z. [Physics Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo (Egypt); Atta, A. [National Center for Radiation Research and Technology (NCRRT), Nasr City, Cairo (Egypt); Abbas, Y. [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Sedeek, K.; Adam, A.; Abdeltwab, E. [Physics Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo (Egypt)

    2015-02-27

    BiFeO{sub 3} (BFO) film has been deposited on indium tin oxide (ITO) substrate by a simple sol–gel spin-coating technique. The crystal phase composition, surface morphology, topography and magnetization measurements of the BFO thin film were investigated using grazing incidence X-ray diffraction (GIXRD), scanning electronic microscope (SEM), atomic force microscope and vibrating sample magnetometer, respectively. GIXRD analysis revealed that the film was fully crystallized and no impure phase was observed. Cross-section SEM results indicated that compact and homogeneous BFO thin film was deposited on ITO with a thickness of about 180 nm. Moreover, most of A and E-symmetry normal modes of R3c BFO were assigned by Raman spectroscopy. We report here that the pure phase BFO film shows ferromagnetism at room temperature with remarkably high saturation magnetization of 63 kA m{sup −1}. Our results are discussed mainly in correlation with the condition of processing technique and destruction of the spiral spin cycloid at interface layers and grain boundaries. - Highlights: • Multiferroic BiFeO{sub 3} (BFO) thin film was prepared by sol–gel spin-coating method. • BFO film w asdeposited on indium tin oxide substrate with a thickness of 180 nm. • The film exhibits pure rhombohedral perovskite structure. • High saturation magnetization was recorded for our film at room temperature.

  11. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    Science.gov (United States)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB.

  12. Artificially controlled stress anisotropy and magnetic properties of FeTaN thin films

    International Nuclear Information System (INIS)

    Deng, H.; Jarratt, J.D.; Minor, M.K.; Barnard, J.A.

    1997-01-01

    This article presents a new method of investigating internal stress effects on thin film magnetic properties, in this case magnetically soft FeTaN sputtered films. The FeTaN films were deposited on a series of oxidized silicon (111) substrates prestressed to different degrees. During sputtering all the deposition conditions were kept exactly the same for all the samples. However, anisotropic stresses with different amplitudes are systematically introduced into the films when the prestressed wafers were released. In this way, FeTaN films with compressive stress varying from 80 to 608 MPa are produced. We found that the saturation magnetostriction (λ s ), anisotropy field (H k ), initial permeability (μ i ) as well as easy axis orientation of FeTaN thin films are strongly affected by the induced stress anisotropy. A stress ratio concept is proposed as a measure of the degree of the stress anisotropy. Models for easy-hard axis switching induced by stress for magnetic films with positive magnetostriction are discussed. copyright 1997 American Institute of Physics

  13. On the frequency dependence of the magnetic permeability of FeHfO thin films

    NARCIS (Netherlands)

    Bloemen, P.J.H.; Rulkens, B.

    1998-01-01

    The frequency dependence of the magnetic permeability as well as of the electrical impedance have been investigated for soft-magnetic granular FeHfO thin films. The impedance measurements indicate that capacitive effects resulting from the inhomogeneous structure of the layers are of no importance

  14. Formation dynamics of FeN thin films on Cu(100)

    KAUST Repository

    Heryadi, Dodi; Schwingenschlö gl, Udo

    2012-01-01

    To investigate the structural and magnetic properties of thin films of FeN we have performed ab initio molecular dynamics simulations of their formation on Cu(100) substrates. The iron nitride layers exhibit a p4gm(2 × 2) reconstruction and order

  15. Magnetic properties of FeNi-based thin film materials with different additives

    KAUST Repository

    Liang, C.; Gooneratne, C.P.; Wang, Q.X.; Liu, Y.; Gianchandani, Y.; Kosel, Jü rgen

    2014-01-01

    This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials

  16. Photovoltaic effect in transition metal modified polycrystalline BiFeO3 thin films

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Chrisey, Douglas B; Pradhan, Dhiren Kumar; Katiyar, Rajesh Kumar; Misra, Pankaj; Scott, J F; Katiyar, Ram S; Coondoo, Indrani; Panwar, Neeraj

    2014-01-01

    We report photovoltaic (PV) effect in multiferroic Bi 0.9 Sm 0.1 Fe 0.95 Co 0.05 O 3 (BSFCO) thin films. Transition metal modified polycrystalline BiFeO 3 (BFO) thin films have been deposited on Pt/TiO 2 /SiO 2 /Si substrate successfully through pulsed laser deposition (PLD). PV response is observed under illumination both in sandwich and lateral electrode configurations. The open-circuit voltage (V oc ) and the short-circuit current density (J sc ) of the films in sandwich electrode configuration under illumination are measured to be 0.9 V and −0.051 µA cm −2 . Additionally, we report piezoresponse for BSFCO films, which confirms ferroelectric piezoelectric behaviour. (paper)

  17. Optical Properties and Electrochemical Performance of LiFePO4 Thin Films Deposited on Transparent Current Collectors.

    Science.gov (United States)

    Lee, HyunSeok; Yim, Haena; Kim, Kwang-Bum; Choi, Ji-Won

    2015-11-01

    LiFePO4 thin film cathodes are deposited on various transparent conducting oxide thin films on glass, which are used as cathode current collectors. The XRD patterns show that the thin films have the phase of LiFePO4 with an ordered olivine structure indexed to the orthorhombic Pmna space group. LiFePO4 thin film deposited on various TCO glass substrates exhibits transmittance of about 53%. The initial specific discharge capacities of LiFePO4 thin films are 25.0 μAh/cm2 x μm on FTO, 33.0 μAh/cm2 x μm on ITO, and 13.0 μAh/cm2 x μm on AZO coated glass substrates. Interestingly, the retention capacities of LiFePO4 thin films are 76.0% on FTO, 31.2% on ITO, and 37.7% on AZO coated glass substrates at 20th cycle. The initial specific discharge capacity of the LiFePO4/FTO electrode is slightly lower, but the discharge capacities of the LiFePO4/FTO electrode relatively decrease less than those of the others such as LiFePO4/ITO and LiFePO4/AZO with cycling. The results reported here provide the high transparency of LiFePO4 thin films cathode materials and the good candidate as FTO current collector of the LiFePO4 thin film cathode of transparent thin film rechargeable batteries due to its high transparency and cyclic retention.

  18. Reduction of crystallization temperature of the Nd-Fe-B thin films by Cu addition

    International Nuclear Information System (INIS)

    Ma Yungui; Yang Zheng; Matsumoto, M.; Morisako, A.; Takei, S.

    2004-01-01

    Nonmagnetic Cu element has been doped into the sputtered Nd-Fe-B thin films. It is found that the introduction of suitable amount of copper atoms could reduce the crystallization temperature of the 2:14:1 phase by near 100 deg. C, compared with that without Cu. For the 15 nm Nd 16 Fe 70.2 Cu 1.8 B 12 film deposited at 340 deg. C, perpendicular coercivity and remanent magnetization ratio of 350 kA/m and 0.96 have been successfully obtained. Cu addition would lead to the grain growth, but the average grain size in the films could be greatly decreased through lowering the deposition temperature. These results are compared with those found in the fabrication of FePtCu films

  19. Soft magnetic properties and damping parameter of (FeCo-Al alloy thin films

    Directory of Open Access Journals (Sweden)

    Isao Kanada

    2017-05-01

    Full Text Available For high frequency device applications, a systematic study of the soft magnetic properties and magnetization dynamics of (FeCo-Al alloy thin films has been carried out. A low effective damping parameter αeff of 0.002 and a high saturation magnetization of about 1,800 emu/cc are obtained at y=0.2∼0.3 for (Fe1-yCoy98Al2 alloy thin films deposited onto fused silica and MgO(100 at an ambient temperature during deposition. Those films are of the bcc structure with the orientation normal to the film plane. They possess a columnar structure, grown along the film normal. The column width is found to be about 20 nm for y=0.25. It is concluded that the (FeCo-Al thin films with a damping parameter as low as 0.002 and high saturation magnetization of about 1,800 emu/cc have been successfully fabricated, and that they are potential for future high frequency device applications.

  20. Temperature dependent magnetic coupling between ferromagnetic FeTaC layers in multilayer thin films

    International Nuclear Information System (INIS)

    Singh, Akhilesh Kumar; Hsu, Jen-Hwa; Perumal, Alagarsamy

    2016-01-01

    We report systematic investigations on temperature dependent magnetic coupling between ferromagnetic FeTaC layers and resulting magnetic properties of multilayer structured [FeTaC (~67 nm)/Ta(x nm)] 2 /FeTaC(~67 nm)] thin films, which are fabricated directly on thermally oxidized Si substrate. As-deposited amorphous films are post annealed at different annealing temperatures (T A =200, 300 and 400 °C). Structural analyzes reveal that the films annealed at T A ≤200 °C exhibit amorphous nature, while the films annealed above 200 °C show nucleation of nanocrystals at T A =300 °C and well-defined α-Fe nanocrystals with size of about 9 nm in amorphous matrix for 400 °C annealed films. Room temperature and temperature dependent magnetic hysteresis (M–H) loops reveal that magnetization reversal behaviors and magnetic properties are strongly depending on spacer layer thickness (x), T A and temperature. A large reduction in coercivity (H C ) was observed for the films annealed at 200 °C and correlated to relaxation of stress quenched in during the film deposition. On the other hand, the films annealed at 300 °C exhibit unusual variation of H C (T), i.e., a broad minimum in H C (T) vs T curve. This is caused by change in magnetic coupling between ferromagnetic layers having different microstructure. In addition, the broad minimum in the H C (T) curve shifts from 150 K for x=1 film to 80 K for x=4 film. High-temperature thermomagnetization data show a strong (significant) variation of Curie temperature (T C ) with T A (x). The multilayer films annealed at 200 °C exhibit low value of T C with a minimum of 350 K for x=4 film. But, the films annealed at 400 °C show largest T C with a maximum of 869 K for x=1 film. The observed results are discussed on the basis of variations in magnetic couplings between FeTaC layers, which are majorly driven by temperature, spacer layer thickness, annealing temperature and nature of interfaces. - Highlights: • Preparation and

  1. Influence of Fe(Cr) miscibility on thin film grain size and stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuyang; Kaub, Tyler; Martens, Richard L.; Thompson, Gregory B., E-mail: gthompson@eng.ua.edu

    2016-08-01

    During the post coalescence portion of thin film deposition, thin film stress is related to the grain size and adatom mobility of the depositing material. Using a Fe(Cr) alloy thin film, the manipulation of the tensile stress for thick films was studied as a function of Cr solute content up to 8 at.%. Solute concentrations up to 4 at.% resulted in an approximate 50% increase in grain size that resulted in a reduction of the tensile stress to be lower than either elemental film. Upon increasing the Cr content, the grain size refined and the tensile stress of the films increased. Atom probe characterization of the grain boundaries confirmed Cr chemical partitioning which refined the grain size and altered the film's texture, both of which contributed to the change in film stress. The use of intrinsic segregation, rather than deposition processing parameters, appears to be another viable option for regulating film stress. - Highlights: • Solute segregation to regulate grain size in controlling film stress • Quantification of Cr interfacial excess as a function of alloy content • Quantification of texture fiber alignment as a function of Cr content.

  2. Microstructure and magnetic properties of FeCo epitaxial thin films grown on MgO single-crystal substrates

    International Nuclear Information System (INIS)

    Shikada, Kouhei; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-01-01

    FeCo epitaxial films were prepared on MgO(100), MgO(110), and MgO(111) substrates by ultrahigh vacuum molecular beam epitaxy. FeCo thin films with (100), (211), and (110) planes parallel to the substrate surface grow on respective MgO substrates. FeCo/MgO interface structures are studied by high-resolution cross-sectional transmission electron microscopy and the epitaxial growth mechanism is discussed. Atomically sharp boundaries are recognized between the FeCo thin films and the MgO substrates where misfit dislocations are introduced in the FeCo thin films presumably to decrease the lattice misfits. Misfit dislocations are observed approximately every 9 and 1.4 nm in FeCo thin film at the FeCo/MgO(100) and the FeCo/MgO(110) interfaces, respectively. X-ray diffraction analysis indicates that the lattice spacing measured parallel to the single-crystal substrate surfaces are in agreement within 0.1% with those of the respective bulk values of Fe 50 Co 50 alloy crystal, showing that the FeCo film strain is very small. The magnetic anisotropies of these epitaxial films basically reflect the magnetocrystalline anisotropy of bulk FeCo alloy crystal

  3. Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuki, T., E-mail: ohtsuki@spring8.or.jp; Kotsugi, M.; Ohkochi, T. [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kojima, T.; Mizuguchi, M.; Takanashi, K. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-01-28

    FeCo thin films are fabricated by alternate monoatomic layer deposition method on a Cu{sub 3}Au buffer layer, which in-plane lattice constant is very close to the predicted value to obtain a large magnetic anisotropy constant. The variation of the in-plane lattice constant during the deposition process is investigated by reflection high-energy electron diffraction. The magnetic domain images are also observed by a photoelectron emission microscope in order to microscopically understand the magnetic structure. As a result, element-specific magnetic domain images show that Fe and Co magnetic moments align parallel. A series of images obtained with various azimuth reveal that the FeCo thin films show fourfold in-plane magnetic anisotropy along 〈110〉 direction, and that the magnetic domain structure is composed only of 90∘ wall.

  4. Metal-semiconductor transition materials. FeS and VO{sub 2} thin films by RF reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Fu Ganhua

    2007-06-15

    In the present work, two MST systems, FeS and VO{sub 2} thin films were investigated. Iron sulfide thin films over a range of composition were prepared by reactive sputtering. The influence of the substrate, sputter power, substrate temperature and stoichiometry on the structure and MST of iron sulfide films was investigated. Iron sulfide films deposited at different temperatures show temperature dependent structure and MST. FeS films on float glass show (110) and (112) orientations when the substrate temperature is 200 and 500 C, respectively. The transition temperature and width of the hysteresis loop determined from the temperature dependent conductivity curves of iron sulfide films decrease with the substrate temperature. Fe and S excess in FeS films both result in the decrease of the transition temperature and width of the hysteresis loop. The vacuum-annealing affects the MST of FeS films significantly. When FeS films were annealed below the deposition temperature, the transition temperature decreases; otherwise increases. The residual stress plays an important role during the annealing process. The higher the residual stress inside the FeS films is, the higher the transition temperature of FeS films. With the increase of the annealing temperature, the residual stress in FeS films is first released and then enhances, which gives rise first to the decrease and then increase of the transition temperature of FeS films. At high substrate temperatures, the residual stress is higher. In addition, the MST of FeS films was influenced by the ambient aging. With the increase of the aging time, the transition temperature first increases and then decreases. FeS films with different thicknesses were prepared. The correlation between the film thickness (grain size) and the MST switching characteristics of FeS films was established. With the decrease of the grain size, the density of grain boundaries increases, causing the increase of the conductivity of the semiconducting

  5. Metal-semiconductor transition materials. FeS and VO2 thin films by RF reactive sputtering

    International Nuclear Information System (INIS)

    Fu, Ganhua

    2007-06-01

    In the present work, two MST systems, FeS and VO 2 thin films were investigated. Iron sulfide thin films over a range of composition were prepared by reactive sputtering. The influence of the substrate, sputter power, substrate temperature and stoichiometry on the structure and MST of iron sulfide films was investigated. Iron sulfide films deposited at different temperatures show temperature dependent structure and MST. FeS films on float glass show (110) and (112) orientations when the substrate temperature is 200 and 500 C, respectively. The transition temperature and width of the hysteresis loop determined from the temperature dependent conductivity curves of iron sulfide films decrease with the substrate temperature. Fe and S excess in FeS films both result in the decrease of the transition temperature and width of the hysteresis loop. The vacuum-annealing affects the MST of FeS films significantly. When FeS films were annealed below the deposition temperature, the transition temperature decreases; otherwise increases. The residual stress plays an important role during the annealing process. The higher the residual stress inside the FeS films is, the higher the transition temperature of FeS films. With the increase of the annealing temperature, the residual stress in FeS films is first released and then enhances, which gives rise first to the decrease and then increase of the transition temperature of FeS films. At high substrate temperatures, the residual stress is higher. In addition, the MST of FeS films was influenced by the ambient aging. With the increase of the aging time, the transition temperature first increases and then decreases. FeS films with different thicknesses were prepared. The correlation between the film thickness (grain size) and the MST switching characteristics of FeS films was established. With the decrease of the grain size, the density of grain boundaries increases, causing the increase of the conductivity of the semiconducting phase

  6. Compositional dependence of Young's moduli for amorphous FeCo-SiO2 thin films

    International Nuclear Information System (INIS)

    Zhang, L.; Xie, J. L.; Deng, L. J.; Guo, Q.; Zhu, Z. W.; Bi, L.

    2011-01-01

    Systematic force-deflection measurements with microcantilevers and a combinatorial-deposition method have been used to investigate the Young's moduli of amorphous composite FeCo-SiO 2 thin films as a function of film composition, with high compositional resolution. It is found that the modulus decreases monotonically with increasing FeCo content. Such a trend can be explained in terms of the metalloid atoms having a significant effect on the Young's moduli of metal-metalloid composites, which is associated with the strong chemical interaction between the metalloid and themetallic atoms rather than that between the metallic components themselves. This work provides an efficient and effective method to study the moduli of magnetic thin films over a largecomposition coverage, and to compare the relative magnitudes of moduli for differentcompositions at high compositional resolution.

  7. Skyrmions and Novel Spin Textures in FeGe Thin Films and Artificial B20 Heterostructures

    Science.gov (United States)

    Ahmed, Adam Saied

    Skyrmions are magnetic spin textures that have a non-zero topological winding number associated with them. They have attracted much interest recently since they can be as small as 1 nm and could be the next generation of magnetic memory and logic. First, we grow epitaxial films of FeGe by molecular beam epitaxy and characterized the skyrmion properties. This had led us to image skyrmions in real-space with Lorentz transmission electron microscopy for the first time in the United States. Next, from an extensive series of thin and thick films, we have experimentally shown the existence of a magnetic surface state in FeGe and, consequently, any skyrmion material for the first time. Complementary theoretical calculations supported the existence of chiral bobbers--a surface state only predicted in 2015. Next, we fabricated for the first time a new class of skyrmion materials: B20 superlattices. These novel heterostructures of [FeGe/MnGe/CrGe] have now opened the door for tunable skyrmion systems with both Dresselhaus and Rashba Dzyaloshinskii-Moriya interactions. Additionally, we perform resonant soft x-ray scattering to image magnetic spin textures in reciprocal space for FeGe thin films in transmission. We have accomplished the removal of substrate and left an isolated single-crystal FeGe film. Lastly, SrO is grown on graphene as a crystalline, atomically smooth, and pinhole free tunnel barrier for spin injection.

  8. Temperature-dependent magnetism of Fe thin films on ZnSe(0 0 1)

    International Nuclear Information System (INIS)

    Cantoni, M.; Bertacco, R.; Ciccacci, F.; Puppin, E.; Pinotti, E.; Brenna, M.; Marangolo, M.; Eddrieff, M.; Torelli, P.; Maccherozzi, F.; Fujii, J.; Panaccione, G.

    2007-01-01

    We present X-ray magnetic circular dichroism (XMCD) and magneto-optical Kerr effect (MOKE) data on the magnetic properties of Fe/ZnSe(0 0 1) thin films at increasing Fe coverage. The magnetic behaviour of the Fe overlayer is superparamagnetic for a coverage up to 6 monolayers whereas, above this threshold, a truly ferromagnetic phase shows up. XMCD and MOKE data show that this behaviour is substantially unchanged in the temperature range 10-300 K for all the investigated coverages: these findings imply that the blocking temperature is definitely below 10 K

  9. Origin of room temperature ferromagnetic moment in Rh-rich [Rh/Fe] multilayer thin films

    International Nuclear Information System (INIS)

    Kande, Dhishan; Laughlin, David; Zhu Jiangang

    2010-01-01

    B2 ordered FeRh thin films switch from antiferromagnetic (AFM) to ferromagnetic (FM) state on heating above 350 K and switch back on cooling, with a hysteresis. This property makes FeRh a very attractive choice as a write-assist layer material for low temperature heat assisted magnetic recording (HAMR) media. Studies have shown that as we decrease the thickness of the FeRh films, the B2 phase is no longer AFM even below 350 K and there is a thickness dependant FM stabilization of the B2 phase. It was also proved that slightly Rh-richer compositions (>50 at. % Rh) were more preferable to stabilize the AFM phase. The current study focuses on growing highly ordered FeRh films by alternate layer rf sputtering of thin layers of iron and rhodium onto a heated substrate. It has been shown that films with rhodium content beyond 55 at. % contain a disordered bcc FM phase which gives rise to residual moment at room temperature even for thicker films.

  10. High quality β-FeSi2 thin films prepared on silicon (100) by using pulsed laser ablation of Fe target

    International Nuclear Information System (INIS)

    Xu, S.C.; Yang, C.; Liu, M.; Jiang, S.Z.; Ma, Y.Y.; Chen, C.S.; Gao, X.G.; Sun, Z.C.; Hu, B.; Wang, C.C.; Man, B.Y.

    2012-01-01

    High quality β-FeSi 2 thin films have been fabricated on silicon (100) substrate by the pulsed laser deposition (PLD) technique with the Fe and sintered FeSi 2 targets. The crystalline quality and surface morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. These results indicate that the samples prepared with a Fe target can acquire a better crystalline quality and a smoother surface than those with a sintered FeSi 2 target. The reasons were discussed with subsurface superheating mechanism. The intrinsic PL spectrum attributed to the interband transition of β-FeSi 2 for all the samples was compared, showing that the film prepared with Fe target can acquire a good PL property by optimizing experimental parameters. It is suggested that sputtering Fe on Si substrate by the pulsed laser offers a cheap and convenient way to prepare the β-FeSi 2 thin films. -- Highlights: ► β-FeSi 2 films were fabricated by PLD technique with the Fe and FeSi 2 targets. ► The films prepared with Fe target have good crystalline quality and smooth surface. ► The Fe target prepared film acquired a high PL intensity. ► Sputtering Fe on Si substrate offers a convenient way to prepare the β-FeSi 2 films.

  11. Thin films of NdFeB deposited by PLD technique

    International Nuclear Information System (INIS)

    Constantinescu, C.; Scarisoreanu, N.; Moldovan, A.; Dinescu, M.; Petrescu, L.; Epureanu, G.

    2007-01-01

    Neodymium-iron-boron (NdFeB) is a material with important magnetic properties, mostly used in permanent magnet fabrication. Thin layers of NdFeB are needed for miniaturization in electrical engineering, electronics and for high-tech devices. In this paper we applied pulsed lased deposition (PLD) in vacuum for obtaining thin films of NdFeB from stoichiometric targets. The influence of different buffer layers and of the laser parameters (wavelength and fluence) on the NdFeB structures, composition and magnetic properties have been investigated. The obtained structures were characterized by atomic force microscopy (AFM) and optical microscopy. Vibrating sample magnetometry (VSM) has been performed for specific magnetic characterization

  12. Thin films of NdFeB deposited by PLD technique

    Energy Technology Data Exchange (ETDEWEB)

    Constantinescu, C. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG 16, RO-077125 Magurele, Bucharest (Romania); Scarisoreanu, N. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG 16, RO-077125 Magurele, Bucharest (Romania); Moldovan, A. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG 16, RO-077125 Magurele, Bucharest (Romania); Dinescu, M. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG 16, RO-077125 Magurele, Bucharest (Romania)]. E-mail: dinescum@ifin.nipne.ro; Petrescu, L. [Department of Electrical Engineering, ' Politehnica' University of Bucharest, 313 Spl. Independentei, 060042 Bucharest (Romania); Epureanu, G. [Department of Electrical Engineering, ' Politehnica' University of Bucharest, 313 Spl. Independentei, 060042 Bucharest (Romania)

    2007-07-31

    Neodymium-iron-boron (NdFeB) is a material with important magnetic properties, mostly used in permanent magnet fabrication. Thin layers of NdFeB are needed for miniaturization in electrical engineering, electronics and for high-tech devices. In this paper we applied pulsed lased deposition (PLD) in vacuum for obtaining thin films of NdFeB from stoichiometric targets. The influence of different buffer layers and of the laser parameters (wavelength and fluence) on the NdFeB structures, composition and magnetic properties have been investigated. The obtained structures were characterized by atomic force microscopy (AFM) and optical microscopy. Vibrating sample magnetometry (VSM) has been performed for specific magnetic characterization.

  13. Multiple collinear magnetic arrangements in thin Mn films supported on Fe(001). Antiferromagnetic versus ferromagnetic behavior

    International Nuclear Information System (INIS)

    Martinez, E.; Vega, A.; Robles, R.; Vazquez de Parga, A.L.

    2005-01-01

    We present a theoretical study of the magnetic properties of thin Mn films of 6 and 7 monolayers supported on Fe(001). The ab-initio tight binding linear muffin tin orbital (TB-LMTO) method was used to investigate the competition between ferromagnetic (F) and antiferromagnetic (AF) couplings within the system. We found several collinear magnetic solutions that may coexist at room temperature. The most stable configurations are characterized by AF coupling between the surface and subsurface Mn layers together with F coupling between Mn and Fe at the interface. The ground state arrangements for the 6 and 7 Mn films display opposite sign of the surface magnetic moment relative to the Fe substrate. The implications of these results in the possible onset of non-collinear magnetism when a step is present at the interface are discussed in comparison with Cr/Fe systems where non-collinear magnetism has been recently reported

  14. Synthesis and electronic properties of Fe2TiO5 epitaxial thin films

    Science.gov (United States)

    Osada, Motoki; Nishio, Kazunori; Hwang, Harold Y.; Hikita, Yasuyuki

    2018-05-01

    We investigate the growth phase diagram of pseudobrookite Fe2TiO5 epitaxial thin films on LaAlO3 (001) substrates using pulsed laser deposition. Control of the oxygen partial pressure and temperature during deposition enabled selective stabilization of (100)- and (230)-oriented films. In this regime, we find an optical gap of 2.1 eV and room temperature resistivity in the range of 20-80 Ω cm, which are significantly lower than α-Fe2O3, making Fe2TiO5 potentially an ideal inexpensive visible-light harvesting semiconductor. These results provide a basis to incorporate Fe2TiO5 in oxide heterostructures for photocatalytic and photoelectrochemical applications.

  15. In-situ investigation of the icosahedral Al-Cu-Fe phase formation in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Haidara, F., E-mail: fanta.haidara@im2np.fr [IM2NP, UMR 6242 CNRS - Universite Aix-Marseille, Av. Escadrille Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France); Duployer, B. [Universite Paul Sabatier CIRIMAT-LCMIE 2R1, 118, Route de Narbonne, 31062 Toulouse Cedex 09 (France); Mangelinck, D.; Record, M.-C. [IM2NP, UMR 6242 CNRS - Universite Aix-Marseille, Av. Escadrille Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France)

    2012-09-05

    Highlights: Black-Right-Pointing-Pointer We investigated the phase formation of i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} in thin films. Black-Right-Pointing-Pointer We characterized the samples by DSC and in-situ XRD and resistance measurements. Black-Right-Pointing-Pointer The resistivity value for i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} was determined. - Abstract: This work is an investigation of the formation by reactive diffusion at high temperatures of the icosahedral phase, i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5}, in thin films. The samples were prepared by sputtering at room temperature. The elements Al, Cu and Fe were sequentially deposited onto oxidized silicon substrates. The two following stacking sequences, Al/Cu/Fe and Al/Fe/Cu, were investigated. The phase formation was studied using in situ resistivity, in situ X-ray Diffraction and Differential Scanning Calorimetry measurements. Whatever the stacking sequence, the sequences of phase formation evidenced during the heating treatment are similar. However the temperatures of formation for the first phases that are formed are different; they are higher in the case of the Al/Fe/Cu stacking sequence.

  16. Magnetic and microstructural properties of thin NdFeB based films and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bommer, Lars; Goll, Dagmar [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany)

    2010-07-01

    The magnetic and microstructural properties of NdFeB and NdFeB/Fe thin films and nanostructures are presented. Samples with Cr buffer and protection layer (minimum thickness: d=50 nm) have been produced by ion beam sputtering at elevated temperatures (T{sub s}=700 C) using Al{sub 2}O{sub 3} and MgO(001) single crystal substrates. Films deposited on Al{sub 2}O{sub 3} substrates show c-axis growth in out-of-plane direction down to thicknesses of the NdFeB film of d=10 nm with coercivities up to {mu}{sub 0}H{sub c}=1 T. The texture of films deposited on MgO(001) substrates is less pronounced and films below d=20 nm show no hard magnetic behavior. For comparison, films were deposited at room temperature on Al{sub 2}O{sub 3} and MgO(001) followed by post-annealing in Ar atmosphere (T{sub pa}=525-650 C) leading to coercivities as high as {mu}{sub 0}H{sub c}=1.2 T but with isotropic behavior. By TEM images the grain structure of the NdFeB samples is studied. Bilayers of NdFeB (d=50 nm) and Fe (d=0-20 nm) show fully exchange coupled behavior. From the temperature dependence of the coercivity the microstructural parameters of all samples have been determined. Furthermore NdFeB periodical patterns were produced by means of electron beam lithography with dot sizes of 1000 nm and 500 nm, respectively.

  17. Rapid thermal annealing of FePt and FePt/Cu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Brombacher, Christoph

    2011-01-10

    Chemically ordered FePt is one of the most promising materials to reach the ultimate limitations in storage density of future magnetic recording devices due to its high uniaxial magnetocrystalline anisotropy and a corrosion resistance superior to rare-earth based magnets. In this study, FePt and FePt/Cu bilayers have been sputter deposited at room temperature onto thermally oxidized silicon wafers, glass substrates and self-assembled arrays of spherical SiO{sub 2} particles with diameters down to 10 nm. Millisecond flash lamp annealing, as well as conventional rapid thermal annealing was employed to induce the phase transformation from the chemically disordered A1 phase into the chemically ordered L1{sub 0} phase. The influence of the annealing temperature, annealing time and the film thickness on the ordering transformation and (001) texture evolution of FePt films with near equiatomic composition was studied. Whereas flash lamp annealed FePt films exhibit a polycrystalline morphology with high chemical L1{sub 0} order, rapid thermal annealing can lead to the formation of chemically ordered FePt films with (001) texture on amorphous SiO{sub 2}/Si substrates. The resultant high perpendicular magnetic anisotropy and large coercivities up to 40 kOe are demonstrated. Simultaneously to the ordering transformation, rapid thermal annealing to temperatures exceeding 600 C leads to a break up of the continuous FePt film into separated islands. This dewetting behavior was utilized to create regular arrays of FePt nanostructures on SiO{sub 2} particle templates with periods down to 50 nm. The addition of Cu improves the (001) texture formation and chemical ordering for annealing temperatures T{sub a} {<=}600 C. In addition, the magnetic anisotropy and the coercivity of the ternary FePtCu alloy can be effectively tailored by adjusting the Cu content. The prospects of FePtCu based exchange spring media, as well as the magnetic properties of FePtCu nanostructures fabricated

  18. The effects of Fe2O3 nanoparticles on MgB2 superconducting thin films

    International Nuclear Information System (INIS)

    Koparan, E.T.; Sidorenko, A.; Yanmaz, E.

    2013-01-01

    Full text: Since the discovery of superconductivity in binary MgB 2 compounds, extensive studies have been carried out because of its excellent properties for technological applications, such as high transition temperature (T c = 39 K), high upper critical field (H c2 ), high critical current density (J c ). Thin films are important for fundamental research as well as technological applications of any functional materials. Technological applications primarily depend on critical current density. The strong field dependence of J c for MgB 2 necessitates an enhancement in flux pinning performance in order to improve values in high magnetic fields. An effective way to improve the flux pinning is to introduce flux pinning centers into MgB 2 through a dopant having size comparable to the coherence length of MgB 2 . In this study, MgB 2 film with a thickness of about 600 nm was deposited on the MgO (100) single crystal substrate using a 'two-step' synthesis technique. Firstly, deposition of boron thin film was carried out by rf magnetron sputtering on MgO substrates and followed by a post deposition annealing at 850 degrees Celsius in magnesium vapour. In order to investigate the effect of Fe 2 O 3 nanoparticles on the structural and magnetic properties of films, MgB 2 films were coated with different concentrations of Fe 2 O 3 nanoparticles by a spin coating process. The effects of different concentrations of ferromagnetic Fe 2 O 3 nanoparticles on superconducting properties of obtained films were carried out by using structural (XRD, SEM, AFM), electrical (R-T) and magnetization (M-H, M-T and AC Susceptibility) measurements. It was calculated that anisotropic coefficient was about γ = 1.2 and coherence length of 5 nm for the uncoated film. As a result of coherence length, the appropriate diameters of Fe 2 O 3 nanoparticles were found to be 10 nm, indicating that these nanoparticles served as the pinning centers. Based on the data obtained from this study, it can be

  19. Growth and surface modification of LaFeO3 thin films induced by reductive annealing

    International Nuclear Information System (INIS)

    Flynn, Brendan T.; Zhang, Kelvin H.L.; Shutthanandan, Vaithiyalingam; Varga, Tamas; Colby, Robert J.; Oleksak, Richard P.; Manandhar, Sandeep; Engelhard, Mark H.; Chambers, Scott A.; Henderson, Michael A.; Herman, Gregory S.; Thevuthasan, Suntharampillai

    2015-01-01

    Highlights: • LaFeO 3 was grown by molecular beam epitaxy on ZrO 2 :Y 2 O 3 . • The film was highly oriented but not single crystalline. • Angle resolved XPS revealed differences between surface and bulk oxygen. • Annealing the film in vacuum resulted in the sequential reduction of Fe cations. • A greater degree of Fe reduction was found at the surface. - Abstract: The mixed electronic and ionic conductivity of perovskite oxides has enabled their use in diverse applications such as automotive exhaust catalysts, solid oxide fuel cell cathodes, and visible light photocatalysts. The redox chemistry at the surface of perovskite oxides is largely dependent on the oxidation state of the metal cations as well as the oxide surface stoichiometry. In this study, LaFeO 3 (LFO) thin films grown on yttria-stabilized zirconia (YSZ) was characterized using both bulk and surface sensitive techniques. A combination of in situ reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) demonstrated that the film is primarily textured in the [1 0 0] direction and is stoichiometric. High-resolution transmission electron microscopy measurements show regions that are dominated by [1 0 0] oriented LFO grains that are oriented with respect to the substrates lattice. However, selected regions of the film show multiple domains of grains that are not [1 0 0] oriented. The film was annealed in an ultra-high vacuum chamber to simulate reducing conditions and studied by angle-resolved X-ray photoelectron spectroscopy (XPS). Iron was found to exist as Fe(0), Fe(II), and Fe(III) depending on the annealing conditions and the depth within the film. A decrease in the concentration of surface oxygen species was correlated with iron reduction. These results should help guide and enhance the design of LFO materials for catalytic applications

  20. Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films

    International Nuclear Information System (INIS)

    Lux, Robert; Heinrich, Andreas; Leitenmeier, Stephan; Koerner, Timo; Herbort, Michael; Stritzker, Bernd

    2006-01-01

    Magneto-optical garnets are attractive because of their high Faraday rotation and low optical loss in the near infrared. Therefore their use is generally in nonreciprocal devices, i.e., as optical isolators in optical communication. In this paper we present data concerning the deposition of Bi 3 Fe 5 O 12 (BIG) thin films on (100) and (111) Gd 3 Ga 5 O 12 substrates using pulsed-laser deposition. Laser-induced processes on the surface of the oxide target used for ablation were analyzed and numerous films were deposited. We found the BIG film quality to be strongly affected by oxygen pressure, laser energy density, and the Bi/Fe film ratio, whereas temperature had a minor influence. We also investigated the BIG-film deposition using a target pressed from metallic Bi and Fe powders and found information on the growth behavior of BIG. We report on details of the film deposition and film properties determined by environmental scanning electron microscopy, energy dispersive x-ray analysis, Rutherford backscattering spectroscopy, and x-ray diffraction. In addition, we determined the Faraday rotation of the films

  1. Growth of Fe2O3 thin films by atomic layer deposition

    International Nuclear Information System (INIS)

    Lie, M.; Fjellvag, H.; Kjekshus, A.

    2005-01-01

    Thin films of α-Fe 2 O 3 (α-Al 2 O 3 -type crystal structure) and γ-Fe 2 O 3 (defect-spinel-type crystal structure) have been grown by the atomic layer deposition (ALD) technique with Fe(thd) 3 (iron derivative of Hthd = 2,2,6,6-tetramethylheptane-3,5-dione) and ozone as precursors. It has been shown that an ALD window exists between 160 and 210 deg. C. The films have been characterized by various techniques and are shown to comprise (001)-oriented columns of α-Fe 2 O 3 with no in-plane orientation when grown on soda-lime-glass and Si(100) substrates. Good quality films have been made with thicknesses ranging from 10 to 130 nm. Films grown on α-Al 2 O 3 (001) and MgO(100) substrates have the α-Fe 2 O 3 and γ-Fe 2 O 3 crystal structure, respectively, and consist of highly oriented columns with in-plane orientations matching those of the substrates

  2. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO3 thin film

    International Nuclear Information System (INIS)

    Gupta, Surbhi; Gupta, Vinay; Tomar, Monika; James, A. R.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar

    2014-01-01

    Multiferroic Bismuth Ferrite (BiFeO 3 ) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO 3 thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO 3 and Fe 2 O 3 to pure BiFeO 3 phase and, subsequently, to a mixture of BiFeO 3 and Bi 2 O 3 with increase in the concentration of excess Bi from 0% to 15%. BiFeO 3 thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe 2 O 3 ). Deterioration in ferroic properties of BiFeO 3 thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO 3 thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm 2 and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO 3 thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO 3 thin films exhibiting the improved multiferroic properties.

  3. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO{sub 3} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Surbhi; Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi (India); Tomar, Monika [Department of Physics, Miranda Housea, University of Delhi, Delhi (India); James, A. R. [Defence Metallurgical Research Laboratory, Hyderabad (India); Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar [Department of Electrical and Computer Engineering, College of Engineering, University of Texas at SanAntonio, San Antonio 78249 (United States)

    2014-06-21

    Multiferroic Bismuth Ferrite (BiFeO{sub 3}) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO{sub 3} thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO{sub 3} and Fe{sub 2}O{sub 3} to pure BiFeO{sub 3} phase and, subsequently, to a mixture of BiFeO{sub 3} and Bi{sub 2}O{sub 3} with increase in the concentration of excess Bi from 0% to 15%. BiFeO{sub 3} thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe{sub 2}O{sub 3}). Deterioration in ferroic properties of BiFeO{sub 3} thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO{sub 3} thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm{sup 2} and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO{sub 3} thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO{sub 3} thin films exhibiting the improved multiferroic properties.

  4. Magneto-optical properties of BiFeO3 thin films using surface plasmon resonance technique

    International Nuclear Information System (INIS)

    Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2014-01-01

    Indigeneously assembled surface plasmon resonance (SPR) set up has been exploited to study the magnetic field dependent optical properties of BiFeO 3 thin films. BiFeO 3 thin films have been deposited onto gold (Au) coated glass prism by using pulsed laser deposition technique. The surface plasmon modes in prism/Au/BiFeO 3 /air structure have been excited in Kretschmann configuration at the interface of Au/BiFeO 3 thin films. The SPR reflectance curves obtained for prism/Au/BiFeO 3 /air structure were utilized to investigate the optical properties of BiFeO 3 thin films at optical frequency (λ=633 nm) as a function of applied magnetic field. SPR curves shows a continuous shift towards lower angles with increasing applied magnetic field, which indicate the promising application of ferromagnetic BiFeO 3 film as a magnetic field sensor. Complex dielectric constant of deposited BiFeO 3 film was determined by fitting the experimental SPR data with Fresnel's equations. The variation of complex dielectric constant and refractive index of BiFeO 3 film was studied with increase in magnetic field, and the sensitivity of magnetic field sensor was found to be about 0.52 RIU/T

  5. Magneto-optical properties of BiFeO{sub 3} thin films using surface plasmon resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Ayushi; Sharma, Anjali [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi, Delhi 110007 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-09-01

    Indigeneously assembled surface plasmon resonance (SPR) set up has been exploited to study the magnetic field dependent optical properties of BiFeO{sub 3} thin films. BiFeO{sub 3} thin films have been deposited onto gold (Au) coated glass prism by using pulsed laser deposition technique. The surface plasmon modes in prism/Au/BiFeO{sub 3}/air structure have been excited in Kretschmann configuration at the interface of Au/BiFeO{sub 3} thin films. The SPR reflectance curves obtained for prism/Au/BiFeO{sub 3}/air structure were utilized to investigate the optical properties of BiFeO{sub 3} thin films at optical frequency (λ=633 nm) as a function of applied magnetic field. SPR curves shows a continuous shift towards lower angles with increasing applied magnetic field, which indicate the promising application of ferromagnetic BiFeO{sub 3} film as a magnetic field sensor. Complex dielectric constant of deposited BiFeO{sub 3} film was determined by fitting the experimental SPR data with Fresnel's equations. The variation of complex dielectric constant and refractive index of BiFeO{sub 3} film was studied with increase in magnetic field, and the sensitivity of magnetic field sensor was found to be about 0.52 RIU/T.

  6. Investigation of the magnetic properties of electrodeposited NiFe thin films

    International Nuclear Information System (INIS)

    Bakkaloglu, O. F.; Bedir, M.; Oeztas, M.; Karahan, I. H.

    2002-01-01

    Most magnetic devices used today are based on the magnetic thin film. Rapid and extensive developments in magnetic sensor / actuator and magnetic recording technology place a growing demand on the use of different thin film fabrication techniques for magnetic materials. The electroplating technique is especially interesting due to its low cost, high throughput and high quality of the deposits which are extensively used in the magnetic recording industry to deposit relatively thick permalloy layers. Much recent attention has focused on the electrodeposited NiFe thin films, which exhibit giant magneto resistive behaviour as well as anisotropic magnetoresistance properties. n this study, NiFe thin films were developed by using electrodeposition technique and their crystallinity structures were investigated by using x-ray diffractometer measurements. The magneto resistive properties of the samples were investigated by Wan der Pauw method with a home made electromagnet under the different magnetic fields. The magnetoresistance measurements of the samples were carried out in two configurations; current parallel ( longitudinal ) and perpendicular ( transverse ) to the magnetic field. In the longitudinal configuration giant magnetoresistance was observed while anisotropic magnetoresistance was detected in the other configuration

  7. X-ray magnetic absorption in Fe-Tb amorphous thin films

    CERN Document Server

    Kim, Chan Wook; Watanabe, Yasuhiro

    1999-01-01

    In order to investigate the magnetic structure of Fe-Tb amorphous thin films, we have performed magnetic circular dichroism (MCD) measurements by using the circularly polarized X-ray at the Fe K- and the Tb L2,3-edges in Fe sub 8 sub 8 Tb sub 1 sub 2 , Fe sub 8 sub 0 Tb sub 2 sub 0 , and Fe sub 6 sub 2 Tb sub 3 sub 8. In all samples, the spin-dependent absorption effects, DELTA mu t, were observed. Also, elementary information was obtained on the spin polarizations of the p- and the d-projected electrons lying in the unoccupied states near the Fermi levels in the samples.

  8. Synthesis and characterization of multilayered BaTiO3/NiFe2O4 thin films

    Directory of Open Access Journals (Sweden)

    Branimir Bajac

    2013-03-01

    Full Text Available Presented research was focused on the fabrication of multiferroic thin film structures, composed of ferrielectric barium titanate perovskite phase and magnetostrictive nickel ferrite spinel phase. The applicability of different, solution based, deposition techniques (film growth from solution, dip coating and spin coating for thefabrication of multilayered BaTiO3 /NiFe2O4 thin films was investigated. It was shown that only spin coating produces films of desired nanostructure, thickness and smooth and crackfree surfaces.

  9. Development of FeNiMoB thin film materials for microfabricated magnetoelastic sensors

    KAUST Repository

    Liang, Cai; Gooneratne, Chinthaka; Cha, Dong Kyu; Chen, Long; Gianchandani, Yogesh; Kosel, Jü rgen

    2012-01-01

    MetglasTM 2826MB foils of 25–30 μm thickness with the composition of Fe40Ni38Mo4B18 have been used for magnetoelastic sensors in various applications over many years. This work is directed at the investigation of ∼3 μm thick iron-nickel-molybdenum-boron (FeNiMoB) thin films that are intended for integrated microsystems. The films are deposited on Si substrate by co-sputtering of iron-nickel (FeNi), molybdenum(Mo), and boron (B) targets. The results show that dopants of Mo and B can significantly change the microstructure and magnetic properties of FeNi materials. When FeNi is doped with only Mo its crystal structure changes from polycrystalline to amorphous with the increase of dopant concentration; the transition point is found at about 10 at. % of Mo content. A significant change in anisotropic magneticproperties of FeNi is also observed as the Modopant level increases. The coercivity of FeNi filmsdoped with Mo decreases to a value less than one third of the value without dopant.Doping the FeNi with B together with Mo considerably decreases the value of coercivity and the out-of-plane magnetic anisotropyproperties, and it also greatly changes the microstructure of the material. In addition, doping B to FeNiMo remarkably reduces the remanence of the material. The filmmaterial that is fabricated using an optimized process is magnetically as soft as amorphous MetglasTM 2826MB with a coercivity of less than 40 Am−1. The findings of this study provide us a better understanding of the effects of the compositions and microstructure of FeNiMoB thin filmmaterials on their magnetic properties.

  10. Development of FeNiMoB thin film materials for microfabricated magnetoelastic sensors

    KAUST Repository

    Liang, Cai

    2012-12-07

    MetglasTM 2826MB foils of 25–30 μm thickness with the composition of Fe40Ni38Mo4B18 have been used for magnetoelastic sensors in various applications over many years. This work is directed at the investigation of ∼3 μm thick iron-nickel-molybdenum-boron (FeNiMoB) thin films that are intended for integrated microsystems. The films are deposited on Si substrate by co-sputtering of iron-nickel (FeNi), molybdenum(Mo), and boron (B) targets. The results show that dopants of Mo and B can significantly change the microstructure and magnetic properties of FeNi materials. When FeNi is doped with only Mo its crystal structure changes from polycrystalline to amorphous with the increase of dopant concentration; the transition point is found at about 10 at. % of Mo content. A significant change in anisotropic magneticproperties of FeNi is also observed as the Modopant level increases. The coercivity of FeNi filmsdoped with Mo decreases to a value less than one third of the value without dopant.Doping the FeNi with B together with Mo considerably decreases the value of coercivity and the out-of-plane magnetic anisotropyproperties, and it also greatly changes the microstructure of the material. In addition, doping B to FeNiMo remarkably reduces the remanence of the material. The filmmaterial that is fabricated using an optimized process is magnetically as soft as amorphous MetglasTM 2826MB with a coercivity of less than 40 Am−1. The findings of this study provide us a better understanding of the effects of the compositions and microstructure of FeNiMoB thin filmmaterials on their magnetic properties.

  11. Magnetic properties and high frequency characteristics of FeCoN thin films

    Directory of Open Access Journals (Sweden)

    Tae-Jong Hwang

    2016-05-01

    Full Text Available (Fe65Co35N soft magnetic thin films were prepared by reactive RF magnetron sputtering with the sputtering power of 100 W on thermally oxidized Si substrate in various nitrogen partial pressures (PN2. A strong uniaxial in-plane magnetic anisotropy with the easy-axis coercive field as low as 1∼2 Oe was observed in films grown at PN2 in the range from 3.3% to 5.5%. The saturation magnetizations for those films were about 20 KG. Outside this range, almost isotropic magnetization curves were observed. Vector network analyzer and grounded coplanar waveguide were used to measure the ferromagnetic resonance (FMR signals up to 25 GHz. The FMR signals were detected only in anisotropic films and their FMR frequencies were well fit to the Kittel formula. The obtained g-values and damping parameters at magnetic fields >20 kOe for films grown at PN2 of 3.3%, 4.8% and 5.5% were 1.96, 1.86, 1.92 and 0.0055, 0.0047, 0.0046, respectively. This low damping factor qualifies FeCoN thin films for high-frequency applications.

  12. Multiple oxide content media for columnar grain growth in L10 FePt thin films

    International Nuclear Information System (INIS)

    Ho, Hoan; Yang, En; Laughlin, David E.; Zhu, Jian-Gang

    2013-01-01

    An approach to enhance the height-to-diameter ratio of FePt grains in heat-assisted magnetic recording media is proposed. The FePt-SiO x thin films are deposited with a decrease of the SiO x percentage along the film growth direction. When bi-layer and tri-layer media are sputtered at 410 °C, we observe discontinuities in the FePt grains at interfaces between layers, which lead to poor epitaxial growth. Due to increased atomic diffusion, the bi-layer media sputtered at 450 °C is shown to (1) grow into continuous columnar grains with similar size as single-layer media but much higher aspect ratio, (2) have better L1 0 ordering and larger coercivity.

  13. Effect of tungsten (W) on structural and magnetic properties of electroplated NiFe thin films for MEMS applications

    Science.gov (United States)

    Kannan, R.; Devaki, P.; Premkumar, P. S.; Selvambikai, M.

    2018-04-01

    Electrodeposition of nanocrystalline NiFe and NiFeW thin films were carried out from ammonium citrate bath at a constant current density and controlled pH of 8 by varying the bath temperature from 40 °C to 70 °C. The surface morphology and chemical composition of the electrodeposited NiFe and NiFeW soft magnetic thin films were studied by using SEM and EDAX. The SEM micrographs of the films coated at higher electrodeposited bath temperature have no micro cracks and also the films have more uniform surface morphology. The existence of crystalline nature of the coated films were analysed by XRD. The presence of predominant peaks in x-ray diffraction pattern (compared with JCPDS data) reveal that the average crystalline size was in the order of few tens of nano meters. The magnetic properties such as coercivity, saturation magnetization and magnetic flux density have been calculated from vibrating sample magnetometer analysis. The VSM result shows that the NiFeW thin film synthesised at 70 °C exhibit the lower coercivity with higher saturation magnetization. The hardness and adhesion of the electroplated films have been investigated. Reasons for variation in magnetic properties and structural characteristics are also discussed. The electroplated NiFe and NiFeW thin films can be used for Micro Electro Mechanical System (MEMS) applications due to their excellent soft magnetic behaviour.

  14. Formation dynamics of FeN thin films on Cu(100)

    KAUST Repository

    Heryadi, Dodi

    2012-01-01

    To investigate the structural and magnetic properties of thin films of FeN we have performed ab initio molecular dynamics simulations of their formation on Cu(100) substrates. The iron nitride layers exhibit a p4gm(2 × 2) reconstruction and order ferromagnetically in agreement with experiment. We establish the dynamics and time scale of the film formation as a function of the film thickness. The process is split in two phases: formation of almost flat FeN layers and optimization of the distance to the substrate. Our calculated magnetic moments are 1.67 μ B, 2.14 μ B, and 2.21 μ B for one, two, and three monolayers of iron nitride. © 2011 Elsevier B.V. All rights reserved.

  15. Oxygen-induced immediate onset of the antiferromagnetic stacking in thin Cr films on Fe(001)

    Energy Technology Data Exchange (ETDEWEB)

    Berti, Giulia, E-mail: giulia.berti@polimi.it; Brambilla, Alberto; Calloni, Alberto; Bussetti, Gianlorenzo; Finazzi, Marco; Duò, Lamberto; Ciccacci, Franco [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

    2015-04-20

    We investigated the magnetic coupling of ultra-thin Cr films grown at 600 K on a Fe(001)-p(1 × 1)O substrate by means of spin-polarized photoemission spectroscopy. Our findings show that the expected antiferromagnetic stacking of the magnetization in Cr(001) layers occurs right from the first atomic layer at the Cr/Fe interface. This is at variance with all previous observations in similar systems, prepared in oxygen-free conditions, which always reported on a delayed onset of the magnetic oscillations due to the occurrence of significant chemical alloying at the interface, which is substantially absent in our preparation.

  16. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaopu, E-mail: xl6ba@virginia.edu; Ma, Chung T.; Poon, S. Joseph, E-mail: sjp9x@virginia.edu [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Lu, Jiwei [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Devaraj, Arun [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Spurgeon, Steven R.; Comes, Ryan B. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2016-01-04

    Amorphous TbFeCo thin films sputter deposited at room temperature on thermally oxidized Si substrate are found to exhibit strong perpendicular magnetic anisotropy. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the amorphous film. Exchange bias accompanied by bistable magneto-resistance states has been uncovered near room temperature by magnetization and magneto-transport measurements. The exchange anisotropy originates from the exchange interaction between the ferrimagnetic and ferromagnetic components corresponding to the two amorphous phases. This study provides a platform for exchange bias and magneto-resistance switching using single-layer amorphous ferrimagnetic thin films that require no epitaxial growth.

  17. Thin film growth of CaFe2As2 by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Hatano, T; Fujimoto, R; Nakamura, I; Mori, Y; Ikuta, H; Kawaguchi, T; Harada, S; Ujihara, T

    2016-01-01

    Film growth of CaFe 2 As 2 was realized by molecular beam epitaxy on six different substrates that have a wide variation in the lattice mismatch to the target compound. By carefully adjusting the Ca-to-Fe flux ratio, we obtained single-phase thin films for most of the substrates. Interestingly, an expansion of the CaFe 2 As 2 lattice to the out-of-plane direction was observed for all films, even when an opposite strain was expected. A detailed microstructure observation of the thin film grown on MgO by transmission electron microscope revealed that it consists of cube-on-cube and 45°-rotated domains. The latter domains were compressively strained in plane, which caused a stretching along the c-axis direction. Because the domains were well connected across the boundary with no appreciable discontinuity, we think that the out-of-plane expansion in the 45°-rotated domains exerted a tensile stress on the other domains, resulting in the unexpectedly large c-axis lattice parameter, despite the apparently opposite lattice mismatch. (paper)

  18. Thin film growth of CaFe2As2 by molecular beam epitaxy

    Science.gov (United States)

    Hatano, T.; Kawaguchi, T.; Fujimoto, R.; Nakamura, I.; Mori, Y.; Harada, S.; Ujihara, T.; Ikuta, H.

    2016-01-01

    Film growth of CaFe2As2 was realized by molecular beam epitaxy on six different substrates that have a wide variation in the lattice mismatch to the target compound. By carefully adjusting the Ca-to-Fe flux ratio, we obtained single-phase thin films for most of the substrates. Interestingly, an expansion of the CaFe2As2 lattice to the out-of-plane direction was observed for all films, even when an opposite strain was expected. A detailed microstructure observation of the thin film grown on MgO by transmission electron microscope revealed that it consists of cube-on-cube and 45°-rotated domains. The latter domains were compressively strained in plane, which caused a stretching along the c-axis direction. Because the domains were well connected across the boundary with no appreciable discontinuity, we think that the out-of-plane expansion in the 45°-rotated domains exerted a tensile stress on the other domains, resulting in the unexpectedly large c-axis lattice parameter, despite the apparently opposite lattice mismatch.

  19. The temperature dependence of magnetic anisotropy of Nd-Fe-B thin films

    Science.gov (United States)

    Sato, Takuya; Hashimoto, Ryuji; Tanaka, Yoshitomo; Suzuki, Kenichi; Enokido, Yasushi; Choi, Kyung-Ku; Suzuki, Takao

    2018-05-01

    The magnetic properties of Nd-Fe-B thin films with the three different compositions (#1: Nd12.6Fe81.5B5.9, #2: Nd14.6Fe78.1B7.4 and #3: Nd22.6Fe66.2B11.2) are discussed. With increasing Nd content, the c-axis orientation along the film normal is enhanced. It is found that sample #2 possesses the saturation magnetization Ms very close to that for Nd2Fe14B over a temperature range from 100 to about 300K. The magnetic anisotropy constant Ku2 for sample #2 is the highest among those samples, but smaller by about 20%, as compared to that for Nd2Fe14B. It is of interest to note that the temperature TR at which Ku1 changes its sign is lower by about 30K as compared to that previously reported for Nd2Fe14B. The reason for this discrepancy is not clear, but could be due to the presence of the minority phases of Nd-rich compounds and also a possible contribution of the magneto-elastic effect to the net magnetic anisotropy.

  20. Formation of SmFe5(0001) ordered alloy thin films on Cu(111) single-crystal underlayers

    International Nuclear Information System (INIS)

    Yabuhara, Osamu; Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    SmFe 5 (0001) single-crystal thin films are prepared by molecular beam epitaxy employing Cu(111) single-crystal underlayers on MgO(111) substrates. The Cu atoms diffuse into the Sm-Fe layer and substitute the Fe sites in SmFe 5 structure forming an alloy compound of Sm(Fe,Cu) 5 . The Sm(Fe,Cu) 5 film is more Cu enriched with increasing the substrate temperature. The Cu underlayer plays an important role in assisting the formation of the ordered phase.

  1. Formation of SmFe{sub 5}(0001) ordered alloy thin films on Cu(111) single-crystal underlayers

    Energy Technology Data Exchange (ETDEWEB)

    Yabuhara, Osamu; Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi, E-mail: yabuhara@futamoto.elect.chuo-u.ac.j [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan)

    2010-01-01

    SmFe{sub 5}(0001) single-crystal thin films are prepared by molecular beam epitaxy employing Cu(111) single-crystal underlayers on MgO(111) substrates. The Cu atoms diffuse into the Sm-Fe layer and substitute the Fe sites in SmFe{sub 5} structure forming an alloy compound of Sm(Fe,Cu){sub 5}. The Sm(Fe,Cu){sub 5} film is more Cu enriched with increasing the substrate temperature. The Cu underlayer plays an important role in assisting the formation of the ordered phase.

  2. A study on the electrodeposition of NiFe alloy thin films using chronocoulometry and electrochemical quartz crystal microgravimetry

    CERN Document Server

    Myung, N S

    2001-01-01

    Ni, Fe and NiFe alloy thin films were electrodeposited at a polycrystalline Au surface using a range of electrolytes and potentials. Coulometry and EQCM were used for real-time monitoring of electroplating efficiency of the Ni and Fe. The plating efficiency of NiFe alloy thin films was computed with the aid of ICP spectrometry. In general, plating efficiency increased to a steady value with deposition time. Plating efficiency of Fe was lower than that of Ni at -0.85 and -1.0 V but the efficiency approached to the similar plateau value to that of Ni at more negative potentials. The films with higher content of Fe showed different stripping behavior from the ones with higher content of Ni. Finally, compositional data and real-time plating efficiency are presented for films electrodeposited using a range of electrolytes and potentials.

  3. Carbon dioxide and water adsorption on highly epitaxial Delafossite CuFeO2 thin film

    Science.gov (United States)

    Rojas, S.; Joshi, T.; Borisov, P.; Sarabia, M.; Lederman, D.; Cabrera, A. L.

    2015-03-01

    Thermal programmed desorption (TPD) of CO2 and H2O from a 200 nm thick CuFeO2 Delafossite surface was performed in a standard UHV chamber, The CuFeO2 thin film grown using Pulsed Laser Deposition (PLD) over an Al2O3 (0001) substrate with controlled O2 atmosphere resulted with highly epitaxial crystal structure. The adsorption/desorption of CO2 and H2O process was also monitored with X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). Our results revealed that carbon dioxide interacts with CuFeO2 forming Fe carbonates compounds on its surface. Hydroxides were also formed on the surface due to water presence. Using TPD data, Arrhenius plots for CO2 and water desorption were done and activation energy for desorption was obtained. Funds FONDECyT 1130372; Thanks to P. Ferrari.

  4. Structural characterization of epitaxial LiFe_5O_8 thin films grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Loukya, B.; Negi, D.S.; Sahu, R.; Pachauri, N.; Gupta, A.; Datta, R.

    2016-01-01

    We report on detailed microstructural and atomic ordering characterization by transmission electron microscopy in epitaxial LiFe_5O_8 (LFO) thin films grown by chemical vapor deposition (CVD) on MgO (001) substrates. The experimental results of LFO thin films are compared with those for bulk LFO single crystal. Electron diffraction studies indicate weak long-range ordering in LFO (α-phase) thin films in comparison to bulk crystal where strong ordering is observed in optimally annealed samples. The degree of long-range ordering depends on the growth conditions and the thickness of the film. Annealing experiment along with diffraction study confirms the formation of α-Fe_2O_3 phase in some regions of the films. This suggests that under certain growth conditions γ-Fe_2O_3-like phase forms in some pockets in the as-grown LFO thin films that then convert to α-Fe_2O_3 on annealing. - Highlights: • Atomic ordering in LiFe_5O_8 bulk single crystal and epitaxial thin films. • Electron diffraction studies reveal different level of ordering in the system. • Formation of γ-Fe_2O_3 like phase has been observed.

  5. Nanocrystalline Pd:NiFe{sub 2}O{sub 4} thin films: A selective ethanol gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Pratibha; Godbole, R.V.; Bhagwat, Sunita, E-mail: smb.agc@gmail.com

    2016-10-15

    In this work, Pd:NiFe{sub 2}O{sub 4} thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe{sub 2}O{sub 4} thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost. - Highlights: • Ethanol gas sensors based on Pd:NiFe{sub 2}O{sub 4} nanoparticle thin film were fabricated. • Pd incorporation in NiFe{sub 2}O{sub 4} matrix inhibits grain growth. • The sensors were more selective to ethanol gas. • Sensors exhibited fast response and recovery when doped with palladium. • Pd:NiFe{sub 2}O{sub 4} thin film sensor displays excellent long–term stability.

  6. Magnetron-sputter deposition of Fe3S4 thin films and their conversion into pyrite (FeS2) by thermal sulfurization for photovoltaic applications

    International Nuclear Information System (INIS)

    Liu Hongfei; Chi Dongzhi

    2012-01-01

    The authors report on the fabrication of FeS 2 (pyrite) thin films by sulfurizing Fe 3 S 4 that were deposited by direct current magnetron sputtering at room temperature. Under the selected sputtering conditions, Fe 3 S 4 nanocrystal films are obtained and the nanocrystals tend to locally cluster and closely pack into ricelike nanoparticles with an increase in film thickness. Meanwhile, the film tends to crack when the film thickness is increased over ∼1.3 μm. The film cracking can be effectively suppressed by an introduction of a 3-nm Cu intermediate layer prior to Fe 3 S 4 deposition. However, an introduction of a 3-nm Al intermediate layer tends to enhance the film cracking. By post-growth thermal sulfurization of the Fe 3 S 4 thin films in a tube-furnace, FeS 2 with high phase purity, as determined by using x ray diffraction, is obtained. Optical absorption spectroscopy was employed to characterize the resultant FeS 2 thin films, which revealed two absorption edges at 0.9 and 1.2 eV, respectively. These two absorption edges are assigned to the direct bandgap (0.9 eV) and the indirect allowed transitions (1.2 eV) of FeS 2 , respectively.

  7. Effect of Ti seed and spacer layers on structure and magnetic properties of FeNi thin films and FeNi-based multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Svalov, A.V., E-mail: andrey.svalov@ehu.es [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Department of Magnetism and Magnetic Nanomaterials, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Kurlyandskaya, G.V. [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Department of Magnetism and Magnetic Nanomaterials, Ural Federal University, 620002 Ekaterinburg (Russian Federation)

    2014-10-15

    Highlights: • Fe{sub 19}Ni{sub 81} films and FeNi-based multilayers were prepared by magnetron sputtering. • The samples were deposited onto glass substrates at room temperature. • Ti/FeNi films exhibit good (1 1 1) texture and crystallinity. • The thick Cu seed increases the coercive force of the magnetic layer. • The thin Ti spacer restores the magnetic softness of the Cu/Ti/FeNi multilayers. - Abstract: The microstructure and magnetic properties of sputtered permalloy films and FeNi-based multilayers prepared by magnetron sputtering have been studied. X-ray diffraction measurements indicate that Ti/FeNi films exhibit good (1 1 1) texture and crystallinity. Ti/FeNi bilayers with high crystallographic quality have relatively low resistivity. The Ti seed layer does not influence the magnetic properties of FeNi film in Ti/FeNi bilayers, but the thick Cu seed layer leads to an increase of the coercive force of the magnetic layer. For the FeNi films deposited on thick Cu seed layer, the (0 1 0) and (0 0 2) diffraction peaks of hcp nickel were clearly observed. The thin Ti spacer between Cu and FeNi layers prevents the formation of the nickel phase and restores the magnetic softness of the FeNi layer in the Cu/Ti/FeNi sample. Obtained results can be important for the development of multilayer sensitive elements for giant magnetoimpedance or magnetoresistance detectors.

  8. Depth resolved lattice-charge coupling in epitaxial BiFeO3 thin film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeon Jun; Lee, Sung Su; Kwak, Jeong Hun; Kim, Young-Min; Jeong, Hu Young; Borisevich, Albina Y.; Lee, Su Yong; Noh, Do Young; Kwon, Owoong; Kim, Yunseok; Jo, Ji Young

    2016-12-01

    For epitaxial films, a critical thickness (tc) can create a phenomenological interface between a strained bottom layer and a relaxed top layer. Here, we present an experimental report of how the tc in BiFeO3 thin films acts as a boundary to determine the crystalline phase, ferroelectricity, and piezoelectricity in 60 nm thick BiFeO3/SrRuO3/SrTiO3 substrate. We found larger Fe cation displacement of the relaxed layer than that of strained layer. In the time-resolved X-ray microdiffraction analyses, the piezoelectric response of the BiFeO3 film was resolved into a strained layer with an extremely low piezoelectric coefficient of 2.4 pm/V and a relaxed layer with a piezoelectric coefficient of 32 pm/V. The difference in the Fe displacements between the strained and relaxed layers is in good agreement with the differences in the piezoelectric coefficient due to the electromechanical coupling.

  9. Structural, mechanical, and magnetic properties of GaFe{sub 3}N thin films

    Energy Technology Data Exchange (ETDEWEB)

    Junaid, Muhammad, E-mail: junaid@mch.rwth-aachen.de; Music, Denis, E-mail: music@mch.rwth-aachen.de; Hans, Marcus; Schneider, Jochen M. [Materials Chemistry, RWTH Aachen University, D-52056 Aachen (Germany); Scholz, Tanja; Dronskowski, Richard [Institute of Inorganic Chemistry, RWTH Aachen University, D-52056 Aachen (Germany); Primetzhofer, Daniel [Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, S-75120 Uppsala (Sweden)

    2016-07-15

    Using the density-functional theory, the structural, mechanical, and magnetic properties were investigated for different GaFe{sub 3}N configurations: ferromagnetic, ferrimagnetic, paramagnetic, and nonmagnetic. Ferrimagnetic and high-spin ferromagnetic states exhibit the lowest energy and are the competing ground states as the total energy difference is 0.3 meV/atom only. All theoretically predicted values could be fully confirmed by experiments. For this, the authors synthesized phase pure, homogeneous, and continuous GaFe{sub 3}N films by combinatorial reactive direct current magnetron sputtering. Despite the low melting point of gallium, the authors succeeded in the growth of GaFe{sub 3}N films at a temperature of 500 °C. Those thin films exhibit a lattice parameter of 3.794 Å and an elastic modulus of 226 ± 20 GPa. Magnetic susceptibility measurements evidence a magnetic phase transitions at 8.0 ± 0.1 K. The nearly saturated magnetic moment at ±5 T is about 1.6 μB/Fe and is close to the theoretically determined magnetic moment for a ferrimagnetic ordering (1.72 μB/Fe).

  10. Structural, mechanical, and magnetic properties of GaFe_3N thin films

    International Nuclear Information System (INIS)

    Junaid, Muhammad; Music, Denis; Hans, Marcus; Schneider, Jochen M.; Scholz, Tanja; Dronskowski, Richard; Primetzhofer, Daniel

    2016-01-01

    Using the density-functional theory, the structural, mechanical, and magnetic properties were investigated for different GaFe_3N configurations: ferromagnetic, ferrimagnetic, paramagnetic, and nonmagnetic. Ferrimagnetic and high-spin ferromagnetic states exhibit the lowest energy and are the competing ground states as the total energy difference is 0.3 meV/atom only. All theoretically predicted values could be fully confirmed by experiments. For this, the authors synthesized phase pure, homogeneous, and continuous GaFe_3N films by combinatorial reactive direct current magnetron sputtering. Despite the low melting point of gallium, the authors succeeded in the growth of GaFe_3N films at a temperature of 500 °C. Those thin films exhibit a lattice parameter of 3.794 Å and an elastic modulus of 226 ± 20 GPa. Magnetic susceptibility measurements evidence a magnetic phase transitions at 8.0 ± 0.1 K. The nearly saturated magnetic moment at ±5 T is about 1.6 μB/Fe and is close to the theoretically determined magnetic moment for a ferrimagnetic ordering (1.72 μB/Fe).

  11. Gilbert damping constant of FePd alloy thin films estimated by broadband ferromagnetic resonance

    Directory of Open Access Journals (Sweden)

    Kawai T.

    2014-07-01

    Full Text Available Magnetic relaxation of FePd alloy epitaxial thin films with very flat surfaces prepared on MgO(001 substrate are measured by in-plane broadband ferromagnetic resonance (FMR. Magnetic relaxation is investigated as Δω for FMR absorption peak by frequency sweep measurements. ΔH is calculated by using the measured Δω. Gilbert damping constant, α, is estimated by employing a straight line fitting of the resonant frequency dependence of ΔH. The α value for an FePd film deposited at 200 ˚C, which shows disordered A1 structure, is 0.010 and ΔH0, which is frequency independent part of ΔH, is 10 Oe. The α value for a film annealed at 400 ˚C, which shows partially L10 ordered structure (S=0.32, is 0.013, which is slightly larger than that for the disorder A1 structure film. However, ΔH0 for the annealed film is 85 Oe, which is much larger than that for the film with disordered structure. The results show that the magnetic relaxation of the 400 ˚C annealed film is mainly dominated by ΔH0, which is related with magnetic in-homogeneity caused by the appearance of perpendicular anisotropy of partially ordered phase.

  12. Magnetic and structural properties of NdFeB thin film prepared by step annealing

    International Nuclear Information System (INIS)

    Serrona, Leo K.E.B.; Sugimura, A.; Fujisaki, R.; Okuda, T.; Adachi, N.; Ohsato, H.; Sakamoto, I.; Nakanishi, A.; Motokawa, M.

    2003-01-01

    The crystallization of the amorphous phase into the tetragonal Nd 2 Fe 14 B (PHI) phase and the corresponding changes in magnetic properties have been examined by step annealing experiment using a 2 μm thick NdFeB film sample. Microstructural and magnetic analysis indicate that the film was magnetically soft as deposited with the coercivity H ciperp -1 and the remnant magnetization 4πM rperp -1 was developed and diffraction analysis showed evidence of PHI phase 002l peaks being aligned perpendicular to the film plane. At an optimum annealing temperature of 575 deg. C, the remnant magnetization of this anisotropic thin film is around 0.60 T with intrinsic coercivity of ∼1340 kA m -1 . Annealing the film sample at 200 deg. C≤T ann ≤750 deg. C showed variations in magnetic properties that were mostly due to the change in the perpendicular anisotropy. Based on 4πM sperpendicular values plotted against T ann , a dip in 4πM sperpendicular values was observed as T ann increased in the soft-to-hard magnetic characteristics transition region and rose as the hard crystalline phase started to form. The results show that the magnetic properties of the NdFeB film were slightly influenced by the presence of NdO, film surface roughening and the small increase in crystal size as a consequence of repeated heat treatment. At T ann ∼300 deg. C, the nominal saturation magnetization indicated a certain degree of weak perpendicular magnetic anisotropy in the film sample considered to be essential in the enhancement of coercivity in crystallized films

  13. BiFeO3 epitaxial thin films and devices: past, present and future

    Science.gov (United States)

    Sando, D.; Barthélémy, A.; Bibes, M.

    2014-11-01

    The celebrated renaissance of the multiferroics family over the past ten years has also been that of its most paradigmatic member, bismuth ferrite (BiFeO3). Known since the 1960s to be a high temperature antiferromagnet and since the 1970s to be ferroelectric, BiFeO3 only had its bulk ferroic properties clarified in the mid-2000s. It is however the fabrication of BiFeO3 thin films and their integration into epitaxial oxide heterostructures that have fully revealed its extraordinarily broad palette of functionalities. Here we review the first decade of research on BiFeO3 films, restricting ourselves to epitaxial structures. We discuss how thickness and epitaxial strain influence not only the unit cell parameters, but also the crystal structure, illustrated for instance by the discovery of the so-called T-like phase of BiFeO3. We then present its ferroelectric and piezoelectric properties and their evolution near morphotropic phase boundaries. Magnetic properties and their modification by thickness and strain effects, as well as optical parameters, are covered. Finally, we highlight various types of devices based on BiFeO3 in electronics, spintronics, and optics, and provide perspectives for the development of further multifunctional devices for information technology and energy harvesting.

  14. Bulk photovoltaic effect in epitaxial (K, Nb) substituted BiFeO3 thin films

    Science.gov (United States)

    Agarwal, Radhe; Zheng, Fan; Sharma, Yogesh; Hong, Seungbum; Rappe, Andrew; Katiyar, Ram

    We studied the bulk photovoltaic effect in epitaxial (K, Nb) modified BiFeO3 (BKFNO) thin films using theoretical and experimental methods. Epitaxial BKFNO thin films were grown by pulsed laser deposition (PLD). First, we have performed first principles density function theory (DFT) using DFT +U method to calculate electronic band structure, including Hubbard-Ueff (Ueff =U-J) correction into Hamiltonian. The electronic band structure calculations showed a direct band gap at 1.9 eV and a defect level at 1.7 eV (in a 40 atom BKFNO supercell), sufficiently lower in comparison to the experimentally observed values. Furthermore, the piezoforce microscopy (PFM) measurements indicated the presence of striped polydomains in BKFNO thin films. Angle-resolved PFM measurements were also performed to find domain orientation and net polarization directions in these films. The experimental studies of photovoltaic effect in BKNFO films showed a short circuit current of 59 micro amp/cm2 and open circuit voltage of 0.78 V. We compared our experimental results with first principles shift current theory calculations of bulk photovoltaic effect (BPVE).The synergy between theory and experimental results provided a realization of significant role of BPVE in order to understand the photovoltaic mechanism in ferroelectrics.

  15. Growth and Characterization of Magnetoelectric Fe2TeO6 Thin Films

    Science.gov (United States)

    Wang, Junlei; Colon Santana, Juan; Wu, Ning; Dowben, Peter; Binek, Christian

    2013-03-01

    Voltage-controlled spintronics is of vital importance in information technology where power consumption and Joule heating restrict progress through scaling. Motivated by spintronic concepts and specifically by device applications utilizing electrically controlled interface or boundary magnetization (BM) in magnetic thin film heterostructures, we report on growth, structural, magnetic and magnetoelectric (ME) characterization of the antiferromagnet Fe2TeO6. Magnetometry of synthesized Fe2TeO6 powder, in combination with ME susceptibility data reveals 3D Heisenberg criticality in striking similarity to the archetypical ME chromia. X-ray diffraction shows (110) texture of the PLD grown films. Measurements of the magnetic susceptibility of the latter confirm in-plane magnetic anisotropy. X-ray photoemission spectroscopy indicates a Te-O terminated (110) surface. We interpret it in terms of surface reconstruction. Measurements of X-ray magnetic circular dichroism combined with photoemission electron microscopy support the presence of electrically controllable BM in the PLD-grown Fe2TeO6 thin film. We acknowledge financial support by NSF-MRSEC & Nanoelectronics Research Initiative.

  16. thin films

    Indian Academy of Sciences (India)

    microscopy (SEM) studies, respectively. The Fourier transform ... Thin films; chemical synthesis; hydrous tin oxide; FTIR; electrical properties. 1. Introduction ... dehydrogenation of organic compounds (Hattori et al 1987). .... SEM images of (a) bare stainless steel and (b) SnO2:H2O thin film on stainless steel substrate at a ...

  17. Probing magnetism and electronic structure of Fe-doped ZnO thin films

    International Nuclear Information System (INIS)

    El Amiri, A.; Moubah, R.; Lmai, F.; Abid, M.; Hassanain, N.; Hlil, E.K.; Lassri, H.

    2016-01-01

    Ab-initio calculations using Korringa–Kohn–Rostoker method combined with the coherent potential approximation were performed in order to study the magnetic properties of Fe-doped ZnO thin films with different Fe contents. The extracted parameters are compared with those determined experimentally. Based on total and partial densities of state curves, we demonstrate that there is a competition between p–d exchange and superexchange mechanisms leading to weak ferromagnetic and antiferromagnetic contributions, respectively. The dominant mechanism is found to be antiferromagnetic. However, with increasing Fe content the ferromagnetic contribution increases. In addition, the effect of structural defects on the magnetism of the system is reported. It is shown that both Zn and O vacancies increase ferromagnetism, which is more pronounced in case of Zn. - Highlights: • The KKR–CPA approach was used to study the magnetism of Fe-doped ZnO thin films. • There is a competition between p–d exchange and superexchange mechanisms leading to weak ferromagnetic and antiferromagnetic contributions. • Zn vacancies are more significant than the O ones for obtaining ferromagnetism.

  18. Probing magnetism and electronic structure of Fe-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    El Amiri, A., E-mail: aelamiri@casablanca.ma [LPFA, Faculté des Sciences Ain Chock, Université Hassan II, BP 5366 Mâarif, Casablanca (Morocco); Moubah, R., E-mail: reda.moubah@hotmail.fr [LPMMAT, Faculté des Sciences Ain Chock, Université Hassan II, BP 5366 Mâarif, Casablanca (Morocco); Lmai, F. [LPTA, Faculté des Sciences Ain Chock, Université Hassan II, BP 5366 Mâarif, Casablanca (Morocco); Abid, M. [LPFA, Faculté des Sciences Ain Chock, Université Hassan II, BP 5366 Mâarif, Casablanca (Morocco); Hassanain, N. [Laboratoire de Physique des Matériaux, Faculté des Sciences, BP 1014 Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, 38042 Grenoble (France); Lassri, H. [LPMMAT, Faculté des Sciences Ain Chock, Université Hassan II, BP 5366 Mâarif, Casablanca (Morocco)

    2016-01-15

    Ab-initio calculations using Korringa–Kohn–Rostoker method combined with the coherent potential approximation were performed in order to study the magnetic properties of Fe-doped ZnO thin films with different Fe contents. The extracted parameters are compared with those determined experimentally. Based on total and partial densities of state curves, we demonstrate that there is a competition between p–d exchange and superexchange mechanisms leading to weak ferromagnetic and antiferromagnetic contributions, respectively. The dominant mechanism is found to be antiferromagnetic. However, with increasing Fe content the ferromagnetic contribution increases. In addition, the effect of structural defects on the magnetism of the system is reported. It is shown that both Zn and O vacancies increase ferromagnetism, which is more pronounced in case of Zn. - Highlights: • The KKR–CPA approach was used to study the magnetism of Fe-doped ZnO thin films. • There is a competition between p–d exchange and superexchange mechanisms leading to weak ferromagnetic and antiferromagnetic contributions. • Zn vacancies are more significant than the O ones for obtaining ferromagnetism.

  19. Nanolaminated FeCoB/FeCo and FeCoB/NiFe soft magnetic thin films with tailored magnetic properties deposited by magnetron sputtering

    Science.gov (United States)

    Hida, Rachid; Falub, Claudiu V.; Perraudeau, Sandrine; Morin, Christine; Favier, Sylvie; Mazel, Yann; Saghi, Zineb; Michel, Jean-Philippe

    2018-05-01

    Thin films based on layers of Fe52Co28B20 (at%), Fe65Co35 (at%), and Ni80Fe20 (at%) were deposited by sputtering on 8″ bare Si and Si/200 nm-thermal-SiO2 wafers by simultaneous use of two or more cathodes. Due to the continuous rotation of the substrate cage, such that the substrates faced different targets alternately, the multilayers consisted of stacks of alternating, nanometer-thick regular layers. The composition of the films was determined by Rutherford Backscattering Spectrometry (RBS) and Nuclear Reactive Analysis (NRA), whereas Plasma Profiling Time of Flight Mass Spectrometry (PP-TOFMS) analysis gave depth profile information about the chemical elements. The structural and magnetic properties of the films were investigated by X-ray Diffraction and by TEM analysis, B-H loop tracer and high frequency single coil technique permeametry, respectively. The linear dependence of the coercivity of these thin films versus the grain size can be explained by the random anisotropy model. These novel, composite soft magnetic multilayers, with tunable in-plane anisotropy, allow operation at tunable frequencies, as shown by broadband (between 100 MHz and 10 GHz) RF measurements that exhibit a classical Landau-Lifschitz-Gilbert (LLG) behavior and, combine the magnetic properties of the individual materials in an advantageous way. This article presents a method to produce nanostructured soft magnetic multilayers, the properties of which can easily be tuned by choosing the ratio of the individual nanolayers. In this way it's possible to combine soft magnetic materials with complementary properties, e.g. high saturation magnetization, low coercivity, high specific resistivity and low magnetostriction

  20. Temperature dependent magnetic coupling between ferromagnetic FeTaC layers in multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Akhilesh Kumar [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Hsu, Jen-Hwa [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Perumal, Alagarsamy, E-mail: perumal@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India)

    2016-11-15

    We report systematic investigations on temperature dependent magnetic coupling between ferromagnetic FeTaC layers and resulting magnetic properties of multilayer structured [FeTaC (~67 nm)/Ta(x nm)]{sub 2}/FeTaC(~67 nm)] thin films, which are fabricated directly on thermally oxidized Si substrate. As-deposited amorphous films are post annealed at different annealing temperatures (T{sub A}=200, 300 and 400 °C). Structural analyzes reveal that the films annealed at T{sub A}≤200 °C exhibit amorphous nature, while the films annealed above 200 °C show nucleation of nanocrystals at T{sub A}=300 °C and well-defined α-Fe nanocrystals with size of about 9 nm in amorphous matrix for 400 °C annealed films. Room temperature and temperature dependent magnetic hysteresis (M–H) loops reveal that magnetization reversal behaviors and magnetic properties are strongly depending on spacer layer thickness (x), T{sub A} and temperature. A large reduction in coercivity (H{sub C}) was observed for the films annealed at 200 °C and correlated to relaxation of stress quenched in during the film deposition. On the other hand, the films annealed at 300 °C exhibit unusual variation of H{sub C}(T), i.e., a broad minimum in H{sub C}(T) vs T curve. This is caused by change in magnetic coupling between ferromagnetic layers having different microstructure. In addition, the broad minimum in the H{sub C}(T) curve shifts from 150 K for x=1 film to 80 K for x=4 film. High-temperature thermomagnetization data show a strong (significant) variation of Curie temperature (T{sub C}) with T{sub A} (x). The multilayer films annealed at 200 °C exhibit low value of T{sub C} with a minimum of 350 K for x=4 film. But, the films annealed at 400 °C show largest T{sub C} with a maximum of 869 K for x=1 film. The observed results are discussed on the basis of variations in magnetic couplings between FeTaC layers, which are majorly driven by temperature, spacer layer thickness, annealing temperature and

  1. Growth, structure and magnetic properties of magnetron sputtered FePt thin films

    Energy Technology Data Exchange (ETDEWEB)

    Cantelli, Valentina

    2010-07-01

    The L1{sub 0} FePt phase belongs to the most promising hard ferromagnetic materials for high density recording media. The main challenges for thin FePt films are: (i) to lower the process temperature for the transition from the soft magnetic A1 to the hard magnetic L1{sub 0} phase, (ii) to realize c-axes preferential oriented layers independently from the substrate nature and (iii) to control layer morphology supporting the formation of FePt-L1{sub 0} selforganized isolated nanoislands towards an increase of the signal-to-noise ratio. In this study, dc magnetron sputtered FePt thin films on amorphous substrates were investigated. The work is focused on the correlation between structural and magnetic properties with respect to the influence of deposition parameters like growth mode (cosputtering vs. layer - by - layer) and the variation of the deposition gas (Ar, Xe) or pressure (0.3-3 Pa). In low-pressure Ar discharges, high energetic particle impacts support vacancies formation during layer growth lowering the phase transition temperature to (320{+-}20) C. By reducing the particle kinetic energy in Xe discharges, highly (001) preferential oriented L1{sub 0}-FePt films were obtained on a-SiO{sub 2} after vacuum annealing. L1{sub 0}-FePt nano-island formation was supported by the introduction of an Ag matrix, or by random ballistic aggregation and atomic self shadowing realized by FePt depositions at very high pressure (3 Pa). The high coercivity (1.5 T) of granular, magnetic isotropic FePt layers, deposited in Ar discharges, was measured with SQUID magnetometer hysteresis loops. For non-granular films with (001) preferential orientation the coercivity decreased (0.6 T) together with an enhancement of the out-of- plane anisotropy. Nanoislands show a coercive field close to the values obtained for granular layers but exhibit an in-plane easy axis due to shape anisotropy effects. An extensive study with different synchrotron X-ray scattering techniques, mainly

  2. Phase transitions in Fe_0_._5Co_0_._5 (110) thin films

    International Nuclear Information System (INIS)

    Ramírez-Dámaso, G.; Castillo-Alvarado, F.L.; Rojas-Hernández, E.

    2016-01-01

    In this paper, we present calculations for two second-order phase transitions in (110) Fe_0_._5Co_0_._5 thin films with 11, 15, and 19 monoatomic layers. The lattice and magnetic transitions are based on thermodynamic equilibrium considerations of the magnetic alloy. The procedure proposed by Valenta and Sukiennicki was applied to calculate the composition x(i), the lattice order parameter t(i), and the magnetic order parameter σ(i) as a function of temperature T. We confirmed that both phase transitions, lattice and magnetic, are of the second order, in accordance with experimental results in the literature. The obtained behavior of these parameters indicates their inhomogeneity due to the boundary conditions on the surfaces of the thin film.

  3. Spin Seebeck effect in insulating epitaxial γ−Fe2O3 thin films

    Directory of Open Access Journals (Sweden)

    P. Jiménez-Cavero

    2017-02-01

    Full Text Available We report the fabrication of high crystal quality epitaxial thin films of maghemite (γ−Fe2O3, a classic ferrimagnetic insulating iron oxide. Spin Seebeck effect (SSE measurements in γ−Fe2O3/Pt bilayers as a function of sample preparation conditions and temperature yield a SSE coefficient of 0.5(1 μV/K at room temperature. Dependence on temperature allows us to estimate the magnon diffusion length in maghemite to be in the range of tens of nanometers, in good agreement with that of conducting iron oxide magnetite (Fe3O4, establishing the relevance of spin currents of magnonic origin in magnetic iron oxides.

  4. Magnetoresistance Versus Oxygen Deficiency in Epi-stabilized SrRu1 - x Fe x O3 - δ Thin Films

    Science.gov (United States)

    Dash, Umasankar; Acharya, Susant Kumar; Lee, Bo Wha; Jung, Chang Uk

    2017-03-01

    Oxygen vacancies have a profound effect on the magnetic, electronic, and transport properties of transition metal oxide materials. Here, we studied the influence of oxygen vacancies on the magnetoresistance (MR) properties of SrRu1 - x Fe x O3 - δ epitaxial thin films ( x = 0.10, 0.20, and 0.30). For this purpose, we synthesized highly strained epitaxial SrRu1 - x Fe x O3 - δ thin films with atomically flat surfaces containing different amounts of oxygen vacancies using pulsed laser deposition. Without an applied magnetic field, the films with x = 0.10 and 0.20 showed a metal-insulator transition, while the x = 0.30 thin film showed insulating behavior over the entire temperature range of 2-300 K. Both Fe doping and the concentration of oxygen vacancies had large effects on the negative MR contributions. For the low Fe doping case of x = 0.10, in which both films exhibited metallic behavior, MR was more prominent in the film with fewer oxygen vacancies or equivalently a more metallic film. For semiconducting films, higher MR was observed for more semiconducting films having more oxygen vacancies. A relatively large negative MR ( 36.4%) was observed for the x = 0.30 thin film with a high concentration of oxygen vacancies ( δ = 0.12). The obtained results were compared with MR studies for a polycrystal of (Sr1 - x La x )(Ru1 - x Fe x )O3. These results highlight the crucial role of oxygen stoichiometry in determining the magneto-transport properties in SrRu1 - x Fe x O3 - δ thin films.

  5. AFM, XRD and HRTEM Studies of Annealed FePd Thin Films

    International Nuclear Information System (INIS)

    Perzanowski, M.; Zabila, Y.; Polit, A.; Krupinski, M.; Dobrowolska, A.; Marszalek, M.; Morgiel, J.

    2010-01-01

    Ferromagnetic FePd L1 0 ordered alloys are highly expected as forthcoming high-density recording materials, because they reveal a large perpendicular magnetocrystalline anisotropy. The value of the magnetic anisotropy of FePd alloy strongly depends on the alloy composition, degree of alloy order as well as on the crystallographic grain orientation. In particular, to obtain the perpendicular anisotropy, it is necessary to get the films with (001) texture. One of the successful methods, which allows one to obtain highly ordered alloy, is a subsequent deposition of Fe and Pd layers, followed by an annealing at high temperature. This paper presents the study of the FePd thin alloy film structure changing in the result of high temperature annealing. During the annealing in high vacuum, the measurements of electrical resistance were performed, indicating the regions of different structure evolution. Changes in the crystal structure and surface morphology induced by thermal treatment were investigated by X-ray diffraction, atomic force microscopy, as well as high resolution transmission electron microscopy and then compared with electrical resistivity measurement. The slow thermal annealing of the deposited layers leads to the formation of L1 0 ordered FePd alloy with preferred (111) grain orientation. After the annealing at the highest used temperature, the dewetting process was observed, resulting in a creation of well oriented, regular nanoparticles. (author)

  6. Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates

    International Nuclear Information System (INIS)

    Yu, Ying; Zhan, Qingfeng; Dai, Guohong; Zuo, Zhenghu; Zhang, Xiaoshan; Liu, Yiwei; Yang, Huali; Zhang, Yao; Wang, Baomin; Li, Run-Wei; Wei, Jinwu; Wang, Jianbo; Xie, Shuhong

    2015-01-01

    Magnetostrictive FeGa thin films were deposited on the bowed flexible polyethylene terephthalate (PET) substrates, which were fixed on the convex mold. A compressive stress was induced in FeGa films when the PET substrates were shaped from convex to flat. Due to the effect of magnetostriction, FeGa films exhibit an obvious in-plane uniaxial magnetic anisotropy which could be enhanced by increasing the applied pre-strains on the substrates during growth. Consequently, the ferromagnetic resonance frequency of the films was significantly increased, but the corresponding initial permeability was decreased. Moreover, the films with pre-strains less than 0.78% exhibit a working bandwidth of microwave absorption about 2 GHz. Our investigations demonstrated a convenient method via the pre-strained substrates to tune the high frequency properties of magnetic thin films which could be applied in flexible microwave devices

  7. Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates

    Science.gov (United States)

    Yu, Ying; Zhan, Qingfeng; Wei, Jinwu; Wang, Jianbo; Dai, Guohong; Zuo, Zhenghu; Zhang, Xiaoshan; Liu, Yiwei; Yang, Huali; Zhang, Yao; Xie, Shuhong; Wang, Baomin; Li, Run-Wei

    2015-04-01

    Magnetostrictive FeGa thin films were deposited on the bowed flexible polyethylene terephthalate (PET) substrates, which were fixed on the convex mold. A compressive stress was induced in FeGa films when the PET substrates were shaped from convex to flat. Due to the effect of magnetostriction, FeGa films exhibit an obvious in-plane uniaxial magnetic anisotropy which could be enhanced by increasing the applied pre-strains on the substrates during growth. Consequently, the ferromagnetic resonance frequency of the films was significantly increased, but the corresponding initial permeability was decreased. Moreover, the films with pre-strains less than 0.78% exhibit a working bandwidth of microwave absorption about 2 GHz. Our investigations demonstrated a convenient method via the pre-strained substrates to tune the high frequency properties of magnetic thin films which could be applied in flexible microwave devices.

  8. Giant Polarization Rotation in BiFeO3/SrTiO3 Thin Films.

    Science.gov (United States)

    Langner, M. C.; Chu, Y. H.; Martin, L. M.; Gajek, M.; Ramesh, R.; Orenstein, J.

    2008-03-01

    We use optical second harmonic generation to probe dynamics of the ferroelectric polarization in (111) oriented BiFeO3 thin films grown on SrTiO3 substrates. The second harmonic response indicates 3m point group symmetry and is consistent with a spontaneous polarization normal to the surface of the film. We measure large changes in amplitude and lowering of symmetry, consistent with polarization rotation, when modest electric fields are applied in the plane of the film. At room temperature the rotation is an order of magnitude larger than expected from reported values of the dielectric constant and increases further (as 1/T) as temperature is lowered. We propose a substrate interaction model to explain these results.

  9. Study of electronic structure and magnetic properties of epitaxial Co{sub 2}FeAl Heusler Alloy Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Soni, S. [Department of Pure & Applied Physics, University of Kota, Kota 324007 (India); Dalela, S., E-mail: sdphysics@rediffmail.com [Department of Pure & Applied Physics, University of Kota, Kota 324007 (India); Sharma, S.S. [Department of Physics, Govt. Women Engineering College, Ajmer (India); Liu, E.K.; Wang, W.H.; Wu, G.H. [State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Kumar, M. [Department of Physics, Malviya National Institute of Technology, Jaipur-302017 (India); Garg, K.B. [Department of Physics, University of Rajasthan, Jaipur-302004 (India)

    2016-07-25

    This work reports the magnetic and electronic characterization of plane magnetized buried Heusler Co{sub 2}FeAl nano thin films of different thickness by X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) measurements. . The spectra on both Fe- and Co L{sub 2,3} edges show a pronounced magnetic dichroic signal in remanence, corresponding to a ferromagnetically-aligned moments on Fe and Co atoms conditioning the peculiar characteristics of the Co{sub 2}FeAl Heusler compound (a half-metallic ferromagnet). The detailed knowledge of the related magnetic and electronic properties of these samples over a wide range of thickness of films are indispensable for achieving a higher tunnel magnetoresistance ratio, and thus for spintronics device applications. - Highlights: • Electronic structure and Magnetic Properties of Epitaxial Co{sub 2}FeAl Heusler Films. • X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). • Fe- and Co L{sub 2,3} edges show a pronounced magnetic dichroic signal in remanence. • Calculated Orbital, Spin and total magnetic moments of Fe and Co for 30 nm Co{sub 2}FeAl thin film. • The total magnetic moment of Fe at L{sub 2,3} edges increases with the thickness of the Co2FeAl films.

  10. Magnetic and structural properties of Co2FeAl thin films grown on Si substrate

    International Nuclear Information System (INIS)

    Belmeguenai, Mohamed; Tuzcuoglu, Hanife; Gabor, Mihai; Petrisor, Traian; Tiusan, Coriolan; Berling, Dominique; Zighem, Fatih; Mourad Chérif, Salim

    2015-01-01

    The correlation between magnetic and structural properties of Co 2 FeAl (CFA) thin films of different thicknesses (10 nmfilms. The deduced lattice parameter increases with the film thickness. Moreover, pole figures showed no in-plane preferential growth orientation. The magneto-optical Kerr effect hysteresis loops showed the presence of a weak in-plane uniaxial anisotropy with a random easy axis direction. The coercive field, measured with the applied field along the easy axis direction, and the uniaxial anisotropy field increase linearly with the inverse of the CFA thickness. The microstrip line ferromagnetic resonance measurements for in-plane and perpendicular applied magnetic fields revealed that the effective magnetization and the uniaxial in-plane anisotropy field follow a linear variation versus the inverse CFA thickness. This allows deriving a perpendicular surface anisotropy coefficient of −1.86 erg/cm 2 . - Highlights: • Various Co 2 FeAl thin films were grown on a Si(001) substrates and annealed at 600 °C. • The thickness dependence of magnetic and structural properties has been studied. • X-ray measurements revealed an (011) out-of-plane textured growth of the films. • The easy axis coercive field varies linearly with the inverse CFA thickness. • The effective magnetization increases linearly with the inverse film thickness

  11. Understanding Strain-Induced Phase Transformations in BiFeO3 Thin Films.

    Science.gov (United States)

    Dixit, Hemant; Beekman, Christianne; Schlepütz, Christian M; Siemons, Wolter; Yang, Yongsoo; Senabulya, Nancy; Clarke, Roy; Chi, Miaofang; Christen, Hans M; Cooper, Valentino R

    2015-08-01

    Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO 3 thin films, which comprises a tetragonal-like ( T ') and an intermediate S ' polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T ' phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S ' phase is energetically very close to the T ' phase, but is structurally similar to the bulk rhombohedral ( R ) phase. By fully characterizing the intermediate S ' polymorph, it is demonstrated that the flat energy landscape resulting in the absence of an energy barrier between the T ' and S ' phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S ' and T ' polymorphs, which have very different octahedral rotation patterns and c / a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO 3 films. Additionally, a blueshift in the band gap when moving from R to S ' to T ' is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.

  12. Evidence of Room Temperature Ferromagnetism Due to Oxygen Vacancies in (In1- x Fe x )2O3 Thin Films

    Science.gov (United States)

    Chakraborty, Deepannita; Munuswamy, Kuppan; Shaik, Kaleemulla; Nasina, Madhusudhana Rao; Dugasani, Sreekantha Reddy; Inturu, Omkaram

    2018-03-01

    Iron substituted indium oxide (In1- x Fe x )2O3 thin films at x = 0.00, 0.03, 0.05 and 0.07 were coated onto Corning 7059 glass substrates using the electron beam evaporation technique followed by annealing at different temperatures. The prepared thin films were subjected to different characterization techniques to study their structural, optical and magnetic properties. The structural properties of the thin films were studied using x-ray diffractometry (XRD). From the XRD results it was found that the films were crystallized in cubic structure, and no change in crystal structure was observed with annealing temperature. No secondary phases related to iron were observed from the XRD profiles. The chemical composition and surface morphology of the films were examined by field emission scanning electron microscope (FE-SEM) attached with energy dispersive analysis of x-ray (EDAX). The valence state of the elements were studied by x-ray photoelectron spectroscopy (XPS) and found that the indium, iron and oxygen were in In+3, Fe+3 and O-2 states. From the data, the band gap of the (In1- x Fe x )2O3 thin films were calculated and it increased with increase of annealing temperature. The magnetic properties of the films were studied at room temperature by vibrating sample magnetometer (VSM). The films exhibited ferromagnetism at room temperature.

  13. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, H. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Grigoras, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Urse, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania)]. E-mail: urse@phys-iasi.ro

    2007-09-15

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H{sub c} of about 1510kA/m and the remanence ratio M{sub r}/M{sub s} of about 0.8.

  14. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    International Nuclear Information System (INIS)

    Chiriac, H.; Grigoras, M.; Urse, M.

    2007-01-01

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H c of about 1510kA/m and the remanence ratio M r /M s of about 0.8

  15. Influence of film thickness and Fe doping on LPG sensing properties of Mn3O4 thin film grown by SILAR method

    Science.gov (United States)

    Belkhedkar, M. R.; Ubale, A. U.

    2018-05-01

    Nanocrystalline Fe doped and undoped Mn3O4 thin films have been deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) method onto glass substrates using MnCl2 and NaOH as cationic and anionic precursors. The grazing incidence X-ray diffraction (GIXRD) and field emission scanning electron microscopy (FESEM)) have been carried out to analyze structural and surface morphological properties of the films. The LPG sensing performance of Mn3O4thin films have been studied by varying temperature, concentration of LPG, thickness of the film and doping percentage of Fe. The LPG response of the Mn3O4thin films were found to be enhances with film thickness and decreases with increased Fe doping (0 to 8 wt. %) at 573 K temperature.

  16. Evolution of LiFePO4 thin films interphase with electrolyte

    Science.gov (United States)

    Dupré, N.; Cuisinier, M.; Zheng, Y.; Fernandez, V.; Hamon, J.; Hirayama, M.; Kanno, R.; Guyomard, D.

    2018-04-01

    Many parameters may control the growth and the characteristics of the interphase, such as surface structure and morphology, structural defects, grain boundaries, surface reactions, etc. However, polycrystalline surfaces contain these parameters simultaneously, resulting in a quite complicated system to study. Working with model electrode surfaces using crystallographically oriented crystalline thin films appears as a novel and unique approach to understand contributions of preferential orientation and rugosity of the surface. In order to rebuild the interphase architecture along electrochemical cycling, LiFePO4 epitaxial films offering ideal 2D (100) interfaces are here investigated through the use of non-destructive depth profiling by Angular Resolved X-ray Photoelectron Spectroscopy (ARXPS). The composition and structure of the interphase is then monitored upon cycling for samples stopped at the end of charge and discharge for various numbers of cycles, and discussed in the light of combined XPS and X-ray reflectivity (XRR) measurements. Such an approach allows describing the interphase evolution on a specific model LiFePO4 crystallographic orientation and helps understanding the nature and evolution of the LiFePO4/electrolyte interphase forming on the surface of LiFePO4 poly-crystalline powder.

  17. Transparent nanostructured Fe-doped TiO2 thin films prepared by ultrasonic assisted spray pyrolysis technique

    Science.gov (United States)

    Rasoulnezhad, Hossein; Hosseinzadeh, Ghader; Ghasemian, Naser; Hosseinzadeh, Reza; Homayoun Keihan, Amir

    2018-05-01

    Nanostructured TiO2 and Fe-doped TiO2 thin films with high transparency were deposited on glass substrate through ultrasonic-assisted spray pyrolysis technique and were used in the visible light photocatalytic degradation of MB dye. The resulting thin films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence spectroscopy, x-ray diffraction (XRD), and UV-visible absorption spectroscopy techniques. Based on Raman spectroscopy results, both of the TiO2 and Fe-doped TiO2 films have anatase crystal structure, however, because of the insertion of Fe in the structure of TiO2 some point defects and oxygen vacancies are formed in the Fe-doped TiO2 thin film. Presence of Fe in the structure of TiO2 decreases the band gap energy of TiO2 and also reduces the electron–hole recombination rate. Decreasing of the electron–hole recombination rate and band gap energy result in the enhancement of the visible light photocatalytic activity of the Fe-doped TiO2 thin film.

  18. Ab Initio Guided Low Temperature Synthesis Strategy for Smooth Face–Centred Cubic FeMn Thin Films

    Directory of Open Access Journals (Sweden)

    Friederike Herrig

    2018-05-01

    Full Text Available The sputter deposition of FeMn thin films with thicknesses in the range of hundred nanometres and beyond requires relatively high growth temperatures for the formation of the face-centred cubic (fcc phase, which results in high thin film roughness. A low temperature synthesis strategy, based on local epitaxial growth of a 100 nm thick fcc FeMn film as well as a Cu nucleation layer on an α-Al2O3 substrate at 160 °C, enables roughness values (Ra as low as ~0.6 nm, which is in the same order of magnitude as the pristine substrate (~0.1 nm. The synthesis strategy is guided by ab initio calculations, indicating very strong interfacial bonding of the Cu nucleation layer to an α-Al2O3 substrate (work of separation 5.48 J/m²—which can be understood based on the high Cu coordination at the interface—and between fcc FeMn and Cu (3.45 J/m². Accompanied by small lattice misfits between these structures, the strong interfacial bonding is proposed to enable the local epitaxial growth of a smooth fcc FeMn thin film. Based on the here introduced synthesis strategy, the implementation of fcc FeMn based thin film model systems for materials with interface dominated properties such as FeMn steels containing κ-carbide precipitates or secondary phases appears meaningful.

  19. Multi-jump magnetic switching in ion-beam sputtered amorphous Co20Fe60B20 thin films

    International Nuclear Information System (INIS)

    Raju, M.; Chaudhary, Sujeet; Pandya, D. K.

    2013-01-01

    Unconventional multi-jump magnetization reversal and significant in-plane uniaxial magnetic anisotropy (UMA) in the ion-beam sputtered amorphous Co 20 Fe 60 B 20 (5–75 nm) thin films grown on Si/amorphous SiO 2 are reported. While such multi-jump behavior is observed in CoFeB(10 nm) film when the magnetic field is applied at 10°–20° away from the easy-axis, the same is observed in CoFeB(12.5 nm) film when the magnetic field is 45°–55° away from easy-axis. Unlike the previous reports of multi-jump switching in epitaxial films, their observance in the present case of amorphous CoFeB is remarkable. This multi-jump switching is found to disappear when the films are crystallized by annealing at 420 °C. The deposition geometry and the energy of the sputtered species appear to intrinsically induce a kind of bond orientation anisotropy in the films, which leads to the UMA in the as-grown amorphous CoFeB films. Exploitation of such multi-jump switching in amorphous CoFeB thin films could be of technological significance because of their applications in spintronic devices

  20. Annealing-induced recovery of indents in thin Au(Fe bilayer films

    Directory of Open Access Journals (Sweden)

    Anna Kosinova

    2016-12-01

    Full Text Available We employed depth-sensing nanoindentation to produce ordered arrays of indents on the surface of 50 nm-thick Au(Fe films deposited on sapphire substrates. The maximum depth of the indents was approximately one-half of the film thickness. The indented films were annealed at a temperature of 700 °C in a forming gas atmosphere. While the onset of solid-state dewetting was observed in the unperturbed regions of the film, no holes to the substrate were observed in the indented regions. Instead, the film annealing resulted in the formation of hillocks at the indent locations, followed by their dissipation and the formation of shallow depressions nearby after subsequent annealing treatments. This annealing-induced evolution of nanoindents was interpreted in terms of annihilation of dislocation loops generated during indentation, accompanied by the formation of nanopores at the grain boundaries and their subsequent dissolution. The application of the processes uncovered in this work show great potential for the patterning of thin films.

  1. Electronic structure of Fe1.08Te bulk crystals and epitaxial FeTe thin films on Bi2Te3

    Science.gov (United States)

    Arnold, Fabian; Warmuth, Jonas; Michiardi, Matteo; Fikáček, Jan; Bianchi, Marco; Hu, Jin; Mao, Zhiqiang; Miwa, Jill; Singh, Udai Raj; Bremholm, Martin; Wiesendanger, Roland; Honolka, Jan; Wehling, Tim; Wiebe, Jens; Hofmann, Philip

    2018-02-01

    The electronic structure of thin films of FeTe grown on Bi2Te3 is investigated using angle-resolved photoemission spectroscopy, scanning tunneling microscopy and first principles calculations. As a comparison, data from cleaved bulk Fe1.08Te taken under the same experimental conditions is also presented. Due to the substrate and thin film symmetry, FeTe thin films grow on Bi2Te3 in three domains, rotated by 0°, 120°, and 240°. This results in a superposition of photoemission intensity from the domains, complicating the analysis. However, by combining bulk and thin film data, it is possible to partly disentangle the contributions from three domains. We find a close similarity between thin film and bulk electronic structure and an overall good agreement with first principles calculations, assuming a p-doping shift of 65 meV for the bulk and a renormalization factor of around two. By tracking the change of substrate electronic structure upon film growth, we find indications of an electron transfer from the FeTe film to the substrate. No significant change of the film’s electronic structure or doping is observed when alkali atoms are dosed onto the surface. This is ascribed to the film’s high density of states at the Fermi energy. This behavior is also supported by the ab initio calculations.

  2. Structure, magnetism, and interface properties of epitactical thin Fe and FePt films on GaAs(001) substrates; Struktur, Magnetismus und Grenzflaecheneigenschaften epitaktischer duenner Fe- und FePt-Filme auf GaAs(001)-Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Ellen Ursula

    2007-12-17

    The research in this thesis is focused on the study of the Fe spin structure and interface magnetism of thin epitaxial Fe layers or epitaxial FePt alloy films with chemical L1{sub 0} order on GaAs(001) surfaces. The main method of investigation was isotope-specific conversion electron Moessbauer spectroscopy (CEMS) combined with the {sup 57}Fe probe-layer technique in the temperature range of 4.2-300 K. The film structure was studied using electron diffraction (RHEED) and X-ray diffraction (XRD). The chemical order parameter S determined by XRD was found to increase with rising growth temperature, T{sub S}, to a maximum value of 0.71, until long range order is destroyed at T{sub S}>350 C by alloying with the substrate. As an important result a linear correlation between short-range order (revealed by the relative spectral area of the L1{sub 0} phase) and long-range order S was observed. The observed perpendicular Fe spin texture, characterized by the mean tilting angle left angle {theta} right angle of the Fe spins (relative to the film normal direction), was found to correlate with the L1{sub 0} phase content and with S. Furthermore, epitaxial Fe(001) films on GaAs(001)-(4 x 6) and on GaAs(001)-LED surfaces were grown successfully. In the initial stage of Fe film growth non-monotonous behavior of the in-plane lattice parameter was observed by RHEED. The magnetic hyperfine field distributions P(B{sub hf}) at the Fe/GaAs interface extracted from CEMS spectra for T{sub S}=-140 C or room temperature (RT) were found to be very similar. The observed large mean hyperfine fields of left angle B{sub hf} right angle {approx}25-27 T at the interface indicate the presence of high average Fe moments of 1.7-1.8 {mu}{sub B}. Nonmagnetic interface layers either can be excluded (Fe/GaAs) or are very thin (0.5 ML,Fe/GaAs-LED). Owing to its island structure an ultrathin (1.9 ML thick) uncoated Fe(001) film on GaAs(001)-(4 x 6) shows superparamagnetism with a blocking temperature of

  3. Collective magnetic behaviors of Fe-Ag nanostructured thin films above the percolation limit

    International Nuclear Information System (INIS)

    Alonso, J.; Fdez-Gubieda, M. L.; Barandiaran, J. M.; Svalov, A.; Sarmiento, G.; Fernandez Barquin, L.; Pedro, I. de; Orue, I.

    2009-01-01

    The magnetic behavior of sputtered and pulsed laser deposited (PLD) Fe x Ag 100-x thin films with 27≤x≤55 has been studied by means of ac and dc magnetic measurements. Sputtered samples present a continuous decrease in the magnetization, down to 310 K for x=30, where a magnetic transition into a superparamagnetic state with the presence of dipolar interactions is observed. The ac susceptibility measurements indicate that this transition resembles that of three dimensional glassy systems. Sputtered samples with higher concentration of Fe present a similar but slower thermal evolution of magnetization. PLD samples with x≥50 show a Curie-Weiss-type transition above ∼200 K triggered by direct exchange interactions. As the temperature decreases, the system behaves like a ferromagnet and below ∼75 K, a transition into a cluster-glass state appears. As the composition decreases, these phenomena vanish

  4. AES study of the reaction between a thin Fe-film and β-SiC (100) surface

    International Nuclear Information System (INIS)

    Mizokawa, Yusuke; Nakanishi, Shigemitsu; Miyase, Sunao

    1989-01-01

    The solid state reaction between thin Fe-films and β-SiC(100) in UHV has been studied using AES. Even at room temperature, the reaction between the thin Fe-film and SiC occurred and formed Fe-silicide and graphite with a minor product of Fe-carbide (Fe 3 C). The reaction proceeded with an increase of Fe-coverage to some extent. With annealing of 15 A-Fe-film/SiC below 540degC, the Fe-silicide formation was accelerated, but because the amount of available Fe was small, the dissolved carbon atoms were forced to form not the Fe-carbide but the graphite phase. Above 640degC, the Fe-silicide started to decompose and the carbon atoms diffused to the surface and formed surface graphite layers. With annealing at 1080degC, the free-Si segregats at the surface and formed Si-Si bonds, as well as the Si-C bonds consuming the surface graphite phase. (author)

  5. Thickness-dependent piezoelectric behaviour and dielectric properties of lanthanum modified BiFeO3 thin films

    Directory of Open Access Journals (Sweden)

    Glenda Biasotto

    2011-03-01

    Full Text Available Bi0.85La0.15FeO3 (BLFO thin films were deposited on Pt(111/Ti/SiO2 /Si substrates by the soft chemical method. Films with thicknesses ranging from 140 to 280 nm were grown on platinum coated silicon substrates at 500°C for 2 hours. The X-ray diffraction analysis of BLFO films evidenced a hexagonal structure over the entire thickness range investigated. The grain size of the film changes as the number of the layers increases, indicating thickness dependence. It is found that the piezoelectric response is strongly influenced by the film thickness. It is shown that the properties of BiFeO3 thin films, such as lattice parameter, dielectric permittivity, piezoeletric coefficient etc., are functions of misfit strains.

  6. Topotactic Metal-Insulator Transition in Epitaxial SrFeOx Thin Films.

    Science.gov (United States)

    Khare, Amit; Shin, Dongwon; Yoo, Tae Sup; Kim, Minu; Kang, Tae Dong; Lee, Jaekwang; Roh, Seulki; Jung, In-Ho; Hwang, Jungseek; Kim, Sung Wng; Noh, Tae Won; Ohta, Hiromichi; Choi, Woo Seok

    2017-10-01

    Topotactic phase transformation enables structural transition without losing the crystalline symmetry of the parental phase and provides an effective platform for elucidating the redox reaction and oxygen diffusion within transition metal oxides. In addition, it enables tuning of the emergent physical properties of complex oxides, through strong interaction between the lattice and electronic degrees of freedom. In this communication, the electronic structure evolution of SrFeO x epitaxial thin films is identified in real-time, during the progress of reversible topotactic phase transformation. Using real-time optical spectroscopy, the phase transition between the two structurally distinct phases (i.e., brownmillerite and perovskite) is quantitatively monitored, and a pressure-temperature phase diagram of the topotactic transformation is constructed for the first time. The transformation at relatively low temperatures is attributed to a markedly small difference in Gibbs free energy compared to the known similar class of materials to date. This study highlights the phase stability and reversibility of SrFeO x thin films, which is highly relevant for energy and environmental applications exploiting the redox reactions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Polarization-tuned diode behaviour in multiferroic BiFeO3 thin films

    KAUST Repository

    Yao, Yingbang

    2012-12-28

    Asymmetric rectifying I-V behaviour of multiferroic BiFeO3 (BFO) thin films grown on transparent ITO-coated glass was quantitatively studied as a function of ferroelectric polarization. Different polarized states were established by unipolar or bipolar poling with various applied electric fields. The effects of polarization relaxation and fatigue on the currents were also investigated. We found that the conduction currents and the associated rectifications were controlled by the amplitude and direction of the polarization. We clearly observed the linear dependence of the current on the polarization. It is suggested that the space-charge-limited conduction and the charge injection at the Schottky interface between the film and the electrodes dominate the current. The electrically controlled rectifying behaviour observed in this study may be useful in nonvolatile resistance memory devices or tunable diodes. © 2013 IOP Publishing Ltd.

  8. Magnetic Properties of Fe(001) Thin Films on GaAs(001) Deposited by RF Magnetron Sputtering

    International Nuclear Information System (INIS)

    Ikeya, Hirokazu; Takahashi, Yutaka; Inaba, Nobuyuki; Kirino, Fumiyoshi; Ohtake, Mitsuru; Futamoto, Masaaki

    2011-01-01

    Fe thin films, down to 6 nm thick, were prepared on GaAs(001) substrates by RF magnetron sputtering. The x-ray diffraction (XRD) analyses show that the epitaxial thin films of Fe(001) were grown with cube-on-cube orientation on GaAs(001). Magnetic properties were investigated by vibrating sample magnetometry (VSM) and ferromagnetic resonance (FMR) spectroscopy. The magnetization curves obtained by applying in-plane magnetic fields indicate that easy (hard) direction is along [100] ([110]) and the saturation magnetization is close to the bulk values. The in-plane magnetic anisotropy measured by FMR shows four-fold symmetry, as expected for bcc Fe. We did not observe the in-plane uniaxial magnetic anisotropy reported on the MBE-grown Fe films on GaAs substrates.

  9. Local mechanical and electromechanical properties of the P(VDF-TrFE)-graphene oxide thin films

    Science.gov (United States)

    Silibin, M. V.; Bystrov, V. S.; Karpinsky, D. V.; Nasani, N.; Goncalves, G.; Gavrilin, I. M.; Solnyshkin, A. V.; Marques, P. A. A. P.; Singh, Budhendra; Bdikin, I. K.

    2017-11-01

    Recently, many organic materials, including carbon materials such as carbon nanotubes (CNTs) and graphene (single-walled carbon sheet structure) were studied in order to improve their mechanical and electrical properties. In particular, copolymers of poly (vinylidene fluoride) and poly trifluoroethylene [P(VDF-TrFE)] are promising materials, which can be used as probes, sensors, actuators, etc. Composite thin film of the copolymer P(VDF-TrFE) with graphene oxide (GO) were prepared by spin coating. The obtained films were investigated using piezoresponse force microscopy (PFM). The switching behavior, piezoelectric response, dielectric permittivity and mechanical properties of the films were found to depend on the presence of GO. For understanding the mechanism of piezoresponse evolution of the composite we used models of PVDF chain, its behavior in electrical field and computed the data for piezoelectric coefficients using HyperChem software. The summarized models of graphene oxide based on graphene layer from 96 carbon atoms C: with oxygen and OH groups and with COOH groups arranged by hydrogen were used for PVDF/Graphene oxide complex: 1) with H-side (hydrogen atom) connected from PVDF to graphene oxide, 2) with F-side (fluorine atom) connected from PVDF graphene oxide and 3) Graphene Oxide/PVDF with both sides (sandwich type). Experimental results qualitatively correlate with those obtained in the calculations.

  10. The annealing temperature dependences of microstructures and magnetic properties in electro-chemical deposited CoNiFe thin films

    International Nuclear Information System (INIS)

    Suharyadi, Edi; Riyanto, Agus; Abraha, Kamsul

    2016-01-01

    CoNiFe thin films with various compositions had been successfully fabricated using electro-chemical deposition method. The crystal structure of Co_6_5Ni_1_5Fe_2_0, Co_6_2Ni_1_5Fe_2_3, and Co_5_5Ni_1_5Fe_3_0 thin films was fcc, bcc-fcc mix, and bcc, respectively. The difference crystal structure results the difference in magnetic properties. The saturation magnetic flux density (Bs) of Co_6_5Ni_1_5Fe_2_0, Co_6_2Ni_1_5Fe_2_3, and Co_5_5Ni_1_5Fe_3_0 thin films was 1.89 T, 1.93 T, and 2.05 T, respectively. An optimal annealing temperature was determined for controlling the microstructure and magnetic properties of CoNiFe thin films. Depending on annealing temperature, the ratio of bcc and fcc structure varied without changing the film composition. By annealing at temperature of T ≥ 350°C, the intensity ratio of X-ray diffraction peaks for bcc(110) to fcc(111) increased. The increase of phase ratio of bcc(110) to fcc(111) caused the increase of Bs, from 1.89 T to 1.95 T. Coercivity (Hc) also increased after annealing, from 2.6 Oe to 18.6 Oe for fcc phase thin films, from 2.0 Oe to 12.0 Oe for fcc-bcc mix phase thin films, and 7.8 Oe to 8 Oe for bcc phase thin films. The changing crystal structures during annealing process indicated that the thermal treatment at high temperature cause the changing crystallinity and atomic displacement. The TEM bright-field images with corresponding selected-area electron diffraction (SAED) patterns showed that there are strongly effects of thermal annealing on the size of fcc and bcc phase crystalline grain as described by size of individual spot and discontinuous rings. The size of crystalline grains increased by thermal annealing. The evolution of bcc and fcc structures of CoNiFe during annealing is though to be responsible for the change of magnetic properties.

  11. Epitaxial Fe3Si/Ge/Fe3Si thin film multilayers grown on GaAs(001)

    International Nuclear Information System (INIS)

    Jenichen, B.; Herfort, J.; Jahn, U.; Trampert, A.; Riechert, H.

    2014-01-01

    We demonstrate Fe 3 Si/Ge/Fe 3 Si/GaAs(001) structures grown by molecular-beam epitaxy and characterized by transmission electron microscopy, electron backscattered diffraction, and X-ray diffraction. The bottom Fe 3 Si epitaxial film on GaAs is always single crystalline. The structural properties of the Ge film and the top Fe 3 Si layer depend on the substrate temperature during Ge deposition. Different orientation distributions of the grains in the Ge and the upper Fe 3 Si film were found. The low substrate temperature T s of 150 °C during Ge deposition ensures sharp interfaces, however, results in predominantly amorphous films. We find that the intermediate T s (225 °C) leads to a largely [111] oriented upper Fe 3 Si layer and polycrystal films. The high T s of 325 °C stabilizes the [001] oriented epitaxial layer structure, i.e., delivers smooth interfaces and single crystal films over as much as 80% of the surface area. - Highlights: • Fe 3 Si/Ge/Fe 3 Si/GaAs(001) structures are grown by MBE. • The bottom Fe 3 Si film is always single crystalline. • The properties of the Ge film depend on the substrate temperature during deposition. • Optimum growth conditions lead to almost perfect epitaxy of Ge on Fe 3 Si

  12. Optical and magneto-optical characterization of TbFeCo and GdFeCo thin films for high-density recording

    International Nuclear Information System (INIS)

    Hendren, W R; Atkinson, R; Pollard, R J; Salter, I W; Wright, C D; Clegg, W W; Jenkins, D F L

    2003-01-01

    Thin, optically semi-infinite films of amorphous TbFeCo and GdFeCo, suitable for magneto-optical recording, have been deposited by DC magnetron sputtering onto glass. Ellipsometric techniques have been used to determine the complex refractive index and complex magneto-optical parameter of the films in the wavelength range 400-900 nm, thus characterizing the materials. A review of the literature is presented and shows that the results for the TbFeCo films compare favourably with published results obtained from measurements conducted in situ, with the films protected with ZnS barrier layers. It is found that GdFeCo and TbFeCo are optically very similar, but magneto-optically the materials are quite different

  13. Optical and magneto-optical characterization of TbFeCo and GdFeCo thin films for high-density recording

    Energy Technology Data Exchange (ETDEWEB)

    Hendren, W R [Department of Pure and Applied Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Atkinson, R [Department of Pure and Applied Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Pollard, R J [Department of Pure and Applied Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Salter, I W [Department of Pure and Applied Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Wright, C D [School of Engineering and Computer Science, University of Exeter, Exeter EX4 4QF (United Kingdom); Clegg, W W [CRIST, University of Plymouth, Plymouth PL4 8AA (United Kingdom); Jenkins, D F L [CRIST, University of Plymouth, Plymouth PL4 8AA (United Kingdom)

    2003-03-12

    Thin, optically semi-infinite films of amorphous TbFeCo and GdFeCo, suitable for magneto-optical recording, have been deposited by DC magnetron sputtering onto glass. Ellipsometric techniques have been used to determine the complex refractive index and complex magneto-optical parameter of the films in the wavelength range 400-900 nm, thus characterizing the materials. A review of the literature is presented and shows that the results for the TbFeCo films compare favourably with published results obtained from measurements conducted in situ, with the films protected with ZnS barrier layers. It is found that GdFeCo and TbFeCo are optically very similar, but magneto-optically the materials are quite different.

  14. Magnetic properties of Fe3O4 thin films grown on different substrates by laser ablation

    International Nuclear Information System (INIS)

    Parames, M.L.; Viskadourakis, Z.; Rogalski, M.S.; Mariano, J.; Popovici, N.; Giapintzakis, J.; Conde, O.

    2007-01-01

    Magnetite thin films have been grown onto (1 0 0)Si (1 0 0)GaAs and (0 0 0 1)Al 2 O 3 , at substrate temperatures varying from 473 to 673 K, by UV pulsed laser ablation of Fe 3 O 4 targets in reactive atmospheres of O 2 and Ar, at working pressure of 8 x 10 -2 Pa. The influence of the substrate on stoichiometry, microstructure and the magnetic properties has been studied by X-ray diffraction (XRD), conversion electron Moessbauer spectroscopy (CEMS) and magnetic measurements. Magnetite crystallites, with stoichiometry varying from Fe 2.95 O 4 to Fe 2.99 O 4 , are randomly oriented for (1 0 0)GaAs and (1 0 0)Si substrates and exhibit (1 1 1) texture if grown onto (0 0 0 1)Al 2 O 3 . Interfacial Fe 3+ diffusion, which is virtually absent for (1 0 0)Si substrates, was found for both (0 0 0 1)Al 2 O 3 and (1 0 0)GaAs, with some deleterious effect on the subsequent microstructure and magnetic behaviour

  15. Dynamic magnetization of NiZn ferrite doped FeSiAl thin films fabricated by oblique sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xiaoxi, E-mail: xiaoxi.zhong@gmail.com [Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 (China); Phuoc, Nguyen N. [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, Singapore 117411 (Singapore); Soh, Wee Tee [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Ong, C.K. [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, Singapore 117411 (Singapore); Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Li, Lezhong [Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 (China)

    2017-06-15

    Highlights: • We prepared NiZn ferrite doped FeSiAl-based thin films using oblique deposition technique. • The magnetic properties of FeSiAl-based thin films were systematically studied. • Two ferromagnetic resonance peaks were observed in the permeability spectra. • The thermal stability of microwave properties of FeSiAl-based films was studied. • The thermal stability of properties we studied was relatively good. - Abstract: In this study, we comprehensively investigate the dynamic magnetic properties of FeSiAl-NiZnFeO thin films prepared by the oblique deposition method via a shorted microstrip perturbation technique. For the films with higher oblique angle and NiZn ferrite doping amount, there are two ferromagnetic resonance peaks observed in the permeability spectra, and both of the two peaks originate from FeSiAl. Furthermore, the magnetic anisotropy field H{sub K} of the ferromagnetic resonance peak at higher frequency is enhanced with increasing doping amount, which is interpreted in terms of the contribution of reinforced stress-induced anisotropy and shape anisotropy brought about by doping elements and oblique sputtering method. In addition, the thermal stability of the ferromagnetic resonance frequency f{sub FMR} of FeSiAl-NiZnFeO films with oblique angles of 35° and 45° with respect to temperature ranging from 300 K to 420 K is deteriorated with increasing ferrite doping amount, which is mainly ascribed to the influence of pair-ordering anisotropy and/or the reduction of the FeSiAl grain size.

  16. Effect of Hf underlayer on structure and magnetic properties of rapid thermal annealed FePt thin films

    International Nuclear Information System (INIS)

    Shen, C.Y.; Yuan, F.T.; Chang, H.W.; Lin, M.C.; Su, C.C.; Chang, S.T.; Wang, C.R.; Mei, J.K.; Hsiao, S.N.; Chen, C.C.; Shih, C.W.; Chang, W.C.

    2014-01-01

    FePt(20 nm) and FePt(20 nm)/Hf(10 nm) thin films prepared on the glass substrates by sputtering and post annealing are studied. For both samples, the as deposited films are disordered and L1 0 -ordering is triggered by a 400 °C-annealing. At T a ≥600 °C, Hf–Pt intermetallic compound forms with increasing T a , which consumes Pt in FePt layer and results in the formation of Fe 3 Pt phase. The film becomes soft magnetic at T a =800 °C. The optimized condition of FePt/Hf film is in the T a range of 500 to 600 °C where the interdiffusion between Hf and FePt layer is not extensive. The value of H c is 8.9 kOe and M r is 650–670 emu/cm 3 . Unlike FePt films, the Hf-undelayered samples show significantly reduced out-of-plane remanent and coercivity. The values for both are around 50% smaller than that of the FePt films. Additionally, Hf underlayer markedly reduces the FePt grain size and narrows the distribution, which enhances magnetic intergrain coupling. Good in-plane magnetic properties are preferred for the uses like a hard biasing magnet in a spintronic device. - Highlights: • Effect of Hf underlayer on structure and magnetic properties of FePt films are studied. • Hf underlayer reduces size, narrows the distribution of grains and thus enhances intergrain coupling. • Higher T a ≥600 °C makes Hf–Pt intermetallic compound and thus Fe 3 Pt phase form. • Good in-plane magnetic property is proper for uses in hard biasing magnet in spintronic devices

  17. Photoelectrochemical Characterization of Sprayed alpha-Fe2O3 Thin Films : Influence of Si Doping and SnO2 Interfacial Layer

    NARCIS (Netherlands)

    Liang, Y.; Enache, C.S.; Van De Krol, R.

    2008-01-01

    a-Fe2O3 thin film photoanodes for solar water splitting were prepared by spray pyrolysis of Fe(AcAc)3. The donor density in the Fe2O3 films could be tuned between 10171020cm-3 by doping with silicon. By depositing a 5 nm SnO2 interfacial layer between the Fe2O3 films and the transparent conducting

  18. Optical and structural properties of FeSe2 thin films obtained by selenization of sprayed amorphous iron oxide films

    International Nuclear Information System (INIS)

    Ouertani, B.; Ouerfelli, J.; Saadoun, M.; Zribi, M.; Rabha, M.Ben; Bessais, B.; Ezzaouia, H.

    2006-01-01

    We report in this work the optical and structural properties of iron diselenide films (FeSe 2 ) obtained by selenization under vacuum of amorphous iron oxide films predeposited by spray pyrolysis. The structure of the FeSe 2 films was investigated by scanning electron microscopy (SEM), microprobe analyses, atomic force microscopy (AFM) and X-ray diffraction (XRD). XRD and micro-probe analyses showed that FeSe 2 as well as FeSe 2-x phases begin to appear at a selenization temperature of 500 deg. C. As the selenization temperature rises, the iron diselenide films become more stoichiometric with a dominance of the FeSe 2 phase. At 550 deg. C, a single FeSe 2 phase having good crystallinity was obtained. At 600 deg. C, two phases were detected: the major one corresponds to Fe 3 O 4 , and the minor one to FeSe 2 . SEM surface views show that FeSe 2 films have granular structure with small spherical crystallites. However, layered and clustered FeSe 2 films were found, respectively, at 550 deg. C and 600 deg. C. Absorption measurements show that iron diselenide films have a direct and an indirect gaps of about 1.03 eV and 0.3 eV, which were suggested to be due to the stoichiometric FeSe 2 phase and to a Fe-rich non-stoichiometric phase, respectively

  19. Microstructure and Electrical Properties of Fe,Cu Substituted (Co,Mn)3O4 Thin Films

    DEFF Research Database (Denmark)

    Szymczewska, Dagmara; Molin, Sebastian; Hendriksen, Peter Vang

    2017-01-01

    In this work, thin films (~1000 nm) of a pure MnCo2O4 spinel together with its partially substituted derivatives (MnCo1.6Cu0.2Fe0.2O4, MnCo1.6Cu0.4O4, MnCo1.6Fe0.4O4) were prepared by spray pyrolysis and were evaluated for electrical conductivity. Doping by Cu increases the electrical conductivit...

  20. Very high coercivities of top-layer diffusion Au/FePt thin films

    International Nuclear Information System (INIS)

    Yuan, F.T.; Chen, S.K.; Liao, W.M.; Hsu, C.W.; Hsiao, S.N.; Chang, W.C.

    2006-01-01

    The Au/FePt samples were prepared by depositing a gold cap layer at room temperature onto a fully ordered FePt layer, followed by an annealing at 800 deg. C for the purpose of interlayer diffusion. After the deposition of the gold layer and the high-temperature annealing, the gold atoms do not dissolve into the FePt Ll 0 lattice. Compared with the continuous FePt film, the TEM photos of the bilayer Au(60 nm)/FePt(60 nm) show a granular structure with FePt particles embedded in Au matrix. The coercivity of Au(60 nm)/FePt(60 nm) sample is 23.5 kOe, which is 85% larger than that of the FePt film without Au top layer. The enhancement in coercivity can be attributed to the formation of isolated structure of FePt ordered phase

  1. Local conductivity and the role of vacancies around twin walls of (001)-BiFeO3 thin films

    NARCIS (Netherlands)

    Farokhipoor, S.; Noheda, Beatriz

    2012-01-01

    BiFeO3 thin films epitaxially grown on SrRuO3-buffered (001)-oriented SrTiO3 substrates show orthogonal bundles of twin domains, each of which contains parallel and periodic 71 degrees domain walls. A smaller amount of 109 degrees domain walls are also present at the boundaries between two adjacent

  2. Chemically fabricated LiFePO{sub 4} thin film electrode for transparent batteries and electrochromic devices

    Energy Technology Data Exchange (ETDEWEB)

    Béléké, Alexis B. [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada); Department of Mining and Materials Engineering, McGill University, M.H. Wong Building, 3610 rue University, Montréal, QC H3A 2B2 (Canada); Faure, Cyril [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada); Röder, Manuel [Center for Applied Electrochemistry, Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97083 Würzburg (Germany); Hovington, Pierre [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada); Posset, Uwe [Center for Applied Electrochemistry, Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97083 Würzburg (Germany); Guerfi, Abdelbast [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada); Zaghib, Karim, E-mail: zaghib.karim@ireq.ca [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada)

    2016-12-15

    Graphical abstract: Simplified diagram of the novel sol-gel approach of preparation of colorless and transparent LiFePO{sub 4} thin film electrode. - Highlights: • Novel sol-gel synthesis of colorless LFP thin film electrode for transparent Li-ion battery. • High performance of the electrode at various current densities: 5, 10, 20, 50 and 100 μA/cm{sup 2}. • LFP nanoparticles exhibit an excellent electro-activity. • Colorless LFP thin film shows a transmittance above 80% versus FTO. • Higher transmittance of LFP electrode a potential candidate for electrochromic devices. - Abstract: We report a new sol-gel approach of synthesis of LiFePO{sub 4} (LFP) thin film and its application as cathode materials for transparent Li-ion battery in half-cell configuration. LFP thin films were obtained from an alcoholic colloidal suspension of iron acetylacetonate (Fe(AcAc){sub 3}) and aqueous lithium dihydrogen phosphate (LiH{sub 2}PO{sub 4}) deposited on fluorine tin oxide (FTO) glass substrate, followed by heating at 450 °C under nitrogen gas for 1 h. X-ray diffraction (XRD) confirmed that the LFP films have an orthorhombic crystal system with space group Pnma (62). Scanning electron microscopy (SEM) shows spherical LFP nanoparticles aggregates homogenously deposited all over the surface of FTO substrate containing 3-D open pores. The electrochemical behaviors of thin film vs Li/Li{sup +} cell were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The cycle life was evaluated by running 1000 cycles of charge-discharge at a current density of 20 μA/cm{sup 2}. The transmission spectra reveal 85–90% of transparency versus FTO as reference, which makes it a potential candidate as a complementary electrode in electrochromic devices (ECDs).

  3. Interfacial effects on the electrical properties of multiferroic BiFeO3/Pt/Si thin film heterostructures

    International Nuclear Information System (INIS)

    Yakovlev, S.; Zekonyte, J.; Solterbeck, C.-H.; Es-Souni, M.

    2005-01-01

    Polycrystalline BiFeO 3 thin films of various thickness were fabricated on (111)Pt/Ti/SiO 2 /Si substrates via chemical solution deposition. The electrical properties were investigated using impedance and leakage current measurements. X-ray photoelectron spectroscopy (XPS) combined with Ar ion milling (depth profiling) was used to investigate elemental distribution near the electrode-film interface. It is shown that the dielectric constant depends on film thickness due to the presence of an interfacial film-electrode layer evidenced by XPS investigation. Direct current conductivity is found to be governed by Schottky and/or Poole-Frenkel mechanisms

  4. A novel selenization technique for fabrication of superconducting FeSex thin film

    International Nuclear Information System (INIS)

    Chai Qinglin; Tu Hailing; Hua Zhiqiang; Wang Lei; Qu Fei

    2011-01-01

    A novel selenization technique was applied to prepare superconducting FeSe x films with pre-set FeS films. The combination of reactive sputtering deposition with elemental diffusion technique would extend to prepare films of other iron-based superconductors. The results of transport measurement got close or greater than that of previous reports. T c,onset and T c,0 got to 10.2 K and 4 K respectively. We believe that increase of the content of Fe 7 Se 8 could not only reduce T c but also slow down the decline of resistivity. A combinative method with reactive sputtering deposition and selenization technique was applied to prepare superconducting FeSe x films on LaAlO 3 substrates successfully. The influence of selenizing temperature on film components was studied. FeSe 0.96 and FeSe films had similar and good performances in transport measurement but little difference in magnetic property. The critical onset temperature got to 11.2 K and T c,0 got to 4 K approximately. X-ray diffraction, energy dispersive spectroscopy and scanning electron microscopy were used to analyze the ratio of constituents and morphology of several selenized films. FeSe x film had a porous structure on surface and no well preferred orientation, which were confirmed to have little influence on superconducting properties.

  5. Microstructure and Magnetic Properties of Fe and Fe-alloy Thin Films Epitaxially Grown on MgO(100) Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Katsuki; Ohtake, Mitsuru; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi, E-mail: matsubara@futamoto.elect.chuo-u.ac.jp [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan)

    2011-07-06

    Fe, Fe{sub 50}Co{sub 50}, and Fe{sub 80}Ni{sub 20} (at. %) single-crystal films with the (100){sub bcc} plane parallel to the substrate surface were prepared on MgO(100) single-crystals heated at 300 {sup 0}C by ultra high vacuum molecular beam epitaxy. The film growth mechanism, the film structure, and the magnetic properties were investigated. In-situ reflection high energy electron diffraction and X-ray diffraction analyses indicate that the strains in the films are very small though there are fairly large mismatches of -3.7{approx}-4.3% at the film/substrate interface. Cross-sectional high-resolution transmission electron microscopy shows that misfit dislocations are introduced in the film at the interface. Dislocations are also observed in the film up to around 10{approx}20 nm distance from the interface. The presence of such dislocation relieves the strain caused by the lattice mismatch. The in-plane magnetization properties of these films reflect the magnetocrystalline anisotropies of respective bulk Fe, Fe{sub 50}Co{sub 50}, and Fe{sub 80}Ni{sub 20} crystals.

  6. Microstructure and Magnetic Properties of Fe and Fe-alloy Thin Films Epitaxially Grown on MgO(100) Substrates

    International Nuclear Information System (INIS)

    Matsubara, Katsuki; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2011-01-01

    Fe, Fe 50 Co 50 , and Fe 80 Ni 20 (at. %) single-crystal films with the (100) bcc plane parallel to the substrate surface were prepared on MgO(100) single-crystals heated at 300 0 C by ultra high vacuum molecular beam epitaxy. The film growth mechanism, the film structure, and the magnetic properties were investigated. In-situ reflection high energy electron diffraction and X-ray diffraction analyses indicate that the strains in the films are very small though there are fairly large mismatches of -3.7∼-4.3% at the film/substrate interface. Cross-sectional high-resolution transmission electron microscopy shows that misfit dislocations are introduced in the film at the interface. Dislocations are also observed in the film up to around 10∼20 nm distance from the interface. The presence of such dislocation relieves the strain caused by the lattice mismatch. The in-plane magnetization properties of these films reflect the magnetocrystalline anisotropies of respective bulk Fe, Fe 50 Co 50 , and Fe 80 Ni 20 crystals.

  7. Growing barium hexaferrite (BaFe{sub 12}O{sub 19}) thin films using chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Budiawanti, Sri, E-mail: awanty77@yahoo.com [Graduate Program of Materials Science, Department of Physics, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Faculty of Teacher Training and Education, Sebelas Maret University (Indonesia); Soegijono, Bambang [Multiferroic Laboratory, Department of Physics, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia)

    2016-04-19

    Barium hexaferrite (BaFe{sub 12}O{sub 19}, or simply known as BaM) thin films has been recognized as a potential candidate for microwave-based devices, magnetic recording media and data storage. To grow BaM thin films, chemical solution deposition is conducted using the aqueous solution of metal nitrates, which involves spin coatings on Si substrates. Furthermore, Thermal Gravimeter Analysis (TGA), X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM) are applied to evaluate the decomposition behavior, structure, morphology, and magnetic properties of BaM thin films. Additionally, the effects of number of layers variation are also investigated. Finally, magnetic properties analysis indicates the isotropic nature of the films.

  8. Growing barium hexaferrite (BaFe_1_2O_1_9) thin films using chemical solution deposition

    International Nuclear Information System (INIS)

    Budiawanti, Sri; Soegijono, Bambang

    2016-01-01

    Barium hexaferrite (BaFe_1_2O_1_9, or simply known as BaM) thin films has been recognized as a potential candidate for microwave-based devices, magnetic recording media and data storage. To grow BaM thin films, chemical solution deposition is conducted using the aqueous solution of metal nitrates, which involves spin coatings on Si substrates. Furthermore, Thermal Gravimeter Analysis (TGA), X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM) are applied to evaluate the decomposition behavior, structure, morphology, and magnetic properties of BaM thin films. Additionally, the effects of number of layers variation are also investigated. Finally, magnetic properties analysis indicates the isotropic nature of the films.

  9. Terahertz conductivity measurement of FeSe0.5Te0.5 and Co-doped BaFe2As2 thin films

    International Nuclear Information System (INIS)

    Nakamura, D.; Akiike, T.; Takahashi, H.; Nabeshima, F.; Imai, Y.; Maeda, A.; Katase, T.; Hiramatsu, H.; Hosono, H.; Komiya, S.; Tsukada, I.

    2011-01-01

    We investigated the THz conductivity of FeSe 0.5 Te 0.5 and Ba (Fe 2-x Co x )As 2 thin films. We estimated the superconducting gap energy values. We found anomolous conductivity spectrum in the antiferromagnetic phase. The terahertz (THz) conductivity of FeSe 0.5 Te 0.5 ('11'-type) and Co-doped BaFe 2 As 2 ('122'-type) thin films are investigated. For '11'-type, the frequency dependence of the complex conductivity can be understood as that of BCS-type superconductor near the superconducting gap energy, and we estimated the superconducting gap energy to be 0.6 meV. For '122'-type, we estimated the superconducting gap energy to be 2.8 meV, which is considered to be the superconducting gap opened at the electron-type Fermi surface near the M point.

  10. Structure and magnetic properties of Fe doped In{sub 2}O{sub 3} thin films prepared by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, N. Sai; Kaleemulla, S., E-mail: skaleemulla@gmail.com; Rao, N. Madhusudhana; Krishnamoorthi, C.; Begam, M. Rigana [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore – 632014 (India); Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); UGC-DAE-CSR, Kalpakkam Node, Kokilamedu, Tamilnadu -603104 (India)

    2015-06-24

    Pure and Fe (7 at.%) doped In{sub 2}O{sub 3} thin films were grown onto the glass substrates by electron beam evaporation technique. The structural and magnetic properties of the pure and Fe doped In{sub 2}O{sub 3} thin films have been studied. The undoped and Fe doped In{sub 2}O{sub 3} thin films shown ferromagnetic property at room temperature. A magnetization of 24 emu/cm{sup 3} was observed for pure In{sub 2}O{sub 3} thin films. The magnetization of 38.23 emu/cm{sup 3} was observed for the Fe (7 at.%) doped In{sub 2}O{sub 3} thin films.

  11. Optical and magneto-optical characterization of TbFeCo thin films in trilayer structures

    International Nuclear Information System (INIS)

    McGahan, W.A.; He, P.; Chen, L.; Bonafede, S.; Woollam, J.A.; Sequeda, F.; McDaniel, T.; Do, H.

    1991-01-01

    A series of TbFeCo films ranging in thickness from 100 to 800 A have been deposited in trilayer structures on silicon wafer substrates, with Si 3 N 4 being employed as the dielectric material. These films have been characterized both optically and magneto-optically by variable angle of incidence spectroscopic ellipsometry, normal angle of incidence reflectometry, and normal angle of incidence Kerr spectroscopy. From these measurements, the optical constants n and k have been determined for the TbFeCo films, as well as the magneto-optical constants Q1 and Q2. Results are presented that demonstrate the lack of dependence of these constants on the thickness of the TbFeCo film, and which can be used for calculating the expected optical and magneto-optical response of any multilayer structure containing similar TbFeCo films

  12. Nano-sized magnetic instabilities in Fe/NiO/Fe(001) epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, A [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Biagioni, P [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Rougemaille, N [National Center for Electron Microscopy, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Schmid, A K [National Center for Electron Microscopy, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Lanzara, A [Department of Physics, University of California at Berkeley, Berkeley, CA 94720 (United States); Duo, L [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Ciccacci, F [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Finazzi, M [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy)

    2006-10-25

    We report on a magnetic imaging study of the Fe/NiO/Fe(001) trilayer structure, by means of X-ray photoemission electron microscopy (XPEEM) and spin-polarised low-energy electron microscopy (SPLEEM). Two different magnetic couplings between the Fe layers are observed depending on the NiO thickness being greater or smaller than a critical value. Very small magnetic domains and domain walls are observed in the top Fe layer. They are dramatically smaller than those observed in the Fe substrate, and have a convoluted topology. Furthermore they seem to be unstable with respect to an applied magnetic field for any NiO thickness except that corresponding to the transition between the different coupling regimes. The phenomenology of such magnetic nano-structures and the dependence of the magnetic behaviour of the layered structure on the NiO spacer thickness are discussed on the basis of the experimental results and of state-of-the-art theoretical models.

  13. Nano-sized magnetic instabilities in Fe/NiO/Fe(001) epitaxial thin films

    International Nuclear Information System (INIS)

    Brambilla, A.; Biagioni, P.; Rougemaille, N.; Schmid, A.K.; Lanzara, A.; Duo, L.; Ciccacci, F.; Finazzi, M.

    2006-01-01

    We report on a magnetic imaging study of the Fe/NiO/Fe(001) trilayer structure, by means of X-ray photoemission electron microscopy (XPEEM) and spin-polarised low-energy electron microscopy (SPLEEM). Two different magnetic couplings between the Fe layers are observed depending on the NiO thickness being greater or smaller than a critical value. Very small magnetic domains and domain walls are observed in the top Fe layer. They are dramatically smaller than those observed in the Fe substrate, and have a convoluted topology. Furthermore they seem to be unstable with respect to an applied magnetic field for any NiO thickness except that corresponding to the transition between the different coupling regimes. The phenomenology of such magnetic nano-structures and the dependence of the magnetic behaviour of the layered structure on the NiO spacer thickness are discussed on the basis of the experimental results and of state-of-the-art theoretical models

  14. Si/Fe flux ratio influence on growth and physical properties of polycrystalline β-FeSi2 thin films on Si(100) surface

    Science.gov (United States)

    Tarasov, I. A.; Visotin, M. A.; Aleksandrovsky, A. S.; Kosyrev, N. N.; Yakovlev, I. A.; Molokeev, M. S.; Lukyanenko, A. V.; Krylov, A. S.; Fedorov, A. S.; Varnakov, S. N.; Ovchinnikov, S. G.

    2017-10-01

    This work investigates the Si/Fe flux ratio (2 and 0.34) influence on the growth of β-FeSi2 polycrystalline thin films on Si(100) substrate at 630 °C. Lattice deformations for the films obtained are confirmed by X-ray diffraction analysis (XRD). The volume unit cell deviation from that of β-FeSi2 single crystal are 1.99% and 1.1% for Si/Fe =2 and Si/Fe =0.34, respectively. Absorption measurements show that the indirect transition ( 0.704 eV) of the Si/Fe =0.34 sample changes to the direct transition with a bandgap value of 0.816 eV for the sample prepared at Si/Fe =2. The absorption spectrum of the Si/Fe =0.34 sample exhibits an additional peak located below the bandgap energy value with the absorption maximum of 0.36 eV. Surface magneto-optic Kerr effect (SMOKE) measurements detect the ferromagnetic behavior of the β-FeSi2 polycrystalline films grown at Si/Fe =0.34 at T=10 K, but no ferromagnetism was observed in the samples grown at Si/Fe =2. Theoretical calculations refute that the cell deformation can cause the emergence of magnetization and argue that the origin of the ferromagnetism, as well as the lower absorption peak, is β-FeSi2 stoichiometry deviations. Raman spectroscopy measurements evidence that the film obtained at Si/Fe flux ratio equal to 0.34 has the better crystallinity than the Si/Fe =2 sample.

  15. Crystallization and atomic diffusion behavior of high coercive Ta/Nd-Fe-B/Ta-based permanent magnetic thin film

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Na; Zhang, Xiao; You, Caiyin; Fu, Huarui [Xi' an University of Technology, School of Materials Science and Engineering, Xi' an (China); Shen, Qianlong [Logistics University of People' s Armed Police Force, Tianjin (China)

    2017-06-15

    A high coercivity of about 20.4 kOe was obtained through post-annealing the sputtered Ta/Nd-Fe-B/Ta-based permanent magnetic thin films. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analyses were performed to investigate the crystallization and atomic diffusion behaviors during post-annealing. The results show that the buffer and capping Ta layers prefered to intermix with Fe and B atoms, and Nd tends to be combined with O atoms. The preferred atomic combination caused the appearance of the soft magnetic phase of Fe-Ta-B, resulting in a kink of the second quadratic magnetic hysteresis loop. The preferred atomic diffusion and phase formation of the thin films were well explained in terms of the formation enthalpy of the various compounds. (orig.)

  16. A photoelectrochemical (PEC) study on graphene oxide based hematite thin films heterojunction (R-GO/Fe2O3)

    Science.gov (United States)

    Sharma, Poonam; Zachariah, Michael; Ehrman, Sheryl; Shrivastava, Rohit; Dass, Sahab; Satsangi, Vibha; Michael Zachariah, Sheryl Ehrman Collaboration; Rohit Shrivastava, Sahab Dass Collaboration; Vibha R Satsangi, Poonam Sharma Team

    2013-03-01

    Graphene has an excellent electronic conductivity, a high theoretical surface area of 2630 m2/g and excellent mechanical properties and, thus, is a promising component for high-performance electrode materials. Following this, GO has been used to modify the PEC response of photoactive material hematite thin films in PEC cell. A reduced graphene oxide/iron oxide (R-GO/Fe2O3) thin film structure has been successfully prepared on ITO by directly growing iron oxide particles on the thermally reduced graphene oxide sheets prepared from suspension of exfoliated graphene oxide. R-GO/Fe2O3 thin films were tested in PEC cell and offered ten times higher photocurrent density than pristine Fe2O3 thin film sample. XRD, SEM, EDS, UV-Vis, Mott-Schottky and Raman studies were carried out to study spectro-electrochemical properties. Enhanced PEC performance of these photoelectrodes was attributed to its porous morphology, improved conductivity upon favorable carrier transfer across the oxides interface.

  17. Nitrided FeB amorphous thin films for magneto mechanical systems

    International Nuclear Information System (INIS)

    Fernandez-Martinez, I.; Martin-Gonzalez, M.S.; Gonzalez-Arrabal, R.; Alvarez-Sanchez, R.; Briones, F.; Costa-Kraemer, J.L.

    2008-01-01

    The structural, magnetic and magnetoelastic properties of Fe-B-N amorphous films, sputtered from a Fe 80 B 20 target, in a mixture of argon and nitrogen gas, are studied for different nitrogen partial pressures. Nitrogen incorporates into the film preserving the amorphous structure, and modifying magnetic properties. The amount of nitrogen that incorporates into the amorphous structure is found to scale linearly with the nitrogen partial pressure during film growth. The structure, magnetization, field evolution, magnetic anisotropy and magnetostrictive behaviour are determined for films with different nitrogen content. An ∼20% increase of both the saturation magnetization and the magnetostriction constant values is found for moderate (∼8%) nitrogen content when compared to those for pure Fe 80 B 20 amorphous films. These improved properties, together with the still low coercivity of the amorphous films offer great potential for their use in magnetostrictive micro and nano magneto mechanical actuator devices

  18. Epitaxial Bi2 FeCrO6 Multiferroic Thin Film as a New Visible Light Absorbing Photocathode Material.

    Science.gov (United States)

    Li, Shun; AlOtaibi, Bandar; Huang, Wei; Mi, Zetian; Serpone, Nick; Nechache, Riad; Rosei, Federico

    2015-08-26

    Ferroelectric materials have been studied increasingly for solar energy conversion technologies due to the efficient charge separation driven by the polarization induced internal electric field. However, their insufficient conversion efficiency is still a major challenge. Here, a photocathode material of epitaxial double perovskite Bi(2) FeCrO(6) multiferroic thin film is reported with a suitable conduction band position and small bandgap (1.9-2.1 eV), for visible-light-driven reduction of water to hydrogen. Photoelectrochemical measurements show that the highest photocurrent density up to -1.02 mA cm(-2) at a potential of -0.97 V versus reversible hydrogen electrode is obtained in p-type Bi(2) FeCrO(6) thin film photocathode grown on SrTiO(3) substrate under AM 1.5G simulated sunlight. In addition, a twofold enhancement of photocurrent density is obtained after negatively poling the Bi(2) FeCrO(6) thin film, as a result of modulation of the band structure by suitable control of the internal electric field gradient originating from the ferroelectric polarization in the Bi(2) FeCrO(6) films. The findings validate the use of multiferroic Bi(2) FeCrO(6) thin films as photocathode materials, and also prove that the manipulation of internal fields through polarization in ferroelectric materials is a promising strategy for the design of improved photoelectrodes and smart devices for solar energy conversion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Electrical transport and optical band gap of NiFe2Ox thin films

    Science.gov (United States)

    Bougiatioti, Panagiota; Manos, Orestis; Klewe, Christoph; Meier, Daniel; Teichert, Niclas; Schmalhorst, Jan-Michael; Kuschel, Timo; Reiss, Günter

    2017-12-01

    We fabricated NiFe2Ox thin films on MgAl2O4(001) by reactive dc magnetron co-sputtering varying the oxygen partial pressure. The fabrication of a material with a variable oxygen deficiency leads to controllable electrical and optical properties which are beneficial for the investigations of the transport phenomena and could, therefore, promote the use of such materials in spintronic and spin caloritronic applications. We used several characterization techniques to investigate the film properties, focusing on their structural, magnetic, electrical, and optical properties. From the electrical resistivity, we obtained the conduction mechanisms that govern the systems in the high and low temperature regimes. We further extracted low thermal activation energies which unveil extrinsic transport mechanisms. The thermal activation energy decreases in the less oxidized samples revealing the pronounced contribution of a large amount of electronic states localized in the band gap to the electrical conductivity. The Hall coefficient is negative and decreases with increasing conductivity as expected for n-type conduction, while the Hall- and the drift mobilities show a large difference. The optical band gaps were determined via ultraviolet-visible spectroscopy. They follow a similar trend as the thermal activation energies, with lower band gap values in the less oxidized samples.

  20. Some magnetic and magnetoresistive properties of RF-sputtered thin NiFe-Si films.

    Science.gov (United States)

    Vatskicheva, M.; Vatskichev, Ly.; Dimitrov, I.; Kunev, B.

    The galvanomagnetic properties and some structural peculiarities of rf-sputtered alloy films (NI80Fe20)100-xSix at 0 < x < 30 at. % were studied and compared with the corresponding properties of evaporated films of the same thickness and composition. The content of silicon increased with the increasing of the velocity of deposition and led to the amorphousation of the films. Coercivity decreased with the velocity of growth but it did not depend on the thickness and on the velocity of film deposition. The magnetoresistance ratio Dr/r of the sputtered films was about three times higher then that of the evaporated films.

  1. Electronic excitation-induced structural, optical, and magnetic properties of Ni-doped HoFeO3 thin films

    International Nuclear Information System (INIS)

    Habib, Zubida; Ikram, Mohd; Mir, Sajad A.; Sultan, Khalid; Abida; Majid, Kowsar; Asokan, K.

    2017-01-01

    Present study investigates the electronic excitation-induced modifications in the structural, optical, and magnetic properties of Ni-doped HoFeO 3 thin films grown by pulsed laser deposition on LaAlO 3 substrates. Electronic excitations were induced by 200 MeV Ag 12+ ion beam. These thin films were then characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis spectroscopy, and magnetic measurements. X-ray diffraction analysis confirms that the crystallite growth occurs in the preferred (111) orientation with orthorhombic structure. The XRD results also show that the crystallite size decreases with ion irradiation. AFM results after irradiation show significant changes in the surface roughness and morphology of these films. The optical parameters measured from absorption measurements reveal reduction in the band gap with Ni doping and enhancement of band gap after irradiation. The magnetization vs field measurement at 75 K shows enhancement in saturation magnetization after irradiation for HoFe 1-x Ni x O 3 (x = 0.1 and 0.3) films compared to HoFeO 3 film. Present study shows electronic excitation induces significant changes in the physical properties of these films. (orig.)

  2. Ferromagnetism and nonmetallic transport of thin-film α-FeSi(2): a stabilized metastable material.

    Science.gov (United States)

    Cao, Guixin; Singh, D J; Zhang, X-G; Samolyuk, German; Qiao, Liang; Parish, Chad; Jin, Ke; Zhang, Yanwen; Guo, Hangwen; Tang, Siwei; Wang, Wenbin; Yi, Jieyu; Cantoni, Claudia; Siemons, Wolter; Payzant, E Andrew; Biegalski, Michael; Ward, T Z; Mandrus, David; Stocks, G M; Gai, Zheng

    2015-04-10

    A metastable phase α-FeSi_{2} was epitaxially stabilized on a silicon substrate using pulsed laser deposition. Nonmetallic and ferromagnetic behaviors are tailored on α-FeSi_{2} (111) thin films, while the bulk material of α-FeSi_{2} is metallic and nonmagnetic. The transport property of the films renders two different conducting states with a strong crossover at 50 K, which is accompanied by the onset of a ferromagnetic transition as well as a substantial magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of α-FeSi_{2} obtained within density functional calculations and Boltzmann transport calculations with and without strain. Our finding sheds light on achieving ferromagnetic semiconductors through both their structure and doping tailoring, and provides an example of a tailored material with rich functionalities for both basic research and practical applications.

  3. Orthorhombic polar Nd-doped BiFeO{sub 3} thin film on MgO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Leontyev, I N; Janolin, P-E; Dkhil, B [Laboratoire Structures, Proprietes et Modelisation des Solides, UMR CNRS-Ecole Centrale Paris, 92295 Chatenay-Malabry Cedex (France); Yuzyuk, Yu I [Faculty of Physics, Southern Federal University, Zorge 5, Rostov-on-Don 344090 (Russian Federation); El-Marssi, M [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France); Chernyshov, D; Dmitriev, V [Swiss-Norwegian Beam Lines at ESRF, Boite Postale 220, F-38043 Grenoble (France); Golovko, Yu I; Mukhortov, V M, E-mail: i.leontiev@rambler.ru [Southern Scientific Center RAS, Rostov-on-Don, 344006 (Russian Federation)

    2011-08-24

    A Nd-doped BiFeO{sub 3} thin film deposited on MgO substrate was studied by synchrotron diffraction. The ferroelectric nature of the film is proven by in-plane remanent polarization measurement. The highest possible symmetry of the film is determined to be orthorhombic, within the Fm2m space group. Such a structure is rotated by 45{sup 0} with respect to the substrate and is consistent with tilts of oxygen octahedra doubling the unit cell. This polar structure presents a rather unusual strain-accommodation mechanism. (fast track communication)

  4. Orthorhombic polar Nd-doped BiFeO3 thin film on MgO substrate

    International Nuclear Information System (INIS)

    Leontyev, I N; Janolin, P-E; Dkhil, B; Yuzyuk, Yu I; El-Marssi, M; Chernyshov, D; Dmitriev, V; Golovko, Yu I; Mukhortov, V M

    2011-01-01

    A Nd-doped BiFeO 3 thin film deposited on MgO substrate was studied by synchrotron diffraction. The ferroelectric nature of the film is proven by in-plane remanent polarization measurement. The highest possible symmetry of the film is determined to be orthorhombic, within the Fm2m space group. Such a structure is rotated by 45 0 with respect to the substrate and is consistent with tilts of oxygen octahedra doubling the unit cell. This polar structure presents a rather unusual strain-accommodation mechanism. (fast track communication)

  5. Effect of Cu addition on coercivity and interfacial state of Nd-Fe-B/Nd-rich thin films

    International Nuclear Information System (INIS)

    Matsuura, M; Sugimoto, S; Fukada, T; Tezuka, N; Goto, R

    2010-01-01

    This study provides the effect of Cu addition on coercivity (H cJ ) and interfacial microstructure in Nd-Fe-B/Nd-rich thin films. All films were deposited by using ultra high vacuum (UHV) magnetron sputtering, and the Nd-Fe-B layer was oxidized under several atmospheres with different oxygen content. Then, the films were annealed at 250-550 0 C under UHV. The films oxidized in low vacuum (10 -2 -10 -5 Pa) (under low oxygen state) exhibited the recovery of H cJ by the annealing at 450 0 C. On the contrary, the H cJ of the films oxidized in Ar (under high oxygen state) decreased with increasing annealing temperature. However, the H cJ increased drastically at the temperatures above 550 0 C. In addition, the Cu added films, which were annealed at temperatures above 350 0 C, showed higher coercivities than the films without Cu addition. The XRD analysis suggested the existence of C-Nd 2 O 3 phase in the Cu added films annealed at 550 0 C. It can be considered that the Cu addition decreases the eutectic temperature of Nd-rich phase and influences the interfacial state between Nd 2 Fe 14 B and Nd-rich phase.

  6. Epitaxial growth and structural characterization of Pb(Fe1/2Nb1/2)O3 thin films

    International Nuclear Information System (INIS)

    Peng, W.; Lemee, N.; Holc, J.; Kosec, M.; Blinc, R.; Karkut, M.G.

    2009-01-01

    We have grown lead iron niobate thin films with composition Pb(Fe 1/2 Nb 1/2 )O 3 (PFN) on (0 0 1) SrTiO 3 substrates by pulsed laser deposition. The influence of the deposition conditions on the phase purity was studied. Due to similar thermodynamic stability spaces, a pyrochlore phase often coexists with the PFN perovskite phase. By optimizing the kinetic parameters, we succeeded in identifying a deposition window which resulted in epitaxial perovskite-phase PFN thin films with no identifiable trace of impurity phases appearing in the X-ray diffractograms. PFN films having thicknesses between 20 and 200 nm were smooth and epitaxially oriented with the substrate and as demonstrated by RHEED streaks which were aligned with the substrate axes. X-ray diffraction showed that the films were completely c-axis oriented and of excellent crystalline quality with low mosaicity (X-ray rocking curve FWHM≤0.09 deg.). The surface roughness of thin films was also investigated by atomic force microscopy. The root-mean-square roughness varies between 0.9 nm for 50-nm-thick films to 16 nm for 100-nm-thick films. We also observe a correlation between grain size, surface roughness and film thickness.

  7. Structural and photodegradation behaviors of Fe{sup 3+}-doping TiO{sub 2} thin films prepared by a sol–gel spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Huey-Jiuan; Yang, Tien-Syh [Department of Materials Science and Engineering, National United University, 1 Lien-Da, Kung-Ching Li, Miao-Li 36003, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80782, Taiwan (China); Hsi, Chi-Shiung, E-mail: chsi@nuu.edu.tw [Department of Materials Science and Engineering, National United University, 1 Lien-Da, Kung-Ching Li, Miao-Li 36003, Taiwan (China)

    2014-10-15

    Highlights: • Pure and various Fe{sup 3+}-doped TiO{sub 2} thin films have been successfully fabricated. • The phase of all thin films was single phase of anatase TiO{sub 2} when calcined at 823 K. • The crystallinity of TiO{sub 2} thin films decreased as Fe{sup 3+}-doping increased. • The photodegradation of each sample increased as the irradiation time increased. • The photodegradation increased as Fe{sup 3+}-doping increased at a fixed irradiation time. - Abstract: Pure and various Fe{sup 3+}-doping TiO{sub 2} thin films have been successfully fabricated on glass substrate prepared by a sol–gel spin coating route. The structural and photodegradation behavior of these films after calcined at various temperatures for 1 h were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectrum and degradation of 1.0 × 10{sup −5} M methylene blue solution. When all thin films after calcined at 823 K for 1 h, the crystalline phase are comprised only contained single phase of anatase TiO{sub 2}. The crystallinity of various Fe{sup 3+}-doping TiO{sub 2} thin films decreases with Fe{sup 3+}-doping concentration increased. The PL intensity of all thin films also decreases with Fe{sup 3+}-doping concentration increased. When all various Fe{sup 3+}-doping TiO{sub 2} thin films after calcined at 823 K for 1 h, the photodegradation of each sample increases with irradiation time increased. Moreover, the photodegradation also increases with Fe{sup 3+}-doping concentration increased when fixed at constant irradiation time.

  8. Vibrational spectroscopy and analytical electron microscopy studies of Fe-V-O and In-V-O thin films

    CERN Document Server

    Vuk, A S; Drazic, G; Colomban, P

    2002-01-01

    Orthovanadate (M sup 3 sup + VO sub 4; M= Fe, In) and vanadate (Fe sub 2 V sub 4 O sub 1 sub 3) thin films were prepared using sol-gel synthesis and dip coating deposition. Using analytical electron microscopy (AEM), the chemical composition and the degree of crystallization of the phases present in the thin Fe-V-O films were investigated. TEM samples were prepared in both orientations: parallel (plan view) and perpendicular (cross section) to the substrate. In the first stages of crystallization, when the particle sizes were in the nanometer range, the classical identification of phases using electron diffraction was not possible. Instead of measuring d values, experimentally selected area electron diffraction (SAED) patterns were compared to calculated (simulated) patterns in order to determine the phase composition. The problems of evaluating the ratio of amorphous and crystalline phases in thin films are reported. Results of TEM and XRD as well as IR and Raman spectroscopy showed that the films made at lo...

  9. Tuning high frequency magnetic properties and damping of FeGa, FeGaN and FeGaB thin films

    Directory of Open Access Journals (Sweden)

    Derang Cao

    2017-11-01

    Full Text Available A series of FeGa, FeGaN and FeGaB films with varied oblique angles were deposited by sputtering method on silicon substrates, respectively. The microstructure, soft magnetism, microwave properties, and damping factor for the films were investigated. The FeGa films showed a poor high frequency magnetic property due to the large stress itself. The grain size of FeGa films was reduced by the additional N element, while the structure of FeGa films was changed from the polycrystalline to amorphous phase by the involved B element. As a result, N content can effectively improve the magnetic softness of FeGa film, but their high frequency magnetic properties were still poor both when the N2/Ar flow rate ratio is 2% and 5% during the deposition. The additional B content significantly led to the excellent magnetic softness and the self-biased ferromagnetic resonance frequency of 1.83 GHz for FeGaB film. The dampings of FeGa films were adjusted by the additional N and B contents from 0.218 to 0.139 and 0.023, respectively. The combination of these properties for FeGa films are helpful for the development of magnetostrictive microwave devices.

  10. Anisotropy, magnetostriction and local chemical order in amorphous TbxFe1-x (0.1thin films

    International Nuclear Information System (INIS)

    Hernando, A.; Prados, C.; Prieto, C.

    1996-01-01

    Local chemical order in amorphous TbFe thin films has been investigated in a variety of compositions, using EXAFS, magnetostriction and anisotropy measurements. Data reported here are consistent with a density of Fe-Tb pairs in the film plane larger than in the perpendicular direction. (orig.)

  11. Origin of open recoil curves in L1_0-A1 FePt exchange coupled nanocomposite thin film

    International Nuclear Information System (INIS)

    Goyal, Rajan; Kapoor, Akanksha; Lamba, S.; Annapoorni, S.

    2016-01-01

    Mixed phase FePt systems with intergranular coupling may be looked upon as natural exchange spring systems. The coupling strength between the soft and hard phase in these systems can be analyzed using recoil curves. However, the origin of open recoil curves depicting the breakdown of exchange coupling or anisotropy variation in hard phase is still an ambiguity and requires an in-depth analysis. In order to investigate this, an analysis of the recoil curves for L1_0–A1 FePt nanocomposite thin films of varying thickness have been performed. The switching field distribution reveals that the maximum of openness of recoil curve is directly proportional to the amount of uncoupled soft phase present in the system. The coupling between the hard and soft phase is also found to increase with the thickness of the film. Monte Carlo simulations on a model three dimensional array of interacting nanomagnetic grains provide further insight into the effect of inter granular exchange interactions between the soft and hard phases. - Highlights: • L1_0-A1 FePt nanocomposites thin films of different thickness have been fabricated by DC sputtering. • Hysteresis curve measurements exhibit perfect single phase (L1_0) like behavior for thicker films. • SFD reveals that the openness of recoil curves is directly linked with the amount of uncoupled soft (A1) phase. • Monte Carlo simulation predicts that the extent of exchange interaction increases with thickness of the film.

  12. Origin of open recoil curves in L1{sub 0}-A1 FePt exchange coupled nanocomposite thin film

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Rajan [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kapoor, Akanksha [M. Tech Nanoscience and Nanotechnology, University of Delhi, Delhi 110007 (India); Lamba, S. [School of Sciences, Indira Gandhi National Open University, New Delhi 110068 (India); Annapoorni, S., E-mail: annapoornis@yahoo.co.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2016-11-15

    Mixed phase FePt systems with intergranular coupling may be looked upon as natural exchange spring systems. The coupling strength between the soft and hard phase in these systems can be analyzed using recoil curves. However, the origin of open recoil curves depicting the breakdown of exchange coupling or anisotropy variation in hard phase is still an ambiguity and requires an in-depth analysis. In order to investigate this, an analysis of the recoil curves for L1{sub 0}–A1 FePt nanocomposite thin films of varying thickness have been performed. The switching field distribution reveals that the maximum of openness of recoil curve is directly proportional to the amount of uncoupled soft phase present in the system. The coupling between the hard and soft phase is also found to increase with the thickness of the film. Monte Carlo simulations on a model three dimensional array of interacting nanomagnetic grains provide further insight into the effect of inter granular exchange interactions between the soft and hard phases. - Highlights: • L1{sub 0}-A1 FePt nanocomposites thin films of different thickness have been fabricated by DC sputtering. • Hysteresis curve measurements exhibit perfect single phase (L1{sub 0}) like behavior for thicker films. • SFD reveals that the openness of recoil curves is directly linked with the amount of uncoupled soft (A1) phase. • Monte Carlo simulation predicts that the extent of exchange interaction increases with thickness of the film.

  13. Optical characterization of {beta}-FeSi{sub 2} thin films prepared on fused quartz by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Youhua [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Physics and Information Engineering, Jianghan University, Wuhan 430056 (China); Lu Peixiang [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)]. E-mail: lupeixiang@mail.hust.edu.cn; Yang Guang [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Long Hua [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zheng Qiguang [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2007-10-01

    Single-phase {beta}-FeSi{sub 2} thin films have been grown on quartz substrates using femtosecond laser deposition (800 nm, 50 fs, 1 kHz) under gas pressure of 3.0x10{sup -4} Pa. X-ray diffraction (XRD) and field-emission scanning electron microscopy (SEM) were used to determine the structural properties and surface images of the films. Typical XRD patterns of the film showed that no other diffraction peak except {beta}-FeSi{sub 2} was found. The SEM results indicated that the films were composed of well-distributed grains, in the range 50-150 nm in diameter. In addition, normal incidence spectral transmittance and reflectance data suggested that the {beta}-FeSi{sub 2} film has a direct energy gap of about 0.85 eV. The thickness of the layer and the refractive index of the film were determined by performed calculation in the wavelength range 1.9-2.7 {mu}m. Furthermore, the Raman spectra of the films were also discussed.

  14. Ferrimagnetic Tb-Fe Alloy Thin Films: Composition and Thickness Dependence of Magnetic Properties and All-Optical Switching

    Directory of Open Access Journals (Sweden)

    Birgit eHebler

    2016-02-01

    Full Text Available Ferrimagnetic rare earth - transition metal Tb-Fe alloy thin films exhibit a variety of different magnetic properties, which depends strongly on composition and temperature. In this study, first the influence of the film thickness (5 - 85 nm on the sample magnetic properties was investigated in a wide composition range between 15 at.% and 38 at.% of Tb. From our results, we find that the compensation point, remanent magnetization, and magnetic anisotropy of the Tb-Fe films depend not only on the composition but also on the thickness of the magnetic film up to a critical thickness of about 20-30 nm. Beyond this critical thickness, only slight changes in magnetic properties are observed. This behavior can be attributed to a growth-induced modification of the microstructure of the amorphous films, which affects the short range order. As a result, a more collinear alignment of the distributed magnetic moments of Tb along the out-of-plane direction with film thickness is obtained. This increasing contribution of the Tb sublattice magnetization to the total sample magnetization is equivalent to a sample becoming richer in Tb and can be referred to as an effective composition. Furthermore, the possibility of all-optical switching, where the magnetization orientation of Tb-Fe can be reversed solely by circularly polarized laser pulses, was analyzed for a broad range of compositions and film thicknesses and correlated to the underlying magnetic properties.

  15. Characteristics and optical properties of iron ion (Fe{sup 3+})-doped titanium oxide thin films prepared by a sol-gel spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Lin, H.J. [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miao-Li 36003, Taiwan (China)], E-mail: hjlin@nuu.edu.tw; Yang, T.S. [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miao-Li 36003, Taiwan (China)

    2009-04-03

    Titanium dioxide (TiO{sub 2}) thin films doping of various iron ion (Fe{sup 3+}) concentrations have been prepared on a glass substrate by the sol-gel spin coating process. Characteristics and optical properties of TiO{sub 2} thin films doping of various Fe content were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV-vis) and spectroscopic ellipsometry. The crystalline phase of TiO{sub 2} thin films comprised only the anatase TiO{sub 2}, but the crystallinity decreased when the Fe{sup 3+} content increased from 0 to 25.0 wt%. During the Fe{sup 3+} addition to 25.0 wt%, the phase of TiO{sub 2} thin film still maintained the amorphous state. The absorption edge of TiO{sub 2} thin films shifted towards longer wavelengths (i.e. red shifted) from 355 to 415 nm when the Fe{sup 3+}-doped concentration increased from 0 to 25.0 wt%. The values of the refractive index (n), and extinction coefficient (k), decreased with an increasing Fe{sup 3+} content. Moreover, the band-gap energy of TiO{sub 2} thin films also decreased from 3.29 to 2.83 eV with an increase in the Fe{sup 3+} content from 0 to 25.0 wt%.

  16. Observation of standing spinwaves in thin Fe-films by means of Raman spectroscopy

    International Nuclear Information System (INIS)

    Blumenroeder, S.; Zirngiebl, E.; Gruenberg, P.; Guentherodt, G. II.

    1984-09-01

    We report on the first observation of standing spinwaves in thin evaporated Fe-films by means of Raman scattering (RS). In earlier investigations using Brillouin scattering (BS) these modes could only be observed down to a thickness dapprox. = 200 A. We were now able to extend this range down to d approx. = 120 A using BS and to a range of 40 to 80 A using RS. We find that for values of d comparable to the penetration depth of the light the scattering intensity decreases together with d. This is explained by the assumption that the scattering intensity is determined by the net magnetic moment resulting within the probing depth of the light. The mode frequencies observed by Raman scattering follow very well a D/sub ex/* d -2 relationship from which the value of the exchange parameter D/sub ex/ has been determined. With decreasing d we also observe an increasing linewidth of the standing spinwaves. This can be attributed to the increased importance of surface roughness on the damping of these modes. 8 references, 4 figures

  17. Magnetic and magnetoelastic properties of epitaxial SmFe{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Fuente, C de la; Arnaudas, J I; Ciria, M; Del Moral, A [Departamento de Magnetismo de Solidos and Departamento de Fisica de la Materia Condensada, Instituto de Ciencia de los Materiales de Aragon and Universidad de Zaragoza, 50071, Zaragoza (Spain); Dufour, C; Dumesnil, K, E-mail: cesar@unizar.e [Laboratoire de Metallurgie Physique et de Science des Materiaux, Universite Henry Poincare, Nancy 1, BP 239, 54506 (France)

    2010-02-03

    We report on magnetic and magnetoelastic measurements for a 5000 A (110) SmFe{sub 2} thin film, which was successfully analyzed by means of a point charge model for describing the effect of the epitaxial growth in this kind of system. Some of the main conclusions of the Moessbauer and magnetoelastic results and the new magnetization results up to 5 T allow us to get a full description of the crystal electric field, exchange, and magnetoelastic behavior in this compound. So, new single-ion parameters are obtained for the crystal field interaction of samarium ions, A{sub 4}(r{sup 4}) = +755 K/ion and A{sub 6}(r{sup 6}) = -180 K/ion, and new single-ion magnetoelastic coupling B{sup gamma}{sup ,2}approx =-200 MPa and B{sup epsilon}{sup ,2}approx =800 MPa, which represent the tetragonal and the in-plane shear deformations, respectively. Moreover, the new thermal behavior of the samarium magnetic moment, the exchange coupling parameter, and the magnetocrystalline anisotropy of the iron sublattice are obtained too. From these, the softening of the spin reorientation transition with respect to the bulk case could be accounted for.

  18. Magnetic properties of pure and Fe doped HoCrO{sub 3} thin films fabricated via a solution route

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Shiqi; Sauyet, Theodore [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Guild, Curt [Department of Chemistry, University of Connecticut, Storrs, CT 06269 (United States); Suib, S.L. [Department of Chemistry, University of Connecticut, Storrs, CT 06269 (United States); Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Jain, Menka, E-mail: menka.jain@uconn.edu [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States)

    2017-04-15

    Multiferroic properties of orthorhombically distorted perovskite rare-earth chromites, such as HoCrO{sub 3}, are being investigated extensively in recent years. In the present work, we report on the effect of Fe substitution on the magnetic properties of HoCrO{sub 3} thin films. Thin films of HoCrO{sub 3} and HoCr{sub 0.7}Fe{sub 0.3}O{sub 3} were fabricated via a solution route on platinized silicon substrates. Structural properties of the films were evaluated by X-ray diffraction and Raman spectroscopy techniques. The surface morphology and cross-sections of the films were examined using scanning electron microscopy. Optical band gaps of pure and Fe doped HoCrO{sub 3} films are found to be 3.45 eV and 3.39 eV, respectively. The magnetization measurements show that the Néel temperatures (where Cr{sup 3+} orders) for the HoCrO{sub 3} and HoCr{sub 0.7}Fe{sub 0.3}O{sub 3} films are 134 and 148 K, respectively. In a magnetic field of 2 T, the maximum entropy change and relative cooling power, two parameters to evaluate the magnetocaloric properties of a material, were 0.813 J/kg K at 11 K and 21.1 J/kg for HoCrO{sub 3} film, in comparison with 0.748 J/kg K at 15 K and 26.8 J/kg for HoCr{sub 0.7}Fe{sub 0.3}O{sub 3} film. To our knowledge, this is the first work exploring the band gap and magnetocaloric properties of rare-earth chromite thin films. These findings should inspire the development of rare-earth chromite thin films for temperature control of nanoscale electronic devices and sensors in the low temperature region (< 30 K). - Highlights: • Phase-pure HoCrO{sub 3} and HoCr{sub 0.7}Fe{sub 0.3}O{sub 3}films were fabricated on platinized Sivia a solution route. • This is the first work on the exploration of band gap and magnetocaloric properties of rare-earth chromitefilms. • From 0-2 T, maximum entropy change for the HoCrO{sub 3} film was 0.813 J/kg K at 11 K.From 0-2 T, maximum entropy change for HoCr{sub 0.7}Fe{sub 0.3}O{sub 3} film was 0.748 J/kg K at 15

  19. Unraveling the magnetic properties of BiFe0.5Cr0.5O3 thin films

    Directory of Open Access Journals (Sweden)

    G. Vinai

    2015-11-01

    Full Text Available We investigate the structural, chemical, and magnetic properties on BiFe0.5Cr0.5O3 (BFCO thin films grown on (001 (110 and (111 oriented SrTiO3 (STO substrates by x-ray magnetic circular dichroism and x-ray diffraction. We show how highly pure BFCO films, differently from the theoretically expected ferrimagnetic behavior, present a very weak dichroic signal at Cr and Fe edges, with both moments aligned with the external field. Chemically sensitive hysteresis loops show no hysteretic behavior and no saturation up to 6.8 T. The linear responses are induced by the tilting of the Cr and Fe moments along the applied magnetic field.

  20. Effects of buffer layer temperature on the magnetic properties of NdFeB thin film magnets

    International Nuclear Information System (INIS)

    Kim, Y.B.; Cho, S.H.; Kim, H.T.; Ryu, K.S.; Lee, S.H.; Lee, K.H.; Kapustin, G.A.

    2004-01-01

    Effects of the buffer layer temperature (T b ) on the magnetic properties and microstructure of [Mo/NdFeB/Mo]-type thin films have been investigated. The Mo-buffer layer with low T b is composed of fine grains while that with high T b has coarse grains. The subsequent NdFeB layer also grows with fine or coarse grains following the buffer layer structure. The NdFeB layer grown on a low T b buffer shows high coercivity and strong perpendicular anisotropy. The best magnetic properties of i H c =1.01 MA/m (12.7 kOe), B r =1.31 T (13.1 kG) and BH max =329 kJ/m 3 (41.4 MGOe) were obtained from the film with T b =400 deg. C

  1. Structure and magnetic properties of L10-FePt thin films on TiN/RuAl underlayers

    International Nuclear Information System (INIS)

    Yang En; Ratanaphan, Sutatch; Zhu Jiangang; Laughlin, David E.

    2011-01-01

    Highly ordered L1 0 FePt-oxide thin films with small grains were prepared by using a RuAl layer as a grain size defining seed layer along with a TiN barrier layer. Different HAMR (Heat Assisted Magnetic Recording) favorable underlayers were studied to encourage perpendicular texture and preferred microstructure. It was found that the epitaxial and small grain growth from the RuAl/TiN underlayer results in small and uniform grains in the FePt layer with perpendicular texture. By introducing the grain size defining underlayers, the FePt grain size can be reduced from 30 to 6 nm with the same volume fraction (9%) of SiO 2 in the film, excellent perpendicular texture, and very high order parameter at 520 deg. C.

  2. Structural and magnetic properties of epitaxial delafossite CuFeO{sub 2} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Toyanath; Senty, Tess R.; Trappen, Robbyn; Zhou, Jinling; Borisov, Pavel; Holcomb, Mikel B.; Bristow, Alan D.; Lederman, David [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Chen, Song; Song, Xueyan [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506-6070 (United States); Ferrari, Piero; Cabrera, Alejandro L. [Pontificia Universidad Catolica, Instituto de Física, Santiago (Chile)

    2015-01-07

    Growth of pure phase delafossite CuFeO{sub 2} thin films on Al{sub 2}O{sub 3} (00.1) substrates by pulsed laser deposition was systematically investigated as a function of growth temperature and oxygen pressure. X-ray diffraction, transmission electron microscopy, Raman scattering, and x-ray absorption spectroscopy confirmed the existence of the delafossite phase. Infrared reflectivity spectra determined a band edge at 1.15 eV, in agreement with the bulk delafossite data. Magnetization measurements on CuFeO{sub 2} films demonstrated a phase transition at T{sub C} ≈ 15 ± 1 K, which agrees with the first antiferromagnetic transition at 14 K in the bulk CuFeO{sub 2}. Low temperature magnetic phase is best described by commensurate, weak ferromagnetic spin ordering along the c-axis.

  3. Elimination of impurity phase formation in FePt magnetic thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wang, Ying; Medwal, Rohit; Sehdev, Neeru; Yadian, Boluo; Tan, T.L.; Lee, P.; Talebitaher, A.; Ilyas, Usman; Ramanujan, R.V.; Huang, Yizhong; Rawat, R.S.

    2014-01-01

    The formation of impurity phases in FePt thin films severely degrades its magnetic properties. The X-ray diffraction patterns of FePt thin films, synthesized using pulsed laser deposition (PLD), showed peaks corresponding to impurity phases, resulting in softer magnetic properties. A systematic investigation was carried to determine the factors that might have led to impurity phase formation. The factors include (i) PLD target composition, (ii) substrate material, (iii) annealing parameters such as temperature, duration and ambience and (iv) PLD deposition parameters such as chamber ambience, laser energy fluence and target–substrate distance. Depositions on the different substrates revealed impurity phase formation only on Si substrates. It was found that the target composition, PLD chamber ambience, and annealing ambience were not the factors that caused the impurity phase formation. The annealing temperature and duration influenced the impurity phases, but are not the cause of their formation. A decrease in the laser energy fluence and increase of the target–substrate distance resulted in elimination of the impurity phases and enhancement in the magnetic and structural properties of FePt thin films. The energy of the ablated plasma species, controlled by the laser energy fluence and the target–substrate distance, is found to be the main factor responsible for the formation of the impurity phases.

  4. Tailoring the stress-depth profile in thin films; the case of γ'-Fe4N1-x

    International Nuclear Information System (INIS)

    Wohlschloegel, M.; Welzel, U.; Mittemeijer, E.J.

    2011-01-01

    Homogeneous γ'-Fe 4 N 1-x thin films were produced by gas through-nitriding of iron thin films (thickness 800 nm) deposited onto Al 2 O 3 substrates by Molecular Beam Epitaxy. The nitriding parameters were chosen such that the nitrogen concentration within the γ' thin films was considerably lower (x ∼ 0.05) than the stoichiometric value (x = 0). X-ray diffraction stress analysis at constant penetration depths performed after the nitriding step revealed the presence of tensile stress parallel to the surface; the tensile stress was shown to be practically constant over the entire film thickness. For further nitriding treatments, the parameters were adjusted such that nitrogen enrichment occurred near the specimen surface. The depth-dependent nitrogen enrichment could be monitored by evaluating the strain-free lattice parameter of γ' as a function of X-ray penetration depth and relating it to the nitrogen concentration employing a direct relation between lattice parameter and nitrogen concentration. The small compositional variations led to distinct characteristic stress-depth profiles. The stress changes non-monotonously with depth in the film as could be shown by non-destructive X-ray diffraction stress analysis at constant penetration depths. This work demonstrates that by a specific choice of a first and a subsequent nitriding treatment (employing different nitriding potentials and/or different temperatures for both treatments) controlled development of residual stress profiles is possible in thin iron-nitride surface layers.

  5. Soft magnetism, magnetostriction, and microwave properties of FeGaB thin films

    International Nuclear Information System (INIS)

    Lou, J.; Insignares, R. E.; Cai, Z.; Ziemer, K. S.; Liu, M.; Sun, N. X.

    2007-01-01

    A series of (Fe 100-y Ga y ) 1-x B x (x=0-21 and y=9-17) films were deposited; their microstructure, soft magnetism, magnetostrictive behavior, and microwave properties were investigated. The addition of B changes the FeGaB films from polycrystalline to amorphous phase and leads to excellent magnetic softness with coercivity s , self-biased ferromagnetic resonance (FMR) frequency of 1.85 GHz, narrow FMR linewidth (X band) of 16-20 Oe, and a high saturation magnetostriction constant of 70 ppm. The combination of these properties makes the FeGaB films potential candidates for tunable magnetoelectric microwave devices and other rf/microwave magnetic device applications

  6. Influence of Ti Content on the Partial Oxidation of TixFeCoNi Thin Films in Vacuum Annealing

    Directory of Open Access Journals (Sweden)

    Ya-Chu Yang

    2017-09-01

    Full Text Available This study investigated the effects of Ti content and vacuum annealing on the microstructure evolution of TixFeCoNi (x = 0, 0.5, and 1 thin films and the underlying mechanisms. The as-deposited thin film transformed from an FCC (face center cubic structure at x = 0 into an amorphous structure at x = 1, which can be explained by determining topological instability and a hard ball model. After annealing was performed at 1000 °C for 30 min, the films presented a layered structure comprising metal solid solutions and oxygen-deficient oxides, which can be major attributed to oxygen traces in the vacuum furnace. Different Ti contents provided various phase separation and layered structures. The underlying mechanism is mainly related to the competition among possible oxides in terms of free energy production at 1000 °C.

  7. A phase transition close to room temperature in BiFeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kreisel, J; Jadhav, P; Chaix-Pluchery, O [Laboratoire des Materiaux et du Genie Physique, Grenoble INP, CNRS, Minatec, 3, parvis Louis Neel, 38016 Grenoble (France); Varela, M [Departamento Fisica Aplicada i Optica, Universitat de Barcelona, Carrer MartI i Franques 1. 08028 Campus UAB, Bellaterra 08193 (Spain); Dix, N; Sanchez, F; Fontcuberta, J, E-mail: jens.kreisel@grenoble-inp.fr [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193 (Spain)

    2011-08-31

    BiFeO{sub 3} (BFO) multiferroic oxide has a complex phase diagram that can be mapped by using appropriately substrate-induced strain in epitaxial films. By using Raman spectroscopy, we conclusively show that films of the so-called supertetragonal T-BFO phase, stabilized under compressive strain, display a reversible temperature-induced phase transition at about 100 deg. C, and thus close to room temperature. (fast track communication)

  8. Geometrical contribution to the anomalous Nernst effect in TbFeCo thin films

    Science.gov (United States)

    Ando, Ryo; Komine, Takashi

    2018-05-01

    The geometrical contribution to the anomalous Nernst effect in magnetic thin films was experimentally investigated by varying the aspect ratios and electrode configurations. The bar-type electrode configuration induces a short-circuit current near both edges of electrodes and decreases the effective Nernst voltage, while the point-contact (PC) electrode exploits the intrinsic Nernst voltage. In a sample with PC electrodes, as the sample width along the transverse direction of the thermal flow increases, the Nernst voltage increases monotonically. Thus, a much wider element with PC electrodes enables us to bring out a larger Nernst voltage by utilizing perpendicularly magnetized thin films.

  9. The Microstructures and Electrical Resistivity of (Al, Cr, TiFeCoNiOx High-Entropy Alloy Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Chun-Huei Tsau

    2015-01-01

    Full Text Available The (Al, Cr, TiFeCoNi alloy thin films were deposited by PVD and using the equimolar targets with same compositions from the concept of high-entropy alloys. The thin films became metal oxide films after annealing at vacuum furnace for a period; and the resistivity of these thin films decreased sharply. After optimum annealing treatment, the lowest resistivity of the FeCoNiOx, CrFeCoNiOx, AlFeCoNiOx, and TiFeCoNiOx films was 22, 42, 18, and 35 μΩ-cm, respectively. This value is close to that of most of the metallic alloys. This phenomenon was caused by delaminating of the alloy oxide thin films because the oxidation was from the surfaces of the thin films. The low resistivity of these oxide films was contributed to the nonfully oxidized elements in the bottom layers and also vanishing of the defects during annealing.

  10. Synthesis and magnetic properties of the thin film exchange spring system of MnBi/FeCo

    Science.gov (United States)

    Sabet, S.; Hildebrandt, E.; Alff, L.

    2017-10-01

    Manganese bismuth thin films with a nominal thickness of ∼40 nm were grown at room temperature onto quartz glass substrate in a DC magnetron sputtering unit. In contrast to the usual multilayer approach, the MnBi films were deposited using a single sputtering target with a stoichiometry of Mn55Bi45 (at. %). A subsequent in-situ annealing step was performed in vacuum in order to form the ferromagnetic LTP of MnBi. X-ray diffraction confirmed the formation of a textured LTP MnBi hard phase after annealing at 330 °C. This film shows a maximum saturation magnetization of 530 emu/cm3, high out-of-plane coercivity of 15 kOe induced by unreacted bismuth. The exchange coupling effect was investigated by deposition of a second layer of FeCo with 1 nm and 2 nm thickness onto the LTP MnBi films. The MnBi/FeCo double layer showed as expected higher saturation magnetization with increasing thickness of the FeCo layer while the coercive field remained constant. The fabrication of the MnBi/FeCo double layer for an exchange spring magnet was facilitated by deposition from a single stoichiometric target.

  11. Size effect in the spin glass magnetization of thin AuFe films as studied by polarized neutron reflectometry.

    Science.gov (United States)

    Saoudi, M; Fritzsche, H; Nieuwenhuys, G J; Hesselberth, M B S

    2008-02-08

    We used polarized neutron reflectometry to determine the temperature dependence of the magnetization of thin AuFe films with 3% Fe concentration. We performed the measurements in a large magnetic field of 6 T in a temperature range from 295 to 2 K. For the films in the thickness range from 500 to 20 nm we observed a Brillouin-type behavior from 295 K down to 50 K and a constant magnetization of about 0.9 micro(B) per Fe atom below 30 K. However, for the 10 nm thick film we observed a Brillouin-type behavior down to 20 K and a constant magnetization of about 1.3 micro(B) per Fe atom below 20 K. These experiments are the first to show a finite-size effect in the magnetization of single spin-glass films in large magnetic fields. Furthermore, the ability to measure the deviation from the paramagnetic behavior enables us to prove the existence of the spin-glass state where other methods relying on a cusp-type behavior fail.

  12. Effects of magnetic flux densities on microstructure evolution and magnetic properties of molecular-beam-vapor-deposited nanocrystalline Fe_3_0Ni_7_0 thin films

    International Nuclear Information System (INIS)

    Cao, Yongze; Wang, Qiang; Li, Guojian; Ma, Yonghui; Du, Jiaojiao; He, Jicheng

    2015-01-01

    Nanocrystalline Fe_3_0Ni_7_0 (in atomic %) thin films were prepared by molecular-beam-vapor deposition in magnetic fields with different magnetic flux densities. The microstructure evolution of these thin films was studied by atomic force microscopy, transmission electron microscopy, and high resolution transmission electron microscopy; the soft magnetic properties were examined by vibrating sample magnetometer at room temperature. The results show that all our Fe_3_0Ni_7_0 thin films feature an fcc single-phase structure. With increasing magnetic flux density, surface roughness, average particle size and grain size of the thin films decreased, and the short-range ordered clusters (embryos) of thin films increased. Additionally, the magnetic anisotropy in the in-plane and the coercive forces of the thin films gradually reduced with increasing magnetic flux density. - Highlights: • With increasing magnetic flux density, average particle size of films decreased. • With increasing magnetic flux density, surface roughness of thin films decreased. • With increasing magnetic flux density, short-range ordered clusters increased. • With increasing magnetic flux density, the coercive forces of thin films reduced. • With increasing magnetic flux density, soft magnetic properties are improved.

  13. Composition dependence of crystallization temperature and magnetic property of NdFeB thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khoa, T.V. [Research Center for Advanced Magnetic Materials (ReCAMM), Chungnam National University, Daejon, 305-764 (Korea, Republic of); International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi (Viet Nam); Ha, N.D. [Research Center for Advanced Magnetic Materials (ReCAMM), Chungnam National University, Daejon, 305-764 (Korea, Republic of); Hong, S.M. [Research Center for Advanced Magnetic Materials (ReCAMM), Chungnam National University, Daejon, 305-764 (Korea, Republic of); Jin, H.M. [Research Center for Advanced Magnetic Materials (ReCAMM), Chungnam National University, Daejon, 305-764 (Korea, Republic of); Kim, G.W. [Research Center for Advanced Magnetic Materials (ReCAMM), Chungnam National University, Daejon, 305-764 (Korea, Republic of); Hien, T.D. [International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi (Viet Nam); Tai, L.T. [International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi (Viet Nam); Duong, N.P. [International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi (Viet Nam); Lee, K.E. [Research Center for Advanced Magnetic Materials (ReCAMM), Chungnam National University, Daejon, 305-764 (Korea, Republic of); Kim, C.G. [Research Center for Advanced Magnetic Materials (ReCAMM), Chungnam National University, Daejon, 305-764 (Korea, Republic of); Kim, C.O. [Research Center for Advanced Magnetic Materials (ReCAMM), Chungnam National University, Daejon, 305-764 (Korea, Republic of)]. E-mail: magkim@cnu.ac.kr

    2006-09-15

    Si(100)/Mo(30nm)/Nd{sub x}Fe{sub 92-x}B{sub 8}(800nm)/Mo(30nm) (x=14, 20, 30) films are prepared by RF magnetron sputtering at room temperature. As-deposited films are amorphous materials. The crystallization temperature of the Nd{sub 2}Fe{sub 14}B phase decreases from 575deg. C to 500deg. C with increase of x from 14 to 20-30. The optimum annealing temperature with 30min annealing time is 650 deg. C, 625 deg. C and 600 deg. C for x=14, 20 and 30, respectively, and the x=20 film has the largest energy product of 100118MG.

  14. Atomic structure of Fe thin-films on Cu(0 0 1) studied with stereoscopic photography

    International Nuclear Information System (INIS)

    Hattori, Azusa N.; Fujikado, M.; Uchida, T.; Okamoto, S.; Fukumoto, K.; Guo, F.Z.; Matsui, F.; Nakatani, K.; Matsushita, T.; Hattori, K.; Daimon, H.

    2004-01-01

    The complex magnetic properties of Fe films epitaxially grown on Cu(0 0 1) have been discussed in relation to their atomic structure. We have studied the Fe films on Cu(0 0 1) by a new direct method for three-dimensional (3D) atomic structure analysis, so-called 'stereoscopic photography'. The forward-focusing peaks in the photoelectron angular distribution pattern excited by the circularly polarized light rotate around the light axis in either clockwise or counterclockwise direction depending on the light helicity. By using a display-type spherical mirror analyzer for this phenomenon, we can obtain stereoscopic photographs of atomic structure. The photographs revealed that the iron structure changes from bcc to fcc and almost bcc structure with increasing iron film thickness

  15. The Role of Annealing Temperature on Structural and Magnetic Properties of NdFeB Thin Films

    Directory of Open Access Journals (Sweden)

    A. Khanjani

    2016-06-01

    Full Text Available In the present research NdFeB thin films coupled with buffer and capping layer of W were formed on Si/SiO2 substrate by means of RF magnetron sputtering. The system was annealed at vaccum at different temperatures of 450, 500, 550,. 600 and 650 °C Phase analysis was carried out by XRD and it was found that NdFeB was formed without the formation of any kind of secondary phase. The cross sectional and grain size of the thin films were measured by scanning electron microscopy. Morphological studies were performed by atomic force microscopy. Magnetic properties of thin films including coercivity, saturation of magnetization and hysteresis area were evcaluated by vibrating sample magnetometer. It was found that by annealing at 400 °C the amorphous layer was formed.The highest intensity of peaks was formed at 550 °C and with an increase in temperature the intensity was declined. The grain size was increased by temperature and had an impact on the coercivity. With an increase of temperature up to 600 °C, perpendicular coercivity was increased and then by further increase of temperatute, coercivity was reduced. Based on the obtained data the temperature of 600 °C was selected as the optimum annealing temperature for reaching enhanced structural and magnetic feature.

  16. Preparation of c-axis perpendicularly oriented ultra-thin L10-FePt films on MgO and VN underlayers

    Science.gov (United States)

    Futamoto, Masaaki; Shimizu, Tomoki; Ohtake, Mitsuru

    2018-05-01

    Ultra-thin L10-FePt films of 2 nm average thickness are prepared on (001) oriented MgO and VN underlayers epitaxially grown on base substrate of SrTiO3(001) single crystal. Detailed cross-sectional structures are observed by high-resolution transmission electron microscopy. Continuous L10-FePt(001) thin films with very flat surface are prepared on VN(001) underlayer whereas the films prepared on MgO(001) underlayer consist of isolated L10-FePt(001) crystal islands. Presence of misfit dislocation and lattice bending in L10-FePt material is reducing the effective lattice mismatch with respect to the underlayer to be less than 0.5 %. Formation of very flat and continuous FePt layer on VN underlayer is due to the large surface energy of VN material where de-wetting of FePt material at high temperature annealing process is suppressed under a force balance between the surface and interface energies of FePt and VN materials. An employment of underlayer or substrate material with the lattice constant and the surface energy larger than those of L10-FePt is important for the preparation of very thin FePt epitaxial thin continuous film with the c-axis controlled to be perpendicular to the substrate surface.

  17. Phase transitions in Fe{sub 0.5}Co{sub 0.5} (110) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Dámaso, G., E-mail: gramirezd@ipn.mx [Escuela Superior de Ingeniería y Arquitectura “Unidad Ticomán” del Instituto Politécnico Nacional, Av. Ticomán No. 600, Col. San José Ticomán, Del. G. A. M., C. P. 07330 Ciudad de México (Mexico); Castillo-Alvarado, F.L. [Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional, Edificio 9, Col. San Pedro Zacatenco, C. P. 07738 Ciudad de México (Mexico); Rojas-Hernández, E. [Escuela Superior de Ingeniería y Arquitectura “Unidad Ticomán” del Instituto Politécnico Nacional, Av. Ticomán No. 600, Col. San José Ticomán, Del. G. A. M., C. P. 07330 Ciudad de México (Mexico)

    2016-12-15

    In this paper, we present calculations for two second-order phase transitions in (110) Fe{sub 0.5}Co{sub 0.5} thin films with 11, 15, and 19 monoatomic layers. The lattice and magnetic transitions are based on thermodynamic equilibrium considerations of the magnetic alloy. The procedure proposed by Valenta and Sukiennicki was applied to calculate the composition x(i), the lattice order parameter t(i), and the magnetic order parameter σ(i) as a function of temperature T. We confirmed that both phase transitions, lattice and magnetic, are of the second order, in accordance with experimental results in the literature. The obtained behavior of these parameters indicates their inhomogeneity due to the boundary conditions on the surfaces of the thin film.

  18. Tunnelling spectroscopy of BaFe{sub 2}As{sub 2}/Au/PbIn thin film junctions

    Energy Technology Data Exchange (ETDEWEB)

    Doering, Sebastian; Schmidt, Stefan; Schmidl, Frank; Tympel, Volker; Grosse, Veit; Seidel, Paul [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena (Germany); Haindl, Silvia; Iida, Kazumasa; Kurth, Fritz; Holzapfel, Bernhard [IFW Dresden, Institut fuer Metallische Werkstoffe, Dresden (Germany)

    2011-07-01

    Tunnelling spectroscopy is an important tool to investigate the properties of iron-based superconductors. In contrast to commonly used point contact Andreev reflection (PCAR) technique, we fabricated hybrid superconductor / normal metal / superconductor (SNS) thin film structures, with tunable barrier thickness and area. For the base electrode we use Ba(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2} thin films, produced via pulsed laser deposition (PLD). A gold layer was sputtered to form the barrier, while the counter electrode material is the conventional superconductor PbIn with a T{sub c} of 7.2 K. For temperatures below 7.2 K the spectrum shows a subharmonic gap structure (SGS), described by an extended model of Octavio, Tinkham, Blonder and Klapwijk (OTBK), while at higher temperatures the SGS vanishes and an SN-like behaviour can be observed.

  19. Anomalous Hall effect in ion-beam sputtered Co2FeAl full Heusler alloy thin films

    Science.gov (United States)

    Husain, Sajid; Kumar, Ankit; Akansel, Serkan; Svedlindh, Peter; Chaudhary, Sujeet

    2017-11-01

    Investigations of temperature dependent anomalous Hall effect and longitudinal resistivity in Co2FeAl (CFA) thin films grown on Si(1 0 0) at different substrate temperature Ts are reported. The scaling of the anomalous Hall conductivity (AHC) and the associated phenomenological mechanisms (intrinsic and extrinsic) are analyzed vis-à-vis influence of Ts. The intrinsic contribution to AHC is found to be dominating over the extrinsic one. The appearance of a resistivity minimum at low temperature necessitates the inclusion of quantum corrections on account of weak localization and electron-electron scattering effects whose strength reduces with increase in Ts. The study establishes that the optimization of Ts plays an important role in the improvement of atomic ordering which indicates the higher strength of spin-orbit coupling and leads to the dominant intrinsic contribution to AHC in these CFA full Heusler alloy thin films.

  20. Multiferroic BiFeO3 thin films and nanodots grown on highly oriented pyrolytic graphite substrates

    Science.gov (United States)

    Shin, Hyun Wook; Son, Jong Yeog

    2017-12-01

    Multiferroic BiFeO3 (BFO) thin films and nanodots are deposited on highly oriented pyrolytic graphite (HOPG) substrates via a pulsed laser deposition technique, where the HOPG surface has a honeycomb lattice structure made of carbon atoms, similar to graphene. A graphene/BFO/HOPG capacitor exhibited multiferroic properties, namely ferroelectricity (a residual polarization of 26.8 μC/cm2) and ferromagnetism (a residual magnetization of 1.1 × 10-5 emu). The BFO thin film had high domain wall energies and demonstrated switching time of approximately 82 ns. An 8-nm BFO nanodot showed a typical piezoelectric hysteresis loop with an effective residual piezoelectric constant of approximately 110 pm/V and exhibited two clearly separated current curves depending on the ferroelectric polarization direction.

  1. Unexpected formation by pulsed laser deposition of nanostructured Fe/olivine thin films on MgO substrates

    International Nuclear Information System (INIS)

    Legrand, C.; Dupont, L.; Davoisne, C.; Le Marrec, F.; Perriere, J.; Baudrin, E.

    2011-01-01

    Olivine-type LiFePO 4 thin films were grown on MgO (1 0 0) substrates by pulsed laser deposition (PLD). The formation of an original nanostructure is evidenced by transmission electron microscopy measurements. Indeed, on focused ion beam prepared cross sections of the thin film, we observe, the amazing formation of metallic iron/olivine nanostructures. The appearance of such a structure is explained owing to a topotactic relation between the two phases as well as a strong Mg diffusion from the substrate to the film surface. Magnesium migration is thus concomitant with the creation of metallic iron domains that grow from the core of the film to the surface leading to large protuberances. To the best of our knowledge, this is the first report on iron extrusion from the olivine-type LiFePO 4 . -- Graphical Abstract: HRTEM image of olivine/Fe nanostructure obtained by PLD. Display Omitted Research highlights: → This manuscript describes the attempt to prepare textured LiFePO 4 by PLD. This is presently a challenge to better understand the physical properties of the material, used as cathode in lithium ion batteries. → We describe for the first time the iron extrusion from this material. Indeed, there were recent reports on the possible non-stoichiometry, i.e. lithium or oxygen. However, on the iron side, only some defect were observed for hydrothermally prepared material but the extrusion is new in this paper. → We prepared interesting nanostructures which could be used for different fundamental studies: electric and magnetic measurements.

  2. Magnetoresistance Versus Oxygen Deficiency in Epi-stabilized SrRu1 - x Fe x O3 - δ Thin Films.

    Science.gov (United States)

    Dash, Umasankar; Acharya, Susant Kumar; Lee, Bo Wha; Jung, Chang Uk

    2017-12-01

    Oxygen vacancies have a profound effect on the magnetic, electronic, and transport properties of transition metal oxide materials. Here, we studied the influence of oxygen vacancies on the magnetoresistance (MR) properties of SrRu 1 - x Fe x O 3 - δ epitaxial thin films (x = 0.10, 0.20, and 0.30). For this purpose, we synthesized highly strained epitaxial SrRu 1 - x Fe x O 3 - δ thin films with atomically flat surfaces containing different amounts of oxygen vacancies using pulsed laser deposition. Without an applied magnetic field, the films with x = 0.10 and 0.20 showed a metal-insulator transition, while the x = 0.30 thin film showed insulating behavior over the entire temperature range of 2-300 K. Both Fe doping and the concentration of oxygen vacancies had large effects on the negative MR contributions. For the low Fe doping case of x = 0.10, in which both films exhibited metallic behavior, MR was more prominent in the film with fewer oxygen vacancies or equivalently a more metallic film. For semiconducting films, higher MR was observed for more semiconducting films having more oxygen vacancies. A relatively large negative MR (~36.4%) was observed for the x = 0.30 thin film with a high concentration of oxygen vacancies (δ = 0.12). The obtained results were compared with MR studies for a polycrystal of (Sr 1 - x La x )(Ru 1 - x Fe x )O 3 . These results highlight the crucial role of oxygen stoichiometry in determining the magneto-transport properties in SrRu 1 - x Fe x O 3 - δ thin films.

  3. Thickness dependence of magnetic anisotropy and domains in amorphous Co{sub 40}Fe{sub 40}B{sub 20} thin films grown on PET flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhenhua, E-mail: tangzhenhua1988@163.com [Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Ni, Hao [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); College of science, China university of petroleum, Qingdao, Shandong 266580 China (China); Lu, Biao [Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Zheng, Ming [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Huang, Yong-An [Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Lu, Sheng-Guo, E-mail: sglu@gdut.edu.cn [Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Tang, Minghua [Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education (Xiangtan University), Xiangtan, Hunan 411105 (China); Gao, Ju [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2017-03-15

    The amorphous Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB) films (5–200 nm in thickness) were grown on flexible polyethylene terephthalate (PET) substrates using the DC magnetron-sputtering method. The thickness dependence of structural and magnetic properties of flexible CoFeB thin films was investigated in detail. The in-plane uniaxial magnetic anisotropy induced by strain as a function of thickness was obtained in flexible CoFeB thin films, and a critical thickness of ~150 nm for in-plane magnetic anisotropy was observed. Moreover, the domains and the uniaxial anisotropy as a function of angular direction of applied magnetic field were characterized. The results show potential for designing CoFeB-based flexible spintronic devices in which the physical parameters could be tailored by controlling the thickness of the thin film. - Graphical abstract: The in-plane uniaxial magnetic anisotropy induced by strain as a function of thickness was obtained in flexible CoFeB thin films, and a critical thickness of ~150 nm for in-plane magnetic anisotropy was observed. Moreover, the domains and the uniaxial anisotropy as a function of angular direction of applied magnetic field were characterized. - Highlights: • The thickness effect on the magnetic properties in amorphous CoFeB thin films grown on flexible substrates was investigated. • The in-plane uniaxial magnetic anisotropy induced by strains was observed. • A critical thickness of ~ 150 nm for the flexible CoFeB thin film on PET substrate was obtained.

  4. Corrosion resistance of the NdFeB coated with AlN/SiC bilayer thin films by magnetron sputtering under different environments

    International Nuclear Information System (INIS)

    Tao, Lei; Li, Heqin; Shen, Jiong; Qiao, Kai; Wang, Wei; Zhou, Chu; Zhang, Jing; Tang, Qiong

    2015-01-01

    The AlN/SiC bilayer and SiC monolayer thin films were deposited on sintered NdFeB by RF magnetron sputtering to improve the corrosion resistance. Their structures and morphologies were studied by XRD and AFM and SEM. The corrosion behaviors of AlN/SiC and SiC-coated NdFeB in 3.5 wt% NaCl, 20 wt% NaOH and 0.1 mol/L H 2 SO 4 solutions were characterized with potentiodynamic polarization curves. The results show that AlN/SiC and SiC thin films can evidently improve the corrosion resistance of NdFeB, and the AlN/SiC films have the better resistance than the SiC film. - Highlights: • SiC monolayer and AlN/SiC bilayer thin films have been prepared on NdFeB at room temperature by RF magnetron sputtering. • NdFeB coated with AlN/SiC bilayer films has more corrosion resistance than that coated with SiC monolayer film under different environments. • The grains of the AlN/SiC bilayer films are finer and the surface roughness is lower than that of SiC monolayer film

  5. Corrosion resistance of the NdFeB coated with AlN/SiC bilayer thin films by magnetron sputtering under different environments

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Lei [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); Li, Heqin, E-mail: lhqjs@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); Shen, Jiong [Earth-Panda Advance Magnetic Material Co., Ltd., Anhui Lujiang 231500 (China); Qiao, Kai; Wang, Wei; Zhou, Chu [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); Zhang, Jing; Tang, Qiong [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); School of Electronic Science and Applied Physics, Hefei University of Technology, Anhui Hefei 230009 (China)

    2015-02-01

    The AlN/SiC bilayer and SiC monolayer thin films were deposited on sintered NdFeB by RF magnetron sputtering to improve the corrosion resistance. Their structures and morphologies were studied by XRD and AFM and SEM. The corrosion behaviors of AlN/SiC and SiC-coated NdFeB in 3.5 wt% NaCl, 20 wt% NaOH and 0.1 mol/L H{sub 2}SO{sub 4} solutions were characterized with potentiodynamic polarization curves. The results show that AlN/SiC and SiC thin films can evidently improve the corrosion resistance of NdFeB, and the AlN/SiC films have the better resistance than the SiC film. - Highlights: • SiC monolayer and AlN/SiC bilayer thin films have been prepared on NdFeB at room temperature by RF magnetron sputtering. • NdFeB coated with AlN/SiC bilayer films has more corrosion resistance than that coated with SiC monolayer film under different environments. • The grains of the AlN/SiC bilayer films are finer and the surface roughness is lower than that of SiC monolayer film.

  6. Improving the surface structure of high quality Sr{sub 2}FeMoO{sub 6} thin films for multilayer structures

    Energy Technology Data Exchange (ETDEWEB)

    Angervo, I., E-mail: ijange@utu.fi [Wihuri Physical Laboratory, Department of Physics and Astronomy, FI-20014 University of Turku (Finland); University of Turku Graduate School (UTUGS), University of Turku, FI-20014 Turku (Finland); Saloaro, M. [Wihuri Physical Laboratory, Department of Physics and Astronomy, FI-20014 University of Turku (Finland); Tikkanen, J. [Wihuri Physical Laboratory, Department of Physics and Astronomy, FI-20014 University of Turku (Finland); University of Turku Graduate School (UTUGS), University of Turku, FI-20014 Turku (Finland); Huhtinen, H.; Paturi, P. [Wihuri Physical Laboratory, Department of Physics and Astronomy, FI-20014 University of Turku (Finland)

    2017-02-28

    Highlights: • The effects of PLD laser fluence and deposition temperature are investigated on SFMO thin films. • We focus on improving the surface structure of the SFMO thin films. • Both the surface structure and the Curie temperature can be improved by fabricating the films at 900 °C. - Abstract: Two sets of Sr{sub 2}FeMoO{sub 6} thin films were prepared with pulsed laser deposition and the effect of the laser fluence and the deposition temperature was investigated. The Sr{sub 2}FeMoO{sub 6} thin films showed clear evidence of impurity phases when the laser fluence was altered. Phase pure films resulted through the whole temperature range between 900 °C and 1050 °C when a proper laser fluence was used. Films fabricated at lower deposition temperatures resulted with smaller surface roughnesses around 5 nm, higher Curie temperatures and with relatively high saturation magnetization values. The Curie temperature was determined from the minimum of the first order derivative and results showed the highest values of 350 K and above. The films with the highest Curie temperature reached zero magnetization above 400 K. The results indicate that both high microstructural and high magnetic quality Sr{sub 2}FeMoO{sub 6} thin films can be obtained with a deposition temperature between 900 °C and 950 °C. This provides better fabrication parameters for the upcoming SFMO multilayer structures.

  7. Stoichiometry-, phase- and orientation-controlled growth of polycrystalline pyrite (FeS 2) thin films by MOCVD

    Science.gov (United States)

    Höpfner, C.; Ellmer, K.; Ennaoui, A.; Pettenkofer, C.; Fiechter, S.; Tributsch, H.

    1995-06-01

    The growth process of polycrystalline pyrite thin films employing low pressure metalorganic chemical vapor deposition (LP-MOCVD) in a vertical cold wall reactor has been investigated. Iron pentacarbonyl (IPC) and t-butyldisulfide (TBDS) were utilized as precursors. Study of the growth rate as a function of temperature reveals a kinetically controlled growth process with an activation energy of 73 kJ / mol over the temperature range from 250 to 400°C. From 500 to 630°C, the growth rate is mainly mass transport limited. Decomposition of the films into pyrrhotite (Fe 1 - xS) occurs at higher growth temperatures. The {S}/{Fe} ratio in the films has been controlled from 1.23 up to 2.03 by changing the TBDS partial pressure. With increasing deposition temperature, the crystallites in the films show the tendency to grow [100]-oriented on amorphous substrates at a growth rate of 2.5 Å / s. The grains show a preferential orientation in the [111] direction upon lowering the growth rate down to 0.3 Å / s. Temperatures above 550°C are beneficial in enhancing the grain size in the columnar structured films up to 1.0 μm.

  8. Stoichiometry-, phase- and orientation-controlled growth of polycrystalline pyrite (FeS{sub 2}) thin films by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Hoepfner, C.; Ellmer, K.; Ennaoui, A.; Pettenkofer, C.; Fiechter, S.; Tributsch, H. [Hahn-Meitner-Institut Berlin, Abteilung Solare Energetik, Berlin (Germany)

    1995-06-01

    The growth process of polycrystalline pyrite thin films employing low pressure metalorganic chemical vapor deposition (LP-MOCVD) in a vertical cold wall reactor has been investigated. Iron pentacarbonyl (IPC) and t-butyldisulfide (TBDS) were utilized as precursors. Study of the growth rate as a function of temperature reveals a kinetically controlled growth process with an activation energy of 73 kJ/mol over the temperature range from 250 to 400C. From 500 to 630C, the growth rate is mainly mass transport limited. Decomposition of the films into pyrrhotite (Fe{sub 1-x}S) occurs at higher growth temperatures. The S/Fe ratio in the films has been controlled from 1.23 up to 2.03 by changing the TBDS partial pressure. With increasing deposition temperature, the crystallites in the films show the tendency to grow [100]-oriented on amorphous substrates at a growth rate of 2.5 A/s. The grains show a preferential orientation in the [111] direction upon lowering the growth rate down to 0.3 A/s. Temperatures above 550C are beneficial in enhancing the grain size in the columnar structured films up to 1.0 {mu}m

  9. Synthesis of nanocrystalline nickel-zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films by chemical bath deposition method

    International Nuclear Information System (INIS)

    Pawar, D.K.; Pawar, S.M.; Patil, P.S.; Kolekar, S.S.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → We have successfully synthesized nickel-zinc ferrite (Ni 0.8 Zn 0.2 Fe 2 O 4 ) thin films on stainless steel substrates using a low temperature chemical bath deposition method. → The surface morphological study showed the compact flakes like morphology. → The as-deposited thin films are hydrophilic (10 o o ) whereas the annealed thin films are super hydrophilic (θ o ) in nature. → Ni 0.8 Zn 0.2 Fe 2 O 4 thin films could be used in supercapacitor. - Abstract: The nickel-zinc ferrite (Ni 0.8 Zn 0.2 Fe 2 O 4 ) thin films have been successfully deposited on stainless steel substrates using a chemical bath deposition method from alkaline bath. The films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), static water contact angle and cyclic voltammetry measurements. The X-ray diffraction pattern shows that deposited Ni 0.8 Zn 0.2 Fe 2 O 4 thin films were oriented along (3 1 1) plane. The FTIR spectra showed strong absorption peaks around 600 cm -1 which are typical for cubic spinel crystal structure. SEM study revealed compact flakes like morphology having thickness ∼1.8 μm after air annealing. The annealed films were super hydrophilic in nature having a static water contact angle (θ) of 5 o .The electrochemical supercapacitor study of Ni 0.8 Zn 0.2 Fe 2 O 4 thin films has been carried out in 6 M KOH electrolyte. The values of interfacial and specific capacitances obtained were 0.0285 F cm -2 and 19 F g -1 , respectively.

  10. Magnetic and structural properties of Co{sub 2}FeAl thin films grown on Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Belmeguenai, Mohamed, E-mail: belmeguenai.mohamed@univ-paris13.fr [LSPM (CNRS-UPR 3407) 99 Avenue Jean-Baptiste Clément Université Paris 13, 93430 Villetaneuse (France); Tuzcuoglu, Hanife [LSPM (CNRS-UPR 3407) 99 Avenue Jean-Baptiste Clément Université Paris 13, 93430 Villetaneuse (France); Gabor, Mihai; Petrisor, Traian [Center for Superconductivity, Spintronics and Surface Science, Technical University of Cluj-Napoca, Street Memorandumului No. 28, RO-400114 Cluj-Napoca (Romania); Tiusan, Coriolan [Center for Superconductivity, Spintronics and Surface Science, Technical University of Cluj-Napoca, Street Memorandumului No. 28, RO-400114 Cluj-Napoca (Romania); Institut Jean Lamour, CNRS, Université de Nancy, BP 70239, F-54506 Vandoeuvre (France); Berling, Dominique [IS2M (CNRS-LRC 7228), 15 rue Jean Starcky, Université de Haute-Alsace, BP 2488, 68057 Mulhouse-Cedex (France); Zighem, Fatih; Mourad Chérif, Salim [LSPM (CNRS-UPR 3407) 99 Avenue Jean-Baptiste Clément Université Paris 13, 93430 Villetaneuse (France)

    2015-01-01

    The correlation between magnetic and structural properties of Co{sub 2}FeAl (CFA) thin films of different thicknesses (10 nmfilms. The deduced lattice parameter increases with the film thickness. Moreover, pole figures showed no in-plane preferential growth orientation. The magneto-optical Kerr effect hysteresis loops showed the presence of a weak in-plane uniaxial anisotropy with a random easy axis direction. The coercive field, measured with the applied field along the easy axis direction, and the uniaxial anisotropy field increase linearly with the inverse of the CFA thickness. The microstrip line ferromagnetic resonance measurements for in-plane and perpendicular applied magnetic fields revealed that the effective magnetization and the uniaxial in-plane anisotropy field follow a linear variation versus the inverse CFA thickness. This allows deriving a perpendicular surface anisotropy coefficient of −1.86 erg/cm{sup 2}. - Highlights: • Various Co{sub 2}FeAl thin films were grown on a Si(001) substrates and annealed at 600 °C. • The thickness dependence of magnetic and structural properties has been studied. • X-ray measurements revealed an (011) out-of-plane textured growth of the films. • The easy axis coercive field varies linearly with the inverse CFA thickness. • The effective magnetization increases linearly with the inverse film thickness.

  11. Thin films

    International Nuclear Information System (INIS)

    Strongin, M.; Miller, D.L.

    1976-01-01

    This article reviews the phenomena that occur in films from the point of view of a solid state physicist. Films form the basis for many established and developing technologies. Metal layers have always been important for optical coatings and as protective coatings. In the most sophisticated cases, films and their interaction on silicon surfaces form the basis of modern electronic technology. Films of silicon, GaAs and composites of these materials promise to lead to practical photovoltaic devices

  12. Optical Properties of Fe3O4 Thin Films Prepared from the Iron Sand by Spin Coating Method

    Science.gov (United States)

    Yulfriska, N.; Rianto, D.; Murti, F.; Darvina, Y.; Ramli, R.

    2018-04-01

    Research on magnetic oxide is growing very rapidly. This magnetic oxide can be found in nature that is in iron sand. One of the beaches in Sumatera Barat containing iron sand is Tiram Beach, Padang Pariaman District, Sumatera Barat. The content of iron sand is generally in the form of magnetic minerals such as magnetite, hematite, and maghemit. Magnetite has superior properties that can be developed into thin films. The purpose of this research is to investigate the optical properties of transmittance, absorbance, reflectance and energy gap from Fe3O4 thin films. This type of research is an experimental research. The iron sand obtained from nature is first purified using a permanent magnet, then made in nanoparticle size using HEM-E3D with milling time for 30 hours. After that, the process of making thin film with sol-gel spin coating method. In this research, variation of rotation speed from spin coating is 1000 rpm, 2000 rpm and 3000 rpm. Based on XRD results indicated that the iron sand of Tiram beach contains magnetite minerals and the SEM results show that the thickness of the thin films formed is 25μm, 24μm and 11μm. The characterization tool used for characterizing optical properties is the UV-VIS Spectrophotometer. So it can be concluded that the greater the speed of rotation the thickness of the thin layer will be smaller, resulting in the transmittance and reflectance will be greater, while the absorbance will be smaller. Energy gap obtained from this research is 3,75eV, 3,75eV and 3,74eV. So the average energy gap obtained is 3,75eV.

  13. High Ms Fe16N2 thin film with Ag under layer on GaAs substrate

    Energy Technology Data Exchange (ETDEWEB)

    Allard Jr, Lawrence Frederick [ORNL

    2016-01-01

    (001) textured Fe16N2 thin film with Ag under layer is successfully grown on GaAs substrate using a facing target sputtering (FTS) system. After post annealing, chemically ordered Fe16N2 phase is formed and detected by X-ray diffraction (XRD). High saturation magnetization (Ms) is measured by a vibrating sample magnetometer (VSM). In comparison with Fe16N2 with Ag under layer on MgO substrate and Fe16N2 with Fe under layer on GaAs substrate, the current layer structure shows a higher Ms value, with a magnetically softer feature in contrast to the above cases. In addition, X-ray photoelectron spectroscopy (XPS) is performed to characterize the binding energy of N atoms. To verify the role of strain that the FeN layer experiences in the above three structures, Grazing Incidence X-ray Diffraction (GIXRD) is conducted to reveal a large in-plane lattice constant due to the in-plane biaxial tensile strain. INTRODUCTION

  14. LiFePO_4_−_xN_y thin-film electrodes coated on carbon fiber-modified current collectors for pseudocapacitors

    International Nuclear Information System (INIS)

    Chiu, Kuo-Feng; Su, Shih-Hsuan; Leu, Hoang-Jyh; Huang, Wei-Chieh

    2015-01-01

    LiFePO_4_−_xN_y thin films were sputter-deposited on micron carbon fibers (MCFs) under a gas mixture of N_2/Ar/H_2 as electrode materials in pseudocapacitors. The MCFs were fabricated by thermal chemical vapor deposition on stainless steel substrates as current collectors. Various amounts of N_2 were introduced by controlling the flow ratios of N_2 to Ar/H_2. The LiFePO_4_−_xN_y thin films coated on the surfaces of MCFs were observed by field emission scanning electron microscopy. The electrochemical properties of the LiFePO_4_−_xN_y thin films were characterized using cyclic voltammetry and charge–discharge processes. The LiFePO_4_−_xN_y thin-film electrode deposited under the optimal N_2 contents exhibited a high specific capacitance of 722 F/g at 1 A/g. Even at a current of 20 A/g, the electrode delivered a capacitance of 298 F/g. The pseudocapacitors using LiFePO_4_−_xN_y thin-film electrodes showed no significant capacitance fading after 1000 cycles at 1 A/g. The results indicated that nitrogen doping improved the electrochemical performances of LiFePO_4, demonstrating the potential of LiFePO_4_−_xN_y as an active material in pseudocapacitors. - Highlights: • LiFePO_4_−_xN_y thin films were sputter-deposited on micron carbon fibers (MCFs). • MCFs only act as a three-dimensional current collector in this system. • The pseudocapacitor exhibits a high specific capacitance.

  15. Static magnetism and thermal switching in randomly oriented L10 FePt thin films

    Science.gov (United States)

    Lisfi, A.; Pokharel, S.; Alqarni, A.; Akioya, O.; Morgan, W.; Wuttig, M.

    2018-05-01

    Static magnetism and thermally activated magnetic relaxation were investigated in granular FePt films (20 nm-200 nm thick) with random magnetic anisotropy through hysteresis loop, torque curve and magnetization time dependence measurements. While the magnetism of thicker film (200 nm thick) is dominated by a single switching of the ordered L10 phase, thinner film (20 nm) displays a double switching, which is indicative of the presence of the disordered cubic phase. The pronounced behavior of double switching in thinner film suggests that the film grain boundary is composed of soft cubic magnetic phase. The magnetic relaxation study reveals that magnetic viscosity S of the films is strongly dependent on the external applied field and exhibits a maximum value (12 kAm) around the switching field and a vanishing behavior at low (1 kOe) and large (12 kOe) fields. The activation volume of the thermal switching was found to be much smaller than the physical volume of the granular structure due to the incoherent rotation mode of the magnetization reversal mechanism, which is established to be domain wall nucleation.

  16. Single-phase {beta}-FeSi{sub 2} thin films prepared on Si wafer by femtosecond laser ablation and its photoluminescence at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lu Peixiang [State Key Laboratory of Laser Technology and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)]. E-mail: lupeixiang@mail.hust.edu.cn; Zhou Youhua [State Key Laboratory of Laser Technology and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China) and Physics and Information School, Jianghan University, Wuhan 430056 (China)]. E-mail: yhzhou@jhun.edu.cn; Zheng Qiguang [State Key Laboratory of Laser Technology and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang Guang [State Key Laboratory of Laser Technology and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2006-02-06

    Single-phase {beta}-FeSi{sub 2} thin films were prepared on Si(100) and Si(111) wafers by using femtosecond laser deposition with a FeSi{sub 2} alloy target for the first time. X-ray diffraction (XRD), field scanning electron microscopy (FSEM), scanning probe microscopy (SPM), electron backscattered diffraction pattern (EBSD), and Fourier-transform Raman infrared spectroscopy (FTRIS) were used to characterize the structure, composition, and properties of the {beta}-FeSi{sub 2}/Si films. The orientation of {beta}-FeSi{sub 2} grains was found to depend on the orientation of the Si substrates, and photoluminescence at wavelength of 1.53 {mu}m was observed from the single-phase {beta}-FeSi{sub 2}/Si thin film at room temperature (20 {sup o}C)

  17. Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film

    International Nuclear Information System (INIS)

    Chen, L.; Zhou, Y.; Lei, C.; Zhou, Z.M.; Ding, W.

    2010-01-01

    Giant magnetoimpedance (GMI) effect on NiFe thin film is very promising due to its application in developing the magnetic field sensors with highly sensitivity and low cost. In this paper, the single layered NiFe thin film and NiFe/Cu/NiFe thin film with a meander structure are prepared by the MEMS technology. The influences of sputtering parameters, film structure and conductor layer width on GMI effect in NiFe single layer and meander NiFe/Cu/NiFe film are investigated. Maximum of the GMI ratio in single layer and sandwich film is 5% and 64%, respectively. The results obtained are useful for developing the high-performance magnetic sensors based on NiFe thin film.

  18. Adsorption of organic layers over electrodeposited magnetite (Fe3O4) thin films

    International Nuclear Information System (INIS)

    Cortes, M.; Gomez, E.; Sadler, J.; Valles, E.

    2011-01-01

    Research highlights: → Adherent low roughness magnetite films ranging from 80 nm to 3.75 μm-thick were electrodeposited on Au/glass substrates under galvanostatic control. → X-ray diffraction and magnetic measurements corroborates the purity of the electrodeposited magnetite. → Both dodecanethiol and oleic acid are shown to adsorb on the magnetite prepared at low temperature, significantly inducing the hydrophobicity of the surface. → Contact angle and voltammetric measurements, as well as XPS confirm the monolayers formation. - Abstract: The formation of monolayers of two organic compounds (oleic acid and dodecanethiol) over magnetite films was studied. Magnetite films ranging from 80 nm to 3.75 μm-thick were electrodeposited on Au on glass substrates under galvanostatic control, with deposition parameters optimized for minimum surface roughness. Films were characterised by SEM and AFM, showing granular deposits with a low rms roughness of 5-40 nm measured over an area of 1 μm 2 . The growth rate was estimated by measuring cross-sections of the thin films. Pure magnetite with an fcc structure is observed in XRD diffractograms. The adsorption of both oleic acid and dodecanethiol on the magnetite films was tested by immersing them in ethanol solutions containing the organic molecules, for different deposition time, temperature and cleaning procedure. Monolayer formation in both cases was studied by contact angle and voltammetric measurements, as well as XPS.

  19. Comparative study on substitution effects in BiFeO{sub 3} thin films fabricated on FTO substrates by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xu; Tan, Guoqiang, E-mail: tan3114@163.com; Hao, Hangfei; Ren, Huijun

    2013-10-01

    Pure BiFeO{sub 3} (BFO), BiFe{sub 0.97}Co{sub 0.03}O{sub 3−δ} (BFCO) and Bi{sub 0.90}Gd{sub 0.10}Fe{sub 0.97}Co{sub 0.03}O{sub 3−δ} (BGFCO) thin films were successfully deposited on FTO substrates by chemical solution deposition technique. The field emission scanning electron microscope reveals that the surface morphology of the BGFCO thin film becomes more compact and uniform than that of the other two films. A slight lattice distortion is created in the BFCO thin film, whereas 10% Gd doping gives rise to tetragonal phase transition and (1 1 0) preferentially oriented film texture for the BGFCO thin film, as evidenced by Raman scattering spectra and X-ray diffraction analyses. X-ray photoelectron spectroscopy analyses clarify that Co-doping results in the increase of oxygen vacancy concentration in the BFCO film, while further introduction of Gd into the BFCO lattice can decrease oxygen vacancy concentration, and the concentrations of Fe{sup 2+} ions in the BFCO and BGFCO thin films are less than that in the BFO counterpart. The BFCO film shows the improved remanent polarization (P{sub r}) of 11.2 μC/cm{sup 2} compared with that of 1.4 μC/cm{sup 2} for the BFO film. The high breakdown strength, low leakage current density in the high electric filed, improved dielectric properties as well as the increased stereochemical activity of Bi ion lone electron pair of the BGFCO thin film all together contribute to the giant P{sub r} of 139.6 μC/cm{sup 2} at room temperature.

  20. Microstructure evolution and coercivity enhancement in Nd-Fe-B thin films diffusion-processed by R-Al alloys (R=Nd, Pr)

    Science.gov (United States)

    Xie, Yigao; Yang, Yang; Zhang, Tongbo; Fu, Yanqing; Jiang, Qingzheng; Ma, Shengcan; Zhong, Zhenchen; Cui, Weibin; Wang, Qiang

    2018-05-01

    Diffusion process by Nd-Al and Pr-Al alloys was compared and investigated in Nd-Fe-B thin films. Enhanced coercivity 2.06T and good squareness was obtained by using Pr85Al15 and Nd85Al15 alloys as diffusion sources. But the coercivity of diffusion-processed thin films by Pr70Al30 and Pr55Al45 alloys decreased to 2.04T and 1.82T. High ambient coercivity of 2.26T was achieved in diffusion-processed thin film by Nd70Al30 leading to an improved coercivity thermal stability because Nd2Fe14B grains were enveloped by Nd-rich phase as seen by transmission electron microscopy Nd-loss image. Meanwhile, microstructure-dependent parameters α and Neff were improved. However, high content of Al in diffusion-processed thin film by Nd55Al45 lead to degraded texture and coercivity.

  1. Magnetic properties and microstructure study of high coercivity Au/FePt/Au trilayer thin films

    International Nuclear Information System (INIS)

    Chen, S.K.; Yuan, F.T.; Liao, W.M.; Hsu, C.W.; Horng, Lance

    2006-01-01

    High-coercivity Au(60 nm)/FePt(δ nm)/Au(60 nm) trilayer samples were prepared by sputtering at room temperature, followed by post annealing at different temperatures. For the sample with δ=60 nm, L1 ordering transformation occurs at 500 deg. C. Coercivity (H c ) is increased with the annealing temperature in the studied range 400-800 deg. C. The H c value of the trilayer films is also varied with thickness of FePt intermediate layer (δ), from 27 kOe for δ=60 nm to a maximum value of 33.5 kOe for δ=20 nm. X-ray diffraction data indicate that the diffusion of Au atoms into the FePt L1 lattice is negligible even after a high-temperature (800 deg. C) annealing process. Furthermore, ordering parameter is almost unchanged as δ is reduced from 60 to 15 nm. Transmission electron microscope (TEM) photos indicate that small FePt Ll particles are dispersed amid the large-grained Au. We believe that the high coercivity of the trilayer sample is attributed to the small and uniform grain sizes of the highly ordered FePt particles which have perfect phase separation with Au matrix

  2. Magnetic surface domain imaging of uncapped epitaxial FeRh(001) thin films across the temperature-induced metamagnetic transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xianzhong; Matthes, Frank; Bürgler, Daniel E., E-mail: d.buergler@fz-juelich.de; Schneider, Claus M. [Peter Grünberg Institut, Electronic Properties (PGI-6) and Jülich-Aachen Research Alliance, Fundamentals of Future Information Technology (JARA-FIT), Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-01-15

    The surface magnetic domain structure of uncapped epitaxial FeRh/MgO(001) thin films was imaged by in-situ scanning electron microscopy with polarization analysis (SEMPA) at various temperatures between 122 and 450 K. This temperature range covers the temperature-driven antiferromagnetic-to-ferromagnetic phase transition in the body of the films that was observed in-situ by means of the more depth-sensitive magneto-optical Kerr effect. The SEMPA images confirm that the interfacial ferromagnetism coexisting with the antiferromagnetic phase inside the film is an intrinsic property of the FeRh(001) surface. Furthermore, the SEMPA data display a reduction of the in-plane magnetization occuring well above the phase transition temperature which, thus, is not related to the volume expansion at the phase transition. This observation is interpreted as a spin reorientation of the surface magnetization for which we propose a possible mechanism based on temperature-dependent tetragonal distortion due to different thermal expansion coefficients of MgO and FeRh.

  3. Effect of nitrogen environment on NdFeB thin films grown by radio frequency plasma beam assisted pulsed laser deposition

    International Nuclear Information System (INIS)

    Constantinescu, C.; Patroi, E.; Codescu, M.; Dinescu, M.

    2013-01-01

    Highlights: ► NdFeB thin films grown by PLD, in vacuum and in nitrogen, are presented. ► Nitrogen inclusion in thin film structures is related to improved coercitivity. ► Magnetical, optical and morphological properties of the thin films are discussed. - Abstract: NdFeB is a very attractive material for applications in electrical engineering and in electronics, for high-tech devices where high coercive field and high remanence are needed. In this paper we demonstrate that the deposition of nitrogen doped NdFeB thin films by pulsed laser deposition, in the presence of a nitrogen radiofrequency plasma beam, exhibit improved magnetic properties and surface morphology, when compared to vacuum deposited NdFeB layers. A Nd:YAG pulsed laser (3ω and 4ω) was focused on a NdFeB target, in vacuum, or in the presence of a nitrogen plasma beam. Substrate temperature (RT-850 °C), nitrogen gas pressure, and radiofrequency power (75–150 W), were particularly varied. The thin films were investigated by means of X-ray diffraction, atomic force microscopy, scanning electron microscopy, spectroscopic-ellipsometry, and vibrating sample magnetometry.

  4. Effect of nitrogen environment on NdFeB thin films grown by radio frequency plasma beam assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Constantinescu, C., E-mail: catalin.constantinescu@inflpr.ro [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor bd., Magurele, RO-077125, Bucharest (Romania); Patroi, E.; Codescu, M. [National Institute for Research and Development in Electrical Engineering - Advanced Research, 313 Spl. Unirii, Sector 3, RO-030138, Bucharest (Romania); Dinescu, M. [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor bd., Magurele, RO-077125, Bucharest (Romania)

    2013-03-01

    Highlights: Black-Right-Pointing-Pointer NdFeB thin films grown by PLD, in vacuum and in nitrogen, are presented. Black-Right-Pointing-Pointer Nitrogen inclusion in thin film structures is related to improved coercitivity. Black-Right-Pointing-Pointer Magnetical, optical and morphological properties of the thin films are discussed. - Abstract: NdFeB is a very attractive material for applications in electrical engineering and in electronics, for high-tech devices where high coercive field and high remanence are needed. In this paper we demonstrate that the deposition of nitrogen doped NdFeB thin films by pulsed laser deposition, in the presence of a nitrogen radiofrequency plasma beam, exhibit improved magnetic properties and surface morphology, when compared to vacuum deposited NdFeB layers. A Nd:YAG pulsed laser (3{omega} and 4{omega}) was focused on a NdFeB target, in vacuum, or in the presence of a nitrogen plasma beam. Substrate temperature (RT-850 Degree-Sign C), nitrogen gas pressure, and radiofrequency power (75-150 W), were particularly varied. The thin films were investigated by means of X-ray diffraction, atomic force microscopy, scanning electron microscopy, spectroscopic-ellipsometry, and vibrating sample magnetometry.

  5. Hard magnetic properties of rapidly annealed NdFeB thin films on Nb and V buffer layers

    International Nuclear Information System (INIS)

    Jiang, H.; Evans, J.; O'Shea, M.J.; Du Jianhua

    2001-01-01

    NdFeB thin films of the form A (20 nm)/NdFeB(d nm)/A(20 nm), where d ranges from 54 to 540 nm and the buffer layer A is Nb or V were prepared on a Si(1 0 0) substrate by magnetron sputtering. The hard Nd 2 Fe 14 B phase is formed by a 30 s rapid anneal or a 20 min anneal. Average crystallite size ranged from 20 to 35 nm with the rapidly annealed samples having the smaller crystallite size. These samples also exhibited a larger coercivity and energy product than those treated by a 20 min vacuum anneal. A maximum coercivity of 26.3 kOe at room temperature was obtained for a Nb/NdFeB (180 nm)/Nb film after a rapid anneal at 725 deg. C. Initial magnetization curves indicate magnetization rotation rather than nucleation of reverse domains is important in the magnetization process. A Brown's equation analysis of the coercivity as a function of temperature allowed us to compare the rapidly annealed and 20 min annealed samples. This analysis suggests that rapid annealing gives higher quality crystalline grains than the 20 min annealed sample leading to the observed large coercivity in the rapidly annealed samples

  6. Temperature-dependent Gilbert damping of Co2FeAl thin films with different degree of atomic order

    Science.gov (United States)

    Kumar, Ankit; Pan, Fan; Husain, Sajid; Akansel, Serkan; Brucas, Rimantas; Bergqvist, Lars; Chaudhary, Sujeet; Svedlindh, Peter

    2017-12-01

    Half-metallicity and low magnetic damping are perpetually sought for spintronics materials, and full Heusler compounds in this respect provide outstanding properties. However, it is challenging to obtain the well-ordered half-metallic phase in as-deposited full Heusler compound thin films, and theory has struggled to establish a fundamental understanding of the temperature-dependent Gilbert damping in these systems. Here we present a study of the temperature-dependent Gilbert damping of differently ordered as-deposited Co2FeAl full Heusler compound thin films. The sum of inter- and intraband electron scattering in conjunction with the finite electron lifetime in Bloch states governs the Gilbert damping for the well-ordered phase, in contrast to the damping of partially ordered and disordered phases which is governed by interband electronic scattering alone. These results, especially the ultralow room-temperature intrinsic damping observed for the well-ordered phase, provide fundamental insights into the physical origin of the Gilbert damping in full Heusler compound thin films.

  7. Magneto-transport and thermoelectric properties of epitaxial FeSb{sub 2} thin film on MgO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Duong, Anh Tuan; Rhim, S. H., E-mail: sonny@ulsan.ac.kr; Shin, Yooleemi; Nguyen, Van Quang; Cho, Sunglae, E-mail: slcho@ulsan.ac.kr [Department of Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 680-749 (Korea, Republic of)

    2015-01-19

    We report magneto-transport and thermoelectric properties of FeSb{sub 2} thin film epitaxially grown on the MgO substrate using molecular beam epitaxy. The film exhibits compressive strain of 1.74% owing to large lattice mismatch, whose physical consequences are nontrivial. Magnetic phase has been changed from diamagnetic in bulk, as evidenced by anomalous Hall effect (AHE) and negative magneto-resistance (MR). The FeSb{sub 2} film is semiconducting without any metallic transition unlike the bulk counterpart. In particular, hysteresis in MR with distinct feature of AHE is evident with coercive field of 500 and 110 Oe for T = 20 and 50 K, respectively. Furthermore, from the Seebeck coefficients and temperature dependence of the resistivity, it is evident that the film is semiconducting with small band gap: 3.76 meV for T < 40 K and 13.48 meV for T > 40 K, respectively, where maximum thermoelectric power factor of 12 μV/cm·K at T = 50 K.

  8. Kinetics and Mechanisms of Oxygen Surface Exchange on La0.6Sr0.4FeO3-delta Thin Films

    OpenAIRE

    Mosleh, Majid; Søgaard, Martin; Hendriksen, Peter Vang

    2009-01-01

    The thermodynamic properties as well as oxygen exchange kinetics were examined on mixed ionic and electronic conducting (La0.6Sr0.4)0.99FeO3− (LSF64) thin films deposited on MgO single crystals. It is found that thin films and bulk material have the same oxygen stoichiometry for a given temperature and oxygen partial pressure [i.e., the incorporation reaction has the same reaction enthalpy (H0=−105 KJ/mol) and entropy (S0=−75.5 J/mol/K) as found for bulk material]. The thin film shows smaller...

  9. Magnetocrystalline anisotropy in a (110) (Tb0.27Dy0.73)Fe2 thin-film

    International Nuclear Information System (INIS)

    Fuente, C de la; Arnaudas, J I; Benito, L; Ciria, M; Moral, A del; Dufour, C; Dumesnil, K

    2004-01-01

    Magnetic anisotropy measurements performed in a (110) (Tb 0.27 Dy 0.73 )Fe 2 (Terfenol-D) film epitaxially grown on a sapphire substrate are presented. The magnetic torque curves have been determined by using a vectorial vibrating sample magnetometer, which allows us to measure the angular dependence of magnetization components parallel, M parallel , and perpendicular, M perp , to the applied field up to 2 T. The fourfold symmetry associated with the cubic structure within the (110) plane is clearly observed. The analysis of the experimental torque has been carried out considering magnetocrystalline anisotropy up to sixth order and magnetoelastic energy up to second order; so, the magnetocrystalline anisotropy constants in the (110) plane of the film, K 1 and K 2 , have been obtained. This allows us to determine the direction of the magnetization easy axis for (110) Terfenol-D thin-film: it is [1bar12] at RT, passes through [3bar34] at 140 K and then changes to [1bar20] at 40 K. It was completely impossible to explain the angular dependence of the experimental magnetic torque without including shear and tetragonal magnetoelastic stress parameters, b 2 and b 1 , respectively. This confirms the paramount role of the strain in the determination of the magnetic properties in this kind of Terfenol-D thin film

  10. Ordering phenomena in FeCo-films and Fe/Cr-multilayers: an X-ray and neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, B.

    2001-07-01

    The following topics are covered: critical phenomena in thin films, critical adsorption, finite size scaling, FeCo Ising model, kinematical scattering theory for thin films, FeCo thin films, growth and characterisation of single crystal FeCo thin films, X-ray study of ordering in FeCo films, antiferromagnetic coupling in Fe/Cr multilayers, neutron scattering on Fe/Cr multilayers (WL)

  11. First report on synthesis of ZnFe_2O_4 thin film using successive ionic layer adsorption and reaction: Approach towards solid-state symmetric supercapacitor device

    International Nuclear Information System (INIS)

    Raut, Shrikant S.; Sankapal, Babasaheb R.

    2016-01-01

    Highlights: • First report on synthesis of ZnFe_2O_4 thin film using SILAR method. • ZnFe_2O_4 electrode yields the specific capacitance of 471 Fg"−"1 at a scan rate of 5 mV s"−"1 in 1 M NaOH aqueous solution. • Solid-state symmetric supercapacitor device based on ZnFe_2O_4 sandwiched in polyvinyl alcohol (PVA)–LiClO_4 gel electrolyte exhibits voltage windows of 1.0 V. • ZnFe_2O_4-SSS supercapacitor device shows good energy and power density with long cycle life. - Abstract: ZnFe_2O_4 thin film has been synthesized by a simple and low cost successive ionic layer adsorption and reaction (SILAR) method without the use of surfactant or template. The nanoplate composed of nanoparticles with porous surface morphology has been revealed which is beneficial towards supercapacitor application. Formed ZnFe_2O_4 thin film has been tested as an electrode material for supercapacitor through electrochemical analysis. First attempt for SILAR synthesized ZnFe_2O_4 thin film exhibited a specific capacitance of 471 Fg"−"1 at a scan rate of 5 mVs"−"1 in 1 M NaOH aqueous solution. Further, ZnFe_2O_4 solid-state symmetric (SSS) supercapacitor device demonstrated voltage window of 1.0 V with specific capacitance of 32 Fg"−"1, energy density of 4.47 Whkg"−"1 and power density of 277 Wkg"−"1 at 1 Ag"−"1 current density. Such high performance capacitive behavior indicates ZnFe_2O_4 thin film is promising and low cost electrode material towards energy storage devices for various portable electronic systems.

  12. Insights into the potentiometric response behaviour vs. Li+ of LiFePO4 thin films in aqueous medium

    International Nuclear Information System (INIS)

    Sauvage, F.; Tarascon, J.-M.; Baudrin, E.

    2008-01-01

    The potentiometric response of PLD-made LiFePO 4 thin films versus Li + ions in aqueous solutions has been investigated, and a sensitivity of 54 mV dec -1 has been observed in a Li + concentration range of 1-10 -4 M. Physical and electrochemical measurements of electrodes aged in aqueous medium show a slight surface oxidation with formation of heterosite-FePO 4 that we show to be responsible for the stable potential response measured. Cyclic voltamperometry measurements operated in different Li + concentration clearly highlight the key relation between the material lithium ion insertion/de-insertion capability and its potentiometric sensing response implying a faradaic-governed sensing mechanism. Based on such a finding, selection criteria (enlisting among others the potential of the redox couple, the nature of the insertion process) are herein underlined in the search for new sensitive materials

  13. Al and Fe co-doped transparent conducting ZnO thin film for mediator-less biosensing application

    Directory of Open Access Journals (Sweden)

    Shibu Saha

    2011-12-01

    Full Text Available Highly c-axis oriented Al and Fe co-doped ZnO (ZAF thin film is prepared by pulsed laser deposition. Fe introduces redox centre along with shallow donor level while Al doping enhances conductivity of ZnO, thus removing the requirement of both mediator and bottom conducting layer in bioelectrode. Model enzyme (glucose oxidase, was immobilized on surface of ZAF matrix. Cyclic voltammetry and photometric assay show that prepared bio-electrode is sensitive to glucose concentration with enhanced response of 0.18 μAmM-1cm-2 and low Km ∼ 2.01 mM. The results illustrate that ZAF is an attractive matrix for realization of miniaturized mediator-less solid state biosensor.

  14. Thin Film Microbatteries

    International Nuclear Information System (INIS)

    Dudney, Nancy J.

    2008-01-01

    aerosol spray coating, for one or more components of the battery. The active materials used for the thin film cathodes and anodes are familiar intercalation compounds, but the microstructures and often the cycling properties of the thin films may be quite distinct from those of battery electrodes formed from powders. The thin film cathodes are dense and homogeneous with no added phases such as binders or electrolytes. When deposited at ambient temperatures, the films of cathodes, such as LiCoO 2 , V 2 O 5 , LiMn 2 O4 , LiFePO 4 are amorphous or nanocrystalline. But even in this form, they often act as excellent cathodes with large specific capacities and good stability for hundreds to thousands of cycles. Annealing the cathode films at temperatures of 300 to 800 C may be used to induce crystallization and grain growth of the desired intercalation compound. Crystallizing the cathode film generally improves the Li chemical diffusivity in the electrode material, and hence the power delivered by the battery, by 1-2 orders of magnitude. The microstructure is also tailored by the deposition and heat treatment. Figure 3 shows a fracture edge of an annealed LiCoO 2 cathode film on an alumina substrate. The columnar microstructure, which is typical of a vapor deposited film, sinters at high temperatures leaving small fissures between the dense columns. Such crystalline films also may have a preferred crystallographic orientation. For LiCoO 2 films the crystallographic texture differs for films deposited by sputtering versus pulse laser ablation processes. To improve the manufacturability of the thin film batteries, it would be beneficial to eliminate or minimize the temperature or duration of the annealing step. Several efforts have lead to low temperature fabrication of thin film batteries on polyimide substrates, but the battery capacity and rate are lower than those treated at high temperatures. For the battery anode, many designs use a vapor-deposited metallic lithium film as

  15. Epitaxial strain-engineered self-assembly of magnetic nanostructures in FeRh thin films

    International Nuclear Information System (INIS)

    Witte, Ralf; Kruk, Robert; Molinari, Alan; Wang, Di; Brand, Richard A; Hahn, Horst; Schlabach, Sabine; Provenzano, Virgil

    2017-01-01

    In this paper we introduce an innovative bottom–up approach for engineering self-assembled magnetic nanostructures using epitaxial strain-induced twinning and phase separation. X-ray diffraction, 57 Fe Mössbauer spectroscopy, scanning tunneling microscopy, and transmission electron microscopy show that epitaxial films of a near-equiatomic FeRh alloy respond to the applied epitaxial strain by laterally splitting into two structural phases on the nanometer length scale. Most importantly, these two structural phases differ with respect to their magnetic properties, one being paramagnetic and the other ferromagnetic, thus leading to the formation of a patterned magnetic nanostructure. It is argued that the phase separation directly results from the different strain-dependence of the total energy of the two competing phases. This straightforward relation directly enables further tailoring and optimization of the nanostructures’ properties. (paper)

  16. The preparation of Zn-ferrite epitaxial thin film from epitaxial Fe3O4:ZnO multilayers by ion beam sputtering deposition

    International Nuclear Information System (INIS)

    Su, Hui-Chia; Dai, Jeng-Yi; Liao, Yen-Fa; Wu, Yu-Han; Huang, J.C.A.; Lee, Chih-Hao

    2010-01-01

    A new method to grow a well-ordered epitaxial ZnFe 2 O 4 thin film on Al 2 O 3 (0001) substrate is described in this work. The samples were made by annealing the ZnO/Fe 3 O 4 multilayer which was grown with low energy ion beam sputtering deposition. Both the Fe 3 O 4 and ZnO layers were found grown epitaxially at low temperature and an epitaxial ZnFe 2 O 4 thin film was formed after annealing at 1000 o C. X-ray diffraction shows the ZnFe 2 O 4 film is grown with an orientation of ZnFe 2 O 4 (111)//Al 2 O 3 (0001) and ZnFe 2 O 4 (1-10)//Al 2 O 3 (11-20). X-ray absorption spectroscopy studies show that Zn 2+ atoms replace the tetrahedral Fe 2+ atoms in Fe 3 O 4 during the annealing. The magnetic properties measured by vibrating sample magnetometer show that the saturation magnetization of ZnFe 2 O 4 grown from ZnO/Fe 3 O 4 multilayer reaches the bulk value after the annealing process.

  17. Magnetization in permalloy thin films

    Indian Academy of Sciences (India)

    Thin films of permalloy (Ni80Fe20) were prepared using an Ar+N2 mixture with magnetron ... alloys of Ni and Fe) take an important place. NiFe alloy with a ... room temperature (∼298 K, without intentional heating) on Si(100) substrates. A base pressure of 1×10−6 mbar was achieved prior to the deposition. Three different ...

  18. Broadband strip-line ferromagnetic resonance spectroscopy of soft magnetic CoFeTaZr patterned thin films

    Science.gov (United States)

    Gupta, S.; Kumar, D.; Jin, T. L.; Nongjai, R.; Asokan, K.; Ghosh, A.; Aparnadevi, M.; Suri, P.; Piramanayagam, S. N.

    2018-05-01

    In this paper, magnetic and magnetization dynamic properties of compositionally patterned Co46Fe40Ta9Zr5 thin films are investigated. A combination of self-assembly and ion-implantation was employed to locally alter the composition of Co46Fe40Ta9Zr5 thin film in a periodic manner. 20 keV O+ and 60 keV N+ ions were implanted at different doses in order to modify the magnetization dynamic properties of the samples in a controlled fashion. Magnetic hysteresis loop measurements revealed significant changes in the coercivity for higher influences of 5 × 1016 ions per cm2. In particular, N+ implantation was observed to induce two phase formation with high and low coercivities. Broadband strip-line ferromagnetic resonance spectroscopy over wide range of frequency (8 - 20 GHz) was used to study the magnetization dynamics as a function of ion-beam dosage. With higher fluences, damping constant showed a continuous increase from 0.0103 to 0.0430. Such control of magnetic properties at nano-scale using this method is believed to be useful for spintronics and microwave device applications.

  19. Interplay of uniaxial and cubic anisotropy in epitaxial Fe thin films on MgO (001 substrate

    Directory of Open Access Journals (Sweden)

    Srijani Mallik

    2014-09-01

    Full Text Available Epitaxial Fe thin films were grown on annealed MgO(001 substrates at oblique incidence by DC magnetron sputtering. Due to the oblique growth configuration, uniaxial anisotropy was found to be superimposed on the expected four-fold cubic anisotropy. A detailed study of in-plane magnetic hysteresis for Fe on MgO thin films has been performed by Magneto Optic Kerr Effect (MOKE magnetometer. Both single step and double step loops have been observed depending on the angle between the applied field and easy axis i.e. along ⟨100⟩ direction. Domain images during magnetization reversal were captured by Kerr microscope. Domain images clearly evidence two successive and separate 90° domain wall (DW nucleation and motion along cubic easy cum uniaxial easy axis and cubic easy cum uniaxial hard axis, respectively. However, along cubic hard axis two 180° domain wall motion dominate the magnetization reversal process. In spite of having four-fold anisotropy it is essential to explain magnetization reversal mechanism in 0°< ϕ < 90° span as uniaxial anisotropy plays a major role in this system. Also it is shown that substrate rotation can suppress the effect of uniaxial anisotropy superimposed on four-fold anisotropy.

  20. The Effect of Thickness on the Physical Properties of Fe2O3 Thin Films Prepared by DC Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Baha'a A. Al-Hilli

    2017-11-01

    Full Text Available The objective of this study is to assess the influence of nano-particle Fe2O3 thin film thickness on some physical properties which were prepared by magnetron DC- sputtering on glass substrate at room temperature. The structure was tested with X-Ray diffraction and it was to be amorphous and to become single crystal with recognized peak in (003 after annealing at temperature 500oC. The physical properties as a function of deposition parameters and then film thickness were studied. The optical properties such as absorbance, energy gap and some optical constants are measured and found that of about (3eV energy gap.

  1. Shock wave induced martensitic transformations and morphology changes in Fe-Pd ferromagnetic shape memory alloy thin films

    International Nuclear Information System (INIS)

    Bischoff, A. J.; Arabi-Hashemi, A.; Ehrhardt, M.; Lorenz, P.; Zimmer, K.; Mayr, S. G.

    2016-01-01

    Combining experimental methods and classical molecular dynamics (MD) computer simulations, we explore the martensitic transformation in Fe_7_0Pd_3_0 ferromagnetic shape memory alloy thin films induced by laser shock peening. X-ray diffraction and scanning electron microscope measurements at shock wave pressures of up to 2.5 GPa reveal formation of martensitic variants with preferred orientation of the shorter c-axis of the tetragonal unit cell perpendicular to the surface plane. Moreover, consequential merging of growth islands on the film surface is observed. MD simulations unveil the underlying physics that are characterized by an austenite-martensite transformation with a preferential alignment of the c-axis along the propagation direction of the shock wave, resulting in flattening and in-plane expansion of surface features.

  2. Epitaxial integration of CoFe2O4 thin films on Si (001) surfaces using TiN buffer layers

    Science.gov (United States)

    Prieto, Pilar; Marco, José F.; Prieto, José E.; Ruiz-Gomez, Sandra; Perez, Lucas; del Real, Rafael P.; Vázquez, Manuel; de la Figuera, Juan

    2018-04-01

    Epitaxial cobalt ferrite thin films with strong in-plane magnetic anisotropy have been grown on Si (001) substrates using a TiN buffer layer. The epitaxial films have been grown by ion beam sputtering using either metallic, CoFe2, or ceramic, CoFe2O4, targets. X-ray diffraction (XRD) and Rutherford spectrometry (RBS) in random and channeling configuration have been used to determine the epitaxial relationship CoFe2O4 [100]/TiN [100]/Si [100]. Mössbauer spectroscopy, in combination with XRD and RBS, has been used to determine the composition and structure of the cobalt ferrite thin films. The TiN buffer layer induces a compressive strain in the cobalt ferrite thin films giving rise to an in-plane magnetic anisotropy. The degree of in-plane anisotropy depends on the lattice mismatch between CoFe2O4 and TiN, which is larger for CoFe2O4 thin films grown on the reactive sputtering process with ceramic targets.

  3. Structural and magnetic properties of Ni{sub 78}Fe{sub 22} thin films sandwiched between low-softening-point glasses and application in spin devices

    Energy Technology Data Exchange (ETDEWEB)

    Misawa, Takahiro; Mori, Sumito [Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020 (Japan); Komine, Takashi [Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316-8511 (Japan); Fujioka, Masaya; Nishii, Junji [Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020 (Japan); Kaiju, Hideo, E-mail: kaiju@es.hokudai.ac.jp [Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020 (Japan)

    2016-12-30

    Graphical abstract: This paper presents the first demonstration of the formation of Ni{sub 78}Fe{sub 22} thin films sandwiched between low-softening-point (LSP) glasses used in spin quantum cross (SQC) devices and the theoretical prediction of spin filter effect in Ni{sub 78}Fe{sub 22}-based SQC devices. The fomation of the LSP-glass/Ni{sub 78}Fe{sub 22}/LSP-glass structures was successfully demonstrated using a newly proposed thermal pressing technique. Interestingly, this technique gives rise to both a highly-oriented crystal growth in Ni{sub 78}Fe{sub 22} thin films and a 100-fold enhancement in coercivity, in contrast to those of as-deposited Ni{sub 78}Fe{sub 22} thin films. This remarkable increase in coercivity can be explained by the calculation based on two-dimensional random anisotropy model. These excellent features on structural and magnetic properties allowed us to achieve that the stray magnetic field was uniformly generated from the Ni{sub 78}Fe{sub 22} thin-film edge in the direction perpendicular to the cross section of the LSP-glass/Ni{sub 78}Fe{sub 22}/LSP-glass structures. As we calculated the stray magnetic field generated between the two edges of Ni{sub 78}Fe{sub 22} thin-film electrodes in SQC devices, a high stray field of approximately 5 kOe was generated when the gap distance between two edges of the Ni{sub 78}Fe{sub 22} thin-film electrodes was less than 5 nm and the thickness of Ni{sub 78}Fe{sub 22} was greater than 20 nm. These experimental and calculated results suggest that Ni{sub 78}Fe{sub 22} thin films sandwiched between LSP glasses can be used as electrodes in SQC devices, providing a spin-filter effect, and also our proposed techniques utilizing magnetic thin-film edges will open up new opportunities for the creation of high performance spin devices, such as large magnetoresistance devices and nanoscale spin injectors. Our paper is of strong interest to the broad audience of Applied Surface Science, as it demonstrates that the

  4. Distinctive orbital anisotropy observed in the nematic state of a FeSe thin film

    International Nuclear Information System (INIS)

    Zhang, Y.; Lawrence Berkeley National Laboratory; Yi, M.; Stanford University, CA; Liu, Z.-K.

    2016-01-01

    Nematic state, where the system is translationally invariant but breaks the rotational symmetry, has drawn great attentions recently due to experimental observations of such a state in both cuprates and iron-based superconductors. The mechanism of nematicity that is likely tied to the pairing mechanism of high-T c , however, still remains controversial. Here, we studied the electronic structure of multilayer FeSe film by angle-resolved photoemission spectroscopy (ARPES). We found that the FeSe film enters the nematic state around 125 K, while the electronic signature of long range magnetic order has not been observed down to 20K indicating the non-magnetic origin of the nematicity. The band reconstruction in the nematic state is characterized by the splitting of the d xz and d yz bands. More intriguingly, such energy splitting is strong momentum dependent with the largest band splitting of ~80 meV at the zone corner. The simple on-site ferro-orbital ordering is insufficient to reproduce the nontrivial momentum dependence of the band reconstruction. Instead, our results suggest that the nearest-neighbor hopping of d xz and d yz is highly anisotropic in the nematic state, the origin of which holds the key in understanding the nematicity in iron-based superconductors.

  5. Hot plate annealing at a low temperature of a thin ferroelectric P(VDF-TrFE) film with an improved crystalline structure for sensors and actuators.

    Science.gov (United States)

    Mahdi, Rahman Ismael; Gan, W C; Abd Majid, W H

    2014-10-14

    Ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer 70/30 thin films are prepared by spin coating. The crystalline structure of these films is investigated by varying the annealing temperature from the ferroelectric phase to the paraelectric phase. A hot plate was used to produce a direct and an efficient annealing effect on the thin film. The dielectric, ferroelectric and pyroelectric properties of the P(VDF-TrFE) thin films are measured as a function of different annealing temperatures (80 to 140 °C). It was found that an annealing temperature of 100 °C (slightly above the Curie temperature, Tc) has induced a highly crystalline β phase with a rod-like crystal structure, as examined by X-ray. Such a crystal structure yields a high remanent polarization, Pr = 94 mC/m2, and pyroelectric constant, p = 24 μC/m2K. A higher annealing temperature exhibits an elongated needle-like crystal domain, resulting in a decrease in the crystalline structure and the functional electrical properties. This study revealed that highly crystalline P(VDF-TrFE) thin films could be induced at 100 °C by annealing the thin film with a simple and cheap method.

  6. Tailoring of Perpendicular Magnetic Anisotropy in Dy13Fe87 Thin Films with Hexagonal Antidot Lattice Nanostructure

    Directory of Open Access Journals (Sweden)

    Mohamed Salaheldeen

    2018-04-01

    Full Text Available In this article, the magnetic properties of hexagonally ordered antidot arrays made of Dy13Fe87 alloy are studied and compared with corresponding ones of continuous thin films with the same compositions and thicknesses, varying between 20 nm and 50 nm. Both samples, the continuous thin films and antidot arrays, were prepared by high vacuum e-beam evaporation of the alloy on the top-surface of glass and hexagonally self-ordered nanoporous alumina templates, which serve as substrates, respectively. By using a highly sensitive magneto-optical Kerr effect (MOKE and vibrating sample magnetometer (VSM measurements an interesting phenomenon has been observed, consisting in the easy magnetization axis transfer from a purely in-plane (INP magnetic anisotropy to out-of-plane (OOP magnetization. For the 30 nm film thickness we have measured the volume hysteresis loops by VSM with the easy magnetization axis lying along the OOP direction. Using magnetic force microscopy measurements (MFM, there is strong evidence to suggest that the formation of magnetic domains with OOP magnetization occurs in this sample. This phenomenon can be of high interest for the development of novel magnetic and magneto-optic perpendicular recording patterned media based on template-assisted deposition techniques.

  7. Microwave permeability of stripe patterned FeCoN thin film

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuping [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, Singapore 117411 (Singapore); Yang, Yong, E-mail: tslyayo@nus.edu.sg [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, Singapore 117411 (Singapore); Ma, Fusheng; Zong, Baoyu; Yang, Zhihong [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, Singapore 117411 (Singapore); Ding, Jun [Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 (Singapore)

    2017-03-15

    Magnetic stripe patterns are of great importance for microwave applications owing to their highly tunable microwave permeability by adjusting the geometrical dimensions. In this work, stripe patterned FeCoN films with 160 nm thickness are fabricated by using standard UV photolithography. Their microwave permeability are investigated systematically via both experiment and micromagnetic simulation. The good agreement between experimental and simulation results suggests that stripe width is crucial for the microwave magnetic properties of the stripe pattern. It is demonstrated by simulation that with increasing stripe width from 1 to 80 µm the initial permeability shows a continuous growth from about 8–322, whiles the resonance frequency drops dramatically from 18.7 to 3.1 GHz at 4 µm gap size. Smaller gap size would result in slightly increased initial permeability due to larger magnetic volume ratio, accompanied by decreased resonance frequency because of stronger magnetostatic interaction. Moreover, the experimental investigation on stripe length effect indicates that the stripe length should be kept as long as possible to achieve uniform bulk resonance mode and high permeability value. Insufficient stripe length would result in low frequency edge mode and decayed bulk mode. This study could provide valuable guidelines on the selection of proper geometry dimensions of FeCoN stripe patterns for high frequency applications. - Highlights: • This work presents a systematic study on permeability of FeCoN stripe pattern. • Geometrical parameters of the stripe pattern are systematically optimized. • Several important conclusions has been obtained. • The results offer guideline on FeCoN stripe patterns for high frequency applications.

  8. Structure and electrical properties of (La, Zn) Co-doped BiFeO3 thin films prepared by using chemical solution deposition

    Science.gov (United States)

    Kim, Y. J.; Kim, H. J.; Kim, J. W.; Raghavan, C. M.; Kim, S. S.

    2012-08-01

    We prepared pure BiFeO3 (BFO) and (Bi0.9La0.1)(Fe0.975Zn0.025)O3- δ (BLFZO) thin films on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. Improved electrical properties were observed in the co-doped BLFZO thin film. The leakage current density of the BLFZO thin film was four orders of magnitude lower than that of the pure BFO, 4.17 × 10-7 A/cm2 at 100 kV/cm. The remnant polarization (2 P r ) and the coercive electric field (2 E c ) of the BLFZO thin film were 97 µC/cm2 and 903 kV/cm at an applied electric field of 972 kV/cm and at a frequency of 1 kHz, and the values decreased with increasing measurement frequency to 63 µC/cm2 and 679 kV/cm at 10 kHz, respectively. Also, after 1.44 × 1010 cycles, a better fatigue endurance was observed in the BLFZO thin film, which was 90% of its initial value. We also confirmed that the remnant polarization (2 P r ) and the coercive electric field (2 E c ) were fairly saturated above a measurement frequency of 15 kHz for the BLFZO thin film.

  9. Enhancement of the electrical properties of (Eu,Zn) co-doped BiFeO3 thin films prepared by using chemical solution deposition

    Science.gov (United States)

    Kim, Youn-Jang; Kim, Jin Won; Kim, Hae Jin; Kim, Sang Su

    2013-04-01

    We prepared pure BiFeO3 (BFO) and (Bi0.9Eu0.1)(Fe0.975Zn0.025)O3-δ (BEFZO) thin films on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. Improved electrical properties were observed in the co-doped BEFZO thin film. The leakage current density of the BEFZO thin film was three orders of magnitude lower than that of the pure BFO, 3.93 × 10-6 A/cm2 at 100 kV/cm. The remnant polarization (2 P r ) and the coercive electric field (2 E c ) of the BEFZO thin film were 42 µC/cm2 and 898 kV/cm at an applied electric field of 1000 kV/cm and at a frequency of 1 kHz and the values decreased with increasing measurement frequency to 18 µC/cm2 and 866 kV/cm at 10 kHz, respectively. Also, the fatigue endurances were evaluated at peak voltages of 8-10 V after 1.44 × 1010 cycles in the BEFZO thin films and were 70 ˜ 90% of the initial values. We also confirmed that the 2 P r was fairly saturated at measurement frequency about 30 kHz for the BEFZO thin film.

  10. Effect of the thickness reduction on the structural, surface and magnetic properties of α-Fe{sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Aragón, Fermin F.H., E-mail: fherrera@fis.unb.br [Núcleo de Física Aplicada, Instituto de Física, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, 31270-901 Belo Horizonte, MG (Brazil); Ardisson, José D. [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, 31270-901 Belo Horizonte, MG (Brazil); Aquino, Juan C.R. [Núcleo de Física Aplicada, Instituto de Física, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); Gonzalez, Ismael; Macedo, Waldemar A.A. [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, 31270-901 Belo Horizonte, MG (Brazil); Coaquira, José A.H.; Mantilla, John; Silva, Sebastião W. da; Morais, Paulo C. [Núcleo de Física Aplicada, Instituto de Física, Universidade de Brasília, Brasília, DF 70910-900 (Brazil)

    2016-05-31

    Hematite (α-Fe{sub 2}O{sub 3}) polycrystalline thin films of different thicknesses were produced by thermal oxidation in air atmosphere from Fe metallic thin-films deposited by radio frequency (RF) sputtering technique. X-ray diffraction (XRD) patterns confirm the formation of hematite phase in all samples and indicate that the mean grain size decreases as the film thickness becomes thinner. Conversion electron Mössbauer spectroscopy (CEMS) spectra at room temperature show magnetic splitting (six line patterns). It is determined that the resonance peaks become broader and asymmetric as the film thickness decreases. This finding was associated with the structural disorder introduced by the thickness reduction. Magnetization as a function of the magnetic field curve obtained at 300 K shows the presence of a weak-ferromagnetic contribution, which was assigned to the large density of decompensated spins at the films surface. From the magnetization vs. temperature curves it has been determined that the Morin transition temperature (T{sub M}) is shifted from ~ 240 K to ~ 196 K, meanwhile it becomes more broadened as the film thickness decreases. X-ray photoelectron spectroscopy (XPS) measurements show the presence of Fe{sup 2+} ions coexisting with Fe{sup 3+} ions whose population increases as the film becomes thinner. The density of chemisorbed oxygen increases as the film thickness is reduced in agreement with the results obtained from the other measurements in this work. - Highlights: • Hematite thin films with different thickness were deposited by RF sputtering technique. • X-ray diffraction patterns confirm the formation of hematite phase in all samples. • Hysteresis curve at 300 K shows the presence of a weak-ferromagnetic phase. • XPS show the presence of Fe{sup 2+} ions coexisting with Fe{sup 3+} ions.

  11. Influences of the iron ion (Fe3+)-doping on structural and optical properties of nanocrystalline TiO2 thin films prepared by sol-gel spin coating

    International Nuclear Information System (INIS)

    Ben Naceur, J.; Mechiakh, R.; Bousbih, F.; Chtourou, R.

    2011-01-01

    Titanium dioxide (TiO 2 ) thin films doping of various iron ion (Fe 3+ ) concentrations were deposited on silicon (Si) (100) and quartz substrates by sol-gel Spin Coating technique followed by a thermal treatment at 600 deg. C. The structure, surface morphology and optical properties, as a function of the doping, have been studied by X-ray diffractometer (XRD), Raman, ultraviolet-visible (UV-vis) and Spectroscopic Ellipsometry (SE). XRD and Raman analyzes of our thin films show that the crystalline phase of TiO 2 thin films comprised only the anatase TiO 2 , but the crystallinity decreased when the Fe 3+ content increased from 0% to 20%. During the Fe 3+ addition to 20%, the phase of TiO 2 thin film still maintained the amorphous state. The grain size calculated from XRD patterns varies from 29.3 to 22.6 nm. The complex index and the optical band gap (E g ) of the films were determined by the spectroscopic ellipsometry analysis. We have found that the optical band gap decreased with an increasing Fe 3+ content.

  12. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  13. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  14. Enhanced magnetic properties of chemical solution deposited BiFeO3 thin film with ZnO buffer layer

    International Nuclear Information System (INIS)

    Rajalakshmi, R.; Kambhala, Nagaiah; Angappane, S.

    2012-01-01

    Highlights: ► Enhanced magnetization of BiFeO 3 is important for strong magnetoelectric coupling. ► BiFeO 3 film with ZnO buffer layer was successfully synthesized by chemical method. ► Magnetization of BiFeO 3 has increased by more than 10 times with ZnO buffer layer. ► A mechanism for enhancement in ferromagnetism of BiFeO 3 film is proposed. - Abstract: Magnetic properties of BiFeO 3 films deposited on Si substrates with and without ZnO buffer layer have been studied in this work. We adopted the chemical solution deposition method for the deposition of BiFeO 3 as well as ZnO films. The x-ray diffraction measurements on the deposited films confirm the formation of crystalline phase of BiFeO 3 and ZnO films, while our electron microscopy measurements help to understand the morphology of few micrometers thick films. It is found that the deposited ZnO film exhibit a hexagonal particulate surface morphology, whereas BiFeO 3 film fully covers the ZnO surface. Our magnetic measurements reveal that the magnetization of BiFeO 3 has increased by more than ten times in BiFeO 3 /ZnO/Si film compared to BiFeO 3 /Si film, indicating the major role played by ZnO buffer layer in enhancing the magnetic properties of BiFeO 3 , a technologically important multiferroic material.

  15. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen.

    Science.gov (United States)

    Louie, Mary W; Bell, Alexis T

    2013-08-21

    A detailed investigation has been carried out of the structure and electrochemical activity of electrodeposited Ni-Fe films for the oxygen evolution reaction (OER) in alkaline electrolytes. Ni-Fe films with a bulk and surface composition of 40% Fe exhibit OER activities that are roughly 2 orders of magnitude higher than that of a freshly deposited Ni film and about 3 orders of magnitude higher than that of an Fe film. The freshly deposited Ni film increases in activity by as much as 20-fold during exposure to the electrolyte (KOH); however, all films containing Fe are stable as deposited. The oxidation of Ni(OH)2 to NiOOH in Ni films occurs at potentials below the onset of the OER. Incorporation of Fe into the film increases the potential at which Ni(OH)2/NiOOH redox occurs and decreases the average oxidation state of Ni in NiOOH. The Tafel slope (40 mV dec(-1)) and reaction order in OH(-) (1) for the mixed Ni-Fe films (containing up to 95% Fe) are the same as those for aged Ni films. In situ Raman spectra acquired in 0.1 M KOH at OER potentials show two bands characteristic of NiOOH. The relative intensities of these bands vary with Fe content, indicating a change in the local environment of Ni-O. Similar changes in the relative intensities of the bands and an increase in OER activity are observed when pure Ni films are aged. These observations suggest that the OER is catalyzed by Ni in Ni-Fe films and that the presence of Fe alters the redox properties of Ni, causing a positive shift in the potential at which Ni(OH)2/NiOOH redox occurs, a decrease in the average oxidation state of the Ni sites, and a concurrent increase in the activity of Ni cations for the OER.

  16. Annealing effect on the bipolar resistive switching behaviors of BiFeO3 thin films on LaNiO3-buffered Si substrates

    International Nuclear Information System (INIS)

    Chen Xinman; Zhang Hu; Ruan Kaibin; Shi Wangzhou

    2012-01-01

    Highlights: ► Annealing effect on the bipolar resistive switching behaviors of BiFeO 3 thin films with Pt/BiFeO 3 /LNO was reported. ► Rectification property was explained from the asymmetrical contact between top and bottom interfaces and the distinct oxygen vacancy density. ► The modification of Schottky-like barrier was suggested to be responsible for the resistance switching behaviors of Pt/BiFeO 3 /LNO devices. - Abstract: We reported the annealing effect on the electrical behaviors of BiFeO 3 thin films integrated on LaNiO 3 (LNO) layers buffered Si substrates by sol–gel spin-coating technique. All the BiFeO 3 thin films exhibit the reversible bipolar resistive switching behaviors with Pt/BiFeO 3 /LNO configuration. The electrical conduction mechanism of the devices was dominated by the Ohmic conduction in the low resistance state and trap-controlled space charged limited current in the high resistance state. Good diode-like rectification property was observed in device with BiFeO 3 film annealed at 500 °C, but vanished in device with BiFeO 3 film annealed at 600 °C. This was attributed to the asymmetrical contact between top and bottom interfaces as well as the distinct oxygen vacancy density verified by XPS. Furthermore, the modification of Schottky-like barrier due to the drift of oxygen vacancies was suggested to be responsible for the resistance switching behaviors of Pt/BiFeO 3 /LNO devices.

  17. Photoelectrochemical Properties of FeO Supported on TiO2-Based Thin Films Converted from Self-Assembled Hydrogen Titanate Nanotube Powders

    Directory of Open Access Journals (Sweden)

    Kyung-Jong Noh

    2012-01-01

    Full Text Available A photoanode was fabricated using hematite (α-Fe2O3 nanoparticles which had been held in a thin film of hydrogen titanate nanotubes (H-TiNT, synthesized by repetitive self-assembling method on FTO (fluorine-doped tin oxide glass, which were incorporated via dipping process in aqueous Fe(NO33 solution. Current voltage (I-V electrochemical properties of the photoanode heat-treated at 500°C for 10 min in air were evaluated under ultraviolet-visible light irradiation. Microstructure and crystallinity changes were also investigated. The prepared Fe2O3/H-TiNT/FTO composite thin film exhibited about threefold as much photocurrent as the Fe2O3/FTO film. The improvement in photocurrent was considered to be caused by reduced recombination of electrons and holes, with an appropriate amount of Fe2O3 spherical nanoparticles supported on the H-TiNT/FTO film. Nanosized spherical Fe2O3 particles with about 65 wt% on the H-TiNT/FTO film showed best performance in our study.

  18. High field properties of superconducting BaFe{sub 2-x}Ni{sub x}As{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Stefan [Institute for Metallic Materials, IFW Dresden (Germany); Technical University Dresden (Germany); Kurth, Fritz; Grinenko, Vadim; Nielsch, Kornelius; Huehne, Ruben [Institute for Metallic Materials, IFW Dresden (Germany); Iida, Kazumasa [Nagoya University (Japan); Pervakov, Kirill [Russian Academy of Sciences (Russian Federation); Tarantini, Chiara; Jaroszynski, Jan [National High Magnetic Field Laboratory (United States); Pukenas, Aurimas; Skrotzki, Werner [Technical University Dresden (Germany)

    2016-07-01

    Fe based superconductors combine the advantages of cuprates (high upper critical field) with the small Hc{sub 2} anisotropy of classic low temperature superconductors, which makes them suitable candidates for high field applications. The study of Fe-based superconducting thin films is one crucial step to explore this potential in more detail. We present results for epitaxial BaFe{sub 2-x}Ni{sub x}As{sub 2} thin films, which have been successfully grown for the first time using pulsed laser deposition. Superconducting transition temperatures of up to 19 K have been realized in slightly overdoped films, which is in good agreement with results obtained for single crystals. The behavior of the upper critical field and critical current density has been measured in high magnetic fields up to 35 T. The results will be correlated to the observed microstructure and compared to high field data for single crystals with similar composition.

  19. Magneto-optical Faraday spectroscopy of completely bismuth-substituted Bi3Fe5O12 garnet thin films

    International Nuclear Information System (INIS)

    Deb, M; Popova, E; Fouchet, A; Keller, N

    2012-01-01

    We performed a magneto-optical (MO) Faraday spectroscopy study of bismuth iron garnet Bi 3 Fe 5 O 12 thin single-crystalline films with thickness from 5 to 220 nm. The Faraday rotation and ellipticity spectra were measured for photon energies ranging from 1.7 to 4.2 eV. Using a model based on two electric dipole transitions associated with tetrahedral and octahedral iron sites, we successfully reproduce the observed rotation and ellipticity spectra. The sign of both site contributions to the Faraday rotation and ellipticity spectra has been used to interpret the complex thermal dependence of the Faraday rotation and ellipticity. For a Faraday ellipticity, anomalous hysteresis loops have been observed around specific photon energies. To explain the surprising shape of hysteresis loop, a model based on the superposition of two hysteresis loops with opposite sign associated with both sites is proposed. The modelling of these hysteresis loops allows accessing the magnetic properties of each individual sublattice. Finally, we have studied the dependence of the energy level parameters on bismuth content in Yi 3-x Bi x Fe 5 O 12 garnet and on the thickness of bismuth iron garnet. Based on this analysis, we show that MO spectroscopy is a fast and non-destructive technique to determine the bi-deficiency of BIG films.

  20. Epitaxial growth of bcc-Fe{sub x}Co{sub 100-x} thin films on MgO(1 1 0) single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru, E-mail: ohtake@futamoto.elect.chuo-u.ac.j [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Nishiyama, Tsutomu; Shikada, Kouhei [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2010-07-15

    Fe{sub x}Co{sub 100-x} (x=100, 65, 50 at%) epitaxial thin films were prepared on MgO(1 1 0) single-crystal substrates heated at 300 deg. C by ultra-high vacuum molecular beam epitaxy. The film structure and the growth mechanism are discussed. FeCo(2 1 1) films with bcc structure grow epitaxially on MgO(1 1 0) substrates with two types of variants whose orientations are rotated around the film normal by 180 deg. each other for all compositions. Fe{sub x}Co{sub 100-x} film growth follows the Volmer Weber mode. X-ray diffraction analysis indicates the out-of-plane and the in-plane lattice spacings are in agreement with the values of respective bulk Fe{sub x}Co{sub 100-x} crystals with very small errors less than +-0.4%, suggesting the strains in the films are very small. High-resolution cross-sectional transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the film at the Fe{sub 50}Co{sub 50}/MgO interface along the MgO[1 1-bar 0] direction. The presence of such periodical dislocations decreases the large lattice mismatch of about -17% existing at the FeCo/MgO interface along the MgO[1 1-bar 0] direction.

  1. Transport properties and pinning analysis for Co-doped BaFe2As2 thin films on metal tapes

    Science.gov (United States)

    Xu, Zhongtang; Yuan, Pusheng; Fan, Fan; Chen, Yimin; Ma, Yanwei

    2018-05-01

    We report on the transport properties and pinning analysis of BaFe1.84Co0.16As2 (Ba122:Co) thin films on metal tapes by pulsed laser deposition. The thin films exhibit a large in-plane misorientation of 5.6°, close to that of the buffer layer SrTiO3 (5.9°). Activation energy U 0(H) analysis reveals a power law relationship with field, having three different exponents at different field regions, indicative of variation from single-vortex pinning to a collective flux creep regime. The Ba122:Co coated conductors present {{T}{{c}}}{{onset}} = 20.2 K and {{T}{{c}}}{{zero}} = 19.0 K along with a self-field J c of 1.14 MA cm‑2 and an in-field J c as high as 0.98 and 0.86 MA cm‑2 up to 9 T at 4.2 K for both major crystallographic directions of the applied field, promising for high field applications. Pinning force analysis indicates a significant enhancement compared with similar Ba122:Co coated conductors. By using the anisotropic scaling approach, intrinsic pinning associated with coupling between superconducting blocks can be identified as the pinning source in the vicinity of H//ab, while for H//c random point defects are likely to play a role but correlated defects start to be active at high temperatures.

  2. Effect of thickness on structure, microstructure, residual stress and soft magnetic properties of DC sputtered Fe65Co35 soft magnetic thin films

    International Nuclear Information System (INIS)

    Prasanna Kumari, T.; Manivel Raja, M.; Kumar, Atul; Srinath, S.; Kamat, S.V.

    2014-01-01

    The effect of film thickness on structure, microstructure, residual stress and soft magnetic properties of Fe 65 Co 35 thin films deposited on Si(001) and MgO(001) substrates was investigated by varying film thickness from 30 to 600 nm. X-ray diffraction studies showed that the FeCo films are polycrystalline in the as-deposited condition irrespective of deposition on Si or MgO substrate. The microstructure of films consisted of spherical grains for 30 nm film thickness and columnar grains for all other film thicknesses. The grain size for the films was found to increase from 15 to 50 nm with increasing film thickness. The sputtered films also exhibited tensile residual stresses with the magnitude of stress decreasing with increasing film thickness. The Fe 65 Co 35 films deposited on both substrates also exhibited very good in-plane soft magnetic properties with a saturation magnetization 4πM s of ∼23.6–23.8 kG and coercivity of ∼27–30 Oe without any under-layer only for films with thickness of 30 nm. For all other thicknesses, these films exhibited a significantly higher coercivity. The observed variations in soft magnetic properties with film thickness were explained in terms of residual stress and microstructure of the films. - Highlights: • Spherical grain morphology transformed to columnar above 30 nm film thickness. • Sputtered films exhibited tensile residual stresses decreasing with film thickness. • An in-plane coercivity of ∼27–30 Oe was achieved without any under-layer

  3. Biomolecule detection using wheatstone bridge giant magnetoresistance (GMR) sensors based on CoFeB spin-valve thin film

    Science.gov (United States)

    Elda Swastika, P.; Antarnusa, G.; Suharyadi, E.; Kato, T.; Iwata, S.

    2018-04-01

    A potential wheatstone bridge giant magnetoresistance (GMR) biosensor have been successfully developed for biomolecule detection. [IrMn(10 nm)/CoFe(3 nm)/Cu(2.2 nm)/CoFeB(10 nm)] spin-valve structure has been chosen as the magnetic sensing surface, showing a magnetoresistance (MR) of 6% fabricated by DC magnetron sputtering method. The Fe3O4 magnetic nanoparticles used as biomolecular labels (nanotags) was synthesized by co-precipitation method, exhibiting soft magnetic behavior with saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) is 77.2 emu/g, 7.8 emu/g and 51 Oe, respectively. The X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) images showed that Fe3O4 was well crystallized and grew in their inverse spinel structure, highly uniform morphology with an average grain size was about 20 nm. Fe3O4 was coated with polyethylene-glycol (PEG)-4000 for surface functionalization. Detection of biomolecule such as formalin, gelatin from bovine-skin and porcine-skin were dispersed in ethanol at room temperature. Induction would cause a shift in output voltage with a minimum delta output voltage (ΔV) 4.937 mV (10%) for formalin detection, 2.268 mV (7%) for bovine-skin gelatin and 2.943 mV (7%) for porcine-skin gelatin detection. The ΔV of the wheatstone bridge in real-time measurement decrease by increase in biomolecules concentration. The change of ΔV with various concentration of biomolecule indicates that the spin-valve thin film with wheatstone-bridge circuit is potential as a biosensor.

  4. Highly Sensitive Switchable Heterojunction Photodiode Based on Epitaxial Bi2FeCrO6 Multiferroic Thin Films.

    Science.gov (United States)

    Huang, Wei; Chakrabartty, Joyprokash; Harnagea, Catalin; Gedamu, Dawit; Ka, Ibrahima; Chaker, Mohamed; Rosei, Federico; Nechache, Riad

    2018-04-18

    Perovskite multiferroic oxides are promising materials for the realization of sensitive and switchable photodiodes because of their favorable band gap (heterojunction was fabricated by pulsed laser deposition. The heterojunction photodiode exhibits a large ideality factor ( n = ∼5.0) and a response time as fast as 68 ms, thanks to the effective charge carrier transport and collection at the BFCO/SRO interface. The diode can switch direction when the electric polarization is reversed by an external voltage pulse. The time-resolved photoluminescence decay of the device measured at ∼500 nm demonstrates an ultrafast charge transfer (lifetime = ∼6.4 ns) in BFCO/SRO heteroepitaxial structures. The estimated responsivity value at 500 nm and zero bias is 0.38 mA W -1 , which is so far the highest reported for any FE thin film photodiode. Our work highlights the huge potential for using multiferroic oxides to fabricate highly sensitive and switchable photodiodes.

  5. Raman scattering in La1-xSrxFeO3-δ thin films: annealing-induced reduction and phase transformation

    Science.gov (United States)

    Islam, Mohammad A.; Xie, Yujun; Scafetta, Mark D.; May, Steven J.; Spanier, Jonathan E.

    2015-04-01

    Raman scattering in thin film La0.2Sr0.8FeO3-δ on MgO(0 0 1) collected at 300 K after different stages of annealing at selected temperatures T (300 K topotactic transformation of the crystal structure from that of the rhombohedral ABO3 perovskites to that of Brownmillerite-like structure consisting of octahedrally and tetrahedrally coordinated Fe atoms.

  6. Room temperature multiferroic properties of (Fe{sub x}, Sr{sub 1−x})TiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung-Tae; Kim, Cheolbok; Fang, Sheng-Po; Yoon, Yong-Kyu, E-mail: ykyoon@ece.ufl.edu [Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611 (United States)

    2014-09-08

    This letter reports the structural, dielectric, ferroelectric, and magnetic properties of Fe substituted SrTiO{sub 3} thin films in room temperature. The structural data obtained from x-ray diffraction indicates that (Fe{sub x},Sr{sub 1−x})TiO{sub 3}, the so called FST, transforms from pseudocubic to tetragonal structures with increase of the Fe content in SrTiO{sub 3} thin films, featuring the ferroelectricity, while vibrating sample magnetometer measurements show magnetic hysteresis loops for the samples with low iron contents indicating their ferromagnetism. The characterized ferroelectricity and ferromagnetism confirms strong multiferroitism of the single phase FST thin films in room temperature. Also, an FST thin film metal-insulator-metal multiferroic capacitor has been fabricated and characterized in microwave frequencies between 10 MHz and 5 GHz. A capacitor based on Fe{sub 0.1}Sr{sub 0.9}TiO{sub 3} with a thickness of 260 nm shows a high electric tunability of 18.6% at 10 V and a maximum magnetodielectric value of 1.37% at 0.4 mT with a loss tangent of 0.021 at 1 GHz. This high tuning and low loss makes this material as a good candidate for frequency agile microwave devices such as tunable filters, phase shifters, and antennas.

  7. Phase diagram of a thin film of the Fe1−xCox alloy with the “bulk” or “planar” magnetoelastic interaction

    International Nuclear Information System (INIS)

    Fridman, Yu. A.; Klevets, F. N.; Voitenko, A. P.

    2011-01-01

    Concentration-induced reorientation phase transitions in thin magnetic films of FeCo alloys have been investigated taking into account “planar” or “bulk” magnetoelastic interaction. The critical concentrations of Co corresponding to the phase transition points, as well as the types of the phase transitions, have been determined. The phase diagrams have been plotted.

  8. Enhancement of the critical current density in FeO-coated MgB2 thin films at high magnetic fields

    Directory of Open Access Journals (Sweden)

    Andrei E. Surdu

    2011-12-01

    Full Text Available The effect of depositing FeO nanoparticles with a diameter of 10 nm onto the surface of MgB2 thin films on the critical current density was studied in comparison with the case of uncoated MgB2 thin films. We calculated the superconducting critical current densities (Jc from the magnetization hysteresis (M–H curves for both sets of samples and found that the Jc value of FeO-coated films is higher at all fields and temperatures than the Jc value for uncoated films, and that it decreases to ~105 A/cm2 at B = 1 T and T = 20 K and remains approximately constant at higher fields up to 7 T.

  9. Effect of epitaxial strain and lattice mismatch on magnetic and transport behaviors in metamagnetic FeRh thin films

    Science.gov (United States)

    Xie, Yali; Zhan, Qingfeng; Shang, Tian; Yang, Huali; Wang, Baomin; Tang, Jin; Li, Run-Wei

    2017-05-01

    We grew 80 nm FeRh films on different single crystals with various lattice constants. FeRh films on SrTiO3 (STO) and MgO substrates exhibit an epitaxial growth of 45° in-plane structure rotation. In contrast, FeRh on LaAlO3 (LAO) displays a mixed epitaxial growth of both 45° in-plane structure rotation and cube-on-cube relationships. Due to the different epitaxial growth strains and lattice mismatch values, the critical temperature for the magnetic phase transition of FeRh can be changed between 405 and 360 K. In addition, the external magnetic field can shift this critical temperature to low temperature in different rates for FeRh films grown on different substrates. The magnetoresistance appears a maximum value at different temperatures between 320 and 380 K for FeRh films grown on different substrates.

  10. Effect of epitaxial strain and lattice mismatch on magnetic and transport behaviors in metamagnetic FeRh thin films

    Directory of Open Access Journals (Sweden)

    Yali Xie

    2017-05-01

    Full Text Available We grew 80 nm FeRh films on different single crystals with various lattice constants. FeRh films on SrTiO3 (STO and MgO substrates exhibit an epitaxial growth of 45° in-plane structure rotation. In contrast, FeRh on LaAlO3 (LAO displays a mixed epitaxial growth of both 45° in-plane structure rotation and cube-on-cube relationships. Due to the different epitaxial growth strains and lattice mismatch values, the critical temperature for the magnetic phase transition of FeRh can be changed between 405 and 360 K. In addition, the external magnetic field can shift this critical temperature to low temperature in different rates for FeRh films grown on different substrates. The magnetoresistance appears a maximum value at different temperatures between 320 and 380 K for FeRh films grown on different substrates.

  11. In-situ XMCD evaluation of ferromagnetic state at FeRh thin film surface induced by 1 keV Ar ion beam irradiation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, T. [Research Organization for the 21st Century, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Aikoh, K. [Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Sakamaki, M.; Amemiya, K. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Iwase, A. [Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)

    2015-12-15

    Surface ferromagnetic state of FeRh thin films irradiated with 1 keV Ar ion-beam has been investigated by using soft X-ray Magnetic Circular Dichroism (XMCD). It was revealed that the Fe atoms of the samples were strongly spin-polarized after Ar ion-beam irradiation. Due to its small penetration depth, 1 keV Ar ion-beam irradiation can modify the magnetic state at subsurface of the samples. In accordance with the XMCD sum rule analysis, the main component of the irradiation induced ferromagnetism at the FeRh film surface was to be effective spin magnetic moment, and not to be orbital moment. We also confirmed that the surface ferromagnetic state could be produced by thermal annealing of the excessively ion irradiated paramagnetic subsurface of the FeRh thin films. This novel magnetic modification technique by using ion irradiation and subsequent annealing can be a potential tool to control the surface magnetic state of FeRh thin films.

  12. Structural and superconducting properties of epitaxial Fe{sub 1+y}Se{sub 1-x}Te{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Stefan; Yuan, Feifei; Grinenko, Vadim; Huehne, Ruben [Institute for Metallic Materials, IFW Dresden (Germany); Sala, Alberto; Putti, Marina [Dipartimento di Fisica, Universita di Genova (Italy)

    2015-07-01

    The iron based superconductor Fe(Se,Te) is in the center of much ongoing research. The reason for this is on the one hand its simple crystal structure, that consists only of stacked Fe(Se,Te) layers so that structural and superconducting properties can be connected more easily, on the other hand FeSe itself shows a high sensibility for strain and changes in stoichiometry and can have potentially very high critical temperatures under hydrostatic pressure or in monolayers. We investigate epitaxial thin films of Fe{sub 1+y}Se{sub 1-x}Te{sub x} grown by pulsed laser deposition on different single crystalline substrates. A high crystalline quality and a superconducting transition of up to about 20 K can be achieved using optimized deposition parameters. The influence of growth conditions, Te-doping, film thickness and post growth oxygen treatment on the structural and superconducting properties on these films will be presented in detail.

  13. Preparation and structural characterization of FeCo epitaxial thin films on insulating single-crystal substrates

    International Nuclear Information System (INIS)

    Nishiyama, Tsutomu; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    FeCo epitaxial films were prepared on MgO(111), SrTiO 3 (111), and Al 2 O 3 (0001) single-crystal substrates by ultrahigh vacuum molecular beam epitaxy. The effects of insulating substrate material on the film growth process and the structures were investigated. FeCo(110) bcc films grow on MgO substrates with two type domains, Nishiyama-Wassermann (NW) and Kurdjumov-Sachs (KS) relationships. On the contrary, FeCo films grown on SrTiO 3 and Al 2 O 3 substrates include FeCo(111) bcc crystal in addition to the FeCo(110) bcc crystals with NW and KS relationships. The FeCo(111) bcc crystal consists of two type domains whose orientations are rotated around the film normal by 180 deg. each other. The out-of-plane and the in-plane lattice spacings of FeCo(110) bcc and FeCo(111) bcc crystals formed on the insulating substrates are in agreement with those of the bulk Fe 50 Co 50 (at. %) crystal with small errors ranging between +0.2% and +0.4%, showing that the strains in the epitaxial films are very small.

  14. Differences observed in the surface morphology and microstructure of Ni-Fe-Cu ternary thin films electrochemically deposited at low and high applied current densities

    International Nuclear Information System (INIS)

    Sarac, U; Kaya, M; Baykul, M C

    2016-01-01

    In this research, nanocrystalline Ni-Fe-Cu ternary thin films using electrochemical deposition technique were produced at low and high applied current densities onto Indium Tin Oxide (ITO) coated conducting glass substrates. Change of surface morphology and microstructural properties of the films were investigated. Energy dispersive X-ray spectroscopy (EDX) measurements showed that the Ni-Fe-Cu ternary thin films exhibit anomalous codeposition behaviour during the electrochemical deposition process. From the X-ray diffraction (XRD) analyses, it was revealed that there are two segregated phases such as Cu- rich and Ni-rich within the films. The crystallographic structure of the films was face-centered cubic (FCC). It was also observed that the film has lower lattice micro-strain and higher texture degree at high applied current density. Scanning electron microscopy (SEM) studies revealed that the films have rounded shape particles on the base part and cauliflower-like structures on the upper part. The film electrodeposited at high current density had considerably smaller rounded shape particles and cauliflower-like structures. From the atomic force microscopy (AFM) analyses, it was shown that the film deposited at high current density has smaller particle size and surface roughness than the film grown at low current density. (paper)

  15. Effects of high-energy proton irradiation on the superconducting properties of Fe(Se,Te) thin films

    Science.gov (United States)

    Sylva, G.; Bellingeri, E.; Ferdeghini, C.; Martinelli, A.; Pallecchi, I.; Pellegrino, L.; Putti, M.; Ghigo, G.; Gozzelino, L.; Torsello, D.; Grimaldi, G.; Leo, A.; Nigro, A.; Braccini, V.

    2018-05-01

    In this paper we explore the effects of 3.5 MeV proton irradiation on Fe(Se,Te) thin films grown on CaF2. In particular, we carry out an experimental investigation with different irradiation fluences up to 7.30 · 1016 cm‑2 and different proton implantation depths, in order to clarify whether and to what extent the critical current is enhanced or suppressed, what are the effects of irradiation on the critical temperature, resistivity, and critical magnetic fields, and finally what is the role played by the substrate in this context. We find that the effect of irradiation on superconducting properties is generally small compared to the case of other iron-based superconductors. The irradiation effect is more evident on the critical current density Jc, while it is minor on the transition temperature Tc, normal state resistivity ρ, and on the upper critical field Hc2 up to the highest fluences explored in this work. In more detail, our analysis shows that when protons implant in the substrate far from the superconducting film, the critical current can be enhanced up to 50% of the pristine value at 7 T and 12 K; meanwhile, there is no appreciable effect on critical temperature and critical fields together with a slight decrease in resistivity. On the contrary, when the implantation layer is closer to the film–substrate interface, both critical current and temperature show a decrease accompanied by an enhancement of the resistivity and lattice strain. This result evidences that possible modifications induced by irradiation in the substrate may affect the superconducting properties of the film via lattice strain. The robustness of the Fe(Se,Te) system to irradiation-induced damage makes it a promising compound for the fabrication of magnets in high-energy accelerators.

  16. Investigation of electronic states of infinite-layer SrFeO2 epitaxial thin films by X-ray photoemission and absorption spectroscopies

    International Nuclear Information System (INIS)

    Chikamatsu, Akira; Matsuyama, Toshiya; Hirose, Yasushi; Kumigashira, Hiroshi; Oshima, Masaharu; Hasegawa, Tetsuya

    2012-01-01

    Highlights: ► Electronic states of infinite-layer SrFeO 2 films have been experimentally observed. ► Fe 3d states have higher densities of states in the valence-band region. ► Three peaks derived from Fe 3d states were observed in the conduction-band region. ► Indirect bandgap value was determined to be 1.3 eV. - Abstract: We investigated the electronic states of a single-crystal SrFeO 2 epitaxial thin film in the valence-band and conduction-band regions using synchrotron-radiation X-ray photoemission and absorption spectroscopies. Fe 2p–3d resonant photoemission measurements revealed that the Fe 3d states have higher densities of states at binding energies of 3–5 eV and 5–8.5 eV in the valence-band region. The O K-edge X-ray absorption spectrum exhibited three peaks in the Fe 3d-derived conduction band hybridized with O 2p states; these can be assigned to Fe 3d xy , 3d xz + 3d yz , and 3d x 2 –y 2 . In addition, the indirect bandgap value of the SrFeO 2 film was determined to be 1.3 eV by transmission and absorption spectroscopies.

  17. Modified voltammetric, impedimetric and optical behavior of polymer- assisted sol-gel MgFe2O4 nanostructured thin films

    International Nuclear Information System (INIS)

    Bazhan, Z.; Ghodsi, F.E.; Mazloom, J.

    2017-01-01

    Highlights: •Electrochemical properties of spinel PEG/PVP MgFe 2 O 4 thin films prepared by spin coating technique have been investigated. •PSD analysis indicated that spectral roughness of films decreased by polymer incorporation. •Optical calculations exhibited a blue shift on optical band gap by polymer addition. •CV curves revealed that ion storage capacitance of PEG/MgFe 2 O 4 is two times higher than MgFe 2 O 4 thin films. •EIS analysis confirmed that incorporation of appropriate amount of PEG reduced the charge transfer resistance. -- Abstract: The effect of polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP) on physical properties of sol-gel prepared magnesium ferrite (MF) thin films was investigated. The X-ray diffraction (XRD) results showed the formation of cubic spinel magnesium ferrite for all samples. The surface morphology of films changed and average surface roughness decreased by polymer addition. The height-height correlation function and fractal dimension were evaluated using cube counting and triangulation methods from atomic force microscopy (AFM) images. The refractive index and extinction coefficient of MF thin films decreased by adding polymer while the band gap value increased from 2.24 to 2.72 eV. The PEG addition enhanced the electrochemical performance while PVP addition didn’t have significant effect on cyclic voltammetry (CV) of magnesium ferrite thin films. The sample with highest value of PEG showed the maximum specific capacitance (68.5 mF cm −2 ) and the smallest charge transfer resistance (565 Ω) among all samples.

  18. Oxygen surface exchange kinetics measurement by simultaneous optical transmission relaxation and impedance spectroscopy: Sr(Ti,Fe)O3-x thin film case study.

    Science.gov (United States)

    Perry, Nicola H; Kim, Jae Jin; Tuller, Harry L

    2018-01-01

    We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi 0.65 Fe 0.35 O 3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe 4+ ) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The k chem values obtained by OTR were significantly lower than the AC-IS derived k chem values and k q values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in k chem and k q values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived k chem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ , and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films.

  19. Oxygen surface exchange kinetics measurement by simultaneous optical transmission relaxation and impedance spectroscopy: Sr(Ti,Fe)O3-x thin film case study

    Science.gov (United States)

    Perry, Nicola H.; Kim, Jae Jin; Tuller, Harry L.

    2018-01-01

    Abstract We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi0.65Fe0.35O3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe4+) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The kchem values obtained by OTR were significantly lower than the AC-IS derived kchem values and kq values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in kchem and kq values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived kchem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ, and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films. PMID:29511391

  20. Exploring a new phenomenon in the bactericidal response of TiO{sub 2} thin films by Fe doping: Exerting the antimicrobial activity even after stoppage of illumination

    Energy Technology Data Exchange (ETDEWEB)

    Naghibi, Sanaz, E-mail: naghibi@iaush.ac.ir [Department of Metallurgy and Materials Engineering, Shahreza Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Vahed, Shohreh, E-mail: sh_vahed@iaush.ac.ir [Department of Food Science, Shahreza Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Torabi, Omid, E-mail: omid_trb@yahoo.com [Department of Materials Engineering, Najafabad Branch, Advanced Materials Research Center, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Jamshidi, Amin, E-mail: amin_jam_g@yahoo.com [Department of Materials Engineering, Najafabad Branch, Advanced Materials Research Center, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Golabgir, Mohammad Hossein, E-mail: m.hosseingolabgir@yahoo.com [Department of Materials Engineering, Najafabad Branch, Advanced Materials Research Center, Islamic Azad University, Isfahan (Iran, Islamic Republic of)

    2015-02-01

    Graphical abstract: - Highlights: • Highly uniform Fe–TiO{sub 2} thin films were deposited on glass using sol–gel hot-dipping technique. • The photocatalytic properties were studied upon UV and visible irradiation. • By Fe doping into TiO{sub 2} structure, its microbial performance was prolonged even after stopping the illumination. • Due to Fe doping, the significant improvement in bactericidal coating was evident. - Abstract: Antibacterial properties of Fe-doped TiO{sub 2} thin films prepared on glass by the sol–gel hot-dipping technique were studied. The films were characterized by X-ray diffraction, field emission scanning electron microscopy, scanning probe microscopy and X-ray photoelectron spectroscopy. The photocatalytic activities were evaluated by measuring the decomposition rate of methylene blue under ultra violet and visible light. The antibacterial properties of the coatings were investigated against Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisia and Aspergillus niger. The principle of incubation methods was also discussed. The results indicated that Fe doping of thin films eventuated in high antibacterial properties under visible light and this performance remained even after stoppage of illumination. This article tries to provide some explanation for this fact.

  1. Room temperature ferromagnetism with large magnetic moment at low field in rare-earth-doped BiFeO₃ thin films.

    Science.gov (United States)

    Kim, Tae-Young; Hong, Nguyen Hoa; Sugawara, T; Raghavender, A T; Kurisu, M

    2013-05-22

    Thin films of rare earth (RE)-doped BiFeO3 (where RE=Sm, Ho, Pr and Nd) were grown on LaAlO3 substrates by using the pulsed laser deposition technique. All the films show a single phase of rhombohedral structure with space group R3c. The saturated magnetization in the Ho- and Sm-doped films is much larger than the values reported in the literature, and is observed at quite a low field of 0.2 T. For Ho and Sm doping, the magnetization increases as the film becomes thinner, suggesting that the observed magnetism is mostly due to a surface effect. In the case of Nd doping, even though the thin film has a large magnetic moment, the mechanism seems to be different.

  2. Structural, optical and electrical properties of Cu{sub 2}FeSnX{sub 4} (X = S, Se) thin films prepared by chemical spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Khadka, Dhruba B.; Kim, JunHo, E-mail: jhk@inu.ac.kr

    2015-07-25

    Highlights: • CFTS(Se) thin films have been synthesized by low-cost spray-based deposition. • The fabricated films were found to be of stannite structure and p-type conductivity. • Band gaps of CFTS and CFTSe thin films are 1.37 and 1.11 eV, respectively. - Abstract: We report on fabrication of polycrystalline Cu{sub 2}FeSnX{sub 4} (X = S, Se) thin films by chemical spray pyrolysis subsequent with post-sulfurization and selenization. The post-annealing of as-sprayed Cu{sub 2}FeSnS{sub 4} (CFTS) films in sulfur and selenium ambient demonstrated drastically improved surface texture as well as crystallinity. The crystal lattice parameters calculated from X-ray diffraction patterns for post-annealed films were found to be consistent with stannite structure. The fabricated Cu{sub 2}FeSnS{sub 4} (CFTS) and Cu{sub 2}FeSnSe{sub 4} (CFTSe) films showed p-type conductivity with carrier concentration in the range of 10{sup 21} cm{sup −3} and mobility ∼1–5 cm{sup 2} V{sup −1} s{sup −1}. The band gap energies of post-sulfurized CFTS and post-selenized CFTSe films were estimated to be ∼1.37 eV and ∼1.11 eV with an error of ±0.02 eV by UV–Vis absorption, respectively, which are promising for photovoltaic application.

  3. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  4. Chemical vapor deposition and electric characterization of perovskite oxides LaMO3 (M=Co, Fe, Cr and Mn) thin films

    International Nuclear Information System (INIS)

    Ngamou, Patrick Herve Tchoua; Bahlawane, Naoufal

    2009-01-01

    Oxides with a perovskite structure are important functional materials often used for the development of modern devices. In view of extending their applicability, it is necessary to efficiently control their growth as thin films using technologically relevant synthesis methods. Pulsed spray evaporation CVD was used to grow several perovskite-type oxides on planar silicon substrates at temperatures ranging from 500 to 700 deg. C. The optimization of the process control parameters allows the attainment of the perovskite structure as a single phase. The electrical characterization using the temperature-dependent conductivity and thermopower indicates the p-type conduction of the grown films and shows a decreasing concentration of the charge carrier, mobility and band gap energy in the sequence LaCoO 3 >LaMnO 3 >LaCrO 3 >LaFeO 3 . The investigation of the electric properties of the obtained perovskite thin films shows the versatility of CVD as a method for the development of innovative devices. - Graphical abstract: We report a single step deposition of perovskite thin films LaMO 3 (M: Co, Mn, Cr, Fe) using pulsed spray evaporation chemical vapor deposition. Electrical and thermopower properties, similar to these of bulk materials, could promote the development of modern thermoelectric devices based on thin films technology.

  5. Influence of substrate type on transport properties of superconducting FeSe0.5Te0.5 thin films

    International Nuclear Information System (INIS)

    Yuan, Feifei; Shi, Zhixiang; Iida, Kazumasa; Langer, Marco; Hänisch, Jens; Hühne, Ruben; Schultz, Ludwig; Ichinose, Ataru; Tsukada, Ichiro; Sala, Alberto; Putti, Marina

    2015-01-01

    FeSe 0.5 Te 0.5 thin films were grown by pulsed laser deposition on CaF 2 , LaAlO 3 and MgO substrates and structurally and electro-magnetically characterized in order to study the influence of the substrate on their transport properties. The in-plane lattice mismatch between FeSe 0.5 Te 0.5 bulk and the substrate shows no influence on the lattice parameters of the films, whereas the type of substrate affects the crystalline quality of the films and, therefore, the superconducting properties. The film on MgO showed an extra peak in the angular dependence of critical current density J c (θ) at θ = 180° (H||c), which arises from c-axis defects as confirmed by transmission electron microscopy. In contrast, no J c (θ) peaks for H||c were observed in films on CaF 2 and LaAlO 3 . J c (θ) can be scaled successfully for both films without c-axis correlated defects by the anisotropic Ginzburg–Landau approach with appropriate anisotropy ratio γ J . The scaling parameter γ J is decreasing with decreasing temperature, which is different from what we observed in FeSe 0.5 Te 0.5 films on Fe-buffered MgO substrates. (paper)

  6. The effect of Cr substitution on the structural, electronic and magnetic properties of pulsed laser deposited NiFe{sub 2}O{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Kalpana [Department of Physics, Govt. Women Engineering College, Ajmer, 305002 India (India); Department of Pure and Applied Physics, University of Kota, Kota, 324010 India (India); Tiwari, Shailja, E-mail: tiwari_shailja@rediffmail.com [Department of Physics, Govt. Women Engineering College, Ajmer, 305002 India (India); Bapna, Komal [Department of Physics, M. L. Sukhadia University, Udaipur, 313001 India (India); Heda, N.L. [Department of Pure and Applied Physics, University of Kota, Kota, 324010 India (India); Choudhary, R.J.; Phase, D.M. [UGC-DAE Consortium for Scientific Research, University Campus, Indore, 452001 India (India); Ahuja, B.L. [Department of Physics, M. L. Sukhadia University, Udaipur, 313001 India (India)

    2017-01-01

    We have studied the structural, electronic and magnetic properties of pulsed laser deposited thin films of Ni{sub 1−x}Cr{sub x}Fe{sub 2}O{sub 4} (x=0.02 and 0.05) on Si (111) and Si (100) substrates. The films reveal single phase, polycrystalline structure with larger grain size on Si (111) substrate than that on Si (100) substrate. Contrary to the expected inverse spinel structure, x-ray photoemission (XPS) studies reveal the mixed spinel structure. XPS results suggest that Ni and Fe ions exist in 2+ and 3+ states, respectively, and they exist in tetrahedral as well as octahedral sites. The deviation from the inverse spinel leads to modified magnetic properties. It is observed that saturation magnetization drastically drops compared to the expected saturation value for inverse spinel structure. Strain in the films and lattice distortion produced by the Cr doping also appear to influence the magnetic properties. - Highlights: • Thin films of Ni{sub 1−x}Cr{sub x}Fe{sub 2}O{sub 4} are grown on Si(111) and Si(100) substrates. • Films on Si(111) substrate are better crystalline than those on Si(100). • XRD and FTIR results confirm the single phase growth of the films. • Cationic distribution deviates from inverse spinel structure, as revealed by XPS. • Saturation magnetization is larger on Si(100) but lower than the bulk value.

  7. Electronic excitation-induced structural, optical, and magnetic properties of Ni-doped HoFeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Zubida [National Institute of Technology, Department of Chemistry, Srinagar (India); National Institute of Technology, Department of Physics, Srinagar (India); Ikram, Mohd; Mir, Sajad A. [National Institute of Technology, Department of Physics, Srinagar (India); Sultan, Khalid [Central University of Kashmir, Department of Physics, Srinagar (India); Abida [Govt Degree College for Women, Department of Physics, Anantnag, Kashmir (India); Majid, Kowsar [National Institute of Technology, Department of Chemistry, Srinagar (India); Asokan, K. [Inter University Accelerator Centre, New Delhi (India)

    2017-06-15

    Present study investigates the electronic excitation-induced modifications in the structural, optical, and magnetic properties of Ni-doped HoFeO{sub 3} thin films grown by pulsed laser deposition on LaAlO{sub 3} substrates. Electronic excitations were induced by 200 MeV Ag{sup 12+} ion beam. These thin films were then characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis spectroscopy, and magnetic measurements. X-ray diffraction analysis confirms that the crystallite growth occurs in the preferred (111) orientation with orthorhombic structure. The XRD results also show that the crystallite size decreases with ion irradiation. AFM results after irradiation show significant changes in the surface roughness and morphology of these films. The optical parameters measured from absorption measurements reveal reduction in the band gap with Ni doping and enhancement of band gap after irradiation. The magnetization vs field measurement at 75 K shows enhancement in saturation magnetization after irradiation for HoFe{sub 1-x}Ni{sub x}O{sub 3} (x = 0.1 and 0.3) films compared to HoFeO{sub 3} film. Present study shows electronic excitation induces significant changes in the physical properties of these films. (orig.)

  8. The effect of Cr substitution on the structural, electronic and magnetic properties of pulsed laser deposited NiFe_2O_4 thin films

    International Nuclear Information System (INIS)

    Panwar, Kalpana; Tiwari, Shailja; Bapna, Komal; Heda, N.L.; Choudhary, R.J.; Phase, D.M.; Ahuja, B.L.

    2017-01-01

    We have studied the structural, electronic and magnetic properties of pulsed laser deposited thin films of Ni_1_−_xCr_xFe_2O_4 (x=0.02 and 0.05) on Si (111) and Si (100) substrates. The films reveal single phase, polycrystalline structure with larger grain size on Si (111) substrate than that on Si (100) substrate. Contrary to the expected inverse spinel structure, x-ray photoemission (XPS) studies reveal the mixed spinel structure. XPS results suggest that Ni and Fe ions exist in 2+ and 3+ states, respectively, and they exist in tetrahedral as well as octahedral sites. The deviation from the inverse spinel leads to modified magnetic properties. It is observed that saturation magnetization drastically drops compared to the expected saturation value for inverse spinel structure. Strain in the films and lattice distortion produced by the Cr doping also appear to influence the magnetic properties. - Highlights: • Thin films of Ni_1_−_xCr_xFe_2O_4 are grown on Si(111) and Si(100) substrates. • Films on Si(111) substrate are better crystalline than those on Si(100). • XRD and FTIR results confirm the single phase growth of the films. • Cationic distribution deviates from inverse spinel structure, as revealed by XPS. • Saturation magnetization is larger on Si(100) but lower than the bulk value.

  9. Co2FeAl Heusler thin films grown on Si and MgO substrates: Annealing temperature effect

    International Nuclear Information System (INIS)

    Belmeguenai, M.; Tuzcuoglu, H.; Zighem, F.; Chérif, S. M.; Moch, P.; Gabor, M. S.; Petrisor, T.; Tiusan, C.

    2014-01-01

    10 nm and 50 nm Co 2 FeAl (CFA) thin films have been deposited on MgO(001) and Si(001) substrates by magnetron sputtering and annealed at different temperatures. X-rays diffraction revealed polycrystalline or epitaxial growth (according to CFA(001)[110]//MgO(001)[100] epitaxial relation) for CFA films grown on a Si and on a MgO substrate, respectively. For these later, the chemical order varies from the A2 phase to the B2 phase when increasing the annealing temperature (T a ), while only the A2 disorder type has been observed for CFA grown on Si. Microstrip ferromagnetic resonance (MS-FMR) measurements revealed that the in-plane anisotropy results from the superposition of a uniaxial and a fourfold symmetry term for CFA grown on MgO substrates. This fourfold anisotropy, which disappears completely for samples grown on Si, is in accord with the crystal structure of the samples. The fourfold anisotropy field decreases when increasing T a , while the uniaxial anisotropy field is nearly unaffected by T a within the investigated range. The MS-FMR data also allow for concluding that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with T a . Finally, the FMR linewidth decreases when increasing T a , due to the enhancement of the chemical order. We derive a very low intrinsic damping parameter (1.1×10 −3 and 1.3×10 −3 for films of 50 nm thickness annealed at 615 °C grown on MgO and on Si, respectively)

  10. Thickness-dependent enhancement of damping in C o2FeAl /β -Ta thin films

    Science.gov (United States)

    Akansel, Serkan; Kumar, Ankit; Behera, Nilamani; Husain, Sajid; Brucas, Rimantas; Chaudhary, Sujeet; Svedlindh, Peter

    2018-04-01

    In the present work C o2FeAl (CFA) thin films were deposited by ion beam sputtering on Si (100) substrates at the optimized deposition temperature of 300 °C. A series of CFA films with different thicknesses (tCFA), 8, 10, 12, 14, 16, 18, and 20 nm, were prepared and all samples were capped with a 5-nm-thick β-Ta layer. The thickness-dependent static and dynamic properties of the films were studied by SQUID magnetometry, in-plane as well as out-of-plane broadband vector network analyzer-ferromagnetic resonance (FMR) measurements, and angle-dependent cavity FMR measurements. The saturation magnetization and the coercive field were found to be weakly thickness dependent and lie in the range 900-950 kA/m and 0.53-0.87 kA/m, respectively. The effective damping parameter (αeff) extracted from in-plane and out-of-plane FMR results reveals a 1/tCFA dependence, the values for the in-plane αeff being larger due to two-magnon scattering (TMS). The origin of the αeff thickness dependence is spin pumping into the nonmagnetic β-Ta layer and in the case of the in-plane αeff, also a thickness-dependent TMS contribution. From the out-of-plane FMR results, it was possible to disentangle the different contributions to αeff and to the extract values for the intrinsic Gilbert damping (αG) and the effective spin-mixing conductance (geff↑↓) of the CFA/ β-Ta interface, yielding αG=(1.1 ±0.2 ) ×10-3 and geff↑↓=(2.90 ±0.10 ) ×1019m-2 .

  11. Variation of structure and magnetic properties with thickness of thin Co59Fe26Ni15 films

    NARCIS (Netherlands)

    Chechenin, NG; van Voorthuysen, EHD; De Hosson, JTM; Boerma, DO

    Variations of phase composition and magnetic properties of electrodeposited nanocrystalline Co-Fe-Ni films with film thickness in the range of 50-500 nm were analyzed. The samples were magnetically soft with coercivity in the range H-c = 2-20 Oe and uni axial magnetic anisotropy up to H-k = 20 Oe.

  12. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  13. Atomically flat surface of (0 0 1) textured FePt thin films by residual stress control

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.H. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Hsiao, S.N., E-mail: pmami.hsiao@gmail.com [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Chou, C.L.; Chen, S.K. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Lee, H.Y. [National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Department of Applied Science, National Hsinchu University of Education, Hsinchu 300, Taiwan (China)

    2015-11-01

    Highlights: • We demonstrate crystallographic structure, (0 0 1) texture, surface roughness, and residual stress in the single-layered FePt thin films annealed at various heating rates (10–110 K/s). • Texture coefficient of (0 0 1)-plane of the samples increases with increasing heating rate from 10 to 40 K/s, which is correlated with perpendicular magnetic anisotropy and in-plane tensile stress. • Dewetting phenomenon due to stress relaxation leads to the broadening of [0 0 1] easy axis and degradation of perpendicular magnetic anisotropy. • A strong dependence of surface roughness on in-plane residual stress was revealed. • When the samples are RTA at 40 K/s, the enhanced perpendicular magnetic anisotropy and atomically surface roughness are achieved. - Abstract: Single-layered Fe{sub 52}Pt{sub 48} films with thickness of 10 nm were sputter-deposited on glass substrates. Rapid thermal annealing with different heating rates (10–110 K/s) was applied to transform as-deposited fcc phase into L1{sub 0} phase and meanwhile to align [0 0 1]-axis of L1{sub 0} crystal along plane normal direction. Based on X-ray diffractometry using synchrotron radiation source, the texture coefficient of (0 0 1)-plane increases with increasing heating rate from 10 to 40 K/s, which is correlated with perpendicular magnetic anisotropy and in-plane tensile stress analyzed by asymmetric sin{sup 2} ψ method. Furthermore, it was revealed by atomic force microscopy that the dewetting process occurred as heating rate was raised up to 80 K/s and higher. The change in the microstructure due to stress relaxation leads to the degradation of (0 0 1) orientation and magnetic properties. Surface roughness is closely related to the in-plane tensile stress. Enhanced perpendicular magnetic anisotropy and atomically flat surface were achieved for the samples annealed at 40 K/s, which may be suitable for further practical applications. This work also suggests a feasible way for surface

  14. Effect of thermal annealing on the structural and optical properties of Cu2FeSnS4 thin films grown by vacuum evaporation method

    Science.gov (United States)

    Oueslati, H.; Rabeh, M. Ben; Kanzari, M.

    2018-02-01

    In this work, the effect of different types of thermal annealing on the properties of Cu2FeSnS4 (CFTS) thin films deposited by thermal evaporation at room temperature on glass substrate were investigated. CFTS powder was synthesized by direct melting of the constituent elements taken in stoichiometry compositions. The X-ray diffraction experimental data indicating that the Cu2FeSnS4 powder illustrating a stannite structure in space group I\\bar {4}2m. From the XRD analysis we have found that the polycrystalline CFTS thin film was only obtained by thermal annealed in sulfur atmosphere under a high vacuum of 400 °C temperature during 2 h. Optical study reveals that the thin films have relatively high absorption coefficients (≈ 105cm-1) and the values of optical band gap energy ranged between 1.38 and 1.48 eV. Other optical parameters were evaluated according to the models of Wemple Di-Domenico and Spitzer-Fan. Finally, hot probe measurements of CFTS thin films reveal p-type conductivity.

  15. Characterisation of NdFeB thin films prepared on (100)Si substrates with SiO2 barrier layers

    International Nuclear Information System (INIS)

    Sood, D.K.; Muralidhar, G.K.

    1998-01-01

    This work presents a systematic study of the deposition and characterization of NdFeB films on substrates of Si(100) and of SiO2 layer thermally grown on Si(100) held at RT, 360 deg C or 440 deg C. The post-deposition annealing is performed at 600 or 800 deg C in vacuum. The films are characterised using the analytical techniques of RBS, SIMS, XRD, OM and SEM. Results indicate that SiO2 is, in deed, an excellent diffusion barrier layer till 600 deg C but becomes relatively less effective at 800 deg C. Without this barrier layer, interdiffusion at the Si-NdFeB film interface leads to formation of iron silicides, α-Fe and B exclusion from the diffusion zone, in competition with the formation of the magnetic NdFeB phase. (authors)

  16. Fast-LPG Sensors at Room Temperature by α-Fe2O3/CNT Nanocomposite Thin Films

    Directory of Open Access Journals (Sweden)

    B. Chaitongrat

    2018-01-01

    Full Text Available We present performance of a room temperature LPG sensor based on α-Fe2O3/CNT (carbon nanotube nanocomposite films. The nanocomposite film was fabricated via the metallic Fe catalyst particle on CNTs in which both the catalyst particles and the CNT were simultaneously synthesized by chemical vapor deposition (CVD synthesis and were subsequently annealed in air to create α-Fe2O3. These methods are simple, inexpensive, and suitable for large-scale production. The structure, surface morphologies, and LPG response of nanocomposite films were investigated. Raman spectroscopy and XPS analysis showed the formation of α-Fe2O3 on small CNTs (SWNTs. Morphological analysis using FE-SEM and AFM revealed the formation of the porous surface along with roughness surface. Additionally, the sensing performance of α-Fe2O3/CNTs showed that it could detect LPG concentration at lower value than 25% of LEL with response/recovery time of less than 30 seconds at room temperature. These results suggest that the α-Fe2O3/CNTs films are challenging materials for monitoring LPG operating at room temperature.

  17. Regulation of the forming process and the set voltage distribution of unipolar resistance switching in spin-coated CoFe2O4 thin films.

    Science.gov (United States)

    Mustaqima, Millaty; Yoo, Pilsun; Huang, Wei; Lee, Bo Wha; Liu, Chunli

    2015-01-01

    We report the preparation of (111) preferentially oriented CoFe2O4 thin films on Pt(111)/TiO2/SiO2/Si substrates using a spin-coating process. The post-annealing conditions and film thickness were varied for cobalt ferrite (CFO) thin films, and Pt/CFO/Pt structures were prepared to investigate the resistance switching behaviors. Our results showed that resistance switching without a forming process is preferred to obtain less fluctuation in the set voltage, which can be regulated directly from the preparation conditions of the CFO thin films. Therefore, instead of thicker film, CFO thin films deposited by two times spin-coating with a thickness about 100 nm gave stable resistance switching with the most stable set voltage. Since the forming process and the large variation in set voltage have been considered as serious obstacles for the practical application of resistance switching for non-volatile memory devices, our results could provide meaningful insights in improving the performance of ferrite material-based resistance switching memory devices.

  18. Thin film bismuth iron oxides useful for piezoelectric devices

    Science.gov (United States)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  19. Ab initio molecular dynamics model for density, elastic properties and short range order of Co-Fe-Ta-B metallic glass thin films

    International Nuclear Information System (INIS)

    Hostert, C; Music, D; Schneider, J M; Bednarcik, J; Keckes, J; Kapaklis, V; Hjörvarsson, B

    2011-01-01

    Density, elastic modulus and the pair distribution function of Co-Fe-Ta-B metallic glasses were obtained by ab initio molecular dynamics simulations and measured for sputtered thin films using x-ray reflectivity, nanoindentation and x-ray diffraction using high energy photons. The computationally obtained density of 8.19 g cm -3 for Co 43 Fe 20 Ta 5.5 B 31.5 and 8.42 g cm -3 for Co 45.5 Fe 24 Ta 6 B 24.5 , as well as the Young’s moduli of 273 and 251 GPa, respectively, are consistent with our experiments and literature data. These data, together with the good agreement between the theoretical and the experimental pair distribution functions, indicate that the model established here is useful to describe the density, elasticity and short range order of Co-Fe-Ta-B metallic glass thin films. Irrespective of the investigated variation in chemical composition, (Co, Fe)-B cluster formation and Co-Fe interactions are identified by density-of-states analysis. Strong bonds within the structural units and between the metallic species may give rise to the comparatively large stiffness. (paper)

  20. Highly textured Sr, Nb co-doped BiFeO3 thin films grown on SrRuO3/Si substrates by rf- sputtering

    International Nuclear Information System (INIS)

    Ostos, C.; Raymond, O.; Siqueiros, J. M.; Suarez-Almodovar, N.; Bueno-Baques, D.; Mestres, L.

    2011-01-01

    In this study, (011)-highly oriented Sr, Nb co-doped BiFeO 3 (BFO) thin films were successfully grown on SrRuO 3 /Si substrates by rf-magnetron sputtering. The presence of parasite magnetic phases was ruled out based on the high resolution x-ray diffraction data. BFO films exhibited a columnar-like grain growth with rms surface roughness values of ≅5.3 nm and average grain sizes of ≅65-70 nm for samples with different thicknesses. Remanent polarization values (2P r ) of 54 μC cm -2 at room temperature were found for the BFO films with a ferroelectric behavior characteristic of an asymmetric device structure. Analysis of the leakage mechanisms for this structure in negative bias suggests Schottky injection and a dominant Poole-Frenkel trap-limited conduction at room temperature. Oxygen vacancies and Fe 3+ /Fe 2+ trap centers are consistent with the surface chemical bonding states analysis from x-ray photoelectron spectroscopy data. The (011)-BFO/SrRuO 3 /Si film structure exhibits a strong magnetic interaction at the interface between the multiferroic film and the substrate layer where an enhanced ferromagnetic response at 5 K was observed. Zero-field cooled (ZFC) and field cooled (FC) magnetization curves of this film system revealed a possible spin glass behavior at spin freezing temperatures below 30 K depending on the BFO film thickness.

  1. Dynamic Atomic Reconstruction: How Fe_{3}O_{4} Thin Films Evade Polar Catastrophe for Epitaxy

    Directory of Open Access Journals (Sweden)

    C. F. Chang

    2016-10-01

    Full Text Available Polar catastrophe at the interface of oxide materials with strongly correlated electrons has triggered a flurry of new research activities. The expectations are that the design of such advanced interfaces will become a powerful route to engineer devices with novel functionalities. Here, we investigate the initial stages of growth and the electronic structure of the spintronic Fe_{3}O_{4}/MgO(001 interface. Using soft x-ray absorption spectroscopy, we have discovered that the so-called A-sites are completely missing in the first Fe_{3}O_{4} monolayer. This discovery allows us to develop an unexpected but elegant growth principle in which, during deposition, the Fe atoms are constantly on the move to solve the divergent electrostatic potential problem, thereby ensuring epitaxy and stoichiometry at the same time. This growth principle provides a new perspective for the design of interfaces.

  2. Influence of temperature on thermoelectric properties of Fe{sub x}Co{sub 1−x}S{sub 2} thin films: A semiconductor to semimetal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Clamagirand, J.M.; Ares, J.R., E-mail: joser.ares@uam.es; Flores, E.; Diaz-Chao, P.; Leardini, F.; Ferrer, I.J.; Sánchez, C.

    2016-02-01

    In this work, we investigate the thermoelectric properties of p and n-type thin films obtained by cobalt doping of FeS{sub 2}. Films were synthesized by direct sulfuration of Co–Fe thin bilayers at 300 °C. It is found that at room temperature (RT), the Seebeck coefficient is reduced from 80 μV/K to − 70 μV/K when Co concentration is increased and the electrical resistivity of the films is decreased two orders of magnitude. X-ray diffraction and Raman measurements point out that Co is replacing Fe into the pyrite lattice and, subsequently is promoting a semiconductor to semimetal conversion. The influence of temperature on transport properties of different Fe{sub x}Co{sub 1−x}S{sub 2} films has been investigated. Whereas the Seebeck coefficient is hardly modified, the film resistivity is drastically decreased when temperature increases what has been attributed to the thermal activation of electrical carriers. The influence of Co doping on the band scheme of FeS{sub 2} is shown. To this aim, donor and acceptor states are included into its forbidden gap. Whereas the band scheme of FeS{sub 2} exhibits an acceptor level with an E = 0.11 ± 0.03 eV above the top of the valence band due to iron vacancies, a wide donor level close to the bottom of the conduction band (E = 0.08 ± 0.05 eV) is created by the progressive replacement of iron by cobalt into the FeS{sub 2} lattice. - Highlights: • Thermoelectric properties of pyrite and Co-doped pyrite thin films were measured. • Whereas ρ decreases, S remains practically unaltered on increasing temperature (RT-300 °C). • On increasing Co-concentration, films exhibit a p semiconductor to n type semimetal conversion. • Donor states close to the botton of the conduction band are created by Co doping. • Energy of the donor level decreases and gets wider due to Co-concentration.

  3. Fabrication of highly spin-polarized Co2FeAl0.5Si0.5 thin-films

    Directory of Open Access Journals (Sweden)

    M. Vahidi

    2014-04-01

    Full Text Available Ferromagnetic Heusler Co2FeAl0.5Si0.5 epitaxial thin-films have been fabricated in the L21 structure with saturation magnetizations over 1200 emu/cm3. Andreev reflection measurements show that the spin polarization is as high as 80% in samples sputtered on unheated MgO (100 substrates and annealed at high temperatures. However, the spin polarization is considerably smaller in samples deposited on heated substrates.

  4. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  5. Nonlocal magnon spin transport in NiFe2O4 thin films

    NARCIS (Netherlands)

    Shan, Juan; Bougiatioti, P; Liang, Lei; Reiss, G; Kuschel, Timo; van Wees, Bart

    2017-01-01

    We report magnon spin transport in nickel ferrite(NiFe2O4, NFO)/platinum (Pt) bilayer systems at room temperature. A nonlocal geometry is employed, where the magnons are excited by the spin Hall effect or by the Joule heating induced spin Seebeck effect at the Pt injector and detected at a certain

  6. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy

    NARCIS (Netherlands)

    Domingo, N.; Farokhipoor, S.; Santiso, J.; Noheda, B.; Catalan, G.

    2017-01-01

    We measure the magnetotransport properties of individual 71 degrees domain walls in multiferroic BiFeO3 by means of conductive-atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of

  7. Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BiFeO3 based thin films

    International Nuclear Information System (INIS)

    Guo Yiping; Guo Bing; Dong Wen; Li Hua; Liu Hezhou

    2013-01-01

    The diode and photovoltaic effects of BiFeO 3 and Bi 0.9 Sr 0.1 FeO 3−δ polycrystalline thin films were investigated by poling the films with increased magnitude and alternating direction. It was found that both electromigration of oxygen vacancies and polarization flipping are able to induce switchable diode and photovoltaic effects. For the Bi 0.9 Sr 0.1 FeO 3−δ thin films with high oxygen vacancy concentration, reversibly switchable diode and photovoltaic effects can be observed due to the electromigration of oxygen vacancies under an electric field much lower than its coercive field. However, for the pure BiFeO 3 thin films with lower oxygen vacancy concentration, the reversibly switchable diode and photovoltaic effect is hard to detect until the occurrence of polarization flipping. The switchable diode and photovoltaic effects can be explained well using the concepts of Schottky-like barrier-to-Ohmic contacts resulting from the combination of oxygen vacancies and polarization. The sign of photocurrent could be independent of the direction of polarization when the modulation of the energy band induced by oxygen vacancies is large enough to offset that induced by polarization. The photovoltaic effect induced by the electromigration of oxygen vacancies is unstable due to the diffusion of oxygen vacancies or the recombination of oxygen vacancies with hopping electrons. Our work provides deep insights into the nature of diode and photovoltaic effects in ferroelectric films, and will facilitate the advanced design of switchable devices combining spintronic, electronic, and optical functionalities. (paper)

  8. Unraveling the magnetic properties of BiFe{sub 0.5}Cr{sub 0.5}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vinai, G.; Petrov, A. Yu.; Panaccione, G.; Torelli, P. [Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, I-34149 Trieste (Italy); Khare, A. [CNR-SPIN Napoli and Dipartimento di Fisica, Università di Napoli “Federico II,” I-80126 Napoli (Italy); Department of Physics, Sungkyunkwan University, Suwon 440 746 (Korea, Republic of); Rana, D. S. [Department of Physics, Indian Institute of Science Education and Research Bhopal, Govindpura, Bhopal 462023 (India); Di Gennaro, E.; Scotti di Uccio, U.; Miletto Granozio, F. [CNR-SPIN Napoli and Dipartimento di Fisica, Università di Napoli “Federico II,” I-80126 Napoli (Italy); Gobaut, B. [Sincrotrone Trieste S.C.p.A., S.S. 14 Km 163.5, Area Science Park, 34149 Trieste (Italy); Moroni, R. [CNR-SPIN, Corso Perrone 24, I-16152 Genova (Italy); Rossi, G. [Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, I-34149 Trieste (Italy); Department of Physics, Università degli Studi di Milano, via Celoria 16, I-20133 Milano (Italy)

    2015-11-01

    We investigate the structural, chemical, and magnetic properties on BiFe{sub 0.5}Cr{sub 0.5}O{sub 3} (BFCO) thin films grown on (001) (110) and (111) oriented SrTiO{sub 3} (STO) substrates by x-ray magnetic circular dichroism and x-ray diffraction. We show how highly pure BFCO films, differently from the theoretically expected ferrimagnetic behavior, present a very weak dichroic signal at Cr and Fe edges, with both moments aligned with the external field. Chemically sensitive hysteresis loops show no hysteretic behavior and no saturation up to 6.8 T. The linear responses are induced by the tilting of the Cr and Fe moments along the applied magnetic field.

  9. Unusually high critical current of P-doped BaFe{sub 2}As{sub 2} single crystalline thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, Fritz; Engelmann, Jan; Schultz, Ludwig [IMW, IFW Dresden, Dresden (Germany); TU Dresden, Dresden (Germany); Tarantini, Chiara; Jaroszynski, Jan [ASC, NHMFL, Florida (United States); Grinenko, Vadim; Reich, Elke; Huehne, Ruben [IMW, IFW Dresden, Dresden (Germany); Haenisch, Jens [IMW, IFW Dresden, Dresden (Germany); ITEP, KIT, Karlsruhe (Germany); Mori, Yasohiro; Sakagami, Akihiro; Kawaguchi, Takahiko; Ikuta, Hiroshi [Department of Crystalline Materials Science, Nagoya University, Nagoya (Japan); Holzapfel, Bernhard [ITEP, KIT, Karlsruhe (Germany); Iida, Kazumasa [IMW, IFW Dresden, Dresden (Germany); Department of Crystalline Materials Science, Nagoya University, Nagoya (Japan)

    2015-07-01

    Microstructurally clean, isovalently P-doped BaFe{sub 2}As{sub 2} single crystalline thin films have been prepared by molecular beam epitaxy. These films show a superconducting transition temperature (T{sub c}) of over 30 K and high transport self-field critical current densities (J{sub c}) of over 6 MA/cm{sup 2} at 4.2 K, which are among the highest for Fe based superconductors. In-field J{sub c} exceeds 0.1 MA/cm{sup 2} at μ{sub 0}H = 35 T for H parallel ab and μ{sub 0}H = 18 T for H parallel c, respectively, in spite of moderate upper critical fields compared to other FeSCs with similar T{sub c}. This unusually high J{sub c} makes P-doped Ba-122 very favorable for high-field magnet applications.

  10. Analysis of the High Conversion Efficiencies β-FeSi2 and BaSi2 n-i-p Thin Film Solar Cells

    International Nuclear Information System (INIS)

    Huang, J.Sh.; Lee, K.W.; Tseng, Y.H.

    2014-01-01

    Both β-FeSi 2 and BaSi 2 are silicides and have large absorption coefficients; thus they are very promising Si-based new materials for solar cell applications. In this paper, the dc I-V characteristics of n-Si/i-βFeSi 2 /p-Si and n-Si/i-BaSi 2 /p-Si thin film solar cells are investigated by solving the charge transport equations with optical generations. The diffusion current densities of free electron and hole are calculated first. Then the drift current density in the depletion regions is obtained. The total current density is the sum of diffusion and drift current densities. The conversion efficiencies are obtained from the calculated I-V curves. The optimum conversion efficiency of n-Si/i-βFeSi 2 /p-Si thin film solar cell is 27.8% and that of n-Si/i-BaSi 2 /p-Si thin film solar cell is 30.4%, both are larger than that of Si n-i-p solar cell (η is 20.6%). These results are consistent with their absorption spectrum. The calculated conversion efficiency of Si n-i-p solar cell is consistent with the reported researches. Therefore, these calculation results are valid in this work.

  11. Analysis of the High Conversion Efficiencies β-FeSi2 and BaSi2 n-i-p Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Jung-Sheng Huang

    2014-01-01

    Full Text Available Both β-FeSi2 and BaSi2 are silicides and have large absorption coefficients; thus they are very promising Si-based new materials for solar cell applications. In this paper, the dc I-V characteristics of n-Si/i-βFeSi2/p-Si and n-Si/i-BaSi2/p-Si thin film solar cells are investigated by solving the charge transport equations with optical generations. The diffusion current densities of free electron and hole are calculated first. Then the drift current density in the depletion regions is obtained. The total current density is the sum of diffusion and drift current densities. The conversion efficiencies are obtained from the calculated I-V curves. The optimum conversion efficiency of n-Si/i-βFeSi2/p-Si thin film solar cell is 27.8% and that of n-Si/i-BaSi2/p-Si thin film solar cell is 30.4%, both are larger than that of Si n-i-p solar cell (η is 20.6%. These results are consistent with their absorption spectrum. The calculated conversion efficiency of Si n-i-p solar cell is consistent with the reported researches. Therefore, these calculation results are valid in this work.

  12. Analysis of Crystal Structure of Fe3O4 Thin Films Based on Iron Sand Growth by Spin Coating Method

    Science.gov (United States)

    Rianto, D.; Yulfriska, N.; Murti, F.; Hidayati, H.; Ramli, R.

    2018-04-01

    Recently, iron sand used as one of base materials in the steel industry. However, the content of iron sand can be used as starting materials in sensor technology in the form of thin films. In this paper, we report the analysis of crystal structure of magnetite thin film based on iron sand from Tiram’s Beach. The magnetic content of sand separated by a permanent magnet, then it was milled at 30 hours milling time. In order to increase the purity of magnetite, it washed after milling using aquades under magnetic separation by a magnet permanent. The thin film has been prepared using iron (III) nitrate by sol–gel technique. The precursor is resulted by dissolving magnetite in oxalic acid and nitric acid. Then, solution of iron (III) nitrate dissolved in ethylene glycol was applied on glass substrates by spin coating. The X-Ray Diffraction is operated thin film characterization. The structure of magnetite has been studied based on X-Ray Peaks that correspond to magnetite content of thin films.

  13. Superconducting spin valves based on epitaxial Fe/V-hybrid thin film heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Gregor

    2010-12-10

    This study presents a systematic investigation of the SSV effect in FM/SC/FM and FM/N/FM/SC heterostructures. Before investigating the actual SSV effect, we first pre-analyzed structural, magnetic and superconducting properties of the Fe/V system. In these preliminary studies we demonstrated, that epitaxial Fe/V heterostructures of superior crystalline quality can be grown by DC sputter deposition. With a Fe/V interface thickness of only one monolayer, the chemical separation of the Fe and V layers is extremely sharp. Moreover, the magnetic investigation showed that from thicknesses of two Fe(001) monolayers on the Fe layers in the superlattice possess a magnetic moment. Furthermore, we demonstrated the interlayer exchange coupling as oscillatory function of the V interlayer thickness. The investigations of the superconducting parameters of the Fe/V system revealed a non-monotonic T{sub S} vs. d{sub Fe} dependence in sample series (1). This observation proves the presence of the FM/SC proximity effect. The studies of various heterostructures of the design AFM/FM/SC/FM revealed a strong counteracting influence on the SSV effect, the stray field effect. The sample containing Fe{sub 25}V{sub 75} alloy layers, has the highest ratio of Cooper pair coherence length and superconductor thickness (ξ{sub S})/(d{sub S}), and its superconducting transition temperature is comparable to the sample with Fe{sub 35}V{sub 65} alloy layers. Nevertheless, the SSV effect in sample Fe{sub 25}V{sub 75} with alloy layers is much smaller than in sample with Fe{sub 35}V{sub 65} alloy layers. For a high-performance superconducting spin valve based on a FM1/SC/FM2 heterostructure at least four parameters have to be optimized simultaneously. 1. The magnetic domain size in FM1 and FM2 has to be as large as possible in order to reduce the stray field effect resulting from magnetization components in the FM domain walls perpendicular to the SC layer. 2. When using ferromagnetic alloys as

  14. Structural features of epitaxial NiFe2O4 thin films grown on different substrates by direct liquid injection chemical vapor deposition

    Science.gov (United States)

    Datta, R.; Loukya, B.; Li, N.; Gupta, A.

    2012-04-01

    NiFe2O4 (NFO) thin films are grown on four different substrates, i.e., Lead Zinc Niobate-Lead Titanate (PZN-PT), Lead Magnesium Niobate-Lead Titanate (PMN-PT), MgAl2O4 (MAO) and SrTiO3 (STO), by a direct liquid injection chemical vapor deposition technique (DLI-CVD) under optimum growth conditions where relatively high growth rate (˜20 nm/min), smooth surface morphology and high saturation magnetization values in the range of 260-290 emu/ cm3 are obtained. The NFO films with correct stoichiometry (Ni:Fe=1:2) grow epitaxially on all four substrates, as confirmed by energy dispersive X-ray spectroscopy, transmission electron microscopy and x-ray diffraction. While the films on PMN-PT and PZN-PT substrates are partially strained, essentially complete strain relaxation occurs for films grown on MAO and STO. The formations of threading dislocations along with dark diffused contrast areas related to antiphase domains having a different cation ordering are observed on all four substrates. These crystal defects are correlated with lattice mismatch between the film and substrate and result in changes in magnetic properties of the films. Atomic resolution HAADF imaging and EDX line profiles show formation of a sharp interface between the film and the substrate with no inter-diffusion of Pb or other elements across the interface. Antiphase domains are observed to originate at the film-substrate interface.

  15. Synthesis of BiFeO3 thin films on single-terminated Nb : SrTiO3 (111 substrates by intermittent microwave assisted hydrothermal method

    Directory of Open Access Journals (Sweden)

    Ivan Velasco-Davalos

    2016-06-01

    Full Text Available We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO3 (111 substrates and the deposition of ferroelectric BiFeO3 thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO34− or Ti4+ layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d111 and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO3 single crystal substrates. Multiferroic BiFeO3 thin films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO3 (111 substrates. Bi(NO33 and Fe(NO33 along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO3 films on Nb : SrTiO3 (100 substrates was verified by piezoresponse force microscopy.

  16. Effects of sulfurization on the optical properties of Cu2ZnxFe1-xSnS4 thin films

    Science.gov (United States)

    Hannachi, A.; Oueslati, H.; Khemiri, N.; Kanzari, M.

    2017-10-01

    In order to prepare thin films of novel semiconductor materials that contain only earth abundant, low cost and nontoxic elements, Cu2ZnxFe1-xSnS4 ingots were successfully synthesized by direct fusion method. Crushed powders of these ingots were used as raw materials for the thermal evaporation. Cu2ZnxFe1-xSnS4 (with x = 0, 0.25, 0.5, 0.75 and 1) thin films were deposited on non-heated glass substrates by vacuum evaporation method. The as deposited films were sulfurized for 30 min at sulfurization temperature Ts = 400 °C. The effects of the sulfurization on the structural and optical properties of CZFTS films were realized by X-ray diffraction (XRD) and UV-Vis spectroscopy. XRD patterns show that all sulfurized CZFTS films were polycrystalline in nature with a preferential orientation along the (112) plane. CFTS films exhibit a stannite structure while CZTS films had a kesterite structure. Optical measurements showed that CZFTS films sulfurized at 400 °C exhibited an optical transmittance between 60 and 80% and all materials had relatively high absorption coefficients in the range of 104-105 cm-1. The band gap energies of sulfurized CZFTS films decreased from 1.71 to 1.50 eV with the increase of the Zn content. The dispersion of the refractive index was discussed in terms of the single oscillator model proposed by Wemple and DiDomenico and the optical parameters such as refractive index, extinction coefficient, oscillator energy and dispersion energy were calculated. The electrical free carrier susceptibility and the carrier concentration on the effective mass ratio were evaluated according to the model of Spitzer and Fan. The hot probe analysis showed that all sulfurized CZFTS films are p-type conductivity.

  17. Effect of process temperature on structure, microstructure, residual stresses and soft magnetic properties of sputtered Fe{sub 70}Co{sub 30} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Inamdar, Swaleha; Ramudu, M.; Raja, M. Manivel, E-mail: mraja@dmrl.drdo.in; Kamat, S.V.

    2016-11-15

    The effect of substrate and post-annealing temperatures on the structure, microstructure, residual stresses and soft magnetic properties of Fe{sub 70}Co{sub 30} thin films was systematically investigated. Microstructural studies reveal that the films are continuous and undergo changes in shape of grain from plate like to spherical resulting in an increase in grain size with the increase in substrate temperature, whereas the post-annealed films show small pores and no significant grain growth till 500 °C. Coercivity (H{sub c}) was found decreasing with both the substrate and post-annealing temperatures; however, the best H{sub c} value of 26 Oe was obtained for the films deposited at substrate temperature of 500 °C. The post-annealed films exhibited relatively higher H{sub c} values. A good combination of high saturation magnetization 4πM{sub s} of ~23.2 kG and low coercivity H{sub c} of 26–65 Oe was obtained for the films deposited at substrate temperature of 450–500 °C. Residual stress analysis on films with different substrate temperatures shows the presence of tensile stress. The decrease in tensile stress is attributed to the relaxation of thermal stresses in the films. - Highlights: • The properties of Fe{sub 70}Co{sub 30} thin films with substrate and post-annealing temperatures are studied. • Good combination of M{sub s} and H{sub c} were observed in the films with different substrate temperatures. • Coercivity decrease is attributed to the increased grain size and smaller residual stresses.

  18. Raman Scattering in La0.2Sr0.8FeO3-δ thin film: annealing-induced reduction and phase transformation

    Science.gov (United States)

    Islam, Mohammad; Xie, Yujun; Scafetta, Mark; May, Steven; Spanier, Jonathan

    2015-03-01

    Raman scattering in thin film La0.2Sr0.8FeO3-δ on MgO(001) collected at 300 K following different stages of annealing at selected temperatures (300 K topotactic transformation of the crystal structure from that of the rhombohedral ABO3 perovskites to that of Brownmillerite-like structure consisting of octahedrally and tetrahedrally coordinated Fe atoms. We acknowledge the ONR (N00014-11-1-0664), the Drexel Centralized Research Facilities, the Army Research Office DURIP program, the Department of Education (GAANN-RETAIN, Award No. P200A100117), and Leszek Wielunski at Rutgers University.

  19. Elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations.

    Science.gov (United States)

    Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M

    2013-06-19

    The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.

  20. Diffusion and segregation of substrate copper in electrodeposited Ni-Fe thin films

    International Nuclear Information System (INIS)

    Ahadian, M.M.; Iraji zad, A.; Nouri, E.; Ranjbar, M.; Dolati, A.

    2007-01-01

    The Cu surface segregation is investigated in the electrodeposited Ni-Fe layers using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS) and atomic force microscopy (AFM). The results indicate that Cu segregation and accumulation take place in areated and deareated baths and the amount of segregated copper increases after air exposure. This phenomenon is explained by lower interfacial tension of the Cu in comparison with Ni and Fe. Our results reveal more surface segregation in the electrodeposit than vacuum reported results. This should be due to interface charging and higher surface diffusion in applied potential. The effect of interface charging on the interfacial tension is discussed based on Lippmann equation. Increasing of the Cu accumulation after air exposure is related to selective oxidation in alloys and higher tendency of Cu to surface oxidation

  1. Application-related properties of giant magnetostrictive thin films

    International Nuclear Information System (INIS)

    Lim, S.H.; Kim, H.J.; Na, S.M.; Suh, S.J.

    2002-01-01

    In an effort to facilitate the utilization of giant magnetostrictive thin films in microdevices, application-related properties of these thin films, which include induced anisotropy, residual stress and corrosion properties, are investigated. A large induced anisotropy with an energy of 6x10 4 J/m 3 is formed in field-sputtered amorphous Sm-Fe-B thin films, resulting in a large magnetostriction anisotropy. Two components of residual stress, intrinsic compressive stress and tensile stress due to the difference of the thermal expansion coefficients between the substrate and thin film, are identified. The variation of residual stress with fabrication parameter and annealing temperature, and its influence on mechanical bending and magnetic properties are examined. Better corrosion properties are observed in Sm-Fe thin films than in Tb-Fe. Corrosion properties of Tb-Fe thin films, however, are much improved with the introduction of nitrogen to the thin films without deteriorating magnetostrictive properties

  2. Annealing effects on the ferromagnetic resonance linewidths of sputter-deposited Fe{sub 100−x}Co{sub x}(001) thin films (x < 11)

    Energy Technology Data Exchange (ETDEWEB)

    Kusaoka, A.; Kimura, J.; Takahashi, Y., E-mail: takahasy@yz.yamagata-u.ac.jp; Inaba, N. [Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Kirino, F. [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, Tokyo 110-8714 (Japan); Ohtake, M.; Futamoto, M. [Faculty of Science and Engineering, Chuo University, Tokyo 112-8551 (Japan)

    2015-05-07

    Effects of post-growth annealing on the magnetic damping of 3d transition alloy thin films were investigated. Fe{sub 100−x}Co{sub x} (x < 11 at. %) thin films were epitaxially deposited on GaAs(001) substrates by rf magnetron sputtering, and some of them were annealed without exposing to atmosphere. Electrical measurement showed that in-plane resistivity was smaller in the annealed films than in the as-deposited ones, indicating that the annealing mitigates crystalline imperfections and leads to reduced electron scattering rates. Magnetic damping was evaluated by the peak widths of ferromagnetic resonance (FMR) spectra obtained by a conventional Q-band spectrometer. Comparison of as-deposited and annealed specimens showed that the damping was decreased by annealing. Combined with the electrical and FMR measurements, these observations are consistent with the theoretical predictions that crystalline imperfections strongly influence the magnetic damping, both in intrinsic and extrinsic origins.

  3. The magnetic domain structures of Fe thin films on rectangular land-and-groove substrates studied by spin-polarized secondary electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, S. [Photodynamics Research Center, RIKEN, Aoba-ku, Sendai 980-0845 (Japan)]. E-mail: uedas@postman.riken.go.jp; Iwasaki, Y. [Photodynamics Research Center, RIKEN, Aoba-ku, Sendai 980-0845 (Japan); Micro Systems Network Company, Sony Corporation, Tagajo, Miyagi 985-0842 (Japan); Ushioda, S. [Photodynamics Research Center, RIKEN, Aoba-ku, Sendai 980-0845 (Japan); Research Institute of Electrical Communication, Tohoku University, Aoba-ku, Sendai 980-8577 (Japan)

    2004-10-01

    The magnetic domain structures of Fe thin films on rectangular land-and-groove structures have been studied by spin-polarized secondary electron microscopy (SP-SEM) under an applied dc field. The coercive force on the land area was found to be higher than that on the groove area in the magnetization reversal due to the difference in surface roughness between land and groove areas. The magnetic domain structure and domain wall pinning behavior during the reversal process depended on the direction of the magnetic field relative to the rectangles. These results show that the anisotropy induced by film geometry also contributes to the magnetization reversal process of thin magnetic films on land{sub a}nd{sub g}roove substrates.

  4. Annealing effects on the ferromagnetic resonance linewidths of sputter-deposited Fe100−xCox(001) thin films (x < 11)

    International Nuclear Information System (INIS)

    Kusaoka, A.; Kimura, J.; Takahashi, Y.; Inaba, N.; Kirino, F.; Ohtake, M.; Futamoto, M.

    2015-01-01

    Effects of post-growth annealing on the magnetic damping of 3d transition alloy thin films were investigated. Fe 100−x Co x (x < 11 at. %) thin films were epitaxially deposited on GaAs(001) substrates by rf magnetron sputtering, and some of them were annealed without exposing to atmosphere. Electrical measurement showed that in-plane resistivity was smaller in the annealed films than in the as-deposited ones, indicating that the annealing mitigates crystalline imperfections and leads to reduced electron scattering rates. Magnetic damping was evaluated by the peak widths of ferromagnetic resonance (FMR) spectra obtained by a conventional Q-band spectrometer. Comparison of as-deposited and annealed specimens showed that the damping was decreased by annealing. Combined with the electrical and FMR measurements, these observations are consistent with the theoretical predictions that crystalline imperfections strongly influence the magnetic damping, both in intrinsic and extrinsic origins

  5. Optimization of L1{sub 0} FePt/Fe{sub 45}Co{sub 55} thin films for rare earth free permanent magnet applications

    Energy Technology Data Exchange (ETDEWEB)

    Giannopoulos, G., E-mail: g.giannopoulos@inn.demokritos.gr; Psycharis, V.; Niarchos, D. [INN, NCSR Demokritos, Athens 15310 (Greece); Reichel, L. [IFW Dresden, P.O. Box 270116, 01171 Dresden (Germany); TU Dresden, Institute for Materials Science, 01062 Dresden (Germany); Markou, A.; Panagiotopoulos, I. [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Damm, C.; Fähler, S. [IFW Dresden, P.O. Box 270116, 01171 Dresden (Germany); Khan, Imran; Hong, Jisang [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-06-14

    The magnetic properties of magnetron sputtered bilayers consisting of Fe{sub 45}Co{sub 55} ultrathin layers on top of L1{sub 0} FePt films epitaxially grown on MgO substrates are studied in view of their possible application as rare earth free permanent magnets. It is found that FePt layers induce a tetragonal distortion to the Fe-Co layers which leads to increased anisotropy. This allows to take advantage of the Fe-Co high magnetic moment with less significant loss of the coercivity compared to a typical hard/soft exchange spring system. A maximum energy product approaching 50 MGOe is obtained for a FePt(7 ML)/FeCo/(5 ML) sample. The results are in accordance with first-principles computational methods, which predict that even higher energy products are possible for micromagnetically optimized microstructures.

  6. Structure and cation distribution of (Mn0.5Zn0.5)Fe2O4 thin films on SrTiO3(001)

    Science.gov (United States)

    Welke, M.; Brachwitz, K.; Lorenz, M.; Grundmann, M.; Schindler, K.-M.; Chassé, A.; Denecke, R.

    2017-06-01

    A comprehensive study on growth of ferrimagnetic manganese zinc ferrite (Mn0.5Zn0.5Fe2O4) films on single crystalline strontium titanate(001) (SrTiO3) substrates was carried out. Under the optimized conditions, a thin film with a layer thickness of 200 nm was deposited, and the structural properties were investigated. Contrary to data published in literature, no buffer layer was necessary to achieve epitaxial growth of a poorly lattice-matched layer. This was confirmed for Mn0.5Zn0.5Fe2O4(001) on SrTiO3(001) by x-ray diffraction and the adjoined phi scans, which also revealed a lattice compression of 1.2% of the manganese zinc ferrite film in the out-of-plane direction. Using x-ray photoelectron spectroscopy, the near surface stoichiometry of the film could be shown to agree with the intended one within the uncertainty of the method. X-ray absorption spectroscopy showed an electronic structure close to that published for bulk samples. Additional x-ray magnetic circular dichroism investigations were performed to answer detailed structural questions by a comparison of experimental data with the calculated ones. The calculations took into account ion sites (tetrahedral vs. octahedral coordination) as well as the charge of Fe ions (Fe2+ vs. Fe3+). Contrary to the expectation for a perfect normal spinel that only Fe3+ ions are present in octahedral sites, hints regarding the presence of additional Fe2+ in octahedral sites as well as Fe3+ ions in tetrahedral sites have been obtained. Altogether, the layer could be shown to be mostly in a normal spinel configuration.

  7. Electrochromic Ni–Fe oxide thin films synthesized by an atmospheric pressure plasma jet for flexible electrochromic application

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yun-Sen, E-mail: yslin@fcu.edu.tw; Chuang, Pei-Ying; Shie, Ping-Shiun

    2014-11-03

    Flexible-electrochromic organo-nickel-iron oxide (NiFe{sub x}O{sub y}C{sub z}) films deposited onto flexible polyethylene terephthalate (PET)/indium tin oxide (ITO) substrates using atmospheric-pressure plasma-enhanced chemical vapor deposition with an atmospheric pressure plasma jet under various flow rates of oxygen gases are investigated. Precursors [nickelocence, Ni(C{sub 5}H{sub 5}){sub 2}] and [ferrocence, Fe(C{sub 5}H{sub 5}){sub 2}] vapors are carried by argon gas, mixed by oxygen gas and injected into air plasma torch for a rapid synthesis of NiFe{sub x}O{sub y}C{sub z} films by a short duration of the substrate, 32 s, in the plasmas. Uniform light modulation on PET/ITO/NiFe{sub x}O{sub y}C{sub z} is produced while the moving PET/ITO substrate is exposed to plasma torch at room temperature (∼ 23 °C) and atmospheric pressure. Light modulation with up to a 43.2% transmittance variation at a wavelength of 708 nm even after 200 cycles of Li{sup +} intercalation and de-intercalation in a 1 M LiClO{sub 4}-propylene carbonate electrolyte is accomplished. - Highlights: • Rapid deposition of electrochromic organo-nickel–iron oxide (NiFe{sub x}O{sub y}C{sub z}) films • Enhanced electrochromic performance of NiFe{sub x}O{sub y}C{sub z} films by oxygen gas addition • Uniform light modulation on NiFe{sub x}O{sub y}C{sub z} films produced by air plasma jet • Porous surfaces allow reversible Li{sup +} intercalation and deintercalation.

  8. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  9. Quasicubic α-Fe{sub 2}O{sub 3} nanoparticles embedded in TiO{sub 2} thin films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tamm, Aile [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu (Estonia); Seinberg, Liis [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Kozlova, Jekaterina [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu (Estonia); Link, Joosep [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Pikma, Piret [University of Tartu, Institute of Chemistry, Ravila 14A, 50411 Tartu (Estonia); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Kukli, Kaupo [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu (Estonia); Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-08-01

    Monodispersed quasicubic α-Fe{sub 2}O{sub 3} nanoparticles were synthesized from ferric nitrite (Fe(NO{sub 3}){sub 3}), N,N-dimethyl formamide and poly(N-vinyl-2-pyrrolidone). Layers of nanoparticles were attached to HF-etched Si substrates by dip coating and subsequently embedded in thin titanium oxide films grown by atomic layer deposition from TiCl{sub 4} and H{sub 2}O. The deposition of TiO{sub 2} onto Fe{sub 2}O{sub 3} nanoparticles covered the nanoparticles uniformly and anatase phase of TiO{sub 2} was observed in Si/Fe{sub 2}O{sub 3}/TiO{sub 2} nanostructures. In Si/Fe{sub 2}O{sub 3}/TiO{sub 2} nanostructure magnetic domains, observable by magnetic force microscopy, were formed and these nanostructures implied ferromagnetic-like behavior at room temperature with the saturative magnetization and coercivity of 10 kA/m. - Highlights: • Cubic-shaped iron oxide crystallites were supported by thin titanium oxide films. • The process chemistry applied allowed formation of heterogeneous composite. • Atomic layer deposition of titanium oxide on nanocubes was uniform and conformal. • The nanostructures formed can be regarded as magnetically susceptible materials.

  10. Ferroelectricity down to at least 2 nm in multiferroic BiFeO3 epitaxial thin films

    International Nuclear Information System (INIS)

    Bea, H.; Fusil, S.; Bouzehouane, K.; Sirena, M.; Herranz, G.; Jacquet, E.; Contour, J.-P.; Barthelemy, A.; Bibes, M.

    2006-01-01

    We report here on the preservation of ferroelectricity down to 2 nm in BiFeO 3 ultrathin films. The electric polarization can be switched reversibly and is stable over several days. Our findings insight on the fundamental problem of ferroelectricity at low thickness and confirm the potential of BiFeO 3 as a lead-free ferroelectric and multiferroic material for nanoscale devices. (author)

  11. Magnetic and transport properties of Zn0.4Fe2.6O4 thin films with highly preferential orientation

    International Nuclear Information System (INIS)

    Lu, Z.L.; Zou, W.Q.; Liu, X.C.; Lin, Y.B.; Lu, Z.H.; Wang, J.F.; Xu, J.P.; Lv, L.Y.; Zhang, F.M.; Du, Y.W.

    2007-01-01

    Highly preferentially oriented Zn 0.4 Fe 2.6 O 4 thin films have been fabricated on Si, SrTiO 3 and ZrO 2 substrates, respectively, using RF magnetron sputtering. All the films show a large saturation magnetization of about 4.2μ B and low coercive field at 300 K and a spin (cluster) glass transition at about 60 K due to the non-magnetic Zn 2+ ions substitution. Moreover, the fairly high spin polarization of the carrier at 300 K has been confirmed by both the giant magnetoresistance and anomalous Hall coefficient measurements

  12. Thin film tritium dosimetry

    Science.gov (United States)

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  13. Investigation of electronic states of infinite-layer SrFeO{sub 2} epitaxial thin films by X-ray photoemission and absorption spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Chikamatsu, Akira, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Matsuyama, Toshiya [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Hirose, Yasushi [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Kumigashira, Hiroshi; Oshima, Masaharu [Department of Applied Chemistry, University of Tokyo, Tokyo 113-8656 (Japan); Hasegawa, Tetsuya [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Electronic states of infinite-layer SrFeO{sub 2} films have been experimentally observed. Black-Right-Pointing-Pointer Fe 3d states have higher densities of states in the valence-band region. Black-Right-Pointing-Pointer Three peaks derived from Fe 3d states were observed in the conduction-band region. Black-Right-Pointing-Pointer Indirect bandgap value was determined to be 1.3 eV. - Abstract: We investigated the electronic states of a single-crystal SrFeO{sub 2} epitaxial thin film in the valence-band and conduction-band regions using synchrotron-radiation X-ray photoemission and absorption spectroscopies. Fe 2p-3d resonant photoemission measurements revealed that the Fe 3d states have higher densities of states at binding energies of 3-5 eV and 5-8.5 eV in the valence-band region. The O K-edge X-ray absorption spectrum exhibited three peaks in the Fe 3d-derived conduction band hybridized with O 2p states; these can be assigned to Fe 3d{sub xy}, 3d{sub xz} + 3d{sub yz}, and 3d{sub x}{sup 2}{sub -y}{sup 2}. In addition, the indirect bandgap value of the SrFeO{sub 2} film was determined to be 1.3 eV by transmission and absorption spectroscopies.

  14. Electronic structure of Cr doped Fe3O4 thin films by X-ray absorption near-edge structure spectroscopy

    Science.gov (United States)

    Chen, Chi-Liang; Dong, Chung-Li; Asokan, Kandasami; Chern, G.; Chang, C. L.

    2018-04-01

    Present study reports the electronic structures of Cr doped Fe3O4 (Fe3-xCrxO4 (0 ≤ x ≤ 3) grown on MgO (100) substrates in the form of thin films fabricated by a plasma-oxygen assisted Molecular Beam Epitaxy (MBE). X-ray absorption near-edge structure (XANES) spectra at Cr & Fe L-, and O K-edges were used to understand the electronic structure: changes in the bonding nature, valence states, and site occupancies. Cr doping in Fe3O4 results in the change of charge transfer, crystal structure, and selective occupation of ions in octahedral and tetrahedral sites. Such change modifies the electrical and magnetic properties due to the covalency of Cr ions. The physical and chemical properties of ferrites are strongly dependent on the lattice site, ion size of dopant, and magnetic nature present at different structural symmetry of the spinel structure.

  15. Flexible thin film magnetoimpedance sensors

    International Nuclear Information System (INIS)

    Kurlyandskaya, G.V.; Fernández, E.; Svalov, A.; Burgoa Beitia, A.; García-Arribas, A.; Larrañaga, A.

    2016-01-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz. - Highlights: • [FeNi/Ti] 3 /Cu/[FeNi/Ti] 3 films were prepared by sputtering at different deposition rates. • Polymer substrates insure sufficiently accurate reproducibility of the film structure. • High deposition rate of 28 nm/min insures the highest values of the magnetoimpedance sensitivity. • Deposition onto polymer results in the satisfactory magnetoimpedance sensitivity of 45%/Oe.

  16. Flexible thin film magnetoimpedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kurlyandskaya, G.V., E-mail: galina@we.lc.ehu.es [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Fernández, E. [BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Svalov, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Burgoa Beitia, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); García-Arribas, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain)

    2016-10-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz. - Highlights: • [FeNi/Ti]{sub 3}/Cu/[FeNi/Ti]{sub 3} films were prepared by sputtering at different deposition rates. • Polymer substrates insure sufficiently accurate reproducibility of the film structure. • High deposition rate of 28 nm/min insures the highest values of the magnetoimpedance sensitivity. • Deposition onto polymer results in the satisfactory magnetoimpedance sensitivity of 45%/Oe.

  17. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy.

    Science.gov (United States)

    Domingo, N; Farokhipoor, S; Santiso, J; Noheda, B; Catalan, G

    2017-08-23

    We measure the magnetotransport properties of individual 71° domain walls in multiferroic BiFeO 3 by means of conductive-atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of the magnetoresistance depending on the relative orientation between the magnetic field and the domain wall plane. A consequence of this finding is that macroscopically averaged magnetoresistance measurements for domain wall bunches are likely to underestimate the magnetoresistance of each individual domain wall.

  18. Photoelectrochemical Characterization of Sprayed α-Fe2O3 Thin Films: Influence of Si Doping and SnO2 Interfacial Layer

    Directory of Open Access Journals (Sweden)

    Yongqi Liang

    2008-01-01

    Full Text Available α-Fe2O3 thin film photoanodes for solar water splitting were prepared by spray pyrolysis of Fe(AcAc3. The donor density in the Fe2O3 films could be tuned between 1017–1020 cm-3 by doping with silicon. By depositing a 5 nm SnO2 interfacial layer between the Fe2O3 films and the transparent conducting substrates, both the reproducibility and the photocurrent can be enhanced. The effects of Si doping and the presence of the SnO2 interfacial layer were systematically studied. The highest photoresponse is obtained for Fe2O3 doped with 0.2% Si, resulting in a photocurrent of 0.37 mA/cm2 at 1.23 VRHE in a 1.0 M KOH solution under 80 mW/cm2 AM1.5 illumination.

  19. Thin (111) oriented CoFe{sub 2}O{sub 4} and Co{sub 3}O{sub 4} films prepared by decomposition of layered cobaltates

    Energy Technology Data Exchange (ETDEWEB)

    Buršík, Josef, E-mail: bursik@iic.cas.cz [Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Husinec-Řež 1001 (Czech Republic); Soroka, Miroslav, E-mail: soroka@iic.cas.cz [Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Husinec-Řež 1001 (Czech Republic); Uhrecký, Róbert, E-mail: uhrecky@iic.cas.cz [Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Husinec-Řež 1001 (Czech Republic); Kužel, Radomír, E-mail: kuzel@karlov.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Praha 2 (Czech Republic); Mika, Filip, E-mail: filip.mika@isibrno.cz [Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 147, 612 64 Brno (Czech Republic); Huber, Štěpán, E-mail: stepan.huber@vscht.cz [University of Chemistry and Technology, Faculty of Chemical Technology, Technická 5, 166 28 Prague 6 (Czech Republic)

    2016-07-15

    Graphical abstract: Pole figures of NaCoO{sub 2} (left) and of CoFe{sub 2}O{sub 4} (right) films formed through the transformation of O3-type NaCoO{sub 2} phase in consequence of sodium deintercalation occurring at 800 °C. Films were prepared by chemical solution deposition on MgO(111) substrate. - Highlights: • Epitaxial Na(CoFe)O{sub 2} thin films by means of chemical solution deposition were prepared. • Oriented spinel films through transformation of Na(CoFe)O{sub 2} were obtained. • Orientation relation to MgO, SrTiO{sub 3} and Zr(Y)O{sub 2} substrates were determined. • Structural aspects of Na(CoFe)O{sub 2} → CoFe{sub 2}O{sub 4} transformation pathway were elucidated. - Abstract: The formation and structural characterization of highly (111)-oriented Co{sub 3}O{sub 4} and CoFe{sub 2}O{sub 4} films prepared by a novel procedure from 00l-oriented NaCoO{sub 2} and Na(CoFe)O{sub 2} is reported. The Na(CoFe)O{sub 2} films were deposited on MgO, SrTiO{sub 3}, LaAlO{sub 3}, and Zr(Y)O{sub 2} single crystals with (100) and (111) orientations by chemical solution deposition method and crystallized at 700 °C. Subsequently they were transformed into (111)-oriented spinel phase during post-growth annealing at 800–1000 °C. Morphology and structure of the films was investigated by means of scanning electron microscopy and X-ray diffraction. While all spinel films exhibit pronounced out-of-plane orientation irrespective of substrate, the rate of in-plane orientation strongly depend on lattice misfit values. Different epitaxial phenomena ranging from true one-to-one epitaxy to the existence of many-to-one epitaxy involving two or more orientations were determined by full 3D texture analysis.

  20. Turn on of new electronic paths in Fe-SiO{sub 2} granular thin film

    Energy Technology Data Exchange (ETDEWEB)

    Boff, M. A. S., E-mail: rs014676@via-rs.net, E-mail: marcoaureliosilveiraboff@gmail.com; Canto, B.; Mesquita, F.; Fraga, G. L. F.; Pereira, L. G. [Physics Institute–IF-UFRGS, C.P. 15051, 91501–970, Porto Alegre, Rio Grande do Sul (Brazil); Hinrichs, R. [Physics Institute–IF-UFRGS, C.P. 15051, 91501–970, Porto Alegre, Rio Grande do Sul (Brazil); Geosciences Institute–IG-UFRGS, C.P. 15001, 91501–970, Porto Alegre, Rio Grande do Sul (Brazil); Baptista, D. L. [Physics Institute–IF-UFRGS, C.P. 15051, 91501–970, Porto Alegre, Rio Grande do Sul (Brazil); Materials Metrology Division, INMETRO, 25250-020 Duque de Caxias, Rio de Janeiro (Brazil)

    2014-10-06

    The electrical properties of Fe-SiO{sub 2} have been studied in the low-field regime (eΔV ≪ k{sub B}T), varying the injected current and the bias potential. Superparamagnetism and a resistance drop of 4400 Ω (for a voltage variation of 15 V) were observed at room temperature. This resistance drop increased at lower temperatures. The electrical properties were described with the “Mott variable range hopping” model explaining the behavior of the electrical resistance and the electronic localization length as due to the activation of new electronic paths between more distant grains. This non-ohmic resistance at room temperature can be important for properties dependent of electrical current (magnetoresistance, Hall effect, and magnetoimpedance).

  1. Multiferroic properties of BiFeO3/BaTiO3 multilayered thin films

    International Nuclear Information System (INIS)

    Sharma, Savita; Tomar, Monika; Kumar, Ashok; Puri, Nitin K.; Gupta, Vinay

    2014-01-01

    Multilayered structures of multiferroic BiFeO 3 (BFO) and ferroelectric BaTiO 3 (BTO) have been fabricated using pulsed laser deposition (PLD). Ferromagnetic and ferroelectric properties of the multilayered system (BFO/BTO) have been investigated. It could be inferred that the magnetization increases with the incorporation of BTO buffer layer, which indicates a coupling between the ferroelectric and ferromagnetic orders. Vibrating sample magnetometer (VSM) measurements performed on the prepared multiferroic samples show that the magnetization is significantly increased (M s =56.88 emu/cm 3 ) for the multilayer system with more number of layers (four) keeping the total thickness of the multilayered system constant (350 nm) meanwhile maintaining the sufficiently enhanced ferroelectric properties (P r =29.68 µC/cm 2 )

  2. Irradiation Effect of Argon Ion on Interfacial Structure Fe(2nm/Si(tsi=0.5-2 nm Multilayer thin Film

    Directory of Open Access Journals (Sweden)

    S. Purwanto

    2010-04-01

    Full Text Available Investigation includes formation of interfacial structure of Fe(2nm/Si(tSi= 0.5-2 nm multilayer thin film and the behavior of antiferromagnetic coupling between Fe layers due to Argon ion irradiation was investigated. [Fe(2nm/Si]30 multilayers (MLs with a thickness of Si spacer 0.5 - 2 nanometer were prepared on n-type (100 Si substrate by the helicon plasma sputtering method. Irradiation were performed using 400keV Ar ion to investigate the behavior of magnetic properties of the Fe/Si MLs. The magnetization measurements of Fe/Si MLs after 400keV Ar ion irradiation show the degradation of antiferromagnetic behavior of Fe layers depend on the ion doses. The Magnetoresistance (MR measurements using by Four Point Probe (FPP method also confirm that MR ratio decrease after ion irradiation. X-ray diffraction (XRD patterns indicate that the intensity of a satellite peak induced by a superlattice structure does not change within the range of ion dose. These results imply that the surface of interface structures after ion irradiation become rough although the layer structures are maintained. Therefore, it is considered that the MR properties of Fe/Si MLs also are due to the metallic superlattice structures such as Fe/Cr and Co/Cu MLs.

  3. Properties of Ferrite Garnet (Bi, Lu, Y3(Fe, Ga5O12 Thin Film Materials Prepared by RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Mohammad Nur-E-Alam

    2018-05-01

    Full Text Available This work is devoted to physical vapor deposition synthesis, and characterisation of bismuth and lutetium-substituted ferrite-garnet thin-film materials for magneto-optic (MO applications. The properties of garnet thin films sputtered using a target of nominal composition type Bi0.9Lu1.85Y0.25Fe4.0Ga1O12 are studied. By measuring the optical transmission spectra at room temperature, the optical constants and the accurate film thicknesses can be evaluated using Swanepoel’s envelope method. The refractive index data are found to be matching very closely to these derived from Cauchy’s dispersion formula for the entire spectral range between 300 and 2500 nm. The optical absorption coefficient and the extinction coefficient data are studied for both the as-deposited and annealed garnet thin-film samples. A new approach is applied to accurately derive the optical constants data simultaneously with the physical layer thickness, using a combination approach employing custom-built spectrum-fitting software in conjunction with Swanepoel’s envelope method. MO properties, such as specific Faraday rotation, MO figure of merit and MO swing factor are also investigated for several annealed garnet-phase films.

  4. The influence of different electrodeposition E/t programs on the photoelectrochemical properties of α-Fe2O3 thin films

    International Nuclear Information System (INIS)

    Schrebler, Ricardo S.; Altamirano, Hernan; Grez, Paula; Herrera, Francisco V.; Munoz, Eduardo C.; Ballesteros, Luis A.; Cordova, Ricardo A.; Gomez, Humberto; Dalchiele, Enrique A.

    2010-01-01

    In this work morphological, structural and photoelectrochemical properties of n-type α-Fe 2 O 3 (hematite) thin films synthetized by means of two different electrochemical procedures: potential cycling electrodeposition (PC) and potential pulsed electrodeposition (PP) have been studied. The X-ray diffraction measurements showed that the films obtained after a thermal treatment at 520 o C present a nanocrystalline character. Scanning electron microscopy allowed finding that hematite films obtained by PP technique exhibit nanostructured morphology. The electrochemical and capacitance (Mott-Schottky and parallel capacitance) measurements showed that when in the PC and PP procedures the anodic limit E λ,A is being made more anodic, a decrease of the majority carriers concentration (N D ) and the surface states number has been observed. The photovoltammetry measurements indicated that the hematite films formed with the PP technique present a photocurrent one order of magnitude higher than the ones exhibited by the iron oxide films formed by PC. For instance, PP hematite films exhibit photovoltaic conversion efficiencies of 0.96% which are 2.5 times higher than the corresponding to the PC ones (0.38%). The maximum incident photon-to-current efficiency measured at λ = 370 and 600 nm was observed for hematite films grown by the PP procedure. By means of the photocurrent transient technique a decrease in the recombination process for those samples synthesized by PP was observed. The results obtained are discussed considering the influence of the anodic limit of the potential employed during the preparation of the iron oxyhydroxide (β-FeOOH) precursor film, all of this related to a decrease of the oxygen defects in this material and to a decrease of Fe(II) amount that is formed during the electrodeposition process.

  5. Absence of morphotropic phase boundary effects in BiFeO3-PbTiO3 thin films grown via a chemical multilayer deposition method

    Science.gov (United States)

    Gupta, Shashaank; Bhattacharjee, Shuvrajyoti; Pandey, Dhananjai; Bansal, Vipul; Bhargava, Suresh K.; Peng, Ju Lin; Garg, Ashish

    2011-07-01

    We report an unusual behavior observed in (BiFeO3)1- x -(PbTiO3) x (BF- xPT) thin films prepared using a multilayer chemical solution deposition method. Films of different compositions were grown by depositing several bilayers of BF and PT precursors of varying BF and PT layer thicknesses followed by heat treatment in air. X-ray diffraction showed that samples of all compositions show mixing of two compounds resulting in a single-phase mixture, also confirmed by transmission electron microscopy. In contrast to bulk compositions, samples show a monoclinic (MA-type) structure suggesting disappearance of the morphotropic phase boundary (MPB) at x=0.30 as observed in the bulk. This is accompanied by the lack of any enhancement of the remanent polarization at the MPB, as shown by the ferroelectric measurements. Magnetic measurements showed an increase in the magnetization of the samples with increasing BF content. Significant magnetization in the samples indicates melting of spin spirals in the BF- xPT films, arising from a random distribution of iron atoms. Absence of Fe2+ ions was corroborated by X-ray photoelectron spectroscopy measurements. The results illustrate that thin film processing methodology significantly changes the structural evolution, in contrast to predictions from the equilibrium phase diagram, besides modifying the functional characteristics of the BP- xPT system dramatically.

  6. Structural and magnetic anisotropy in the epitaxial FeV2O4 (110) spinel thin films

    Science.gov (United States)

    Shi, Xiaolan; Wang, Yuhang; Zhao, Kehan; Liu, Na; Sun, Gaofeng; Zhang, Liuwan

    2015-11-01

    The epitaxial 200-nm-thick FeV2O4(110) films on (110)-oriented SrTiO3, LaAlO3 and MgAl2O4 substrates were fabricated for the first time by pulsed laser deposition, and the structural, magnetic, and magnetoresistance anisotropy were investigated systematically. All the films are monoclinic, whereas its bulk is cubic. Compared to FeV2O4 single crystals, films on SrTiO3 and MgAl2O4 are strongly compressively strained in [001] direction, while slightly tensily strained along normal [110] and in-plane [ 1 1 ¯ 0 ] directions. In contrast, films on LaAlO3 are only slightly distorted from cubic. The magnetic hard axis is in direction, while the easier axis is along normal [110] direction for films on SrTiO3 and MgAl2O4, and in-plane [ 1 1 ¯ 0 ] direction for films on LaAlO3. Magnetoresistance anisotropy follows the magnetization. The magnetic anisotropy is dominated by the magnetocrystalline energy, and tuned by the magneto-elastic coupling.

  7. Transverse anisotropic magnetoresistance effects in pseudo-single-crystal γ′-Fe4N thin films

    Directory of Open Access Journals (Sweden)

    Kazuki Kabara

    2016-05-01

    Full Text Available Transverse anisotropic magnetoresistance (AMR effects, for which magnetization is rotated in an orthogonal plane to the current direction, were investigated at various temperatures, in order to clarify the structural transformation from a cubic to a tetragonal symmetry in a pseudo-single-crystal Fe4N film, which is predicted from the usual in-plane AMR measurements by the theory taking into account the spin-orbit interaction and crystal field splitting of 3d bands. According to a phenomenological theory of AMR, which derives only from the crystal symmetry, a cos 2θ component ( C 2 tr exists in transverse AMR curves for a tetragonal system but does not for a cubic system. In the Fe4N film, the C 2 tr shows a positive small value (0.12% from 300 K to 50 K. However, the C 2 t r increases to negative value below 50 K and reaches to -2% at 5 K. The drastic increasing of the C 2 tr demonstrates the structural transformation from a cubic to a tetragonal symmetry below 50 K in the Fe4N film. In addition, the out-of-plane and in-plane lattice constants (c and a were precisely determined with X-ray diffraction at room temperature using the Nelson-Riely function. As a result, the positive small C 2 t r above 50 K is attributed to a slightly distorted Fe4N lattice (c/a = 1.002.

  8. Physical properties of Fe doped Mn3O4 thin films synthesized by SILAR method and their antibacterial performance against E. coli

    Directory of Open Access Journals (Sweden)

    M.R. Belkhedkar

    2016-09-01

    Full Text Available Nanocrystalline Fe doped Mn3O4 thin films were deposited by successive ionic layer adsorption and reaction method onto glass substrates. The X-ray diffraction study revealed that Fe doped Mn3O4 films are nanocrystalline in nature. The morphological investigations were carried out by using field emission scanning electron and atomic force microscopy studies. The optical absorption measurements showed that Mn3O4 films exhibit direct band gap energy of the order of 2.78 eV and it increased to 2.89 eV as the percentage of Fe doping in it increases from 0 to 8 wt.%. The room temperature electrical resistivity of Mn3O4 increases from 1.84 × 103 to 2.64 × 104 Ω cm as Fe doping increases from 0 to 8 wt.%. The SILAR grown Mn3O4 showed antibacterial performance against Escherichia coli bacteria which improved remarkably with doping.

  9. X-ray diffraction and Moessbauer studies of structural changes and L10 ordering kinetics during annealing of polycrystalline Fe51Pt49 thin films

    International Nuclear Information System (INIS)

    Spada, F.E.; Parker, F.T.; Platt, C.L.; Howard, J.K.

    2003-01-01

    Room-temperature x-ray diffraction and Moessbauer effect techniques have been used to characterize the structural features and local atomic environments of sputtered Fe 51 Pt 49 thin films following various isothermal treatments. Both techniques show that no significant changes occur in the chemically ordered L1 0 tetragonal phase after it has formed. In contrast, changes in the disordered face-centered-cubic (fcc) phase are observed prior to the transformation into the ordered tetragonal phase. Moessbauer measurements indicate the development of increasing short-range order in the disordered fcc phase with increasing annealing temperature. Asymmetries in the fcc x-ray diffraction profiles also suggest the presence of lattice distortions caused by atomic size differences commonly found in the quenched disordered fcc phase of materials that form ordered structures. Quasi-real-time kinetic measurements of the disorder→order transformation in sputtered Fe 51 Pt 49 thin films within the temperature range 300 deg. C≤T≤400 deg. C have also been conducted using high-temperature x-ray diffraction techniques. Significant differences are observed between the kinetic parameters determined in this study and those of previous reports. It is proposed that these differences arise from the lower temperature range investigated in the present work, where the gradual changes occurring in the fcc phase can influence the rate of the ordering transformation. Furthermore, because the initial state of disorder in Fe ∼50 Pt ∼50 films can be influenced by the deposition conditions, variability in the low-temperature ordering kinetics should be expected among Fe ∼50 Pt ∼50 films prepared under different conditions

  10. Magnetron-sputter epitaxy of β-FeSi2(220)/Si(111) and β-FeSi2(431)/Si(001) thin films at elevated temperatures

    International Nuclear Information System (INIS)

    Liu Hongfei; Tan Chengcheh; Chi Dongzhi

    2012-01-01

    β-FeSi 2 thin films have been grown on Si(111) and Si(001) substrates by magnetron-sputter epitaxy at 700 °C. On Si(111), the growth is consistent with the commonly observed orientation of [001]β-FeSi 2 (220)//[1-10]Si(111) having three variants, in-plane rotated 120° with respect to one another. However, on Si(001), under the same growth conditions, the growth is dominated by [-111]β-FeSi 2 (431)//[110]Si(001) with four variants, which is hitherto unknown for growing β-FeSi 2 . Photoelectron spectra reveal negligible differences in the valance-band and Fe2p core-level between β-FeSi 2 grown on Si(111) and Si(001) but an apparent increased Si-oxidization on the surface of β-FeSi 2 /Si(001). This phenomenon is discussed and attributed to the Si-surface termination effect, which also suggests that the Si/Fe ratio on the surface of β-FeSi 2 (431)/Si(001) is larger than that on the surface of β-FeSi 2 (220)/Si(111).

  11. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    Jayakumar, S.; Kannan, M.D.; Prasanna, S.

    2012-01-01

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  12. Structural parameters and resistive switching phenomenon study on Cd0.25Co0.75Fe2O4 ferrite thin film

    International Nuclear Information System (INIS)

    Chhaya, U.V.; Gadhvi, M.R.; Mistry, B.V.; Bhavsar, K.H.; Joshi, U.S.; Lakhani, V.K.; Modi, K.B.

    2011-01-01

    Cadmium substituted cobalt ferrite thin film with nominal composition Cd 0.25 Co 0.75 Fe 2 O 4 , has been grown on quartz substrate by chemical solution deposition and their structural and electrical properties have been investigated. Grazing incidence X-ray diffraction (XRD) confirmed single phase spine) structure with nanometer grain size. Atomic force microscopic analysis revealed uniform nano structured growth of about 70 nm average crystallite size. The XRD data have been used to determine the distribution of cations among the tetrahedral and octahedral sites of the spinel lattice and various structural parameters. The cation distribution determined from X-ray diffraction line intensity calculations revealed, 60% octahedral sites occupancy of Cd 2+ -ions in the composition. Four terminal I-V measurements show hysteretic curves, suggesting high resistance state (HRS) and low resistance state (LRS) in the film with polarity dependence. Maximum resistance ratio, R high /R low of 57% was observed at room temperature in the Ag/Cd 0.25 Co 0.75 Fe 2 O 4 /Ag planar structure. Observed resistance switching is attributed to combined effects, viz., in the LRS, the major fraction of cadmium occupation and electron exchange between Fe 3+ and Fe 2+ at the B-sites, whereas the HRS shows Schottky-like conduction mechanism at the Ag/Cd 0.25 Co 0.75 Fe 2 O 4 interface. (author)

  13. On stoichiometry and intermixing at the spinel/perovskite interface in CoFe2O4/BaTiO3 thin films.

    Science.gov (United States)

    Tileli, Vasiliki; Duchamp, Martial; Axelsson, Anna-Karin; Valant, Matjaz; Dunin-Borkowski, Rafal E; Alford, Neil McN

    2015-01-07

    The performance of complex oxide heterostructures depends primarily on the interfacial coupling of the two component structures. This interface character inherently varies with the synthesis method and conditions used since even small composition variations can alter the electronic, ferroelectric, or magnetic functional properties of the system. The focus of this article is placed on the interface character of a pulsed laser deposited CoFe2O4/BaTiO3 thin film. Using a range of state-of-the-art transmission electron microscopy methodologies, the roles of substrate morphology, interface stoichiometry, and cation intermixing are determined on the atomic level. The results reveal a surprisingly uneven BaTiO3 substrate surface formed after the film deposition and Fe atom incorporation in the top few monolayers inside the unit cell of the BaTiO3 crystal. Towards the CoFe2O4 side, a disordered region extending several nanometers from the interface was revealed and both Ba and Ti from the substrate were found to diffuse into the spinel layer. The analysis also shows that within this somehow incompatible composite interface, a different phase is formed corresponding to the compound Ba2Fe3Ti5O15, which belongs to the ilmenite crystal structure of FeTiO3 type. The results suggest a chemical activity between these two oxides, which could lead to the synthesis of complex engineered interfaces.

  14. Epitaxial growth and magnetic properties of Fe4-xMnxN thin films grown on MgO(0 0 1) substrates by molecular beam epitaxy

    Science.gov (United States)

    Anzai, Akihito; Takata, Fumiya; Gushi, Toshiki; Toko, Kaoru; Suemasu, Takashi

    2018-05-01

    Epitaxial Fe4-xMnxN (x = 0, 1, 2, 3, and 4) thin films were successfully grown on MgO(0 0 1) single-crystal substrates by molecular beam epitaxy, and their crystalline qualities and magnetic properties were investigated. It was found that the lattice constants of Fe4-xMnxN obtained from X-ray diffraction measurement increased with the Mn content. The ratio of the perpendicular lattice constant c to the in-plane lattice constant a of Fe4-xMnxN was found to be about 0.99 at x ⩾ 2. The magnetic properties evaluated using a vibrating sample magnetometer at room temperature revealed that all of the Fe4-xMnxN films exhibited ferromagnetic behavior regardless of the value of x. In addition, the saturation magnetization decreased non-linearly as the Mn content increased. Finally, FeMn3N and Mn4N exhibited perpendicular anisotropy and their uniaxial magnetic anisotropy energies were 2.2 × 105 and 7.5 × 105 erg/cm3, respectively.

  15. Phase transformations in Au(Fe) nano- and microparticles obtained by solid state dewetting of thin Au–Fe bilayer films

    International Nuclear Information System (INIS)

    Amram, D.; Klinger, L.; Rabkin, E.

    2013-01-01

    Sub-micrometer-sized particles of Au–Fe alloys were obtained by solid-state dewetting of single-crystalline Au–Fe bilayer films, deposited on c-plane sapphire (α-Al 2 O 3 ) substrates. Depending on the annealing parameters, precipitation of an Fe-rich phase occurred on the side facets of the particles in an interface-limited reaction. Based on the literature values of surface and interface energies in the system, the precipitates were expected to grow inside the Au(Fe) particles, resulting in an (Fe) core–(Au) shell morphology. However, more complex, time-dependent precipitate morphologies were observed, with faceted Fe-rich precipitates attached to the parent faceted Au-rich particles of the same height being dominant at the last stages of the transformation. Our high-resolution transmission electron microscopy observations revealed a nanometric segregation layer of Au on the surface of Fe-rich particles and at their interface with sapphire. This segregation layer modified the surface and interface energies of the Fe-rich particles. A thermodynamic transformation model based on the concept of weighted mean curvature was developed, describing the kinetics of precipitations and morphology evolution of the particles during the dewetting process. Employing the values of surface and interface energies modified by segregation resulted in a good qualitative agreement between theory and experiment

  16. Optical thin film deposition

    International Nuclear Information System (INIS)

    Macleod, H.A.

    1979-01-01

    The potential usefulness in the production of optical thin-film coatings of some of the processes for thin film deposition which can be classified under the heading of ion-assisted techniques is examined. Thermal evaporation is the process which is virtually universally used for this purpose and which has been developed to a stage where performance is in almost all respects high. Areas where further improvements would be of value, and the possibility that ion-assisted deposition might lead to such improvements, are discussed. (author)

  17. Thin Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.

    1998-11-19

    The motivation to develop thin film technologies dates back to the inception of photovoltaics. It is an idea based on achieving truly low-cost photovoltaics appropriate for mass production and energy significant markets. The key to the idea is the use of pennies worth of active materials. Since sunlight carries relatively little energy in comparison with combustion-based energy sources, photovoltaic (PV) modules must be cheap to produce energy that can be competitive. Thin films are presumed to be the answer to that low-cost requirement. But how cheap do they have to be? The following is an oversimplified analysis that allows some insight into this question.

  18. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  19. Room Temperature Gas Sensing Properties of Sn-Substituted Nickel Ferrite (NiFe2O4) Thin Film Sensors Prepared by Chemical Co-Precipitation Method

    Science.gov (United States)

    Manikandan, V.; Li, Xiaogan; Mane, R. S.; Chandrasekaran, J.

    2018-04-01

    Tin (Sn) substituted nickel ferrite (NiFe2O4) thin film sensors were prepared by a simple chemical co-precipitation method, which initially characterized their structure and surface morphology with the help of x-ray diffraction and scanning electron microscopy. Surface morphology of the sensing films reveals particles stick together with nearer particles and this formation leads to a large specific area as a large specific area is very useful for easy adsorption of gas molecules. Transmission electron microscopy and selected area electron diffraction pattern images confirm particle size and nanocrystallnity as due to formation of circular rings. Fourier transform infrared analysis has supported the presence of functional groups. The 3.69 eV optical band gap of the film was found which enabled better gas sensing. Gas sensors demonstrate better response and recovery characteristics, and the maximum response was 68.43%.

  20. Polarized Neutron Reflectivity Simulation of Ferromagnet/ Antiferromagnet Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yeon; Lee, Jeong Soo

    2008-02-15

    This report investigates the current simulating and fitting programs capable of calculating the polarized neutron reflectivity of the exchange-biased ferromagnet/antiferromagnet magnetic thin films. The adequate programs are selected depending on whether nonspin flip and spin flip reflectivities of magnetic thin films and good user interface are available or not. The exchange-biased systems such as Fe/Cr, Co/CoO, CoFe/IrMn/Py thin films have been simulated successfully with selected programs.

  1. Investigation of the electroforming and resistive switching mechanisms in Fe-doped SrTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Menke, Tobias

    2009-11-27

    To overcome the physical limits of todays memory technologies new concepts are needed. The resistive random access memory (RRAM), which bases on a nonvolatile and repeatable change of the resistance by external electrical stimuli, seems to be one promising candidate. Within the scope of this work, the model system Strontium titanate (SrTiO{sub 3}) has been investigated to get a deeper understanding of the underlying physical mechanism related to the resistance change. The electrical properties of SrTiO{sub 3} (STO) can be modulated from a band insulator to metallic conduction by a self-doping with oxygen vacancies which act as shallow donors. A local accumulation or depletion of oxygen vacancies at the vicinity of the surface will lead to a local redox process which is responsible for the resistance change. To study the influence of the interfaces on the switching properties of SrTiO{sub 3} thin films, epitaxial films of Fe-doped SrTiO{sub 3} were grown on different bottom electrodes (SrRuO{sub 3}, LaNiO{sub 3} und Nb:STO) by a ''Pulsed Laser Deposition'' technique. An atomic force microscope equipped with a conductive tip (LC-AFM) allowed studying the conductivity of the deposited films on the nanometer scale. Resistive switching of lateral structures smaller than {proportional_to}5 nm could be realized which represents the potential of this material for a further downscaling of RRAM devices. The deposition of top electrodes, made of Platinum or Titanium, allowed the electrical characterization of metal-insulator-metal (MIM) structures. An extensive investigation of pristine MIM-devices by impedance spectroscopy showed the big impact of the metal-insulator interface on the overall device resistance. Furthermore, a chemical polarization was studied by dynamical current sweeps and identified as a volatile resistance variation. Usually a forming procedure is needed to ''enable'' the resistive switching properties in MIM devices

  2. Investigation of the electroforming and resistive switching mechanisms in Fe-doped SrTiO3 thin films

    International Nuclear Information System (INIS)

    Menke, Tobias

    2009-01-01

    To overcome the physical limits of todays memory technologies new concepts are needed. The resistive random access memory (RRAM), which bases on a nonvolatile and repeatable change of the resistance by external electrical stimuli, seems to be one promising candidate. Within the scope of this work, the model system Strontium titanate (SrTiO 3 ) has been investigated to get a deeper understanding of the underlying physical mechanism related to the resistance change. The electrical properties of SrTiO 3 (STO) can be modulated from a band insulator to metallic conduction by a self-doping with oxygen vacancies which act as shallow donors. A local accumulation or depletion of oxygen vacancies at the vicinity of the surface will lead to a local redox process which is responsible for the resistance change. To study the influence of the interfaces on the switching properties of SrTiO 3 thin films, epitaxial films of Fe-doped SrTiO 3 were grown on different bottom electrodes (SrRuO 3 , LaNiO 3 und Nb:STO) by a ''Pulsed Laser Deposition'' technique. An atomic force microscope equipped with a conductive tip (LC-AFM) allowed studying the conductivity of the deposited films on the nanometer scale. Resistive switching of lateral structures smaller than ∝5 nm could be realized which represents the potential of this material for a further downscaling of RRAM devices. The deposition of top electrodes, made of Platinum or Titanium, allowed the electrical characterization of metal-insulator-metal (MIM) structures. An extensive investigation of pristine MIM-devices by impedance spectroscopy showed the big impact of the metal-insulator interface on the overall device resistance. Furthermore, a chemical polarization was studied by dynamical current sweeps and identified as a volatile resistance variation. Usually a forming procedure is needed to ''enable'' the resistive switching properties in MIM devices. The electroforming of these devices was extensively studied and could be

  3. Fe/Ni thin films temperature investigation with MgO and SiO2 interfaces by ferromagnetic resonance

    International Nuclear Information System (INIS)

    Zyubin, A; Orlova, A; Astashonok, A; Kupriyanova, G; Nevolin, V

    2011-01-01

    In this work the temperature study of magnetic – resonance properties of the structures such as Fe/MgO/Ni, Fe/SiO2/Ni differing thickness of spacer and of method of preparation was carried out by FMR. These systems are investigated to estimate their applicability in model creation experiments for a spintronics devices research [1–4]. The special attention was given to the temperature dependence research of three layer films linewidths. The out-of-plane temperature dependences of FMR signal position and line widths have been measured for Fe/Ni samples with MgO and Si/SiO2 interfaces in static position of 0 and 90 degrees rotation angle to the external static magnetic field. The extracted magnetic parameters such as linewidths and resonance field position were studied.

  4. Structural, electrical and magnetic properties of (Bi{sub 0.9}RE{sub 0.1})(Fe{sub 0.97}Co{sub 0.03})O{sub 3} (RE = Nd and Gd) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xu, E-mail: xuexu9@163.com; Tan, Guoqiang, E-mail: tan3114@163.com; Liu, Wenlong; Ren, Huijun

    2014-04-01

    Highlights: • Nd–Co and Gd–Co codoped BiFeO{sub 3} thin films are synthesized by chemical solution deposition method. • Enhanced magnetic property is observed in BGFC thin film at room temperature. • The onset electric field of FN tunneling of the films is associated with band gaps. • Both ferromagnetism and diamagnetism coexist in the BNFC film. - Abstract: Rhombohedral (Bi{sub 0.9}RE{sub 0.1})(Fe{sub 0.97}Co{sub 0.03})O{sub 3} (RE = Nd and Gd) thin films were deposited on FTO substrates by using a chemical solution deposition method. Raman scattering spectra reveal that the BiFeO{sub 3} lattices are able to incorporate Nd/Gd and Co ions with no effect on the basic rhombohedral structure. The chemical shift of Bi 4f, Fe 2p and O 1s core levels of the films is investigated by the X-ray photoelectron spectroscopy (XPS) analysis. The presence of defects in the films has been estimated through XPS study, which has a great effect on the dielectric dispersion and ferroelectric polarization. The intrinsic density of free electrons associated with band gap is the dominating factor which controls the FN tunneling conductance mechanism of the films. Both ferromagnetism and diamagnetism coexist in the BNFC film, while only ferromagnetism is observed in the BGFC film.

  5. Structural and optical characterization of p-type highly Fe-doped SnO2 thin films and tunneling transport on SnO2:Fe/p-Si heterojunction

    Science.gov (United States)

    Ben Haj Othmen, Walid; Ben Hamed, Zied; Sieber, Brigitte; Addad, Ahmed; Elhouichet, Habib; Boukherroub, Rabah

    2018-03-01

    Nanocrystalline highly Fe-doped SnO2 thin films were prepared using a new simple sol-gel method with iron amounts of 5, 10, 15 and 20%. The obtained gel offers a long durability and high quality allowing to reach a sub-5 nm nanocrystalline size with a good crystallinity. The films were structurally characterized through X-ray diffraction (XRD) that confirms the formation of rutile SnO2. High Resolution Transmission Electron Microscopy (HRTEM) images reveals the good crystallinity of the nanoparticles. Raman spectroscopy shows that the SnO2 rutile structure is maintained even for high iron concentration. The variation of the PL intensity with Fe concentration reveals that iron influences the distribution of oxygen vacancies in tin oxide. The optical transmittance results indicate a redshift of the SnO2 band gap when iron concentration increases. The above optical results lead us to assume the presence of a compensation phenomenon between oxygen vacancies and introduced holes following Fe doping. From current-voltage measurements, an inversion of the conduction type from n to p is strongly predicted to follow the iron addition. Electrical characterizations of SnO2:Fe/p-Si and SnO2:Fe/n-Si heterojunctions seem to be in accordance with this deduction. The quantum tunneling mechanism is expected to be important at high Fe doping level, which was confirmed by current-voltage measurements at different temperatures. Both optical and electrical properties of the elaborated films present a particularity for the same iron concentration and adopt similar tendencies with Fe amount, which strongly correlate the experimental observations. In order to evaluate the applicability of the elaborated films, we proceed to the fabrication of the SnO2:Fe/SnO2 homojunction for which we note a good rectifying behavior.

  6. Investigation of the magnetic properties in thin Fe50Pt50-xRhx films by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, J.; Lott, D.; Schreyer, A. [GKSS Research Centre (Germany); Mankey, G.J. [University of Alabama, MINT Center (United States); Schmidt, W.; Schmalzl, K. [Juelich Research Centre (Germany); Tartakowskaya, E. [Institute for Magnetism, National Accademy of Science (United States)

    2009-07-01

    FePt-based alloys are typically the material of choice for magnetic information storage media. The high magnetic moment of Fe gives a large magnetization and the large atomic number of Pt results in a high magnetic anisotropy. This combination enables the written bits to be smaller than ever before, since magnetic grains with a high magnetic anisotropy are more thermally stable. One way to control the magnetic properties in these materials is through the introduction of a third element into the crystal matrix, e.g. Rh. When Rh is added to replace Pt in the equiatomic alloy, new magnetic phases emerge. Bulk samples of Fe{sub 50}Pt{sub 40}Rh{sub 10} for example, studied by magnetization measurements refer to an antiferromagnetic (AF)/ferromagnetic (FM) phase transition at about 150 K when heated. Additional magnetostriction measurements indicate that the phase transition could also be induced by applying a magnetic field. Here we present results on several Fe{sub 50}Pt{sub 50-x}Rh{sub x} films. These films were examined by neutron diffraction in dependence of temperature and magnetic field. The observed magnetic behaviours differ significant from the behaviour of the bulk system.

  7. Investigations of electrical and optical properties of low energy ion irradiated α-Fe{sub 2}O{sub 3} (hematite) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sulania, Indra; Kanjilal, D. [Inter University Accelerator Centre, P O Box-10502, Aruna Asaf Ali Marg, New Delhi-110067 (India); Kaswan, Jyoti; Attatappa, Vinesh [Department of physics, Amity University, Manesar-122 413, Haryana (India); Karn, Ranjeet Kumar [Jamshedpur Cooperative College, Circuit House Area, Jamshedpur-831001, Jharkhand (India); Agarwal, D. C. [Sant Longowal Institute of Engineering and Technology, Sangrur, Longowal-148106, Punjab (India)

    2016-05-23

    Thin films of α-Fe{sub 2}O{sub 3} of thickness ~100 nm were synthesized on Si (100) and glass substrates by thermal evaporation method. The as deposited films were annealed at 400°C in Oxygen environment for 2 hours to obtain the desired phase. The annealed films found to be polycrystalline in nature with an average crystallite size ~7 nm. The direct and indirect band gaps were found to be 2.2 and 1.5 eV respectively for annealed films using. I-V characteristics and Hall-effect measurement of annealed films showed n-type semi conducting behavior. Further, films were irradiated with nitrogen ions of energy 10 keV at an ion fluence of 1×10{sup 18} ions/cm{sup 2}. After irradiation, a decrease in both direct as well as indirect band gap was observed, from 2.2 to 2.1 eV and 1.5 to 1.3 eV respectively. I-V characteristic and Hall-Effect measurement confirmed change in conductivity of the films from n-type to p-type after irradiation, which can have possible applications in semi conducting device fabrications.

  8. Investigation of the magnetic phase transition in thin Fe{sub 50}Pt{sub 50-x}Rh{sub x} films by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, Jochen; Lott, Dieter; Schreyer, Andreas [GKSS Research Centre, Geesthacht (Germany); Mankey, Gary J. [MINT Center, The University of Alabama, Tuscaloosa, AL (United States); Schmidt, Wolfgang; Schmalzl, Karin [JCNS, Juelich (Germany)

    2008-07-01

    In the last years perpendicular recording plays a major role in the development of novel magnetic data storage. Here, materials with high anisotropy are used which delivers good thermal stability. However in order to write the bits a high magnetic field is necessary. By the use of soft underlayers the write field can be significant reduced. Fe{sub 50}Pt{sub 50-x}Rh{sub x} is a promising candidate for such an underlayer. Magnetization measurements of the bulk samples for x=10 refer to a antiferromagnetic (AF)/ferromagnetic (FM) phase transition at about 150 K when heated. Additional magnetostriction measurements indicate that the phase transition could also be induced by applying a magnetic field. The FM state lowers the high anisotropy and therefore the high write field. The AF state helps to stabilize the recording media via exchange interaction. For technical applications the use of thin films are essential to save space and costs for the next generation of magnetic storage devices. Here we present results on several thin Fe{sub 50}Pt{sub 50-x}Rh{sub x} films with different concentration of Rh. The films were examined by polarized and unpolarized neutron diffraction in dependence of temperature and magnetic field.

  9. External electric field driven modification of the anomalous and spin Hall conductivities in Fe thin films on MgO(001)

    Science.gov (United States)

    Pradipto, Abdul-Muizz; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji

    2018-01-01

    The effects of applying external electric fields to the anomalous and spin Hall conductivities in Fe thin-film models with different layer thicknesses on MgO(001) are investigated by using first-principles calculations. We observe that, for the considered systems, the application of positive electric field associated with the accumulation of negative charges on the Fe side generally decreases (increases) the anomalous (spin) Hall conductivities. The mapping of the Hall conductivities within the two-dimensional Brillouin zone shows that the electric-field-induced modifications are related to the modification of the band structures of the atoms at the interface with the MgO substrate. In particular, the external electric field affects the Hall conductivities via the modifications of the dx z,dy z orbitals, in which the application of positive electric field pushes the minority-spin states of the dx z,dy z bands closer to the Fermi level. Better agreement with the anomalous Hall conductivity for bulk Fe and a more realistic scenario for the electric field modification of Hall conductivities are obtained by using the thicker layers of Fe on MgO (Fe3/MgO and Fe5/MgO).

  10. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  11. Structural, magnetic, and ferroelectric properties of T-like cobalt-doped BiFeO3 thin films

    Science.gov (United States)

    Young, T.; Sharma, P.; Kim, D. H.; Ha, Thai Duy; Juang, Jenh-Yih; Chu, Y.-H.; Seidel, J.; Nagarajan, V.; Yasui, S.; Itoh, M.; Sando, D.

    2018-02-01

    We present a comprehensive study of the physical properties of epitaxial cobalt-doped BiFeO3 films ˜50 nm thick grown on (001) LaAlO3 substrates. X-ray diffraction and magnetic characterization demonstrate high quality purely tetragonal-like (T') phase films with no parasitic impurities. Remarkably, the step-and-terrace film surface morphology can be fully recovered following a local electric-field-induced rhombohedral-like to T' phase transformation. Local switching spectroscopy experiments confirm the ferroelectric switching to follow previously reported transition pathways. Critically, we show unequivocal evidence for conduction at domain walls between polarization variants in T'-like BFO, making this material system an attractive candidate for domain wall-based nanoelectronics.

  12. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell

    OpenAIRE

    Bayram Kilic; Sunay Turkdogan; Aykut Astam; Oguz Can Ozer; Mansur Asgin; Hulya Cebeci; Deniz Urk; Selin Pravadili Mucur

    2016-01-01

    Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode...

  13. Ultrahigh coercivity and core-shell microstructure achieved in oriented Nd-Fe-B thin films diffusion-processed with Dy-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tongbo; Zhou, Xiaoqian; Yu, Dedong; Fu, Yanqing; Cui, Weibin [Northeastern University, Key Laboratory of Electromagnetic Processing of Materials (EPM), Ministry of Education, Shenyang (China); Northeastern University, Department of Physics and Chemistry of Materials, School of Materials Science and Engineering, Shenyang (China); Li, Guojian; Wang, Qiang [Northeastern University, Key Laboratory of Electromagnetic Processing of Materials (EPM), Ministry of Education, Shenyang (China)

    2017-01-15

    Ultrahigh ambient coercivities of ∝4 T were achieved in Nd-Fe-B benchmark thin film with coercivity of 1.06 T by diffusion-processing with Dy, Dy{sub 70}Cu{sub 30} and Dy{sub 80}Ag{sub 20} alloy layer. High texture and good squareness were obtained. In triple-junction regions, Dy element was found to be immiscible with Nd element. Microstructure observation indicated the typical gradient elementary distribution. Unambiguous core/shell microstructure was characterized by transition electron microscopy. Due to the enhanced ambient coercivity, the coercivity temperature stability was also substantially increased. (orig.)

  14. Magnetic and superconductivity studies on (In{sub 1−x}Fe{sub x}){sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sai Krishna, N. [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu (India); Kaleemulla, S., E-mail: skaleemulla@gmail.com [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu (India); Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); UGC-DAE-CSR, Kalpakkam Node, Kokilamedu 603 104, Tamil Nadu (India); Madhusudhana Rao, N.; Krishnamoorthi, C.; Rigana Begam, M. [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu (India); Omkaram, I. [Department of Electronics and Radio Engineering, Kyung Hee University, Yongin-si Gyeonggi-do 446-701 (Korea, Republic of); Sreekantha Reddy, D. [Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-07-15

    Highlights: • Fe doped In{sub 2}O{sub 3} thin films deposited using electron beam evaporation technique. • Characterization of the samples using XRD, SEM, EDAX, AES, Raman spectroscopy, FT-IR, VSM and magnetoresistance. • All Fe doped In{sub 2}O{sub 3} thin films exhibited the cubic structure of In{sub 2}O{sub 3}. • Pure and Fe doped In{sub 2}O{sub 3} samples exhibited room temperature ferromagnetism and superconductivity at 2 K. - Abstract: Magnetic, magnetoresistivity and superconductivity studies were carried out on (In{sub 1−x}Fe{sub x}){sub 2}O{sub 3} (x = 0.00, 0.03, 0.05 and 0.07) thin films (2D structures) grown on glass substrate by electron beam evaporation technique at 350 °C. The films have an average size of 120 nm particles. All the samples shown soft ferromagnetic hysteresis loops at room temperature and saturation magnetization increased with iron dopant concentration. Observed magnetization could be best interpreted by F-center mediated magnetic exchange interaction in the samples. Temperature dependent resistivity of the sample (x = 0.00 and 0.07) showed metallic behavior down to very low temperatures and superconductivity at 2 K for undoped In{sub 2}O{sub 3} whereas the In{sub 1.86}Fe{sub 0.14}O{sub 3} sample shows superconductivity below 2 K in the absence of magnetic fields. The reduction in transition temperature was attributed to increase electrical disorder with iron doping. Both samples showed positive magnetoresistivity (MR) in superconducting state due to increase of resistivity resulting from breaking of superconducting Cooper pairs upon application of magnetic field. In addition, both the samples show feeble negative MR in normal electrical state. The observed MR in normal state is not due to spin polarized tunneling instead it is due to suppression of scattering of charge carrier by single occupied localized states.

  15. NMR characterization of thin films

    Science.gov (United States)

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  16. NMR characterization of thin films

    Science.gov (United States)

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  17. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  18. Study of microstructure and magnetic properties of L10 FePt/SiO2 thin films

    Directory of Open Access Journals (Sweden)

    Giannopoulos G.

    2014-07-01

    Full Text Available Achieving magnetic recording densities in excess of 1Tbit/in2 requires not only perpendicular media with anisotropies larger than 7 MJ/m3, making FePt alloys an ideal choice, but also a narrow distribution below 10 nm for a reduced S/N ratio. Such grain size reduction and shape control are crucial parameters for high density magnetic recording, along with high thermal stability. Previous work has shown that the L10 FePt grain size can be controlled by alloying FePt with materials such as C, Ag, and insulators such as AlOx, MgO. Au and Al2O3 also act to segregate and magnetically decouple the FePt grains. Better results were obtained with C with respect to the uniformity of grains and SiO2 with respect to the shape. We present our results on co-sputtering FePt with C or SiO2 (up to 30 vol % on MgO (001 single crystal substrates at 350 and 500 oC. With C or SiO2 addition we achieved grain size reduction, shape control and isolated structure formation, producing continuous films with high uniformity and a narrow grain size distribution. These additions thus allow us to simultaneously control the coercivity and the S/N ratio. We also will report structural and microstructural properties.

  19. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  20. Thin film composites in the BiFeO3–Bi4Ti3O12 system obtained by an aqueous solution-gel deposition methodology

    Directory of Open Access Journals (Sweden)

    Carlos Gumiel

    2018-01-01

    Full Text Available Thin film multiferroic composites, with a high quantity of interfaces between the different materials, represent a more feasible alternative to single phase systems in which the multifunctional response is usually hampered due to intrinsic physical constraints. Nowadays some of these composites can be produced by applying deposition techniques such as PLD, CVD, MBE or the like, which allow a high degree of crystallographic control. However, despite their effectiveness, all these techniques also involve a high consumption of energy in terms of temperature and/or vacuum. Within this frame, the present contribution proposes a sustainable chemical solution deposition process to prepare thin films of the multiferroic BiFeO3–Bi4Ti3O12 composite system. More specifically an aqueous solution-gel plus spin-coating methodology is employed which also avoids the organic solvents typically used in a conventional sol–gel method, so further keeping an eye on the environmentally friendly conditions. Attempts are conducted that demonstrate how by systematically controlling the processing parameters it is possible to obtain thin film composites with a promising 3-3 type connectivity at temperatures as low as 600 °C.

  1. Thin film composites in the BiFeO3–Bi4Ti3O12 system obtained by an aqueous solution-gel deposition methodology

    International Nuclear Information System (INIS)

    Gumiel, C.; Vranken, T.; Bernardo, M.S.; Jardiel, T.; Hardy, A.; Van Bael, M.K.; Peiteado, M.

    2018-01-01

    Thin film multiferroic composites, with a high quantity of interfaces between the different materials, represent a more feasible alternative to single phase systems in which the multifunctional response is usually hampered due to intrinsic physical constraints. Nowadays some of these composites can be produced by applying deposition techniques such as PLD, CVD, MBE or the like, which allow a high degree of crystallographic control. However, despite their effectiveness, all these techniques also involve a high consumption of energy in terms of temperature and/or vacuum. Within this frame, the present contribution proposes a sustainable chemical solution deposition process to prepare thin films of the multiferroic BiFeO3–Bi4Ti3O12 composite system. More specifically an aqueous solution-gel plus spin-coating methodology is employed which also avoids the organic solvents typically used in a conventional sol–gel method, so further keeping an eye on the environmentally friendly conditions. Attempts are conducted that demonstrate how by systematically controlling the processing parameters it is possible to obtain thin film composites with a promising 3-3 type connectivity at temperatures as low as 600°C. [es

  2. Pyroelectric energy harvesting using Olsen cycles in purified and porous poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films

    International Nuclear Information System (INIS)

    Navid, Ashcon; Pilon, Laurent

    2011-01-01

    This paper is concerned with the direct conversion of heat into electricity using pyroelectric materials. The Olsen (or Ericsson) cycle was experimentally performed on three different types of 60/40 poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer samples, namely commercial, purified, and porous films. This cycle consists of two isoelectric field and two isothermal processes. The commercial and purified films were about 50 µm thick and produced a maximum energy density of 521 J l −1 and 426 J l −1 per cycle, respectively. This was achieved by successively dipping the films in cold and hot silicone oil baths at 25 and 110 °C under low and high applied electric fields of about 200 and 500 kV cm −1 , respectively. The 11 µm thick porous films achieved a maximum energy density of 188 J l −1 per cycle between 25 and 100 °C and electric field between 200 and 400 kV cm −1 . The performance of the purified and porous films suffered from their lower electrical resistivity and electric breakdown compared with commercial thin films. However, the energy densities of all 60/40 P(VDF-TrFE) films considered matched or exceeded those reported recently for 0.9Pb(Mg 1/3 Nb 2/3 )O 3 –0.10PbTiO 3 (0.9PMN–0.1PT) (186 J l −1 ) and Pb(Zn 1/3 Nb 2/3 ) 0.955 Ti 0.045 O 3 (243 J l −1 ) bulk ceramics. Furthermore, the results are discussed in light of recently proposed figures of merit for energy harvesting applications

  3. In Situ Characterization of Ni and Ni/Fe Thin Film Electrodes for Oxygen Evolution in Alkaline Media by a Raman-Coupled Scanning Electrochemical Microscope Setup.

    Science.gov (United States)

    Steimecke, Matthias; Seiffarth, Gerda; Bron, Michael

    2017-10-17

    We present a spectroelectrochemical setup, in which Raman microscopy is combined with scanning electrochemical microscopy (SECM) in order to provide both spectroscopic and electrochemical information on the very same location of an electrode at the same time. The setup is applied to a subject of high academic and practical interest, namely, the oxygen evolution reaction at Ni and Ni/Fe electrodes. It comprises a transparent substrate electrode, onto which Ni and Ni/Fe thin films are deposited. An ultramicroelectrode (UME) is placed closely above the substrate to obtain electrochemical information, while a Raman microscope probes the same sample spot from below. To obtain information on oxygen evolution activity and structural changes, increasingly positive potentials from 0.1 up to 0.7 V vs Hg|HgO|1 M KOH were applied to the Ni/Fe-electrodes in 0.1 M KOH solution. Evolved oxygen is detected by reduction at a Pt UME, allowing for the determination of onset potentials, while the substrate current, which is recorded in parallel, is due to both overlapping oxygen evolution and the oxidation of Ni(OH) 2 to NiOOH. An optimum of 15% Fe in Ni/Fe films with respect to oxygen evolution activity was determined. At the same time, the potential-dependent formation of γ-NiOOH characterized by the Raman double band at 475 and 557 cm -1 allows for the conclusion that a certain amount of disorder introduced by Fe atoms is necessary to obtain high oxygen evolution reaction (OER) activity.

  4. Insights into the potentiometric response behaviour vs. Li{sup +} of LiFePO{sub 4} thin films in aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Sauvage, F.; Tarascon, J.-M. [Laboratoire de Reactivite et Chimie des Solides, UMR CNRS 6007, Universite de Picardie Jules Verne, 33 rue St. Leu, 80039 Amiens Cedex (France); Baudrin, E. [Laboratoire de Reactivite et Chimie des Solides, UMR CNRS 6007, Universite de Picardie Jules Verne, 33 rue St. Leu, 80039 Amiens Cedex (France)], E-mail: emmanuel.baudrin@u-picardie.fr

    2008-08-01

    The potentiometric response of PLD-made LiFePO{sub 4} thin films versus Li{sup +} ions in aqueous solutions has been investigated, and a sensitivity of 54 mV dec{sup -1} has been observed in a Li{sup +} concentration range of 1-10{sup -4} M. Physical and electrochemical measurements of electrodes aged in aqueous medium show a slight surface oxidation with formation of heterosite-FePO{sub 4} that we show to be responsible for the stable potential response measured. Cyclic voltamperometry measurements operated in different Li{sup +} concentration clearly highlight the key relation between the material lithium ion insertion/de-insertion capability and its potentiometric sensing response implying a faradaic-governed sensing mechanism. Based on such a finding, selection criteria (enlisting among others the potential of the redox couple, the nature of the insertion process) are herein underlined in the search for new sensitive materials.

  5. Raman scattering in La1−xSrxFeO3−δ thin films: annealing-induced reduction and phase transformation

    International Nuclear Information System (INIS)

    Islam, Mohammad A; Xie, Yujun; Scafetta, Mark D; May, Steven J; Spanier, Jonathan E

    2015-01-01

    Raman scattering in thin film La 0.2 Sr 0.8 FeO 3−δ on MgO(0 0 1) collected at 300 K after different stages of annealing at selected temperatures T (300 K < T < 543 K, to 10 h) and analysis reveal changes in spectral characteristics due to a loss of oxygen, onset of oxygen vacancy-induced disorder, and activation of Raman-inactive modes that are attributed to symmetry lowering. The interpretation is further supported by carrier transport measurements under identical conditions showing orders of magnitude increase in the resistivity induced by oxygen loss. After prolonged annealing in air, evolution of the spectrum signals the appearance of a possible topotactic transformation of the crystal structure from that of the rhombohedral ABO 3 perovskites to that of Brownmillerite-like structure consisting of octahedrally and tetrahedrally coordinated Fe atoms. (paper)

  6. Superconducting properties of iron chalcogenide thin films

    Directory of Open Access Journals (Sweden)

    Paolo Mele

    2012-01-01

    Full Text Available Iron chalcogenides, binary FeSe, FeTe and ternary FeTexSe1−x, FeTexS1−x and FeTe:Ox, are the simplest compounds amongst the recently discovered iron-based superconductors. Thin films of iron chalcogenides present many attractive features that are covered in this review, such as: (i easy fabrication and epitaxial growth on common single-crystal substrates; (ii strong enhancement of superconducting transition temperature with respect to the bulk parent compounds (in FeTe0.5Se0.5, zero-resistance transition temperature Tc0bulk = 13.5 K, but Tc0film = 19 K on LaAlO3 substrate; (iii high critical current density (Jc ~ 0.5 ×106 A cm2 at 4.2 K and 0 T for FeTe0.5Se0.5 film deposited on CaF2, and similar values on flexible metallic substrates (Hastelloy tapes buffered by ion-beam assisted deposition with a weak dependence on magnetic field; (iv high upper critical field (~50 T for FeTe0.5Se0.5, Bc2(0, with a low anisotropy, γ ~ 2. These highlights explain why thin films of iron chalcogenides have been widely studied in recent years and are considered as promising materials for applications requiring high magnetic fields (20–50 T and low temperatures (2–10 K.

  7. Magnetostrictive thin films prepared by RF sputtering

    International Nuclear Information System (INIS)

    Carabias, I.; Martinez, A.; Garcia, M.A.; Pina, E.; Gonzalez, J.M.; Hernando, A.; Crespo, P.

    2005-01-01

    Fe 80 B 20 thin films have been prepared by ion beam sputtering magnetron on room temperature. The films were fabricated on different substrates to compare the different magnetic and structural properties. In particular the growth of films on flexible substrates (PDMS, Kapton) has been studied to allow a simple integration of the system in miniaturized magnetostrictive devices. X-ray diffraction patterns indicate that films are mainly amorphous although the presence of some Fe nanoparticles cannot be ruled out. The coercive field of thin films ranges between 15 and 35 Oe, depending on substrate. Magnetostriction measurements indicate the strong dependence of the saturation magnetostriction with the substrate. Samples on flexible substrates exhibit a better performance than samples deposited onto glass substrates

  8. High frequency characteristics of (Ni75Fe2)x(ZnO)1−x granular thin films with tunable damping coefficient

    International Nuclear Information System (INIS)

    Li Wen-Chun; Liu Xiao-Hong; Wei Qing-Qing; Yao Dong-Sheng; Zuo Ya-Lu; Zhou Xue-Yun

    2015-01-01

    The effect of the volume fraction of ferromagnetic metal (x) in (Ni 75 Fe 25 ) x (ZnO) 1−x nanogranular thin films on microstructural, soft-magnetic, and high-frequency properties was investigated. Good soft-magnetic properties were obtained in a broad x range, with 0.55 < x < 0.82. High resolution transmission electron microscopy (HRTEM) observations reveal that the grain size of the samples is lower than 14 nm, and that it decreases with decreasing x. Of special interest, our investigation of the permeability spectra indicates that these films exhibit an adjustable frequency linewidth of resonance peak, dependant upon changing x. Correspondingly, large and adjustable damping coefficients (α eff ) from 0.023 to 0.043 were achieved by decreasing x from 0.82 to 0.55. Combined with the HRTEM results, the variation of α eff with x was analyzed in detail. (paper)

  9. Lowering of L10 phase transition temperature of FePt thin films by single shot H+ ion exposure using plasma focus device

    International Nuclear Information System (INIS)

    Pan, Z.Y.; Lin, J.J.; Zhang, T.; Karamat, S.; Tan, T.L.; Lee, P.; Springham, S.V.; Ramanujan, R.V.; Rawat, R.S.

    2009-01-01

    FePt thin films are exposed to pulsed energetic H + ion beam from plasma focus. In irradiated films, the phase transition from the low K u disordered face-centered-cubic structure to high K u ordered face-centered-tetragonal phase was achieved at 400 deg. C with the order parameter S ranging from 0.73 to 0.83, high coercivity of about 5356 kA/m, high negative nucleation field of about 7700 kA/m and high squareness ratio ranging from 0.73 to 0.79. The advantage of using plasma focus device is that it can lower phase transition temperature and significantly enhance the magnetic properties by a pulsed single shot exposure

  10. Structural transformation and multiferroic properties of single-phase Bi{sub 0.89}Tb{sub 0.11}Fe{sub 1−x}Mn{sub x}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guohua; Tan, Guoqiang, E-mail: tan3114@163.com; Luo, Yangyang; Liu, Wenlong; Ren, Huijun; Xia, Ao

    2014-01-30

    Pure BiFeO{sub 3} (BFO) and Tb, Mn co-doped BiFeO{sub 3} (BTFMO) thin films were deposited on SnO{sub 2}: F (FTO)/glass substrates using a chemical solution deposition method. Detailed investigations were made on the influence of (Tb, Mn) co-doping on the structure change and the electric properties of the BFO films. With the co-doping of Tb and Mn, the structural transformation from rhombohedral R3c to triclinic P1 is confirmed through XRD, Rietveld refinement and Raman analysis. XPS analysis clarifies that (Tb, Mn) co-doping avails to decrease oxygen vacancy concentration, showing less Fe{sup 2+} ions in the co-doped BTFMO thin films than that of the pure BFO thin film. Among the co-doped thin films, the BTFM{sub 1}O film shows the highly enhanced ferroelectric properties with a giant remnant polarization value (2P{sub r} = 180.3 μC/cm{sup 2}). The structural transformation, the well-distributed fine grains and the reduction of leakage current favor enhanced ferroelectric property of (Tb, Mn) co-doped BFO films. It is also found that the BTFM{sub 1}O film shows the enhanced ferromagnetism with the saturated magnetization (M{sub s} = 2.5 emu/cm{sup 3}) as a result of the collapse of space modulated spin structure by the structure transformation.

  11. Superconducting oxypnictide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Reisner, Andreas; Kidszun, Martin; Reich, Elke; Holzapfel, Bernhard; Schultz, Ludwig; Haindl, Silvia [IFW Dresden, Institute of Metallic Materials (Germany); Thersleff, Thomas [Uppsala University, Angstrom Laboratory (Sweden)

    2012-07-01

    We present an overview on the oxypnictide thin film preparation. So far, only LaAlO{sub 3} (001) single crystalline substrates provided a successful growth using pulsed laser deposition in combination with a post annealing process. Further experiments on the in-situ deposition will be reported. The structure of the films was investigated by X-ray diffractometry and transmission electron microscopy. Transport properties were measured with different applied fields to obtain a magnetic phase diagram for this new type of superconductor.

  12. Mechanics of Thin Films

    Science.gov (United States)

    1992-02-06

    and the second geometry was that of squat cylinders (diameter 6.4 mm, height 6.4 mm). These two geometries were tested in thermal shock tests, and a...milder [13]. More recently, Lau, Rahman and stressa nce ntrati, tha n films of lmalla rat ve spc Delale calculated the free edge singularity for stress...thickness of 3 mm); the second geometry was that As an example of the shielding effect of thin films, we of squat cylinders (diameter 6.4 mm, height 6.4

  13. Effect of complexing agent TEA: The structural, morphological, topographical and optical properties of Fe{sub x}S{sub x} nano thin films deposited by SILAR technique

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, K., E-mail: 1984manikandan@gmail.com [Department of Physics, Anna University BIT Campus, Tiruchirappalli 620 024, Tamilnadu (India); Mani, P. [Department of Physics, Anna University BIT Campus, Tiruchirappalli 620 024, Tamilnadu (India); Surendra Dilip, C. [Department of Chemistry, Anna University BIT Campus, Tiruchirappalli 620 024, Tamilnadu (India); Valli, S. [Department of Physics, M.I.E.T. Arts and Science College, Tiruchirappalli 620 007, Tamilnadu (India); Fermi Hilbert Inbaraj, P.; Joseph Prince, J. [Department of Physics, Anna University BIT Campus, Tiruchirappalli 620 024, Tamilnadu (India)

    2014-01-01

    Iron sulfide thin films (Fe{sub x}S{sub x}) (x = 0.05 M, 0.10 M, 0.15 M, 0.20 M and 0.25 M) were deposited by SILAR method from equimolar and equivolume aqueous solutions of ferrous nitrate and sodium sulfide with the addition of complexing agent TEA. The structural, morphological and optical characteristics of the films were derived from X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV–vis spectral techniques. The mixed characteristics (crystalline and amorphous) of the deposited films and the increasing crystalline qualities with the concentrations were understood from the XRD analysis. The grain sizes and roughness of the films were decreases with the increasing concentration and also at the higher concentration films are shown by the same images presence of hexagonal like crystallite structure. The influence of complexing agent TEA on the surface roughness and morphological properties are confirmed by the atomic force microscope (AFM) results. The effect of increasing substrate concentration on the absorption and transmission measurements and its impact on the optical band-gap energy were enumerated from the UV–vis analysis.

  14. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  15. Spectroscopic ellipsometry study of FePt nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.; Lo, C.C.H. [Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Yu, A.C.C. [Sony Corporation, Sendai Technology Center, 3-4-1 Sakuragi, Miyagi 985-0842 (Japan); Fan, M. [School of Materials Science and Technology, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2006-12-15

    The optical properties of a FePt nanoparticle film were investigated using spectroscopic ellipsometry. The FePt nanoparticle film of thickness about 15 nm was prepared by deposition of FePt nanoparticles directly on a Si substrate. The nanoparticle film was annealed at 600 C in vacuum for two hours before the measurements. The optical properties of the FePt nanoparticle film showed distinctively different spectra from those obtained from the bulk and thin film FePt samples, in particular in the low photon energy range (below 3.5 eV) where the nanoparticle film exhibited a relatively flat refractive index and a substantially lower extinction coefficient than the bulk and epitaxial thin film samples. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Effect of oxygen partial pressure on the density of antiphase boundaries in Fe3O4 thin films on Si(100)

    Science.gov (United States)

    Singh, Suraj Kumar; Husain, Sajid; Kumar, Ankit; Chaudhary, Sujeet

    2018-02-01

    Polycrystalline Fe3O4 thin films were grown on Si(100) substrate by reactive DC sputtering at different oxygen partial pressures PO2 for controlling the growth associated density of antiphase boundaries (APBs). The micro-Raman analyses were performed to study the structural and electronic properties in these films. The growth linked changes in the APBs density are probed by electron-phonon coupling strength (λ) and isothermal magnetization measurements. The estimated values of λ are found to vary from 0.39 to 0.56 with the increase in PO2 from 2.2 × 10-5 to 3.0 × 10-5 Torr, respectively. The saturation magnetization (saturation field) values are found to increase (decrease) from 394 (5.9) to 439 (3.0) emu/cm3 (kOe) with the increase in PO2 . The sharp Verwey transition (∼120 K), low saturation field, high saturation magnetization and low value of λ (comparable to the bulk value ∼0.51) clearly affirm the negligible amount of APBs in the high oxygen partial pressure deposited thin films.

  17. Magnetic and topographical modifications of amorphous Co–Fe thin films induced by high energy Ag{sup 7+} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pookat, G.; Hysen, T. [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India); Al-Harthi, S.H.; Al-Omari, I.A. [Department of Physics, Sultan Qaboos University, Muscat, P.O. Box 36, Code 123 (Oman); Lisha, R. [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India); Avasthi, D.K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Anantharaman, M.R., E-mail: mra@gmail.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022, Kerala (India)

    2013-09-01

    We have investigated the effects of swift heavy ion irradiation on thermally evaporated 44 nm thick, amorphous Co{sub 77}Fe{sub 23} thin films on silicon substrates using 100 MeV Ag{sup 7+} ions fluences of 1 × 10{sup 11} ions/cm{sup 2}, 1 × 10{sup 12} ions/cm{sup 2}, 1 × 10{sup 13} ions/cm{sup 2}, and 3 × 10{sup 13} ions/cm{sup 2}. The structural modifications upon swift heavy irradiation were investigated using glancing angle X-ray diffraction. The surface morphological evolution of thin film with irradiation was studied using Atomic Force Microscopy. Power spectral density analysis was used to correlate the roughness variation with structural modifications investigated using X-ray diffraction. Magnetic measurements were carried out using vibrating sample magnetometry and the observed variation in coercivity of the irradiated films is explained on the basis of stress relaxation. Magnetic force microscopy images are subjected to analysis using the scanning probe image processor software. These results are in agreement with the results obtained using vibrating sample magnetometry. The magnetic and structural properties are correlated.

  18. Effect of capping ligands on the optical properties and electronic energies of iron pyrite FeS{sub 2} nanocrystals and solid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Guangmei, E-mail: zhaiguangmei@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education of the People' s Republic of China, Research Centre of Advanced Materials Science and Technology of Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Jiangsu Key Laboratory for Solar Cell Materials and Technology, Changzhou University, Changzhou, Jiangsu 213164 (China); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Xie, Rongwei; Wang, Heng; Zhang, Jitao; Yang, Yongzhen; Wang, Hua; Li, Xuemin [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education of the People' s Republic of China, Research Centre of Advanced Materials Science and Technology of Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education of the People' s Republic of China, Research Centre of Advanced Materials Science and Technology of Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Xu, Bingshe [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education of the People' s Republic of China, Research Centre of Advanced Materials Science and Technology of Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China)

    2016-07-25

    In this work, the optical and electronic properties of iron pyrite FeS{sub 2} nanocrystals and solid thin films with various capping ligands were systematically investigated by UV–Vis–NIR absorption spectroscopy, cyclic voltammetry and current density–voltage characteristic measurements. The iron pyrite nanocrystals with various ligands have an indirect band gap of around 1.05 eV and broad absorption spanning into the near-infrared region, exhibiting favorable optical properties for their photovoltaic applications. The electron affinities and ionization potentials of FeS{sub 2} nanocrystals determined through cyclic voltammetry measurements show strong ligand dependence. An energy level shift of up to 190 meV was obtained among the pyrite nanocrystals capped with the ligands employed in this work. The iron pyrite nanocrystal films capped with iodide and 1,2-ethanedithiol exhibit the largest band edge energy shift and conductivity, respectively. Our results not only provide several useful optical and electronic parameters of pyrite nanocrystals for their further use in optoelectronic devices as active layers and/or infrared optical absorption materials, but also highlight the relationship between their surface chemistry and electronic energies. - Highlights: • The energy levels of FeS{sub 2} nanocrystals with various ligands were determined via electrochemical measurements. • The energy levels of FeS{sub 2} nanocrystals showed strong ligand-dependence. • An energy level shift of up to 190 meV was obtained for the pyrite nanocrystals studied in the work. • The conductivities of FeS{sub 2} nanocrystals with different ligands were obtained by current density–voltage measurements.

  19. Effect of capping ligands on the optical properties and electronic energies of iron pyrite FeS2 nanocrystals and solid thin films

    International Nuclear Information System (INIS)

    Zhai, Guangmei; Xie, Rongwei; Wang, Heng; Zhang, Jitao; Yang, Yongzhen; Wang, Hua; Li, Xuemin; Liu, Xuguang; Xu, Bingshe

    2016-01-01

    In this work, the optical and electronic properties of iron pyrite FeS 2 nanocrystals and solid thin films with various capping ligands were systematically investigated by UV–Vis–NIR absorption spectroscopy, cyclic voltammetry and current density–voltage characteristic measurements. The iron pyrite nanocrystals with various ligands have an indirect band gap of around 1.05 eV and broad absorption spanning into the near-infrared region, exhibiting favorable optical properties for their photovoltaic applications. The electron affinities and ionization potentials of FeS 2 nanocrystals determined through cyclic voltammetry measurements show strong ligand dependence. An energy level shift of up to 190 meV was obtained among the pyrite nanocrystals capped with the ligands employed in this work. The iron pyrite nanocrystal films capped with iodide and 1,2-ethanedithiol exhibit the largest band edge energy shift and conductivity, respectively. Our results not only provide several useful optical and electronic parameters of pyrite nanocrystals for their further use in optoelectronic devices as active layers and/or infrared optical absorption materials, but also highlight the relationship between their surface chemistry and electronic energies. - Highlights: • The energy levels of FeS 2 nanocrystals with various ligands were determined via electrochemical measurements. • The energy levels of FeS 2 nanocrystals showed strong ligand-dependence. • An energy level shift of up to 190 meV was obtained for the pyrite nanocrystals studied in the work. • The conductivities of FeS 2 nanocrystals with different ligands were obtained by current density–voltage measurements.

  20. Experimental and theoretical investigation of electronic structure of SrFeO3-xFx epitaxial thin films prepared via topotactic reaction

    Science.gov (United States)

    Katayama, Tsukasa; Chikamatsu, Akira; Kamisaka, Hideyuki; Kumigashira, Hiroshi; Hasegawa, Tetsuya

    2016-02-01

    We investigated the electronic structure of perovskite SrFeO3-xFx (0.6 ≤ x ≤ 1) films by optical absorption, photoemission, and X-ray absorption spectroscopies, as well as density functional theory (DFT)-based calculations. The optical bandgap expanded with x, yielding a wider direct bandgap for the SrFeO2F film than for the LaFeO3 film. The DFT calculations suggested that the majority of FeO4F2 octahedra in the SrFeO2F film had cis configurations and that the enlarged bandgap mainly originated from bond bending in the O-Fe-O chains. We experimentally observed the valence and conduction bands of the SrFeO2F film, and found them to be qualitatively consistent with the results of DFT-based calculations.

  1. Aspects of electron-phonon interactions with strong forward scattering in FeSe Thin Films on SrTiO3 substrates

    Science.gov (United States)

    Wang, Y.; Nakatsukasa, K.; Rademaker, L.; Berlijn, T.; Johnston, S.

    2016-05-01

    Mono- and multilayer FeSe thin films grown on SrTiO3 and BiTiO3 substrates exhibit a greatly enhanced superconductivity over that found in bulk FeSe. A number of proposals have been advanced for the mechanism of this enhancement. One possibility is the introduction of a cross-interface electron-phonon (e-ph) interaction between the FeSe electrons and oxygen phonons in the substrates that is peaked in the forward scattering (small {q}) direction due to the two-dimensional nature of the interface system. Motivated by this, we explore the consequences of such an interaction on the superconducting state and electronic structure of a two-dimensional system using Migdal-Eliashberg (ME) theory. This interaction produces not only deviations from the expectations of conventional phonon-mediated pairing but also replica structures in the spectral function and density of states, as probed by angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and quasiparticle interference imaging. We also discuss the applicability of ME theory for a situation where the e-ph interaction is peaked at small momentum transfer and in the FeSe/STO system.

  2. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell

    Science.gov (United States)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Ozer, Oguz Can; Asgin, Mansur; Cebeci, Hulya; Urk, Deniz; Mucur, Selin Pravadili

    2016-05-01

    Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode (CE), an alternative to the conventional high cost Pt based CE. We are able to synthesis FeS2 nanostructures utilizing a very cheap and easy hydrothermal growth route. MWCNT/TiO2 mesoporous based DSSCs with FeS2 CE achieved a high solar conversion efficiency of 7.27% under 100 mW cm-2 (AM 1.5G 1-Sun) simulated solar irradiance which is considerably (slightly) higher than that of A-CNT/TiO2 mesoporous based DSSCs with Pt CE. Outstanding performance of the FeS2 CE makes it a very promising choice among the various CE materials used in the conventional DSSC and it is expected to be used more often to achieve higher photon-to-electron conversion efficiencies.

  3. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  4. Effect of TiN-ZrO{sub 2} intermediate layer on the microstructure and magnetic properties of FePt and FePt-SiO{sub 2}-C thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, K.F., E-mail: dongkf1981@163.com; Mo, W.Q.; Jin, F.; Song, J.L.

    2017-06-15

    Highlights: • The TiN-ZrO{sub 2} consisted of solid solution of Ti(Zr)ON segregated by amorphous ZrO{sub 2}. • With doping ZrO{sub 2} into TiN layer, grain size of FePt films significantly decreased. • By introducing TiN-ZrO{sub 2}/TiN combined layer, the magnetic properties were improved. - Abstract: The microstructures and magnetic properties of FePt based thin films grown on TiN-ZrO{sub 2} and TiN-ZrO{sub 2}/TiN intermediate layers were systematically investigated. The TiN-ZrO{sub 2} intermediate layer was granular consisting of grains of solid solution of Ti(Zr)ON segregated by amorphous ZrO{sub 2}. It was found with doping ZrO{sub 2} into TiN intermediate layer, grain size of FePt-SiO{sub 2}-C films significantly decreased. Simultaneously, the isolation was obviously improved and grain size distribution became more uniform. However, the magnetic properties of the FePt-SiO{sub 2}-C films grown on TiN-ZrO{sub 2} intermediate layers were slowly deteriorated, which was due to the disturbance of the epitaxial growth of FePt by amorphous ZrO{sub 2} in TiN-ZrO{sub 2} intermediate layer. In order to improve the TiN-ZrO{sub 2} (0 0 2) texture and the crystallinity of TiN-ZrO{sub 2}, TiN-ZrO{sub 2}/TiN combined intermediate layer was introduced. And the magnetic properties were improved, simultaneously, achieving the benefit of grain size reduction. For the FePt 4 nm-SiO{sub 2} 40 vol%-C 20 vol% film grown on TiN/TiN-ZrO{sub 2} 30 vol% combined intermediate layer, well isolated FePt (0 0 1) granular films with coercivity higher than 17.6 kOe and an average size as small as 6.5 nm were achieved.

  5. Epitaxy, thin films and superlattices

    International Nuclear Information System (INIS)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au)

  6. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  7. Influences of the iron ion (Fe{sup 3+})-doping on structural and optical properties of nanocrystalline TiO{sub 2} thin films prepared by sol-gel spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Ben Naceur, J. [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Mechiakh, R., E-mail: raouf_mechiakh@yahoo.fr [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Departement de Medecine, Faculte de Medecine, Universite Hadj Lakhdar, Batna (Algeria); Bousbih, F.; Chtourou, R. [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia)

    2011-10-01

    Titanium dioxide (TiO{sub 2}) thin films doping of various iron ion (Fe{sup 3+}) concentrations were deposited on silicon (Si) (100) and quartz substrates by sol-gel Spin Coating technique followed by a thermal treatment at 600 deg. C. The structure, surface morphology and optical properties, as a function of the doping, have been studied by X-ray diffractometer (XRD), Raman, ultraviolet-visible (UV-vis) and Spectroscopic Ellipsometry (SE). XRD and Raman analyzes of our thin films show that the crystalline phase of TiO{sub 2} thin films comprised only the anatase TiO{sub 2}, but the crystallinity decreased when the Fe{sup 3+} content increased from 0% to 20%. During the Fe{sup 3+} addition to 20%, the phase of TiO{sub 2} thin film still maintained the amorphous state. The grain size calculated from XRD patterns varies from 29.3 to 22.6 nm. The complex index and the optical band gap (E{sub g}) of the films were determined by the spectroscopic ellipsometry analysis. We have found that the optical band gap decreased with an increasing Fe{sup 3+} content.

  8. Thin film preparation of semiconducting iron pyrite

    Science.gov (United States)

    Smestad, Greg P.; Ennaoui, Ahmed; Fiechter, Sebastian; Hofmann, Wolfgang; Tributsch, Helmut; Kautek, Wolfgang

    1990-08-01

    Pyrite (Fe52) has been investigated as a promising new absorber material for thin film solar cell applications because of its high optical absorption coefficient of 1OL cm1, and its bandgap of 0.9 to 1.0 eV. Thin layers have been prepared by Metal Organic Chemical Vapor Deposition, MOCVD, Chemical Spray Pyrolysis, CSP, Chemical Vapor Transport, CVT, and Sulfurization of Iron Oxide films, 510. It is postulated that for the material FeS2, if x is not zero, a high point defect concentration results from replacing 2 dipoles by single S atoms. This causes the observed photovoltages and solar conversion efficiencies to be lower than expected. Using the Fe-O-S ternary phase diagram and the related activity plots, a thermodynamic understanding is formulated for the resulting composition of each of these types of films. It is found that by operating in the oxide portion of the phase diagram, the resulting oxidation state favors pyrite formation over FeS. By proper orientation of the grains relative to the film surface, and by control of pinholes and stoichiometry, an efficient thin film photovolatic solar cell material could be achieved.

  9. Voltage and partial pressure dependent defect chemistry in (La,Sr)FeO3-δ thin films investigated by chemical capacitance measurements.

    Science.gov (United States)

    Schmid, Alexander; Rupp, Ghislain M; Fleig, Jürgen

    2018-05-03

    La0.6Sr0.4FeO3-δ (LSF) thin films of different thickness were prepared by pulsed laser deposition on yttria stabilized zirconia (YSZ) and characterized by using three electrode impedance spectroscopy. Electrochemical film capacitance was analyzed in relation to oxygen partial pressure (0.25 mbar to 1 bar), DC polarization (0 m to -600 m) and temperature (500 to 650 °C). For most measurement parameters, the chemical bulk capacitance dominates the overall capacitive properties and the corresponding defect chemical state depends solely on the oxygen chemical potential inside the film, independent of atmospheric oxygen pressure and DC polarization. Thus, defect chemical properties (defect concentrations and defect formation enthalpies) could be deduced from such measurements. Comparison with LSF defect chemical bulk data from the literature showed good agreement for vacancy formation energies but suggested larger electronic defect concentrations in the films. From thickness-dependent measurements at lower oxygen chemical potentials, an additional capacitive contribution could be identified and attributed to the LSF|YSZ interface. Deviations from simple chemical capacitance models at high pressures are most probably due to defect interactions.

  10. Voltage and partial pressure dependent defect chemistry in (La,Sr)FeO3–δ thin films investigated by chemical capacitance measurements

    Science.gov (United States)

    Rupp, Ghislain M.; Fleig, Jürgen

    2018-01-01

    La0.6Sr0.4FeO3–δ (LSF) thin films of different thickness were prepared by pulsed laser deposition on yttria stabilized zirconia (YSZ) and characterized by using three electrode impedance spectroscopy. Electrochemical film capacitance was analyzed in relation to oxygen partial pressure (0.25 mbar to 1 bar), DC polarization (0 m to –600 m) and temperature (500 to 650 °C). For most measurement parameters, the chemical bulk capacitance dominates the overall capacitive properties and the corresponding defect chemical state depends solely on the oxygen chemical potential inside the film, independent of atmospheric oxygen pressure and DC polarization. Thus, defect chemical properties (defect concentrations and defect formation enthalpies) could be deduced from such measurements. Comparison with LSF defect chemical bulk data from the literature showed good agreement for vacancy formation energies but suggested larger electronic defect concentrations in the films. From thickness-dependent measurements at lower oxygen chemical potentials, an additional capacitive contribution could be identified and attributed to the LSF|YSZ interface. Deviations from simple chemical capacitance models at high pressures are most probably due to defect interactions. PMID:29671421

  11. Laser induced magnetization switching in a TbFeCo ferrimagnetic thin film: discerning the impact of dipolar fields, laser heating and laser helicity by XPEEM

    International Nuclear Information System (INIS)

    Gierster, L.; Ünal, A.A.; Pape, L.; Radu, F.; Kronast, F.

    2015-01-01

    We investigate laser induced magnetic switching in a ferrimagnetic thin film of Tb_2_2Fe_6_9Co_9 by PEEM. Using a small laser beam with a spot size of 3–5 µm in diameter in combination with high resolution magnetic soft X-ray microscopy we are able to discriminate between different effects that govern the microscopic switching process, namely the influence of the laser heating, of the helicity dependent momentum transfer, and of the dipolar coupling. Applying a sequence of femtosecond laser pulses to a previously saturated TbFeCo film leads to the formation of ring shaped magnetic structures in which all three effects can be observed. Laser helicity assisted switching is only observed in a narrow region within the Gaussian profile of the laser spot. Whereas in the center of the laser spot we find clear evidence for thermal demagnetization and in the outermost areas magnetic switching is determined by dipolar coupling with the surrounding film. Our findings demonstrate that by reducing the laser spot size the influence of dipolar coupling on laser induced switching is becoming increasingly important. - Highlights: • With a new PEEM sample holder a laser spot size of 3–5 µm in diameter is reached. • Spatial resolved imaging of laser induced magnetization reversal. • A single femtosecond laser pulse leads to a multi-domain state in TbFeCo. • A pulse sequence results in a ring-shaped magnetic pattern caused by dipolar fields. • Laser helicity dependent effects appear only in a narrow fluence region.

  12. High-throughput heterodyne thermoreflectance: Application to thermal conductivity measurements of a Fe-Si-Ge thin film alloy library

    Science.gov (United States)

    d'Acremont, Quentin; Pernot, Gilles; Rampnoux, Jean-Michel; Furlan, Andrej; Lacroix, David; Ludwig, Alfred; Dilhaire, Stefan

    2017-07-01

    A High-Throughput Time-Domain ThermoReflectance (HT-TDTR) technique was developed to perform fast thermal conductivity measurements with minimum user actions required. This new setup is based on a heterodyne picosecond thermoreflectance system. The use of two different laser oscillators has been proven to reduce the acquisition time by two orders of magnitude and avoid the experimental artefacts usually induced by moving the elements present in TDTR systems. An amplitude modulation associated to a lock-in detection scheme is included to maintain a high sensitivity to thermal properties. We demonstrate the capabilities of the HT-TDTR setup to perform high-throughput thermal analysis by mapping thermal conductivity and interface resistances of a ternary thin film silicide library FexSiyGe100-x-y (20 deposited by wedge-type multi-layer method on a 100 mm diameter sapphire wafer offering more than 300 analysis areas of different ternary alloy compositions.

  13. Electrochemical Characterization of La0.58Sr0.4Co0.2Fe0.8O3-δ Thin Film Electrodes Prepared by Pulsed Laser Deposition

    DEFF Research Database (Denmark)

    Plonczak, Pawel; Søgaard, Martin; Bieberle-Hütter, Anja

    2012-01-01

    Electrochemical properties of La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF) thin films with well defined microstructures have been investigated. Symmetrical cells were characterized by impedance spectroscopy in the temperature range from 625 to 750°C and the oxygen partial pressure, range from 10-2 to 1 atm...... have only an area specific resistance of 0.38 Ω cm2. It is shown that the polarization resistance of thin films is approximately proportional to the inverse of the surface area of the porous cathodes in the temperature regime 625 to 750°C. The activation energy of the surface oxygen exchange process...... depends on the thin film microstructure as it decreased from 2.4 eV for dense films to 1.6 eV for porous films....

  14. Thin films for precision optics

    International Nuclear Information System (INIS)

    Araujo, J.F.; Maurici, N.; Castro, J.C. de

    1983-01-01

    The technology of producing dielectric and/or metallic thin films for high precision optical components is discussed. Computer programs were developed in order to calculate and register, graphically, reflectance and transmittance spectra of multi-layer films. The technology of vacuum evaporation of several materials was implemented in our thin-films laboratory; various films for optics were then developed. The possibility of first calculate film characteristics and then produce the film is of great advantage since it reduces the time required to produce a new type of film and also reduces the cost of the project. (C.L.B.) [pt

  15. Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3.

    Science.gov (United States)

    Liu, Yuting; Xu, Zhen; Yin, Min; Fan, Haowen; Cheng, Weijie; Lu, Linfeng; Song, Ye; Ma, Jing; Zhu, Xufei

    2015-12-01

    The short lifetime of photogenerated charge carriers of hematite (α-Fe2O3) thin films strongly hindered the PEC performances. Herein, α-Fe2O3 thin films with surface nanowire were synthesized by electrodeposition and post annealing method for photoelectrocatalytic (PEC) water splitting. The thickness of the α-Fe2O3 films can be precisely controlled by adjusting the duration of the electrodeposition. The Au nanoparticles (NPs) and Al2O3 shell by atom layer deposition were further introduced to modify the photoelectrodes. Different constructions were made with different deposition orders of Au and Al2O3 on Fe2O3 films. The Fe2O3-Au-Al2O3 construction shows the best PEC performance with 1.78 times enhancement by localized surface plasmon resonance (LSPR) of NPs in conjunction with surface passivation of Al2O3 shells. Numerical simulation was carried out to investigate the promotion mechanisms. The high PEC performance for Fe2O3-Au-Al2O3 construction electrode could be attributed to the Al2O3 intensified LSPR, effective surface passivation by Al2O3 coating, and the efficient charge transfer due to the Fe2O3-Au Schottky junctions.

  16. Nanosphere lithography applied to magnetic thin films

    Science.gov (United States)

    Gleason, Russell

    Magnetic nanostructures have widespread applications in many areas of physics and engineering, and nanosphere lithography has recently emerged as promising tool for the fabrication of such nanostructures. The goal of this research is to explore the magnetic properties of a thin film of ferromagnetic material deposited onto a hexagonally close-packed monolayer array of polystyrene nanospheres, and how they differ from the magnetic properties of a typical flat thin film. The first portion of this research focuses on determining the optimum conditions for depositing a monolayer of nanospheres onto chemically pretreated silicon substrates (via drop-coating) and the subsequent characterization of the deposited nanosphere layer with scanning electron microscopy. Single layers of permalloy (Ni80Fe20) are then deposited on top of the nanosphere array via DC magnetron sputtering, resulting in a thin film array of magnetic nanocaps. The coercivities of the thin films are measured using a home-built magneto-optical Kerr effect (MOKE) system in longitudinal arrangement. MOKE measurements show that for a single layer of permalloy (Py), the coercivity of a thin film deposited onto an array of nanospheres increases compared to that of a flat thin film. In addition, the coercivity increases as the nanosphere size decreases for the same deposited layer. It is postulated that magnetic exchange decoupling between neighboring nanocaps suppresses the propagation of magnetic domain walls, and this pinning of the domain walls is thought to be the primary source of the increase in coercivity.

  17. Microstructure of Thin Films

    Science.gov (United States)

    1990-02-07

    Proceedings, Thin film Technologies II, 652, 256-263, (1986) B. Schmitt, J.P. Borgogno, G. Albrand and E. Pelletier, "In situ and air index measurements...34 SPIE Proceedings, "Optical Components and Systems", 805, 128 (1987) 11 B. Schmitt, J.P. Borgogno, G. Albrand and E. Pelletier. "In situ and air index...aT , m..a, lot,, o ,,f,02,d I4 k -1-1..... autocovariance lengths, less than 0.5 um, indicate that , 514n, ob0 o p’,Ofclllc....,,o,,oy0,1- agua sblrt

  18. Surface properties of Co-doped BaFe{sub 2}As{sub 2} thin films deposited on MgO with Fe buffer layer and CaF{sub 2} substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sobota, R. [Department of Experimental Physics, FMPI, Comenius University, 842 48 Bratislava (Slovakia); Plecenik, T., E-mail: tomas.plecenik@fmph.uniba.sk [Department of Experimental Physics, FMPI, Comenius University, 842 48 Bratislava (Slovakia); Gregor, M.; Truchly, M.; Satrapinskyy, L.; Vidis, M.; Secianska, K. [Department of Experimental Physics, FMPI, Comenius University, 842 48 Bratislava (Slovakia); Kurth, F.; Holzapfel, B.; Iida, K. [Institute for Metallic Materials, IFW Dresden, PO Box 270116, D-01171 Dresden (Germany); Kus, P.; Plecenik, A. [Department of Experimental Physics, FMPI, Comenius University, 842 48 Bratislava (Slovakia)

    2014-09-01

    Highlights: • Surfaces of Co-doped Ba-122 films on various substrates were studied. • Substrate influences topography and surface conductivity distribution of the films. • Surface conductivity of Co-doped Ba-122 is highly inhomogeneous. • Point contact spectroscopy results can be affected by the surface differences. - Abstract: Surface properties of Co-doped BaFe{sub 2}As{sub 2} (Ba-122) thin films prepared by pulsed laser deposition on MgO with Fe buffer layer and CaF{sub 2} substrates were inspected by atomic force microscopy, scanning spreading resistance microscopy, scanning tunneling microscopy, X-ray photoelectron spectroscopy, auger electron spectroscopy/microscopy and point contact spectroscopy (PCS). Selected PCS spectra were fitted by extended 1D BTK model. The measurements were done on as-received as well as ion beam etched surfaces. Our results show that the substrate is considerably influencing the surface properties of the films, particularly the topography and surface conductivity distribution, what can affect results obtained by surface-sensitive techniques like PCS.

  19. Investigation of physical properties and surface morphology of Cu nanolayer deposited on glass and (Al, Fe) thin films by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, P.A. [Islamic Azad Univ., North Tehran (Iran, Islamic Republic of). Dept. of Chemistry; Islamic Azad Univ., Tabriz (Iran, Islamic Republic of). Dept. of Science-Applied Chemistry; Laheghi, S.N.; Ghoranneviss, M. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Plasma Research Center; Moradi, S. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Chemistry; Aberumand, P. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Science and Research Laboratory Complex

    2008-07-01

    The applications for copper (Cu) thin films with micro or nanostructural dimensions range from catalysis to microelectronic devices. This paper reported on a study in which DC magnetron sputtering was used to coat iron (Fe), copper (Cu) and aluminum (Al) on glass substrate under a particular voltage, time and optimized deposition pressure. The samples were then coated with Cu using the same technique in preparation of different multilayers. Physical properties such as transmission and reflection per cent, magnetic and electrical properties, size and surface morphology were analyzed using data from AFM, XRD, SEM, Four point probe, and magneto resistive spectrophotometers. The study showed that the size, surface morphology and some physical properties of Cu nanolayer depend on substrate materials, surface morphology and physical properties below the nanolayer. Future work will focus on chemical properties such as catalytic and electrochemical properties. Copper nanoparticles will also be synthesized on other materials such as ZnO. 14 refs., 1 tab., 3 figs.

  20. Ion-beam-induced ferromagnetism in Mn-doped PrFeO{sub 3} thin films grown on Si (100)

    Energy Technology Data Exchange (ETDEWEB)

    Sultan, Khalid; Ikram, M.; Mir, Sajad Ahmad; Habib, Zubida; Aarif ul Islam, Shah [National Institute of Technology, Solid State Physics Lab. Department of Physics, Srinagar, J and K (India); Ali, Yasir [Saint Longwal Institute of Engineering and Technology, Sangrur, Punjab (India); Asokan, K. [Inter University Accelerator Centre, Materials Science Division, New Delhi (India)

    2016-01-15

    The present study shows that the ion beam irradiation induces room-temperature ferromagnetic ordering in pulsed laser-deposited Mn-doped PrFeO{sub 3} thin films on Si (100) apart from change in the morphological, structural and electrical properties. Dense electronic excitation produced by high-energy 120 MeV Ag{sup 9+} ion irradiation causes change in surface roughness, crystallinity and strain. It is also evident that these excitations induce the magnetic ordering in this system. The observed modifications are due to the large electronic energy deposited by swift heavy ions irradiation. The appearance of ferromagnetism at 300 K in these samples after irradiation may be attributed to the canting of the antiferromagnetically ordered spins due to the structural distortion. (orig.)

  1. Mechanism of tailored magnetic anisotropy in amorphous Co{sub 68}Fe{sub 24}Zr{sub 8} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yu, E-mail: yu.fu@uni-due.de, E-mail: cangcangzhulin@gmail.com; Meckenstock, R.; Farle, M. [Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, 47057 Duisburg (Germany); Barsukov, I., E-mail: ibarsuko@uci.edu [Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, 47057 Duisburg (Germany); Physics and Astronomy, University of California, Irvine, California 92697 (United States); Lindner, J. [Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, 47057 Duisburg (Germany); Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstr. 400, 01328 Dresden (Germany); Raanaei, H. [Department of Physics, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Hjörvarsson, B. [Department of Physics and Astronomy, Uppsala University, Box 516 SE-75120 Uppsala (Sweden)

    2014-02-17

    The mechanism of tailored magnetic anisotropy in amorphous Co{sub 68}Fe{sub 24}Zr{sub 8} thin films was investigated by ferromagnetic resonance (FMR) on samples deposited without an applied magnetic field, with an out-of-plane field and an in-plane field. Analysis of FMR spectra profiles, high frequency susceptibility calculations, and statistical simulations using a distribution of local uniaxial magnetic anisotropy reveal the presence of atomic configurations with local uniaxial anisotropy, of which the direction can be tailored while the magnitude remains at an intrinsically constant value of 3.0(2) kJ/m{sup 3}. The in-plane growth field remarkably sharpens the anisotropy distribution and increases the sample homogeneity. The results benefit designing multilayer spintronic devices based on highly homogeneous amorphous layers with tailored magnetic anisotropy.

  2. Resistive switching properties of Ce and Mn co-doped BiFeO3 thin films for nonvolatile memory application

    Directory of Open Access Journals (Sweden)

    Zhenhua Tang

    2013-12-01

    Full Text Available The Ce and Mn co-doped BiFeO3 (BCFMO thin films were synthesized on Pt/Ti/SiO2/Si substrates using a sol-gel method. The unipolar resistive switching (URS and bipolar resistive switching (BRS behaviors were observed in the Pt/BCFMO/Pt device structure, which was attributed to the formation/rupture of metal filaments. The fabricated device exhibits a large ROFF/RON ratio (>80, long retention time (>105 s and low programming voltages (<1.5 V. Analysis of linear fitting current-voltage curves suggests that the space charge limited leakage current (SCLC and Schottky emission were observed as the conduction mechanisms of the devices.

  3. Tuning the antiferromagnetic to ferromagnetic phase transition in FeRh thin films by means of low-energy/low fluence ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Heidarian, A.; Bali, R.; Grenzer, J.; Wilhelm, R.A.; Heller, R.; Yildirim, O.; Lindner, J.; Potzger, K.

    2015-09-01

    Ion irradiation induced modifications of the thermomagnetic properties of equiatomic FeRh thin films have been investigated. The application of 20 keV Ne{sup +} ions at different fluencies leads to broadening of the antiferromagnetic to ferromagnetic phase transition as well as a shift of the transition temperature towards lower temperatures with increasing ion fluence. Moreover, the ferromagnetic background at low temperatures generated by the ion irradiation leads to pronounced saturation magnetisation at 5 K. Complete erasure of the transition, i.e. ferromagnetic ordering through the whole temperature regime was achieved at a Ne{sup +} fluence of 3 × 10{sup 14} ions/cm{sup 2}. It does not coincide with the complete randomization of the chemical ordering of the crystal lattice.

  4. Resistive switching properties of Ce and Mn co-doped BiFeO{sub 3} thin films for nonvolatile memory application

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhenhua; Zeng, Jia; Tang, Minghua, E-mail: mhtang@xtu.edu.cn; Xu, Dinglin; Cheng, Chuanpin; Xiao, Yongguang; Zhou, Yichun [Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Edu