WorldWideScience

Sample records for thidiazuron gossypium hirsutum

  1. Selection of Gossypium hirsutum genotypes for interspecific ...

    African Journals Online (AJOL)

    Ovule culture is one of the techniques currently used to introgress desirable traits from Gossypium arboreum germplasm into G. hirsutum cultivars. Twenty-six (26) G. hirsutum breeding lines were used as female parents in crosses with five G. arboreum accessions to determine if the G. hirsutum parent influenced the ...

  2. Selection of Gossypium hirsutum genotypes for interspecific ...

    African Journals Online (AJOL)

    FORRESTER

    ARS), Crop Genetics Research Unit in. Stoneville, Mississippi ... Key words: Cotton, germplasm, immature embryo, tissue culture, wide-hybridization. INTRODUCTION. Tetraploid upland cotton, Gossypium hirsutum L., is comprised of over 90% ...

  3. (Gossypium hirsutum L.) CONTRE LA FUSARIOSE EFFECT ...

    African Journals Online (AJOL)

    EFFECT OFOLIGOSACCHARIDE FRACTION OF Fusarium oxysporum f. sp. vasinfectum ON COTTON PROTECTION (Gossypium hirsutum L.) AGAINST FUSARIUM WILT. R. A. N'GORAN épse BLA1,2, H. T. KOUAKOU2, F. K. Y. KONAN2, B. CAMARA1,. N. K. KOUASSI3 et D. KONE1. 1Laboratoire de Physiologie Végétale, ...

  4. Multiple shoot regeneration of cotton ( Gossypium hirsutum L.) via ...

    African Journals Online (AJOL)

    Multiple shoot regeneration of cotton (Gossypium hirsutum L.) via shoot apex culture system. MM Bazargani, BES Tabatabaei, M Omidi. Abstract. Induction of multiple shoots of cotton (Gossypium hirsutum L.) plant in two commercial varieties (Sahel and Varamin) using shoot apex was done. Explants were isolated from 3 - 4 ...

  5. Gossypium arboreum GHSP26 enhances drought tolerance in Gossypium hirsutum.

    Science.gov (United States)

    Maqbool, Asma; Abbas, Waseem; Rao, Abdul Qayyum; Irfan, Muhammad; Zahur, Muzna; Bakhsh, Allah; Riazuddin, Shiekh; Husnain, Tayyab

    2010-01-01

    Heat-shock proteins (HSP) are molecular chaperones for protein molecules. These proteins play an important role in protein-protein interactions such as, folding and assisting in the establishment of proper protein conformation and prevention of unwanted protein aggregation. A small HSP gene GHSP26 present in Gossypium arboreum responds to dehydration. In the present study, an attempt was made to overcome the problem of drought stress in cotton. A cDNA of GHSP26 was isolated from G. arboreum, cloned in plant expression vector, pCAMBIA-1301 driven by the cauliflower mosaic virus 35S promoter and introduced into Gossypium hirsutum. The integration and expression studies of putative transgenic plants were performed through GUS assay; PCR from genomic DNA, and quantitative real-time PCR analysis. Transgenic cotton plants showed an enhanced drought tolerance, suggesting that GHSP26 may play a role in plant responsiveness to drought.

  6. Evolution and Stress Responses of Gossypium hirsutum SWEET Genes.

    Science.gov (United States)

    Li, Wei; Ren, Zhongying; Wang, Zhenyu; Sun, Kuan; Pei, Xiaoyu; Liu, Yangai; He, Kunlun; Zhang, Fei; Song, Chengxiang; Zhou, Xiaojian; Zhang, Wensheng; Ma, Xiongfeng; Yang, Daigang

    2018-03-08

    The SWEET (sugars will eventually be exported transporters) proteins are sugar efflux transporters containing the MtN3_saliva domain, which affects plant development as well as responses to biotic and abiotic stresses. These proteins have not been functionally characterized in the tetraploid cotton, Gossypium hirsutum , which is a widely cultivated cotton species. In this study, we comprehensively analyzed the cotton SWEET gene family. A total of 55 putative G. hirsutum SWEET genes were identified. The GhSWEET genes were classified into four clades based on a phylogenetic analysis and on the examination of gene structural features. Moreover, chromosomal localization and an analysis of homologous genes in Gossypium arboreum , Gossypium raimondii , and G. hirsutum suggested that a whole-genome duplication, several tandem duplications, and a polyploidy event contributed to the expansion of the cotton SWEET gene family, especially in Clade III and IV. Analyses of cis -acting regulatory elements in the promoter regions, expression profiles, and artificial selection revealed that the GhSWEET genes were likely involved in cotton developmental processes and responses to diverse stresses. These findings may clarify the evolution of G. hirsutum SWEET gene family and may provide a foundation for future functional studies of SWEET proteins regarding cotton development and responses to abiotic stresses.

  7. Purification and biosynthesis of cottonseed (Gossypium hirsutum L.) catalase.

    OpenAIRE

    Kunce, C M; Trelease, R N; Turley, R B

    1988-01-01

    As part of our research on peroxisome biogenesis, catalase was purified from cotyledons of dark-grown cotton (Gossypium hirsutum L.) seedlings and monospecific antibodies were raised in rabbits. Purified catalase appeared as three distinct electrophoretic forms in non-denaturing gels and as a single protein band (with a subunit Mr of 57,000) on silver-stained SDS/polyacrylamide gels. Western blots of crude extracts and isolated peroxisomes from cotton revealed one immunoreactive polypeptide w...

  8. GhNAC18 , a novel cotton ( Gossypium hirsutum L.) NAC gene, is ...

    African Journals Online (AJOL)

    GhNAC18, a novel cotton (Gossypium hirsutum L.) NAC gene, is involved in leaf senescence and diverse stress responses. Ondati Evans, Lingling Dou, Yaning Guo, Chaoyou Pang, Hengling Wei, Meizhen Song, Shuli Fan, Shuxun Yu ...

  9. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Genotype and planting density effects on rooting traits and yield in cotton (Gossypium hirsutum L.)

    NARCIS (Netherlands)

    Zhang, L.Z.; Li, B.G.; Yan, G.T.; Werf, van der W.; Spiertz, J.H.J.; Zhang, S.P.

    2006-01-01

    Root density distribution of plants is a major indicator of competition between plants and determines resource capture from the soil. This experiment was conducted in 2005 at Anyang, located in the Yellow River region, Henan Province, China. Three cotton (Gossypium hirsutum L.) cultivars were

  11. GhNAC18, a novel cotton (Gossypium hirsutum L.) NAC gene, is ...

    African Journals Online (AJOL)

    EVANS

    GhNAC18 is a novel NAC gene that was isolated from cotton (Gossypium hirsutum L.). The full-length. cDNA was 1511 bp including an open reading frame of 1260 bp in length and encodes a protein of 419 amino acids. With qRT-PCR analysis, GhNAC18 was downregulated during natural and dark-induced senescence ...

  12. Characterization of eleven monosomic alien addition lines added from Gossypium anomalum to Gossypium hirsutum using improved GISH and SSR markers.

    Science.gov (United States)

    Wang, Xiaoxiao; Wang, Yingying; Wang, Chen; Chen, Yu; Chen, Yu; Feng, Shouli; Zhao, Ting; Zhou, Baoliang

    2016-10-07

    Gossypium anomalum (BB genome) possesses the desirable characteristics of drought tolerance, resistance to diseases and insect pests, and the potential for high quality fibers. However, it is difficult to transfer the genes associated with these desirable traits into cultivated cotton (G. hirsutum, AADD genome). Monosomic alien addition lines (MAALs) can be used as a bridge to transfer desired genes from wild species into G. hirsutum. In cotton, however, the high number and smaller size of the chromosomes has resulted in difficulties in discriminating chromosomes from wild species in cultivated cotton background, the development of cotton MAALs has lagged far behind many other crops. To date, no set of G. hirsutum-G. anomalum MAALs was reported. Here the amphiploid (AADDBB genome) derived from G. hirsutum × G. anomalum was used to generate a set of G. hirsutum-G. anomalum MAALs through a combination of consecutive backcrossing, genomic in situ hybridization (GISH), morphological survey and microsatellite marker identification. We improved the GISH technique used in our previous research by using a mixture of two probes from G. anomalum and G. herbaceum (AA genome). The results indicate that a ratio of 4:3 (G. anomalum : G. herbaceum) is the most suitable for discrimination of chromosomes from G. anomalum and the At-subgenome of G. hirsutum. Using this improved GISH technique, 108 MAAL individuals were isolated. Next, 170 G. hirsutum- and G. anomalum-specific codominant markers were obtained and employed for characterization of these MAAL individuals. Finally, eleven out of 13 MAALs were identified. Unfortunately, we were unable to isolate Chrs. 1B a and 5B a due to their very low incidences in backcrossing generation, as these remained in a condition of multiple additions. The characterized lines can be employed as bridges for the transfer of desired genes from G. anomalum into G. hirsutum, as well as for gene assignment, isolation of chromosome

  13. The Complete Mitochondrial Genome of Gossypium hirsutum and Evolutionary Analysis of Higher Plant Mitochondrial Genomes

    Science.gov (United States)

    Su, Aiguo; Geng, Jianing; Grover, Corrinne E.; Hu, Songnian; Hua, Jinping

    2013-01-01

    Background Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. Methodology/Principal Findings We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. Conclusion The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species. PMID:23940520

  14. Characterization of the global transcriptome for cotton (Gossypium hirsutum L.) anther and development of SSR marker.

    Science.gov (United States)

    Zhang, Xianwen; Ye, Zhenwei; Wang, Tiankang; Xiong, Hairong; Yuan, Xiaoling; Zhang, Zhigang; Yuan, Youlu; Liu, Zhi

    2014-11-10

    Cotton is an important fiber plant, and it's attractive to elucidate the molecular mechanism of anther development due to the close relationship between the anther fertility and boll-setting, and also fiber yield. In the present paper, 47.2 million paired-end reads with average length of 82.87 bp from the anthers of TM-1 (Gossypium hirsutum L.), a genetic standard line, were generated through transcriptome sequencing, and 210,965 unigenes of more than 100 bp were obtained. BLAST, KEGG, COG, and GO analyses showed that the genes were enriched in the processes of transcription, translation, and post-translation as well as hormone signal transduction, the transcription factor families, and cell wall-related genes mainly participating in cell expansion and carbohydrate metabolism. Further analysis identified 11,153 potential SSRs. A suit of 5122 primer pair sequences were designed, and 82 of 300 randomly selected primer pairs produced reproducible amplicons that were polymorphic among 22 cotton accessions from G. hirsutum, Gossypium barbadense and Gossypium arboreum. The UPGMA clustering analysis further confirmed high quality and effectiveness of these novel SSR markers. The present study provided insights into the transcriptome profile of the cotton and established a public information platform for functional genomics and molecular breeding. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Genome-wide divergence, haplotype distribution and population demographic histories for Gossypium hirsutum and Gossypium barbadense as revealed by genome-anchored SNPs

    Science.gov (United States)

    Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using the SNPs distributed genome-wide, we exami...

  16. Embryogenèse somatique chez le cotonnier ( Gossypium hirsutum L ...

    African Journals Online (AJOL)

    L'implication des lipides dans le processus de l'embryogenèse somatique a été étudiée chez deux variétés de cotonnier (Gossypium hirsutum L.) : Coker 312, variété embryogène et ISA 205N, variété non embryogène. Le taux de lipides totaux de la variété ISA 205N est en général plus élevé que celui de la variété Coker ...

  17. Molecular characters and different expression of WRKY1 gene from Gossypium barbadense L. and Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Jianfeng Liu

    2016-11-01

    Full Text Available Cotton is one of the most important economic crops in the world. Gossypium barbadense L. has higher resistance to Verticillium wilt than Gossypium hirsutum L. In the present study, seedlings of Pima90-53 (G. barbadense had better growth performance than those of CRI8 (G. hirsutum inoculated with Verticillium dahliae. WRKY1 genomic DNA of Pima90-53 and CRI8 were isolated (GbWRKY1 and GhWRKY1 and predicted to include three introns which were 289, 92, 87 bp and 286, 92, 87 bp in length, respectively. Compared with the DNA sequence of GbWRKY1, GhWRKY1 had a 13-base deletion in exon 4, which resulted in premature termination of translation. It was predicted that the GbWRKY1 and GhWRKY1 proteins contain two WRKY domains and zinc-finger motifs belonging to group I WRKY proteins. Two promoters, located 1745 bp and 1738 bp upstream of GbWRKY1 and GhWRKY1, were cloned and predicted to contain important regulatory elements (TATA-box, CAAT-box and pathogen/elicitor-related elements. Interestingly, compared with GbWRKY1, the GhWRKY1 promoter lacked an ethylene-responsive element (ERE component. The relative expression of GbWRKY1, too, was higher than that of GhWRKY1 after V. dahliae and ACC (1-aminocyclopropane-1-carboxylic acid induction. The results suggest that the difference in the promoter sequence could probably be one of the reasons that lead to different expression patterns and resistance to Verticillium wilt in Pima90-53 and CRI8.

  18. Cotton (Gossypium hirsutum L.) boll rotting bacteria vectored by the brown stink bug, Euschistus servus (Say) (Hemiptera: Pentatomidea)

    Science.gov (United States)

    Determine the capacity of the brown stink bug (Euschistus servus) to transmit an infective Pantoea agglomerans into cotton (Gossypium hirsutum, L.) bolls. A laboratory colony of the brown stink bug (BSB) was maintained on fresh green beans. The P. agglomerans mutant strain Sc 1-R that holds rifamp...

  19. Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan.

    Science.gov (United States)

    Avci, Utku; Pattathil, Sivakumar; Singh, Bir; Brown, Virginia L; Hahn, Michael G; Haigler, Candace H

    2013-01-01

    Cotton fiber is an important natural textile fiber due to its exceptional length and thickness. These properties arise largely through primary and secondary cell wall synthesis. The cotton fiber of commerce is a cellulosic secondary wall surrounded by a thin cuticulated primary wall, but there were only sparse details available about the polysaccharides in the fiber cell wall of any cotton species. In addition, Gossypium hirsutum (Gh) fiber was known to have an adhesive cotton fiber middle lamella (CFML) that joins adjacent fibers into tissue-like bundles, but it was unknown whether a CFML existed in other commercially important cotton fibers. We compared the cell wall chemistry over the time course of fiber development in Gh and Gossypium barbadense (Gb), the two most important commercial cotton species, when plants were grown in parallel in a highly controlled greenhouse. Under these growing conditions, the rate of early fiber elongation and the time of onset of secondary wall deposition were similar in fibers of the two species, but as expected the Gb fiber had a prolonged elongation period and developed higher quality compared to Gh fiber. The Gb fibers had a CFML, but it was not directly required for fiber elongation because Gb fiber continued to elongate rapidly after CFML hydrolysis. For both species, fiber at seven ages was extracted with four increasingly strong solvents, followed by analysis of cell wall matrix polysaccharide epitopes using antibody-based Glycome Profiling. Together with immunohistochemistry of fiber cross-sections, the data show that the CFML of Gb fiber contained lower levels of xyloglucan compared to Gh fiber. Xyloglucan endo-hydrolase activity was also higher in Gb fiber. In general, the data provide a rich picture of the similarities and differences in the cell wall structure of the two most important commercial cotton species.

  20. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement.

    Science.gov (United States)

    Zhang, Tianzhen; Hu, Yan; Jiang, Wenkai; Fang, Lei; Guan, Xueying; Chen, Jiedan; Zhang, Jinbo; Saski, Christopher A; Scheffler, Brian E; Stelly, David M; Hulse-Kemp, Amanda M; Wan, Qun; Liu, Bingliang; Liu, Chunxiao; Wang, Sen; Pan, Mengqiao; Wang, Yangkun; Wang, Dawei; Ye, Wenxue; Chang, Lijing; Zhang, Wenpan; Song, Qingxin; Kirkbride, Ryan C; Chen, Xiaoya; Dennis, Elizabeth; Llewellyn, Danny J; Peterson, Daniel G; Thaxton, Peggy; Jones, Don C; Wang, Qiong; Xu, Xiaoyang; Zhang, Hua; Wu, Huaitong; Zhou, Lei; Mei, Gaofu; Chen, Shuqi; Tian, Yue; Xiang, Dan; Li, Xinghe; Ding, Jian; Zuo, Qiyang; Tao, Linna; Liu, Yunchao; Li, Ji; Lin, Yu; Hui, Yuanyuan; Cao, Zhisheng; Cai, Caiping; Zhu, Xiefei; Jiang, Zhi; Zhou, Baoliang; Guo, Wangzhen; Li, Ruiqiang; Chen, Z Jeffrey

    2015-05-01

    Upland cotton is a model for polyploid crop domestication and transgenic improvement. Here we sequenced the allotetraploid Gossypium hirsutum L. acc. TM-1 genome by integrating whole-genome shotgun reads, bacterial artificial chromosome (BAC)-end sequences and genotype-by-sequencing genetic maps. We assembled and annotated 32,032 A-subgenome genes and 34,402 D-subgenome genes. Structural rearrangements, gene loss, disrupted genes and sequence divergence were more common in the A subgenome than in the D subgenome, suggesting asymmetric evolution. However, no genome-wide expression dominance was found between the subgenomes. Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenome. This draft genome sequence provides a resource for engineering superior cotton lines.

  1. Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Ademe, Mulugeta Seyoum; He, Shoupu; Pan, Zhaoe; Sun, Junling; Wang, Qinglian; Qin, Hongde; Liu, Jinhai; Liu, Hui; Yang, Jun; Xu, Dongyong; Yang, Jinlong; Ma, Zhiying; Zhang, Jinbiao; Li, Zhikun; Cai, Zhongmin; Zhang, Xuelin; Zhang, Xin; Huang, Aifen; Yi, Xianda; Zhou, Guanyin; Li, Lin; Zhu, Haiyong; Pang, Baoyin; Wang, Liru; Jia, Yinhua; Du, Xiongming

    2017-12-01

    Fiber yield and quality are the most important traits for Upland cotton (Gossypium hirsutum L.). Identifying high yield and good fiber quality genes are the prime concern of researchers in cotton breeding. Association mapping offers an alternative and powerful method for detecting those complex agronomic traits. In this study, 198 simple sequence repeats (SSRs) were used to screen markers associated with fiber yield and quality traits with 302 elite Upland cotton accessions that were evaluated in 12 locations representing the Yellow River and Yangtze River cotton growing regions of China. Three subpopulations were found after the estimation of population structure. The pair-wise kinship values varied from 0 to 0.867. Only 1.59% of the total marker locus pairs showed significant linkage disequilibrium (LD, p cotton molecular breeding programs.

  2. Construction of a complete set of alien chromosome addition lines from Gossypium australe in Gossypium hirsutum: morphological, cytological, and genotypic characterization.

    Science.gov (United States)

    Chen, Yu; Wang, Yingying; Wang, Kai; Zhu, Xiefei; Guo, Wangzhen; Zhang, Tianzhen; Zhou, Baoliang

    2014-05-01

    We report the first complete set of alien addition lines of G. hirsutum . The characterized lines can be used to introduce valuable traits from G. australe into cultivated cotton. Gossypium australe is a diploid wild cotton species (2n = 26, GG) native to Australia that possesses valuable characteristics unavailable in the cultivated cotton gene pool, such as delayed pigment gland morphogenesis in the seed and resistances to pests and diseases. However, it is very difficult to directly transfer favorable traits into cultivated cotton through conventional gene recombination due to the absence of pairing and crossover between chromosomes of G. australe and Gossypium hirsutum (2n = 52, AADD). To enhance the transfer of favorable genes from wild species into cultivated cotton, we developed a set of hirsutum-australe monosomic alien chromosome addition lines (MAAL) using a combination of morphological survey, microsatellite marker-assisted selection, and molecular cytogenetic analysis. The amphidiploid (2n = 78, AADDGG) of G. australe and G. hirsutum was consecutively backcrossed with upland cotton to develop alien addition lines of individual G. australe chromosomes in G. hirsutum. From these backcross progeny, we generated the first complete set of chromosome addition lines in cotton; 11 of 13 lines are monosomic additions, and chromosomes 7G(a) and 13G(a) are multiple additions. MAALs of 1G(a) and 11G(a) were the first to be isolated. The chromosome addition lines can be employed as bridges for the transfer of desired genes from G. australe into G. hirsutum, as well as for gene assignment, isolation of chromosome-specific probes, flow sorting and microdissection of chromosome, development of chromosome-specific ''paints'' for fluorochrome-labeled DNA fragments, physical mapping, and selective isolation and mapping of cDNAs for a particular G. australe chromosome.

  3. Characterization of a cDNA encoding metallothionein 3 from cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Jordan, Robin H; Turley, Rickie B; Defauw, Sherri L; Steele, Mark

    2005-04-01

    A cDNA encoding metallothionein (MT) was isolated from a library constructed with poly A(+) RNA purified from 48 h etiolated cotton (Gossypium hirsutum L.) cotyledons. This cDNA encodes a deduced protein with 63 residues and a molecular weight of 6.3 kDa. The protein has 10 cysteines of which 4 are within the CXXCXCXXXXXC amino-terminus motif and six are within the CXCXXXCXCXXCXC carboxyl-terminus motif characteristic of the type III MT (MT3). The cotton MT3 protein sequence is 76.2, 69.8, 66.7, 60.3 and 33.5% identical to MT3 from Carica papaya, Rubus idaeus, Ribes nigrum, Citrus unshiu, and Gossypium hirsutum type I MT, respectively. A fusion protein was constructed by producing PCR primers for the 5' and 3' ends of the cotton MT3 cDNA and ligating the PCR product inframe at the 3' end of a bacterial glutathione S-transferase (GST) gene in the pGEX3 vector. The 5' PCR primer incorporated a segment of the cotton MT3 noncoding region, resulting in an addition of 9 residues to the MT3 (after Factor Xa digestion site) which increased the size of the expressed protein to 72 residues and 7.6 kDa. Expression of the 7.6 kDa protein in bacteria was confirmed by SDS-PAGE. Induction and accumulation of the GST-MT3 protein began inhibiting bacterial growth after 1 h. Addition of Cu (1 muM to 1 mM), 1 mM cysteine, or 1 mM cystine to the media did not rescue growth. Additionally, this protein was evaluated for its ability to bind Cd, Cu, Ni and Zn in the bacterial expression system. We found that cotton MT3 preferentially binds Cu.

  4. Proteomics profiling of fiber development and domestication in upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Hu, Guanjing; Koh, Jin; Yoo, Mi-Jeong; Pathak, Dharminder; Chen, Sixue; Wendel, Jonathan F

    2014-12-01

    Comparative proteomic analyses were performed to detail the evolutionary consequences of strong directional selection for enhanced fiber traits in modern upland cotton (Gossypium hirsutum L.). Using two complementary proteomic approaches, 2-DE and iTRAQ LC-MS/MS, fiber proteomes were examined for four representative stages of fiber development. Approximately 1,000 protein features were characterized using each strategy, collectively resulting in the identification and functional categorization of 1,223 proteins. Unequal contributions of homoeologous proteins were detected for over a third of the fiber proteome, but overall expression was balanced with respect to the genome-of-origin in the allopolyploid G. hirsutum. About 30% of the proteins were differentially expressed during fiber development within wild and domesticated cotton. Notably, domestication was accompanied by a doubling of protein developmental dynamics for the period between 10 and 20 days following pollination. Expression levels of 240 iTRAQ proteins and 293 2-DE spots were altered by domestication, collectively representing multiple cellular and metabolic processes, including metabolism, energy, protein synthesis and destination, defense and stress response. Analyses of homoeolog-specific expression indicate that duplicated gene products in cotton fibers can be differently regulated in response to selection. These results demonstrate the power of proteomics for the analysis of crop domestication and phenotypic evolution.

  5. Structure, expression differentiation and evolution of duplicated fiber developmental genes in Gossypium barbadense and G. hirsutum.

    Science.gov (United States)

    Zhu, Huayu; Han, Xiaoyong; Lv, Junhong; Zhao, Liang; Xu, Xiaoyang; Zhang, Tianzhen; Guo, Wangzhen

    2011-02-25

    Both Gossypium hirsutum and G. barbadense probably originated from a common ancestor, but they have very different agronomic and fiber quality characters. Here we selected 17 fiber development-related genes to study their structures, tree topologies, chromosomal location and expression patterns to better understand the interspecific divergence of fiber development genes in the two cultivated tetraploid species. The sequence and structure of 70.59% genes were conserved with the same exon length and numbers in different species, while 29.41% genes showed diversity. There were 15 genes showing independent evolution between the A- and D-subgenomes after polyploid formation, while two evolved via different degrees of colonization. Chromosomal location showed that 22 duplicate genes were located in which at least one fiber quality QTL was detected. The molecular evolutionary rates suggested that the D-subgenome of the allotetraploid underwent rapid evolutionary differentiation, and selection had acted at the tetraploid level. Expression profiles at fiber initiation and early elongation showed that the transcripts levels of most genes were higher in Hai7124 than in TM-1. During the primary-secondary transition period, expression of most genes peaked earlier in TM-1 than in Hai7124. Homeolog expression profile showed that A-subgenome, or the combination of A- and D-subgenomes, played critical roles in fiber quality divergence of G. hirsutum and G. barbadense. However, the expression of D-subgenome alone also played an important role. Integrating analysis of the structure and expression to fiber development genes, suggests selective breeding for certain desirable fiber qualities played an important role in divergence of G. hirsutum and G. barbadense.

  6. Ten alien chromosome additions of Gossypium hirsutum-Gossypium bickii developed by integrative uses of GISH and species-specific SSR markers.

    Science.gov (United States)

    Tang, Dong; Feng, Shouli; Li, Sai; Chen, Yu; Zhou, Baoliang

    2018-03-27

    Gossypium bickii: (2n = 26, G 1 G 1 ), a wild diploid cotton, carries many favourable traits. However, these favourable traits cannot be directly transferred into G. hirsutum (2n = 52, AADD) cultivars due to the differences in genomes. Monosomic alien addition lines (MAALs) are considered an invaluable tool for the introgression of genes of interest from wild relatives into cultivated crops. In this study, the G. hirsutum-G. bickii amphidiploid (2n = 78, AADDG 1 G 1 ) was backcrossed with G. hirsutum to develop alien additions containing individual G. bickii chromosomes in a G. hirsutum background. Genomic in situ hybridization was employed to detect the number of alien chromosomes added to the backcross progenies. A total of 183 G. bickii-specific DNA markers were developed to discriminate the identities of the G. bickii chromosomes added to G. hirsutum and assess the alien chromosome transmissibility. Chromosomes 4G b and 13G b showed the highest transmissibility, while chromosomes 1G b , 7G b and 11G b showed the lowest. Ten of the 13 possible G. hirsutum-G. bickii MAALs were isolated and characterized, which will lay the foundation for transferring resistance genes of G. bickii into G. hirsutum, as well as for gene assignment, physical mapping, and selective isolation and mapping of cDNAs for particular G. bickii chromosomes. The strategies of how to use MAALs to develop varieties with the trait of interest from wild species (such as glanded plant-glandless seed) were proposed and discussed.

  7. Gossypium hirsutum

    Indian Academy of Sciences (India)

    2015-03-12

    Mar 12, 2015 ... of molecular markers and the refinement of statistical tools have created renewed interest in this ..... types revealed that although 94% of the genetic diversity was attributable to differences within ..... Y. Z., Hua J. P., Sun X. L., Zhang Q. F. and. Corke H. 2001 Mapping quantitative trait loci for milling quality,.

  8. Comparative transcriptome analysis of Gossypium hirsutum L. in response to sap sucking insects: aphid and whitefly.

    Science.gov (United States)

    Dubey, Neeraj Kumar; Goel, Ridhi; Ranjan, Alok; Idris, Asif; Singh, Sunil Kumar; Bag, Sumit K; Chandrashekar, Krishnappa; Pandey, Kapil Deo; Singh, Pradhyumna Kumar; Sawant, Samir V

    2013-04-11

    Cotton (Gossypium hirsutum L.) is a major fiber crop that is grown worldwide; it faces extensive damage from sap-sucking insects, including aphids and whiteflies. Genome-wide transcriptome analysis was performed to understand the molecular details of interaction between Gossypium hirsutum L. and sap-sucking pests, namely Aphis gossypii (Aphid) and Bemisia tabacci (Whiteflies). Roche's GS-Titanium was used to sequence transcriptomes of cotton infested with aphids and whiteflies for 2 h and 24 h. A total of 100935 contigs were produced with an average length of 529 bp after an assembly in all five selected conditions. The Blastn of the non-redundant (nr) cotton EST database resulted in the identification of 580 novel contigs in the cotton plant. It should be noted that in spite of minimal physical damage caused by the sap-sucking insects, they can change the gene expression of plants in 2 h of infestation; further change in gene expression due to whiteflies is quicker than due to aphids. The impact of the whitefly 24 h after infestation was more or less similar to that of the aphid 2 h after infestation. Aphids and whiteflies affect many genes that are regulated by various phytohormones and in response to microbial infection, indicating the involvement of complex crosstalk between these pathways. The KOBAS analysis of differentially regulated transcripts in response to aphids and whiteflies indicated that both the insects induce the metabolism of amino acids biosynthesis specially in case of whiteflies infestation at later phase. Further we also observed that expression of transcript related to photosynthesis specially carbon fixation were significantly influenced by infestation of Aphids and Whiteflies. A comparison of different transcriptomes leads to the identification of differentially and temporally regulated transcripts in response to infestation by aphids and whiteflies. Most of these differentially expressed contigs were related to genes involved in biotic

  9. Rapid evolutionary divergence of Gossypium barbadense and G. hirsutum mitochondrial genomes.

    Science.gov (United States)

    Tang, Mingyong; Chen, Zhiwen; Grover, Corrinne E; Wang, Yumei; Li, Shuangshuang; Liu, Guozheng; Ma, Zhiying; Wendel, Jonathan F; Hua, Jinping

    2015-10-12

    The mitochondrial genome from upland cotton, G. hirsutum, was previously sequenced. To elucidate the evolution of mitochondrial genomic diversity within a single genus, we sequenced the mitochondrial genome from Sea Island cotton (Gossypium barbadense L.). Mitochondrial DNA from week-old etiolated seedlings was extracted from isolated organelles using discontinuous sucrose density gradient method. Mitochondrial genome was sequenced with Solexa using paired-end, 90 bp read. The clean reads were assembled into contigs using ABySS and finished via additional fosmid and BAC sequencing. Finally, the genome was annotated and analyzed using different softwares. The G. barbadense (Sea Island cotton) mitochondrial genome was fully sequenced (677,434-bp) and compared to the mitogenome of upland cotton. The G. barbadense mitochondrial DNA contains seven more genes than that of upland cotton, with a total of 40 protein coding genes (excluding possible pseudogenes), 6 rRNA genes, and 29 tRNA genes. Of these 75 genes, atp1, mttB, nad4, nad9, rrn5, rrn18, and trnD(GTC)-cp were each represented by two identical copies. A single 64 kb repeat was largely responsible for the 9 % difference in genome size between the two mtDNAs. Comparison of genome structures between the two mitochondrial genomes revealed 8 rearranged syntenic regions and several large repeats. The largest repeat was missing from the master chromosome in G. hirsutum. Both mitochondrial genomes contain a duplicated copy of rps3 (rps3-2) in conjunction with a duplication of repeated sequences. Phylogenetic and divergence considerations suggest that a 544-bp fragment of rps3 was transferred to the nuclear genome shortly after divergence of the A- and D- genome diploid cottons. These results highlight the insights to the evolution of structural variation between Sea Island and upland cotton mitochondrial genomes.

  10. Genetic diversity and structure of elite cotton germplasm (Gossypium hirsutum L.) using genome-wide SNP data.

    Science.gov (United States)

    Ai, XianTao; Liang, YaJun; Wang, JunDuo; Zheng, JuYun; Gong, ZhaoLong; Guo, JiangPing; Li, XueYuan; Qu, YanYing

    2017-10-01

    Cotton (Gossypium spp.) is the most important natural textile fiber crop, and Gossypium hirsutum L. is responsible for 90% of the annual cotton crop in the world. Information on cotton genetic diversity and population structure is essential for new breeding lines. In this study, we analyzed population structure and genetic diversity of 288 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China, using genome-wide single nucleotide polymorphisms (SNP) markers. The average polymorphsim information content (PIC) was 0.25, indicating a relatively low degree of genetic diversity. Population structure analysis revealed extensive admixture and identified three subgroups. Phylogenetic analysis supported the subgroups identified by STRUCTURE. The results from both population structure and phylogenetic analysis were, for the most part, in agreement with pedigree information. Analysis of molecular variance revealed a larger amount of variation was due to diversity within the groups. Establishment of genetic diversity and population structure from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in upland cotton.

  11. MicroRNA-target gene responses to lead-induced stress in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    He, Qiuling; Zhu, Shuijin; Zhang, Baohong

    2014-09-01

    MicroRNAs (miRNAs) play key roles in plant responses to various metal stresses. To investigate the miRNA-mediated plant response to heavy metals, cotton (Gossypium hirsutum L.), the most important fiber crop in the world, was exposed to different concentrations (0, 25, 50, 100, and 200 µM) of lead (Pb) and then the toxicological effects were investigated. The expression patterns of 16 stress-responsive miRNAs and 10 target genes were monitored in cotton leaves and roots by quantitative real-time PCR (qRT-PCR); of these selected genes, several miRNAs and their target genes are involved in root development. The results show a reciprocal regulation of cotton response to lead stress by miRNAs. The characterization of the miRNAs and the associated target genes in response to lead exposure would help in defining the potential roles of miRNAs in plant adaptation to heavy metal stress and further understanding miRNA regulation in response to abiotic stress.

  12. Genome-wide characterization and expression analyses of superoxide dismutase (SOD) genes in Gossypium hirsutum.

    Science.gov (United States)

    Wang, Wei; Zhang, Xiaopei; Deng, Fenni; Yuan, Rui; Shen, Fafu

    2017-05-12

    Superoxide dismutases (SODs) are a key antioxidant enzyme family, which have been implicated in protecting plants against the toxic effects of reactive oxygen species. Despite current studies have shown that the gene family are involved in plant growth and developmental processes and biotic and abiotic stress responses, little is known about its functional role in upland cotton. In the present study, we comprehensively analyzed the characteristics of the SOD gene family in upland cotton (Gossypium hirsutum). Based on their conserved motifs, 18 GhSOD genes were identified and phylogenetically classified into five subgroups which corroborated their classifications based on gene-structure patterns and subcellular localizations. The GhSOD sequences were distributed at different densities across 12 of the 26 chromosomes. The conserved domains, gene family evolution cis-acting elements of promoter regions and miRNA-mediated posttranscriptional regulation were predicted and analyzed. In addition, the expression pattern of 18 GhSOD genes were tested in different tissues/organs and developmental stages, and different abiotic stresses and abscisic acid, which indicated that the SOD gene family possessed temporal and spatial specificity expression specificity and may play important roles in reactive oxygen species scavenging caused by various stresses in upland cotton. This study describes the first genome-wide analysis of the upland cotton SOD gene family, and the results will help establish a foundation for the further cloning and functional verification of the GhSOD gene family during stress responses, leading to crop improvement.

  13. Characterization of two NADPH: cytochrome P450 reductases from cotton (Gossypium hirsutum).

    Science.gov (United States)

    Yang, Chang-Qing; Lu, Shan; Mao, Ying-Bo; Wang, Ling-Jian; Chen, Xiao-Ya

    2010-01-01

    Cytochrome P450 monooxygenases (P450s) are commonly involved in biosynthesis of endogenous compounds and catabolism of xenobiotics, and their activities rely on a partner enzyme, cytochrome P450 reductase (CPR, E.C.1.6.2.4). Two CPR cDNAs, GhCPR1 and GhCPR2, were isolated from cotton (Gossypium hirsutum). They are 71% identical to each other at the amino acid sequence level and belong to the Class I and II of dicotyledonous CPRs, respectively. The recombinant enzymes reduced cytochrome c, ferricyanide and dichlorophenolindophenol (DCPIP) in an NADPH-dependent manner, and supported the activity of CYP73A25, a cinnamate 4-hydroxylase of cotton. Both GhCPR genes were widely expressed in cotton tissues, with a reduced expression level of GhCPR2 in the glandless cotton cultivar. Expression of GhCPR2, but not GhCPR1, was inducible by mechanical wounding and elicitation, indicating that the GhCPR2 is more related to defense reactions, including biosynthesis of secondary metabolites. 2009 Elsevier Ltd. All rights reserved.

  14. Urease from cotton (Gossypium hirsutum) seeds: isolation, physicochemical characterization, and antifungal properties of the protein.

    Science.gov (United States)

    Menegassi, Angela; Wassermann, German E; Olivera-Severo, Deiber; Becker-Ritt, Arlete B; Martinelli, Anne Helene S; Feder, Vanessa; Carlini, Celia R

    2008-06-25

    Ureases (EC 3.5.1.5) are metalloenzymes that hydrolyze urea to produce ammonia and carbon dioxide These enzymes, which are found in fungi, bacteria, and plants, show very similar structures. Despite an abundance of urease in vegetal tissues, the physiological role of this enzyme in plants is still poorly understood. It has been previously described that ureases from the legumes jackbean ( Canavalia ensiformis) and soybean ( Glycine max) have insecticidal activity and antifungal properties. This work presents the physicochemical purification and characterization of a urease from cotton ( Gossypium hirsutum) seeds, the first description of this enzyme in Malvaceae. The urease content varied among different cotton cultivars. Cotton seed urease (98.3 kDa) displayed low ureolytic activity but exhibited potent antifungal properties at sub-micromolar concentrations against different phytopathogenic fungi. As described for other ureases, the antifungal effect of cotton urease persisted after treatment with an irreversible inhibitor of its enzyme activity. The data suggest an important role of these proteins in plant defense.

  15. Genome-wide identification and characterization of TCP transcription factor genes in upland cotton (Gossypium hirsutum).

    Science.gov (United States)

    Li, Wen; Li, Deng-Di; Han, Li-Hong; Tao, Miao; Hu, Qian-Qian; Wu, Wen-Ying; Zhang, Jing-Bo; Li, Xue-Bao; Huang, Geng-Qing

    2017-08-31

    TCP proteins are plant-specific transcription factors (TFs), and perform a variety of physiological functions in plant growth and development. In this study, 74 non-redundant TCP genes were identified in upland cotton (Gossypium hirsutum L.) genome. Cotton TCP family can be classified into two classes (class I and class II) that can be further divided into 11 types (groups) based on their motif composition. Quantitative RT-PCR analysis indicated that GhTCPs display different expression patterns in cotton tissues. The majority of these genes are preferentially or specifically expressed in cotton leaves, while some GhTCP genes are highly expressed in initiating fibers and/or elongating fibers of cotton. Yeast two-hybrid results indicated that GhTCPs can interact with each other to form homodimers or heterodimers. In addition, GhTCP14a and GhTCP22 can interact with some transcription factors which are involved in fiber development. These results lay solid foundation for further study on the functions of TCP genes during cotton fiber development.

  16. Characterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Zhang, Xiaohong; Wang, Congcong; Pang, Chaoyou; Wei, Hengling; Wang, Hantao; Song, Meizhen; Fan, Shuli; Yu, Shuxun

    2016-01-01

    Upland cotton (Gossypium hirsutum L.) is a naturally occurring photoperiod-sensitive perennial plant species. However, sensitivity to the day length was lost during domestication. The phosphatidylethanolamine-binding protein (PEBP) gene family, of which three subclades have been identified in angiosperms, functions to promote and suppress flowering in photoperiod pathway. Recent evidence indicates that PEBP family genes play an important role in generating mobile flowering signals. We isolated homologues of the PEBP gene family in upland cotton and examined their regulation and function. Nine PEBP-like genes were cloned and phylogenetic analysis indicated the genes belonged to four subclades (FT, MFT, TFL1 and PEBP). Cotton PEBP-like genes showed distinct expression patterns in relation to different cotton genotypes, photoperiod responsive and cultivar maturity. The GhFT gene expression of a semi-wild race of upland cotton were strongly induced under short day condition, whereas the GhPEBP2 gene expression was induced under long days. We also elucidated that GhFT but not GhPEBP2 interacted with FD-like bZIP transcription factor GhFD and promote flowering under both long- and short-day conditions. The present result indicated that GhPEBP-like genes may perform different functions. This work corroborates the involvement of PEBP-like genes in photoperiod response and regulation of flowering time in different cotton genotypes, and contributes to an improved understanding of the function of PEBP-like genes in cotton.

  17. Genome-wide identification and characterization of JAZ gene family in upland cotton (Gossypium hirsutum).

    Science.gov (United States)

    Li, Wen; Xia, Xiao-Cong; Han, Li-Hong; Ni, Ping; Yan, Jing-Qiu; Tao, Miao; Huang, Geng-Qing; Li, Xue-Bao

    2017-06-05

    Plant JAZ (Jasmonate ZIM-domain) proteins play versatile roles in multiple aspects of plant development and defense. However, little is known about the JAZ family in allotetraploid upland cotton (Gossypium hirsutum) so far. In this study, 30 non-redundant JAZ genes were identified in upland cotton through genome-wide screening. Phylogenetic analysis revealed that the 30 proteins in cotton JAZ family are further divided into five groups (I - V), and members in the same group share highly conserved motif structures. Subcellular localization assay demonstrated that GhJAZ proteins are localized in the cell nucleus. Quantitative RT-PCR analysis indicated that GhJAZs display different expression patterns in cotton tissues, and most of them could be induced by Jasmonic (JA). Furthermore, some GhJAZ genes are preferentially expressed in cotton ovules and fibers, and showed differential expression in ovules of wild type cotton and fiberless mutant (fl) during fiber initiation. GhJAZ proteins could interact with each other to form homodimer or heterodimer, and they also interacted with some JA signaling regulators and the proteins involved in cotton fiber initiation. Collectively, our data suggested that some GhJAZ proteins may play important roles in cotton fiber initiation and development by regulating JA signaling as well as some fiber-related proteins.

  18. Purification and biochemical characterization of polyphenol oxidases from embryogenic and nonembryogenic cotton (Gossypium hirsutum L.) cells.

    Science.gov (United States)

    Kouakou, Tanoh Hilaire; Kouadio, Yatty Justin; Kouamé, Patrice; Waffo-Téguo, Pierre; Décendit, Alain; Mérillon, Jean-Michel

    2009-08-01

    Polyphenol oxidases (PPOs) were isolated from cell suspensions of two cultivars of cotton (Gossypium hirsutum L.), and their biochemical characteristics were studied. PPO from Coker 312, an embryogenic cultivar, showed a highest affinity to catechol 20 mM, and PPO from R405-2000, a nonembryogenic cultivar, showed a highest affinity to 4-methylcatechol 20 mM. The optimal pH for PPO activity was 7.0 and 6.0 for Coker 312 and R405-2000, respectively. The enzyme had an optimal temperature of 25 degrees C and was relatively stable at 20-30 degrees C. Reducing sodium metabisulfite, ascorbic acid, dithiothreitol, SnCl(2), and FeCl(3) markedly inhibited PPO activity, whereas its activity was highly enhanced by Mg(2+), Ca(2+), and Mn(2+) and was moderately inhibited by Ba(2+), Cu(2+), and Zn(2+). The analysis revealed a single band on the sodium dodecyl sulfate polyacrylamide gel electrophoresis which corresponded to a molecular weight of 55 kDa for Coker 312 and 42 kDa for R405-2000.

  19. Elucidation of thermotolerance diversity in cotton (Gossypium hirsutum L.) using physio-molecular approaches.

    Science.gov (United States)

    Rana, R M; Khan, S H; Ali, Z; Khan, A I; Khan, I A

    2011-06-14

    Cotton (Gossypium hirsutum) is an important cash crop, but high temperature during its growing season is one of the major factors that limit its productivity. This problem compels plant breeders to breed for heat tolerance, which can help to overcome this challenge. It is very important to make a comprehensive screening of heat-tolerant genotypes so that only the best are chosen. Here we report the combined use of several techniques that can help breeders to screen their germplasm. Twelve cultivated cotton genotypes were evaluated for thermotolerance, using assays that included electrolyte leakage, chlorophyll accumulation and protein profiling, as well as RAPDs to assess genetic diversity. Two genotypes (B-557 and NIAB-78) showed tolerant behavior in three thermotolerance assays. RAPD analysis results showed maximum similarity in a range of 86.7-66.7% between the genotypes MNH-554 and CIM-443. We conclude that combined use should be made of relative electrolyte leakage, chlorophyll stability and differential display with SDS-PAGE to aid in screening for stress tolerance. RAPD-based diversity analysis will further help to improve the efficiency of breeding programs.

  20. Response of Cotton (Gossypium Hirsutum L.) to Nitrogen Phosphorous Fertilizers in Western Kenya

    International Nuclear Information System (INIS)

    Kouko, W.O; Owino, G.

    1999-01-01

    The requirements for nitrogen and phosphorous fertilizers for growing cotton (Gossypium hirsutum L.) in Kenya are 26-kg N ha - 1 and 27 kg P ha - 1, respectively. Calcium ammonium nitrate (CAN) was recommended at the rate of 100 kg ha - 1 for black cotton soils while double superphosphate (DSP) was recommended at the rate of 150 kg ha - 1 on reddish brown clays. However, experiments conducted on a major soil types on which cotton is grown in Kenya showed that, soil colour is not the best indicator of nutrients supply power of the soil. It was found that Verto-eutric planosols of National Fibre Research Centres-Kibos requires application of 13-kg ha - 1 as CAN for optimal yields. Ferralo-eurtric Acrisols of Alupe Agricultural Research Sub-Centre, Busia needed 26-kg N ha - 1 and 9 kg P ha - 1 to give high yields. At Siaya FTC 9 kg P ha - 1 was adequate in providing the highest yields without nitrogen. Strict observation of recommended agronomic practices for growing cotton and good soil management practices for growing cotton and good soil management practices were observed a prerequisite for high response and efficient utilisation of fertilizers

  1. Analysis of upland cotton (Gossypium hirsutum) response to Verticillium dahliae inoculation by transcriptome sequencing.

    Science.gov (United States)

    Shao, B X; Zhao, Y L; Chen, W; Wang, H M; Guo, Z J; Gong, H Y; Sang, X H; Cui, Y L; Wang, C H

    2015-10-27

    Verticillium wilt is one of the main diseases in cotton (Gossypium hirsutum), severely reduces yield and fiber quality, and is difficult to be con-trolled effectively. At present, the molecular mechanism that confers resistance to this disease is unclear. Transcriptome sequencing is an important method to detect resistance genes, explore metabolic pathways, and study resistance mechanisms. In this study, the transcriptome of a disease-resistant inbred cot-ton line inoculated with Verticillium dahliae was sequenced. A total of 126,402 unigenes were obtained using de novo assembly and data analysis, 99,712 (78.88%) of which were annotated into the Nr, Nt, Swiss-Prot, KEGG, COG, and GO databases. The expression patterns of 16 candidate disease-resis-tance genes showed that some genes were upregulated soon after V. dahliae inoculation and others were upregulated later, which may indicate instanta-neous basal defense and lagged specific defense, respectively. We conducted a preliminary analysis of the transcriptome database, which will contribute to further research regarding the cloning of disease-resistance genes.

  2. Structural analysis of Gossypium hirsutum fibers grown under greenhouse and hydroponic conditions.

    Science.gov (United States)

    Natalio, Filipe; Tahir, Muhammad Nawaz; Friedrich, Norman; Köck, Margret; Fritz-Popovski, Gerhard; Paris, Oskar; Paschke, Reinhard

    2016-06-01

    Cotton is the one of the world's most important crops. Like any other crop, cotton growth/development and fiber quality is highly dependent on environmental factors. Increasing global weather instability has been negatively impacting its economy. Cotton is a crop that exerts an intensive pressure over natural resources (land and water) and demands an overuse of pesticides. Thus, the search for alternative cotton culture methods that are pesticide-free (biocotton) and enable customized standard fiber quality should be encouraged. Here we describe a culture of Gossypium hirsutum ("Upland" Cotton) utilizing a greenhouse and hydroponics in which the fibers are morphological similar to conventional cultures and structurally fit into the classical two-phase cellulose I model with 4.19nm crystalline domains surrounded by amorphous regions. These fibers exhibit a single crystalline form of cellulose I-Iß, monoclinic unit cell. Fiber quality bulk analysis shows an improved length, strength, whiteness when compared with soil-based cultures. Finally, we show that our fibers can be spun, used for production of non-woven fabrics and indigo-vat stained demonstrating its potential in industrial and commercial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. QTL analysis of cotton fiber length in advanced backcross populations derived from a cross between Gossypium hirsutum and G. mustelinum.

    Science.gov (United States)

    Wang, Baohua; Draye, Xavier; Zhuang, Zhimin; Zhang, Zhengsheng; Liu, Min; Lubbers, Edward L; Jones, Don; May, O Lloyd; Paterson, Andrew H; Chee, Peng W

    2017-06-01

    QTLs for fiber length mapped in three generations of advanced backcross populations derived from crossing Gossypium hirsutum and Gossypium mustelinum showed opportunities to improve elite cottons by introgression from wild relatives. The molecular basis of cotton fiber length in crosses between Gossypium hirsutum and Gossypium mustelinum was dissected using 21 BC 3 F 2 and 12 corresponding BC 3 F 2:3 and BC 3 F 2:4 families. Sixty-five quantitative trait loci (QTLs) were detected by one-way analysis of variance. The QTL numbers detected for upper-half mean length (UHM), fiber uniformity index (UI), and short fiber content (SFC) were 19, 20, and 26 respectively. Twenty-three of the 65 QTLs could be detected at least twice near adjacent markers in the same family or near the same markers across different families/generations, and 32 QTLs were detected in both one-way variance analyses and mixed model-based composite interval mapping. G. mustelinum alleles increased UHM and UI and decreased SFC for five, one, and one QTLs, respectively. In addition to the main-effect QTLs, 17 epistatic QTLs were detected which helped to elucidate the genetic basis of cotton fiber length. Significant among-family genotypic effects were detected at 18, 16, and 16 loci for UHM, UI, and SFC, respectively. Six, two, and two loci showed genotype × family interaction for UHM, UI and SFC, respectively, illustrating complexities that might be faced in introgression of exotic germplasm into cultivated cotton. Co-location of many QTLs for UHM, UI, and SFC accounted for correlations among these traits, and selection of these QTLs may improve the three traits simultaneously. The simple sequence repeat (SSR) markers associated with G. mustelinum QTLs will assist breeders in transferring and maintaining valuable traits from this exotic source during cultivar development.

  4. Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum × G. barbadense populations.

    Science.gov (United States)

    Said, Joseph I; Knapka, Joseph A; Song, Mingzhou; Zhang, Jinfa

    2015-08-01

    A specialized database currently containing more than 2200 QTL is established, which allows graphic presentation, visualization and submission of QTL. In cotton quantitative trait loci (QTL), studies are focused on intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. These two populations are commercially important for the textile industry and are evaluated for fiber quality, yield, seed quality, resistance, physiological, and morphological trait QTL. With meta-analysis data based on the vast amount of QTL studies in cotton it will be beneficial to organize the data into a functional database for the cotton community. Here we provide a tool for cotton researchers to visualize previously identified QTL and submit their own QTL to the Cotton QTLdb database. The database provides the user with the option of selecting various QTL trait types from either the G. hirsutum or G. hirsutum × G. barbadense populations. Based on the user's QTL trait selection, graphical representations of chromosomes of the population selected are displayed in publication ready images. The database also provides users with trait information on QTL, LOD scores, and explained phenotypic variances for all QTL selected. The CottonQTLdb database provides cotton geneticist and breeders with statistical data on cotton QTL previously identified and provides a visualization tool to view QTL positions on chromosomes. Currently the database (Release 1) contains 2274 QTLs, and succeeding QTL studies will be updated regularly by the curators and members of the cotton community that contribute their data to keep the database current. The database is accessible from http://www.cottonqtldb.org.

  5. Transcriptome analysis of Gossypium hirsutum flower buds infested by cotton boll weevil (Anthonomus grandis) larvae.

    Science.gov (United States)

    Artico, Sinara; Ribeiro-Alves, Marcelo; Oliveira-Neto, Osmundo Brilhante; de Macedo, Leonardo Lima Pepino; Silveira, Sylvia; Grossi-de-Sa, Maria Fátima; Martinelli, Adriana Pinheiro; Alves-Ferreira, Marcio

    2014-10-04

    Cotton is a major fibre crop grown worldwide that suffers extensive damage from chewing insects, including the cotton boll weevil larvae (Anthonomus grandis). Transcriptome analysis was performed to understand the molecular interactions between Gossypium hirsutum L. and cotton boll weevil larvae. The Illumina HiSeq 2000 platform was used to sequence the transcriptome of cotton flower buds infested with boll weevil larvae. The analysis generated a total of 327,489,418 sequence reads that were aligned to the G. hirsutum reference transcriptome. The total number of expressed genes was over 21,697 per sample with an average length of 1,063 bp. The DEGseq analysis identified 443 differentially expressed genes (DEG) in cotton flower buds infected with boll weevil larvae. Among them, 402 (90.7%) were up-regulated, 41 (9.3%) were down-regulated and 432 (97.5%) were identified as orthologues of A. thaliana genes using Blastx. Mapman analysis of DEG indicated that many genes were involved in the biotic stress response spanning a range of functions, from a gene encoding a receptor-like kinase to genes involved in triggering defensive responses such as MAPK, transcription factors (WRKY and ERF) and signalling by ethylene (ET) and jasmonic acid (JA) hormones. Furthermore, the spatial expression pattern of 32 of the genes responsive to boll weevil larvae feeding was determined by "in situ" qPCR analysis from RNA isolated from two flower structures, the stamen and the carpel, by laser microdissection (LMD). A large number of cotton transcripts were significantly altered upon infestation by larvae. Among the changes in gene expression, we highlighted the transcription of receptors/sensors that recognise chitin or insect oral secretions; the altered regulation of transcripts encoding enzymes related to kinase cascades, transcription factors, Ca2+ influxes, and reactive oxygen species; and the modulation of transcripts encoding enzymes from phytohormone signalling pathways. These

  6. Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication.

    Science.gov (United States)

    Rapp, Ryan A; Haigler, Candace H; Flagel, Lex; Hovav, Ran H; Udall, Joshua A; Wendel, Jonathan F

    2010-11-15

    Understanding the evolutionary genetics of modern crop phenotypes has a dual relevance to evolutionary biology and crop improvement. Modern upland cotton (Gossypium hirsutum L.) was developed following thousands of years of artificial selection from a wild form, G. hirsutum var. yucatanense, which bears a shorter, sparser, layer of single-celled, ovular trichomes ('fibre'). In order to gain an insight into the nature of the developmental genetic transformations that accompanied domestication and crop improvement, we studied the transcriptomes of cotton fibres from wild and domesticated accessions over a developmental time course. Fibre cells were harvested between 2 and 25 days post-anthesis and encompassed the primary and secondary wall synthesis stages. Using amplified messenger RNA and a custom microarray platform designed to interrogate expression for 40,430 genes, we determined global patterns of expression during fibre development. The fibre transcriptome of domesticated cotton is far more dynamic than that of wild cotton, with over twice as many genes being differentially expressed during development (12,626 versus 5273). Remarkably, a total of 9465 genes were diagnosed as differentially expressed between wild and domesticated fibres when summed across five key developmental time points. Human selection during the initial domestication and subsequent crop improvement has resulted in a biased upregulation of components of the transcriptional network that are important for agronomically advanced fibre, especially in the early stages of development. About 15% of the differentially expressed genes in wild versus domesticated cotton fibre have no homology to the genes in databases. We show that artificial selection during crop domestication can radically alter the transcriptional developmental network of even a single-celled structure, affecting nearly a quarter of the genes in the genome. Gene expression during fibre development within accessions and expression

  7. The damaging effects of nitrogen ion beam implantation on upland cotton (Gossypium hirsutum L.) pollen grains

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yanjie [College of Agronomy, Nanjing Agricultural University, Nanjing Jiangsu 210095 (China); Wu Lijun; Wu Yuejin [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wang Qingya [College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095 (China); Tang Canming [College of Agronomy, Nanjing Agricultural University, Nanjing Jiangsu 210095 (China)], E-mail: tang20@jlonline.com

    2008-09-15

    With the aim to study the effects of an ion beam on plant cells, upland cotton (Gossypium hirsutum L.) cultivar 'Sumian 22' pollen grains were irradiated in vacuum (7.8 x 10{sup -3} Pa) by low-energy nitrogen ions with an energy of 20 keV at various fluences ranging from 0.26 x 10{sup 16} to 0.78 x 10{sup 16} N{sup +}/cm{sup 2}. The irradiation effects on pollen grains were tested, considering the ultrastructural changes in the exine and interior walls of pollen grains, their germination rate, the growth speed of the pollen tubes in the style, fertilization and boll development after the pistils were pollinated by the pollen grains which had been implanted with nitrogen ions. Nitrogen ions entered the pollen grains by etching and penetrating the exine and interior walls and destroying cell structures. A greater percentage of the pollen grains were destroyed as the fluence of N{sup +} ions increased. Obviously, the nitrogen ion beam penetrated the exine and interior walls of the pollen grains and produced holes of different sizes. As the ion fluence increased, the amount and the density of pollen grain inclusions decreased and the size of the lacuna and starch granules increased. Pollen grain germination rates decreased with increasing ion fluence. The number of pollen tubes in the style declined with increased ion implantation into pollen grains, but the growth speed of the tubes did not change. All of the pollen tubes reached the end of the style at 13 h after pollination. This result was consistent with that of the control. Also, the weight and the diameter of the ovary decreased and shortened with increased ion beam implantation fluence. No evident change in the fecundation time of the ovule was observed. These results indicate that nitrogen ions can enter pollen grains and cause a series of biological changes in pollen grains of upland cotton.

  8. Potassium-phosphorus relationships in cotton (gossypium hirsutum L.) as affected by potassium nutrition

    International Nuclear Information System (INIS)

    Makhdum, M.I.; Ashraf, M.

    2007-01-01

    Field studies were undertaken to determine the interrelationship between potassium (K+) concentration in various organs of plant and phosphorus (P) content as influenced by K-nutrition in cotton. The experiment was conducted on Miani soil series silt loam and classified as Calcaric Cambisols, fine silty, mixed Hyperthermic Fluventic Haplocambids. The treatments consisted .of (a) four cotton (Gossypium hirsutum L.) cultivars (CI.M-448, CIM-IIOO, Karishma, S-12); and (b) four potassium fertilizer doses (0, 62.5, 125.0, 250.0 kg K ha-l). The design of experiment was split plot (main: cultivars, sub-plot: K-doses). The plant samples were collected at five stages of growth, i.e., first flower bud., first flower, peak flowering, first boll split and maturity. The various parts of plants were analyzed for phosphorus and potassium concentration at various stages of growth. Phosphorus concentration in leaves, stems, burs, seed and lint decreased with concurrent increase in K-doses. Crop maintained 0.22% phosphorus concentration in leaf tissues at first flower bud and dropped to 0.11% at maturity. Cultivars differed greatly amongst themselves in terms of maintaining P content in their different parts. Averaged across K-doses, cv. CIM-448 maintained the highest P content in all parts than other cultivars. There was a negative and significant correlation co-efficient between K and P concentration in various parts of the plant. The study demonstrated antagonistic interaction between K+ and P in cotton plant under irrigated conditions. (author)

  9. Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum.

    Directory of Open Access Journals (Sweden)

    María J Ek-Ramos

    Full Text Available Studies of fungi in upland cotton (Gossypium hirsutum cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey

  10. Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Ning; Hua, Hanbai; Eneji, A Egrinya; Li, Zhaohu; Duan, Liusheng; Tian, Xiaoli

    2012-05-02

    A hydroponic culture experiment was conducted to determine genotypic variation in photosynthetic rate and the associated physiological changes in response to potassium (K) deficiency in cotton (Gossypium hirsutum L.) seedlings with contrasting two cotton cultivars in K efficiency. The K-efficient Liaomian18 produced 66.7% more biomass than the K-inefficient NuCOTN99(B) under K deficiency, despite their similar biomass under K sufficiency. Compared with NuCOTN99(B), Liaomian18 showed 19.4% higher net photosynthetic rate (P(n), per unit leaf area) under K deficient solutions and this was associated with higher photochemical efficiency and faster export of soluble sugars from the phloem. The lower net P(n) of NuCOTN99(B) was attributed to higher capacity for nitrate assimilation and lower export of soluble sugars. Furthermore, NuCOTN99(B) showed 38.4% greater ETR/P(n) than Liaomian18 under K deficiency, indicating that more electrons were driven to other sinks. Higher superoxide dismutase (SOD) and lower catalase (CAT) and ascorbate peroxidase (APX) activities resulted in higher levels of reactive oxygen species (ROS; e.g. O(2)(-)and H(2)O(2)) in NuCOTN99(B) relative to Liaomian18. Thus, the K inefficiency of NuCOTN99(B), indicated by lower biomass and net P(n) under K deficiency, was associated with excessively high nitrogen assimilation, lower export of carbon assimilates, and greater ROS accumulation in the leaf. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  11. Genome-wide analysis of the GST gene family in Gossypium hirsutum L.

    Science.gov (United States)

    Xu, Lei; Chen, Wen; Si, Guo-Yang; Huang, Yi-Yuan; Lin, Yi; Cai, Yong-Ping; Gao, Jun-Shan

    2017-08-20

    Glutathione-S-transferase (GST) is a ubiquitous multi-functional protein superfamily that plays important roles in plant primary and secondary metabolism, stress and intercellular signal transduction. Concomitantly, it also functions as a ligand in the metabolism of plant hormones and substance transport. In order to understand the GST gene family in upland cotton (Gossypium hirsutum L.), herein we analyzed the species, evolutionary relationship, physical location, gene structure, conserved motifs and expression patterns. We identified 70 GST genes in the whole genome of upland cotton, and divided them into U, F, T, Z, EF1Bγ and TCHQD groups by phylogenetic tree and gene structure analyses. The gene mapping analysis indicated that the GST genes were on every chromosome except chromosome AD/At2, AD/At4, AD/At5, AD/Dt5 and AD/Dt10. Moreover, the GST gene cluster appeared on four chromosomes (AD/At9, AD/Dt7, AD/Dt12 and AD/Dt13). qRT-PCR assays showed that eight genes (GhGSTF2-9) were expressed in the root, stem, leave and fiber of different developmental stages while GhGSTF1 might be a pseudogene. Combining qRT-PCR and bioinformatic analysis, we speculated that GhGSTF8 might be involved in the transport and accumulation of proanthocyanidins/anthocyanins; GhGSTF4, 6 and 9 might play roles in regulating the growth and stress response of upland cotton; the function of GhGSTF2, 3, 5 and 7 remains to be further investigated. Our work provides a theoretical basis for further studies on the molecular evolution and function of the GST gene family in upland cotton.

  12. Identification of semiochemicals released by cotton, Gossypium hirsutum, upon infestation by the cotton aphid, Aphis gossypii.

    Science.gov (United States)

    Hegde, Mahabaleshwar; Oliveira, Janser N; da Costa, Joao G; Bleicher, Ervino; Santana, Antonio E G; Bruce, Toby J A; Caulfield, John; Dewhirst, Sarah Y; Woodcock, Christine M; Pickett, John A; Birkett, Michael A

    2011-07-01

    The cotton aphid, Aphis gossypii (Homoptera: Aphididae), is increasing in importance as a pest worldwide since the introduction of Bt-cotton, which controls lepidopteran but not homopteran pests. The chemical ecology of interactions between cotton, Gossypium hirsutum (Malvaceae), A. gossypii, and the predatory lacewing Chrysoperla lucasina (Neuroptera: Chrysopidae), was investigated with a view to providing new pest management strategies. Behavioral tests using a four-arm (Pettersson) olfactometer showed that alate A. gossypii spent significantly more time in the presence of odor from uninfested cotton seedlings compared to clean air, but significantly less time in the presence of odor from A. gossypii infested plants. A. gossypii also spent significantly more time in the presence of headspace samples of volatile organic compounds (VOCs) obtained from uninfested cotton seedlings, but significantly less time with those from A. gossypii infested plants. VOCs from uninfested and A. gossypii infested cotton seedlings were analyzed by gas chromatography (GC) and coupled GC-mass spectrometry (GC-MS), leading to the identification of (Z)-3-hexenyl acetate, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), which were produced in larger amounts from A. gossypii infested plants compared to uninfested plants. In behavioral tests, A. gossypii spent significantly more time in the control (solvent) arms when presented with a synthetic blend of these four compounds, with and without the presence of VOCs from uninfested cotton. Coupled GC-electroantennogram (EAG) recordings with the lacewing C. lucasina showed significant antennal responses to VOCs from A. gossypii infested cotton, suggesting they have a role in indirect defense and indicating a likely behavioral role for these compounds for the predator as well as the aphid.

  13. The damaging effects of nitrogen ion beam implantation on upland cotton ( Gossypium hirsutum L.) pollen grains

    Science.gov (United States)

    Yu, Yanjie; Wu, Lijun; Wu, Yuejin; Wang, Qingya; Tang, Canming

    2008-09-01

    With the aim to study the effects of an ion beam on plant cells, upland cotton (Gossypium hirsutum L.) cultivar "Sumian 22" pollen grains were irradiated in vacuum (7.8 × 10-3 Pa) by low-energy nitrogen ions with an energy of 20 keV at various fluences ranging from 0.26 × 1016 to 0.78 × 1016 N+/cm2. The irradiation effects on pollen grains were tested, considering the ultrastructural changes in the exine and interior walls of pollen grains, their germination rate, the growth speed of the pollen tubes in the style, fertilization and boll development after the pistils were pollinated by the pollen grains which had been implanted with nitrogen ions. Nitrogen ions entered the pollen grains by etching and penetrating the exine and interior walls and destroying cell structures. A greater percentage of the pollen grains were destroyed as the fluence of N+ ions increased. Obviously, the nitrogen ion beam penetrated the exine and interior walls of the pollen grains and produced holes of different sizes. As the ion fluence increased, the amount and the density of pollen grain inclusions decreased and the size of the lacuna and starch granules increased. Pollen grain germination rates decreased with increasing ion fluence. The number of pollen tubes in the style declined with increased ion implantation into pollen grains, but the growth speed of the tubes did not change. All of the pollen tubes reached the end of the style at 13 h after pollination. This result was consistent with that of the control. Also, the weight and the diameter of the ovary decreased and shortened with increased ion beam implantation fluence. No evident change in the fecundation time of the ovule was observed. These results indicate that nitrogen ions can enter pollen grains and cause a series of biological changes in pollen grains of upland cotton.

  14. Selectivity and stability of vegetation-applied herbicides in cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    T. Barakova

    2016-06-01

    Full Text Available Abstract. An experiment was carried out during 2013 – 2015 in the experimental field of the Field Crops Institute, Chirpan, with two cotton cultivars − Helius and Darmi (Gossypium hirsutum L.. Herbicides: Goal 2 E, oxyfluorfen (80 ml/da; Linuron 45 SC, linuron (200 ml/da; Wing-P, pendimethalin + dimethenamid (400 ml/da; Merlin 750 WG, isoxaflutol (5 g/da; Bazagran 480 SL, bentazone (150 ml/da were investigated. They were treated separately or combined with growth regulator Amalgerol (500 ml/da or foliar fertilizer Lactofol O (500 ml/da in the budding stage of the cotton. It was established that selectivity is the lowest in the two cotton cultivars with herbicides Linuron 45 CK and Merlin 750 WG. The purpose of this investigation was to establish the selectivity and stability of some herbicides and their tank mixtures on the cotton by influence of different meteorological conditions. It has been found that the highest phytotoxicity on cotton is given the vegetation-applied herbicides Merlin and Linuron. Foliar fertilizer Laktofol O reduces phytotoxicity of herbicides Goal, Wing, Merlin and Bazagran in two cotton cultivars. Herbicides Wing and Bazagran have excellent selectivity for the two cotton cultivars – Helius and Darmi. The highest yield was obtained by vegetation treatment with herbicide Bazagran, followed by herbicides Wing and Goal. Tank mixtures of Goal, Bazagran and Wing with Laktofol, followed by those with Amalgerol are technologically the most valuable. They combine high yield with high stability over the years. Аlone application of herbicides Linuron and Merlin and their tank mixtures with Amalgerol and Laktofol have low estimate.

  15. Effects of rotation of cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.) Merr.] crops on soil fertility in Elizabeth, Mississippi, USA

    Science.gov (United States)

    The effects of cotton (Gossypium hirsutum L.):soybean [Glycine max (L.) Merr.] rotations on the soil fertility levels are limited. An irrigated soybean:cotton rotation experiment was conducted from 2012 through 2015 near Elizabeth, MS. Rotation sequences were; continuous soybean, continuous cotton...

  16. Elevated CO2, warmer temperatures and soil water deficit affect plant growth, physiology and water use of cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    Changes in temperature, atmospheric [CO2] and precipitation under the scenarios of projected climate change present a challenge to crop production, and may have significant impacts on the physiology, growth and yield of cotton (Gossypium hirsutum L.). A glasshouse experiment explored the early growt...

  17. The GhTT2_A07 gene is linked to the brown colour and natural flame retardancy phenotypes of Lc1 cotton (Gossypium hirsutum L.) fibres

    Science.gov (United States)

    Some naturally-coloured brown cotton fibres from accessions of Gossypium hirsutum can be used to make textiles with enhanced flame retardancy (FR). Several independent brown fibre loci have been identified and mapped to chromosomes, but the underlying genes have yet to be identified, and the mechan...

  18. Overexpression of MIC-3 indicates a direct role for the MIC gene family in mediating Upland cotton (Gossypium hirsutum) resistance to root-knot nematode (Meloidogyne incognita)

    Science.gov (United States)

    Major quantitative trait loci (QTL) have been mapped to Upland cotton (Gossypium hirsutum L.) chromosomes 11 and 14 that govern the highly resistant phenotype in response to infection by root-knot nematode (RKN; Meloidogyne incognita Chitwood & White); however, nearly nothing is known regarding the ...

  19. UJI KETAHANAN BEBERAPA GALUR KAPAS (Gossypium hirsutum HASIL RADIASI TERHADAP SERANGGA HAMA PENGGEREK BUAH Helicoverpa armigera(Hǖbner

    Directory of Open Access Journals (Sweden)

    Dwi Sunarto

    2015-09-01

    Full Text Available Uji  ketahanan beberapa galur kapas (Gossypium hirsutum terhadap  penggerek buah Helicoverpa armigera (Hǖbner dilaksanakan di laboratorium Entomologi Balai Penelitian Tanaman Pemanis dan Serat Malang pada bulan Januari sampai dengan Mei 2011. Penelitian bertujuan untuk mengevaluasi ketahanan beberapa galur kapas hasil radiasi terhadap penggerek buah H. armigera.  Perlakuan disusun menggunakan Rancangan Acak Kelompok (RAK yang terdiri atas empat galur hasil radiasi yaitu galur IA, 2A, 4A, dan 2C, dua varietas hasil radiasi yaitu Karisma, NIAB, dan dua varietas hasil pemuliaan konvensional yaitu Kanesia 10 dan Kanesia 15.  Setiap perlakuan diulang 3 kali.  Pengujian dilakukan dengan cara uji pakan (feeding assay daun, kuncup daun, dan buah muda sesuai dengan perkembangan larva H. armigera.  Larva instar I, instar II-III, dan instar IV-V berturut-turut diberikan daun muda, kuncup bunga, dan buah muda. Hasil penelitian menunjukkan bahwa galur kapas nomor 1A, 2A, 4A, dan 4C merupakan galur yang toleran terhadap H. armigera.  Kata kunci : Gossypium hirsutum, Helicoverpa armigera,   ketahanan  varietas.

  20. Comprehensive cytological characterization of the Gossypium hirsutum genome based on the development of a set of chromosome cytological markers

    Directory of Open Access Journals (Sweden)

    Wenbo Shan

    2016-08-01

    Full Text Available Cotton is the world's most important natural fiber crop. It is also a model system for studying polyploidization, genomic organization, and genome-size variation. Integrating the cytological characterization of cotton with its genetic map will be essential for understanding its genome structure and evolution, as well as for performing further genetic-map based mapping and cloning. In this study, we isolated a complete set of bacterial artificial chromosome clones anchored to each of the 52 chromosome arms of the tetraploid cotton Gossypium hirsutum. Combining these with telomere and centromere markers, we constructed a standard karyotype for the G. hirsutum inbred line TM-1. We dissected the chromosome arm localizations of the 45S and 5S rDNA and suggest a centromere repositioning event in the homoeologous chromosomes AT09 and DT09. By integrating a systematic karyotype analysis with the genetic linkage map, we observed different genome sizes and chromosomal structures between the subgenomes of the tetraploid cotton and those of its diploid ancestors. Using evidence of conserved coding sequences, we suggest that the different evolutionary paths of non-coding retrotransposons account for most of the variation in size between the subgenomes of tetraploid cotton and its diploid ancestors. These results provide insights into the cotton genome and will facilitate further genome studies in G. hirsutum.

  1. Characterization and expression analysis of TERMINAL FLOWER1 homologs from cultivated alloteraploid cotton (Gossypium hirsutum) and its diploid progenitors.

    Science.gov (United States)

    Argiriou, Anagnostis; Michailidis, Georgios; Tsaftaris, Athanasios S

    2008-10-09

    The seasonal cycle and persistence of a plant is governed by a combination of the determinate or indeterminate status of shoot and root apical meristems. A perennial plant is one in which the apical meristem of at least one of its shoot axes remains indeterminate beyond the first growth season. TERMINAL FLOWER1 (TFL1) genes play important roles in regulating flowering time, the fate of inflorescence meristem and perenniality. To investigate the role of TFL1-like genes in the determination of the apical meristems in an industrially important crop cultivated for its fibers, we isolated and characterized two TFL1 homologs (TFL1a and TFL1b) from tetraploid cultivated cotton (Gossypium hirsutum) and its diploid progenitors (Gossypium arboreum and Gossypium raimondii). All isolated genes maintain the same exon-intron organization. Their phylogenetic analysis at the amino acid level confirmed that the isolated sequences are TFL1-like genes and collocate in the TFL1 clade of the PEBP protein family. Expression analysis revealed that the genes TFL1a and TFL1b have slightly different expression patterns, suggesting different functional roles in the determination of the meristems. Additionally, promoter analysis by computational methods revealed the presence of common binding motifs in TFL1-like promoters. These are the first reported TFL1-like genes isolated from cotton, the most important crop for the textile industry.

  2. Variations in physicochemical attributes of seed oil among different varieties of cotton (gossypium hirsutum l.)

    International Nuclear Information System (INIS)

    Kouser, S.; Mahmood, K.

    2015-01-01

    Variation in the physicochemical attributes of the seeds and the extracted seed oils from six varieties (CIM-496, N-121, Z-33, AA-802, Desi, and CIM-534) of cotton (Gossypium hirsutum L.) were appraised. The amount of oil and protein in the tested seeds varied from 15.06 to 18.35% and 20.42 and 27.03%, respectively revealing a significant (p<0.05) differences among varieties analyzed while the contents of fiber (20.65-21.31%), ash (3.46-4.64%) and moisture (6.36-8.44%) did not vary considerably.The physicochemical properties including density (24 degree C) 0.9154-0.9207 mg/mL, refractive index (40 degree C) 1.4607-1.4632, iodine value 100.54-108.73 I/100g of oil, saponification value 180.39-190.28 (mg of KOH/g of oil), unsaponifiable matter 0.49-0.58%, free fatty acids content 0.71-1.24%, and color 12.01-13.04 R +63.61-68.11Y of the extracted cottonseed oils (CSOs) indicated a slight variation among varieties selected. The oxidation parameters of CSOs, as assessed by estimation of conjugated dienes, conjugated trienes, peroxide value, para-anisidine and induction period (Rancimat, 20 L/ h, 120 degree C), were noted to be 2.32-2.61, 0.91-0.99, 1.81-1.98 (meq/ kg of oil), 2.00-2.3 and 3.19-3.61 h, respectively. The tested CSOs mainly contained linoleic acid (48.96-50.46%), followed by palmitic acid (24.42-25.80%), oleic acid (17.81-23.15%) and stearic acid (2.49-2.81%). The contents of alpha (125.47-296.20), gama (269.23-326.21) and zeta (2.23-5.47 mg/kg) tocopherols among CSOs varied significantly. In conclusion, some of the physicochemical parameters of the oils varied significantly (p<0.05) among varieties selected that might be attributed to the different genetic makeup of the cotton plants. The results of this study can be useful for the selection of an appropriate cotton variety in the specified area. (author)

  3. Genetic variation and heritability for cotton seed, fiber and oil traits in gossypium hirsutum

    International Nuclear Information System (INIS)

    Khan, N.U.; Farhatullah; Batool, S.; Makhdoom, K.; Marwat, K.B.; Hassan, G.; Ahmad, W.; Khan, H.U.

    2010-01-01

    The research work pertaining to the study of genetic variability, heritability, genetic gain and correlation for cottonseed, fiber and cottonseed oil % in Gossypium hirsutum cultivars was conducted during 2005 at NWFP Agricultural University Peshawar, Pakistan. Analysis of variance manifested highly significant differences among the genotypes for all the traits except seeds per locule. Genetic potential range of eight cotton cultivars for different parameters was recorded i.e. seeds locule-1 (6.33 to 6.60), seeds boll-1 (26.10 to 28.47), seed index (8.61 to 9.69 g), lint index (5.35 to 6.05 g), lint % (35.17 to 38.13 %), seed cotton yield (1200 to 2450 kg ha/sup -1/) and cottonseed oil % (27.52 to 30.15%). Genetic variances were found almost greater than the environmental variances for all the traits except seeds locule-1 and seed index. High broad sense heritability and selection response were also formulated for seeds boll-1 (0.67, 0.84), seed index (0.77, 0.47 g), lint index (0.96, 0.33 g), lint % (0.96, 1.66 %), seed cotton yield (0.98, 643.16 kg) and cottonseed oil % (0.87, 1.28 %), respectively. Correlation of yield with other traits was found positive for majority of traits except seeds locule-1 and cotton seed oil %. Seed cotton yield is our ultimate goal in growing cotton besides lint %. Highest seed cotton yield was recorded in CIM-499 followed by CIM-473, CIM-496 and CIM-506 and were also found as the second and third top scoring genotypes for seeds per boll, seed index, lint % and cottonseed oil %. Cultivar SLH-279 performed better for lint index, lint % and oil %. This type of correlation is rarely found and ultra desirable by the cotton breeders and a little genetic gain in seed and lint traits, and oil content is a great accomplishment. (author)

  4. Identification and characterization of CONSTANS-like (COL) gene family in upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Cai, Darun; Liu, Hui; Sang, Na; Huang, Xianzhong

    2017-01-01

    The CONSTANS/FLOWERING LOCUS T (CO/FT) regulon plays a central role in the control of flowering time in photoperiod-sensitive plants. Flowering time in wild cotton (Gossypium spp.) has strict photoperiod sensitivity, but domesticated cotton is day-neutral. Information on the molecular characterization of the CO and CO-like (COL) genes in cotton is very limited. In this study, we identified 42 COL homologs (GhCOLs) in the G. hirsutum genome, and many of them were previously unreported. We studied their chromosome distribution, phylogenetic relationships, and structures of genes and proteins. Our results showed that GhCOLs were classified into three groups, and 14 COLs in group I showed conserved structure when compared with other plants. Two homoeologous pairs, GhCOL1-A and GhCOL1-D in Group I, showed the highest sequence similarity to Arabidopsis thaliana CO and rice CO homologous gene Heading date1 (Hd1). Tissue-specific expression showed that 42 GhCOL genes may function as tissue-specific regulators in different cells or organs. We cloned and sequenced the 14 GhCOL genes in Group I related to flowering induction to study their diurnal expression pattern, and found that their expression showed distinct circadian regulation. Most of them peaked at dawn and decreased rapidly to their minima at dusk, then started to accumulate until following dawn under long- or short-day conditions. Transgenic study in the Arabidopsis co-2 mutant demonstrated that GhCOL1-A and GhCOL1-D fully rescued the late-flowering phenotype, whereas GhCOL3-A, GhCOL3-D, GhCOL7-A, and GhCOL7-D partially rescued the late-flowering phenotype, and the other five homoeologous pairs in Group I did not promote flowering. These results indicate that GhCOL1-A and GhCOL1-D were potential flowering inducers, and are candidate genes for research in flowering regulation in cotton.

  5. Identification and characterization of CONSTANS-like (COL gene family in upland cotton (Gossypium hirsutum L..

    Directory of Open Access Journals (Sweden)

    Darun Cai

    Full Text Available The CONSTANS/FLOWERING LOCUS T (CO/FT regulon plays a central role in the control of flowering time in photoperiod-sensitive plants. Flowering time in wild cotton (Gossypium spp. has strict photoperiod sensitivity, but domesticated cotton is day-neutral. Information on the molecular characterization of the CO and CO-like (COL genes in cotton is very limited. In this study, we identified 42 COL homologs (GhCOLs in the G. hirsutum genome, and many of them were previously unreported. We studied their chromosome distribution, phylogenetic relationships, and structures of genes and proteins. Our results showed that GhCOLs were classified into three groups, and 14 COLs in group I showed conserved structure when compared with other plants. Two homoeologous pairs, GhCOL1-A and GhCOL1-D in Group I, showed the highest sequence similarity to Arabidopsis thaliana CO and rice CO homologous gene Heading date1 (Hd1. Tissue-specific expression showed that 42 GhCOL genes may function as tissue-specific regulators in different cells or organs. We cloned and sequenced the 14 GhCOL genes in Group I related to flowering induction to study their diurnal expression pattern, and found that their expression showed distinct circadian regulation. Most of them peaked at dawn and decreased rapidly to their minima at dusk, then started to accumulate until following dawn under long- or short-day conditions. Transgenic study in the Arabidopsis co-2 mutant demonstrated that GhCOL1-A and GhCOL1-D fully rescued the late-flowering phenotype, whereas GhCOL3-A, GhCOL3-D, GhCOL7-A, and GhCOL7-D partially rescued the late-flowering phenotype, and the other five homoeologous pairs in Group I did not promote flowering. These results indicate that GhCOL1-A and GhCOL1-D were potential flowering inducers, and are candidate genes for research in flowering regulation in cotton.

  6. Effect of ecological management of weed control on economical income, yield and yield components of cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    A. Zare Feizabadi

    2016-04-01

    Full Text Available In order to compare of ecological management of weed control on economical income, yield and yield components of cotton (Gossypium hirsutum L., a Randomized Complete Block design with 12 treatments and four replications was conducted in Mahvelat of Khorasan Razavi province, Iran. Treatments consisted of weeding, harrowing, burning, two times weeding, weeding + harrowing, weeding + burning, harrowing + harrowing, harrowing + weeding, harrowing + burning, weeding+ harrowing+ burning, weed free and weedy as a check treatment. Investigated traits were plant height, number of boll in plant, 20 boll weight, 20 boll cotton lint weight, cotton lint yield per plant, cotton yield, number and biomass of weeds, outcome, net and gross income. The result showed that treatments had significant effect (p

  7. Differential Cotton leaf crumple virus-VIGS-mediated gene silencing and viral genome localization in different Gossypium hirsutum genetic backgrounds

    KAUST Repository

    Idris, Ali

    2010-12-01

    A Cotton leaf crumple virus (CLCrV)-based gene silencing vector containing a fragment of the Gossypium hirsutum Magnesium chelatase subunit I was used to establish endogenous gene silencing in cotton of varied genetic backgrounds. Biolistic inoculation resulted in systemic and persistent photo-bleaching of the leaves and bolls of the seven cultivars tested, however, the intensity of silencing was variable. CLCrV-VIGS-mediated expression of green fluorescent protein was used to monitor the in planta distribution of the vector, indicating successful phloem invasion in all cultivars tested. Acala SJ-1, one of the cotton cultivars, was identified as a particularly optimal candidate for CLCrV-VIGS-based cotton reverse-genetics. © 2010 Elsevier Ltd.

  8. Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Genotypes That Are Susceptible, Resistant, and Hypersensitive to Reniform Nematode (Rotylenchulus reniformis).

    Science.gov (United States)

    Li, Ruijuan; Rashotte, Aaron M; Singh, Narendra K; Lawrence, Kathy S; Weaver, David B; Locy, Robert D

    2015-01-01

    Reniform nematode is a semi-endoparasitic nematode species causing significant yield loss in numerous crops, including cotton (Gossypium hirsutum L.). An RNA-sequencing analysis was conducted to measure transcript abundance in reniform nematode susceptible (DP90 & SG747), resistant (BARBREN-713), and hypersensitive (LONREN-1) genotypes of cotton (Gossypium hirsutum L.) with and without reniform nematode infestation. Over 90 million trimmed high quality reads were assembled into 84,711 and 80, 353 transcripts using the G. arboreum and the G. raimondii genomes as references. Many transcripts were significantly differentially expressed between the three different genotypes both prior to and during nematode pathogenesis, including transcripts corresponding to the gene ontology categories of cell wall, hormone metabolism and signaling, redox reactions, secondary metabolism, transcriptional regulation, stress responses, and signaling. Further analysis revealed that a number of these differentially expressed transcripts mapped to the G. raimondii and/or the G. arboreum genomes within 1 megabase of quantitative trait loci that had previously been linked to reniform nematode resistance. Several resistance genes encoding proteins known to be strongly linked to pathogen perception and resistance, including LRR-like and NBS-LRR domain-containing proteins, were among the differentially expressed transcripts mapping near these quantitative trait loci. Further investigation is required to confirm a role for these transcripts in reniform nematode susceptibility, hypersensitivity, and/or resistance. This study presents the first systemic investigation of reniform nematode resistance-associated genes using different genotypes of cotton. The candidate reniform nematode resistance-associated genes identified in this study can serve as the basis for further functional analysis and aid in further development of reniform a nematode resistant cotton germplasm.

  9. Characterization and functional analysis of GhRDR6, a novel RDR6 gene from cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Wang, Mian; Li, Shanwei; Yang, Haifang; Gao, Zheng; Wu, Changai; Guo, Xingqi

    2012-04-01

    RDR6 (RNA-dependent RNA polymerase 6) is not only involved in virus resistance but also plays an important role in natural plant development. In the present study, a novel RDR gene, named GhRDR6 (Gossypium hirsutum RDR6), was isolated from cotton (G. hirsutum L.). Alignment and evolutionary relationship analyses showed that GhRDR6 was more closely related to RDR6 than to other RDRs. Expression analysis indicated that this single-copy gene is constitutively expressed in the roots, stems and leaves. Semi-quantitative RT-PCR (reverse transcription-PCR) showed that GhRDR6 was up-regulated by the application of various phytohormones, including MeJA [methyl JA (jasmonate)], ABA (abscisic acid), JA, α-naphthylacetic acid, gibberellins and ET (ethylene). In addition, GhRDR6 expression increased in response to wounding, cold (4°C) and NaCl treatments, but not by drought. Furthermore, overexpression of GhRDR6 in transgenic Nicotiana benthamiana plants resulted in root lengths longer than the wide-type during the seeding stage. Interestingly, the GhRDR6-overexpressing plants displayed reduced tolerance to oxidative damage, resulting in reduced ABA-sensitivity, but they tolerated freezing. Moreover, resistance to potato virus Y was enhanced in transgenic N. benthamiana plants. These results suggest that GhRDR6 may play an important role in plant defence responses and a pivotal role in plant development.

  10. Molecular cloning and characterization of GhNPR1, a gene implicated in pathogen responses from cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Zhang, Ying; Wang, Xia; Cheng, Cheng; Gao, Qiuqiang; Liu, Jingyun; Guo, Xingqi

    2008-02-01

    A novel gene, designated as GhNPR1 (Gossypium hirsutum non-expressor of pathogenesis-related genes 1), was isolated from G. hirsutum (cotton) by RT-PCR (reverse transcription-PCR) and RACE (rapid amplification of cDNA ends). The full-length cDNA was 2108 bp long and had an ORF (open reading frame) that putatively encoded a polypeptide of 592 amino acids, with a predicted molecular mass of 66 kDa. Comparison of this protein sequence with that of Arabidopsis thaliana, Brassica juncea and Nicotiana tabacum showed that the amino-acid homology was 52.98, 52.32 and 54.98% respectively. Analysis of the exon-intron structure of the GhNPR1 gene showed that GhNPR1 consisted of four exons and three introns. Southern-blot analysis revealed that the GhNPR1 was a single-copy gene in cotton. Northern-blot analysis indicated that GhNPR1 was constitutively expressed in all tested tissues, including roots, stems and leaves, with the high expression in stems and leaves. In addition, GhNPR1 was also found to be induced by signalling molecules for plant defence responses, such as methyl jasmonate, salicylic acid and ethylene, as well as attack by pathogens, such as Fusarium oxysporum and Xanthomonas campestris. These results suggest that GhNPR1 may play an important role in the response to pathogen infections in cotton plants.

  11. Molecular cloning and characterization of five genes encoding pentatricopeptide repeat proteins from Upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Yang, Luming; Zhu, Huayu; Guo, Wangzhen; Zhang, Tianzhen

    2010-02-01

    The pentatricopeptide repeat (PPR) protein family is one of the largest and most complex families in plants. These proteins contain multiple 35-amino acid repeats that are proposed to form a super helix capable of binding RNA. PPR proteins have been implicated in many crucial functions broadly involving organelle biogenesis and plant development. In this study, we identified many genes encoding PPR protein in Upland cotton through an extensive survey of the database of Gossypium hirsutum. Furthermore, we isolated five full-length cDNA of PPR genes from G. hirsutum 0-613-2R which were named GhPPR1-GhPPR5. Domain analysis revealed that the deduced amino acid sequences of GhPPR1-5 contained from 5 to 10 PPR motifs and those PPR proteins were divided into two different PPR subfamilies. GhPPR1-2 belonged to the PLS subfamily and GhPPR3-5 belonged to the P subfamily. Phylogenetic analysis of the five GhPPR proteins and 18 other plant PPR proteins also revealed that the same subfamily clustered together. All five GhPPR genes were differentially but constitutively expressed in roots, stems, leaves, pollens, and fibers based on the gene expression analysis by real-time quantitative RT-PCR. This study is the first report and analysis of genes encoding PPR proteins in cotton.

  12. Isolation and characterization of drought-related trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Kosmas, Sotirios A; Argyrokastritis, Alexandros; Loukas, Michael G; Eliopoulos, Elias; Tsakas, Spyros; Kaltsikes, Pantouses J

    2006-01-01

    Due to the important role of cotton drought-tolerant varieties and the reported involvement in this trait of trehalose-6-phosphate-synthase, the respective gene (TPS) was isolated and characterized from cultivated cotton, Gossypium hirsutum (ZETA 2 cultivar), using a chromosome-walking technique. TPS has three exons comprising the coding region. Southern blot analysis indicated that the Gossypium genomes (A and D) contain a single copy of TPS per genome. In addition, the expression of this gene was studied in different plant tissues. Plants of the Australian cotton variety Siokra L23, known for its drought tolerance, were subjected to drought stress (using PEG 6,000 solution, for 4 h during the dark period of the day and for four consecutive days); leaves, stems and roots were collected after the end of the stress period. Total extracted RNA was examined for the presence of transcripts, in the above-mentioned tissues of stressed and well-watered plants, by reverse transcription-polymerase chain reaction (RT-PCR). The expression levels, determined semi-quantitatively, indicated that the gene was expressed in all plant tissues under both water availability conditions. However, increased expression levels of TPS were observed mainly in stressed leaves and roots compared to those of the well-watered control. This finding is in agreement with the fact that TPS participates in trehalose biosynthesis, known for its participation in stress signal transduction in higher plants.

  13. Development and bin mapping of gene-associated interspecific SNPs for cotton (Gossypium hirsutum L.) introgression breeding efforts.

    Science.gov (United States)

    Hulse-Kemp, Amanda M; Ashrafi, Hamid; Zheng, Xiuting; Wang, Fei; Hoegenauer, Kevin A; Maeda, Andrea B V; Yang, S Samuel; Stoffel, Kevin; Matvienko, Marta; Clemons, Kimberly; Udall, Joshua A; Van Deynze, Allen; Jones, Don C; Stelly, David M

    2014-10-30

    Cotton (Gossypium spp.) is the largest producer of natural fibers for textile and is an important crop worldwide. Crop production is comprised primarily of G. hirsutum L., an allotetraploid. However, elite cultivars express very small amounts of variation due to the species monophyletic origin, domestication and further bottlenecks due to selection. Conversely, wild cotton species harbor extensive genetic diversity of prospective utility to improve many beneficial agronomic traits, fiber characteristics, and resistance to disease and drought. Introgression of traits from wild species can provide a natural way to incorporate advantageous traits through breeding to generate higher-producing cotton cultivars and more sustainable production systems. Interspecific introgression efforts by conventional methods are very time-consuming and costly, but can be expedited using marker-assisted selection. Using transcriptome sequencing we have developed the first gene-associated single nucleotide polymorphism (SNP) markers for wild cotton species G. tomentosum, G. mustelinum, G. armourianum and G. longicalyx. Markers were also developed for a secondary cultivated species G. barbadense cv. 3-79. A total of 62,832 non-redundant SNP markers were developed from the five wild species which can be utilized for interspecific germplasm introgression into cultivated G. hirsutum and are directly associated with genes. Over 500 of the G. barbadense markers have been validated by whole-genome radiation hybrid mapping. Overall 1,060 SNPs from the five different species have been screened and shown to produce acceptable genotyping assays. This large set of 62,832 SNPs relative to cultivated G. hirsutum will allow for the first high-density mapping of genes from five wild species that affect traits of interest, including beneficial agronomic and fiber characteristics. Upon mapping, the markers can be utilized for marker-assisted introgression of new germplasm into cultivated cotton and in

  14. Effects of rotation of cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.) Merr.] crops on soil fertility in Elizabeth, Mississippi, USA

    OpenAIRE

    H.A., Reddy, K. and Pettigrew, W.T.

    2018-01-01

    The effects of cotton (Gossypium hirsutum L.): soybean [Glycine max (L.) Merr.] rotation on the soil fertility levels are limited. An irrigated soybean: cotton rotation experiment was conducted from 2012 through 2015 near Elizabeth, Mississippi, USA. The crop rotation sequences were included continuous cotton (CCCC), continuous soybean (SSSS), cotton-soybean-cotton-soybean (CSCS), cotton-soybean-soybean-cotton (CSSC), soybean-cotton-cotton-soybean (SCCS), soybean-cotton-soybean-cotton (SCSC)....

  15. Comparative genomic study of ALDH gene superfamily in Gossypium: A focus on Gossypium hirsutum under salt stress.

    Directory of Open Access Journals (Sweden)

    Yating Dong

    Full Text Available Aldehyde dehydrogenases (ALDHs are a superfamily of enzymes which play important role in the scavenging of active aldehydes molecules. In present work, a comprehensive whole-genomic study of ALDH gene superfamily was carried out for an allotetraploid cultivated cotton species, G. hirsutum, as well as in parallel relative to their diploid progenitors, G. arboreum and G. raimondii. Totally, 30 and 58 ALDH gene sequences belong to 10 families were identified from diploid and allotetraploid cotton species, respectively. The gene structures among the members from same families were highly conserved. Whole-genome duplication and segmental duplication might be the major driver for the expansion of ALDH gene superfamily in G. hirsutum. In addition, the expression patterns of GhALDH genes were diverse across tissues. Most GhALDH genes were induced or repressed by salt stress in upland cotton. Our observation shed lights on the molecular evolutionary properties of ALDH genes in diploid cottons and their alloallotetraploid derivatives. It may be useful to mine key genes for improvement of cotton response to salt stress.

  16. SELETIVIDADE DE INSETICIDAS AO COMPLEXO DE INIMIGOS NATURAIS NA CULTURA DO ALGODÃO (Gossypium hirsutum L. SELECTIVITY OF INSECTICIDES ON THE COMPLEX OF NATURAL ENEMIES IN COTTON CROP (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Fábio Shigeo Takatsuka

    2007-09-01

    Full Text Available

    Avaliou-se a seletividade de inseticidas sobre o complexo de inimigos naturais na cultura do algodão (Gossypium hirsutum L., no município de Goiânia, GO. Utilizou-se a cultivar Deltapine e o delineamento experimental em blocos ao acaso, com sete tratamentos e quatro repetições. Os tratamentos foram: testemunha, thiamethoxam (300 g.ha-1, lufenuron (300 mL.ha-1, betacyflutrin (800 mL.ha-1, imidacloprid (70 g.ha-1, diflubenzuron (6,0 g.ha-1, endosulfan (1500 mL.ha-1, em suas apresentações comerciais. A pulverização dos inseticidas foi efetuada aos 45 dias após a emergência das plantas. Além da avaliação prévia, foram efetuadas avaliações aos três e sete dias após a aplicação dos inseticidas. As amostragens foram realizadas através do método de batida de pano, com duas batidas ao acaso por parcela, identificando-se e contando-se, o número de inimigos naturais presentes. Três dias após a aplicação dos tratamentos, os inseticidas thiamethoxam (300 g.ha-1, lufenuron (300 mL.ha-1 e diflubenzuron (60 g.ha-1, considerando os produtos comerciais, não apresentaram efeito de choque sobre o complexo de inimigos naturais presentes na cultura do algodoeiro. Entretanto, aos sete dias após a aplicação, apenas o tratamento com lufenuron manteve a seletividade.a esses artrópodes predadores.

    PALAVRAS-CHAVE: Inseticida; controle biológico; Gossypium.

  17. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Jun; Sun, Na; Deng, Ting; Zhang, Lida; Zuo, Kaijing

    2014-11-06

    Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n=4x=(AD)2=52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n=2x=(D5)2=26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable. EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development. Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved

  18. Analysis of [Gossypium capitis-viridis × (G.hirsutum × G.australe2] Trispecific Hybrid and Selected Characteristics.

    Directory of Open Access Journals (Sweden)

    Di Chen

    Full Text Available Speciation is always a contentious and challenging issue following with the presence of gene flow. In Gossypium, there are many valuable resources and wild diploid cotton especially C and B genome species possess some excellent traits which cultivated cotton always lacks. In order to explore character transferring rule from wild cotton to upland tetraploid cotton, the [G. capitis-viridis × (G. hirsutum × G. australe2] triple hybrid was synthesized by interspecies hybridization and chromosome doubling. Morphology comparisons were measured among this hybrid and its parents. It showed that trispecific hybrid F1 had some intermediate morphological characters like leaf style between its parents and some different characters from its parents, like crawl growth characteristics and two kind flower color. It is highly resistant to insects comparing with other cotton species by four year field investigation. By cytogenetic analysis, triple hybrid was further confirmed by meiosis behavior of pollen mother cells. Comparing with regular meiosis of its three parents, it was distinguished by the occurrence of polyads with various numbers of unbalanced microspores and finally generating various abnormal pollen grains. All this phenomenon results in the sterility of this hybrid. This hybrid was further identified by SSR marker from DNA molecular level. It showed that 98 selected polymorphism primers amplified effective bands in this hybrids and its parents. The genetic proportion of three parents in this hybrid is 47.8% from G. hirsutum, 14.3% from G. australe, 7.0% from G. capitis-viridis, and 30.9% recombination bands respectively. It was testified that wild genetic material has been transferred into cultivated cotton and this new germplasm can be incorporated into cotton breeding program.

  19. Cloning and characterization of homeologous cellulose synthase catalytic subunit 2 genes from allotetraploid cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Kim, Hee Jin; Triplett, Barbara A; Zhang, Hong-Bin; Lee, Mi-Kyung; Hinchliffe, Doug J; Li, Ping; Fang, David D

    2012-02-25

    Cellulose synthase catalytic subunits (CesAs) are the catalytic sites within a multisubunit complex for cellulose biosynthesis in plants. CesAs have been extensively studied in diploid plants, but are not well characterized in polyploid plants. Gossypium hirsutum is an allotetraploid cotton species producing over 90% of the world's cotton fibers. Although G. hirsutum CesAs (GhCesAs) are responsible for cellulose production in cotton fiber, very limited numbers of GhCesA genes have been identified. Here, we report isolating and characterizing a pair of homeologous CesA2 genes and their full-length cDNAs from allotetraploid cotton. The GhCesA2-A(T) gene from the A-subgenome and GhCesA2-D(T) gene from the D-subgenome were screened from a G. hirsutum BAC library. These genes shared 92% sequence similarity throughout the entire sequence. The coding sequences were nearly identical, and the deduced amino acid sequences from GhCesA2-A(T) (1,039 amino acids) and GhCesA2-D(T) (1,040 amino acids) were identical except four amino acids, whereas the noncoding sequences showed divergence. Sequence analyses showed that all exons of GhCesA2-A(T) contained consensus splice donor dinucleotides, but one exon in GhCesA2-D(T) contained nonconsensus splice donor dinucleotides. Although the nonconsensus splice donor dinucleotides were previously suggested to be involved in alternative splice or pseudogenization, our results showed that a majority of GhCesA2-A(T) and GhCesA2-D(T) transcripts consisted of functional and full-length transcripts with little evidence for alternative mRNA isoforms in developing cotton fibers. Expression analyses showed that GhCesA2-A(T) and GhCesA2-D(T) shared common temporal and spatial expression patterns, and they were highly and preferentially expressed during the cellulose biosynthesis stage in developing cotton fibers. The observations of higher expression levels of both GhCesA2-A(T) and GhCesA2-D(T) in developing fibers of one near-isogenic line (NIL

  20. Genome-wide identification and characterization of SnRK2 gene family in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Liu, Zhao; Ge, Xiaoyang; Yang, Zuoren; Zhang, Chaojun; Zhao, Ge; Chen, Eryong; Liu, Ji; Zhang, Xueyan; Li, Fuguang

    2017-06-12

    Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) is a plant-specific serine/threonine kinase family involved in the abscisic acid (ABA) signaling pathway and responds to osmotic stress. A genome-wide analysis of this protein family has been conducted previously in some plant species, but little is known about SnRK2 genes in upland cotton (Gossypium hirsutum L.). The recent release of the G. hirsutum genome sequence provides an opportunity to identify and characterize the SnRK2 kinase family in upland cotton. We identified 20 putative SnRK2 sequences in the G. hirsutum genome, designated as GhSnRK2.1 to GhSnRK2.20. All of the sequences encoded hydrophilic proteins. Phylogenetic analysis showed that the GhSnRK2 genes were classifiable into three groups. The chromosomal location and phylogenetic analysis of the cotton SnRK2 genes indicated that segmental duplication likely contributed to the diversification and evolution of the genes. The gene structure and motif composition of the cotton SnRK2 genes were analyzed. Nine exons were conserved in length among all members of the GhSnRK2 family. Although the C-terminus was divergent, seven conserved motifs were present. All GhSnRK2s genes showed expression patterns under abiotic stress based on transcriptome data. The expression profiles of five selected genes were verified in various tissues by quantitative real-time RT-PCR (qRT-PCR). Transcript levels of some family members were up-regulated in response to drought, salinity or ABA treatments, consistent with potential roles in response to abiotic stress. This study is the first comprehensive analysis of SnRK2 genes in upland cotton. Our results provide the fundamental information for the functional dissection of GhSnRK2s and vital availability for the improvement of plant stress tolerance using GhSnRK2s.

  1. Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae.

    Directory of Open Access Journals (Sweden)

    Chandrashekhar D Patil

    2014-06-01

    Full Text Available We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi.Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay.LC50 values of water, ethanol, ethyl acetate and hexane extracts for Ae. aegypti were 211.73±21.49, 241.64±19.92, 358.07±32.43, 401.03±36.19 and 232.56±26.00, 298.54±21.78, 366.50±30.59, 387.19±31.82 for 4(th instar of An. stephensi, respectively. The water extract displayed lowest LC50 value followed by ethanol, ethyl acetate and hexane. Owing to the comparatively better activity of water extract, its efficacy was further evaluated for mosquito larvicidal activity, which exhibited LC50 values of 133.95±12.79, 167.65±11.34 against 2(nd and 3(rd instars of Ae. aegypti and 145.48±11.76, 188.10±12.92 against 2(nd and 3(rd instars of An. stephensi, respectively. Crude protein from the water extract was precipitated using acetone and tested against 2(nd, 3(rd and 4(th instars of Ae. aegypti and An. stephensi. It revealed further decrease in LC50 values as 105.72±25.84, 138.23±23.18, 126.19±25.65, 134.04±04 and 137.88±17.59, 154.25±16.98 for 2(nd, 3(rd and 4(th instars of Ae. aegypti and An. stephensi, respectively.Leaves extracts of Go. hirsutum (Bt is potential mosquito larvicide and can be used as a potent alternative to chemical insecticides in integrated pest management.

  2. Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton) Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae.

    Science.gov (United States)

    Patil, Chandrashekhar D; Borase, Hemant P; Salunkhe, Rahul B; Suryawanshi, Rahul K; Narkhade, Chandrakant P; Salunke, Bipinchandra K; Patil, Satish V

    2014-01-01

    We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton) using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi. Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt) plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay. LC50 values of water, ethanol, ethyl acetate and hexane extracts for Ae. aegypti were 211.73±21.49, 241.64±19.92, 358.07±32.43, 401.03±36.19 and 232.56±26.00, 298.54±21.78, 366.50±30.59, 387.19±31.82 for 4(th) instar of An. stephensi, respectively. The water extract displayed lowest LC50 value followed by ethanol, ethyl acetate and hexane. Owing to the comparatively better activity of water extract, its efficacy was further evaluated for mosquito larvicidal activity, which exhibited LC50 values of 133.95±12.79, 167.65±11.34 against 2(nd) and 3(rd) instars of Ae. aegypti and 145.48±11.76, 188.10±12.92 against 2(nd) and 3(rd) instars of An. stephensi, respectively. Crude protein from the water extract was precipitated using acetone and tested against 2(nd), 3(rd) and 4(th) instars of Ae. aegypti and An. stephensi. It revealed further decrease in LC50 values as 105.72±25.84, 138.23±23.18, 126.19±25.65, 134.04±04 and 137.88±17.59, 154.25±16.98 for 2(nd), 3(rd) and 4(th) instars of Ae. aegypti and An. stephensi, respectively. Leaves extracts of Go. hirsutum (Bt) is potential mosquito larvicide and can be used as a potent alternative to chemical insecticides in integrated pest management.

  3. Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum.

    Science.gov (United States)

    Su, Ying; Liang, Wei; Liu, Zhengjie; Wang, Yumei; Zhao, Yanpeng; Ijaz, Babar; Hua, Jinping

    2017-11-01

    A homologous GhDof1, which belongs to a large family of plant-specific transcription factor DOF, was isolated from Upland cotton (Gossypium hirsutum L.). GhDof1 protein was located in the nucleus of onion epidermal cells, the core domain of transcriptional activity existed in the C-terminal, and the activity elements of GhDof1 promoter existed in the regions of -645∼ -469bp and -286∼ -132bp of transcriptional start codon. GhDof1 constitutively expressed in leaves, roots and stems, accumulated highest in leaves. The salinity and cold treatments induced GhDof1 transcript accumulation. The GhDof1-overexpressed cotton showed significantly higher salt and cold tolerance over the wild-type plants. Under salt stress, the root growth of overexpressed GhDof1 lines was promoted. The expression levels of stress-responsive genes, GhP5CS, GhSOD and GhMYB, were differently up-regulated in transgenic lines. Oil contents increased in some transgenic plants, and protein contents reduced compared with transformed receptor. These results suggested that GhDof1 was a functional transcription factor for improving the abiotic tolerance and seed oil content in Upland cotton. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Plant tissue culture independent Agrobacterium tumefaciens mediated In-planta transformation strategy for upland cotton (Gossypium hirsutum

    Directory of Open Access Journals (Sweden)

    Bipinchandra B. Kalbande

    2016-06-01

    Full Text Available A new method of transgenic development called “In-planta” transformation method, where Agrobacterium is used to infect the plantlets but the steps of in vitro regeneration of plants is totally avoided. In this study, we have reported a simple In-planta method for efficient transformation of diploid cotton Gossypium hirsutum cv LRK-516 Anjali using Agrobacterium tumefaciens EHA-105 harbouring recombinant binary vector plasmid pBinAR with Arabidopsis At-NPR1 gene. Four day old plantlets were used for transformation. A vertical cut was made at the junction of cotyledonary leaves, moderately bisecting the shoot tip and exposing meristem cells at apical meristem. This site was infected with Agrobacterium inoculum. The transgenic events obtained were tested positive for the presence of At-NPR1 gene with promoter nptII gene. They are also tested negative for vector backbone integration and Agrobacterium contamination in T0 events. With this method a transformation frequency of 6.89% was reported for the cv LRK-516.

  5. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage.

    Science.gov (United States)

    Anwaar, Shad Ali; Ali, Shafaqat; Ali, Skhawat; Ishaque, Wajid; Farid, Mujahid; Farooq, Muhammad Ahsan; Najeeb, Ullah; Abbas, Farhat; Sharif, Muhammad

    2015-03-01

    Silicon (Si) is as an important fertilizer element, which has been found effective in enhancing plant tolerance to variety of biotic and a-biotic stresses. This study investigates the Si potential to alleviate zinc (Zn) toxicity stress in cotton (Gossypium hirsutum L.). Cotton plants were grown in hydroponics and exposed to different Zn concentration, 0, 25, and 50 μM, alone and/or in combination with 1 mM Si. Incremental Zn concentration in growth media instigated the cellular oxidative damage that was evident from elevated levels of hydrogen peroxide (H2O2), electrolyte leakage, and malondialdehyde (MDA) and consequently inhibited cotton growth, biomass, chlorophyll pigments, and photosynthetic process. Application of Si significantly suppressed Zn accumulation in various plant parts, i.e., roots, stems, and leaves and thus promoted biomass, photosynthetic, growth parameters, and antioxidant enzymes activity of Zn-stressed as well unstressed plants. In addition, Si reduced the MDA and H2O2 production and electrolyte leakage suggesting its role in protecting cotton plants from Zn toxicity-induced oxidative damage. Thus, the study indicated that exogenous Si application could improve growth and development of cotton crop experiencing Zn toxicity stress by limiting Zn bioavailability and oxidative damage.

  6. Genome wide identification of cotton (Gossypium hirsutum)-encoded microRNA targets against Cotton leaf curl Burewala virus.

    Science.gov (United States)

    Shweta; Akhter, Yusuf; Khan, Jawaid Ahmad

    2018-01-05

    Cotton leaf curl Burewala virus (CLCuBV, genus Begomovirus) causes devastating cotton leaf curl disease. Among various known virus controlling strategies, RNAi-mediated one has shown potential to protect host crop plants. Micro(mi) RNAs, are the endogenous small RNAs and play a key role in plant development and stress resistance. In the present study we have identified cotton (Gossypium hirsutum)-encoded miRNAs targeting the CLCuBV. Based on threshold free energy and maximum complementarity scores of host miRNA-viral mRNA target pairs, a number of potential miRNAs were annotated. Among them, ghr-miR168 was selected as the most potent candidate, capable of targeting several vital genes namely C1, C3, C4, V1 and V2 of CLCuBV genome. In addition, ghr-miR395a and ghr-miR395d were observed to target the overlapping transcripts of C1 and C4 genes. We have verified the efficacy of these miRNA targets against CLCuBV following suppression of RNAi-mediated virus control through translational inhibition or cleavage of viral mRNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Potassium improves photosynthetic tolerance to and recovery from episodic drought stress in functional leaves of cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Zahoor, Rizwan; Zhao, Wenqing; Dong, Haoran; Snider, John L; Abid, Muhammad; Iqbal, Babar; Zhou, Zhiguo

    2017-10-01

    To investigate whether potassium (K) application enhances the potential of cotton (Gossypium hirsutum L.) plants to maintain physiological functions during drought and recovery, low K-sensitive (Siza 3) and -tolerant (Simian 3) cotton cultivars were exposed to three K rates (0, 150, and 300 K 2 O kg ha -1 ) and either well-watered conditions or severe drought stress followed by a recovery period. Under drought stress, cotton plants showed a substantial decline in leaf water potential, stomatal conductance, photosynthetic rate, and the maximum and actual quantum yield of PSII, resulting in greater non-photochemical quenching and lipid peroxidation as compared to well-watered plants. However, plants under K application not only showed less of a decline in these traits but also displayed greater potential to recover after rewatering as compared to the plants without K application. Plants receiving K application showed lower lipid peroxidation, higher antioxidant enzyme activities, and increased proline accumulation as compared to plants without K application. Significant relationships between rates of photosynthetic recovery and K application were observed. The cultivar Siza 3 exhibited a more positive response to K application than Simian 3. The results suggest that K application enhances the cotton plant's potential to maintain functionality under drought and facilitates recovery after rewatering. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Role of xyloglucan in cotton (Gossypium hirsutum L.) fiber elongation of the short fiber mutant Ligon lintless-2 (Li2).

    Science.gov (United States)

    Naoumkina, Marina; Hinchliffe, Doug J; Fang, David D; Florane, Christopher B; Thyssen, Gregory N

    2017-08-30

    Xyloglucan is a matrix polysaccharide found in the cell walls of all land plants. In growing cells, xyloglucan is thought to connect cellulose microfibrils and regulate their separation during wall extension. Ligon lintless-2 (Li 2 ) is a monogenic dominant cotton fiber mutation that causes extreme reduction in lint fiber length with no pleiotropic effects on vegetative growth. Li 2 represents an excellent model system to study fiber elongation. To understand the role of xyloglucan in cotton fiber elongation we used the short fiber mutant Li 2 and its near isogenic wild type for analysis of xyloglucan content and expression of xyloglucan-related genes in developing fibers. Accumulation of xyloglucan was significantly higher in Li 2 developing fibers than in wild type. Genes encoding enzymes for nine family members of xyloglucan biosynthesis were identified in the draft Gossypium hirsutum genome. RNAseq analysis revealed that most differentially expressed xyloglucan-related genes were down-regulated in Li 2 fiber cells. RT-qPCR analysis revealed that the peak of expression for the majority of xyloglucan-related genes in wild type developing fibers was 5-16days post anthesis (DPA) compared to 1-3 DPA in Li 2 fibers. Thus, our results suggest that early activation of xyloglucan-related genes and down regulation of xyloglucan degradation genes during the elongation phase lead to elevated accumulation of xyloglucan that restricts elongation of fiber cells in Li 2 . Copyright © 2017. Published by Elsevier B.V.

  9. Characterization of a novel annexin gene from cotton (Gossypium hirsutum cv CRI 35) and antioxidative role of its recombinant protein.

    Science.gov (United States)

    Zhou, Lu; Duan, Jin; Wang, Xiao-Ming; Zhang, Heng-Mu; Duan, Ming-Xing; Liu, Jin-Yuan

    2011-05-01

    Plant annexins represent a multigene family involved in cellular elongation and development. A cDNA encoding a novel annexin was isolated from a cotton (Gossypium hirsutum) fiber cDNA library and designated GhAnx1. This gene encodes a 316 amino acid protein with a theoretical molecular mass of 36.06 kDa and a theoretical pI of 6.19. At the amino acid level, it shares high sequence similarity and has evolutionary relationships with annexins from higher plants. The purified recombinant protein expressed in Escherichia coli was used to investigate its physicochemical properties. Circular dichroism spectrum analyses showed a positive peak rising to the maximum at 196 nm and a broad negative band rounding 215 nm, suggesting that the GhAnx1 protein was prominently α-helical. The fluorescence measurements indicated that it could bind to Ca(2+) in vitro. These results demonstrated that GhAnx1 was a typical annexin protein in cotton. A bioassay experiment was conducted to analyze its potential function and showed that E. coli cells expressing GhAnx1 were protected from tert-butyl hydroperoxide (tBH) stress, suggesting that it had a potential antioxidative role. Northern blot analyses revealed that GhAnx1 was highly expressed in fibers, especially during the elongation stage, suggesting that it might be important for fiber elongation. © 2011 Institute of Botany, Chinese Academy of Sciences.

  10. Functional characterization of GhSOC1 and GhMADS42 homologs from upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Zhang, Xiaohong; Wei, Jianghui; Fan, Shuli; Song, Meizhen; Pang, Chaoyou; Wei, Hengling; Wang, Chengshe; Yu, Shuxun

    2016-01-01

    In Arabidopsis flowering pathway, MADS-box genes encode transcription factors, with their structures and functions highly conserved in many species. In our study, two MADS-box genes GhSOC1 and GhMADS42 (Gossypium hirsutum L.) were cloned from upland cotton CCRI36 and transformed into Arabidopsis. GhSOC1 was additionally transformed into upland cotton. Comparative analysis demonstrated sequence conservation between GhSOC1 and GhMADS42 and genes of other plant species. Tissue-specific expression analysis of GhSOC1 and GhMADS42 revealed spatiotemporal expression patterns involving high transcript levels in leaves, shoot apical buds, and flowers. In addition, overexpression of both GhSOC1 and GhMADS42 in Arabidopsis accelerated flowering, with GhMADS42 transgenic plants showing abnormal floral organ phenotypes. Overexpression of GhSOC1 in upland cotton also produced variations in floral organs. Furthermore, chromatin immunoprecipitation assay demonstrated that GhSOC1 could regulate GhMADS41 and GhMADS42, but not FLOWERING LOCUS T, by directly binding to the genes promoter. Finally, yeast two-hybrid and bimolecular fluorescence complementation approaches were undertaken to better understand the interaction of GhSOC1 and other MADS-box factors. These experiments showed that GhSOC1 can interact with APETALA1/FRUITFULL-like proteins in cotton. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Comparison of ionomic and metabolites response under alkali stress in old and young leaves of cotton (Gossypium hirsutum L. seedlings

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2016-11-01

    Full Text Available Soil salinization is an important agriculture-related environmental problem. Alkali stress and salt stress strongly influence the metabolic balance in plants. Salt and alkali stresses exert varied effects on old and young tissues, which display different adaptive strategies. In this study, we used cotton (Gossypium hirsutum L. plants as experimental material to investigate whether alkali stress exerts varied effects on ion balance and metabolism in old and young leaves of cotton plants exposed to alkali stress. Moreover, we compared the functions of young and old leaves in alkali tolerance. Results showed that alkali stress exerted a considerably stronger growth inhibition on old leaves than on young leaves. Under alkali stress, young leaves can maintain low Na and high K contents and retain relatively stable pigment accumulation and tricarboxylic acid cycle (TCA, resulting in greater accumulation of photosynthetic metabolites. In terms of metabolic response, the young and old leaves clearly displayed different mechanisms of osmotic regulation. The amounts of inositol and mannose significantly increased in both old and young leaves of cotton exposed to alkali stress, and the extent of increase was higher in young leaves than in old leaves. In old leaves, synthesis of amino acids, such as GABA, valine, and serine, was dramatically enhanced, and this phenomenon is favorable for osmotic adjustment and membrane stability. Organs at different developmental stages possibly display different mechanisms of metabolic regulation under stress condition. Thus, we propose that future investigations on alkali stress should use more organs obtained at different developmental stages.

  12. Energy use analysis of cotton (Gossypium hirsutum L. production in Golestan Province and a few strategies for increasing resources productivity

    Directory of Open Access Journals (Sweden)

    M. Ahmadi

    2016-05-01

    Full Text Available Cotton (Gossypium hirsutum L. as a unique crop in natural fiber production has an important role in texture industry. It has also a large share in oil production for human nutrition and as a protein concentrate for animal feeding. Therefore, cotton role in job opportunities in agriculture, industry and business divisions are undeniable. In order to determine the share of each direct and indirect energy inputs (consisted of fossil fuels, human labore and ... in energy use efficiency (EUE of cotton production in Golestan Province (cotton pole of Iran a field survey was conducted during 2010. Necessary information has been collected via technical questionnaire and face to face interview with 23 farmers who produced cotton in 0.5 to 50 ha. According to data analysis EUE of cotton production in Golestan province estimated as amount of 1.0968. Results showed that the share of variant inputs for cotton production were different. Fuel for tractor and irrigation pump have 24 and 30% of energy input, respectively and in overall 54% of input energy in cotton production was devoted to diesel fuel. Fertilizers and chemicals with 24 and 13% have second and third share of energy use. For improvising productivity of resources (water, soil and chemical inputs and increment of EUE in cotton production at Golestan province a few technical and management strategy could be recommended. Our top recommendation have been focused on suitable fuel storage, correct operation and maintenance of machines, improvement of cultural practices and fertilizing management.

  13. Short Communication: Cotton (Gossypium hirsutum L. varieties responded differently to foliar applied boron in terms of quality and yield

    Directory of Open Access Journals (Sweden)

    S. Ahmad

    2009-05-01

    Full Text Available Foliar application of boron improves seed cotton yield and fiber traits. A field experiment was conducted to study the effects of foliar application of 37 grams of boron (B per acre (91.4 g ha-1 on quality and quantity of cotton (Gossypium hirsutum L.. Ten varieties of cotton viz, VH-183, VH-206, VH-208, VH-209, VH-214, VH-224, VH-225, VH-255, VH-257 and CIM-496 were sown at Cotton Research Station, Vehari during 2006-07 using randomized complete block design with three replications in two sets. The foliar application of B resulted in improvement of seed cotton yield (48-124%, ginning outturn (7.2-10.2%, staple length (1.4-10.1% and micronaire (7.4-32.8%. A significant genetic variability existed for all the traits studied in cotton. The cotton varieties VH-183 and VH-206 were found to be the most promising varieties which responded well to B foliar application compared to other varieties. The results suggested that foliar application of B can be helpful in improvement of cotton yield and other plant and fiber traits.

  14. Cloreto de mepiquat, thidiazuron e ethephon aplicados no algodoeiro em Ponta Porã, MS Mepiquat chloride, thidiazuron and ethephon applied on cotton in Ponta Porã, MS, Brazil

    Directory of Open Access Journals (Sweden)

    Fernando Mendes Lamas

    1999-10-01

    Full Text Available O objetivo do presente estudo foi avaliar os efeitos de diferentes dosagens de cloreto de mepiquat, thidiazuron e ethephon, aplicadas parceladamente no algodoeiro (Gossypium hirsutum L. na Fazenda Itamarati, Ponta Porã, MS. As dosagens de cloreto de mepiquat foram: (0; 12,5 + 12,5 + 25,0 = 50; 25 + 25 + 25 = 75; 0 + 50 + 50 = 100; 12,5 + 62,5 + 50 = 125 g ha-1, com aplicações efetuadas aos 34, 47 e 62 dias após a emergência (DAE em 1993/94, e aos 42, 60 e 73 DAE, em 1994/95, enquanto o thidiazuron foi aplicado quando 70% dos capulhos estavam abertos, nas dosagens de 0, 45, 60 e 75 g ha-1; já o ethephon foi aplicado sete dias após o thidiazuron, quando já se observava desfolha de 85%, nas dosagens de 0, 960 e 1.440 g ha-1. O delineamento experimental utilizado foi o de blocos casualizados em faixa, com subparcelas subdivididas e quatro repetições. O cloreto de mepiquat proporcionou redução do número de frutos verdes, aumento do peso de 100 sementes e do peso médio de um capulho; a percentagem de desfolha aumentou com as dosagens de thidiazuron e ethephon; constatou-se que a interação cloreto de mepiquat x thidiazuron x ethephon foi significativa para percentagem de abertura de capulhos e produção de algodão em caroço.The objective of this study was to evaluate the effect of doses of mepiquat chloride, thidiazuron and ethephon on cotton (Gossypium hirsutum L., applied in parcels, and were surveyed in Itamarati Farm at Ponta Porã county. The mepiquat chloride doses were: (0.0; 12.5 + 12.5 + 25.0 = 50.0; 25.0 + 25.0 + 25.0 = 75.0; 0.0 + 50.0 + 50.0 = 100.0; 12.5 + 62.5 + 50.0 = 125.0 g ha-1. The applications were made at 34, 47 and 63 days after emergence(DAE in 1993/94 and at 42, 60 and 73 DAE in 1994/95. Thidiazuron was applied when 70% of bolls were opened at the doses 0.0, 45.0, 60.0 and 75.0 g ha-1. Ethephon was applied seven days after thidiazuron, when 85% defoliation was observed, in the doses of 0.0, 960.0 and 1,440.0 g

  15. Partial Dominance, Overdominance and Epistasis as the Genetic Basis of Heterosis in Upland Cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    Wang, Yumei; Hua, Jinping

    2015-01-01

    Determination of genetic basis of heterosis may promote hybrid production in Upland cotton (Gossypium hirsutum L.). This study was designed to explore the genetic mechanism of heterosis for yield and yield components in F2: 3 and F2: 4 populations derived from a hybrid ‘Xinza No. 1’. Replicated yield field trials of the progenies were conducted in 2008 and 2009. Phenotypic data analyses indicated overdominance in F1 for yield and yield components. Additive and dominance effects at single-locus level and digenic epistatic interactions at two-locus level were analyzed by 421 marker loci spanning 3814 cM of the genome. A total of 38 and 49 QTLs controlling yield and yield components were identified in F2: 3 and F2: 4 populations, respectively. Analyses of these QTLs indicated that the effects of partial dominance and overdominance contributed to heterosis in Upland cotton simultaneously. Most of the QTLs showed partial dominance whereas 13 QTLs showing overdominance in F2:3 population, and 19 QTLs showed overdominance in F2:4. Among them, 21 QTLs were common in both F2: 3 and F2: 4 populations. A large number of two-locus interactions for yield and yield components were detected in both generations. AA (additive × additive) epistasis accounted for majority portion of epistatic effects. Thirty three complementary two-locus homozygotes (11/22 and 22/11) were the best genotypes for AA interactions in terms of bolls per plant. Genotypes of double homozygotes, 11/22, 22/11 and 22/22, performed best for AD/DA interactions, while genotype of 11/12 performed best for DD interactions. These results indicated that (1) partial dominance and overdominance effects at single-locus level and (2) epistasis at two-locus level elucidated the genetic basis of heterosis in Upland cotton. PMID:26618635

  16. Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences.

    Science.gov (United States)

    Hashmi, Jamil A; Zafar, Yusuf; Arshad, Muhammad; Mansoor, Shahid; Asad, Shaheen

    2011-04-01

    Several important biological processes are performed by distinct functional domains found on replication-associated protein (Rep) encoded by AC1 of geminiviruses. Two truncated forms of replicase (tAC1) gene, capable of expressing only the N-terminal 669 bp (5'AC1) and C-terminal 783 bp (3'AC1) nucleotides cloned under transcriptional control of the CaMV35S were introduced into cotton (Gossypium hirsutum L.) using LBA4404 strain of Agrobacterium tumefaciens to make use of an interference strategy for impairing cotton leaf curl virus (CLCuV) infection in transgenic cotton. Compared with nontransformed control, we observed that transgenic cotton plants overexpressing either N-terminal (5'AC1) or C-terminal (3'AC1) sequences confer resistance to CLCuV by inhibiting replication of viral genomic and β satellite DNA components. Molecular analysis by Northern blot hybridization revealed high transgene expression in early and late growth stages associated with inhibition of CLCuV replication. Of the eight T(1) transgenic lines tested, six had delayed and minor symptoms as compared to nontransformed control lines which developed disease symptoms after 2-3 weeks of whitefly-mediated viral delivery. Virus biological assay and growth of T(2) plants proved that transgenic cotton plants overexpressing 5'- and 3'AC1 displayed high resistance level up to 72, 81%, respectively, as compared to non-transformed control plants following inoculation with viruliferous whiteflies giving significantly high cotton seed yield. Progeny analysis of these plants by polymerase chain reaction (PCR), Southern blotting and virus biological assay showed stable transgene, integration, inheritance and cotton leaf curl disease (CLCuD) resistance in two of the eight transgenic lines having single or two transgene insertions. Transgenic cotton expressing partial AC1 gene of CLCuV can be used as virus resistance source in cotton breeding programs aiming to improve virus resistance in cotton crop.

  17. Fine-mapping qFS07.1 controlling fiber strength in upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Fang, Xiaomei; Liu, Xueying; Wang, Xiaoqin; Wang, Wenwen; Liu, Dexin; Zhang, Jian; Liu, Dajun; Teng, Zhonghua; Tan, Zhaoyun; Liu, Fang; Zhang, Fengjiao; Jiang, Maochao; Jia, Xiuling; Zhong, Jianwei; Yang, Jinghong; Zhang, Zhengsheng

    2017-04-01

    KEY MESSAGE: qFS07.1 controlling fiber strength was fine-mapped to a 62.6-kb region containing four annotated genes. RT-qPCR and sequence of candidate genes identified an LRR RLK gene as the most likely candidate. Fiber strength is an important component of cotton fiber quality and is associated with other properties, such as fiber maturity, fineness, and length. Stable QTL qFS07.1, controlling fiber strength, had been identified on chromosome 7 in an upland cotton recombinant inbred line (RIL) population from a cross (CCRI35 × Yumian1) described in our previous studies. To fine-map qFS07.1, an F 2 population with 2484 individual plants from a cross between recombinant line RIL014 and CCRI35 was established. A total of 1518 SSR primer pairs, including 1062, designed from chromosome 1 of the Gossypium raimondii genome and 456 from chromosome 1 of the G. arboreum genome (corresponding to the QTL region) were used to fine-map qFS07.1, and qFS07.1 was mapped into a 62.6-kb genome region which contained four annotated genes on chromosome A07 of G. hirsutum. RT-qPCR and comparative analysis of candidate genes revealed a leucine-rich repeat protein kinase (LRR RLK) family protein to be a promising candidate gene for qFS07.1. Fine mapping and identification of the candidate gene for qFS07.1 will play a vital role in marker-assisted selection (MAS) and the study of mechanism of cotton fiber development.

  18. Comparison of rhizosphere properties as affected by different Bt- and non-Bt-cotton (Gossypium hirsutum L.) genotypes and fertilization.

    Science.gov (United States)

    Ahamd, Maqshoof; Abbasi, Waleed Mumtaz; Jamil, Moazzam; Iqbal, Muhammad; Hussain, Azhar; Akhtar, Muhammad Fakhar-U-Zaman; Nazli, Farheen

    2017-06-01

    Incorporation of genetically modified crops in the cropping system raises the need for studying the effect of these crops on the soil ecosystem. The current study aimed to compare the effect of Bacillus thuringiensis (Bt)- and non-Bt-cotton (Gossypium hirsutum L.) genotypes on rhizosphere properties under fertilized and unfertilized soil conditions. One non-Bt-cotton (IUB 75) and four Bt-cotton varieties (IUB-222, MM-58, IUB-13, FH-142) were sown in a Randomized Complete Block Design (RCBD) in a factorial fashion with three replications under unfertilized (T1) and fertilized (T2 at NPK 310-170-110 kg ha -1 ) soil conditions. The culturable soil bacterial population was recorded at flowering, boll opening, and harvesting stages, while other rhizosphere biological and chemical properties were recorded at harvesting. Results revealed that Bt-cotton genotypes IUB-222 and FH-142 showed significantly higher rhizosphere total nitrogen, NH 4 + -N, available phosphorus, and available potassium. Total organic carbon and microbial biomass carbon was also maximum in the rhizosphere of IUB-222 under fertilized conditions. Similarly, bacterial population (CFU g -1 ) at flowering stage and at harvesting was significantly higher in the rhizosphere of IUB-222 as compared to non-Bt- (IUB-75) and other Bt-cotton genotypes under same growth conditions. It showed that Bt genotypes can help in maintaining soil macronutrients (total nitrogen, available phosphorus, and available potassium) under proper nutrient management. Moreover, Bt-cotton genotypes seem to strengthen certain biological properties of the soil, thus increasing the growth and yield capability, maintaining available nutrients in the soil as compared to non-Bt cotton, while no harmful effects of Bt cotton on soil properties was detected.

  19. Molecular characterization of a transient expression gene encoding for 1-aminocyclopropane-1-carboxylate synthase in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Wang, Xia; Zhang, Ying; Zhang, Jiedao; Cheng, Cheng; Guo, Xingqi

    2007-09-30

    Ethylene performs an important function in plant growth and development. 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), the key enzyme involved in ethylene biosynthesis, has been the focus of most ethylene studies. Here, a cotton ACS gene referred to as Gossypium hirsutum ACS1 (GhACS1), was isolated. The full-length cDNA of GhACS1 encodes for a 476-amino acid protein which harbors seven conserved regions, 11 invariant amino acid residues, and the PLP binding active site, all of which characterize ACC synthases. Alignment analysis showed that GhACS1 shared a high degree of identity with other known ACC synthases from different species. Two introns were detected in the genomic DNA sequence, and the results of Southern blot analysis suggested that there might be a multi-gene family encoding for ACC synthase in cotton. From the phylogenetic tree constructed with 24 different kinds of ACC synthases, we determined that GhACS1 falls into group II, and was closely associated with the wound-inducible ACS of citrus. The analysis of the 5' flanking region of GhACS1 revealed a group of putative cis-acting elements. The results of expression analysis showed that GhACS1 displayed its transient expression nature after wounding, abscisic acid (ABA), and CuCl(2) treatments. These results indicate that GhACS1, which was transiently expressed in response to certain stimuli, may be involved in the production of ethylene for the transmission of stress signals.

  20. Characterization of two TT2-type MYB transcription factors regulating proanthocyanidin biosynthesis in tetraploid cotton, Gossypium hirsutum.

    Science.gov (United States)

    Lu, Nan; Roldan, Marissa; Dixon, Richard A

    2017-08-01

    Two TT2-type MYB transcription factors identified from tetraploid cotton are involved in regulating proanthocyanidin biosynthesis, providing new strategies for engineering condensed tannins in crops. Proanthocyanidins (PAs), also known as condensed tannins, are important secondary metabolites involved in stress resistance in plants, and are health supplements that help to reduce cholesterol levels. As one of the most widely grown crops in the world, cotton provides the majority of natural fabrics and is a supplemental food for ruminant animals. The previous studies have suggested that PAs present in cotton are a major contributor to fiber color. However, the biosynthesis of PAs in cotton still remains to be elucidated. AtTT2 (transparent testa 2) is a MYB family transcription factor from Arabidopsis that initiates the biosynthesis of PAs by inducing the expression of multiple genes in the pathway. In this study, we isolated two R2R3-type MYB transcription factors from Gossypium hirsutum that are homologous to AtTT2. Expression analysis showed that both genes were expressed at different levels in various cotton tissues, including leaf, seed coat, and fiber. Protoplast transactivation assays revealed that these two GhMYBs were able to activate promoters of genes encoding enzymes in the PA biosynthesis pathway, namely anthocyanidin reductase and leucoanthocyanidin reductase. Complementation experiments showed that both of the GhMYBs were able to recover the transparent testa seed coat phenotype of the Arabidopsis tt2 mutant by restoring PA biosynthesis. Ectopic expression of either of the two GhMYBs in Medicago truncatula hairy roots increased the contents of anthocyanins and PAs compared to control lines expressing the GUS gene, and expression levels of MtDFR, MtLAR, and MtANR were also elevated in lines expressing GhMYBs. Together, these data provide new insights into engineering condensed tannins in cotton.

  1. Characterization of a novel thermotolerant NAD+-dependent formate dehydrogenase from hot climate plant cotton (Gossypium hirsutumL.).

    Science.gov (United States)

    Kurt-Gür, Günseli; Ordu, Emel

    2018-03-01

    NAD + -dependent formate dehydrogenases (FDH, EC 1.2.1.2), providing energy to the cell in methylotrophic microorganisms, are stress proteins in higher plants and the level of FDH expression increases under several abiotic and biotic stress conditions. They are biotechnologically important enzymes in NAD(P)H regeneration as well as CO 2 reduction. Here, the truncated form of the Gossypium hirsutum fdh1 cDNA was cloned into pQE-2 vector, and overexpressed in Escherichia coli DH5α-T1 cells. Recombinant GhFDH1 was purified 26.3-fold with a yield of 87.3%. Optimum activity was observed at pH 7.0, when substrate is formate. Kinetic analyses suggest that GhFDH1 has considerably high affinity to formate (0.76 ± 0.07 mM) and NAD + (0.06 ± 0.01 mM). At the same time, the affinity (1.98 ± 0.4 mM) and catalytic efficiency (0.0041) values of the enzyme for NADP + show that GhFDH1 is a valuable enzyme for protein engineering studies that is trying to change the coenzyme preference from NAD to NADP which has a much higher cost than that of NAD. Improving the NADP specificity is important for NADPH regeneration which is an important coenzyme used in many biotechnological production processes. The T m value of GhFDH1 is 53.3 °C and the highest enzyme activity is measured at 30 °C with a half-life of 61 h. Whilst further improvements are still required, the obtained results show that GhFDH1 is a promising enzyme for NAD(P)H regeneration for its prominent thermostability and NADP + specificity.

  2. Characterization of PROFILIN genes from allotetraploid (Gossypium hirsutum) cotton and its diploid progenitors and expression analysis in cotton genotypes differing in fiber characteristics.

    Science.gov (United States)

    Argiriou, Anagnostis; Kalivas, Apostolos; Michailidis, Georgios; Tsaftaris, Athanasios

    2012-04-01

    The actin-binding protein profilin (PRF) plays an important role in cell growth and expansion by regulating the organization of the actin filaments. Recent studies have reported association between fiber elongation in cultivated cotton (Gossypium hirsutum) and PRF expression. In the present study, we cloned four genomic clones from allotetraploid cotton (G. hirsutum) and its putative diploid progenitors (G. arboreum and G. raimondii) designated GhPRF1_A, GhPRF1_D, GaPRF1, and GrPRF1 encoding cotton PRF and characterized their genomic structure, phylogenetic relationships and promoter structure. Sequence analysis of the coding regions of all clones resulted in a single protein product which revealed more than 80% similarity to most plant PRFs and a typical organization with an actin-binding and a polybasic phospholipid binding motif at the carboxy terminus. DNA blot hybridization suggested that PRF gene is present with more than one copy in the allotetraploid species G. hirsutum. Expression analysis performed in various organs of cultivated cotton revealed that the PRF gene was preferentially expressed in cotton fibers. Very low levels of expression were observed in whole flowers, while PRF transcripts were not detected in other organs examined. Furthermore, higher levels of expression were observed at the early stages of cotton fiber development (at 10 days post anthesis), indicative that this gene may play a major role in the early stages of cotton fiber development. Quantitation of the expression by real-time PCR revealed higher expression levels in a G. hirsutum variety with higher fiber percentage compared to a variety with lower percentage. In addition, higher levels of expression were found in cultivated allotetraploid G. barbadense cotton species with higher fiber length in comparison to cultivated allotetraploid G. hirsutum.

  3. Recent long-distance transgene flow into wild populations conforms to historical patterns of gene flow in cotton (Gossypium hirsutum) at its centre of origin.

    Science.gov (United States)

    Wegier, A; Piñeyro-Nelson, A; Alarcón, J; Gálvez-Mariscal, A; Alvarez-Buylla, E R; Piñero, D

    2011-10-01

    Over 95% of the currently cultivated cotton was domesticated from Gossypium hirsutum, which originated and diversified in Mexico. Demographic and genetic studies of this species at its centre of origin and diversification are lacking, although they are critical for cotton conservation and breeding. We investigated the actual and potential distribution of wild cotton populations, as well as the contribution of historical and recent gene flow in shaping cotton genetic diversity and structure. We evaluated historical gene flow using chloroplast microsatellites and recent gene flow through the assessment of transgene presence in wild cotton populations, exploiting the fact that genetically modified cotton has been planted in the North of Mexico since 1996. Assessment of geographic structure through Bayesian spatial analysis, BAPS and Genetic Algorithm for Rule-set Production (GARP), suggests that G. hirsutum seems to conform to a metapopulation scheme, with eight distinct metapopulations. Despite evidence for long-distance gene flow, genetic variation among the metapopulations of G. hirsutum is high (He = 0.894 ± 0.01). We identified 46 different haplotypes, 78% of which are unique to a particular metapopulation, in contrast to a single haplotype detected in cotton cultivars. Recent gene flow was also detected (m = 66/270 = 0.24), with four out of eight metapopulations having transgenes. We discuss the implications of the data presented here with respect to the conservation and future breeding of cotton populations and genetic diversity at its centre of crop origin. © 2011 Blackwell Publishing Ltd.

  4. Introgression of genes for cotton leaf curl virus resistance and increased fiber strength from Gossypium stocksii into upland cotton (G. hirsutum).

    Science.gov (United States)

    Nazeer, W; Ahmad, S; Mahmood, K; Tipu, A L; Mahmood, A; Zhou, B

    2014-02-21

    Cotton leaf curl virus disease is a major hurdle for successful cotton production in Pakistan. There has been considerable economic loss due to this disease during the last decade. It would be desirable to have cotton varieties resistant to this disease. We explored the possibility of transferring virus resistant genes from the wild species Gossypium stocksii into MNH-786, a cultivar of G. hirsutum. Hybridization was done under field condition at the Cotton Research Station, Multan, during 2010-11. Boll shedding was controlled by application of exogenous hormones. F1 seeds were treated with 0.03% colchicine solution for 6 h and germinated. Cytological observations at peak squaring/flowering stage showed that these plants were hexaploid, having 2n = 6x = 78 chromosomes. The F1 plants showed intermediate expression for leaf size, leaf area, petiole length, bracteole number and size, bracteole area, bracteole dentation, flower size, pedicel size, and petal number and size. Moreover it possessed high fiber strength of 54.4 g/tex, which is 54% greater than that of the check variety, i.e. MNH-786 (G. hirsutum). The F1 population did not show any symptom of CLCuVD in the field, tested by grafting with CLCuVD susceptible rootstock (var. S12). We conclude that it is possible to transfer CLCuVD resistance and high fiber strength from G. stocksii to G. hirsutum.

  5. Suppression of cotton leaf curl disease symptoms in Gossypium hirsutum through over expression of host-encoded miRNAs.

    Science.gov (United States)

    Akmal, Mohd; Baig, Mirza S; Khan, Jawaid A

    2017-12-10

    Cotton leaf curl disease (CLCuD), a major factor resulting in the enormous yield losses in cotton crop, is caused by a distinct monopartite begomovirus in association with Cotton leaf curl Multan betasatellite (CLCuMB). Micro(mi)RNAs are known to regulate gene expression in eukaryotes, including antiviral defense in plants. In a previous study, we had computationally identified a set of cotton miRNAs, which were shown to have potential targets in the genomes of Cotton leaf curl Multan virus (CLCuMuV) and CLCuMB at multiple loci. In the current study, effect of Gossypium arboreum-encoded miRNAs on the genome of CLCuMuV and CLCuMB was investigated in planta. Two computationally predicted cotton-encoded miRNAs (miR398 and miR2950) that showed potential to bind multiple Open Reading Frames (ORFs; C1, C4, V1, and non- coding intergenic region) of CLCuMuV, and (βC1) of CLCuMB were selected. Functional validation of miR398 and miR2950 was done by overexpression approach in G. hirsutum var. HS6. A total of ten in vitro cotton plants were generated from independent events and subjected to biological and molecular analyses. Presence of the respective Precursor (pre)-miRNA was confirmed through PCR and Southern blotting, and their expression level was assessed by semi quantitative RT-PCR, Real Time quantitative PCR and northern hybridization in the PCR-positive lines. Southern hybridization revealed 2-4 copy integration of T-DNA in the genome of the transformed lines. Remarkably, expression of pre-miRNAs was shown up to 5.8-fold higher in the transgenic (T 0 ) lines as revealed by Real Time PCR. The virus resistance was monitored following inoculation of the transgenic cotton lines with viruliferous whitefly (Bemisia tabaci) insect vector. After inoculation, four of the transgenic lines remained apparently symptom free. While a very low titre of viral DNA could be detected by Rolling circle amplification, betasatellite responsible for symptom induction could not be detected

  6. A New Synthetic Amphiploid (AADDAA) between Gossypium hirsutum and G. arboreum Lays the Foundation for Transferring Resistances to Verticillium and Drought

    Science.gov (United States)

    Chen, Yu; Wang, Yingying; Zhao, Ting; Yang, Jianwei; Feng, Shouli; Nazeer, Wajad; Zhang, Tianzhen; Zhou, Baoliang

    2015-01-01

    Gossypium arboreum, a cultivated cotton species (2n = 26, AA) native to Asia, possesses invaluable characteristics unavailable in the tetraploid cultivated cotton gene pool, such as resistance to pests and diseases and tolerance to abiotic stresses. However, it is quite difficult to transfer favorable traits into Upland cotton through conventional methods due to the cross-incompatibility of G. hirsutum (2n = 52, AADD) and G. arboreum. Here, we improved an embryo rescue technique to overcome the cross-incompatibility between these two parents for transferring favorable genes from G. arboreum into G. hirsutum. Our results indicate that MSB2K supplemented with 0.5 mgl-1 kinetin and 250 mg-1 casein hydrolysate is an efficient initial medium for rescuing early (3 d after pollination) hybrid embryos. Eight putative hybrids were successfully obtained, which were further verified and characterized by cytology, molecular markers and morphological analysis. The putative hybrids were subsequently treated with different concentrations of colchicine solution to double their chromosomes. The results demonstrate that four putative hybrid plants were successfully chromosome-doubled by treatment with 0.1% colchicine for 24 h and become amphiploid, which were confirmed by cytological observation, self-fertilization and backcrossing. Preliminary assessments of resistance at seedling stage indicate that the synthetic amphiploid showed highly resistant to Verticillium and drought. The synthetic amphiploid between G. hirsutum × G. arboreum would lay the foundation for developing G. arboreum-introgressed lines with the uniform genetic background of G. hirsutum acc TM-1, which would greatly enhance and simplify the mining, isolation, characterization, cloning and use of G. arboreum-specific desirable genes in future cotton breeding programs. PMID:26061996

  7. A New Synthetic Amphiploid (AADDAA between Gossypium hirsutum and G. arboreum Lays the Foundation for Transferring Resistances to Verticillium and Drought.

    Directory of Open Access Journals (Sweden)

    Yu Chen

    Full Text Available Gossypium arboreum, a cultivated cotton species (2n = 26, AA native to Asia, possesses invaluable characteristics unavailable in the tetraploid cultivated cotton gene pool, such as resistance to pests and diseases and tolerance to abiotic stresses. However, it is quite difficult to transfer favorable traits into Upland cotton through conventional methods due to the cross-incompatibility of G. hirsutum (2n = 52, AADD and G. arboreum. Here, we improved an embryo rescue technique to overcome the cross-incompatibility between these two parents for transferring favorable genes from G. arboreum into G. hirsutum. Our results indicate that MSB2K supplemented with 0.5 mg l(-1 kinetin and 250 mg(-1 casein hydrolysate is an efficient initial medium for rescuing early (3 d after pollination hybrid embryos. Eight putative hybrids were successfully obtained, which were further verified and characterized by cytology, molecular markers and morphological analysis. The putative hybrids were subsequently treated with different concentrations of colchicine solution to double their chromosomes. The results demonstrate that four putative hybrid plants were successfully chromosome-doubled by treatment with 0.1% colchicine for 24 h and become amphiploid, which were confirmed by cytological observation, self-fertilization and backcrossing. Preliminary assessments of resistance at seedling stage indicate that the synthetic amphiploid showed highly resistant to Verticillium and drought. The synthetic amphiploid between G. hirsutum × G. arboreum would lay the foundation for developing G. arboreum-introgressed lines with the uniform genetic background of G. hirsutum acc TM-1, which would greatly enhance and simplify the mining, isolation, characterization, cloning and use of G. arboreum-specific desirable genes in future cotton breeding programs.

  8. A New Synthetic Amphiploid (AADDAA) between Gossypium hirsutum and G. arboreum Lays the Foundation for Transferring Resistances to Verticillium and Drought.

    Science.gov (United States)

    Chen, Yu; Wang, Yingying; Zhao, Ting; Yang, Jianwei; Feng, Shouli; Nazeer, Wajad; Zhang, Tianzhen; Zhou, Baoliang

    2015-01-01

    Gossypium arboreum, a cultivated cotton species (2n = 26, AA) native to Asia, possesses invaluable characteristics unavailable in the tetraploid cultivated cotton gene pool, such as resistance to pests and diseases and tolerance to abiotic stresses. However, it is quite difficult to transfer favorable traits into Upland cotton through conventional methods due to the cross-incompatibility of G. hirsutum (2n = 52, AADD) and G. arboreum. Here, we improved an embryo rescue technique to overcome the cross-incompatibility between these two parents for transferring favorable genes from G. arboreum into G. hirsutum. Our results indicate that MSB2K supplemented with 0.5 mg l(-1) kinetin and 250 mg(-1) casein hydrolysate is an efficient initial medium for rescuing early (3 d after pollination) hybrid embryos. Eight putative hybrids were successfully obtained, which were further verified and characterized by cytology, molecular markers and morphological analysis. The putative hybrids were subsequently treated with different concentrations of colchicine solution to double their chromosomes. The results demonstrate that four putative hybrid plants were successfully chromosome-doubled by treatment with 0.1% colchicine for 24 h and become amphiploid, which were confirmed by cytological observation, self-fertilization and backcrossing. Preliminary assessments of resistance at seedling stage indicate that the synthetic amphiploid showed highly resistant to Verticillium and drought. The synthetic amphiploid between G. hirsutum × G. arboreum would lay the foundation for developing G. arboreum-introgressed lines with the uniform genetic background of G. hirsutum acc TM-1, which would greatly enhance and simplify the mining, isolation, characterization, cloning and use of G. arboreum-specific desirable genes in future cotton breeding programs.

  9. Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Lee, Mi-Kyung; Zhang, Yang; Zhang, Meiping; Goebel, Mark; Kim, Hee Jin; Triplett, Barbara A; Stelly, David M; Zhang, Hong-Bin

    2013-03-28

    Cotton, one of the world's leading crops, is important to the world's textile and energy industries, and is a model species for studies of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. Here, we report the construction of a plant-transformation-competent binary bacterial artificial chromosome (BIBAC) library and comparative genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.) with one of its diploid putative progenitor species, G. raimondii Ulbr. We constructed the cotton BIBAC library in a vector competent for high-molecular-weight DNA transformation in different plant species through either Agrobacterium or particle bombardment. The library contains 76,800 clones with an average insert size of 135 kb, providing an approximate 99% probability of obtaining at least one positive clone from the library using a single-copy probe. The quality and utility of the library were verified by identifying BIBACs containing genes important for fiber development, fiber cellulose biosynthesis, seed fatty acid metabolism, cotton-nematode interaction, and bacterial blight resistance. In order to gain an insight into the Upland cotton genome and its relationship with G. raimondii, we sequenced nearly 10,000 BIBAC ends (BESs) randomly selected from the library, generating approximately one BES for every 250 kb along the Upland cotton genome. The retroelement Gypsy/DIRS1 family predominates in the Upland cotton genome, accounting for over 77% of all transposable elements. From the BESs, we identified 1,269 simple sequence repeats (SSRs), of which 1,006 were new, thus providing additional markers for cotton genome research. Surprisingly, comparative sequence analysis showed that Upland cotton is much more diverged from G. raimondii at the genomic sequence level than expected. There seems to be no significant difference between the relationships of the Upland cotton D- and A-subgenomes with the G. raimondii genome, even though G

  10. Cotton (Gossypium hirsutum) 14-3-3 proteins participate in regulation of fibre initiation and elongation by modulating brassinosteroid signalling.

    Science.gov (United States)

    Zhou, Ying; Zhang, Ze-Ting; Li, Mo; Wei, Xin-Zheng; Li, Xiao-Jie; Li, Bing-Ying; Li, Xue-Bao

    2015-02-01

    Cotton (Gossypium hirsutum) fibre is an important natural raw material for textile industry in the world. Understanding the molecular mechanism of fibre development is important for the development of future cotton varieties with superior fibre quality. In this study, overexpression of Gh14-3-3L in cotton promoted fibre elongation, leading to an increase in mature fibre length. In contrast, suppression of expression of Gh14-3-3L, Gh14-3-3e and Gh14-3-3h in cotton slowed down fibre initiation and elongation. As a result, the mature fibres of the Gh14-3-3 RNAi transgenic plants were significantly shorter than those of wild type. This 'short fibre' phenotype of the 14-3-3 RNAi cotton could be partially rescued by application of 2,4-epibrassinolide (BL). Expression levels of the BR-related and fibre-related genes were altered in the Gh14-3-3 transgenic fibres. Furthermore, we identified Gh14-3-3 interacting proteins (including GhBZR1) in cotton. Site mutation assay revealed that Ser163 in GhBZR1 and Lys51/56/53 in Gh14-3-3L/e/h were required for Gh14-3-3-GhBZR1 interaction. Nuclear localization of GhBZR1 protein was induced by BR, and phosphorylation of GhBZR1 by GhBIN2 kinase was helpful for its binding to Gh14-3-3 proteins. Additionally, 14-3-3-regulated GhBZR1 protein may directly bind to GhXTH1 and GhEXP promoters to regulate gene expression for responding rapid fibre elongation. These results suggested that Gh14-3-3 proteins may be involved in regulating fibre initiation and elongation through their interacting with GhBZR1 to modulate BR signalling. Thus, our study provides the candidate intrinsic genes for improving fibre yield and quality by genetic manipulation. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. QTL delineation for five fiber quality traits based on an intra-specific Gossypium hirsutum L. recombinant inbred line population.

    Science.gov (United States)

    Jia, Xiaoyun; Wang, Hantao; Pang, Chaoyou; Ma, Qifeng; Su, Junji; Wei, Hengling; Song, Meizhen; Fan, Shuli; Yu, Shuxun

    2018-02-08

    Gossypium hirsutum L. is the most important fiber crop worldwide and contributes to more than 95% of global cotton production. Marker-assisted selection (MAS) is an effective approach for improving fiber quality, and quantitative trait loci (QTL) mapping of fiber quality traits is important for cotton breeding. In this study, a permanent intra-specific recombinant inbred line (RIL) population containing 137 families was used for fiber quality testing. Based on a previously reported high-density genetic map with an average marker distance of 0.63 cM, 186 additive QTLs were obtained for five fiber quality traits over five consecutive years, including 39 for fiber length (FL), 36 for fiber strength (FS), 50 for fiber uniformity (FU), 33 for micronaire (MC) and 28 for fiber elongation (FE). Three stable QTLs, qMC-A4-1, qMC-D2-3 and qFS-D9-1, were detected in four datasets, and another eight stable QTLs, qMC-A4-2, qMC-D11-2, qFU-A9-1, qFU-A10-4, qFS-D11-1, qFL-D9-2, qFL-D11-1 and qFE-A3-2, were detected in three datasets. The annotated genes in these 11 stable QTLs were collected, and these genes included many transcription factors with functions during fiber development. 33 QTL coincidence regions were found, and these involved nearly half of the total QTLs. Four chromosome regions containing at least 6 QTLs were promising for fine mapping. In addition, 41 pairs of epistatic QTLs (e-QTLs) were screened, including 6 for FL, 30 for FS, 2 for FU and 3 for MC. The identification of stable QTLs adds valuable information for further QTL fine mapping and gene positional cloning for fiber quality genetic detection and provides useful markers for further molecular breeding in enhancing fiber quality.

  12. Genome-Wide Analysis of the NF-YB Gene Family in Gossypium hirsutum L. and Characterization of the Role of GhDNF-YB22 in Embryogenesis.

    Science.gov (United States)

    Chen, Yanli; Yang, Zhaoen; Xiao, Yanqing; Wang, Peng; Wang, Ye; Ge, Xiaoyang; Zhang, Chaojun; Zhang, Xianlong; Li, Fuguang

    2018-02-06

    Members of the NF-YB transcription factor gene family play important roles in diverse processes related to plant growth and development, such as seed development, drought tolerance, and flowering time. However, the function of NF-YB genes in cotton remains unclear. A total of 23, 24, and 50 NF-YB genes were identified in Gossypium arboreum ( G. arboreum ), Gossypium raimondii ( G. raimondii ), and G. hirsutum , respectively. A systematic phylogenetic analysis was carried out in G. arboretum , G. raimondii , G. hirsutum , Arabidopsis thaliana , cacao, rice and, sorghum, where the 150 NF-YB genes were divided into five groups (α-ε). Of these groups, α is the largest clade, and γ contains the LEC1 type NF-YB proteins. Syntenic analyses revealed that paralogues of NF-YB genes in G. hirsutum exhibited good collinearity. Owing to segmental duplication within the A sub-genome (A t ) and D sub-genome (D t ), there was an expanded set of NF-YB genes in G. hirsutum . Furthermore, we investigated the structures of exons, introns, and conserved motifs of NF-YB genes in upland cotton. Most of the NF-YB genes had only one exon, and the genes from the same clade exhibited a similar motif pattern. Expression data show that most NF-YB genes were expressed ubiquitously, and only a few genes were highly expressed in specific tissues, as confirmed by quantitative real-time PCR (qRT-PCR) analysis. The overexpression of GhDNF-YB22 gene, predominantly expressed in embryonic tissues, indicates that GhDNF-YB22 may affect embryogenesis in cotton. This study is the first comprehensive characterization of the GhNF-YB gene family in cotton, and showed that NF-YB genes could be divided into five clades. The duplication events that occurred over the course of evolution were the major impetus for NF-YB gene expansion in upland cotton. Collectively, this work provides insight into the evolution of NF-YB in cotton and further our knowledge of this commercially important species.

  13. Distribution and differentiation of wild, feral, and cultivated populations of perennial upland cotton (Gossypium hirsutum L. in Mesoamerica and the Caribbean.

    Directory of Open Access Journals (Sweden)

    Geo Coppens d'Eeckenbrugge

    Full Text Available Perennial forms of Gossypium hirsutum are classified under seven races. Five Mesoamerican races would have been derived from the wild race 'yucatanense' from northern Yucatán. 'Marie-Galante', the main race in the Caribbean, would have developed from introgression with G. barbadense. The racial status of coastal populations from the Caribbean has not been clearly defined. We combined Ecological Niche Modeling with an analysis of SSR marker diversity, to elucidate the relationships among cultivated, feral and wild populations of perennial cottons. Out of 954 records of occurrence in Mesoamerica and the Caribbean, 630 were classified into four categories cultivated, feral (disturbed and secondary habitats, wild/feral (protected habitats, and truly wild cotton (TWC populations. The widely distributed three first categories cannot be differentiated on ecological grounds, indicating they mostly belong to the domesticated pool. In contrast, TWC are restricted to the driest and hottest littoral habitats, in northern Yucatán and in the Caribbean (from Venezuela to Florida, as confirmed by their climatic envelope in the factorial analysis. Extrapolating this TWC climatic model to South America and the Pacific Ocean points towards places where other wild representatives of tetraploid Gossypium species have been encountered. The genetic analysis sample comprised 42 TWC accessions from 12 sites and 68 feral accessions from 18 sites; at nine sites, wild and feral accessions were collected in close vicinity. Principal coordinate analysis, neighbor joining, and STRUCTURE consistently showed a primary divergence between TWC and feral cottons, and a secondary divergence separating 'Marie-Galante' from all other feral accessions. This strong genetic structure contrasts strikingly with the absence of geographic differentiation. Our results show that TWC populations of Mesoamerica and the Caribbean constitute a homogenous gene pool. Furthermore, the relatively

  14. Distribution and differentiation of wild, feral, and cultivated populations of perennial upland cotton (Gossypium hirsutum L.) in Mesoamerica and the Caribbean.

    Science.gov (United States)

    Coppens d'Eeckenbrugge, Geo; Lacape, Jean-Marc

    2014-01-01

    Perennial forms of Gossypium hirsutum are classified under seven races. Five Mesoamerican races would have been derived from the wild race 'yucatanense' from northern Yucatán. 'Marie-Galante', the main race in the Caribbean, would have developed from introgression with G. barbadense. The racial status of coastal populations from the Caribbean has not been clearly defined. We combined Ecological Niche Modeling with an analysis of SSR marker diversity, to elucidate the relationships among cultivated, feral and wild populations of perennial cottons. Out of 954 records of occurrence in Mesoamerica and the Caribbean, 630 were classified into four categories cultivated, feral (disturbed and secondary habitats), wild/feral (protected habitats), and truly wild cotton (TWC) populations. The widely distributed three first categories cannot be differentiated on ecological grounds, indicating they mostly belong to the domesticated pool. In contrast, TWC are restricted to the driest and hottest littoral habitats, in northern Yucatán and in the Caribbean (from Venezuela to Florida), as confirmed by their climatic envelope in the factorial analysis. Extrapolating this TWC climatic model to South America and the Pacific Ocean points towards places where other wild representatives of tetraploid Gossypium species have been encountered. The genetic analysis sample comprised 42 TWC accessions from 12 sites and 68 feral accessions from 18 sites; at nine sites, wild and feral accessions were collected in close vicinity. Principal coordinate analysis, neighbor joining, and STRUCTURE consistently showed a primary divergence between TWC and feral cottons, and a secondary divergence separating 'Marie-Galante' from all other feral accessions. This strong genetic structure contrasts strikingly with the absence of geographic differentiation. Our results show that TWC populations of Mesoamerica and the Caribbean constitute a homogenous gene pool. Furthermore, the relatively low genetic

  15. Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis.

    Science.gov (United States)

    Chastain, Daryl R; Snider, John L; Collins, Guy D; Perry, Calvin D; Whitaker, Jared; Byrd, Seth A

    2014-11-01

    Much effort has been expended to improve irrigation efficiency and drought tolerance of agronomic crops; however, a clear understanding of the physiological mechanisms that interact to decrease source strength and drive yield loss has not been attained. To elucidate the underlying mechanisms contributing to inhibition of net carbon assimilation under drought stress, three cultivars of Gossypium hirsutum were grown in the field under contrasting irrigation regimes during the 2012 and 2013 growing season near Camilla, Georgia, USA. Physiological measurements were conducted on three sample dates during each growing season (providing a broad range of plant water status) and included, predawn and midday leaf water potential (ΨPD and ΨMD), gross and net photosynthesis, dark respiration, photorespiration, and chlorophyll a fluorescence. End-of-season lint yield was also determined. ΨPD ranged from -0.31 to -0.95MPa, and ΨMD ranged from -1.02 to -2.67MPa, depending upon irrigation regime and sample date. G. hirsutum responded to water deficit by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis, thereby limiting PN and decreasing lint yield (lint yield declines observed during the 2012 growing season only). Conversely, even extreme water deficit, causing a 54% decline in PN, did not negatively affect actual quantum yield, maximum quantum yield, or photosynthetic electron transport. It is concluded that PN is primarily limited in drought-stressed G. hirsutum by decreased stomatal conductance, along with increases in respiratory and photorespiratory carbon losses, not inhibition or down-regulation of electron transport through photosystem II. It is further concluded that ΨPD is a reliable indicator of drought stress and the need for irrigation in field-grown cotton. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. The PIN gene family in cotton (Gossypium hirsutum): genome-wide identification and gene expression analyses during root development and abiotic stress responses.

    Science.gov (United States)

    He, Peng; Zhao, Peng; Wang, Limin; Zhang, Yuzhou; Wang, Xiaosi; Xiao, Hui; Yu, Jianing; Xiao, Guanghui

    2017-07-03

    Cell elongation and expansion are significant contributors to plant growth and morphogenesis, and are often regulated by environmental cues and endogenous hormones. Auxin is one of the most important phytohormones involved in the regulation of plant growth and development and plays key roles in plant cell expansion and elongation. Cotton fiber cells are a model system for studying cell elongation due to their large size. Cotton is also the world's most utilized crop for the production of natural fibers for textile and garment industries, and targeted expression of the IAA biosynthetic gene iaaM increased cotton fiber initiation. Polar auxin transport, mediated by PIN and AUX/LAX proteins, plays a central role in the control of auxin distribution. However, very limited information about PIN-FORMED (PIN) efflux carriers in cotton is known. In this study, 17 PIN-FORMED (PIN) efflux carrier family members were identified in the Gossypium hirsutum (G. hirsutum) genome. We found that PIN1-3 and PIN2 genes originated from the At subgenome were highly expressed in roots. Additionally, evaluation of gene expression patterns indicated that PIN genes are differentially induced by various abiotic stresses. Furthermore, we found that the majority of cotton PIN genes contained auxin (AuxREs) and salicylic acid (SA) responsive elements in their promoter regions were significantly up-regulated by exogenous hormone treatment. Our results provide a comprehensive analysis of the PIN gene family in G. hirsutum, including phylogenetic relationships, chromosomal locations, and gene expression and gene duplication analyses. This study sheds light on the precise roles of PIN genes in cotton root development and in adaption to stress responses.

  17. Gossypium hirsutum L.

    Indian Academy of Sciences (India)

    cates recovery of mutants from high-energy-radiation treat- ments (Kohel et ... Field view of a just open pink flower on the mutant plant. We took great ... yield per plant (g). Lint (%). 33.3. 35.3. 34.5. 36.5. 35.8. Seed. Fuzzy. Fuzzy. Fuzzy. Fuzzy. Fuzzy. Lint colour. White. White. White. White. White. Boll weight (g). 2.97. 3.0. 3.5.

  18. Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Rathore, Keerti S; Campbell, LeAnne M; Sherwood, Shanna; Nunes, Eugenia

    2015-01-01

    Cotton continues to be a crop of great economic importance in many developing and some developed countries. Cotton plants expressing the Bt gene to deter some of the major pests have been enthusiastically and widely accepted by the farmers in three of the major producing countries, i.e., China, India, and the USA. Considering the constraints related to its production and the wide variety of products derived from the cotton plant, it offers several target traits that can be improved through genetic engineering. Thus, there is a great need to accelerate the application of biotechnological tools for cotton improvement. This requires a simple, yet robust gene delivery/transformant recovery system. Recently, a protocol, involving large-scale, mechanical isolation of embryonic axes from germinating cottonseeds followed by direct transformation of the meristematic cells has been developed by an industrial laboratory. However, complexity of the mechanical device and the patent restrictions are likely to keep this method out of reach of most academic laboratories. In this chapter, we describe the method developed in our laboratory that has undergone further refinements and involves Agrobacterium-mediated transformation of cotton cells, selection of stable transgenic callus lines, and recovery of plants via somatic embryogenesis.

  19. Gossypium hirsutum L.

    Indian Academy of Sciences (India)

    dell

    . 0.387. 0.300. Admix. M002. Shi 09. Xinjiang. 0.978. 0.010. 0.012. 1. M003. Ji feng 107. Hebei. 0.631. 0.215. 0.154. 1. M004. Jin mian 31. Shanxi. 0.050. 0.412. 0.537. 3. M005. Lu 25A. Shandong. 0.956. 0.020. 0.024. 1. M006. Yin mian 1.

  20. Gossypium hirsutum L.

    Indian Academy of Sciences (India)

    dell

    Campbell B.T., Williams V.E., Park W. 2009 Using molecular markers and field performance data to characterize the Pee Dee cotton germplasm resources. Euphytica 169, 285–301. doi:10.1007/s10681-009-9917-4. Chen G. and Du X.M. 2006 Genetic diversity of source germplasm of upland cotton in China as determined ...

  1. Controle de plantas daninhas com cyanazine aplicado em mistura com outros herbicidas, na cultura do algodão (Gossypium hirsutum L. Weed control in cotton (Gossypium hirsutum L. with cyanazine and other herbicides

    Directory of Open Access Journals (Sweden)

    Julio Pedro Laca-Buendia

    1985-12-01

    Full Text Available Com a finalidade de estudar a mistura de tanque mais eficiente com cyanazine em aplicação de pré-emergência na cultura algodoeira (Gossypium hirsutum L. , foram estudados os seguintes tratamentos: cyanazine + diuron nas doses de 0,8 + 0,8 kg i.a/ha e 1,0 + 1,0 kg i.a/ha; cyanazine+ oryzalin , nas do sés de 1,2 + 0,8 kg i.a/ha e 1,6 + 1,2 kg i.a/h a; cyanazyne + metol a chlor, nas doses de 1,4 + 2,0 kg i.a/ha e 1,75 + 2,52 kg i.a/ ha;cianazine na dose de 1,75 kg i.a /ha; oryzalin na dose de 1,12 kg i.a/ha; metol achlor na dose de 2,52 kg i.a /ha e diuron na dose de 1,6 kg i.a /ha. Para efeito de comparação, utilizou-se uma testemunha sem capina e outra com capina manual. Nenhum tratamento apresentou injúria para as plantas de algodão e não houve diferenças significativas para o "stand" inicial. Já no "stand" final, a testemunha sem capina apresentou o menor número de plantas, sendo que não houve diferenças significativas dos outros tratamentos com a testemunha capinada. Para o rendimento, a mistura cyanazine + metolachior em ambas as doses estudadas, não apresentaram diferenças significativas da testemunha capinada. Quanto à altura da planta, peso de 100 sementes, porcentagem e índice de fibras não houve diferenças significativas entre os tratamentos estudados, somente o peso do capulho foi afetado pelo oryzalin. Pela avaliação visual (EWRC 1 a 9*, os herbicidas apres entaram um controle satisfatório somente até os 30 dias após aplicação, sendo que a mistura cyanazine + metolachlor foi efici ente quanto a testemunha capinada. No controle da Portulaca oleracea , a mistura cyanazine + oryzalin na maior dose e oryzalin apresentaram 71,4% de controle ate os 30 dias e 79,4% e 82,4%, respectivamente, até 45 dias da aplicação. Para Amaranthus sp., à exceção da cyanazine e cyanazine + diuron nas doses menores, não apresentaram nenhum controle, sendo que os outros herbicidas controlaram com eficiência superior a 70

  2. Diversity of endophytic fungi from different Verticillium-wilt-resistant Gossypium hirsutum and evaluation of antifungal activity against Verticillium dahliae in vitro.

    Science.gov (United States)

    Li, Zhi-Fang; Wang, Ling-Fei; Feng, Zi-Li; Zhao, Li-Hong; Shi, Yong-Qiang; Zhu, He-Qin

    2014-09-01

    Cotton plants were sampled and ranked according to their resistance to Verticillium wilt. In total, 642 endophytic fungi isolates representing 27 genera were recovered from Gossypium hirsutum root, stem, and leaf tissues, but were not uniformly distributed. More endophytic fungi appeared in the leaf (391) compared with the root (140) and stem (111) sections. However, no significant difference in the abundance of isolated endophytes was found among resistant cotton varieties. Alternaria exhibited the highest colonization frequency (7.9%), followed by Acremonium (6.6%) and Penicillium (4.8%). Unlike tolerant varieties, resistant and susceptible ones had similar endophytic fungal population compositions. In three Verticillium-wilt-resistant cotton varieties, fungal endophytes from the genus Alternaria were most frequently isolated, followed by Gibberella and Penicillium. The maximum concentration of dominant endophytic fungi was observed in leaf tissues (0.1797). The evenness of stem tissue endophytic communities (0.702) was comparatively more uniform than the other two tissues. Eighty endophytic fungi selected from 27 genera were evaluated for their inhibition activity against highly virulent Verticillium dahliae isolate Vd080 in vitro. Thirty-nine isolates exhibited fungistasis against the pathogen at varying degrees. Seven species, having high growth inhibition rates (≥75%), exhibited strong antifungal activity against V. dahliae. The antifungal activity of both volatile and nonvolatile metabolites was also investigated. The nonvolatile substances produced by CEF-818 (Penicillium simplicissimum), CEF-325 (Fusarium solani), CEF-714 (Leptosphaeria sp.), and CEF-642 (Talaromyces flavus) completely inhibited V. dahliae growth. These findings deepen our understanding of cotton-endophyte interactions and provide a platform for screening G. hirsutum endophytes with biocontrol potential.

  3. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis.

    Science.gov (United States)

    Sun, Xiang; Gong, Si-Ying; Nie, Xiao-Ying; Li, Yang; Li, Wen; Huang, Geng-Qing; Li, Xue-Bao

    2015-07-01

    Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers. © 2014 Scandinavian Plant Physiology Society.

  4. High Resolution Consensus Mapping of Quantitative Trait Loci for Fiber Strength, Length and Micronaire on Chromosome 25 of the Upland Cotton (Gossypium hirsutum L..

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    Full Text Available Cotton (Gossypium hirsutum L. is an important agricultural crop that provides renewable natural fiber resources for the global textile industry. Technological developments in the textile industry and improvements in human living standards have increased the requirement for supplies and better quality cotton. Upland cotton 0-153 is an elite cultivar harboring strong fiber strength genes. To conduct quantitative trait locus (QTL mapping for fiber quality in 0-153, we developed a population of 196 recombinant inbred lines (RILs from a cross between 0-153 and sGK9708. The fiber quality traits in 11 environments were measured and a genetic linkage map of chromosome 25 comprising 210 loci was constructed using this RIL population, mainly using simple sequence repeat markers and single nucleotide polymorphism markers. QTLs were identified across diverse environments using the composite interval mapping method. A total of 37 QTLs for fiber quality traits were identified on chromosome 25, of which 17 were stably expressed in at least in two environments. A stable fiber strength QTL, qFS-chr25-4, which was detected in seven environments and was located in the marker interval between CRI-SNP120491 and BNL2572, could explain 6.53%-11.83% of the observed phenotypic variations. Meta-analysis also confirmed the above QTLs with previous reports. Application of these QTLs could contribute to improving fiber quality and provide information for marker-assisted selection.

  5. High Resolution Consensus Mapping of Quantitative Trait Loci for Fiber Strength, Length and Micronaire on Chromosome 25 of the Upland Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Zhang, Zhen; Li, Junwen; Muhammad, Jamshed; Cai, Juan; Jia, Fei; Shi, Yuzhen; Gong, Juwu; Shang, Haihong; Liu, Aiying; Chen, Tingting; Ge, Qun; Palanga, Koffi Kibalou; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Li, Wei; Sun, Linyang; Gong, Wankui; Yuan, Youlu

    2015-01-01

    Cotton (Gossypium hirsutum L.) is an important agricultural crop that provides renewable natural fiber resources for the global textile industry. Technological developments in the textile industry and improvements in human living standards have increased the requirement for supplies and better quality cotton. Upland cotton 0-153 is an elite cultivar harboring strong fiber strength genes. To conduct quantitative trait locus (QTL) mapping for fiber quality in 0-153, we developed a population of 196 recombinant inbred lines (RILs) from a cross between 0-153 and sGK9708. The fiber quality traits in 11 environments were measured and a genetic linkage map of chromosome 25 comprising 210 loci was constructed using this RIL population, mainly using simple sequence repeat markers and single nucleotide polymorphism markers. QTLs were identified across diverse environments using the composite interval mapping method. A total of 37 QTLs for fiber quality traits were identified on chromosome 25, of which 17 were stably expressed in at least in two environments. A stable fiber strength QTL, qFS-chr25-4, which was detected in seven environments and was located in the marker interval between CRI-SNP120491 and BNL2572, could explain 6.53%-11.83% of the observed phenotypic variations. Meta-analysis also confirmed the above QTLs with previous reports. Application of these QTLs could contribute to improving fiber quality and provide information for marker-assisted selection.

  6. iTRAQ-facilitated proteomic profiling of anthers from a photosensitive male sterile mutant and wild-type cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Liu, Ji; Pang, Chaoyou; Wei, Hengling; Song, Meizhen; Meng, Yanyan; Ma, Jianhui; Fan, Shuli; Yu, Shuxun

    2015-08-03

    Male sterility is a common phenomenon in flowering plants, and it has been successfully developed in several crops by taking advantage of heterosis. Cotton (Gossypium hirsutum L.) is an important economic crop, used mainly for the production of textile fiber. Using a space mutation breeding technique, a novel photosensitive genetic male sterile mutant CCRI9106 was isolated from the wild-type upland cotton cultivar CCRI040029. To use CCRI9106 in cotton hybrid breeding, it is of great importance to study the molecular mechanisms of its male sterility. Here, histological and iTRAQ-facilitated proteomic analyses of anthers were performed to explore male sterility mechanisms of the mutant. Scanning and transmission electron microscopy of the anthers showed that the development of pollen wall in CCRI9106 was severely defective with a lack of exine formation. At the protein level, 6121 high-confidence proteins were identified and 325 of them showed differential expression patterns between mutant and wild-type anthers. The proteins up- or down-regulated in MT anthers were mainly involved in exine formation, protein degradation, calcium ion binding,etc. These findings provide valuable information on the proteins involved in anther and pollen development, and contribute to elucidate the mechanism of male sterility in upland cotton. Copyright © 2015. Published by Elsevier B.V.

  7. Identification of the group IIa WRKY subfamily and the functional analysis of GhWRKY17 in upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Gu, Lijiao; Li, Libei; Wei, Hengling; Wang, Hantao; Su, Junji; Guo, Yaning; Yu, Shuxun

    2018-01-01

    WRKY transcription factors play important roles in plant defense, stress response, leaf senescence, and plant growth and development. Previous studies have revealed the important roles of the group IIa GhWRKY genes in cotton. To comprehensively analyze the group IIa GhWRKY genes in upland cotton, we identified 15 candidate group IIa GhWRKY genes in the Gossypium hirsutum genome. The phylogenetic tree, intron-exon structure, motif prediction and Ka/Ks analyses indicated that most group IIa GhWRKY genes shared high similarity and conservation and underwent purifying selection during evolution. In addition, we detected the expression patterns of several group IIa GhWRKY genes in individual tissues as well as during leaf senescence using public RNA sequencing data and real-time quantitative PCR. To better understand the functions of group IIa GhWRKYs in cotton, GhWRKY17 (KF669857) was isolated from upland cotton, and its sequence alignment, promoter cis-acting elements and subcellular localization were characterized. Moreover, the over-expression of GhWRKY17 in Arabidopsis up-regulated the senescence-associated genes AtWRKY53, AtSAG12 and AtSAG13, enhancing the plant's susceptibility to leaf senescence. These findings lay the foundation for further analysis and study of the functions of WRKY genes in cotton.

  8. Molecular cloning and characterization of an inducible RNA-dependent RNA polymerase gene, GhRdRP, from cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Gao, Qiuqiang; Liu, Yan; Wang, Meimei; Zhang, Jiedao; Gai, Yingping; Zhu, Changxiang; Guo, Xingqi

    2009-01-01

    The RNA-dependent RNA polymerase (RdRP) cDNA, designated as Gossypium hirsutum RdRP (GhRdRP) was cloned from cotton by rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The full-length cDNA was 3,672 bp in size and encoded an open reading frame (ORF) of 1,110 amino acids which contained the RdRP conserved functional domain and the signature motif DbDGD. Amino acid sequence alignment indicated that GhRdRP shared the highest identity (66.37%) with AtRdRP1 and had homology with other plant, fungal, yeast and nematode RdRPs. The corresponding genomic DNA containing five exons and four introns, was isolated and analyzed. Also a 5'-flanking region was cloned, and a group of putative cis-acting elements were identified. Southern blot analysis revealed a single copy of the GhRdRP gene in cotton genome. The expression analysis by semi-quantitative RT-PCR showed that GhRdRP was induced by salicylic acid (SA), 5-chloroSA (5-CSA) and fungal infection of Rhizoctonia solani Kuhn. The cloning and characterization of the GhRdRP gene will be useful for further studies of biological roles of GhRdRP in plants.

  9. Identification of the group IIa WRKY subfamily and the functional analysis of GhWRKY17 in upland cotton (Gossypium hirsutum L..

    Directory of Open Access Journals (Sweden)

    Lijiao Gu

    Full Text Available WRKY transcription factors play important roles in plant defense, stress response, leaf senescence, and plant growth and development. Previous studies have revealed the important roles of the group IIa GhWRKY genes in cotton. To comprehensively analyze the group IIa GhWRKY genes in upland cotton, we identified 15 candidate group IIa GhWRKY genes in the Gossypium hirsutum genome. The phylogenetic tree, intron-exon structure, motif prediction and Ka/Ks analyses indicated that most group IIa GhWRKY genes shared high similarity and conservation and underwent purifying selection during evolution. In addition, we detected the expression patterns of several group IIa GhWRKY genes in individual tissues as well as during leaf senescence using public RNA sequencing data and real-time quantitative PCR. To better understand the functions of group IIa GhWRKYs in cotton, GhWRKY17 (KF669857 was isolated from upland cotton, and its sequence alignment, promoter cis-acting elements and subcellular localization were characterized. Moreover, the over-expression of GhWRKY17 in Arabidopsis up-regulated the senescence-associated genes AtWRKY53, AtSAG12 and AtSAG13, enhancing the plant's susceptibility to leaf senescence. These findings lay the foundation for further analysis and study of the functions of WRKY genes in cotton.

  10. Comparison of Ionomic and Metabolites Response under Alkali Stress in Old and Young Leaves of Cotton (Gossypium hirsutumL.) Seedlings.

    Science.gov (United States)

    Guo, Rui; Shi, LianXuan; Yang, ChunWu; Yan, ChangRong; Zhong, XiuLi; Liu, Qi; Xia, Xu; Li, HaoRu

    2016-01-01

    Soil salinization is an important agriculture-related environmental problem. Alkali stress and salt stress strongly influence the metabolic balance in plants. Salt and alkali stresses exert varied effects on old and young tissues, which display different adaptive strategies. In this study, we used cotton ( Gossypium hirsutum L.) plants as experimental material to investigate whether alkali stress induces ionic and metabolism changes in old and young leaves of cotton plants exposed to alkali stress. Results showed that alkali stress exerted a considerably stronger growth inhibition on old leaves than on young leaves. Under alkali stress, young leaves can maintain low Na and high K contents and retain relatively stable tricarboxylic acid cycle, resulting in greater accumulation of photosynthetic metabolites. In terms of metabolic response, the young and old leaves clearly displayed different mechanisms of osmotic regulation. The amounts of inositol and mannose significantly increased in both old and young leaves of cotton exposed to alkali stress, and the extent of increase was higher in young leaves than in old leaves. In old leaves, synthesis of amino acids, such as GABA, valine, and serine, was dramatically enhanced, and this phenomenon is favorable for osmotic adjustment and membrane stability. Organs at different developmental stages possibly display different mechanisms of metabolic regulation under stress condition. Thus, we propose that future investigations on alkali stress should use more organs obtained at different developmental stages.

  11. Polyamine and its metabolite H2O2 play a key role in the conversion of embryogenic callus into somatic embryos in upland cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Wen-Han eCheng

    2015-12-01

    Full Text Available The objective of this study was to increase understanding about the mechanism by which polyamines (PAs promote the conversion of embryogenic calli (EC into somatic embryos in cotton (Gossypium hirsutum L.. We measured the levels of endogenous PAs and H2O2, quantified the expression levels of genes involved in the PAs pathway at various stages of cotton somatic embryogenesis (SE, and investigated the effects of exogenous PAs and H2O2 on differentiation and development of embryogenic calli. Putrescine (Put, spermidine (Spd and spermine (Spm significantly increased from the EC stage to the early phase of embryo differentiation. The levels of Put then decreased until the somatic embryo stage whereas Spd and Spm remained nearly the same. The expression profiles of GhADC genes were consistent with changes in Put during cotton SE. The H2O2 concentrations began to increase significantly at the EC stage, during which time both GhPAO1 and GhPAO4 expressions were highest and PAO activity was significantly increased. Exogenous Put, Spd, Spm and H2O2 not only enhanced embryogenic callus growth and embryo formation, but also alleviated the effects of D-arginine and 1, 8-diamino-octane, which are inhibitors of polyamine synthesis and PAO activity. Overall, the results suggest that both PAs and their metabolic product H2O2 are essential for the conversion of EC into somatic embryos in cotton.

  12. Relative contribution of Na+/K+homeostasis, photochemical efficiency and antioxidant defense system to differential salt tolerance in cotton (Gossypium hirsutum L.) cultivars.

    Science.gov (United States)

    Wang, Ning; Qiao, Wenqing; Liu, Xiaohong; Shi, Jianbin; Xu, Qinghua; Zhou, Hong; Yan, Gentu; Huang, Qun

    2017-10-01

    In this study, the role of specific components of different coping strategies to salt load were identified. A pot experiment was conducted with four cotton (Gossypium hirsutum L.) cultivars (differing in salt-sensitivity) under salinity stress. Based on observed responses in growth performance and physiological characteristics, CZ91 was the most tolerant of the four cultivars, followed by cultivars CCRI44 and CCRI49, with Z571 being much more sensitive to salt stress. To perform this tolerant response, they implement different adaptative mechanisms to cope with salt-stress. The superior salt tolerance of CZ91 was conferred by at least three complementary physiological mechanisms: its ability to regulate K + and Na + transport more effectively, its higher photochemical efficiency and better antioxidant defense capacity. However, only one or a few specific components of these defense systems play crucial roles in moderately salt tolerant CCRI44 and CCRI49. Lower ROS load in CCRI44 may be attributed to simultaneous induction of antioxidant defenses by maintaining an unusually high level of SOD, and higher activities of CAT, APX, and POD during salt stress. CCRI49 could reduce the excess generation of ROS not only by maintaining a higher selective absorption of K + over Na + in roots across the membranes through SOS1, AKT1, and HAK5, but also by displaying higher excess-energy dissipation (e.g., higher ETR, P R and qN) during salt stress. Overall, our data provide a mechanistic explanation for differential salt stress tolerance among these cultivars and shed light on the different strategies employed by cotton cultivars to minimize the ill effects of stress. Copyright © 2017. Published by Elsevier Masson SAS.

  13. Genome-wide analysis of salinity-stress induced DNA methylation alterations in cotton (Gossypium hirsutum L.) using the Me-DIP sequencing technology.

    Science.gov (United States)

    Lu, X K; Shu, N; Wang, J J; Chen, X G; Wang, D L; Wang, S; Fan, W L; Guo, X N; Guo, L X; Ye, W W

    2017-06-29

    Cytosine DNA methylation is a significant form of DNA modification closely associated with gene expression in eukaryotes, fungi, animals, and plants. Although the reference genomes of cotton (Gossypium hirsutum L.) have been publically available, the salinity-stress-induced DNA methylome alterations in cotton are not well understood. Here, we constructed a map of genome-wide DNA methylation characteristics of cotton leaves under salt stress using the methylated DNA immunoprecipitation sequencing method. The results showed that the methylation reads on chromosome 9 were most comparable with those on the other chromosomes, but the greatest changes occurred on chromosome 8 under salt stress. The DNA methylation pattern analysis indicated that a relatively higher methylation density was found in the upstream2k and downstream2k elements of the CDS region and CG-islands. Almost 94% of the reads belonged to LTR-gspsy and LTR-copia, and the number of methylation reads in LTR-gypsy was four times greater than that in LTR-copia in both control and stressed samples. The analysis of differentially methylated regions (DMRs) showed that the gene elements upstream2k, intron, and downstream2k were hypomethylated, but the CDS regions were hypermethylated. The GO (Gene Ontology) analysis suggested that the methylated genes were most enriched in cellular processes, metabolic processes, cell parts and catalytic activities, which might be closely correlated with response to NaCl stress. In this study, we completed a genomic DNA methylation profile and conducted a DMR analysis under salt stress, which provided valuable information for the better understanding of epigenetics in response to salt stress in cotton.

  14. Functional characterization of GhAKT1, a novel Shaker-like K⁺ channel gene involved in K⁺ uptake from cotton (Gossypium hirsutum).

    Science.gov (United States)

    Xu, Juan; Tian, Xiaoli; Egrinya Eneji, A; Li, Zhaohu

    2014-07-15

    Shaker-like potassium (K(+)) channels in plants play an important role in K(+) absorption and transport. In this study, we characterized a Shaker-like K(+) channel gene GhAKT1 from the roots of Gossypium hirsutum cv. Liaomian17. Phylogenetic analysis showed that the GhAKT1 belongs to the AKT1-subfamily in the Shaker-like K(+) channel family. Confocal imaging of a GhAKT1-green fluorescent fusion protein (GFP) in transgenic Arabidopsis plants indicated that GhAKT1 is localized in the plasma membrane. Transcript analysis located GhAKT1 predominantly in cotton leaves with low abundance in roots, stem and shoot apex. Similarly, β-glucuronidase (GUS) activity was detected in both leaves and roots of PGhAKT1::GUS transgenic Arabidopsis plants. In roots, the GUS signals appeared in the epidermis, cortex and endodermis and root hairs, suggesting the contribution of GhAKT1 to K(+) uptake. In leaves, GhAKT1 was expressed in differentiated leaf primordial as well as mesophyll cells and veins of expanded leaves, pointing to its involvement in cell elongation and K(+) transport and distribution in leaves. Severe K(+) deficiency did not affect the expression of GhAKT1 gene. GhAKT1-overexpression in either the Arabidopsis wild-type or akt1 mutant enhanced the growth of transgenic seedlings under low K(+) deficiency and raised the net K(+) influx in roots at 100μM external K(+) concentration, within the range of operation of the high-affinity K(+) uptake system. The application of 2mM BaCl2 resulted in net K(+) efflux in roots, and eliminated the differences between GhAKT1-overexpression lines and their acceptors indicating that the K(+) uptake mediated by GhAKT1 is also as Ba(2+)-sensitive as AtAKT1. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Functional characterization of a basic helix-loop-helix (bHLH) transcription factor GhDEL65 from cotton (Gossypium hirsutum).

    Science.gov (United States)

    Shangguan, Xiao-Xia; Yang, Chang-Qing; Zhang, Xiu-Fang; Wang, Ling-Jian

    2016-10-01

    Cotton fiber is proposed to share some similarity with the Arabidopsis thaliana leaf trichome, which is regulated by the MYB-bHLH-WD40 transcription complex. Although several MYB transcription factors and WD40 family proteins in cotton have been characterized, little is known about the role of bHLH family proteins in cotton. Here, we report that GhDEL65, a bHLH protein from cotton (Gossypium hirsutum), is a functional homologue of Arabidopsis GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) in regulating trichome development. Transcripts of GhDEL65 were detected in 0 ∼ 1 days post-anthesis (DPA) ovules and abundant in 3-DPA fibers, implying that GhDEL65 may act in early fiber development. Ectopic expression of GhDEL65 in Arabidopsis gl3 egl3 double mutant partly rescued the trichome development, and constitutive expression of GhDEL65 in wild-type plants led to increased trichome density on rosette leaves and stems, mainly by activating the transcription of two key positive regulators of trichome development, GLABRA1 (GL1) and GLABRA2 (GL2), and suppressed the expression of a R3 single-repeat MYB factor TRIPTYCHON (TRY). GhDEL65 could interact with cotton R2R3 MYB transcription factors GhMYB2 and GhMYB3, as well as the WD40 protein GhTTG3, suggesting that the MYB-bHLH-WD40 protein complex also exists in cotton fiber cell, though its function in cotton fiber development awaits further investigation. © 2016 Scandinavian Plant Physiology Society.

  16. Promoter isolation and characterization of GhAO-like1, a Gossypium hirsutum gene similar to multicopper oxidases that is highly expressed in reproductive organs.

    Science.gov (United States)

    Lambret-Frotté, Julia; Artico, Sinara; Muniz Nardeli, Sarah; Fonseca, Fernando; Brilhante Oliveira-Neto, Osmundo; Grossi-de-Sá, Maria Fatima; Alves-Ferreira, Marcio

    2016-01-01

    Cotton is one of the most economically important cultivated crops. It is the major source of natural fiber for the textile industry and an important target for genetic modification for both biotic stress and herbicide tolerance. Therefore, the characterization of genes and regulatory regions that might be useful for genetic transformation is indispensable. The isolation and characterization of new regulatory regions is of great importance to drive transgene expression in genetically modified crops. One of the major drawbacks in cotton production is pest damage; therefore, the most promising, cost-effective, and sustainable method for pest control is the development of genetically resistant cotton lines. Considering this scenario, our group isolated and characterized the promoter region of a MCO (multicopper oxidase) from Gossypium hirsutum, named GhAO-like1 (ascorbate oxidase-like1). The quantitative expression, together with the in vivo characterization of the promoter region reveals that GhAO-like1 has a flower- and fruit-specific expression pattern. The GUS activity is mainly observed in stamens, as expected considering that the GhAO-like1 regulatory sequence is enriched in cis elements, which have been characterized as a target of reproductive tissue specific transcription factors. Both histological and quantitative analyses in Arabidopsis thaliana have confirmed flower (mainly in stamens) and fruit expression of GhAO-like1. In the present paper, we isolated and characterized both in silico and in vivo the promoter region of the GhAO-like1 gene. The regulatory region of GhAO-like1 might be useful to confer tissue-specific expression in genetically modified plants.

  17. Field trial of insect-resistant and herbicide-tolerant genetically modified cotton (Gossypium hirsutum L.) for environmental risk assessment in Japan.

    Science.gov (United States)

    Asanuma, Yoko; Gondo, Takahiro; Ishigaki, Genki; Inoue, Koichi; Zaita, Norihiro; Muguerza, Melody; Akashi, Ryo

    2017-04-03

    Japan imports cottonseed mainly from Australia and the USA where more than 96% of all cotton varieties grown are genetically modified (GM). GM crops undergo an environmental risk assessment (ERA) under the Law Concerning the Conservation and Sustainable Use of Biological Diversity before import into Japan. Potential adverse effects on biodiversity are comprehensively assessed based on competitiveness, production of harmful substances and outcrossing ability. Even though imported cottonseed is intended for food and feed uses and not for cultivation, the potential risks from seed spillage during transport must be evaluated. In most cases, the ERA requires data collected from in-country field trials to demonstrate how the GM crop behaves in Japan's environment. Confined field trials in Japan were conducted for the ERA of Lepidoptera-resistant and glufosinate-tolerant GM cotton (Gossypium hirsutum L.) lines GHB119 and T304-40. These lines were compared with conventional varieties for growth habit, morphological characteristics, seed dormancy, and allelopathic activity associated with competitiveness and production of harmful substances. Outcrossing ability was not a concern due to the absence of sexually compatible wild relatives in Japan. Although slight statistical differences were observed between the GM line and its conventional comparator for some morphological characteristics, transgenes or transformation were not considered to be responsible for these differences. The trial demonstrated that competitiveness and production of harmful substances by these GM cotton lines were equivalent to conventional cotton varieties that have a long history of safe use, and no potential adverse effects to biosafety in Japan were observed.

  18. Les cotonniers (Gossypium hirsutum L. génétiquement modifiés, Bt : quel avenir pour la petite agriculture familiale en Afrique francophone ?

    Directory of Open Access Journals (Sweden)

    Berti F.

    2006-01-01

    Full Text Available Gnetically modifi ed cotton (Gossypium hirsutum L. Bt.: what future for small family farms in French-speaking Africa?After a massive adoption in South Africa, genetically modifi ed cultivars are at the door step of francophone Africa. In order toanticipate the impact of Bt cotton on small-scale farming we propose a simple profi t analysis of the crop based on our resultsfound in South Africa and data collected by our colleagues in Mali. Whereas the introduction of Bt cotton can be justifi ed bya threat of the appearance of the bollworm resistance to insecticides, its profi tability seems to be uncertain. The farmer profi tmargin depends on yield level linked with climatic, agricultural and environmental conditions and with the technology feewhich the farmer must be charged for. With a 210 FCFA purchase price for raw cotton, a 25 USD fee per hectare seems to bethe upper limit for which the farmer wouldnʼt be exposed to fi nancial risk. Given the recent drop of the purchase price, theexistence of a technology fee supported by the small-scale farmer is very questionable. At a more general level of the cottonsector, the success of Bt adoption rests on several keys: 1 the prevention of the Bt-toxin resistance; 2 the strengthening of thecontrol of stinging pests; 3 the updating of the seed production sector and 4 the improvement of the extension and trainingnetwork. Bt cotton must be considered as a tool which is part of the integrated crop management but not as the solution of thepoverty alleviation.

  19. Changes in activities of both photosystems and the regulatory effect of cyclic electron flow in field-grown cotton (Gossypium hirsutum L) under water deficit.

    Science.gov (United States)

    Yi, Xiao-Ping; Zhang, Ya-Li; Yao, He-Sheng; Han, Ji-Mei; Chow, Wah Soon; Fan, Da-Yong; Zhang, Wang-Feng

    2018-01-01

    To clarify the influence of water deficit on the functionality of the photosynthetic apparatus of cotton plants, leaf gas exchange, chlorophyll a fluorescence, and P700 redox state were examined in field-grown cotton Gossypium hirsutum L. cv. Xinluzao 45. In addition, we measured changes in the P515 signal and analyzed the activity of ATP synthase and the trans-thylakoid proton gradient (ΔpH). With increasing water deficit, the net CO 2 assimilation rate (A N ) and stomatal conductance (g s ) significantly decreased, but the maximum quantum efficiency of PSII photochemistry (F v /F m ) did not change. The photochemical activity of photosystem II (PSII) was reflected by the photochemical quenching coefficient (qP), quantum efficiency of photosystem II [Y(II)], and electron transport rate through PSII [ETR(II)], while the activity of photosystem I (PSI) was reflected by the quantum efficiency of photosystem I [Y(I)] and the electron transport rate through PSI [ETR(I)]. Both activities were maintained under mild water deficit, but were slightly decreased under moderate water deficit. Under moderate water deficit, cyclic electron flow (CEF), the fraction of absorbed light dissipated thermally via the ΔpH- and xanthophyll-regulated process [Y(NPQ)], and the fraction of P700 oxidized under a given set of conditions [Y(ND)] increased. Our results suggest that the activities of both photosystems are stable under mild water deficit and decrease only slightly under moderate water deficit. Moderate water deficit stimulates CEF, and the stimulation of CEF is essential for protecting PSI and PSII against photoinhibition. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Período crítico de competição entre comunidades de plantas daninhas e o algodoeiro (Gossypium hirsutum L. no Estado de Minas Gerais The critical period of competition between weed communities and cotton (Gossypium hirsutum L. in the State of Minas Gerais

    Directory of Open Access Journals (Sweden)

    J. P. del C. Laca-Buendia

    1979-12-01

    Full Text Available Foram instalados nove ensaios no período de 1973 a 1976 em solos LVA, LE e LR de três localidades do Triângulo e duas no Norte do Estado de Minas Gerais, Brasil, a fim de se estudar as épocas críticas de competição de plantas daninhas com o algodoeiro (Gossypium hirsutum L.. Os tratamentos foram: capinas até 2, 4, 6, 8 primeiras semanas e durante todo o ciclo; e capinas após 2, 4, 6, 8 primeiras semanas e todo o ciclo sem capinas. Os resultados mostraram que a competição das plantas daninhas, quando não controladas, com a cultura, provocou 90,22% de perda na produção no Triângulo Mineiro e 70,73% no Norte de Minas. Em relação à testemunha, mantida livre de competição durante todo o ciclo, o melhor rendimento foi obtido quando se manteve a cultura livre de competição durante seis: emanas após a emergência, no Triâgulo Mineiro, e durante oito semanas, no Norte de Minas. Não houve, entretanto, diferença significativa entre os tratamentos com 4, 6, 8 semanas e também com todo o ciclo sem competição, tanto no Triângulo quanto no Norte do Estado.Nine tests were made from 1973 up to 1976 on different soil types in five localities (three in the Triângulo Mineiro and two in the Northern Region of Minas Gerais State, Brazil to Study the critical periods of weed competition with cotton (Gossypium hirsutum L.. The treatments consisted of: weed free during the first 2, 4, 6, 8 weeks and all the cycle; and competition during the first 2, 4, 6, 8 weeks and all the cycle. The results showed yield losses of 90,22% in the Triângulo Mineiro and 70,73% in the Northern Region when weed were always present. Compared to the check free of weeds during all the cycle, the best yield was obtained when cotton was kept free of weeds during the first six weeks after emergence in the Triângulo Mineiro as well as during the first eight weeks in the Northern Region. However, there was no difference among the treatments consisting of 4, 6, 8

  1. Propriedades físicas e sensoriais da carne de cordeiros Santa Inês terminados em dietas com diferentes níveis de caroço de algodão integral (Gossypium hirsutum Physical and sensorial properties of Santa Ines lamb meat terminated in diets with increasing levels of whole cotton seed (Gossypium hirsutum

    Directory of Open Access Journals (Sweden)

    Thereza Raquel de Lucena Vieira

    2010-06-01

    Full Text Available Esta pesquisa teve como objetivo avaliar o efeito de dietas de terminação contendo diferentes níveis (0, 20, 30 e 40% de caroço de algodão integral (Gossypium hirsutum sobre os parâmetros físicos e sensoriais da carne de vinte e quatro cordeiros da raça Santa Inês. Foram avaliados os parâmetros de pH, capacidade de retenção de água (CRA, perda de peso por cocção (PPC, textura e cor, além dos parâmetros sensoriais de sabor, aroma, cor e textura. Apenas o parâmetro cor da carne ovina sofreu influência significativa da adição do caroço de algodão integral, observando-se variações para as coordenadas b* e L* (antes da cocção. Verificou-se também que os tratamentos apresentaram influência (p The objective of this research was to evaluate the effect of termination diets containing increasing levels (0, 20, 30, and 40% of whole cotton seed (Gossypium hirsutum on the physical (pH, water holding capacity, cooking losses, texture, colour and sensory parameters (flavour, odour, colour, texture of the lamb meat of twenty four Santa Ines sheep. Only the b* and L* colour parameters of the lamb meat were significantly affected by the addition of different levels of whole cotton seed to the diet. The inclusion of the whole cotton seed in the diet of the Santa Ines sheep also influenced sensory attributes such as natural colour, odour, and characteristic flavour. Based on these observations, considering the physical and sensory attributes of the lamb meat, the use of whole cotton seed at a 40% level for sheep in termination for short periods, i.e., up to 90 days, is recommended.

  2. Comparative fiber property and transcriptome analyses reveal key genes potentially related to high fiber strength in cotton (Gossypium hirsutum L.) line MD52ne.

    Science.gov (United States)

    Islam, Md S; Fang, David D; Thyssen, Gregory N; Delhom, Chris D; Liu, Yongliang; Kim, Hee Jin

    2016-02-01

    Individual fiber strength is an important quality attribute that greatly influences the strength of the yarn spun from cotton fibers. Fiber strength is usually measured from bundles of fibers due to the difficulty of reliably measuring strength from individual cotton fibers. However, bundle fiber strength (BFS) is not always correlated with yarn strength since it is affected by multiple fiber properties involved in fiber-to-fiber interactions within a bundle in addition to the individual fiber strength. Molecular mechanisms responsible for regulating individual fiber strength remain unknown. Gossypium hirsutum near isogenic lines (NILs), MD52ne and MD90ne showing variations in BFS provide an opportunity for dissecting the regulatory mechanisms involved in individual fiber strength. Comprehensive fiber property analyses of the NILs revealed that the superior bundle strength of MD52ne fibers resulted from high individual fiber strength with minor contributions from greater fiber length. Comparative transcriptome analyses of the NILs showed that the superior bundle strength of MD52ne fibers was potentially related to two signaling pathways: one is ethylene and the interconnected phytohormonal pathways that are involved in cotton fiber elongation, and the other is receptor-like kinases (RLKs) signaling pathways that are involved in maintaining cell wall integrity. Multiple RLKs were differentially expressed in MD52ne fibers and localized in genomic regions encompassing the strength quantitative trait loci (QTLs). Several candidate genes involved in crystalline cellulose assembly were also up-regulated in MD52ne fibers while the secondary cell wall was produced. Comparative phenotypic and transcriptomic analyses revealed differential expressions of the genes involved in crystalline cellulose assembly, ethylene and RLK signaling pathways between the MD52ne and MD90ne developing fibers. Ethylene and its phytohormonal network might promote the elongation of MD52ne fibers

  3. A combined functional and structural genomics approach identified an EST-SSR marker with complete linkage to the Ligon lintless-2 genetic locus in cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Tang Yuhong

    2011-09-01

    Full Text Available Abstract Background Cotton fiber length is an important quality attribute to the textile industry and longer fibers can be more efficiently spun into yarns to produce superior fabrics. There is typically a negative correlation between yield and fiber quality traits such as length. An understanding of the regulatory mechanisms controlling fiber length can potentially provide a valuable tool for cotton breeders to improve fiber length while maintaining high yields. The cotton (Gossypium hirsutum L. fiber mutation Ligon lintless-2 is controlled by a single dominant gene (Li2 that results in significantly shorter fibers than a wild-type. In a near-isogenic state with a wild-type cotton line, Li2 is a model system with which to study fiber elongation. Results Two near-isogenic lines of Ligon lintless-2 (Li2 cotton, one mutant and one wild-type, were developed through five generations of backcrosses (BC5. An F2 population was developed from a cross between the two Li2 near-isogenic lines and used to develop a linkage map of the Li2 locus on chromosome 18. Five simple sequence repeat (SSR markers were closely mapped around the Li2 locus region with two of the markers flanking the Li2 locus at 0.87 and 0.52 centimorgan. No apparent differences in fiber initiation and early fiber elongation were observed between the mutant ovules and the wild-type ones. Gene expression profiling using microarrays suggested roles of reactive oxygen species (ROS homeostasis and cytokinin regulation in the Li2 mutant phenotype. Microarray gene expression data led to successful identification of an EST-SSR marker (NAU3991 that displayed complete linkage to the Li2 locus. Conclusions In the field of cotton genomics, we report the first successful conversion of gene expression data into an SSR marker that is associated with a genomic region harboring a gene responsible for a fiber trait. The EST-derived SSR marker NAU3991 displayed complete linkage to the Li2 locus on

  4. Elargissement de la base génétique de la principale espèce de cotonnier cultivé Gossypium hirsutum L. par la création et l'exploitation de lignées monosomiques d'addition

    Directory of Open Access Journals (Sweden)

    Sarr D.

    2009-01-01

    Full Text Available Genetic broadening of the main cultivated cotton species Gossypium hirsutum L. by creation and exploitation of monosomic alien addition lines. The genus Gossypium is composed of about forty wild diploïd species that constitute an important reservoir of interesting genes for the genetic improvement of Gossypium hirsutum L., the main cultivated cotton species. Creation of monosomic alien addition lines (MAAL, made up of plants having in addition to the chromosome set of the cultivated species one wild species' supernumerary chromosome, is an interesting way to exploit this diversity. Numerous constraints limit the creation of MAAL, among them the most important is doubtless the production of first generation derivatives from pentaploids obtained by backcrossing G. hirsutum with bispecific hexaploid hybrids made of the cultivated species tetraploid genome and the genome of a donor diploid species. Raising this impediment by appropriate techniques allows to develop MAAL offering the possibility to introgress finely traits of interest from diploid species and to better understand genomic relationships between species in the genus Gossypium. Identification and exploitation of these MAAL have been for a long time based on not very reliable morphological characteristics and on the use of classical cytogenetic techniques, very heavy to implement. Nowadays, the exploitation of MAAL benefits from the great advances registered in molecular biology through the development of DNA markers and molecular cytogenetics. These progresses make of MAAL a promising way for the genetic improvement of the main cultivated cotton species.

  5. Generation and analysis of a large-scale expressed sequence Tag database from a full-length enriched cDNA library of developing leaves of Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Min Lin

    Full Text Available BACKGROUND: Cotton (Gossypium hirsutum L. is one of the world's most economically-important crops. However, its entire genome has not been sequenced, and limited resources are available in GenBank for understanding the molecular mechanisms underlying leaf development and senescence. METHODOLOGY/PRINCIPAL FINDINGS: In this study, 9,874 high-quality ESTs were generated from a normalized, full-length cDNA library derived from pooled RNA isolated from throughout leaf development during the plant blooming stage. After clustering and assembly of these ESTs, 5,191 unique sequences, representative 1,652 contigs and 3,539 singletons, were obtained. The average unique sequence length was 682 bp. Annotation of these unique sequences revealed that 84.4% showed significant homology to sequences in the NCBI non-redundant protein database, and 57.3% had significant hits to known proteins in the Swiss-Prot database. Comparative analysis indicated that our library added 2,400 ESTs and 991 unique sequences to those known for cotton. The unigenes were functionally characterized by gene ontology annotation. We identified 1,339 and 200 unigenes as potential leaf senescence-related genes and transcription factors, respectively. Moreover, nine genes related to leaf senescence and eleven MYB transcription factors were randomly selected for quantitative real-time PCR (qRT-PCR, which revealed that these genes were regulated differentially during senescence. The qRT-PCR for three GhYLSs revealed that these genes express express preferentially in senescent leaves. CONCLUSIONS/SIGNIFICANCE: These EST resources will provide valuable sequence information for gene expression profiling analyses and functional genomics studies to elucidate their roles, as well as for studying the mechanisms of leaf development and senescence in cotton and discovering candidate genes related to important agronomic traits of cotton. These data will also facilitate future whole-genome sequence

  6. Disruption of the polar auxin transport system in cotton seedlings following treatment with the defoliant thidiazuron

    International Nuclear Information System (INIS)

    Suttle, J.C.

    1988-01-01

    The effect of the defoliant thidiazuron (TDZ) on basipetal auxin transport in petiole segments isolated from cotton (Gossypium hirsutum L. cv LG102) seedlings was examined using the donor/receiver agar block technique. Treatment of intact seedlings with TDZ at concentrations of 1 micromolar or greater resulted in a dose-dependent inhibition of 14 C-IAA transport in petiole segment isolated 1 or 2 days after treatment. Using 100 micromolar TDZ, the inhibition was detectable 19 hours after treatment and was complete by 27 hours. Both leaves and petiole segments exhibited a marked increase in ethylene production following treatment with TDZ at concentrations of 0.1 micromolar or greater. The involvement of ethylene in this TDA response was evaluated by examining the effects of two inhibitors of ethylene action: silver thiosulfate, 2,5-norbornadiene. One day after treatment, both inhibitors effectively antagonized the TDZ-induced inhibition of auxin transport. Two days after TDZ treatment both inhibitors were ineffective. The decrease in IAA transport in TDZ treated tissues was associated with increased metabolism of IAA. The transport of 14 C-2,4-dichlorophenoxyacetic acid was also inhibited by TDZ treatment. This inhibition was not accompanied by increased metabolism. Incorporation of TDZ into the receiver blocks had no effect on auxin transport. The ability of the phytotropin N-1-naphthylphthalamic acid to stimulate IAA uptake from a bathing medium was reduced in TDZ-treated tissues. This reduction is thought to reflect a decline in the auxin efflux system following TDZ treatment

  7. Competição de misturas de herbicidas nas principais regiões algodoeiras (Gossypium hirsutum L. no E. de Minas Gerais

    Directory of Open Access Journals (Sweden)

    J.P. del C. Laca-Buendia

    1978-09-01

    região foi encontrado efeito negativo da aplicação dos herbicidas.Several herbicide mixtures were tested on cotton, (Gossypium hirsutum L. in the main production areas of the State of Minas Gerais, Brasil. The cultivar "Minas Dona Beta", was used in the Metalúrgica region, whilst in Triângulo and Norte the cultivar employed was ."IAC-13-1", . In Triângulo litle regrowth occurred up to 30 days after application when the following mixtures were used: dinitramine + diuron, dinitroanilin + prometryne and pendimethalin + diuron. These treatments controlled 96.2%, 92.5% and 96.5% of the total weeds, respectively. When yields were compared, 1,962 Kg/ha were obtained in the best treatment (pendimethalin + diuron, against the control plots average of 1,130 Kg/ha. Tank mixtures of 2,00 Kg/ha of alachlor and 0.35 Kg/ha of metribuzin, or 3,00 Kg/ha of alachlor and 0,50 Kg/ha of metribuzin, and 1,00 Kg/ha of trifluralin and 0,50 Kg/ha of metribuzin were the most efficient in controlling grasses and dicotyledons. Effective weed control was recorded in Nor th of Minas Gerais when pendimethalin + diuron were applied expressed as: 86.4%, 83.6% and 70.3% of the total weeds after 30,50 and 80 days, respectively. The mixtures dinitramine + fluome - turon and dinitroanilin + fluometuron showed the best results regard to a cotton yield of 1,532 Kg/ha, produced in the treated plots against only 229 kg/ha in the control (unhoed. The best combination for total weed control in the Metalúrgica region was dinitramine + diuron with an efficiency of 67% after 30 days. When differences in fiber production were considered, however, the best mixture was dinitramine + fluometuron, the treated plots yielding 831 kg/ha and the control 145 kg/ha.

  8. Clustering, haplotype diversity and locations of MIC-3: a unique root-specific defense-related gene family in upland cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    MIC-3-related genes of cotton (Gossypium spp.) were identified and shown to have root-specific expression, associated with pathogen defense-related function and specifically increased expression in root-knot nematode (RKN) resistant plants after nematode infection. Here we cloned and sequenced MIC-...

  9. Molecular characterization and temporal expression analyses indicate that the MIC (Meloidogyne Induced Cotton) gene family represents a novel group of root-specific defense-related genes in upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Wubben, Martin J; Callahan, Franklin E; Hayes, Russel W; Jenkins, Johnie N

    2008-06-01

    The molecular events underlying the resistance of Upland cotton (Gossypium hirsutum L.) to the root-knot nematode (RKN) are largely unknown. In this report, we further characterize the previously identified MIC3 gene including the identification of 14 related MIC cDNAs in nematode-infected roots of allotetraploid cotton that show >85% identity with MIC3. A time-course analysis of RKN infection in resistant and susceptible cotton lines showed that maximum MIC transcript accumulation occurred immediately prior to the phenotypic manifestation of resistance. MIC expression was not induced by mechanical wounding or by virulent reniform nematode infection. MIC expression was undetectable in cotton leaves undergoing a hypersensitive response to Xanthomonas campestris. A time-course analysis of defense gene expression (PR10, ERF5, CDNS, LOX1, POD4, POD8) in resistant and susceptible cotton roots showed that RKN infection specifically elicits the induction of MIC in resistant roots and not other common defense-signaling pathways. These results suggest that cotton resistance to RKN involves novel defense-signaling pathways and further supports the idea that the MIC genes are intimately involved in this resistance response and represent a group of root-specific defense-related genes in cotton.

  10. Coupling of MIC-3 overexpression with the chromosomes 11 and 14 root-knot nematode (RKN) (Meloidogyne incognita) resistance QTLs provides insights into the regulation of the RKN resistance response in Upland cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wubben, Martin J; Callahan, Franklin E; Jenkins, Johnie N; Deng, Dewayne D

    2016-09-01

    Genetic analysis of MIC-3 transgene with RKN resistance QTLs provides insight into the resistance regulatory mechanism and provides a framework for testing additional hypotheses. Resistance to root-knot nematode (RKN) (Meloidogyne incognita) in Upland cotton (Gossypium hirsutum) is mediated by two major quantitative trait loci (QTL) located on chromosomes 11 and 14. The MIC-3 (Meloidogyne Induced Cotton3) protein accumulates specifically within the immature galls of RKN-resistant plants that possess these QTLs. Recently, we showed that MIC-3 overexpression in an RKN-susceptible cotton genotype suppressed RKN egg production but not RKN-induced root galling. In this study, the MIC-3 overexpression construct T-DNA in the single-copy transgenic line '14-7-1' was converted into a codominant molecular marker that allowed the marker assisted selection of F2:3 cotton lines, derived from a cross between 14-7-1 and M-240 RNR, having all possible combinations of the chromosomes 11 and 14 QTLs with and without the MIC-3 overexpression construct. Root-knot nematode reproduction (eggs g(-1) root) and severity of RKN-induced root galling were assessed in these lines. We discovered that the addition of MIC-3 overexpression suppressed RKN reproduction in lines lacking both resistance QTLs and in lines having only the chromosome 14 QTL, suggesting an additive effect of the MIC-3 construct with this QTL. In contrast, MIC-3 overexpression did not improve resistance in lines having the single chromosome 11 QTL or in lines having both resistance QTLs, suggesting an epistatic interaction between the chromosome 11 QTL and the MIC-3 construct. Overexpression of MIC-3 did not affect the severity of RKN-induced root galling regardless of QTL genotype. These data provide new insights into the relative order of action of the chromosomes 11 and 14 QTLs and their potential roles in regulating MIC-3 expression as part of the RKN resistance response.

  11. L'étiolement est un facteur d'induction de l'embryogenèse somatique au cours de la callogenèse chez deux variétés récalcitrantes de cotonnier (Gossypium hirsutum L. cultivées en Côte d'Ivoire

    Directory of Open Access Journals (Sweden)

    D’Almeida M. A.

    2004-01-01

    Full Text Available Darkness etiolement is a favorable pre-treatment to induce somatic embryogenesis from hypocotyls of cotton (Gossypium hirsutum L.. In vitro tissue culture of two varieties of cotton, ISA 2 0 5 N and ISA G L 7, (Gossypium hirsutum L . , cultivated in Côte d’Ivoire, was established from hypocotyls fragments. These fragments were excised from etiolated and non etiolated seedlings (absence or presence of chlorophyll. The objective of the study was to induce somatic embryogenesis from these genetically non embryogenic varieties. The non etiolated hypocotyls of both varieties showed a significantly higher percentage of callus induction compared to the etiolated ones. However, cells proliferation from etiolated hypocotyls were higher only for variety ISA 205 N. Histological study of callus indicated that embryogenic cells or embryos formation depend on the origin of explants used in culture. With callus derived from etiolated explants, embryogenesis started earlier and embryos at the globular and heart-shape stage were observed after four months. With callus generated by non etiolated explants, cellular division was high with no embryo formation. From these results, it appears that variety ISA 205 N is more embryogenic than ISA GL 7. Additionally, it was shown that the darkness pre-treatment of the cultured explants would be a good condition to induce somatic embryogenesis of cotton.

  12. Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Liu, Xueying; Teng, Zhonghua; Wang, Jinxia; Wu, Tiantian; Zhang, Zhiqin; Deng, Xianping; Fang, Xiaomei; Tan, Zhaoyun; Ali, Iftikhar; Liu, Dexin; Zhang, Jian; Liu, Dajun; Liu, Fang; Zhang, Zhengsheng

    2017-12-01

    Cotton is a significant commercial crop that plays an indispensable role in many domains. Constructing high-density genetic maps and identifying stable quantitative trait locus (QTL) controlling agronomic traits are necessary prerequisites for marker-assisted selection (MAS). A total of 14,899 SSR primer pairs designed from the genome sequence of G. raimondii were screened for polymorphic markers between mapping parents CCRI 35 and Yumian 1, and 712 SSR markers showing polymorphism were used to genotype 180 lines from a (CCRI 35 × Yumian 1) recombinant inbred line (RIL) population. Genetic linkage analysis was conducted on 726 loci obtained from the 712 polymorphic SSR markers, along with 1379 SSR loci obtained in our previous study, and a high-density genetic map with 2051 loci was constructed, which spanned 3508.29 cM with an average distance of 1.71 cM between adjacent markers. Marker orders on the linkage map are highly consistent with the corresponding physical orders on a G. hirsutum genome sequence. Based on fiber quality and yield component trait data collected from six environments, 113 QTLs were identified through two analytical methods. Among these 113 QTLs, 50 were considered stable (detected in multiple environments or for which phenotypic variance explained by additive effect was greater than environment effect), and 18 of these 50 were identified with stability by both methods. These 18 QTLs, including eleven for fiber quality and seven for yield component traits, could be priorities for MAS.

  13. Mapping by sequencing in cotton (Gossypium hirsutum) line MD52ne identified candidate genes for fiber strength and its related quality attributes.

    Science.gov (United States)

    Islam, Md S; Zeng, Linghe; Thyssen, Gregory N; Delhom, Christopher D; Kim, Hee Jin; Li, Ping; Fang, David D

    2016-06-01

    Three QTL regions controlling three fiber quality traits were validated and further fine-mapped with 27 new single nucleotide polymorphism (SNP) markers. Transcriptome analysis suggests that receptor-like kinases found within the validated QTLs are potential candidate genes responsible for superior fiber strength in cotton line MD52ne. Fiber strength, length, maturity and fineness determine the market value of cotton fibers and the quality of spun yarn. Cotton fiber strength has been recognized as a critical quality attribute in the modern textile industry. Fine mapping along with quantitative trait loci (QTL) validation and candidate gene prediction can uncover the genetic and molecular basis of fiber quality traits. Four previously-identified QTLs (qFBS-c3, qSFI-c14, qUHML-c14 and qUHML-c24) related to fiber bundle strength, short fiber index and fiber length, respectively, were validated using an F3 population that originated from a cross of MD90ne × MD52ne. A group of 27 new SNP markers generated from mapping-by-sequencing (MBS) were placed in QTL regions to improve and validate earlier maps. Our refined QTL regions spanned 4.4, 1.8 and 3.7 Mb of physical distance in the Gossypium raimondii reference genome. We performed RNA sequencing (RNA-seq) of 15 and 20 days post-anthesis fiber cells from MD52ne and MD90ne and aligned reads to the G. raimondii genome. The QTL regions contained 21 significantly differentially expressed genes (DEGs) between the two near-isogenic parental lines. SNPs that result in non-synonymous substitutions to amino acid sequences of annotated genes were identified within these DEGs, and mapped. Taken together, transcriptome and amino acid mutation analysis indicate that receptor-like kinase pathway genes are likely candidates for superior fiber strength and length in MD52ne. MBS along with RNA-seq demonstrated a powerful strategy to elucidate candidate genes for the QTLs that control complex traits in a complex genome like tetraploid

  14. Cloning of Gossypium hirsutum Sucrose Non-Fermenting 1-Related Protein Kinase 2 Gene (GhSnRK2) and Its Overexpression in Transgenic Arabidopsis Escalates Drought and Low Temperature Tolerance

    Science.gov (United States)

    Bello, Babatunde; Zhang, Xueyan; Liu, Chuanliang; Yang, Zhaoen; Yang, Zuoren; Wang, Qianhua; Zhao, Ge; Li, Fuguang

    2014-01-01

    The molecular mechanisms of stress tolerance and the use of modern genetics approaches for the improvement of drought stress tolerance have been major focuses of plant molecular biologists. In the present study, we cloned the Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 (GhSnRK2) gene and investigated its functions in transgenic Arabidopsis. We further elucidated the function of this gene in transgenic cotton using virus-induced gene silencing (VIGS) techniques. We hypothesized that GhSnRK2 participates in the stress signaling pathway and elucidated its role in enhancing stress tolerance in plants via various stress-related pathways and stress-responsive genes. We determined that the subcellular localization of the GhSnRK2-green fluorescent protein (GFP) was localized in the nuclei and cytoplasm. In contrast to wild-type plants, transgenic plants overexpressing GhSnRK2 exhibited increased tolerance to drought, cold, abscisic acid and salt stresses, suggesting that GhSnRK2 acts as a positive regulator in response to cold and drought stresses. Plants overexpressing GhSnRK2 displayed evidence of reduced water loss, turgor regulation, elevated relative water content, biomass, and proline accumulation. qRT-PCR analysis of GhSnRK2 expression suggested that this gene may function in diverse tissues. Under normal and stress conditions, the expression levels of stress-inducible genes, such as AtRD29A, AtRD29B, AtP5CS1, AtABI3, AtCBF1, and AtABI5, were increased in the GhSnRK2-overexpressing plants compared to the wild-type plants. GhSnRK2 gene silencing alleviated drought tolerance in cotton plants, indicating that VIGS technique can certainly be used as an effective means to examine gene function by knocking down the expression of distinctly expressed genes. The results of this study suggested that the GhSnRK2 gene, when incorporated into Arabidopsis, functions in positive responses to drought stress and in low temperature tolerance. PMID:25393623

  15. Utilisation des espèces sauvages australiennes Gossypium sturtianum J.H. Willis et G. australe F. Muell. pour l'amélioration du cotonnier cultivé G. hirsutum L

    Directory of Open Access Journals (Sweden)

    Ahoton, L.

    2003-01-01

    Full Text Available Use of the Wild Australian Species Gossypium sturtianum J. H. Willis and G. australe F. Muell to Improve G. hirsutum L. Huit variétés de niébé améliorées et une locale (témoin ont été testées en champ pendant trois ans en vue d'évaluer leur performance à produire à la fois des graines et du fourrage. Les résultats obtenus montrent que les taux de germination et de croissance étaient élevés (80% pour toutes les variétés étudiées. Les moyennes de rendement étaient respectivement de 1262 à 3598 kg/ha pour la production de fourrage sec et de 528 à 1149 kg/ha pour la production de graines. Les variétés IAR 4/48/15-1, IAR 72 et TVU 12349 ont produit la plus grande quantité de feuilles vertes (&gt; 50% au stade de la récolte de graines durant la saison sèche tandis que les variétés IAR 4/48/15-1, IAR 7/180-4-5 et TVU 12349 ont produit le plus grand nombre de gousses par plant. Le poids de 100 graines le plus élevé a été produit par la variété IT89KD-288 et la variété témoin (Kananado. Le pourcentage moyen de la matière protéique variait de 15,2 à 21,6%.Une faible corrélation a été observée entre les rendements en graines, les rendements en fourrage et le rapport gousses/plant. Pour l'augmentation du revenu des fermiers, les variétés TVU 12349, IT89KD-288, IAR 7/180-4-12 et IAR 4/48/15-1 s'avèrent les plus performantes pour ces paramètres étudiés et sont à recommander dans un système de production intégré.

  16. Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population.

    Science.gov (United States)

    Jamshed, Muhammad; Jia, Fei; Gong, Juwu; Palanga, Koffi Kibalou; Shi, Yuzhen; Li, Junwen; Shang, Haihong; Liu, Aiying; Chen, Tingting; Zhang, Zhen; Cai, Juan; Ge, Qun; Liu, Zhi; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Or Rashid, Harun; Sarfraz, Zareen; Hassan, Murtaza; Gong, Wankui; Yuan, Youlu

    2016-03-08

    The identification of quantitative trait loci (QTLs) that are stable and consistent across multiple environments and populations plays an essential role in marker-assisted selection (MAS). In the present study, we used 28,861 simple sequence repeat (SSR) markers, which included 12,560 Gossypium raimondii (D genome) sequence-based SSR markers to identify polymorphism between two upland cotton strains 0-153 and sGK9708. A total of 851 polymorphic primers were finally selected and used to genotype 196 recombinant inbred lines (RIL) derived from a cross between 0 and 153 and sGK9708 and used to construct a linkage map. The RIL population was evaluated for fiber quality traits in six locations in China for five years. Stable QTLs identified in this intraspecific cross could be used in future cotton breeding program and with fewer obstacles. The map covered a distance of 4,110 cM, which represents about 93.2 % of the upland cotton genome, and with an average distance of 5.2 cM between adjacent markers. We identified 165 QTLs for fiber quality traits, of which 47 QTLs were determined to be stable across multiple environments. Most of these QTLs aggregated into clusters with two or more traits. A total of 30 QTL clusters were identified which consisted of 103 QTLs. Sixteen clusters in the At sub-genome comprised 44 QTLs, whereas 14 clusters in the Dt sub-genome that included 59 QTLs for fiber quality were identified. Four chromosomes, including chromosome 4 (c4), c7, c14, and c25 were rich in clusters harboring 5, 4, 5, and 6 clusters respectively. A meta-analysis was performed using Biomercator V4.2 to integrate QTLs from 11 environmental datasets on the RIL populations of the above mentioned parents and previous QTL reports. Among the 165 identified QTLs, 90 were identified as common QTLs, whereas the remaining 75 QTLs were determined to be novel QTLs. The broad sense heritability estimates of fiber quality traits were high for fiber length (0.93), fiber strength (0

  17. Thidiazuron induced micropropagation of Hypericum triquetrifolium ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... Hypericum genus is commonly used as a medicinal plant for its anti-depressant properties. Harvesting such medicinal ... Key words: Hypericum triquetrifolium, micropropagation, medicinal plant, thidiazuron. INTRODUCTION ..... Biotechnology of the micropropagation of medicinal and aromatic plants.

  18. Association mapping of resistance to Verticillium wilt in Gossypium ...

    African Journals Online (AJOL)

    Verticillium wilt is a major disease affecting the growth of cotton. For screening the resistant genes, 320 Gossypium hirsutum germplasms were evaluated in Verticillium nursery, and association mapping was used to detect the markers associated with the Verticillium wilt resistance. 106 microsatellite marker primer pairs ...

  19. KUTUN : a morphogenetic model for cotton (Gossypium hirsitum L.)

    NARCIS (Netherlands)

    Mutsaers, H.J.W.

    1982-01-01

    A whole crop model for growth and development of cotton ( Gossypium hirsutum L.) is presented. The model is based on previous extensive studies on plant morphogenesis, growth of fruits and canopy photosynthesis. The crop model basically is a carbohydrate budget, but all

  20. Effect of nitrates on embryo induction efficiency in cotton (Gossypium ...

    African Journals Online (AJOL)

    Fred

    Cotton (Gossypium hirsutum L.) cv Coker-312 callus culture was assessed in terms of its usefulness as a system for investigating the effect of nitrates from different chemical compounds of nitrogen on embryo induction percentage in calli as the plant growth and cell differentiation mainly based on nitrogen. Both sources and ...

  1. CRITICAL COMPETITION PERIOD BETWEEN COTTON AND (Gossypium hirsutum L. HARMFUL WEED COMMUNITIES IN THE GOIÁS STATE PERÍODO CRÍTICO DE COMPETIÇÃO ENTRE COMUNIDADES DE PLANTAS DANINHAS E O ALGODOEIRO (Gossypium hirsutum L. NO ESTADO DE GOIÁS

    Directory of Open Access Journals (Sweden)

    Armando M. Macêdo

    2007-09-01

    Full Text Available

    In order to study the critical time that weeds compete with the cotton plant, five trial experiments were conducted from 1978-1981. Two of the trials were carried out in a dark red latosoil with 4.70% organic matter and 10.73% clay, at the Rio Verde Agricultural School in the state of Goiás, during the 1978—79 and 1979—80 planting seasons. The other three were carried out in dark red latosoil, with a loam clay texture, moderate acidity and a low proportion of organic matter, at the Experimental station in Goiânia, Goiás during the 1978—79, 1979—80 and 1980—81 planting seasons. The treatments designed were: weeding up to 2, 4, 6, 8 first weeks, and weeding during the whole cycle ,and weeding after the 2, 4, 6, 8 first weeks and no weeding at all during the cycle. The results showed that weed competition , when not controlled, determined a yield loss of 88.75% in Goiânia and 90.65% in Rio Verde. Regarding the group control, which was maintained without weed competition, the best yield was obtained when the cotton was maintained without competition during eight weeks after the emergence in Rio Verde and during 4, 6, 8 weeks in Goiânia. The critical competition period occurred between the fourth and sixth weeks after the emergence in Rio Verde and in the fourth week after the emergence in Goiânia.

    Com a finalidade de estudar as épocas críticas de competição de plantas daninhas com o algodoeiro (Gossipium hirsutum L. , foram instalados cinco ensaios em área do Colégio Agrícola de Rio Verde — Goiás, no período de 1978 a 1981, sendo dois ensaios nos anos agrícolas de 1978/79 e 1979/80 em latossolo vermelho—escuro com 4,71% de matéria orgânica e 10,73% de argila. Os outros três ensaios foram instalados nos anos agrícolas 1978/79, 1979/80 e 1980/81, em área da Estação Experimental de

  2. thidiazuron improves adventitious bud and shoot regeneration

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    Induction of adventitious buds and shoots from intact leaves and stem internode segments of two recalcitrant. Ugandan sweetpotato (Ipomoea batatas L.) cultivars was investigated in vitro on Murashige and Skoog (MS) medium, supplemented with 3 different levels (0.5, 2.0 and 4.0 µM) of Thidiazuron (TDZ). Shoots were.

  3. Comparative transmission genetics of introgressed chromatin in Gossypium (cotton) polyploids.

    Science.gov (United States)

    Waghmare, Vijay N; Rong, Junkang; Rogers, Carl J; Bowers, John E; Chee, Peng W; Gannaway, John R; Katageri, Ishwarappa; Paterson, Andrew H

    2016-04-01

    Introgression is widely acknowledged as a potential source of valuable genetic variation, and growing effort is being invested in analysis of interspecific crosses conferring transgressive variation. Experimental backcross populations provide an opportunity to study transmission genetics following interspecific hybridization, identifying opportunities and constraints to introgressive crop improvement. The evolutionary consequences of introgression have been addressed at the theoretical level, however, issues related to levels and patterns of introgression among (plant) species remain inadequately explored, including such factors as polyploidization, subgenome interaction inhabiting a common nucleus, and the genomic distribution and linkage relationships of introgressant alleles. We analyze introgression into the polyploid Gossypium hirsutum (upland cotton) from its sister G. tomentosum and compare the level and pattern with that of G. barbadense representing a different clade tracing to the same polyploidization. Across the genome, recurrent backcrossing to Gossypium hirsutum yielded only one-third of the expected average frequency of the G. tomentosum allele, although one unusual region showed preferential introgression. Although a similar rate of introgression is found in the two subgenomes of polyploid (AtDt) G. hirsutum, a preponderance of multilocus interactions were largely within the Dt subgenome. Skewed G. tomentosum chromatin transmission is polymorphic among two elite G. hirsutum genotypes, which suggests that genetic background may profoundly affect introgression of particular chromosomal regions. Only limited correspondence is found between G. hirsutum chromosomal regions that are intolerant to introgression from the two species, G. barbadense and G. tomentosum, concentrated near possible inversion polymorphisms. Complex transmission of introgressed chromatin highlights the challenges to utilization of exotic germplasm in crop improvement. © 2016

  4. Characterization of conserved circular RNA in polyploid Gossypium species and their ancestors.

    Science.gov (United States)

    Zhao, Ting; Wang, Luyao; Li, Sai; Xu, Min; Guan, Xueying; Zhou, Baoliang

    2017-11-01

    Circular RNA (circRNA) is a regulatory class of long, noncoding RNA found in both plant and animal kingdoms. The profile and characterization of circRNA in cotton species remains to be explored. Here, using 24 rRNA-depleted RNA-seq libraries of putative diploid progenitors of Gossypium spp., Gossypium arboreum and Gossypium raimondii, their interspecies hybrid (F 1 ) and allotetraploid Gossypium hirsutum, 1041, 1478, 1311, and 499 circRNAs were identified in each cotton species, respectively. A prevalence of 23 exon-circRNAs contain noncanonical GT/AG signals, and only ~ 10% of exon-circRNA is associated with reverse complementary intronic sequences. This result implies that plants employ a method of circRNA splicing distinct from that of animals. In addition, 432 circRNAs are stably expressed in multiple cotton species. © 2017 Federation of European Biochemical Societies.

  5. Thidiazuron: A multi-dimensional plant growth regulator | Guo ...

    African Journals Online (AJOL)

    Thidiazuron (TDZ) has gained a considerable attention during past decades due to its efficient role in plant cell and tissue culture. Wide array of physiological responses were observed in response to TDZapplication in different plant species. TDZ has shown both auxin and cytokinin like effects, although, chemically, it is ...

  6. thidiazuron improves adventitious bud and shoot regeneration in ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    Induction of adventitious buds and shoots from intact leaves and stem internode segments of two recalcitrant. Ugandan sweetpotato (Ipomoea batatas L.) cultivars was investigated in vitro on Murashige and Skoog (MS) medium, supplemented with 3 different levels (0.5, 2.0 and 4.0 µM) of Thidiazuron (TDZ). Shoots were.

  7. Screening of cotton (gossypium hirsutum l.) genotypes for heat tolerance

    International Nuclear Information System (INIS)

    Abro, S.; Khan, M.A.; Sial, M.A.

    2015-01-01

    Cotton yield is highly affected due to biotic (diseases and pests) and abiotic (heat, dought and salinity) Stresses. Among them, high temperature is the main environmental constraint which adversely reduces cotton yield and quality. High temperature above 36 degree C affects plant growth and development especially during reproductive phase. Present studies were carried out to assess the tolerance of fifty-eight newly evolved cotton genotypes to heat stresses, based on agronomic and physiological characteristics. The genotypes were screened in field conditions under two temperature regimes. The studies were conducted at experimental farm of Nuclear Institute of Agriculture, Tando Jam, Pakistan. The results showed that March sown crop experienced high temperature (i.e. > 44 degree C in May and June), which significantly affected crop growth and productivity. The genotypes were identified as heat-tolerant on the basis of relative cell injury percentage (RCI %), heat susceptibility index (HSI) values, boll retention and seed cotton yield (kg/ha). RCI level in cotton genotypes ranged from 39.0 to 86.0%. Out of 58, seventeen genotypes (viz.NIA-80, NIA-81, NIA-83, NIA-84, NIA-M-30, NIA-M31, NIA-HM-48, NIA-HM-327, NIA-H-32, NIA-HM-2-1, NIA-Bt1, NIA-Bt2, NIA-Perkh, CRIS-342, CRIS-134, NIAB-111 and check variety Sadori indicated high level of heat tolerance at both (heat-stressed and non-stressed) temperature regimes; as shown the lowest relative injury level and relatively heat resistant index (HSI<1) values. Such genotypes could be used as heattolerant genotypes under heat-stressed environments. (author)

  8. Multiple shoot regeneration of cotton (Gossypium hirsutum L.) via ...

    African Journals Online (AJOL)

    user

    2011-03-14

    Corresponding author. E-mail: mitra_cb@yahoo.com. Cotton crop has been difficult to manipulate with high efficiency, since the tissue culture method used for rege- nerating transgenic plants was by indirect transformation.

  9. Yield and fiber quality properties of cotton (Gossypium hirsutum L ...

    African Journals Online (AJOL)

    Jane

    2011-10-03

    Oct 3, 2011 ... Key words: Cotton, yield, fiber quality properties, water stress, non-stress. INTRODUCTION. Water stress is the most important factor limiting crop productivity and adversely affects fruit production, square and boll shedding, lint yield and fiber quality properties in cotton (El-Zik and Thaxton, 1989). As the ...

  10. Correlations and Correlated Responses in Upland Cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Echekwu, CA.

    2001-01-01

    Full Text Available Plant breeders must be concerned with the total array of economic characters in their efforts to develop a crop variety acceptable to farmers. Their selection endeavours must therefore take into consideration how changes in one trait affect, simultaneously changes in other economic attributes. The importance of correlations and correlated responses is therefore self evident in plant breeding endeavours. In this study F3 progenies from a cross between two cotton lines SAMCOT-9 x Y422 were evaluated for two years and performance data were used to obtain correlations between nine agronomic and fibre quality traits in upland cotton. The results indicated that plant helght was significantly and positively correlated with seed cotton yield, number of sympodial and monopodial branches, seed index, fibre length and micronaire index. Positive and significant correlations were also obtained between : seed cotton yield, tint percent and fibre strength and fibre length. Significant negative correlations were obtained between : plant height and lint percent ; number of monopodial branches, sympodial branches and lint percent ; fibre length, fibre strength and micronaire index. The correlated responses in the other eight traits when selection was practiced for seed cotton yield in the present study shows that it might be more profitable to practice direct selection for seed cotton yield compared to selecting for seed cotton yield through any of the other traits.

  11. Yield and fiber quality properties of cotton ( Gossypium hirsutum L ...

    African Journals Online (AJOL)

    The primary objective of this study was to determine the effect of water stress and non-stress conditions on cotton yield and fiber quality properties. A two-year field study was carried out at the Southeastern Anatolia Agricultural Research Institute (SAARI), in 2009 and 2010, with the aim of evaluating 12 cotton genotypes for ...

  12. Characterization of two cotton (Gossypium hirsutum L) invertase genes.

    Science.gov (United States)

    Taliercio, Earl; Scheffler, Jodi; Scheffler, Brian

    2010-12-01

    Two cotton vacuolar-invertase genes were identified and sequenced. Both genes had seven exons, including an unusually small second exon typical of acid invertases. These genes encode peptides with many features shared by acid invertases from other species including, leader sequences that probably target the peptide to the vacuole, active site motifs and substrate binding motifs. Expression analyses indicated that one of the genes was expressed in roots during the starch filling stage of development. However, expression of the same gene fluctuated during the starch utilization stage of development. Therefore this gene was unlikely to play a role in determining sink strength of this tissue. Both genes were expressed in elongating fibers where they were likely to play a role in cell expansion. The invertase gene uniquely expressed in fiber had a simple sequence repeat (SSR) in the third intron that was polymorphic among various cotton species. An EST was identified with an expansion of the SSR that included the third intron indicating this SSR is associated with a splice variant. The polymorphic SSR may be useful in investigating the function of this gene in fiber development.

  13. (Gossypium hirsutum L. race latifolium H.) cultivars and inbred lines ...

    African Journals Online (AJOL)

    Jane

    2010-12-13

    Dec 13, 2010 ... (L) Inbred line. Numbers from 10 to 21 refer to the four cultivars and eight inbred lines from US introduced in Mozambique in 2006. Table 2. Decamer arbritary primers used for DNA amplification. Primer. Nucleotide sequence (5' – 3'). Primer. Nucleotide sequence (5' – 3'). OPA-11. CAA TCG CCG T. OPF-16.

  14. (Gossypium hirsutum L.) au déficit hydrique indui

    African Journals Online (AJOL)

    Sci-Nat

    l'hypochlorite de sodium (2,5 %) pendant 20 min et rincer trois fois à l'eau distillée stérile. Les graines stériles sont ensuite placées une à une dans des tubes à ..... calcium in improving the PEG-induced water stress tolerance in liquorice cells. Bot. Bull. Acad. Sinica. 44 (4): 275-284. May L.H., & Milthrope F.L., 1962. Drought ...

  15. Asymmetric evolution and domestication in allotetraploid cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Lei Fang

    2017-04-01

    Full Text Available Polyploidy plays a major role in genome evolution, which corresponds to environmental changes over millions of years. The mechanisms of genome evolution, particularly during the process of domestication, are of broad interest in the fields of plant science and crop breeding. Upland cotton is derived from the hybridization and polyploidization of its ancient A and D diploid ancestors. As a result, cotton is a model for polyploid genome evolution and crop domestication. To explore the genomic mysteries of allopolyploid cotton, we investigated asymmetric evolution and domestication in the A and D subgenomes. Interestingly, more structural rearrangements have been characterized in the A subgenome than in the D subgenome. Correspondingly, more transposable elements, a greater number of lost and disrupted genes, and faster evolution have been identified in the A subgenome. In contrast, the centromeric retroelement (RT-domain related sequence of tetraploid cotton derived from the D subgenome progenitor was found to have invaded the A subgenome centromeres after allotetrapolyploid formation. Although there is no genome-wide expression bias between the subgenomes, as with expression-level alterations, gene expression bias of homoeologous gene pairs is widespread and varies from tissue to tissue. Further, there are more positively selected genes for fiber yield and quality in the A subgenome and more for stress tolerance in the D subgenome, indicating asymmetric domestication. This review highlights the asymmetric subgenomic evolution and domestication of allotetraploid cotton, providing valuable genomic resources for cotton research and enhancing our understanding of the basis of many other allopolyploids.

  16. Problems and achievements of cotton (Gossypium Hirsutum L. weeds control

    Directory of Open Access Journals (Sweden)

    T. Barakova

    2017-09-01

    Full Text Available Abstract. Weed control in the cultivation of cotton is critical to the yield and quality of production. The influence of economically important weeds was studied. Chemical control is the most effective method of weed control in cotton but much of the information on it relates to primary weed infestation. Problems with primary weed infestation in cotton have been solved to a significant extent. The question of secondary weed infestation with annual and perennial graminaceous weeds during the period of cotton vegetation is also determined largely by the use of antigraminaceous herbicides. The data related to herbicides to effectively control secondary germinated broadleaf weeds in conventional technology for cotton growing are quite scarce, even globally. We are still seeking effective herbicides for control of these weeds in cotton crops. Studies on their influence on the sowing characteristics of cotton seed and the quality of cotton fiber are still insufficient. In the scientific literature there is not enough information on these questions. The combinations of herbicides, as well as their tank mixtures with fertilizers or plant growth regulators are more efficient than autonomous application. Often during their combined application higher synergistic effect on yield is produced. There is information about cotton cultivars resistant to glyphosate. These cultivars are GMO and they are banned within the European Union, including Bulgaria.

  17. An evaluation of some mutant cotton ( Gossypium hirsutum L ...

    African Journals Online (AJOL)

    The trial was established in randomized block design with four replications in four years (2001 to 2004). In the study, plant height, monopodia, number of sympodia and boll, weight of seed cotton per boll, ginning outturn, 100 seed weight, seed cotton yield, earliness ratio, fiber length, fiber fineness, strength and uniformity ...

  18. An evaluation of some mutant cotton (Gossypium hirsutum L ...

    African Journals Online (AJOL)

    user1

    2013-08-14

    Aug 14, 2013 ... The aim of this study was to determine seed cotton yield, yield components and fiber technological properties .... genotypes and environments. Genotype- .... Combined analysis of variance of the varieties tested for yield,yield components, earliness and fiber quality characters for four years (2001 to 2004).

  19. Rapid evolutionary divergence of diploid and allotetraploid Gossypium mitochondrial genomes.

    Science.gov (United States)

    Chen, Zhiwen; Nie, Hushuai; Wang, Yumei; Pei, Haili; Li, Shuangshuang; Zhang, Lida; Hua, Jinping

    2017-11-13

    Cotton (Gossypium spp.) is commonly grouped into eight diploid genomic groups and an allotetraploid genomic group, AD. The mitochondrial genomes supply new information to understand both the evolution process and the mechanism of cytoplasmic male sterility. Based on previously released mitochondrial genomes of G. hirsutum (AD 1 ), G. barbadense (AD 2 ), G. raimondii (D 5 ) and G. arboreum (A 2 ), together with data of six other mitochondrial genomes, to elucidate the evolution and diversity of mitochondrial genomes within Gossypium. Six Gossypium mitochondrial genomes, including three diploid species from D and three allotetraploid species from AD genome groups (G. thurberi D 1 , G. davidsonii D 3-d and G. trilobum D 8 ; G. tomentosum AD 3 , G. mustelinum AD 4 and G. darwinii AD 5 ), were assembled as the single circular molecules of lengths about 644 kb in diploid species and 677 kb in allotetraploid species, respectively. The genomic structures of mitochondrial in D group species were identical but differed from the mitogenome of G. arboreum (A 2 ), as well as from the mitogenomes of five species of the AD group. There mainly existed four or six large repeats in the mitogenomes of the A + AD or D group species, respectively. These variations in repeat sequences caused the major inversions and translocations within the mitochondrial genome. The mitochondrial genome complexity in Gossypium presented eight unique segments in D group species, three specific fragments in A + AD group species and a large segment (more than 11 kb) in diploid species. These insertions or deletions were most probably generated from crossovers between repetitive or homologous regions. Unlike the highly variable genome structure, evolutionary distance of mitochondrial genes was 1/6th the frequency of that in chloroplast genes of Gossypium. RNA editing events were conserved in cotton mitochondrial genes. We confirmed two near full length of the integration of the mitochondrial

  20. Construction of microsatellite-based linkage map and mapping of nectarilessness and hairiness genes in Gossypium tomentosum.

    Science.gov (United States)

    Hou, Meiying; Cai, Caiping; Zhang, Shuwen; Guo, Wangzhen; Zhang, Tianzhen; Zhou, Baoliang

    2013-12-01

    Gossypium tomentosum, a wild tetraploid cotton species with AD genomes, possesses genes conferring strong fibers and high heat tolerance. To effectively transfer these genes into Gossypium hirsutum, an entire microsatellite (simple sequence repeat, SSR)-based genetic map was constructed using the interspecific cross of G. hirsutum x G. tomentosum (HT). We detected 1800 loci from 1347 pairs of polymorphic primers. Of these, 1204 loci were grouped into 35 linkage groups at LOD ≥ 4. The map covers 3320.8 cM, with a mean density of 2.76 cM per locus. We detected 420 common loci (186 in the At subgenome and 234 in Dt) between the HT map and the map of TM-1 (G. hirsutum) and Hai 7124 (G. barbadense; HB map). The linkage groups were assigned chromosome numbers based on location of common loci and the HB map as reference. A comparison of common markers revealed that no significant chromosomal rearrangement exist between G. tomentosum and G. barbadense. Interestingly, however, we detected numerous (33.7%) segregation loci deviating from 3:1 ratio (P constructed in this study will be useful for further genetic studies on cotton breeding, including mapping loci controlling quantitative traits associated with fiber quality, stress tolerance and developing chromosome segment specific introgression lines from G. tomentosum into G. hirsutum using marker-assisted selection.

  1. Genome-wide mining, characterization, and development of microsatellite markers in gossypium species.

    Science.gov (United States)

    Wang, Qiong; Fang, Lei; Chen, Jiedan; Hu, Yan; Si, Zhanfeng; Wang, Sen; Chang, Lijing; Guo, Wangzhen; Zhang, Tianzhen

    2015-06-01

    Although much research has been conducted to characterize microsatellites and develop markers, the distribution of microsatellites remains ambiguous and the use of microsatellite markers in genomic studies and marker-assisted selection is limited. To identify microsatellites for cotton research, we mined 100,290, 83,160, and 56,937 microsatellites with frequencies of 41.2, 49.1, and 74.8 microsatellites per Mb in the recently sequenced Gossypium species: G. hirsutum, G. arboreum, and G. raimondii, respectively. The distributions of microsatellites in their genomes were non-random and were positively and negatively correlated with genes and transposable elements, respectively. Of the 77,996 developed microsatellite markers, 65,498 were physically anchored to the 26 chromosomes of G. hirsutum with an average marker density of 34 markers per Mb. We confirmed 67,880 (87%) universal and 7,705 (9.9%) new genic microsatellite markers. The polymorphism was estimated in above three species by in silico PCR and validated with 505 markers in G. hirsutum. We further predicted 8,825 polymorphic microsatellite markers within G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124. In our study, genome-wide mining and characterization of microsatellites, and marker development were very useful for the saturation of the allotetraploid genetic linkage map, genome evolution studies and comparative genome mapping.

  2. Analysis of Complete Nucleotide Sequences of 12 Gossypium Chloroplast Genomes: Origin and Evolution of Allotetraploids

    Science.gov (United States)

    Xu, Qin; Xiong, Guanjun; Li, Pengbo; He, Fei; Huang, Yi; Wang, Kunbo; Li, Zhaohu; Hua, Jinping

    2012-01-01

    Gossypium is the maternal source of extant allotetraploid species and allotetraploids have a monophyletic origin. G. hirsutum AD1 lineages have experienced more sequence variations than other allotetraploids in intergenic regions. The available complete nucleotide sequences of 12 Gossypium chloroplast genomes should facilitate studies to uncover the molecular mechanisms of compartmental co-evolution and speciation of Gossypium allotetraploids. PMID:22876273

  3. Genome-Wide Identification and Expression Analysis of the Biotin Carboxyl Carrier Subunits of Heteromeric Acetyl-CoA Carboxylase in Gossypium

    Science.gov (United States)

    Cui, Yupeng; Zhao, Yanpeng; Wang, Yumei; Liu, Zhengjie; Ijaz, Babar; Huang, Yi; Hua, Jinping

    2017-01-01

    Acetyl-CoA carboxylase is an important enzyme, which catalyzes acetyl-CoA’s carboxylation to produce malonyl-CoA and to serve as a committed step for de novo fatty acid biosynthesis in plastids. In this study, 24 putative cotton BCCP genes were identified based on the lately published genome data in Gossypium. Among them, 4, 4, 8, and 8 BCCP homologs were identified in Gossypium raimondii, G. arboreum, G. hirsutum, and G. barbadense, respectively. These genes were divided into two classes based on a phylogenetic analysis. In each class, these homologs were relatively conserved in gene structure and motifs. The chromosomal distribution pattern revealed that all the BCCP genes were distributed equally on corresponding chromosomes or scaffold in the four cotton species. Segmental duplication was a predominant duplication event in both of G. hirsutum and G. barbadense. The analysis of the expression profile showed that 8 GhBCCP genes expressed in all the tested tissues with changed expression levels, and GhBCCP genes belonging to class II were predominantly expressed in developing ovules. Meanwhile, the expression analysis for the 16 cotton BCCP genes from G. raimondii, G. arboreum and G. hirsutum showed that they were induced or suppressed by cold or salt stress, and their expression patterns varied among different tissues. These findings will help to determine the functional and evolutionary characteristics of the BCCP genes in Gossypium species. PMID:28507552

  4. Genome-Wide Identification and Expression Analysis of the Biotin Carboxyl Carrier Subunits of Heteromeric Acetyl-CoA Carboxylase in Gossypium

    Directory of Open Access Journals (Sweden)

    Jinping Hua

    2017-05-01

    Full Text Available Acetyl-CoA carboxylase is an important enzyme, which catalyzes acetyl-CoA’s carboxylation to produce malonyl-CoA and to serve as a committed step for de novo fatty acid biosynthesis in plastids. In this study, 24 putative cotton BCCP genes were identified based on the lately published genome data in Gossypium. Among them, 4, 4, 8, and 8 BCCP homologs were identified in Gossypium raimondii, G. arboreum, G. hirsutum, and G. barbadense, respectively. These genes were divided into two classes based on a phylogenetic analysis. In each class, these homologs were relatively conserved in gene structure and motifs. The chromosomal distribution pattern revealed that all the BCCP genes were distributed equally on corresponding chromosomes or scaffold in the four cotton species. Segmental duplication was a predominant duplication event in both of G. hirsutum and G. barbadense. The analysis of the expression profile showed that 8 GhBCCP genes expressed in all the tested tissues with changed expression levels, and GhBCCP genes belonging to class II were predominantly expressed in developing ovules. Meanwhile, the expression analysis for the 16 cotton BCCP genes from G. raimondii, G. arboreum and G. hirsutum showed that they were induced or suppressed by cold or salt stress, and their expression patterns varied among different tissues. These findings will help to determine the functional and evolutionary characteristics of the BCCP genes in Gossypium species.

  5. Carry-over effect of Thidiazuron on banana in vitro proliferation at ...

    African Journals Online (AJOL)

    Thidiazuron (TDZ) is an active cytokinin that was shown to induce increased shoot proliferation and habituation in black walnut, Phaseolus lunatus and evergreen azalea, which are tree species but has not been widely investigated in bananas. Unlike other cytokines commonly in use that are adeninebased, TDZ is a urea ...

  6. Effect of thidiazuron on in vivo shoot proliferation of popular banana ...

    African Journals Online (AJOL)

    SARAH

    2014-09-30

    Sep 30, 2014 ... Mzuzu underscore the need for further studies to determine alternative best cytokine-based growth regulators. Key words: Thidiazuron, in vivo proliferation, Sucker growth, Banana. INTRODUCTION. In vivo macropropagation is an alternative technique for mass production of banana planting materials.

  7. Thidiazuron-induced in vitro bud organogenesis of the date palm ...

    African Journals Online (AJOL)

    Thidiazuron-induced in vitro bud organogenesis of the date palm (Phoenix dactylifera L.) CV. Hillawi. AMW Al-Mayahi. Abstract. The objective of the present was to enhance the frequency of plant regeneration in date palm (Phoenix dactylifera L.) cv. Hillawi. Explants were incubated on Murashige and Skoog (MS) medium ...

  8. Pencapaian Fase Embriosomatik Manggis (Garcinia mangostana L. dengan Penambahan Thidiazuron dalam Medium Setengah MS Cair

    Directory of Open Access Journals (Sweden)

    Innaka Ageng Rineksane

    2016-02-01

    Full Text Available One of the problems related to the establishment of mangosteen plantation is to obtain seedlings throughout the year, which can be solved by micropropagation.   The propagation of Mangosteen was done through somatic embryogenesis. The objective of this study was to determine the effect of Thidiazuron concentration in ½ MS medium to achieve somatic embryo stages of mangosteen seed. The study consisted of two experiments. Experiment 1: The embryogenic callus c.a.1 g derived from MS solid medium containing of Thidiazuron (0,1; 0,5; dan 1 mg/l and 2,4-Dichlorophenoxy acetic acid (4,6,8 dan 10 mg/l was subcultured into ½ MS0 liquid medium. 2. The embryogenic callus from the previous medium were subcultured into ½ MS liquid medium containing Thidiazuron (0, 1, 2, 4 dan 8 mg/L and Casein hydrolysate 500 mg/L. The results showed that cell suspension were developed after mangosteen embryogenic callus subcultured into ½ MS0 liquid medium.  Somatic embryo stages such as globular, heart and torpedo were formed after the calli derived from the previous ½ MS solid medium containing 10 mg/L 2,4-D and 1 mg/L Thidiazuron were subcultured into ½ MS0 liquid medium in 8 weeks.  Cell suspension in ½ MS liquid medium with or without the addition of  Thidiazuron and Casein hydrolysate has induced the formation of embryo somatic stages such as globular, heart and torpedo after 6 months of incubation.

  9. Induction of Somatic Embryogenesis in Sengon (Falcataria moluccana With Thidiazuron and Light Treatments

    Directory of Open Access Journals (Sweden)

    Ari Sunandar

    2017-04-01

    Full Text Available Falcataria moluccana is important for reforestation and afforestation in Indonesia. However, epidemic of gall rust disease in F. moluccana plantations decreases its productivity. Genetic engineering is an alternative solution to against gall rust disease. Somatic embryogenesis is an efficient in vitro plant regeneration for successful plant improvement through genetic engineering. The objective of this study was to investigate the effect of thidiazuron and light treatments on the induction of somatic embryogenesis of F. moluccana. The effects of thidiazuron concentration (5, 10 or 15 μM and light (continuous light, 7 days of dark followed by light, or continuous dark on the induction of somatic embryogenesis in leaf explants were assessed. The highest production of somatic embryos was obtained in 5 μM thidiazuron and dark treatments for 7 days followed by light in Murashige and Skoog medium supplemented with 1.2 g/L proline. Histological analysis in globular and cotyledon stages confirmed that cells had progressed to secondary somatic embryogenesis. This research needs more improvements to become a successful and efficient somatic embryogenesis method and as a potential method for successful plant improvement through genetic engineering in F. moluccana.

  10. A melting pot of Old World begomoviruses and their satellites infecting a collection of Gossypium species in Pakistan.

    Directory of Open Access Journals (Sweden)

    Muhammad Shah Nawaz-ul-Rehman

    Full Text Available CLCuD in southern Asia is caused by a complex of multiple begomoviruses (whitefly transmitted, single-stranded [ss]DNA viruses in association with a specific ssDNA satellite; Cotton leaf curl Multan betasatellite (CLCuMuB. A further single ssDNA molecule, for which the collective name alphasatellites has been proposed, is also frequently associated with begomovirus-betasatellite complexes. Multan is in the center of the cotton growing area of Pakistan and has seen some of the worst problems caused by CLCuD. An exhaustive analysis of the diversity of begomoviruses and their satellites occurring in 15 Gossypium species (including G. hirsutum, the mainstay of Pakistan's cotton production that are maintained in an orchard in the vicinity of Multan has been conducted using φ29 DNA polymerase-mediated rolling-circle amplification, cloning and sequence analysis. The non-cultivated Gossypium species, including non-symptomatic plants, were found to harbor a much greater diversity of begomoviruses and satellites than found in the cultivated G. hirsutum. Furthermore an African cassava mosaic virus (a virus previously only identified in Africa DNA-A component and a Jatropha curcas mosaic virus (a virus occurring only in southern India DNA-B component were identified. Consistent with earlier studies of cotton in southern Asia, only a single species of betasatellite, CLCuMuB, was identified. The diversity of alphasatellites was much greater, with many previously unknown species, in the non-cultivated cotton species than in G. hirsutum. Inoculation of newly identified components showed them to be competent for symptomatic infection of Nicotiana benthamiana plants. The significance of the findings with respect to our understanding of the role of host selection in virus diversity in crops and the geographical spread of viruses by human activity are discussed.

  11. A melting pot of Old World begomoviruses and their satellites infecting a collection of Gossypium species in Pakistan.

    Science.gov (United States)

    Nawaz-ul-Rehman, Muhammad Shah; Briddon, Rob W; Fauquet, Claude M

    2012-01-01

    CLCuD in southern Asia is caused by a complex of multiple begomoviruses (whitefly transmitted, single-stranded [ss]DNA viruses) in association with a specific ssDNA satellite; Cotton leaf curl Multan betasatellite (CLCuMuB). A further single ssDNA molecule, for which the collective name alphasatellites has been proposed, is also frequently associated with begomovirus-betasatellite complexes. Multan is in the center of the cotton growing area of Pakistan and has seen some of the worst problems caused by CLCuD. An exhaustive analysis of the diversity of begomoviruses and their satellites occurring in 15 Gossypium species (including G. hirsutum, the mainstay of Pakistan's cotton production) that are maintained in an orchard in the vicinity of Multan has been conducted using φ29 DNA polymerase-mediated rolling-circle amplification, cloning and sequence analysis. The non-cultivated Gossypium species, including non-symptomatic plants, were found to harbor a much greater diversity of begomoviruses and satellites than found in the cultivated G. hirsutum. Furthermore an African cassava mosaic virus (a virus previously only identified in Africa) DNA-A component and a Jatropha curcas mosaic virus (a virus occurring only in southern India) DNA-B component were identified. Consistent with earlier studies of cotton in southern Asia, only a single species of betasatellite, CLCuMuB, was identified. The diversity of alphasatellites was much greater, with many previously unknown species, in the non-cultivated cotton species than in G. hirsutum. Inoculation of newly identified components showed them to be competent for symptomatic infection of Nicotiana benthamiana plants. The significance of the findings with respect to our understanding of the role of host selection in virus diversity in crops and the geographical spread of viruses by human activity are discussed.

  12. Genome-wide identification of ABA receptor PYL family and expression analysis of PYLs in response to ABA and osmotic stress in Gossypium

    Directory of Open Access Journals (Sweden)

    Gaofeng Zhang

    2017-12-01

    Full Text Available Abscisic acid (ABA receptor pyrabactin resistance1/PYR1-like/regulatory components of ABA receptor (PYR1/PYL/RCAR (named PYLs for simplicity are core regulators of ABA signaling, and have been well studied in Arabidopsis and rice. However, knowledge is limited about the PYL family regarding genome organization, gene structure, phylogenesis, gene expression and protein interaction with downstream targets in Gossypium. A comprehensive analysis of the Gossypium PYL family was carried out, and 21, 20, 40 and 39 PYL genes were identified in the genomes from the diploid progenitor G. arboretum, G. raimondii and the tetraploid G. hirsutum and G. barbadense, respectively. Characterization of the physical properties, chromosomal locations, structures and phylogeny of these family members revealed that Gossypium PYLs were quite conservative among the surveyed cotton species. Segmental duplication might be the main force promoting the expansion of PYLs, and the majority of the PYLs underwent evolution under purifying selection in Gossypium. Additionally, the expression profiles of GhPYL genes were specific in tissues. Transcriptions of many GhPYL genes were inhibited by ABA treatments and induced by osmotic stress. A number of GhPYLs can interact with GhABI1A or GhABID in the presence and/or absence of ABA by the yeast-two hybrid method in cotton.

  13. Genome-wide identification and characterization of phospholipase C gene family in cotton (Gossypium spp.).

    Science.gov (United States)

    Zhang, Bing; Wang, Yanmei; Liu, Jin-Yuan

    2018-01-01

    Phospholipase C (PLC) are important regulatory enzymes involved in several lipid and Ca 2+ -dependent signaling pathways. Previous studies have elucidated the versatile roles of PLC genes in growth, development and stress responses of many plants, however, the systematic analyses of PLC genes in the important fiber-producing plant, cotton, are still deficient. In this study, through genome-wide survey, we identified twelve phosphatidylinositol-specific PLC (PI-PLC) and nine non-specific PLC (NPC) genes in the allotetraploid upland cotton Gossypium hirsutum and nine PI-PLC and six NPC genes in two diploid cotton G. arboretum and G.raimondii, respectively. The PI-PLC and NPC genes of G. hirsutum showed close phylogenetic relationship with their homologous genes in the diploid cottons and Arabidopsis. Segmental and tandem duplication contributed greatly to the formation of the gene family. Expression profiling indicated that few of the PLC genes are constitutely expressed, whereas most of the PLC genes are preferentially expressed in specific tissues and abiotic stress conditions. Promoter analyses further implied that the expression of these PLC genes might be regulated by MYB transcription factors and different phytohormones. These results not only suggest an important role of phospholipase C members in cotton plant development and abiotic stress response but also provide good candidate targets for future molecular breeding of superior cotton cultivars.

  14. Molecular characterization of the Gossypium Diversity Reference Set of the US National Cotton Germplasm Collection.

    Science.gov (United States)

    Hinze, Lori L; Fang, David D; Gore, Michael A; Scheffler, Brian E; Yu, John Z; Frelichowski, James; Percy, Richard G

    2015-02-01

    A core marker set containing markers developed to be informative within a single commercial cotton species can elucidate diversity structure within a multi-species subset of the Gossypium germplasm collection. An understanding of the genetic diversity of cotton (Gossypium spp.) as represented in the US National Cotton Germplasm Collection is essential to develop strategies for collecting, conserving, and utilizing these germplasm resources. The US collection is one of the largest world collections and includes not only accessions with improved yield and fiber quality within cultivated species, but also accessions possessing sources of abiotic and biotic stress resistance often found in wild species. We evaluated the genetic diversity of a subset of 272 diploid and 1,984 tetraploid accessions in the collection (designated the Gossypium Diversity Reference Set) using a core set of 105 microsatellite markers. Utility of the core set of markers in differentiating intra-genome variation was much greater in commercial tetraploid genomes (99.7 % polymorphic bands) than in wild diploid genomes (72.7 % polymorphic bands), and may have been influenced by pre-selection of markers for effectiveness in the commercial species. Principal coordinate analyses revealed that the marker set differentiated interspecific variation among tetraploid species, but was only capable of partially differentiating among species and genomes of the wild diploids. Putative species-specific marker bands in G. hirsutum (73) and G. barbadense (81) were identified that could be used for qualitative identification of misclassifications, redundancies, and introgression within commercial tetraploid species. The results of this broad-scale molecular characterization are essential to the management and conservation of the collection and provide insight and guidance in the use of the collection by the cotton research community in their cotton improvement efforts.

  15. How to be sweet? Extra floral nectar allocation by Gossypium hirsutum fits optimal defense theory predictions

    NARCIS (Netherlands)

    Wäckers, F.L.; Bonifay, C.

    2004-01-01

    Plants employ nectar for two distinct functions. Floral nectar has traditionally been viewed in the context of pollination. Extrafloral nectar on the other hand, can act as an indirect defense, allowing the plant to recruit predators and parasitoids. Whereas this makes for a clear-cut

  16. Whole linted cottonseed meal (Gossypium hirsutum L. protein and fiber degradability in the rumen

    Directory of Open Access Journals (Sweden)

    Deborah Clea Ruy

    1996-12-01

    3 x 3 change-over design to evaluate the following treatments: A = 0% WLC; B = 6.6% WLC; and C = 15.0% WLC. Sorghum silage contributed with 70% in all three treatments. DM degradability at 48h incubation time was statistically different (p < 0.05 (A = 54.4%; B = 54.2% and C = 58.7%, as well as PB degradability at 12h (A = 40.3%; B = 47.7% and C = 53.1% and ADF degradability at 48h (A = 40.3%; B = 41.2% and C = 45.6%. Ruminal volume, turn overtime and ruminal pH weren’t affected by the experimental diets. Substitution of WLC for cottonseed meal up to 15% diet increased degradability of DM, CP and ADF of WLC.

  17. Herbicide-resistant cotton (Gossypium hirsutum) plants: an alternative way of manual weed removal.

    Science.gov (United States)

    Latif, Ayesha; Rao, Abdul Qayyum; Khan, Muhammad Azmat Ullah; Shahid, Naila; Bajwa, Kamran Shehzad; Ashraf, Muhammad Aleem; Abbas, Malik Adil; Azam, Muhammad; Shahid, Ahmad Ali; Nasir, Idrees Ahmad; Husnain, Tayyab

    2015-09-17

    Cotton yield has been badly affected by different insects and weed competition. In Past Application of multiple chemicals is required to manage insects and weed control was achieved by different conventional means, such as hand weeding, crop rotation and polyculture, because no synthetic chemicals were available. The control methods shifted towards high input and target-oriented methods after the discovery of synthetic herbicide in the 1930s. To utilise the transgenic approach, cotton plants expressing the codon-optimised CEMB GTGene were produced in the present study. Local cotton variety CEMB-02 containing Cry1Ac and Cry2A in single cassette was transformed by synthetic codon-optimised 5-enolpyruvylshikimate-3-phosphate synthase gene cloned into pCAMBIA 1301 vector under 35S promoter with Agrobacterium tumifaciens. Putative transgenic plants were screened in MS medium containing 120 µmol/L glyphosate. Integration and expression of the gene were evaluated by PCR from genomic DNA and ELISA from protein. A 1.4-kb PCR product for Glyphosate and 167-bp product for Cry2A were obtained by amplification through gene specific primers. Expression level of Glyphosate and Bt proteins in two transgenic lines were recorded to be 0.362, 0.325 µg/g leaf and 0.390, 0.300 µg/g leaf respectively. FISH analysis of transgenic lines demonstrates the presence of one and two copy no. of Cp4 EPSPS transgene respectively. Efficacy of the transgene Cp4 EPSPS was further evaluated by Glyphosate spray (41 %) assay at 1900 ml/acre and insect bioassay which shows 100 %mortality of insect feeding on transgenic lines as compared to control. The present study shows that the transgenic lines produced in this study were resistant not only to insects but also equally good against 1900 ml/acre field spray concentration of glyphosate.

  18. Influence of foliar application of glycine betaine on gas exchange characteristics of cotton (gossypium Hirsutum L.)

    International Nuclear Information System (INIS)

    Makhdum, M.I.; Din, S.U.

    2007-01-01

    Water is the most limiting factor in cotton production and numerous efforts are being made to improve crop drought tolerance. A field study was conducted with the objectives to determine the effects of different application rates of glycine betaine in field grown cotton at Central Cotton Research Institute, Multan. Four levels of glycine betaine (0.0, 1.0, 3.0 and 6.0 kg ha-1) were applied at three physiological growth stages i.e. at squaring, first flower and peak flowering. Cotton cultivar CIM-448 was used as test crop. Results showed that crop sprayed with glycine betaine at the rate of 6.0 kg ha-1 maintained 120.0, 62.1, 69.7 and 35.5 percent higher net CO/sub 2/ assimilation rate (PN), transpiration rate (E), stomatal resistance (gs) and water use efficiency (PN/E), respectively over that of untreated crop. Crop spayed with glycine betaine at peak flowering stage maintained higher PN, E, gs and PN/E compared to at other stages of growth. (author)

  19. Gamma ray induced diversity in restorer line of cotton (Gossypium Hirsutum)

    International Nuclear Information System (INIS)

    Mehetre, S.S.; Patil, V.R.; Surana, P.P.

    2000-01-01

    Looking to the limitation of very few restorers available in cotton a diversification of available restorer line was undertaken by gamma irradiation. The four hundred individual plants selected from individual M 2 families were crossed with CMS lines. Out of which 12 plants restored fertility in CMS lines and their F 1 's with CMS produced more heterotic hybrids than their checks (control). The results indicated that sufficient variability can be induced with the help of gamma rays and the diversification of restorers is possible within a short period with simultaneous improvement in either one or two characters. (author)

  20. CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Janga, Madhusudhana R; Campbell, LeAnne M; Rathore, Keerti S

    2017-07-01

    The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR associated (Cas)9 protein system has emerged as a simple and efficient tool for genome editing in eukaryotic cells. It has been shown to be functional in several crop species, yet there are no reports on the application of this or any other genome editing technologies in the cotton plant. Cotton is an important crop that is grown mainly for its fiber, but its seed also serves as a useful source of edible oil and feed protein. Most of the commercially-grown cotton is tetraploid, thus making it much more difficult to target both sets of homeologous alleles. Therefore, in order to understand the efficacy of the CRISPR/Cas9 system to target a gene within the genome of cotton, we made use of a transgenic cotton line previously generated in our laboratory that had a single copy of the green fluorescent protein (GFP) gene integrated into its genome. We demonstrate, for the first time, the use of this powerful new tool in targeted knockout of a gene residing in the cotton genome. By following the loss of GFP fluorescence, we were able to observe the cells that had undergone targeted mutations as a result of CRISPR/Cas9 activity. In addition, we provide examples of the different types of indels obtained by Cas9-mediated cleavage of the GFP gene, guided by three independent sgRNAs. The results provide useful information that will help us target important native genes in the cotton plant in future.

  1. Mining and Analysis of SNP in Response to Salinity Stress in Upland Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Wang, Xiaoge; Lu, Xuke; Wang, Junjuan; Wang, Delong; Yin, Zujun; Fan, Weili; Wang, Shuai; Ye, Wuwei

    2016-01-01

    Salinity stress is a major abiotic factor that affects crop output, and as a pioneer crop in saline and alkaline land, salt tolerance study of cotton is particularly important. In our experiment, four salt-tolerance varieties with different salt tolerance indexes including CRI35 (65.04%), Kanghuanwei164 (56.19%), Zhong9807 (55.20%) and CRI44 (50.50%), as well as four salt-sensitive cotton varieties including Hengmian3 (48.21%), GK50 (40.20%), Xinyan96-48 (34.90%), ZhongS9612 (24.80%) were used as the materials. These materials were divided into salt-tolerant group (ST) and salt-sensitive group (SS). Illumina Cotton SNP 70K Chip was used to detect SNP in different cotton varieties. SNPv (SNP variation of the same seedling pre- and after- salt stress) in different varieties were screened; polymorphic SNP and SNPr (SNP related to salt tolerance) were obtained. Annotation and analysis of these SNPs showed that (1) the induction efficiency of salinity stress on SNPv of cotton materials with different salt tolerance index was different, in which the induction efficiency on salt-sensitive materials was significantly higher than that on salt-tolerant materials. The induction of salt stress on SNPv was obviously biased. (2) SNPv induced by salt stress may be related to the methylation changes under salt stress. (3) SNPr may influence salt tolerance of plants by affecting the expression of salt-tolerance related genes.

  2. Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment.

    Science.gov (United States)

    Chakravarthy, Vajhala S K; Reddy, Tummala Papi; Reddy, Vudem Dashavantha; Rao, Khareedu Venkateswara

    2014-06-01

    Cotton is considered as the foremost commercially important fiber crop and is deemed as the backbone of the textile industry. The productivity of cotton crop, worldwide, is severely hampered by the occurrence of pests, weeds, pathogens apart from various environmental factors. Several beneficial agronomic traits, viz., early maturity, improved fiber quality, heat tolerance, etc. have been successfully incorporated into cotton varieties employing conventional hybridization and mutation breeding. Crop losses, due to biotic factors, are substantial and may be reduced through certain crop protection strategies. In recent years, pioneering success has been achieved through the adoption of modern biotechnological approaches. Genetically engineered cotton varieties, expressing Bacillus thuringiensis cry genes, proved to be highly successful in controlling the bollworm complex. Various other candidate genes responsible for resistance to insect pests and pathogens, tolerance to major abiotic stress factors such as temperature, drought and salinity, have been introduced into cotton via genetic engineering methods to enhance the agronomic performance of cotton cultivars. Furthermore, genes for improving the seed oil quality and fiber characteristics have been identified and introduced into cotton cultivars. This review provides a brief overview of the various advancements made in cotton through genetic engineering approaches.

  3. Interference between Redroot Pigweed (Amaranthus retroflexus L.) and Cotton (Gossypium hirsutum L.): Growth Analysis.

    Science.gov (United States)

    Ma, Xiaoyan; Wu, Hanwen; Jiang, Weili; Ma, Yajie; Ma, Yan

    2015-01-01

    Redroot pigweed is one of the injurious agricultural weeds on a worldwide basis. Understanding of its interference impact in crop field will provide useful information for weed control programs. The effects of redroot pigweed on cotton at densities of 0, 0.125, 0.25, 0.5, 1, 2, 4, and 8 plants m(-1) of row were evaluated in field experiments conducted in 2013 and 2014 at Institute of Cotton Research, CAAS in China. Redroot pigweed remained taller and thicker than cotton and heavily shaded cotton throughout the growing season. Both cotton height and stem diameter reduced with increasing redroot pigweed density. Moreover, the interference of redroot pigweed resulted in a delay in cotton maturity especially at the densities of 1 to 8 weed plants m(-1) of row, and cotton boll weight and seed numbers per boll were reduced. The relationship between redroot pigweed density and seed cotton yield was described by the hyperbolic decay regression model, which estimated that a density of 0.20-0.33 weed plant m(-1) of row would result in a 50% seed cotton yield loss from the maximum yield. Redroot pigweed seed production per plant or per square meter was indicated by logarithmic response. At a density of 1 plant m(-1) of cotton row, redroot pigweed produced about 626,000 seeds m(-2). Intraspecific competition resulted in density-dependent effects on weed biomass per plant, a range of 430-2,250 g dry weight by harvest. Redroot pigweed biomass ha(-1) tended to increase with increasing weed density as indicated by a logarithmic response. Fiber quality was not significantly influenced by weed density when analyzed over two years; however, the fiber length uniformity and micronaire were adversely affected at density of 1 weed plant m(-1) of row in 2014. The adverse impact of redroot pigweed on cotton growth and development identified in this study has indicated the need of effective redroot pigweed management.

  4. Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop.

    Science.gov (United States)

    Nehra, Vibha; Saharan, Baljeet Singh; Choudhary, Madhu

    2016-01-01

    The present investigation was undertaken to isolate, screen and evaluate a selected promising PGPR Brevibacillus brevis on cotton crop. Out of 156 bacterial isolates one of the most promising isolate was analyzed for the various PGP traits. A seed germination analysis was conducted with cotton seeds to evaluate the potential of the isolate to promote plant growth. The bacterial isolate was checked for its growth and survival at high temperatures. The isolate was also analyzed for the PGP traits exhibited after the heat treatment. To identify the isolate morphological, biochemical and molecular characterization was performed. The isolate was found positive for many of the PGP attributes like IAA, ARA, anti-fungal activity and ammonia production. Effect of seed bacterization on various plant growth parameters was used as an indicator. The isolate showed significant growth and exhibited various PGP traits at high temperature making it suitable as an inoculant for cotton crop. Isolate was identified as Brevibacillus brevis [SVC(II)14] based on phenotypic as well as genotypic attributes and after conducting this research we propose that the B. brevis which is reported for the first time for its PGP potential in cotton, exerts its beneficial effects on cotton crop through combined modes of actions.

  5. Flooding tolerance in cotton (gossypium hirsutum l.) at early vegetative and reproductive growth stages

    International Nuclear Information System (INIS)

    Hussain, A.

    2014-01-01

    Periodic flooding at any growth stage greatly affects growth and yield of crops. In order to develop flooding tolerant cotton cultivar and to identify the most sensitive growth stage to periodic flooding, a field experiment was conducted in which 60-cultivars/accessions/lines were subjected to two week flooding at seedling/early vegetative, flower and boll formation growth stages. Pre- and post-flooding soil analysis was also carried out. Nitrate-N was greatly reduced due to flooding applied at all growth stages, whereas NH4-N increased significantly. Similarly, Fe and Mn were also increased to many folds in flooded soils. Under hypoxic conditions, depletion of nitrates and toxic effects of accumulated NH4, Fe and Mn caused severe damages to cotton plants and even death of plants. Of the three growth stages, early vegetative growth stage is most sensitive to two week flooding. Flooding imposed at the flowering and boll formation growth stages caused a substantial amount of yield penalty. On the basis of survival percentage, the 60-cultivars/accessions/lines were categorized into tolerant (61%), moderately tolerant (31=60%) and sensitive (31%) to short term flooding. At the seedling or early vegetative growth stage, genotypes DPL-SR-2 followed by 124-F and MNH-427 were most tolerant to flooding, while AET-5, N-KRISHMA, LRA-5166, CEDIX and H-142 were ranked as sensitive to flooding stress. At the flowering stage, the genotype NIAB-92 followed by S-14 and MNH-427 were highly tolerant to flooding. At the boll formation stage, genotypes DPL-70010-N followed by GH-11-9-75 and B-2918-2 were highly tolerant waterlogging. More than 50% of the genotypes maintained the degree of flooding tolerance at three growth stages. However, on the basis of survival percentage at three growth stages, genotypes MNH-564, FH-114, MNH-786 and CIM-573 were included in the tolerant group and the genotypes N-KRISHMA, LRA-5166, CEDIX and H-142 were included in the sensitive group. These genotypes/cultivars maintaining high degree of stress tolerance at different growth stages are of considerable importance for the development of tolerant cultivar. (author)

  6. Purification and characterization of cell suspensions peroxidase from cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Kouakou, Tanoh Hilaire; Dué, Edmond Ahipo; Kouadio, N'guessan Eugène Jean Parfait; Niamké, Sébastien; Kouadio, Yatty Justin; Mérillon, Jean-Michel

    2009-06-01

    Two peroxidases, cPOD-I and rPOD-II, have been isolated and purified from cotton cell suspension and their biochemical characteristics studied. rPOD-II from R405-2000, a non-embryogenic cultivar, has higher activity than cPOD-I derived from Coker 312, which developed an embryogenic structure. The cPOD-I and rPOD-II had molecular mass of 39.1 and 64 kDa respectively, as determined by SDS-PAGE. Both enzymes showed high efficiency of interaction with the guaiacol at 25 mM. The optimal pH for cPOD-I and rPOD-II activity was 5.0 and 6.0, respectively. The enzyme had an optimum temperature of 25 degrees C and was relatively stable at 20-30 degrees C. The isoenzymes were highly inhibited by ascorbic acid, dithiothreitol, sodium metabisulfite, and beta-mercaptoethanol. Their activities were highly enhanced by Al(3+), Fe(3+), Ca(2+), and Ni(2+), but they were moderately inhibited by Mn(2+) and K(+). The enzyme lost 50% to 62% of its activity in the presence of Zn(2+) and Hg(2+).

  7. Functional characterization of an anthocyanidin reductase gene from the fibers of upland cotton (Gossypium hirsutum).

    Science.gov (United States)

    Zhu, Yue; Wang, Haiyun; Peng, Qingzhong; Tang, Yuntao; Xia, Guixian; Wu, Jiahe; Xie, De-Yu

    2015-05-01

    Metabolic profiling, gene cloning, enzymatic analysis, ectopic expression, and gene silencing experiments demonstrate that the anthocyanidin reductase (ANR) pathway is involved in the biosynthesis of proanthocyanidins in upland cotton. Proanthocyanidins (PAs) are oligomeric or polymeric flavan-3-ols, however, the biosynthetic pathway of PAs in cotton remains to be elucidated. Here, we report on an anthocyanidin reductase (ANR) gene from cotton fibers and the ANR pathway of PAs. Phytochemical analysis demonstrated that leaves, stems, roots, and early developing fibers produced PAs and their monomers, including (-)-epicatechin, (-)-catechin, (-)-epigallocatechin, and (-)-gallocatechin. Crude PA extractions from different tissues were boiled in Butanol:HCl. Cyanidin, delphinidin, and pelargonidin were produced, indicating that cotton PAs include diverse extension unit structures. An ANR cDNA homolog (named GhANR1) was cloned from developing fibers. The open reading frame, composed of 1,011 bp nucleotides, was expressed in E. coli to obtain a recombinant protein. In the presence of NADPH, the recombinant enzyme catalyzed cyanidin, delphinidin, and pelargonidin to (-)-epicatechin and (-)-catechin, (-)-epigallocatechin and (-)-gallocatechin, and (-)-epiafzelechin and (-)-afzelechin, respectively. The ectopic expression of GhANR11 in an Arabidopsis ban mutant allowed for the reconstruction of the ANR pathway and PA biosynthesis in the seed coat. Virus-induced gene silencing (VIGS) of GhANR11 led to a significant increase in anthocyanins and a decrease in the PAs, (-)-epicatechin, and (-)-catechin in the stems and leaves of VIGS-infected plants. Taken together, these data demonstrate that the ANR pathway contributes to the biosynthesis of flavan-3-ols and PAs in cotton.

  8. Functional characterization of a novel jasmonate ZIM-domain interactor (NINJA) from upland cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Le; Wu, Shu-Ming; Zhu, Yue; Fan, Qiang; Zhang, Zhen-Nan; Hu, Guang; Peng, Qing-Zhong; Wu, Jia-He

    2017-03-01

    The jasmonic acid (JA) signalling pathway plays roles in plant development and defence against biotic and abiotic stresses. We isolated a cotton NINJA (novel interactor of JA ZIM-domain) gene, designated GhNINJA, which contains a 1305 bp open read frame. The GhNINJA gene encodes a 434 amino acid peptide. According to quantitative real-time PCR analysis, GhNINJA is preferentially expressed in roots, and its expression level is greatly induced by Verticillium dahliae infection. Through a virus-induced gene silencing technique, we developed GhNINJA-silenced cotton plants, which had significantly decreased expression of the target gene with an average expression of 6% of the control. The regenerating lateral root growth of silenced plants was largely inhibited compared to the control. Analysis by microscopy demonstrated that the cell length of the root differentiation zone in GhNINJA-silenced plants is significantly shorter than those of the control. Moreover, the silenced plants exhibited higher tolerance to V. dahliae infection compared to the control, which was linked to the increased expression of the defence marker genes PDF1.2 and PR4. Together, these data indicated that knockdown of GhNINJA represses the root growth and enhances the tolerance to V. dahliae. Therefore, GhNINJA gene can be used as a candidate gene to breed the new cultivars for improving cotton yield and disease resistance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Functional Characterization of a Dihydroflavanol 4-Reductase from the Fiber of Upland Cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Le; Zhu, Yue; Wang, Peng; Fan, Qiang; Wu, Yao; Peng, Qing-Zhong; Xia, Gui-Xian; Wu, Jia-He

    2016-01-26

    Dihydroflavanol 4-reductase (DFR) is a key later enzyme involved in two polyphenols' (anthocyanins and proanthocyanidins (PAs)) biosynthesis, however it is not characterized in cotton yet. In present reports, a DFR cDNA homolog (designated as GhDFR1) was cloned from developing fibers of upland cotton. Silencing GhDFR1 in cotton by virus-induced gene silencing led to significant decrease in accumulation of anthocyanins and PAs. More interestingly, based on LC-MS analysis, two PA monomers, (-)-epicatachin and (-)-epigallocatachin, remarkably decreased in content in fibers of GhDFR1-silenced plants, but two new monomers, (-)-catachin and (-)-gallocatachin were present compared to the control plants infected with empty vector. The ectopic expression of GhDFR1 in an Arabidopsis TT3 mutant allowed for reconstruction of PAs biosynthesis pathway and led to accumulation of PAs in seed coat. Taken together, these data demonstrate that GhDFR1 contributes to the biosynthesis of anthocyanins and PAs in cotton.

  10. Induced variants in cotton (Gossypium Hirsutum L.) by in vitro mutagenesis

    International Nuclear Information System (INIS)

    Muthusamy, A.; Jayabalan, N.

    2000-01-01

    The shoot tips (3-5mm) of cotton were isolated from five day old in vitro grown seedlings and it contained two small unexpanded leaves approximately 1.0 mm along with cotyledons and the cotyledons were removed before the treatment with mutagens. The shoot tip alone was treated with 1-5 kR doses of gamma rays from 60C o source at Sugarcane Breeding Institute (ICAR), Coimbatore, Tamil Nadu and 1-5 mM of ethyl methane sulphonate (EMS) and sodium azide (SA) for 30 min. at pH 6 and 3 respectively. The treated shoot tips were inoculated on MS medium supplemented with 0.1 mg/l KIN, l-inositol 100 mg/l, thiamine HCI 1.0 mg/l, sucrose 30 g/l and agar 8 g/l. During the development of shoots, a number of leaf mutants with narrow, tubular, bilobed and multilobed leaves was observed. The plants also showed the best performance in number of branches, leaf area and yield characters than control. The morphological variants obtained due to mutagenic treatment in the present investigation showed high frequency with increasing doses of mutagens. Compared with somatic cell culture of cotton, shoot and meristem culture is an easier method to obtain regenerative plants. The in vitro induction of mutations has also potential application in the development of disease-resistant plants through tissue culture. (author)

  11. Genome-wide functional analysis of cotton (Gossypium hirsutum in response to drought.

    Directory of Open Access Journals (Sweden)

    Yun Chen

    Full Text Available Cotton is one of the most important crops for its natural textile fibers in the world. However, it often suffered from drought stress during its growth and development, resulting in a drastic reduction in cotton productivity. Therefore, study on molecular mechanism of cotton drought-tolerance is very important for increasing cotton production. To investigate molecular mechanism of cotton drought-resistance, we employed RNA-Seq technology to identify differentially expressed genes in the leaves of two different cultivars (drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6 of cotton. The results indicated that there are about 13.38% to 18.75% of all the unigenes differentially expressed in drought-resistant sample and drought-sensitive control, and the number of differentially expressed genes was increased along with prolonged drought treatment. DEG (differentially expression gene analysis showed that the normal biophysical profiles of cotton (cultivar J-13 were affected by drought stress, and some cellular metabolic processes (including photosynthesis were inhibited in cotton under drought conditions. Furthermore, the experimental data revealed that there were significant differences in expression levels of the genes related to abscisic acid signaling, ethylene signaling and jasmonic acid signaling pathways between drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6, implying that these signaling pathways may participate in cotton response and tolerance to drought stress.

  12. Expression analysis of fiber related genes in cotton (gossypium hirsutum l.) through real time pcr

    International Nuclear Information System (INIS)

    Iqbal, N.; Khatoon, A.; Asif, M.; Bashir, A.

    2016-01-01

    Cotton fibers are unicellular seed trichomes and the largest known plant cells. Fiber morphogenesis in cotton is a complex process involving a large number of genes expressed throughout fiber development process. The expression profiling of five gene families in various cotton tissues was carried out through real time PCR. Expression analysis revealed that transcripts of expansin, tubulin and E6 were elevated from 5 to 20 days post anthesis (DPA) fibers. Three Lipid transfer proteins (LTPs) including LTP1, LTP3, LTP7 exhibited highest expression in 10 - 20 DPA fibers. Transcripts of LTP3 were detected in fibers and non fiber tissues that of LTP7 were almost negligible in non fiber tissues. Sucrose phosphate synthase gene showed highest expression in 10 DPA fibers while sucrose synthse (susy) expressed at higher rate in 5-20 DPA fibers as well as roots. The results reveal that most of fiber related genes showed high expression in 5-20 DPA fibers. Comprehensive expression study may help to determine tissue and stage specificity of genes under study. The study may also help to explore complex process of fiber development and understand the role of these genes in fiber development process. Highly expressed genes in fibers may be transformed in cotton for improvement of fiber quality traits. Genes that were expressed specifically in fibers or other tissues could be used for isolation of upstream regulatory sequences. (author)

  13. Study of gene flow from GM cotton (Gossypium hirsutum) varieties in El Espinal (Tolima, Colombia)

    International Nuclear Information System (INIS)

    Rache Cardenal, Leidy Yanira; Mora Oberlaender, Julian; Chaparro Giraldo, Alejandro

    2013-01-01

    In 2009, 4088 hectares of genetically modified (GM) cotton were planted in Tolima (Colombia), however there is some uncertainty about containment measures needed to prevent the flow of pollen and seed from regulated GM fields into adjacent fields. In this study, the gene flow from GM cotton varieties to conventional or feral cotton plants via seed and pollen was evaluated. ImmunostripTM, PCR and ELISA assays were used to detect gene flow. Fifty six refuges, 27 fields with conventional cotton and four feral individuals of the enterprise Remolinos Inc. located in El Espinal (Tolima) were analyzed in the first half of 2010. The results indicated seed mediated gene flow in 45 refuges (80.4 %) and 26 fields with conventional cotton (96 %), besides pollen mediated gene flow in one field with conventional cotton and nine refuges. All fields cultivated with conventional cotton showed gene flow from GM cotton. Two refuges and two feral individuals did not reveal gene flow from GM cotton.

  14. Utilization of bio-waste cotton ( Gossypium hirsutum L.) stalks and ...

    African Journals Online (AJOL)

    The highest mechanical properties were obtained at cotton stalk and paulownia wood particle loading of 50 and 70%, respectively. Conclusively, valuable underutilized natural resources, cotton stalk and paulownia wood can be used with the mixture of industrial wood particles in the production of particleboards with high ...

  15. iTRAQ-based comparative proteomic analysis provides insights into somatic embryogenesis in Gossypium hirsutum L.

    OpenAIRE

    Zhu, Hua-Guo; Cheng, Wen-Han; Tian, Wen-Gang; Li, Yang-Jun; Liu, Feng; Xue, Fei; Zhu, Qian-Hao; Sun, Yu-Qiang; Sun, Jie

    2017-01-01

    Key message iTRAQ based proteomic identified key proteins and provided new insights into the molecular mechanisms underlying somatic embryogenesis in cotton. Abstract Somatic embryogenesis, which involves cell dedifferentiation and redifferentiation, has been used as a model system for understanding molecular events of plant embryo development in vitro. In this study, we performed comparative proteomics analysis using samples of non-embryogenic callus (NEC), embryogenic callus (EC) and somati...

  16. Leaf ontogeny strongly influences photosynthetic tolerance to drought and high temperature in Gossypium hirsutum

    Science.gov (United States)

    Temperature and drought are major abiotic limitations to crop productivity worldwide. While abiotic stress physiology research has focused primarily on fully expanded leaves, no studies have investigated photosynthetic tolerance to concurrent drought and high temperature during leaf ontogeny. To add...

  17. Monitoring cotton (Gossypium hirsutum L.) germination using ultrahigh-resolution UAS images

    Science.gov (United States)

    Examination of seed germination rate is of great importance for growers early in the season to determine the necessity for replanting their fields. The objective of this study was to explore the potential of using unmanned aircraft system (UAS)-based visible-band images to monitor and quantify the c...

  18. Effect of surfactant concentration on the evaporation of droplets on cotton (Gossypium hirsutum L.) leaves.

    Science.gov (United States)

    Zhou, Zhaolu; Cao, Chong; Cao, Lidong; Zheng, Li; Xu, Jun; Li, Fengmin; Huang, Qiliang

    2018-04-05

    The evaporation kinetics of pesticide droplets deposited on a leaf surface can affect their application efficiency. Evaporation of droplets on the hydrophobic leaves has received considerable attention, but little is known about hydrophilic leaf surfaces. In this study, the effect of surfactant concentration on the evaporation of droplets deposited on cotton leaves was investigated. The evaporation time is roughly decreased for concentrations ranging from 0% to 0.01% and increased from 0.01% to 0.10%. Contrary to the widely held belief that pesticide retention on target crops can rapidly be formed only with surfactant concentrations exceeding the CMC (critical micelle concentration), this study demonstrates that, on hydrophilic cotton leaves, fast evaporation of the droplet at surfactant concentrations of 0.01% (CMC) can reduce the volume quickly, lower the loss point and enhance pesticide retention. In addition, the evolution of droplet volume, height and contact angle on the cotton leaf surface were measured to confirm this conclusion. The result presented herein can be used to guide the use of surfactants and pesticides in agriculture. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Global gene expression in cotton (Gossypium hirsutum L. leaves to waterlogging stress.

    Directory of Open Access Journals (Sweden)

    Yanjun Zhang

    Full Text Available Cotton is sensitive to waterlogging stress, which usually results in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in cotton remain elusive. Cotton was grown in a rain-shelter and subjected to 0 (control-, 10-, 15- and 20-d waterlogging at flowering stage. The fourth-leaves on the main-stem from the top were sampled and immediately frozen in liquid nitrogen for physiological measurement. Global gene transcription in the leaves of 15-d waterlogged plants was analyzed by RNA-Seq. Seven hundred and ninety four genes were up-regulated and 1018 genes were down-regulated in waterlogged cotton leaves compared with non-waterlogged control. The differentially expressed genes were mainly related to photosynthesis, nitrogen metabolism, starch and sucrose metabolism, glycolysis and plant hormone signal transduction. KEGG (Kyoto Encyclopedia of Genes and Genomes analysis indicated that most genes related to flavonoid biosynthesis, oxidative phosphorylation, amino acid metabolism and biosynthesis as well as circadian rhythm pathways were differently expressed. Waterlogging increased the expression of anaerobic fermentation related genes, such as alcohol dehydrogenase (ADH, but decreased the leaf chlorophyll concentration and photosynthesis by down-regulating the expression of photosynthesis related genes. Many genes related to plant hormones and transcription factors were differently expressed under waterlogging stress. Most of the ethylene related genes and ethylene-responsive factor-type transcription factors were up-regulated under water-logging stress, suggesting that ethylene may play key roles in the survival of cotton under waterlogging stress.

  20. Responses of physiological and biochemical components in Gossypium hirsutum L. to mutagens

    International Nuclear Information System (INIS)

    Muthusamy, A.; Vasanth, K.; Jayabalan, N.

    2003-01-01

    The two tetraploid varieties of cotton were exposed to gamma rays, EMS and SA. Chlorophyll, carotenoids, sugar, starch, free amino acids, protein, lipids, DNA and RNA were estimated quantitatively. All the physiological and biochemical components were increased in lower dose/concentration of the mutagenic treatments and they were decreased in higher dose/concentrations. The stimulation of the biochemical contents was a dose/concentration dependent response. Among the two varieties, MCU 11 was found to be responsive to mutagens than MCU 5. Based on the study the lower dose/concentration of the mutagenic treatments could enhance the biochemical components which is used for improved economic characters of cotton. (author)

  1. SHORT COMMUNICATION GOSSIPIUM HIRSUTUM L. EXTRACT ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. Inhibitive effect of Gossipium hirsutum L. leaves extract on the acid corrosion of aluminum in 1. M HCl solution was studied by weight loss technique. The extract at optimum concentration inhibited the corrosion of aluminum, with about 92% inhibition efficiency and the inhibition efficiency increased with.

  2. Calogênese e brotações adventícias em tecido somático de Kiwi suplementados com Thidiazuron Callogenesis and adventitious shoots in Kiwi somatic tissue suplemented with Thidiazuron

    Directory of Open Access Journals (Sweden)

    Eva Choer

    1997-08-01

    Full Text Available Discos foliares com 0.46cm² foram coletados de brotações adventícias de Kiwi cultivados in vitro pertencentes a cv. Matua e condicionados por 24 horas em meio líquido contendo 2,4- D (5mg/l. Após este período o material foi cultivado em meio MS acrescido com Thidiazuron nas seguintes concentrações: 0; 0,25; 0,5; 1; 2; 4; 8 e 16mg/l. Os explantes inoculados com a superfície adaxial em contato com o meio de cultura permaneceram três semanas em ambiente escuro a temperatura de 25°C e, posteriormente, foram transferidos para sala de crescimento com fotoperíodo de 16 horas, 2.000 lux de luminância e temperatura de 23 ± 2°C. Nesse ambiente os tratamentos foram mantidos por mais três semanas e então avaliados. As doses mais elevadas de Thidiazuron (8 e 16 mg/l mostraram-se fitotóxicas, levando os explantes à morte. A formação de raízes foi observada apenas no tratamento controle. A intensidade de formação de calos, numero de brotações adventícias, peso da matéria seca e o número de gemas apresentaram comportamento quadrático, em relação às concentrações de Thidiazuron. O Thidiazuron não foi eficiente para formar brotações adventícias de Kiwi. A intensidade de formação de calo aumentou nas concentrações de até 2,21mg/l deThidiazuron, diminuindo a partir deste valor.Leaf discs (0.46cm² were collected from adventitious shoots of 'Matua' Kiwi cultivated in vitro and were conditioned during 24 hours in liquid medium with 2.4- D (5mg/l. After this period they were cultured in MS medium additioned with Thidiazuron in the concentrations following: 0; 0.25; 0.5; 1; 2; 4; 8 and 16mg/l. Explants were inoculated with the adaxial surface in contact with the culture medium and were maintained for about three weeks at 25°C in darkness. After this time they were kept for three weeks in a growth room and exposed to a 16 hour photoperiod, light intensity of approximately 2,000 lux and temperature of 23 ± 2°C. The higher

  3. Comprehensive Analysis of the COBRA-Like (COBL) Gene Family in Gossypium Identifies Two COBLs Potentially Associated with Fiber Quality

    Science.gov (United States)

    Niu, Erli; Shang, Xiaoguang; Cheng, Chaoze; Bao, Jianghao; Zeng, Yanda; Cai, Caiping; Du, Xiongming; Guo, Wangzhen

    2015-01-01

    COBRA-Like (COBL) genes, which encode a plant-specific glycosylphosphatidylinositol (GPI) anchored protein, have been proven to be key regulators in the orientation of cell expansion and cellulose crystallinity status. Genome-wide analysis has been performed in A. thaliana, O. sativa, Z. mays and S. lycopersicum, but little in Gossypium. Here we identified 19, 18 and 33 candidate COBL genes from three sequenced cotton species, diploid cotton G. raimondii, G. arboreum and tetraploid cotton G. hirsutum acc. TM-1, respectively. These COBL members were anchored onto 10 chromosomes in G. raimondii and could be divided into two subgroups. Expression patterns of COBL genes showed highly developmental and spatial regulation in G. hirsutum acc. TM-1. Of them, GhCOBL9 and GhCOBL13 were preferentially expressed at the secondary cell wall stage of fiber development and had significantly co-upregulated expression with cellulose synthase genes GhCESA4, GhCESA7 and GhCESA8. Besides, GhCOBL9 Dt and GhCOBL13 Dt were co-localized with previously reported cotton fiber quality quantitative trait loci (QTLs) and the favorable allele types of GhCOBL9 Dt had significantly positive correlations with fiber quality traits, indicating that these two genes might play an important role in fiber development. PMID:26710066

  4. Development of Agrobacterium-mediated virus-induced gene silencing and performance evaluation of four marker genes in Gossypium barbadense.

    Directory of Open Access Journals (Sweden)

    Jinhuan Pang

    Full Text Available Gossypiumbarbadense is a cultivated cotton species and possesses many desirable traits, including high fiber quality and resistance to pathogens, especially Verticilliumdahliae (a devastating pathogen of Gossypium hirsutum, the main cultivated species. These elite traits are difficult to be introduced into G. hirsutum through classical breeding methods. In addition, genetic transformation of G. barbadense has not been successfully performed. It is therefore important to develop methods for evaluating the function and molecular mechanism of genes in G. barbadense. In this study, we had successfully introduced a virus-induced gene silencing (VIGS system into three cultivars of G. barbadense by inserting marker genes into the tobacco rattle virus (TRV vector. After we optimized the VIGS conditions, including light intensity, photoperiod, seedling age and Agrobacterium strain, 100% of plants agroinfiltrated with the GaPDS silencing vector showed white colored leaves. Three other marker genes, GaCLA1, GaANS and GaANR, were employed to further test this VIGS system in G. barbadense. The transcript levels of the endogenous genes in the silenced plants were reduced by more than 99% compared to control plants; these plants presented phenotypic symptoms 2 weeks after inoculation. We introduced a fusing sequence fragment of GaPDS and GaANR gene silencing vectors into a single plant, which resulted in both photobleaching and brownish coloration. The extent of silencing in plants agroinfiltrated with fusing two-gene-silencing vector was consistent with plants harboring a single gene silencing vector. The development of this VIGS system should promote analysis of gene function in G. barbadense, and help to contribute desirable traits for breeding of G. barbadense and G. hirsutum.

  5. Duplication, divergence and persistence in the Phytochrome photoreceptor gene family of cottons (Gossypium spp.

    Directory of Open Access Journals (Sweden)

    Abdukarimov Abdusattor

    2010-06-01

    Full Text Available Abstract Background Phytochromes are a family of red/far-red photoreceptors that regulate a number of important developmental traits in cotton (Gossypium spp., including plant architecture, fiber development, and photoperiodic flowering. Little is known about the composition and evolution of the phytochrome gene family in diploid (G. herbaceum, G. raimondii or allotetraploid (G. hirsutum, G. barbadense cotton species. The objective of this study was to obtain a preliminary inventory and molecular-evolutionary characterization of the phytochrome gene family in cotton. Results We used comparative sequence resources to design low-degeneracy PCR primers that amplify genomic sequence tags (GSTs for members of the PHYA, PHYB/D, PHYC and PHYE gene sub-families from A- and D-genome diploid and AD-genome allotetraploid Gossypium species. We identified two paralogous PHYA genes (designated PHYA1 and PHYA2 in diploid cottons, the result of a Malvaceae-specific PHYA gene duplication that occurred approximately 14 million years ago (MYA, before the divergence of the A- and D-genome ancestors. We identified a single gene copy of PHYB, PHYC, and PHYE in diploid cottons. The allotetraploid genomes have largely retained the complete gene complements inherited from both of the diploid genome ancestors, with at least four PHYA genes and two genes encoding PHYB, PHYC and PHYE in the AD-genomes. We did not identify a PHYD gene in any cotton genomes examined. Conclusions Detailed sequence analysis suggests that phytochrome genes retained after duplication by segmental duplication and allopolyploidy appear to be evolving independently under a birth-and-death-process with strong purifying selection. Our study provides a preliminary phytochrome gene inventory that is necessary and sufficient for further characterization of the biological functions of each of the cotton phytochrome genes, and for the development of 'candidate gene' markers that are potentially useful for

  6. Characterization of expressed sequence tags from developing fibers of Gossypium barbadense and evaluation of insertion-deletion variation in tetraploid cultivated cotton species.

    Science.gov (United States)

    Lv, Yuanda; Zhao, Liang; Xu, Xiaoyang; Wang, Lei; Wang, Cheng; Zhang, Tianzhen; Guo, Wangzhen

    2013-03-13

    Cotton is the leading fiber crop worldwide. Gossypium barbadense is an important species of cotton because of its extra-long staple fibers with superior luster and silkiness. However, a systematic analysis and utilization of cDNA sequences from G. barbadense fiber development remains understudied. A total of 21,079 high quality sequences were generated from two non-normalized cDNA libraries prepared by using a mixture of G. barbadense Hai7124 fibers and ovules. After assembly processing, a set of 8,653 unigenes were obtained. Of those, 7,786 were matched to known proteins and 7,316 were assigned to functional categories. The molecular functions of these unigenes were mostly related to binding and catalytic activity, and carbohydrate, amino acid, and energy metabolisms were major contributors among the subsets of metabolism. Sequences comparison between G. barbadense and G. hirsutum revealed that 8,245 unigenes from G. barbadense were detected the similarity with those released publicly in G. hirsutum, however, the remaining 408 sequences had no hits against G. hirsutum unigenes database. Furthermore, 13,275 putative ESTs InDels loci involved in the orthologous and/or homoeologous differences between/within G. barbadense and G. hirsutum were discovered by in silico analyses, and 2,160 InDel markers were developed by ESTs with more than five insertions or deletions. By gel electrophoresis combined with sequencing verification, 71.11% candidate InDel loci were reconfirmed orthologous and/or homoeologous loci polymorphisms using G. hirsutum acc TM-1 and G. barbadense cv Hai7124. Blastx result showed among 2,160 InDel loci, 81 with significant function similarity with known genes associated with secondary wall synthesis process, indicating the important roles in fiber quality in tetraploid cultivated cotton species. Sequence comparisons and InDel markers development will lay the groundwork for promoting the identification of genes related to superior agronomic traits

  7. Exp2 polymorphisms associated with variation for fiber quality properties in cotton (Gossypium spp.

    Directory of Open Access Journals (Sweden)

    Daohua He

    2014-10-01

    Full Text Available Plant expansins are a group of extracellular proteins thought to affect the quality of cotton fibers. Previous expression profile analysis revealed that six Expansin A genes are present in cotton, of which two (GhExp1 and GhExp2 produce transcripts that are specific to the developing cotton fiber. To identify the phenotypic function of Exp2, and to determine whether nucleotide variation among alleles of Exp2 affects fiber quality, candidate gene association mapping was conducted. Gene-specific primers were designed to amplify the Exp2 gene. By amplicon sequencing, the nucleotide diversity of Exp2 was investigated across 92 accessions (including 7 Gossypium arboreum, 74 Gossypium hirsutum, and 11 Gossypium barbadense accessions with different fiber qualities. Twenty-six SNPs and seven InDels including 14 from the coding region of Exp2 were detected, forming twelve distinct haplotypes in the cotton collection. Among the 14 SNPs in the coding region, five were missense mutations and nine were synonymous nucleotide changes. The average SNP/InDel per nucleotide ratio was 2.61% (one SNP per 39 bp, with 1.81 and 3.87% occurring in coding and non-coding regions, respectively. Nucleotide and haplotype diversity across the entire Exp2 region was 0.00603 (π and 0.844, respectively, and diversity in non-coding regions was higher than that in coding regions. For linkage disequilibrium (LD, the mean r2 value for all polymorphism loci pairs was 0.48, and LD did not decay over 748 bp. Based on 132 simple sequence repeat (SSR loci evenly covering 26 chromosomes, the population structure was estimated, and the accessions were divided into seven groups that agreed well with their genomic origin and evolutionary history. A general linear model was used to calculate the Exp2-wide diversity–trait associations of 5 fiber quality traits, considering population structure (Q. Four SNPs in Exp2 were associated with at least one of the fiber quality traits, but not with

  8. Polyploidization effect in two diploid cotton ( Gossypium herbaceum ...

    African Journals Online (AJOL)

    Anti-mitotic agents such as colchicine have been used to induce polyploidy in various plants. Here we examined the effects of different doses of colchicine on polyploidy induction in two cotton species (Gossypium herbaceum and Gossypium arboreum). The data reveal that the dose of colchicine, treatment duration, ...

  9. Distribution and Molecular Diversity of Arborescent Gossypium Species.

    Science.gov (United States)

    Mexico is a center of diversity of Gossypium. As currently circumscribed, arborescent Gossypium species (Section Erioxylum) are widely distributed in dry deciduous forests located from the central state of Sinaloa at the north of its range to the eastern state of Oaxaca in the south. However, extens...

  10. Assessment of cotton-seed ( Gossypium species) meal as ingredient ...

    African Journals Online (AJOL)

    The effect of feeding graded levels of cotton GossypiumSpp. seed meal as an inclusion in the diet of Clariasgariepinus juveniles for growth performance was analysed in comparison with the conventional commercial fish feed. Six experimental rations formulated were cotton-seed Gossypium spp. meal replaced fish meal at ...

  11. Biochemical characterization of embryogenic calli of Vanilla planifolia in response to two years of thidiazuron treatment.

    Science.gov (United States)

    Kodja, Hippolyte; Noirot, Michel; Khoyratty, Shahnoo S; Limbada, Hafsah; Verpoorte, Robert; Palama, Tony Lionel

    2015-11-01

    Vanilla planifolia embryogenic calli were cultured for two years on a medium containing thidiazuron (TDZ). Due to the presence of TDZ, these calli were under permanent chemical treatment and the differentiation of adventitious shoots from protocorm-like-bodies (PLBs) was blocked. When embryogenic calli were transferred onto a medium without TDZ, shoot organogenesis and plantlet regeneration occurred. To gain better knowledge about the biochemical and molecular processes involved in the morphoregulatory role of TDZ, hormonal and metabolomic analyses were performed. Our results indicate that in the presence of TDZ, embryogenic calli contained a high amount of abscisic acid (ABA) essentially metabolized into abscisic acid glucosyl ester (ABAGE) and phaseic acid (PA), which was the most abundant. When transferred onto a medium without TDZ, shoot regeneration and development take place in four stages that include: embryogenic calli growth, differentiation of PLBs from meristmatic cells zones (MCZ), shoot organogenesis from PLBs and the elongation of well-formed shoots. From a hormonal perspective, the significant reduction in ABA metabolism and its readjustment in the ABAGE pathway triggered PLBs formation. However, this first morphogenesis was stimulated by a strong reduction in IAA metabolism. The organogenesis of PLBs into shoots is associated with an increase in ABA catabolism and a gradual shift in cellular metabolism towards shoot differentiation. Thus, the initiation of the elongation process in shoots is correlated with an alteration in metabolite composition, including an increase in energy reserves (sucrose/starch) and a rapid decrease in alanine content. Our data highlighted the relationship between endogenous hormone signalling, carbohydrate metabolism and shoot organogenesis in Orchid plants. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. [Simultaneous determination of ethephon, thidiazuron, diuroN residues in cotton by using high performance liquid chromatography-tandem mass spectrometry].

    Science.gov (United States)

    Xie, Wen; Shi, Yingzhu; Hou, Jianbo; Huang, Chaoqun; Zhao, Dong; Pan, Lulu; Dong, Suozhuai

    2014-02-01

    A method for the determination of ethephon, thidiazuron and diuron in cotton samples has been developed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The sample was extracted with methanol-water. The separation was carried out on a C8 column (150 mm x 4.6 mm, 5 microm) with methanol-water (6:4, v/v) as mobile phase at a flow rate of 0.4 mL/min, and the injection volume was 20 microL. Then the sample solution was analyzed by HPLC-MS/MS in negative ion mode with multiple reaction monitoring (MRM). There were one precursor/two product ion transitions for each pesticide. The results showed that the working curves were linear in the range of 0-10 microg/L for ethephon and thidiazuron, and 0-1 microg/L for diuron. The correlation coefficients (r) were all over 0. 999. The limits of quantitation (LOQ) of ethephon, diuron were 40 microg/kg, that of thidiazuron was 4 microg/kg. The average recoveries varied from 89.4% to 100.2% with the relative standard deviations (RSDs) of 5.7%-11.5% at three spiked levels (LOQ, 2LOQ and 4LOQ). The method is simple, rapid and accurate, and can meet the requirements of the domestic and international legislation. The method adapts to confirm the residues of ethephon, thidiazuron and diuron pesticides in cotton samples.

  13. Differential Effects of Thidiazuron on Production of Anticancer Phenolic Compounds in Callus Cultures of Fagonia indica.

    Science.gov (United States)

    Khan, Tariq; Abbasi, Bilal Haider; Khan, Mubarak Ali; Shinwari, Zabta Khan

    2016-04-01

    Fagonia indica, a very important anticancer plant, has been less explored for its in vitro potential. This is the first report on thidiazuron (TDZ)-mediated callogenesis and elicitation of commercially important phenolic compounds. Among the five different plant growth regulators tested, TDZ induced comparatively higher fresh biomass, 51.0 g/100 mL and 40.50 g/100 mL for stem and leaf explants, respectively, after 6 weeks of culture time. Maximum total phenolic content (202.8 μg gallic acid equivalent [GAE]/mL for stem-derived callus and 161.3 μg GAE/mL for leaf-derived callus) and total flavonoid content (191.03 μg quercetin equivalent [QE]/mL for stem-derived callus and 164.83 μg QE/mL for leaf-derived callus) were observed in the optimized callus cultures. The high-performance liquid chromatography (HPLC) data indicated higher amounts of commercially important anticancer secondary metabolites such as gallic acid (125.10 ± 5.01 μg/mL), myricetin (32.5 ± 2.05 μg/mL), caffeic acid (12.5 ± 0.52 μg/mL), catechin (9.4 ± 1.2 μg/mL), and apigenin (3.8 ± 0.45 μg/mL). Owing to the greater phenolic content, a better 2-2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity (69.45 % for stem explant and 63.68 % for leaf explant) was observed in optimized calluses. The unusually higher biomass and the enhanced amount of phenolic compounds as a result of lower amounts of TDZ highlight the importance of this multipotent hormone as elicitor in callus cultures of F. indica.

  14. Thidiazuron Triggers Morphogenesis in Rosa canina L. Protocorm-like bodies by Changing Incipient Cell Fate

    Directory of Open Access Journals (Sweden)

    Kou eYaping

    2016-05-01

    Full Text Available Thidiazuron (N-phenyl-N'-1,2,3-thiadiazol-5-ylurea; TDZ is an artificial plant growth regulator that is widely used in plant tissue culture. Protocorm-like bodies (PLBs induced by TDZ serve as an efficient and rapid in vitro regeneration system in Rosa species. Despite this, the mechanism of PLB induction remains relatively unclear. TDZ, which can affect the level of endogenous auxins and cytokinins, converts the cell fate of rhizoid tips and triggers PLB formation and plantlet regeneration in Rosa canina L. In callus-rhizoids, which are rhizoids that co-develop from callus, auxin and a Z-type cytokinin accumulated after applying TDZ, and transcription of the auxin transporter gene RcPIN1 was repressed. The expression of RcARF4, RcRR1, RcCKX2, RcCKX3, and RcLOG1 increased in callus-rhizoids and rhizoid tips while the transcription of an auxin response factor (RcARF1 and auxin transport proteins (RcPIN2, RcPIN3 decreased in callus-rhizoids but increased in rhizoid tips. In situ hybridization of rhizoids showed that RcWUS and RcSERK1 were highly expressed in columella cells and root stem cells resulting in the conversion of cell fate into shoot apical meristems or embryogenic callus. In addition, transgenic XVE::RcWUS lines showed repressed RcWUS overexpression while RcWUS had no effect on PLB morphogenesis. Furthermore, higher expression of the root stem cell marker RcWOX5 and root stem cell maintenance regulator genes RcPLT1 and RcPLT2 indicated the presence of a dedifferentiation developmental pathway in the stem cell niche of rhizoids. Viewed together, our results indicate that different cells in rhizoid tips acquired regeneration competence after induction by TDZ. A novel developmental pathway containing different cell types during PLB formation was identified by analyzing the endogenous auxin and cytokinin content. This study also provides a deeper understanding of the mechanisms underlying in vitro regeneration in Rosa.

  15. CORRELACIONES Y ANÁLISIS DE SENDERO EN ALGODÓN (Gossypium hirsutum L. EN EL CARIBE COLOMBIANO CORRELATIONS AND PATH ANALYSIS IN COTTON (Gossypium hirsutum L. IN THE COLOMBIAN CARIBBEAN

    Directory of Open Access Journals (Sweden)

    Miguel Mariano Espitia Camacho

    2008-06-01

    Full Text Available El cultivo del algodón es la principal actividad agrícola en la economía del Caribe colombiano en el segundo semestre del año y el principal abastecedor de fibra a la industria nacional desde hace aproximadamente 60 años. El objetivo de este trabajo fue estimar las correlaciones fenotípicas, genéticas y ambientales, entre 11 caracteres agronómicos y realizar un análisis de sendero para rendimiento de fibra. Se utilizaron los datos de la evaluación agronómica de 10 genotipos de algodón en ocho ambientes del Caribe colombiano. En cada ambiente se utilizó un diseño experimental de bloques completos al azar con cuatro repeticiones. Los resultados indicaron que las correlaciones genéticas fueron superiores a las fenotípicas y ambientales. El rendimiento de fibra (REF presentó las mayores correlaciones fenotípicas, genéticas y fenotipicas parciales con el porcentaje de fibra (PFI, el rendimiento de algodón - semilla (RAS y el peso de mota (PMO, con valores de r > 0,43 (PThe cotton crop is the main agricultural activity in the economy of the colombian Caribbean in the second semester of the year and the main supplier of fibre to national industry for about 60 years. The objective of this work was to estimate the phenotypic, genetic and environmental correlations, between 11 agronomic characters and to make a path analysis for fibre yield. Data of agronomic evaluation of 10 genotypes of cotton in eight environments of the colombian Caribbean were used. In each environment experimental design at random complete blocks with four repetitions were used. The results indicated that genetic correlations were superior to phenotypic and environmental correlations. Fibre yield (FIY presented the highest phenotypic, genetic and partial phenotypic correlations with ginning percentage (GP, seed-cotton yield (SCY and boll weight (BOW with values of r > 0,43 (P<0,01. The FIP (0,810 was the cause variable that showed the greatest direct effect on the REF. The YFI can be used as selection criteria to increase the YFI in cotton.

  16. Genome-wide identification of differentially expressed genes under water deficit stress in upland cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Park Wonkeun

    2012-06-01

    Full Text Available Abstract Background Cotton is the world’s primary fiber crop and is a major agricultural commodity in over 30 countries. Like many other global commodities, sustainable cotton production is challenged by restricted natural resources. In response to the anticipated increase of agricultural water demand, a major research direction involves developing crops that use less water or that use water more efficiently. In this study, our objective was to identify differentially expressed genes in response to water deficit stress in cotton. A global expression analysis using cDNA-Amplified Fragment Length Polymorphism was conducted to compare root and leaf gene expression profiles from a putative drought resistant cotton cultivar grown under water deficit stressed and well watered field conditions. Results We identified a total of 519 differentially expressed transcript derived fragments. Of these, 147 transcript derived fragment sequences were functionally annotated according to their gene ontology. Nearly 70 percent of transcript derived fragments belonged to four major categories: 1 unclassified, 2 stress/defense, 3 metabolism, and 4 gene regulation. We found heat shock protein-related and reactive oxygen species-related transcript derived fragments to be among the major parts of functional pathways induced by water deficit stress. Also, twelve novel transcripts were identified as both water deficit responsive and cotton specific. A subset of differentially expressed transcript derived fragments was verified using reverse transcription-polymerase chain reaction. Differential expression analysis also identified five pairs of duplicated transcript derived fragments in which four pairs responded differentially between each of their two homologues under water deficit stress. Conclusions In this study, we detected differentially expressed transcript derived fragments from water deficit stressed root and leaf tissues in tetraploid cotton and provided their gene ontology, functional/biological distribution, and possible roles of gene duplication. This discovery demonstrates complex mechanisms involved with polyploid cotton’s transcriptome response to naturally occurring field water deficit stress. The genes identified in this study will provide candidate targets to manipulate the water use characteristics of cotton at the molecular level.

  17. Estimates of genetic parameters from line x tester mating design for some quantitative traits in upload cotton, gossypium hirsutum L

    International Nuclear Information System (INIS)

    Baloch, M.H.; Kumbher, M.B.; Jatoi, W.A.

    2008-01-01

    Combining abilities of cotton varieties were evaluated using a line x tester design with eight lines and 4 testers. Good performance combination was found between the varieties CRIS-134 and BH-147. The former was a good candidate for fibre length improvement and the latter, a good parent for yield improvement. The specific combining ability suggested that both additive and dominant genes controlled the characters. Hybrid performance per se may be used to predict the parental performance for specific combining ability and thus for hybrid crop development. (author)

  18. Dynamics of soil diazotrophic community structure, diversity, and functioning during the cropping period of cotton (Gossypium hirsutum).

    Science.gov (United States)

    Rai, Sandhya; Singh, Dileep Kumar; Annapurna, Kannepalli

    2015-01-01

    The soil sampled at different growth stages along the cropping period of cotton were analyzed using various molecular tools: restriction fragment length polymorphism (RFLP), terminal restriction length polymorphism (T-RFLP), and cloning-sequencing. The cluster analysis of the diazotrophic community structure of early sampled soil (0, 15, and 30 days) was found to be more closely related to each other than the later sampled one. Phylogenetic and diversity analysis of sequences obtained from the first (0 Day; C0) and last soil sample (180 day; C180) confirmed the data. The phylogenetic analysis revealed that C0 was having more unique sequences than C180 (presence of γ-Proteobacteria exclusively in C0). A relatively higher richness of diazotrophic community sequences was observed in C0 (S(ACE) : 30.76; S(Chao1) : 20.94) than C180 (S(ACE) : 18.00; S(Chao1) : 18.00) while the evenness component of Shannon diversity index increased from C0 (0.97) to C180 (1.15). The impact of routine agricultural activities was more evident based on diazotrophic activity (measured by acetylene reduction assay) than its structure and diversity. The nitrogenase activity of C0 (1264.85 ± 35.7 ηmol of ethylene production g(-1) dry soil h(-1) ) was statistically higher when compared to all other values (p structure/diversity and N2 fixation rates. Thus, considerable functional redundancy of nifH was concluded to be existing at the experimental site. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Ding, Yuanhao; Ma, Yizan; Liu, Nian; Xu, Jiao; Hu, Qin; Li, Yaoyao; Wu, Yuanlong; Xie, Sai; Zhu, Longfu; Min, Ling; Zhang, Xianlong

    2017-09-01

    Male sterility caused by long-term high-temperature (HT) stress occurs widely in crops. MicroRNAs (miRNAs), a class of endogenous non-coding small RNAs, play an important role in the plant response to various abiotic stresses. To dissect the working principle of miRNAs in male sterility under HT stress in cotton, a total of 112 known miRNAs, 270 novel miRNAs and 347 target genes were identified from anthers of HT-insensitive (84021) and HT-sensitive (H05) cotton cultivars under normal-temperature and HT conditions through small RNA and degradome sequencing. Quantitative reverse transcriptase-polymerase chain reaction and 5'-RNA ligase-mediated rapid amplification of cDNA ends experiments were used to validate the sequencing data. The results show that miR156 was suppressed by HT stress in both 84021 and H05; miR160 was suppressed in 84021 but induced in H05. Correspondingly, SPLs (target genes of miR156) were induced both in 84021 and H05; ARF10 and ARF17 (target genes of miR160) were induced in 84021 but suppressed in H05. Overexpressing miR160 increased cotton sensitivity to HT stress seen as anther indehiscence, associated with the suppression of ARF10 and ARF17 expression, thereby activating the auxin response that leads to anther indehiscence. Supporting this role for auxin, exogenous Indole-3-acetic acid (IAA) leads to a stronger male sterility phenotype both in 84021 and H05 under HT stress. Cotton plants overexpressing miR157 suppressed the auxin signal, and also showed enhanced sensitivity to HT stress, with microspore abortion and anther indehiscence. Thus, we propose that the auxin signal, mediated by miRNAs, is essential for cotton anther fertility under HT stress. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  20. Relationship Between Piercing-Sucking Insect Control and Internal Lint and Seed Rot in Southeastern Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Medrano, Enrique G; Bell, Alois A; Greene, Jeremy K; Roberts, Phillip M; Bacheler, Jack S; Marois, James J; Wright, David L; Esquivel, Jesus F; Nichols, Robert L; Duke, Sara

    2015-08-01

    In 1999, crop consultants scouting for stink bugs (Hemiptera spp.) in South Carolina discovered a formerly unobserved seed rot of cotton that caused yield losses ranging from 10 to 15% in certain fields. The disease has subsequently been reported in fields throughout the southeastern Cotton Belt. Externally, diseased bolls appeared undamaged; internally, green fruit contain pink to dark brown, damp, deformed lint, and necrotic seeds. In greenhouse experiments, we demonstrated transmission of the opportunistic bacterium Pantoea agglomerans by the southern green stink bug, Nezara viridula (L.). Here, green bolls were sampled from stink bug management plots (insecticide protected or nontreated) from four South Atlantic coast states (North Carolina, South Carolina, Georgia, and Florida) to determine disease incidence in the field and its association with piercing-sucking insects feeding. A logistic regression analysis of the boll damage data revealed that disease was 24 times more likely to occur (P = 0.004) in bolls collected from plots in Florida, where evidence of pest pressure was highest, than in bolls harvested in NC with the lowest detected insect pressure. Fruit from plots treated with insecticide, a treatment which reduced transmission agent numbers, were 4 times less likely to be diseased than bolls from unprotected sites (P = 0.002). Overall, punctured bolls were 125 times more likely to also have disease symptoms than nonpunctured bolls, irrespective of whether or not plots were protected with insecticides (P = 0.0001). Much of the damage to cotton bolls that is commonly attributed to stink bug feeding is likely the resulting effect of vectored pathogens. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  1. Genome-wide identification of differentially expressed genes under water deficit stress in upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Park, Wonkeun; Scheffler, Brian E; Bauer, Philip J; Campbell, B Todd

    2012-06-15

    Cotton is the world's primary fiber crop and is a major agricultural commodity in over 30 countries. Like many other global commodities, sustainable cotton production is challenged by restricted natural resources. In response to the anticipated increase of agricultural water demand, a major research direction involves developing crops that use less water or that use water more efficiently. In this study, our objective was to identify differentially expressed genes in response to water deficit stress in cotton. A global expression analysis using cDNA-Amplified Fragment Length Polymorphism was conducted to compare root and leaf gene expression profiles from a putative drought resistant cotton cultivar grown under water deficit stressed and well watered field conditions. We identified a total of 519 differentially expressed transcript derived fragments. Of these, 147 transcript derived fragment sequences were functionally annotated according to their gene ontology. Nearly 70 percent of transcript derived fragments belonged to four major categories: 1) unclassified, 2) stress/defense, 3) metabolism, and 4) gene regulation. We found heat shock protein-related and reactive oxygen species-related transcript derived fragments to be among the major parts of functional pathways induced by water deficit stress. Also, twelve novel transcripts were identified as both water deficit responsive and cotton specific. A subset of differentially expressed transcript derived fragments was verified using reverse transcription-polymerase chain reaction. Differential expression analysis also identified five pairs of duplicated transcript derived fragments in which four pairs responded differentially between each of their two homologues under water deficit stress. In this study, we detected differentially expressed transcript derived fragments from water deficit stressed root and leaf tissues in tetraploid cotton and provided their gene ontology, functional/biological distribution, and possible roles of gene duplication. This discovery demonstrates complex mechanisms involved with polyploid cotton's transcriptome response to naturally occurring field water deficit stress. The genes identified in this study will provide candidate targets to manipulate the water use characteristics of cotton at the molecular level.

  2. Fine mapping and candidate gene analysis of the virescent gene v 1 in Upland cotton (Gossypium hirsutum).

    Science.gov (United States)

    Mao, Guangzhi; Ma, Qiang; Wei, Hengling; Su, Junji; Wang, Hantao; Ma, Qifeng; Fan, Shuli; Song, Meizhen; Zhang, Xianlong; Yu, Shuxun

    2018-02-01

    The young leaves of virescent mutants are yellowish and gradually turn green as the plants reach maturity. Understanding the genetic basis of virescent mutants can aid research of the regulatory mechanisms underlying chloroplast development and chlorophyll biosynthesis, as well as contribute to the application of virescent traits in crop breeding. In this study, fine mapping was employed, and a recessive gene (v 1 ) from a virescent mutant of Upland cotton was narrowed to an 84.1-Kb region containing ten candidate genes. The GhChlI gene encodes the cotton Mg-chelatase I subunit (CHLI) and was identified as the candidate gene for the virescent mutation using gene annotation. BLAST analysis showed that the GhChlI gene has two copies, Gh_A10G0282 and Gh_D10G0283. Sequence analysis indicated that the coding region (CDS) of GhChlI is 1269 bp in length, with three predicted exons and one non-synonymous nucleotide mutation (G1082A) in the third exon of Gh_D10G0283, with an amino acid (AA) substitution of arginine (R) to lysine (K). GhChlI-silenced TM-1 plants exhibited a lower GhChlI expression level, a lower chlorophyll content, and the virescent phenotype. Analysis of upstream regulatory elements and expression levels of GhChlI showed that the expression quantity of GhChlI may be normal, and with the development of the true leaf, the increase in the Gh_A10G0282 dosage may partially make up for the deficiency of Gh_D10G0283 in the v 1 mutant. Phylogenetic analysis and sequence alignment revealed that the protein sequence encoded by the third exon of GhChlI is highly conserved across diverse plant species, in which AA substitutions among the completely conserved residues frequently result in changes in leaf color in various species. These results suggest that the mutation (G1082A) within the GhChlI gene may cause a functional defect of the GhCHLI subunit and thus the virescent phenotype in the v 1 mutant. The GhChlI mutation not only provides a tool for understanding the associations of CHLI protein function and the chlorophyll biosynthesis pathway but also has implications for cotton breeding.

  3. Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) shoot apex with a fungal phytase gene improves phosphorus acquisition.

    Science.gov (United States)

    Ma, Zhiying; Liu, Jianfeng; Wang, Xingfen

    2013-01-01

    Cotton is an important world economic crop plant. It is considered that cotton is recalcitrant to in vitro proliferation. Somatic embryogenesis and plant regeneration has been successful by using hypocotyl, whereas it is highly genotype dependent. Here, a genotype-independent cotton regeneration protocol from shoot apices is presented. Shoot apices from 3- to 5-day-old seedlings of cotton are infected with an Agrobacterium strain, EHA105, carrying the binary vector pC-KSA contained phytase gene (phyA) and the marker gene neomycin phosphotransferase (NPTII), and directly regenerated as shoots in vitro. Rooted shoots can be obtained within 6-8 weeks. Plants that survived by leaf painting kanamycin (kan) were -further analyzed by DNA and RNA blottings. The transgenic plants with increased the phosphorus (P) acquisition efficiency were obtained following the transformation method.

  4. Improvement of growth and productivity of cotton (Gossypium hirsutum L. through foliar applications of naphthalene acetic acid

    Directory of Open Access Journals (Sweden)

    Shazia Parveen

    2017-05-01

    Full Text Available Plant growth regulators like naphthalene acetic acid (NAA positively affect the growth and yield of crop plants. An experiment was conducted to check the foliar application of NAA on growth and yield components of cotton variety Bt.121 under field condition at research area of agriculture farm near Cholistan Institute of Desert Studies (CIDS, The Islamia University of Bahawalpur, Pakistan. The experiment was comprised of foliar application of NAA (1% viz. T0 (control, T1 (One spray of NAA, T2 (Two sprays of NAA, T3 (Three sprays of NAA, T4 (Four sprays of NAA. The first foliar spray was applied at 45 days after sowing (DAS and later on it was continued with 15 days interval with skilled labour by hand pump sprayer. The experiment was laid out in randomized complete block design and each treatment was replicated three times. Data recorded on growth, chlorophyll contents, yield and yield components showed a significant increase with the application of NAA. Furthermore, earliness index, mean maturity date and production rate index were also influenced with foliar application of NAA. On the basis of growth and yield parameters it can be concluded that four spray of NAA (1% can be applied commercially under field conditions.

  5. Density responses and spatial distribution of cotton yield and yield components in jujube (Zizyphus jujube)/cotton (Gossypium hirsutum) agroforestry

    NARCIS (Netherlands)

    Wang, Qi; Han, Shuo; Zhang, Lizhen; Zhang, Dongsheng; Werf, van der Wopke; Evers, Jochem B.; Sun, Hongquan; Su, Zhicheng; Zhang, Siping

    2016-01-01

    Trees are the dominant species in agroforestry systems, profoundly affecting the performance of understory crops. Proximity to trees is a key factor in crop performance, but rather little information is available on the spatial distribution of yield and yield components of crop species under the

  6. Characterization of an ADP-glucose pyrophosphorylase small subunit gene expressed in developing cotton (Gossypium hirsutum) fibers.

    Science.gov (United States)

    Taliercio, Earl

    2011-06-01

    ADP-glucose pyrophosphorylase (ADPGp, EC 2.7.7.27) is a tetrameric protein composed of two small and two large subunits that catalyzes the biosynthesis of ADP-glucose from glucose-phosphate which is used to provide the glucose subunits for starch biosynthesis. A second cotton gene encoding an ADPGp small subunit has been cloned and characterized. The gene contains eight introns similar to previously reported potato and cotton ADPGp small subunit genes. The deduced translation of the gene contained a poorly conserved transit peptide and well conserved catalytic and regulatory elements typical of other plant ADPGps. The 5' end of the mRNA was cloned and sequenced to identify the transcriptional start site (TSS). The promoter region upstream of the TSS did not contain the core promoter sequence in the typical positions indicating this gene may not use a standard core promoter. Other sequence motifs associated with tissue specific expression and phytohormone response were present. Reverse transcription (RT)-PCR with gene specific primers identified the sites of expression of this gene. Expression was most abundant in the meristem region, and immature stem and relatively lower in starch accumulating roots demonstrating that this gene has a different pattern of expression than the previously reported cotton ADPGp small subunit gene. Additionally this gene was differentially expressed in cotton fibers. The presence of starch was confirmed in developing cotton fibers suggesting that starch metabolism plays a role in cotton fiber development.

  7. Molecular characterization of an elicitor-responsive Armadillo repeat gene (GhARM) from cotton (Gossypium hirsutum).

    Science.gov (United States)

    Phillips, Sonia M; Dubery, Ian A; van Heerden, Henriette

    2012-08-01

    Only a few Armadillo (ARM) repeat proteins have been characterized in plants where they appear to have diverse functions, including the regulation of defence responses. In this study, the identification, cloning and characterization of a gene, encoding an ARM repeat protein (GhARM), is described. GhARM exists as multiple copies in cotton, with an 1713 bp ORF encoding 570 amino acids. The predicted protein contains three consecutive ARM repeats within an Armadillo-type fold, with no other distinguishing domains. Sequence alignments and phylogenetic analysis revealed that GhARM has a high homology with other ARM proteins in plants. The predicted three dimensional model of GhARM displayed a characteristic right-handed superhelical twist. In silico analysis of the promoter sequence revealed that it contains several defence- and hormone-responsive cis-regulatory elements. Expression of GhARM was significantly down-regulated in response to treatment with a V. dahliae elicitor suggesting that GhARM may function as a negative-regulator of cotton defence signalling against V. dahliae. To date, GhARM is the only ARM repeat gene that has been completely sequenced and characterized in cotton.

  8. Expression and functional analyses of a Kinesin gene GhKIS13A1 from cotton (Gossypium hirsutum) fiber.

    Science.gov (United States)

    Li, Yan-Jun; Zhu, Shou-Hong; Zhang, Xin-Yu; Liu, Yong-Chang; Xue, Fei; Zhao, Lan-Jie; Sun, Jie

    2017-06-12

    Cotton fiber, a natural fiber widely used in the textile industry, is differentiated from single cell of ovule epidermis. A large number of genes are believed to be involved in fiber formation, but so far only a few fiber genes have been isolated and functionally characterized in this developmental process. The Kinesin13 subfamily was found to play key roles during cell division and cell elongation, and was considered to be involved in the regulation of cotton fiber development. The full length of coding sequence of GhKIS13A1 was cloned using cDNA from cotton fiber for functional characterization. Expression pattern analysis showed that GhKIS13A1 maintained a lower expression level during cotton fiber development. Biochemical assay showed that GhKIS13A1 has microtubule binding activity and basal ATPase activity that can be activated significantly by the presence of microtubules. Overexpression of GhKIS13A1 in Arabidopsis reduced leaf trichomes and the percentage of three-branch trichomes, and increased two-branch and shriveled trichomes compared to wild-type. Additionally, the expression of GhKIS13A1 in the Arabidopsis Kinesin-13a-1 mutant rescued the defective trichome branching pattern of the mutant, making its overall trichome branching pattern back to normal. Our results suggested that GhKIS13A1 is functionally compatible with AtKinesin-13A regarding their role in regulating the number and branching pattern of leaf trichomes. Given the developmental similarities between cotton fibers and Arabidopsis trichomes, it is speculated that GhKIS13A1 may also be involved in the regulation of cotton fiber development.

  9. Effect of Different Sowing Dates on Cotton (Gossypium hirsutum L.) Fiber Color at Double Crop Growing Conditions

    OpenAIRE

    ÇOPUR, Osman; POLAT, Davut; ODABAŞIOĞLU, Ceren

    2018-01-01

    Cottonfiber color is determined by the effect of fiber reflectance (Rd) and fiberyellowness (+ b), which are important standards for determining cotton price.This study was conducted to determine effects of different sowing times onfiber color components in widely grown four cotton varieties in 2015 and 2016under Harran Plain double crop conditions. Theexperiments were conducted on the experimental area of Agricultural Faculty ofHarran University at Eyyubiye Campus. Seeds of cotton cultivars ...

  10. Transformation and evaluation of Cry1Ac+Cry2A and GTGene in Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Agung Nugroho Puspito

    2015-11-01

    Full Text Available More than 50 countries around the globe cultivate cotton on a large scale. It is a major cash crop of Pakistan and is considered white gold because it is highly important to the economy of Pakistan. In addition to its importance, cotton cultivation faces several problems, such as insect pests, weeds, and viruses. In the past, insects have been controlled by insecticides, but this method caused a severe loss to the economy. However, conventional breeding methods have provided considerable breakthroughs in the improvement of cotton, but it also has several limitations. In comparison with conventional methods, biotechnology has the potential to create genetically modified plants that are environmentally safe and economically viable. In this study, a local cotton variety VH 289 was transformed with two Bt genes (Cry1Ac and Cry2A and a herbicide resistant gene (cp4 EPSPS using the Agrobacterium mediated transformation method. The constitutive CaMV 35S promoter was attached to the genes taken from Bacillus thuringiensis (Bt and to an herbicide resistant gene during cloning, and this promoter was used for the expression of the genes in cotton plants. This construct was used to develop the Glyphosate Tolerance Gene (GTGene for herbicide tolerance and insecticidal gene (Cry1Ac and Cry2A for insect tolerance in the cotton variety VH 289. The transgenic cotton variety performed 85% better compared with the non-transgenic variety. The study results suggest that farmers should use the transgenic cotton variety for general cultivation to improve the production of cotton.

  11. Title: Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress.

    Science.gov (United States)

    Zahoor, Rizwan; Zhao, Wenqing; Abid, Muhammad; Dong, Haoran; Zhou, Zhiguo

    2017-08-01

    To evaluate the role of potassium (K) in maintaining nitrogen metabolism and osmotic adjustment development of cotton functional leaves to sustain growth under soil drought and rewatering conditions, the plants of two cotton cultivars Siza 3 (low-K sensitive) and Simian 3 (low-K tolerant), were grown under three different K rates (K0, K1, and K2; 0, 150, and 300kgK 2 Oha -1 , respectively) and exposed to drought stress with 40±5% soil relative water content (SRWC). The drought stress was applied at flowering stage by withholding water for eight days followed by rewatering to a well-watered level (75±5% SRWC). The results showed that drought-stressed plants of both cultivars showed a decrease in leaf relative water content (RWC) and osmotic potential in the functional leaves and developed osmotic adjustment with an increase in the contents of free amino acids, soluble sugars, inorganic K, and nitrate as compared to well-watered plants. In drought-stressed plants, nitrogen-metabolizing enzyme activities of nitrogen reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT) were diminished significantly (P≤0.05) along with decreased chlorophyll content and soluble proteins. However, drought-stressed plants under K application not only exhibited higher osmotic adjustment with greater accumulation of osmolytes but also regulated nitrogen metabolism by maintaining higher enzyme activities, soluble proteins, and chlorophyll content in functional leaves as compared to the plants without K application. Siza 3 showed better stability in enzyme activities and resulted in 89% higher seed cotton yield under K2 as compared to K0 in drought-stressed plants, whereas this increase was 53% in the case of Simian 3. The results of the study suggested that K application enhances cotton plants' potential for sustaining high nitrogen-metabolizing enzyme activities and related components to supplement osmotic adjustment under soil drought conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Arachnofauna (Araneae: Araneae) in transgenic and conventional cotton crops (Gossypium hirsutum) in the North of Santa Fe, Argentina

    OpenAIRE

    Almada, Melina Soledad; Sosa, Maria Ana; Gonzalez, Alda

    2017-01-01

    Las arañas tienen un valor potencial considerable por su rol depredador de insectos, estas son plagas de la agricultura. Durante la campana agrícola 2005/06, en INTA Reconquista, Santa Fe (Argentina) se estudio la composición de arañas presentes en cultivos de algodón transgénico y convencional, mediante un diseño experimental de bloques completos al azar, con tres repeticiones y tres tratamientos: algodón transgénico Bt (ALBt), algodón convencional sin control químico (ALCSC) y con control q...

  13. Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization.

    Science.gov (United States)

    Romero-Perdomo, Felipe; Abril, Jorge; Camelo, Mauricio; Moreno-Galván, Andrés; Pastrana, Iván; Rojas-Tapias, Daniel; Bonilla, Ruth

    The aim of this research was to evaluate whether the application of two plant growth-promoting (rhizo)bacteria might reduce nitrogen fertilization doses in cotton. We used strains Azotobacter chroococcum AC1 and AC10 for their proven ability to promote seed germination and cotton growth. These microorganisms were characterized by their plant growth-promoting activities. Then, we conducted a glasshouse study to evaluate the plant growth promoting ability of these strains with reduced doses of urea fertilization in cotton. Results revealed that both strains are capable of fixing nitrogen, solubilizing phosphorus, synthesizing indole compounds and producing hydrolytic enzymes. After 12 weeks, the glasshouse experiment showed that cotton growth was positively influenced due to bacterial inoculation with respect to chemical fertilization. Notably, we observed that microbial inoculation further influenced plant biomass (p<0.05) than nitrogen content. Co-inoculation, interestingly, exhibited a greater beneficial effect on plant growth parameters compared to single inoculation. Moreover, similar results without significant statistical differences were observed among bacterial co-inoculation plus 50% urea and 100% fertilization. These findings suggest that co-inoculation of A. chroococcum strains allow to reduce nitrogen fertilization doses up to 50% on cotton growth. Our results showed that inoculation with AC1 and AC10 represents a viable alternative to improve cotton growth while decreasing the N fertilizer dose and allows to alleviate the environmental deterioration related to N pollution. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Environmental effect of conventional and GM crops of cotton (Gossypium hirsutum L. and corn (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Chaparro Giraldo Alejandro

    2011-12-01

    Full Text Available

    In the corn belt of Valle de San Juan and in the cotton zone of El Espinal, municipalities in the department of Tolima (Colombia, 10 conventional corn producers, 10 producers of genetically modified corn, five producers of conventional cotton and 15 producers of transgenic cotton were surveyed in the first half of 2009 to contrast the differences in the environmental impact associated with use of insecticides and herbicides, which were evaluated by estimating the environmental index quotient-EIQ. In the case of maize, an EIQ of 42 was found in the conventional type, while transgenic technology had an EIQ of 3.03. In the cultivation of cotton, an EIQ of 263.59 was found for the conventional type while for transgenic technology this value varied between 335.75 (Nuopal BG/RR and 324.79 (DP 455 BG/RR. These data showed a lower environmental impact using GM technology in the cultivation of maize when compared to the conventional counterpart, in connection with the use of insecticides and herbicides, in the context of time, space and genotypic analysis. This effect was not observed in the case of cotton, where environmental impacts were similar.

  15. Transmission of the opportunistic cotton (Gossypium hirsutum L.) boll pathogen Pantoea agglomerans by the brown stink bug (Euschistus servus Say)

    Science.gov (United States)

    Damage to developing cotton bolls by piercing-sucking insects such as stink bugs has traditionally been attributed solely to pest feeding. Previously, we showed clear differences in severity of boll damage resulting from southern green stink bug (Nezara viridula L.) fed sterile food compared to thos...

  16. Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants.

    Science.gov (United States)

    Rajasekaran, Kanniah; Cary, Jeffrey W; Jaynes, Jesse M; Cleveland, Thomas E

    2005-11-01

    Fertile, transgenic cotton plants expressing the synthetic antimicrobial peptide, D4E1, were produced through Agrobacterium-mediated transformation. PCR products and Southern blots confirmed integration of the D4E1 gene, while RT-PCR of cotton RNA confirmed the presence of D4E1 transcripts. In vitro assays with crude leaf protein extracts from T0 and T1 plants confirmed that D4E1 was expressed at sufficient levels to inhibit the growth of Fusarium verticillioides and Verticillium dahliae compared to extracts from negative control plants transformed with pBI-d35S(Omega)-uidA-nos (CGUS). Although in vitro assays did not show control of pre-germinated spores of Aspergillus flavus, bioassays with cotton seeds in situ or in planta, inoculated with a GFP-expressing A. flavus, indicated that the transgenic cotton seeds inhibited extensive colonization and spread by the fungus in cotyledons and seed coats. In planta assays with the fungal pathogen, Thielaviopsis basicola, which causes black root rot in cotton, showed typical symptoms such as black discoloration and constriction on hypocotyls, reduced branching of roots in CGUS negative control T1 seedlings, while transgenic T1 seedlings showed a significant reduction in disease symptoms and increased seedling fresh weight, demonstrating tolerance to the fungal pathogen. Significant advantages of synthetic peptides in developing transgenic crop plants that are resistant to diseases and mycotoxin-causing fungal pathogens are highlighted in this report.

  17. Cadmium (Cd) Localization in Tissues of Cotton (Gossypium hirsutum L.), and Its Phytoremediation Potential for Cd-Contaminated Soils.

    Science.gov (United States)

    Chen, Zhifan; Zhao, Ye; Fan, Lidong; Xing, Liteng; Yang, Yujie

    2015-12-01

    Phytoremediation using economically valuable, large biomass, non-edible plants is a promising method for metal-contaminated soils. This study investigated cotton's tolerance for Cd and remediation potential through analyzing Cd bioaccumulation and localization in plant organs under different soil Cd levels. Results showed cotton presents good tolerance when soil Cd concentration ≤20.26 mg kg(-1). Cotton had good Cd accumulation ability under low soil Cd levels (soil Cd, while roots and stems were the main compartments of Cd storage. Cd complexation to other organic constituents in root and stem cell sap could be a primary detoxifying strategy. Therefore, cotton is a potential candidate for phytoremediation of Cd-contaminated soils.

  18. Effects of rootstocks on cryotolerance and overwintering survivorship of genic male sterile lines in upland cotton (Gossypium hirsutum L..

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    Full Text Available Grafting desirable scion on stress-tolerant rootstocks provides an opportunity to improve the cryotolerance of scion. Genic male sterile (GMS lines of plant could be used as sterile line and maintainer in breeding, and they have the conspicuous characteristics that the fertility of which is easy to regain but hard to maintain by sexual reproduction. In order to maintain the fertility of GMS cotton by means of its perennial growth on the basis of frostless winters in Nanning, Guangxi autonomous region, GMS line A4 was grafted onto 7 cryotolerant rootstocks (F118, F697, F098, F112, F113, P098 and P113, and the cryotolerance and the overwintering survivorship of scions were investigated. In consequence, when compared with control (self-grafted A4, the relative conductivity of the grafted plants in shoot bark was reduced (8.80%, the content of soluble sugar, soluble protein and free proline were higher, 25.00, 1.55, 3.46%, respectively; the overwintering survival rate and the height of regeneration bud under field condition of grafted plants were higher, 10.44, 15.75%, respectively; the order of the grafted plants based on the average subordinate function value of overwintering survivorship was A4/F113>A4/F118>A4/F098>A4/F697>A4/F112>A4/P098>A4/P113>A4/A4(CK; the correlation analyses indicated that the physiological parameters of cryotolerance could be used for forecasting the overwintering survivorship, and the relative conductivity could be chosen as the first physiological parameter for forecasting cryotolerance or overwintering survivorship. The results indicate that the cryotolerance and the overwintering survivorship of GMS cotton could be improved by grafting, and F113 appeared to be a valuable rootstock.

  19. [Arachnofauna (araneae: Araneae) in transgenic and conventional cotton crops (Gossypium hirsutum) in the North of Santa Fe, Argentina].

    Science.gov (United States)

    Almada, Melina Soledad; Sosa, María Ana; González, Alda

    2012-06-01

    Spiders have considerable potential importance for their role as predators to some pests in agricultural systems. The composition of spiders in transgenic and conventional cotton at the Research Station of INTA Reconquista (Santa Fe) was studied during the 2005-2006 season. The experiment was a complete randomized block design with three replications and three treatments: transgenic Bt cotton (ALBt), conventional cotton without chemical control (ALCSC), and conventional cotton with chemical control (ALCCC). Weekly, spiders were collected using nets, vertical cloth and pitfall-traps. A total of 1255 specimens (16 families, and 32 species) were collected. Seven families were found in all the treatments, mainly Thomisidae (n=1 51, 84.04%) and Araneidae (n=83, 6.64%). The Hunting spiders guild ambushers (n=1053, 83.91%), "Orb weavers" (n=85, 6.77%) and "Stalkers" (n=53, 4.22%) were more abundant. There were no significant differences in the indexes diversity between treatments. Spiders were presented during the whole crop season, with peaks about flowering and boll maturity, with the highest abundance in ALBt. This work is part of the first set of data registered in Argentina about spider's community in cotton crops.

  20. Screening of post emergence herbicides for weed control in cotton (GOSSYPIUM HIRSUTUM) and their effect on yield and yield components

    International Nuclear Information System (INIS)

    Hussain, N.; Khan, M.B.; Khan, M.A.; Hameed, R.A.

    2005-01-01

    Response of varying herbicides at different levels: round up 490 G/L at the rate of 4.7 L ha/sup -1/ and 1.5 L ha/sup -1/ (Glyphosat) and Gramaxone 20 EC (Paraquat) at the rate of 2.5 L ha/sup -1/ against untreated (control, were investigated to cotton cultivar CIM-473 under field conditions during Kharif 2002 at Agronomic Research Area. Central Cotton Research Institute, Multan. Significant control of weeds and increase in yield and yield contributing factors were observed. It was indicated that maximum yield and weed control were obtained by using Round up (Glyphosate) at the rate of 4.7 L ha/sup -1/ as compared to other treatments including untreated (control). Average boll weight was not significant among treatments but significant against control. Maximum net profit was obtained from Round up 490 G/L when treated at the rate of 4.7 L ha/sup -1/ than all other treatments. (author)

  1. Genome-Wide Analysis of Long Noncoding RNAs and Their Responses to Drought Stress in Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Lu, Xuke; Chen, Xiugui; Mu, Min; Wang, Junjuan; Wang, Xiaoge; Wang, Delong; Yin, Zujun; Fan, Weili; Wang, Shuai; Guo, Lixue; Ye, Wuwei

    2016-01-01

    Recent researches on long noncoding RNAs (lncRNAs) have expanded our horizon of gene regulation and the cellular complexity. However, the number, characteristics and expression patterns of lncRNAs remain poorly characterized and how these lncRNAs biogenesis are regulated in response to drought stress in cotton are still largely unclear. In the study, using a reproducibility-based RNA-sequencing and bioinformatics strategy to analyze the lncRNAs of 9 samples under three different environment stresses (control, drought stress and re-watering, three replications), we totally identified 10,820 lncRNAs of high-confidence through five strict steps filtration, of which 9,989 were lincRNAs, 153 were inronic lncRNAs, 678 were anti-sense lncRNAs. Coding function analysis showed 6,470 lncRNAs may have the ability to code proteins. Small RNAs precursor analysis revealed that 196 lncRNAs may be the precursors to small RNAs, most of which (35.7%, 70) were miRNAs. Expression patterns analysis showed that most of lncRNAs were expressed at a low level and most inronic lncRNAs (75.95%) had a consistent expression pattern with their adjacent protein-coding genes. Further analysis of transcriptome data uncovered that lncRNAs XLOC_063105 and XLOC_115463 probably function in regulating two adjacent coding genes CotAD_37096 and CotAD_12502, respectively. Investigations of the content of plant hormones and proteomics analysis under drought stress also complemented the prediction. We analyzed the characteristics and the expression patterns of lncRNAs under drought stress and re-watering treatment, and found lncRNAs may be likely to involve in regulating plant hormones pathway in response to drought stress.

  2. Genome-Wide Analysis of Long Noncoding RNAs and Their Responses to Drought Stress in Cotton (Gossypium hirsutum L..

    Directory of Open Access Journals (Sweden)

    Xuke Lu

    Full Text Available Recent researches on long noncoding RNAs (lncRNAs have expanded our horizon of gene regulation and the cellular complexity. However, the number, characteristics and expression patterns of lncRNAs remain poorly characterized and how these lncRNAs biogenesis are regulated in response to drought stress in cotton are still largely unclear. In the study, using a reproducibility-based RNA-sequencing and bioinformatics strategy to analyze the lncRNAs of 9 samples under three different environment stresses (control, drought stress and re-watering, three replications, we totally identified 10,820 lncRNAs of high-confidence through five strict steps filtration, of which 9,989 were lincRNAs, 153 were inronic lncRNAs, 678 were anti-sense lncRNAs. Coding function analysis showed 6,470 lncRNAs may have the ability to code proteins. Small RNAs precursor analysis revealed that 196 lncRNAs may be the precursors to small RNAs, most of which (35.7%, 70 were miRNAs. Expression patterns analysis showed that most of lncRNAs were expressed at a low level and most inronic lncRNAs (75.95% had a consistent expression pattern with their adjacent protein-coding genes. Further analysis of transcriptome data uncovered that lncRNAs XLOC_063105 and XLOC_115463 probably function in regulating two adjacent coding genes CotAD_37096 and CotAD_12502, respectively. Investigations of the content of plant hormones and proteomics analysis under drought stress also complemented the prediction. We analyzed the characteristics and the expression patterns of lncRNAs under drought stress and re-watering treatment, and found lncRNAs may be likely to involve in regulating plant hormones pathway in response to drought stress.

  3. Gossipium hirsutum L. extract as green corrosion inhibitor for ...

    African Journals Online (AJOL)

    Inhibitive effect of Gossipium hirsutum L. leaves extract on the acid corrosion of aluminum in 1 M HCl solution was studied by weight loss technique. The extract at optimum concentration inhibited the corrosion of aluminum, with about 92% inhibition efficiency and the inhibition efficiency increased with increasing ...

  4. Highly efficient degradation of thidiazuron with Ag/AgCl- activated carbon composites under LED light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yisi [College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 (China); Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000 (China); College of Chemical Engineering, Huanggang Normal University, Huanggang 438000 (China); Zhang, Yan [Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000 (China); College of Chemical Engineering, Huanggang Normal University, Huanggang 438000 (China); Dong, Mingguang; Yan, Ting; Zhang, Maosheng [College of Chemical Engineering, Huanggang Normal University, Huanggang 438000 (China); Zeng, Qingru, E-mail: 40083763@qq.com [College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 (China)

    2017-08-05

    Highlights: • Photocatalytic degradation of thidiazuron was performed in a neutral water matrix. • This was carried out in the presence of Ag/AgCl-activated carbon composites and LED light. • The pH effect and the dominant active species were explored. • Degradation products and pathways in water were studied for the first time. - Abstract: Thidiazuron (TDZ; 1-phenyl-3-(1,2,3-thiadiazol-5-yl)urea) is one of the most widely used defoliant and easy to dissolve in surface water. Risk associated with the pesticide is not clearly defined, so it is important to remove/degrade TDZ with an efficient and environment friendly technology. Here, we investigated the use of Ag/AgCl-activated carbon (Ag/AgCl–AC) composites in photocatalytic degradation of TDZ under LED light. By the synergic effect of Ag/AgCl and AC, the optimum Ag/carbon weight ratio of 2:1 exhibited superior visible-light photocatalytic activity, the highest removal efficiency was close to 91% in pH 7 matrix. Different types of Ag/AgCl–AC composites were tested, all showed much faster photodegradation kinetics than bare Ag/AgCl in 210 min. The degradation products as identified by HPLC–MS revealed that the hydroxylation by hydroxyl radicals and that of oxidation by superoxide radicals as well as holes were the two main pathways for TDZ degradation. Results revealed that the adsorption concentrated TDZ molecules and the photocatalytically generated radicals rapidly degradated TDZ, the two contributions functioned together for removal of the pollutant from water.

  5. Efeito de thidiazuron na indução e manutenção de calos de erva-baleeira (Cordia verbenacea L. Effects of thidiazuron on callus induction and maintenance of Cordia verbenacea L

    Directory of Open Access Journals (Sweden)

    Osmar Alves Lameira

    1997-03-01

    Full Text Available O trabalho teve como objetivo avaliar a influência do Thidiazuron (TDZ na formação e manutenção de calos de Cordia verbenacea. Segmentos caulinares com 3 a 4cm de comprimento provenientes de mudas cultivadas em casa de vegetação foram desinfestados em solução contendo hipoclorito de sódio comercial a 30% e duas gotas de detergente por 10 minutos, sendo 5 minutos em agitação. Posteriormente, foram excisados e inoculados com 5mm de tamanho em meio sólido a 0,6% de Murashige & Skoog (MURASHIGE & SKOOG, 1962 - MS, complementado com 0,22; 0,68: 2,04 e 6,l3uM de TDZ. A formação de calos ocorreu em todos os tratamentos com 10 a 15 dias de cultivo Os tratamentos que apresentaram o explante com a maior área coberta com calos, em média 75%, foram 2,04 e 6,13miM de TDZ. Somente nesses tratamentos os calos aumentaram de volume e mantiveram a coloração inicial quando transferidos para o meio fresco de cultura. Os tratamentos com menores concentrações de TDZ apresentaram explantes com 50% da área coberta com calos e quando transferidos para o meio fresco de cultura ocorreu a paralisação do crescimento com a posterior morte dos calos.The influence of thidiazuron on calius formation and maintenance of Corola verbenacea was evaluated. Stem segments with 3 to 4cm length were excisedfrom greenhouse plants and surface sterilized with 30% commercial sodium hypochiorite for 10 minutes. Explants were inoculated with 5mm on Murashige and Skoog (MVRASHIGE & SKOOG, 1962 - MSsolid médium (0.6% suppiemented with 0.22, 0.68, 2.04 and 6.13muM TDZ. Calius induction was observed 10 to 15 days after incubation. The media contaming, 2.04 and 6.13uM TDZ induced 75% expiam with calius. The calius when transferred to fresh culture médium exhibited active growth. The treatments containing lower concentration induced 50% expiam with caltus that when transferred to fresh culture médium, showed no development.

  6. The mode of action of thidiazuron: auxins, indoleamines, and ion channels in the regeneration of Echinacea purpurea L.

    Science.gov (United States)

    Jones, Maxwell P A; Cao, Jin; O'Brien, Rob; Murch, Susan J; Saxena, Praveen K

    2007-09-01

    The biochemical mechanisms underlying thidiazuron (TDZ)-induced regeneration in plant cells have not been clearly elucidated. Exposure of leaf explants of Echinacea purpurea to a medium containing TDZ results in undifferentiated cell proliferation and differentiated growth as mixed shoot organogenesis and somatic embryogenesis. The current studies were undertaken to determine the potential roles of auxin, indoleamines, and ion signaling in the dedifferentiation and redifferentiation of plant cells. E. purpurea leaf explants were found to contain auxin and the related indoleamine neurotransmitters, melatonin, and serotonin. The levels of these endogenous indoleamines were increased by exposure to TDZ associated with the induction of regeneration. The auxin-transport inhibitor 2,3,5-triiodobenzoic acid and auxin action inhibitor, p-chlorophenoxyisobutyric acid decreased the TDZ-induced regeneration but increased concentrations of endogenous serotonin and melatonin. As well, inhibitors of calcium and sodium transport significantly reduced TDZ-induced morphogenesis while increasing endogenous indoleamine content. These data indicate that TDZ-induced regeneration is the manifestation of a metabolic cascade that includes an initial signaling event, accumulation, and transport of endogenous plant signals such as auxin and melatonin, a system of secondary messengers, and a concurrent stress response.

  7. Correlation of epiphyllous bud differentiation with foliar senescence in crassulacean succulent Kalanchoe pinnata as revealed by thidiazuron and ethrel application.

    Science.gov (United States)

    Jaiswal, Sarita; Sawhney, Sudhir

    2006-05-01

    Leaves of Kalanchoe pinnata have crenate margins with each notch bearing a dormant bud competent to develop into a healthy plantlet. Leaf detachment is a common signal for inducing two contrastingly different leaf-based processes, i.e. epiphyllous bud development into plantlet and foliar senescence. To investigate differentiation of bud and its correlation, if any, with foliar senescence, thidiazuron (TDZ), having cytokinin activity and ethrel (ETH), an ethylene releasing compound, were employed. The experimental system was comprised of marginal leaf discs, each harbouring an epiphyllous bud. Most of the growth characteristics of plantlet developing from the epiphyllous bud were significantly inhibited by TDZ but promoted by ETH. The two regulators modulated senescence in a manner different for leaf discs and plantlet leaves. Thus, TDZ caused a complete retention whereas ETH a complete loss of chlorophyll in the leaf discs. In contrast, the former resulted in a complete depletion of chlorophyll from the plantlet leaves producing an albino effect, while the latter reduced it by 50% only. In combined dispensation of the two regulators, the effect of TDZ was expressed in majority of responses studied. The results presented in this investigation clearly show that the foliar processes of epiphyllous bud differentiation and senescence are interlinked as TDZ that delayed senescence inhibited epiphyllous bud differentiation and ETH that hastened senescence promoted it. A working hypothesis to interpret responsiveness of the disc-bud composite on lines of a source-sink duo, has been proposed.

  8. The Nutritive Potentials Of Cotton ( Gossypium barbadense ) Leaves ...

    African Journals Online (AJOL)

    Sample of cotton plants (Gossypium barbadense) leaves were analyzed for phytochemical contents, heavy metals, trace elements, proximate composition and toxic/ anti nutritional components. On screening of the leaf extract it was found to contain alkaloids such as quinoline, indole and morphine, but tropane was absent.

  9. Ethyl ester purpurine-18 from Gossypium mustelinum (Malvaceae)

    International Nuclear Information System (INIS)

    Silva, Tania Maria Sarmento; Camara, Celso Amorim; Barbosa-Filho, Jose Maria; Giulietti, Ana Maria

    2010-01-01

    The phaeophorbide ethyl ester named Purpurine-18 and the flavonoids quercetin and kaempferol were obtained by chromatographic procedures from the chloroform fraction of aerial parts of Gossypium mustelinum. The structure of these compound was determined by NMR, IR and mass spectra data analysis. This is the first occurrence of this compound in Angiosperm. (author)

  10. Polyploidization effect in two diploid cotton (Gossypium herbaceum ...

    African Journals Online (AJOL)

    SERVER

    2008-01-18

    Jan 18, 2008 ... pomegranate (Punica granatum). Plant Cell Tissue Organ Cult., 75: 241-246. Sheidai M, Alishah O, Vojdani P (1996). Karyological studies in. Gossypium herbaceum L. cultivars of Iran. Cytologia 61: 365-374. Singh RJ (1993). The handling of chromosomes. Plant cytogenetics,. CRC Press. London, pp.

  11. INFLUÊNCIA DO THIDIAZURON E DA INOCULAÇÃO COM Azospirillum brasilense NO CRESCIMENTO E PRODUTIVIDADE DO ARROZ DE TERRAS ALTAS / INFLUENCE OF THIDIAZURON AND INOCULATION WITH Azospirillum brasilense IN THE GROWTH AND PRODUCTIVITY OF HIGHLAND RICE

    Directory of Open Access Journals (Sweden)

    L. M. Garé

    2017-12-01

    Full Text Available A inoculação com bactérias do gênero Azospirillum pode contribuir com o fornecimento de nitrogênio (N e com o crescimento das plantas, pois esses microrganismos são também promotores de crescimento. Por outro lado a aplicação nas doses e épocas adequadas do regulador vegetal de efeito citocinínico thidiazuron (TDZ pode vir a beneficiar a produtividade de grãos. Dessa maneira, o objetivo do trabalho foi avaliar o efeito de doses de TDZ sobre a produtividade do arroz, na presença e ausência da inoculação foliar com Azospirillum brasilense. Foi utilizada a cultivar ANa 5015, no delineamento experimental de blocos casualizados em esquema fatorial 4 x 2, sendo quatro doses de TDZ (0,0; 0,5; 1,0 e 1,5g ha-1 aplicadas por ocasião do perfilhamento, 30 DAE, e da aplicação de Azospirillum brasilense (presença ou ausência em dose fixa aos 20 DAE. Verificou-se que a cultivar ANa 5015 não se mostrou responsiva para a inoculação foliar com Azospirillum brasilense na dose de 200 mL ha-1. Para as doses de TDZ aplicadas via foliar, houve uma variação significativa na altura de plantas, cuja dose de 0,41 g ha-1 resultou na altura máxima de 1,11 m. Não houve efeito das doses de TDZ na produtividade, massa de 100 grãos, número de panículas por m², grãos por panícula e massa hectolítrica.

  12. Ethyl ester purpurine-18 from Gossypium mustelinum (Malvaceae);Feoforbideo (etoxi-purpurina-18) isolado de Gossypium mustelinum (Malvaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tania Maria Sarmento; Camara, Celso Amorim, E-mail: taniasarmento@dq.ufrpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Quimica; Barbosa-Filho, Jose Maria [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Lab. de Tecnologia Farmaceutica; Giulietti, Ana Maria [Universidade Estadual de Feira de Santana, BA (Brazil). Dept. de Ciencias Biologicas

    2010-07-01

    The phaeophorbide ethyl ester named Purpurine-18 and the flavonoids quercetin and kaempferol were obtained by chromatographic procedures from the chloroform fraction of aerial parts of Gossypium mustelinum. The structure of these compound was determined by NMR, IR and mass spectra data analysis. This is the first occurrence of this compound in Angiosperm. (author)

  13. Pectin Methylesterase and Pectin Remodelling Differ in the Fibre Walls of Two Gossypium Species with Very Different Fibre Properties

    Science.gov (United States)

    Liu, Qinxiang; Talbot, Mark; Llewellyn, Danny J.

    2013-01-01

    Pectin, a major component of the primary cell walls of dicot plants, is synthesized in Golgi, secreted into the wall as methylesters and subsequently de-esterified by pectin methylesterase (PME). Pectin remodelling by PMEs is known to be important in regulating cell expansion in plants, but has been poorly studied in cotton. In this study, genome-wide analysis showed that PMEs are a large multi-gene family (81 genes) in diploid cotton (Gossypium raimondii), an expansion over the 66 in Arabidopsis and suggests the evolution of new functions in cotton. Relatively few PME genes are expressed highly in fibres based on EST abundance and the five most abundant in fibres were cloned and sequenced from two cotton species. Their significant sequence differences and their stage-specific expression in fibres within a species suggest sub-specialisation during fibre development. We determined the transcript abundance of the five fibre PMEs, total PME enzyme activity, pectin content and extent of de-methylesterification of the pectin in fibre walls of the two cotton species over the first 25–30 days of fibre growth. There was a higher transcript abundance of fibre-PMEs and a higher total PME enzyme activity in G. barbadense (Gb) than in G. hirsutum (Gh) fibres, particularly during late fibre elongation. Total pectin was high, but de-esterified pectin was low during fibre elongation (5–12 dpa) in both Gh and Gb. De-esterified pectin levels rose thereafter when total PME activity increased and this occurred earlier in Gb fibres resulting in a lower degree of esterification in Gb fibres between 17 and 22 dpa. Gb fibres are finer and longer than those of Gh, so differences in pectin remodelling during the transition to wall thickening may be an important factor in influencing final fibre diameter and length, two key quality attributes of cotton fibres. PMID:23755181

  14. Impact of Zeatin and Thidiazuron on Phenols and Flavonoids Accumulation in Callus Cultures of Gardenia (Gardenia jasminoides).

    Science.gov (United States)

    Gabr, Ahmed Mohamed Magdy; Arafa, Nermeen Mohamed; El-Ashry, Amal Abd El-Latif; El-Bahr, Mohamed Kamal

    2017-01-01

    Gardenia (Gardenia jasminoides) has many pharmacological actions such as anti-inflammatory, antioxidant and fibrolytic activities and cytotoxic effects, etc. This study was conducted to recognize the effect of zeatin and thidiazuron (TDZ) on callus proliferation, total phenolic content, total flavonoids and DPPH scavenging activity of gardenia callus cultures. Calli were cultured on Murashige and Skoog (MS) medium supplement with different concentrations (2, 4 or 6 mg L-1) of zeatin or TDZ individually as well as combination of 2 mg L-1 zeatin+4 mg L-1 TDZ. Cultures contained 4 mg L-1 TDZ gave the highest callus fresh weight followed by those contained 2 mg L-1 zeatin then that cultured on 4 mg L-1 zeatin. Data reported as Mean±Standard Deviation (SD). Data were subjected to one-way analysis of variance (pdetermined through DPPH radical scavenging activity. Callus cultured on 4 mg L-1 TDZ showed the highest antioxidant activity then those cultured on 4 mg L-1 zeatin. The HPLC analysis for phenolic acids showed that chlorogenic acid, rosmarinic acid and cinnamic reached their highest contents with callus cultured on 4 mg L-1 TDZ (123.24, 322.14 and 278.22 μg g-1, respectively). Regarding flavonoids and using HPLC analysis, rutin, apigenin-7-glucoside and kaempferol were detected. Callus cultured with 4 mg L-1 TDZ gave the highest rutin and kaempferol contents (287.76 and 10.38 μg g-1, respectively). However, apigenin-7-glucoside was detected with high content (129.86 μg g-1) in callus culture with 4 mg L-1 Zeatin. The HPLC analysis recommended that TDZ is more effective in accumulation of individual phenolic and flavonoid than Zeatin. The present study provided a useful system for further study on in vitro culture of G. jasminoides as alternative and new source for important secondary products.

  15. Genome-wide analysis of the HD-ZIP IV transcription factor family in Gossypium arboreum and GaHDG11 involved in osmotic tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Chen, Eryong; Zhang, Xueyan; Yang, Zhaoen; Wang, Xiaoqian; Yang, Zuoren; Zhang, Chaojun; Wu, Zhixia; Kong, Depei; Liu, Zhao; Zhao, Ge; Butt, Hamama Islam; Zhang, Xianlong; Li, Fuguang

    2017-06-01

    HD-ZIP IV proteins belong to the homeodomain-leucine zipper (HD-ZIP) transcription factor family and are involved in trichome development and drought stress in plants. Although some functions of the HD-ZIP IV group are well understood in Arabidopsis, little is known about their function in cotton. In this study, HD-ZIP genes were identified from three Gossypium species (G. arboreum, G. raimondii and G. hirsutum) and clustered into four families (HD-ZIP I, II, III and IV) to separate HD-ZIP IV from the other three families. Systematic analyses of phylogeny, gene structure, conserved domains, and expression profiles in different plant tissues and the expression patterns under osmotic stress in leaves were further conducted in G. arboreum. More importantly, ectopic overexpression of GaHDG11, a representative of the HD-ZIP IV family, confers enhanced osmotic tolerance in transgenic Arabidopsis plants, possibly due to elongated primary root length, lower water loss rates, high osmoprotectant proline levels, significant levels of antioxidants CAT, and/or SOD enzyme activity with reduced levels of MDA. Taken together, these observations may lay the foundation for future functional analysis of cotton HD-ZIP IV genes to unravel their biological roles in cotton.

  16. Effect of thidiazuron and indole-butyric acid in the in vitro propagation of two varieties of strawberry (Oso Grande and Sweet Charlie from foliar sections

    Directory of Open Access Journals (Sweden)

    Pillco-Tancara Hilda Corina

    2017-08-01

    Full Text Available Strawberry farmers indicate that yields are low compared to other countries. This effect is due to the fact that they plant seedlings that come from stolons since the strawberries are propagated asexual. This con-ventional form of reproduction has disadvantages such as: decreased yield, loss of fruit quality. An alter-native to solve this problem is micropropagation. The present research evaluated the in vitro behavior of two varieties of strawberry (Oso Grande and Sweet Charlie from leaf segments with different degrees of maturation (juvenile and adult in two periods of introduction. To induce in vitro propagation, the culture media were supplemented with growth regulators, using two concentrations 4.54 and 9.08 μM of thidiazuron with the combination of three concentrations of 0, 0.98 and 2.5 μM of acid Indolebutyric acid. Explants of leaf segments showing juvenile tissues (May came to form buds. The same did not occur with those that came from adult tissue (June, so it can be noted that those that came from juvenile tissue had a better response in vitro. It was determined that the combination of 9.08 μM thidiazuron and 0.98 μM indolbutyric acid was the most suitable for the in vitro propagation of leaf sections of strawberry leaves in both varieties, since in this medium more formation was obtained Of cell aggregates, for the formation of outbreaks compared to the other treatments.

  17. Gossypolhemiquinone, a dimeric sesquiterpenoid identified in cotton (Gossypium).

    Science.gov (United States)

    Stipanovic, Robert; Puckhaber, Lorraine; Frelichowski, James; Esquivel, Jesus; Westbrook, John; O'Neil, Mike; Bell, Alois; Dowd, Michael; Hake, Kater; Duke, Sara

    2016-02-01

    The report that the cotton leaf perforator, Bucculatrix thurberiella, is one of the few insect herbivores to attack Gossypium thurberi prompted an investigation of the terpenoids present in the leaves of this wild species of cotton. Members of Gossypium produce subepidermal pigment glands in their leaves that contain the dimeric sesquiterpenoid gossypol as well as other biosynthetically related terpenoids. In addition to gossypol, a previously unknown dimeric sesquiterpenoid, gossypolhemiquinone (GHQ), was identified in trace amounts in G. thurberi, a member of the D genome. Other members of the D genome of Gossypium were subsequently found to contain this compound, but GHQ was not detected in commercial cotton cultivars. When fed to Helicoverpa zea in an artificial diet, GHQ delayed days-to-pupation, reduced pupal weights, and survival to adulthood to a lesser or equal extent than gossypol in comparison to the control diet. However, GHQ had a synergistic effect on survival and days-to-pupation when combined with gossypol at the highest dosage tested (0.18%; 15.5:84.5 GHQ:gossypol). Because gossypol exhibits anti-cancer activity, GHQ was also evaluated for its anti-cancer activity against the National Cancer Institute's 60-Human Tumor Cell Line Screen. Significant inhibitory activity against most of these cell lines was not observed, but the results may offer some promise against leukemia cancer cell lines. Published by Elsevier Ltd.

  18. Efeitos do thidiazuron e do ácido giberélico nas características dos cachos e bagos da uva de mesa 'Vênus' na região noroeste do estado de São Paulo Effects of thidiazuron and gibberellic acid on cluster and berry characteristics of 'Vênus' table grape in the Northwestern São Paulo State

    Directory of Open Access Journals (Sweden)

    Renato Vasconcelos Botelho

    2003-04-01

    Full Text Available O uso de reguladores de crescimento está amplamente difundido no cultivo da videira para a melhoria da qualidade das uvas (Vitis vinifera L., visando principalmente ao aumento em tamanho e ao pegamento dos bagos, à descompactação dos cachos e à eliminação de sementes. Nesse contexto, um experimento foi conduzido em vinhedo do cultivar Vênus localizado em Urânia-SP, região noroeste de São Paulo, por dois ciclos consecutivos. Para os tratamentos, utilizam-se thidiazuron a 5 ou 10 mg.L-1 e ácido giberélico a 30 mg.L-1, combinados ou não. Foram avaliadas as seguintes variáveis: comprimento, largura e massa dos cachos e bagos; massa dos engaços; número de bagos; número de sementes-traço; e teor de sólidos solúveis totais, acidez total titulável e relação SST/ATT do mosto. As aplicações de ácido giberélico aumentaram a massa, o comprimento, a largura e o número dos bagos, e reduziram o número de sementes-traço de uvas 'Vênus'. A associação de thidiazuron com ácido giberélico potencializou o efeito desse regulador de crescimento no aumento do pegamento dos frutos e na redução do número de sementes-traço. Aplicações de thidiazuron a 10 mg.L-1, associado ou não ao ácido giberélico, atrasaram a maturação da uva, diminuindo o teor de sólidos solúveis totais e a relação SST/ATT e reduziram a acidez total titulável do mosto. Aplicações de reguladores de crescimento também aumentaram a massa dos cachos e dos engaços.The use of growth regulators is widely diffused in vine crops to improve grapes quality (Vitis vinifera L., aiming mainly the increase of fruit size and set, loosening clusters, and elimination of seeds. In this context, a trial was carried out in a vineyard located at Urânia-SP, Northwestern São Paulo State, during two seasons. It was used thidiazuron at 5 or 10mg.L-1 and gibberellic acid at 30mg.L-1, combined or not. The following variables were evaluated: weight, length and width of

  19. Thidiazuron-enhanced biosynthesis and antimicrobial efficacy of silver nanoparticles via improving phytochemical reducing potential in callus culture of Linum usitatissimum L.

    Directory of Open Access Journals (Sweden)

    Anjum S

    2016-02-01

    Full Text Available Sumaira Anjum, Bilal Haider AbbasiDepartment of Biotechnology, Quaid-i-Azam University, Islamabad, PakistanAbstract: Green synthesis of silver nanoparticles (AgNPs by using plants is an emerging class of nanobiotechnology. It revolutionizes all domains of medical sciences by synthesizing chemical-free AgNPs for various biomedical applications. In this report, AgNPs were successfully synthesized by using whole plant extract (WPE and thidiazuron-induced callus extract (CE of Linum usitatissimum. The phytochemical analysis revealed that the total phenolic and flavonoid contents were higher in CE than that in WPE. Ultraviolet-visible spectroscopy of synthesized AgNPs showed a characteristic surface plasmon band in the range of 410–426 nm. Bioreduction of CE-mediated AgNPs was completed in a shorter time than that of WPE-mediated AgNPs. Scanning electron microscopy showed that both types of synthesized AgNPs were spherical in shape, but CE-mediated AgNPs were smaller in size (19–24 nm and more scattered in distribution than that of WPE-mediated AgNPs (49–54 nm. X-ray diffraction analysis confirmed crystalline nature (face-centered cubic of both types of AgNPs. Fourier-transform infrared spectroscopy revealed that the polyphenols and flavonoids were mainly responsible for reduction and capping of synthesized AgNPs. Energy dispersive X-ray analysis further confirmed the successful synthesis of AgNPs. Moreover, the synthesized AgNPs were found to be stable over months with no change in the surface plasmon bands. More importantly, CE-mediated AgNPs displayed significantly higher bactericidal activity against multiple drug-resistant human pathogens than WPE-mediated AgNPs. The present work highlighted the potent role of thidiazuron in in vitro-derived cultures for enhanced biosynthesis of chemical-free AgNPs, which can be used as nanomedicines in many biomedical applications.Keywords: silver nanoparticles, Linum usitatissimum L., in vitro

  20. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.

    Directory of Open Access Journals (Sweden)

    Hongtao Hu

    Full Text Available MicroRNAs (miRNAs and secondary small interfering RNAs (principally phased siRNAs or trans-acting siRNAs are two distinct subfamilies of small RNAs (sRNAs that are emerging as key regulators of posttranscriptional gene expression in plants. Both miRNAs and secondary-siRNAs (sec-siRNAs are processed from longer RNA precursors by DICER-LIKE proteins (DCLs. Gossypium arboreum L., also known as tree cotton or Asian cotton, is a diploid, possibly ancestral relative of tetraploid Gossypium hirsutum L., the predominant type of commercially grown cotton worldwide known as upland cotton. To understand the biological significance of these gene regulators in G. arboreum, a bioinformatics analysis was performed on G. arboreum small RNAs produced from G. arboreum leaf, flower, and boll tissues. Consequently, 263 miRNAs derived from 353 precursors, including 155 conserved miRNAs (cs-miRNAs and 108 novel lineage-specific miRNAs (ls-miRNAs. Along with miRNAs, 2,033 miRNA variants (isomiRNAs were identified as well. Those isomiRNAs with variation at the 3'-miRNA end were expressed at the highest levels, compared to other types of variants. In addition, 755 pha-siRNAs derived 319 pha-siRNA gene transcripts (PGTs were identified, and the potential pha-siRNA initiators were predicted. Also, 2,251 non-phased siRNAs were found as well, of which 1,088 appeared to be produced by so-called cis- or trans-cleavage of the PGTs observed at positions differing from pha-siRNAs. Of those sRNAs, 148 miRNAs/isomiRNAs and 274 phased/non-phased siRNAs were differentially expressed in one or more pairs of tissues examined. Target analysis revealed that target genes for both miRNAs and pha-siRNAs are involved a broad range of metabolic and enzymatic activities. We demonstrate that secondary siRNA production could result from initial cleavage of precursors by both miRNAs or isomiRNAs, and that subsequently produced phased and unphased siRNAs could result that also serve as triggers

  1. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs

    Science.gov (United States)

    Hu, Hongtao; Rashotte, Aaron M.; Singh, Narendra K.; Weaver, David B.; Goertzen, Leslie R.; Singh, Shree R.; Locy, Robert D.

    2015-01-01

    MicroRNAs (miRNAs) and secondary small interfering RNAs (principally phased siRNAs or trans-acting siRNAs) are two distinct subfamilies of small RNAs (sRNAs) that are emerging as key regulators of posttranscriptional gene expression in plants. Both miRNAs and secondary-siRNAs (sec-siRNAs) are processed from longer RNA precursors by DICER-LIKE proteins (DCLs). Gossypium arboreum L., also known as tree cotton or Asian cotton, is a diploid, possibly ancestral relative of tetraploid Gossypium hirsutum L., the predominant type of commercially grown cotton worldwide known as upland cotton. To understand the biological significance of these gene regulators in G. arboreum, a bioinformatics analysis was performed on G. arboreum small RNAs produced from G. arboreum leaf, flower, and boll tissues. Consequently, 263 miRNAs derived from 353 precursors, including 155 conserved miRNAs (cs-miRNAs) and 108 novel lineage-specific miRNAs (ls-miRNAs). Along with miRNAs, 2,033 miRNA variants (isomiRNAs) were identified as well. Those isomiRNAs with variation at the 3’-miRNA end were expressed at the highest levels, compared to other types of variants. In addition, 755 pha-siRNAs derived 319 pha-siRNA gene transcripts (PGTs) were identified, and the potential pha-siRNA initiators were predicted. Also, 2,251 non-phased siRNAs were found as well, of which 1,088 appeared to be produced by so-called cis- or trans-cleavage of the PGTs observed at positions differing from pha-siRNAs. Of those sRNAs, 148 miRNAs/isomiRNAs and 274 phased/non-phased siRNAs were differentially expressed in one or more pairs of tissues examined. Target analysis revealed that target genes for both miRNAs and pha-siRNAs are involved a broad range of metabolic and enzymatic activities. We demonstrate that secondary siRNA production could result from initial cleavage of precursors by both miRNAs or isomiRNAs, and that subsequently produced phased and unphased siRNAs could result that also serve as triggers of a

  2. Ionic and water relations of cotton (Gossypium hirsutum L. as influenced by various rates of K and Na in soil culture

    Directory of Open Access Journals (Sweden)

    L. Ali

    2009-05-01

    Full Text Available A pot study was conducted to investigate the growth response, ionic and water relations of two cotton varieties. Four levels of K and Na were developed after considering indigenous K, Na status in soil. The treatments of K + Na in mg kg-1 were adjusted as: 105 + 37.5, 135 + 30, 135 + 37.5 and 105 + 30 (control. Control treatment represented indigenous K and Na status of soil. Higher but non significant relative water contents were observed in treatments of135 + 30 mg kg-1 followed by 135 + 37.5 mg kg-1. The beneficial effects of Na with K application were observed greater in NIBGE-2 than in MNH-786. Both varieties varied non-significantly with respect to K:Na ratio in leaf, water potential and total chlorophyll contents. Significant relationship (R2=0.51, n= 4, average of four replicates was found between total dry weight and relative water contents in NIBGE-2.

  3. Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants.

    Science.gov (United States)

    Zhou, Li; Wang, Na-Na; Gong, Si-Ying; Lu, Rui; Li, Yang; Li, Xue-Bao

    2015-11-01

    Soil salinity is one of the most serious threats in world agriculture, and often influences cotton growth and development, resulting in a significant loss in cotton crop yield. WRKY transcription factors are involved in plant response to high salinity stress, but little is known about the role of WRKY transcription factors in cotton so far. In this study, a member (GhWRKY34) of cotton WRKY family was functionally characterized. This protein containing a WRKY domain and a zinc-finger motif belongs to group III of cotton WRKY family. Subcellular localization assay indicated that GhWRKY34 is localized to the cell nucleus. Overexpression of GhWRKY34 in Arabidopsis enhanced the transgenic plant tolerance to salt stress. Several parameters (such as seed germination, green cotyledons, root length and chlorophyll content) in the GhWRKY34 transgenic lines were significantly higher than those in wild type under NaCl treatment. On the contrary, the GhWRKY34 transgenic plants exhibited a substantially lower ratio of Na(+)/K(+) in leaves and roots dealing with salt stress, compared with wild type. Growth status of the GhWRKY34 transgenic plants was much better than that of wild type under salt stress. Expressions of the stress-related genes were remarkably up-regulated in the transgenic plants under salt stress, compared with those in wild type. Based on the data presented in this study, we hypothesize that GhWRKY34 as a positive transcription regulator may function in plant response to high salinity stress through maintaining the Na(+)/K(+) homeostasis as well as activating the salt stress-related genes in cells. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. ptxD gene in combination with phosphite serves as a highly effective selection system to generate transgenic cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Pandeya, Devendra; Campbell, LeAnne M; Nunes, Eugenia; Lopez-Arredondo, Damar L; Janga, Madhusudhana R; Herrera-Estrella, Luis; Rathore, Keerti S

    2017-12-01

    This report demonstrates the usefulness of ptxD/phosphite as a selection system that not only provides a highly efficient and simple means to generate transgenic cotton plants, but also helps address many of the concerns related to the use of antibiotic and herbicide resistance genes in the production of transgenic crops. Two of the most popular dominant selectable marker systems for plant transformation are based on either antibiotic or herbicide resistance genes. Due to concerns regarding their safety and in order to stack multiple traits in a single plant, there is a need for alternative selectable marker genes. The ptxD gene, derived from Pseudomonas stutzeri WM88, that confers to cells the ability to convert phosphite (Phi) into orthophosphate (Pi) offers an alternative selectable marker gene as demonstrated for tobacco and maize. Here, we show that the ptxD gene in combination with a protocol based on selection medium containing Phi, as the sole source of phosphorus (P), can serve as an effective and efficient system to select for transformed cells and generate transgenic cotton plants. Fluorescence microscopy examination of the cultures under selection and molecular analyses on the regenerated plants demonstrate the efficacy of the system in recovering cotton transformants following Agrobacterium-mediated transformation. Under the ptxD/Phi selection, an average of 3.43 transgenic events per 100 infected explants were recovered as opposed to only 0.41% recovery when bar/phosphinothricin (PPT) selection was used. The event recovery rates for nptII/kanamycin and hpt/hygromycin systems were 2.88 and 2.47%, respectively. Molecular analysis on regenerated events showed a selection efficiency of ~ 97% under the ptxD/Phi system. Thus, ptxD/Phi has proven to be a very efficient, positive selection system for the generation of transgenic cotton plants with equal or higher transformation efficiencies compared to the commonly used, negative selection systems.

  5. Cottonseed protein, oil, and mineral status in near-isogenic Gossypium hirsutum cotton lines expressing fuzzy/linted and fuzzless/linted seed phenotypes under field conditions

    Directory of Open Access Journals (Sweden)

    Nacer eBellaloui

    2015-03-01

    Full Text Available Cotton is an important crop in the world and is a major source of oil for human consumption and cotton meal for livestock. Cottonseed nutrition (seed composition: protein, oil, and minerals determine the quality of seeds. Therefore, maintaining optimum levels of cottonseed nutrition is critical. Physiological and genetic mechanisms controlling the levels of these constituents in cottonseed are still largely unknown. Our previous research conducted under greenhouse conditions showed that seed and leaf nutrition differed between fuzzless and fuzzy seed isolines. Therefore, the objective of this research was to investigate the seed fuzz phenotype (trait effects on seed protein, oil, N, C, S, and minerals in five sets of near-isogenic mutant cotton lines for seed fuzz in a two-year experiment under field condition to evaluate the stability of the effect of the trait on seed nutrition. The isolines (genotypes in each set differ for the seed fuzz trait (fuzzless/linted seed line, N lines, and fuzzy/linted seed line, F lines. Results showed that seed protein was higher in the fuzzy genotype in all sets, but seed oil was higher in fuzzless genotype in all sets. The concentrations of seed Ca and C were higher in all fuzzless genotypes, but N, S, B, Fe, and Zn were higher in most of the fuzzy genotypes. Generally, minerals were higher in leaves of F lines, suggesting the translocation of minerals from leaves to seeds was limited. The research demonstrated that fiber development could be involved in cottonseed composition. This may be due to the involvement of fiber development in carbon and nitrogen metabolism, and the mobility of nutrients from leaves (source to seed (sink. This information is beneficial to breeders to consider fuzzless cottonseed for potential protein and oil use and select for higher oil or higher protein content, and to physiologists to further understand the mobility of minerals to increase the quality of cottonseed nutrition for food and feed.

  6. Genome-wide analysis of gene expression of EMS-induced short fiber mutant Ligon lintless-y (liy) in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Naoumkina, Marina; Bechere, Efrem; Fang, David D; Thyssen, Gregory N; Florane, Christopher B

    2017-07-01

    In this work we describe a chemically-induced short fiber mutant cotton line, Ligon-lintless-y (li y ), which is controlled by a single recessive locus and affects multiple traits, including height of the plant, and length and maturity of fiber. An RNAseq analysis was used to evaluate global transcriptional changes during cotton fiber development at 3, 8 and 16days post anthesis. We found that 613, 2629 and 3397 genes were significantly down-regulated, while 2700, 477 and 3260 were significantly up-regulated in li y at 3, 8 and 16 DPA. Gene set enrichment analysis revealed that many metabolic pathways, including carbohydrate, cell wall, hormone metabolism and transport were substantially altered in li y developing fibers. We discuss perturbed expression of genes involved in signal transduction and biosynthesis of phytohormones, such as auxin, abscisic acid, gibberellin and ethylene. The results of this study provide new insights into transcriptional regulation of cotton fiber development. Published by Elsevier Inc.

  7. Chilling stress--the key predisposing factor for causing Alternaria alternata infection and leading to cotton (Gossypium hirsutum L.) leaf senescence.

    Science.gov (United States)

    Zhao, Jingqing; Li, Sha; Jiang, Tengfei; Liu, Zhi; Zhang, Wenwei; Jian, Guiliang; Qi, Fangjun

    2012-01-01

    Leaf senescence plays a vital role in nutrient recycling and overall capacity to assimilate carbon dioxide. Cotton premature leaf senescence, often accompanied with unexpected short-term low temperature, has been occurring with an increasing frequency in many cotton-growing areas and causes serious reduction in yield and quality of cotton. The key factors for causing and promoting cotton premature leaf senescence are still unclear. In this case, the relationship between the pre-chilling stress and Alternaria alternata infection for causing cotton leaf senescence was investigated under precisely controlled laboratory conditions with four to five leaves stage cotton plants. The results showed short-term chilling stress could cause a certain degree of physiological impairment to cotton leaves, which could be recovered to normal levels in 2-4 days when the chilling stresses were removed. When these chilling stress injured leaves were further inoculated with A. alternata, the pronounced appearance and development of leaf spot disease, and eventually the pronounced symptoms of leaf senescence, occurred on these cotton leaves. The onset of cotton leaf senescence at this condition was also reflected in various physiological indexes such as irreversible increase in malondialdehyde (MDA) content and electrolyte leakage, irreversible decrease in soluble protein content and chlorophyll content, and irreversible damage in leaves' photosynthesis ability. The presented results demonstrated that chilling stress acted as the key predisposing factor for causing A. alternata infection and leading to cotton leaf senescence. It could be expected that the understanding of the key factors causing and promoting cotton leaf senescence would be helpful for taking appropriate management steps to prevent cotton premature leaf senescence.

  8. Chilling stress--the key predisposing factor for causing Alternaria alternata infection and leading to cotton (Gossypium hirsutum L. leaf senescence.

    Directory of Open Access Journals (Sweden)

    Jingqing Zhao

    Full Text Available Leaf senescence plays a vital role in nutrient recycling and overall capacity to assimilate carbon dioxide. Cotton premature leaf senescence, often accompanied with unexpected short-term low temperature, has been occurring with an increasing frequency in many cotton-growing areas and causes serious reduction in yield and quality of cotton. The key factors for causing and promoting cotton premature leaf senescence are still unclear. In this case, the relationship between the pre-chilling stress and Alternaria alternata infection for causing cotton leaf senescence was investigated under precisely controlled laboratory conditions with four to five leaves stage cotton plants. The results showed short-term chilling stress could cause a certain degree of physiological impairment to cotton leaves, which could be recovered to normal levels in 2-4 days when the chilling stresses were removed. When these chilling stress injured leaves were further inoculated with A. alternata, the pronounced appearance and development of leaf spot disease, and eventually the pronounced symptoms of leaf senescence, occurred on these cotton leaves. The onset of cotton leaf senescence at this condition was also reflected in various physiological indexes such as irreversible increase in malondialdehyde (MDA content and electrolyte leakage, irreversible decrease in soluble protein content and chlorophyll content, and irreversible damage in leaves' photosynthesis ability. The presented results demonstrated that chilling stress acted as the key predisposing factor for causing A. alternata infection and leading to cotton leaf senescence. It could be expected that the understanding of the key factors causing and promoting cotton leaf senescence would be helpful for taking appropriate management steps to prevent cotton premature leaf senescence.

  9. Evaluation of different carbon sources for high frequency callus culture with reduced phenolic secretion in cotton (Gossypium hirsutum L. cv. SVPR-2

    Directory of Open Access Journals (Sweden)

    G. Prem Kumar

    2015-09-01

    Full Text Available An efficient protocol was developed to control excessive phenolic compound secretion during callus culture of cotton. As cotton is naturally rich in phenolic compounds factors influencing the phenolic compound secretion, callus induction and proliferation were optimized for getting high frequency callus culture. Different carbon sources such as fructose, glucose, sucrose and maltose were tested at various concentrations to control phenolic secretion in callus culture. Among them, 3% maltose was found to be the best carbon source for effectively controlling phenolic secretion in callus induction medium. High frequency of callus induction was obtained on MSB5 medium supplemented with 3% Maltose, 2,4-D (0.90 μM and Kinetin (4.60 μM from both cotyledon and hypocotyl explants. The best result of callus induction was obtained with hypocotyl explant (94.90% followed by cotyledon explant (85.20%. MSB5 medium supplemented with 2,4-D (0.45 μM along with 2iP (2.95 μM gave tremendous proliferation of callus with high percentage of response. Varying degrees of colors and textures of callus were observed under different hormone treatments. The present study offers a solution for controlling phenolic secretion in cotton callus culture by adjusting carbon sources without adding any additives and evaluates the manipulation of plant growth regulators for efficient callus culture of SVPR-2 cotton cultivar.

  10. Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton (Gossypium hirsutum).

    Science.gov (United States)

    Huang, Bo; Jin, Longguo; Liu, Jin-Yuan

    2008-02-01

    A cDNA encoding one novel DRE-binding protein, GhDBP2, was isolated from cotton seedlings. It is classified into the A-6 group of DREB subfamily based on multiple sequence alignment and phylogenetic characterization. Using semi-quantitative RT-PCR, we found that the GhDBP2 transcripts were greatly induced by drought, NaCl, low temperature and ABA treatments in cotton cotyledons. The DNA-binding properties of GhDBP2 were analyzed by electrophoretic mobility shift assay (EMSA), showing that GhDBP2 successfully binds to the previously characterized DRE cis-element as well as the promoter region of the LEA D113 gene. Consistent with its role as a DNA-binding protein, GhDBP2 is preferentially localized to the nucleus of onion epidermal cells. In addition, when GhDBP2 is transiently expressed in tobacco cells, it activates reporter gene expression driven by the LEA D113 promoter. Taken together, our results indicate that GhDBP2 is a DRE-binding transcriptional activator involved in activation of down-stream genes such as LEA D113 expression through interaction with the DRE element, in response to environmental stresses as well as ABA treatment.

  11. Transcript profiling by microarray and marker analysis of the short cotton (Gossypium hirsutum L.) fiber mutant Ligon lintless-1 (Li1)

    Science.gov (United States)

    Cotton fiber length is very important to the quality of textiles. Understanding the genetics and physiology of cotton fiber elongation can provide valuable tools to the cotton industry by targeting genes or other molecules responsible for fiber elongation. Ligon Lintless-1 (Li1) is a monogenic mutan...

  12. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data.

    Science.gov (United States)

    Artico, Sinara; Nardeli, Sarah M; Brilhante, Osmundo; Grossi-de-Sa, Maria Fátima; Alves-Ferreira, Marcio

    2010-03-21

    Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR). Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1alpha5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhbetaTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references for normalization of gene expression measures in different cotton plant organs; GhACT4 and GhUBQ14 for flower development, GhACT4 and GhFBX6 for the floral organs and GhMZA and GhPTB for fruit development. We also provide the primer sequences whose performance in qPCR experiments is demonstrated. These genes will enable more accurate and reliable normalization of qPCR results for gene expression studies in this important crop, the major source of natural fiber and also an important source of edible oil. The use of bona fide reference genes allowed a detailed and accurate characterization of the temporal and spatial expression pattern of two MADS-box genes in cotton.

  13. EPIDEMIOLOGICAL ASPECTS OF COTTON RAMULOSIS (Colletotrichum gossypii SOUTH. Var. cephalosporioides COSTA ASPECTOS EPIDEMIOLÓGICOS DA RAMULOSE (Colletotrichum gossypii South. var. cephalosporioides Costa DO ALGODOEIRO (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Fuad Calil

    2007-09-01

    Full Text Available

    These experiments deal with the effects of outbreak of early, medium and late developing ramulosis on the IAC-13.l variety of cotton, which was seeded at three different intervals in Itauçu (Goiás—Brazil. The effects of the ramulosis on the height and weight of the plants, on the number of bolls, and on the weight of the cotton seeds and lints, were studied. The experiments were installed in a flat area of red latosoil. The experimental design was one of random blocks with six repetitions and the plants were classified, at the end of their vegetative growth, into the following categories: healthy, early ramulosis, medium ramulosis and late developing ramulosis. The early and medium ramulosis affected more significantly the studied parameters, and it was observed that varieties of cotton which were moderately resistant in relation to ramulosis, can be severely affected during growing seasons of heavy rains such as the 1975/76 season.

    Estudaram-se os efeitos da incidência precoce, mediana e tardia de ramulose sobre o peso e altura das plantas, número de capulhos, peso das sementes e da pluma de algodoeiro do cultivar IAC-l3.l em três épocas de semeadura (21/10/75, 21/11/75 e 23/12/75 no município de Itauçu (GO. O experimento foi instalado em região plana com latossolo vermelho. Foram utilizados blocos casualizados com seis repetições e plantas no final do ciclo vegetativo foram classificadas em quatro tipos: sadias, com ramulose precoce, com ramulose mediana ou com ramulose tardia. Concluiu-se que a forma precoce e também a mediana foram as que afetaram mais significativamente os parâmetros aferidos, e que cultivares tidos como de razoável comportamento em relação à ramulose, podem ser severamente afetados em anos agrícolas muito chuvosos como foi o de 1975/76.

  14. Determination of Attributes in Cotton (Gossypium hirsutum L. Genotypes in Corn-Soybean Rotation Associated with Acid Amended Soils in the Colombian Eastern Plains

    Directory of Open Access Journals (Sweden)

    Luis Fernando Campuzano Duque

    2015-07-01

    Full Text Available For the last 15 years, Colombia has developed a research process leading to the expansion of its agricultural frontier at the flat well drained savannas of the Eastern Plains, by improving predominantly acid soils with liming to increase base saturation with depth, vertical liming —as its referred locally—, crop rotation with rice, corn, soybeans, and with the potential to include other crops like cotton in the rotation system. To achieve this, a pioneering research in Colombia was conducted to determine the adaptation of cotton in the acid conditions of the high plains improved sheets. An Agronomic evaluation test was developed using five elite genotypes of cotton in a design of a randomized complete block at four locations in soils with base saturation above 80 %. The results identified a genotype (LC-156, which presented an adaptation to the high plains, associated with an average yield of 2.2 t/ha of cottonseed, 1.5 t/ha of cotton fiber type medium-long, a percentage of fiber extraction above 36.0 %. The comparative advantage of this region for sustainable cotton production is given by the yield of cotton fiber —which ishigher than the national average—, to the 33.2 % reduction in production costs, the quality of long/medium-fiber destined for export and the absence of the pest insect of greatest economic impact in Colombia: the weevil (Anthonomus grandis Boheman.

  15. Araneofauna (Arachnida: Araneae) en cultivos de algodón (Gossypium hirsutum) transgénicos y convencionales en el norte de Santa Fe, Argentina

    OpenAIRE

    Melina Soledad Almada; María Ana Sosa; Alda Gonzalez

    2012-01-01

    Las arañas tienen un valor potencial considerable por su rol depredador de insectos, estas son plagas de la agricultura. Durante la campaña agrícola 2005/06, en INTA Reconquista, Santa Fe (Argentina) se estudio la composición de arañas presentes en cultivos de algodón transgénico y convencional, mediante un diseño experimental de bloques completos al azar, con tres repeticiones y tres tratamientos: algodón transgénico Bt (ALBt), algodón convencional sin control químico (ALCSC) y con control q...

  16. Seed cotton yield, ionic and quality attributes of two cotton (Gossypium hirsutum L. varieties as influenced by various rates of K and Na under field conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Sohail

    2011-11-01

    Full Text Available Cotton is more sensitive to low K availability than most other major field crops, and often shows symptoms of K deficiency in soils not considered K deficient. Field investigation was conducted at Sahiwal to study the effect of different rates of K and Na application on seed cotton yield, ionic ratio and quality characteristics of two cotton varieties. Ten soil K: Na ratios were developed after considering indigenous K, Na status in soil. The treatments of K+Na in kg ha-1 to give K:Na ratios were as: 210+ 60 (3.5:1 i.e. control, 225 + 60 (3.75:1, 240 + 60 (4:1, 255 + 60 (4.25:1, 270 + 60 (4.5:1, 210 + 75 (2.8:1, 225 + 75 (3:1, 240 + 75 (3.2:1, 255 + 75 (3.4:1 and 270 + 75 (3.6:1. Control treatment represented indigenous K, Na status of soil. The experiment continued until maturity. Maximum seed cotton yield of NIBGE-2 was observed at K: Na ratio of 3.6:1. Variety NIBGE-2 manifested greater seed cotton yield than MNH-786. Leaf K: Na ratio of two cotton varieties differed significantly (p < 0.01 due to varieties, rates of K and Na and their interaction. Variety NIBGE-2 maintained higher K: Na ratio than MNH-786 and manifested good fiber quality. There was significant relationship (R2 = 0.55, n = 10 between K: Na ratio and fiber length and significant relationship (R2 = 0.65, n = 10 between K concentration and fiber length for NIBGE-2. There was also significant relationship (R2 = 0.91, 0.78, n = 10 between boll number and seed cotton yield for both varieties. The increase in yield was attributed to increased boll weight.

  17. Effect of Methyl Jasmonate on Phytoalexins Biosynthesis and Induced Disease Resistance to Fusarium oxysporum f. sp. Vasinfectum in Cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Yao Kouakou François Konan

    2014-01-01

    Full Text Available The effect of methyl jasmonate (MeJA sprayed on cotton healthy leaves was evaluated in terms of inherent bioactive chemicals induction. The total phenolic content significantly increased after MeJA 5.0 mM treatments compared to the other tested concentrations (0; 2.5; 10; 15; 20 mM. Among the eleven phenolic compounds which were found except for ferulic acid, gossypetin, gossypol, 3-p-coumaroylquinic acid, and piceatannol were identified as major phenolic constituents of cotton. Their content also significantly increased after the MeJA treatment. In addition, gossypol increased 64 times compared to the control, in the 5.0 mM MeJA treatment. Furthermore, cichoric acid, chlorogenic acid, and pterostilbene are synthesized de novo in leaves of MeJA-treated plant. Treatment of cotton leaves with MeJA 5.0 mM followed 72 h of incubation hampered the expression of Fusarium wilt caused by Fusarium oxysporium f. sp. vasinfectum (FOV. MeJA efficiency was concentration and incubation time dependent. Disease severity on MeJA-treated leaves was significantly lower as compared to the control. Therefore, the high content of gossypetin, gossypol, 3-p-coumaroylquinic acid, ferulic acid, and piceatannol and the presence of cichoric acid, chlorogenic acid, and pterostilbene in plants treated with MeJA, contrary to the control, are essential to equip the cotton compounds with defences or phytoalexins against FOV.

  18. Araneofauna (Arachnida: Araneae en cultivos de algodón (Gossypium hirsutum transgénicos y convencionales en el norte de Santa Fe, Argentina

    Directory of Open Access Journals (Sweden)

    Melina Soledad Almada

    2012-06-01

    Full Text Available Las arañas tienen un valor potencial considerable por su rol depredador de insectos, estas son plagas de la agricultura. Durante la campaña agrícola 2005/06, en INTA Reconquista, Santa Fe (Argentina se estudio la composición de arañas presentes en cultivos de algodón transgénico y convencional, mediante un diseño experimental de bloques completos al azar, con tres repeticiones y tres tratamientos: algodón transgénico Bt (ALBt, algodón convencional sin control químico (ALCSC y con control químico (ALCCC. Semanalmente, se capturaron arañas, con una red entomológica de arrastre, paño vertical de 1m y trampas de caída. Asimismo se recolectaron 1 255 ejemplares (16 familias y 32 especies. Siete familias se presentaron en los tres tratamientos, donde predomino Thomisidae (n=1 051, 84.04% y Araneidae (n=83, 6.64%. El gremio cazadoras por emboscada (n=1 053, 83.91%, “Tejedoras de telas orbiculares” (n=85, 6.77% y “Cazadoras al acecho” (n=53, 4.22% fueron las más abundantes. No hubo diferencias significativas en los índices de diversidad entre tratamientos. Las arañas se presentaron durante todo el ciclo del cultivo, con picos en las semanas de floración y madurez de las capsulas, además la mayor abundancia la encontramos en el ALBt. Este trabajo constituye el primer registro sobre la comunidad de arañas en cultivos de algodón para Argentina.

  19. Araneofauna (Arachnida: Araneae en cultivos de algodón (Gossypium hirsutum transgénicos y convencionales en el norte de Santa Fe, Argentina

    Directory of Open Access Journals (Sweden)

    Melina Soledad Almada

    2012-06-01

    Full Text Available Las arañas tienen un valor potencial considerable por su rol depredador de insectos, estas son plagas de la agricultura. Durante la campaña agrícola 2005/06, en INTA Reconquista, Santa Fe (Argentina se estudio la composición de arañas presentes en cultivos de algodón transgénico y convencional, mediante un diseño experimental de bloques completos al azar, con tres repeticiones y tres tratamientos: algodón transgénico Bt (ALBt, algodón convencional sin control químico (ALCSC y con control químico (ALCCC. Semanalmente, se capturaron arañas, con una red entomológica de arrastre, paño vertical de 1m y trampas de caída. Asimismo se recolectaron 1 255 ejemplares (16 familias y 32 especies. Siete familias se presentaron en los tres tratamientos, donde predomino Thomisidae (n=1 051, 84.04% y Araneidae (n=83, 6.64%. El gremio cazadoras por emboscada (n=1 053, 83.91%, “Tejedoras de telas orbiculares” (n=85, 6.77% y “Cazadoras al acecho” (n=53, 4.22% fueron las más abundantes. No hubo diferencias significativas en los índices de diversidad entre tratamientos. Las arañas se presentaron durante todo el ciclo del cultivo, con picos en las semanas de floración y madurez de las capsulas, además la mayor abundancia la encontramos en el ALBt. Este trabajo constituye el primer registro sobre la comunidad de arañas en cultivos de algodón para Argentina.Arachnofauna (Araneae: Araneae in transgenic and conventional cotton crops (Gossypiumhirsutum in the North of Santa Fe, Argentina. Spiders have considerable potential importance for their role as predators to some pests in agricultural systems. The composition of spiders in transgenic and conventional cotton at the Research Station of INTA Reconquista (Santa Fe was studied during the 2005-2006 season. The experiment was a complete randomized block design with three replications and three treatments: transgenic Bt cotton (ALBt, conventional cotton without chemical control (ALCSC, and conventional cotton with chemical control (ALCCC. Weekly, spiders were collected using nets, vertical cloth and pitfall-traps. A total of 1 255 specimens (16 families, and 32 species were collected. Seven families were found in all the treatments, mainly Thomisidae (n=1 051, 84.04% and Araneidae (n=83, 6.64%. The Hunting spiders guild ambushers (n=1 053, 83.91%, “Orb weavers” (n=85, 6.77% and “Stalkers” (n=53, 4.22% were more abundant. There were no significant differences in the indexes diversity between treatments. Spiders were presented during the whole crop season, with peaks about flowering and boll maturity, with the highest abundance in ALBt. This work is part of the first set of data registered in Argentina about spider’s community in cotton crops. Rev. Biol. Trop. 60 (2: 611-623. Epub 2012 June 01.

  20. High Expression of Cry1Ac Protein in Cotton (Gossypium hirsutum by Combining Independent Transgenic Events that Target the Protein to Cytoplasm and Plastids.

    Directory of Open Access Journals (Sweden)

    Amarjeet Kumar Singh

    Full Text Available Transgenic cotton was developed using two constructs containing a truncated and codon-modified cry1Ac gene (1,848 bp, which was originally characterized from Bacillus thuringiensis subspecies kurstaki strain HD73 that encodes a toxin highly effective against many lepidopteran pests. In Construct I, the cry1Ac gene was cloned under FMVde, a strong constitutively expressing promoter, to express the encoded protein in the cytoplasm. In Construct II, the encoded protein was directed to the plastids using a transit peptide taken from the cotton rbcSIb gene. Genetic transformation experiments with Construct I resulted in a single copy insertion event in which the Cry1Ac protein expression level was 2-2.5 times greater than in the Bacillus thuringiensis cotton event Mon 531, which is currently used in varieties and hybrids grown extensively in India and elsewhere. Another high expression event was selected from transgenics developed with Construct II. The Cry protein expression resulting from this event was observed only in the green plant parts. No transgenic protein expression was observed in the non-green parts, including roots, seeds and non-green floral tissues. Thus, leucoplasts may lack the mechanism to allow entry of a protein tagged with the transit peptide from a protein that is only synthesized in tissues containing mature plastids. Combining the two events through sexual crossing led to near additive levels of the toxin at 4-5 times the level currently used in the field. The two high expression events and their combination will allow for effective resistance management against lepidopteran insect pests, particularly Helicoverpa armigera, using a high dosage strategy.

  1. Chilling Stress—The Key Predisposing Factor for Causing Alternaria alternata Infection and Leading to Cotton (Gossypium hirsutum L.) Leaf Senescence

    Science.gov (United States)

    Zhao, Jingqing; Li, Sha; Jiang, Tengfei; Liu, Zhi; Zhang, Wenwei; Jian, Guiliang; Qi, Fangjun

    2012-01-01

    Leaf senescence plays a vital role in nutrient recycling and overall capacity to assimilate carbon dioxide. Cotton premature leaf senescence, often accompanied with unexpected short-term low temperature, has been occurring with an increasing frequency in many cotton-growing areas and causes serious reduction in yield and quality of cotton. The key factors for causing and promoting cotton premature leaf senescence are still unclear. In this case, the relationship between the pre-chilling stress and Alternaria alternata infection for causing cotton leaf senescence was investigated under precisely controlled laboratory conditions with four to five leaves stage cotton plants. The results showed short-term chilling stress could cause a certain degree of physiological impairment to cotton leaves, which could be recovered to normal levels in 2–4 days when the chilling stresses were removed. When these chilling stress injured leaves were further inoculated with A. alternata, the pronounced appearance and development of leaf spot disease, and eventually the pronounced symptoms of leaf senescence, occurred on these cotton leaves. The onset of cotton leaf senescence at this condition was also reflected in various physiological indexes such as irreversible increase in malondialdehyde (MDA) content and electrolyte leakage, irreversible decrease in soluble protein content and chlorophyll content, and irreversible damage in leaves' photosynthesis ability. The presented results demonstrated that chilling stress acted as the key predisposing factor for causing A. alternata infection and leading to cotton leaf senescence. It could be expected that the understanding of the key factors causing and promoting cotton leaf senescence would be helpful for taking appropriate management steps to prevent cotton premature leaf senescence. PMID:22558354

  2. Combined elevated temperature and soil waterlogging stresses inhibit cell elongation by altering osmolyte composition of the developing cotton (Gossypium hirsutum L.) fiber.

    Science.gov (United States)

    Chen, Yinglong; Wang, Haimiao; Hu, Wei; Wang, Shanshan; Wang, Youhua; Snider, John L; Zhou, Zhiguo

    2017-03-01

    Soil waterlogging events and high temperature conditions occur frequently in the Yangtze River Valley, yet the effects of these co-occurring stresses on fiber elongation have received little attention. In the current study, the combined effect of elevated temperature (ET) and soil waterlogging (SW) more negatively affected final fiber length (reduced by 5.4%-11.3%) than either stress alone by altering the composition of osmotically active solutes (sucrose, malate, and K + ), where SW had the most pronounced effect. High temperature accelerated early fiber development, but limited the duration of elongation, thereby limiting final fiber length. Treatment of ET alone altered fiber sucrose content mainly through decreased source strength and the expression of the sucrose transporter gene GhSUT-1, making sucrose availability the primary determinant of final fiber length under ET. Waterlogging stress alone decreased source strength, down-regulated GhSUT-1 expression and enhanced SuSy catalytic activity for sucrose reduction. Waterlogging treatment alone also limited fiber malate production by down-regulating GhPEPC-1 & -2. However, combined elevated temperature and waterlogging limited primary cell wall synthesis by affecting GhCESAs genes and showed a negative impact on all three major osmotic solutes through the regulation of GhSUT-1, GhPEPC-1 & -2 and GhKT-1 expression and altered SuSy activity, which functioned together to produce a shorter fiber length. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Yield and fiber quality of five pairs of near-isogenic cotton (Gossypium hirsutum L.) lines expressing the fuzzless/linted and fuzzy/linted seed phenotypes

    Science.gov (United States)

    Fuzzless cotton often has traits desirable to the cotton industry, including longer fibers, reduced short fiber content, fewer neps, and improved ginning efficiency. This two-year field study described yield and fiber properties of five pairs of fuzzy and fuzzless near-isogenic lines, developed from...

  4. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data

    Directory of Open Access Journals (Sweden)

    Alves-Ferreira Marcio

    2010-03-01

    Full Text Available Abstract Background Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR. Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. Results By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1α5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhβTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. Conclusion We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references for normalization of gene expression measures in different cotton plant organs; GhACT4 and GhUBQ14 for flower development, GhACT4 and GhFBX6 for the floral organs and GhMZA and GhPTB for fruit development. We also provide the primer sequences whose performance in qPCR experiments is demonstrated. These genes will enable more accurate and reliable normalization of qPCR results for gene expression studies in this important crop, the major source of natural fiber and also an important source of edible oil. The use of bona fide reference genes allowed a detailed and accurate characterization of the temporal and spatial expression pattern of two MADS-box genes in cotton.

  5. Assesment of economic benefits of foliarly applied osmoprotectants in alleviating the adverse effects of water stress on growth and yield of cotton (gossypium hirsutum L.)

    International Nuclear Information System (INIS)

    Zafar, Z. U.; Hussain, K.; Athar, H. U. R.

    2015-01-01

    Water stress reduces crop growth and productivity by affecting various physiological and biochemical processes. Although foliar application of osmoprotectants alleviates the detrimental effects of drought stress growth and productivity of crops, its economic benefits on large scale has not been explored yet. The studies were carried out to quantify the interactive effects of some osmoprotectantsand various watering regimes on cotton crop. The treatments consisted of water stress and osmoprotectant applications ((a) two watering regimes (well watered, 2689m /sup 3/ water; drought stressed, 2078m /sup 3/), and (b) three osmoprotectants (untreated check; water spray containing 0.1 percentage Tween-80; salicylic acid (100 mg L /sup -1/); proline (100 mg L /sup -1/); glycine betaine (100 mg L /sup -1/)) in split plot design. The crop was subjected to drought stress at day 45 after sowing, i.e. at the flowering stage. The solutions of osmoprotectants were foliarly applied after two weeks of imposition of water stress (at the peak flowering stage). The results showed that imposition of water stress caused substantial reduction in plant growth, biological yield, fruit production, and fiber characteristics as compared to fully irrigated cotton crop. However, the application of osmoprotectants was found effective in off-setting the negative impacts of drought stress. The exogenous application of salicylic acid (100 mgL /sup -1/) caused improvement by 47.9 percentage, 36.5 percentage, 17.4 percentage, 4.86 percentage and 9.9 percentage in main stem height, biological yield, fruit production, fiber length and seed cotton yield over an untreated check, respectively. The efficiency of various osmoprotectants was in order of salicylic acid > glycinebetaine > proline in alleviating the harmful effects of drought stress. The usage of osmoprotectants was also found most cost-effective and the value for money. The cost-benefit ratio was 1:9.1, 1:3.9 and 1:1.7 by spraying of salicylic acid, proline and glycinebetaine, respectively. The research study reveals that salicylic acid may be foliarly applied to sustain growth, productivity, fiber characteristics and ultimately accruing higher profits under water stress environment. (author)

  6. Genome-wide identification of mitogen-activated protein kinase gene family in Gossypium raimondii and the function of their corresponding orthologs in tetraploid cultivated cotton.

    Science.gov (United States)

    Zhang, Xueying; Wang, Liman; Xu, Xiaoyang; Cai, Caiping; Guo, Wangzhen

    2014-12-10

    Mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant growth and development as well as biotic and abiotic stress responses. Knowledge about the MAPK gene family in cotton is limited, and systematic investigation of MAPK family proteins has not been reported. By performing a bioinformatics homology search, we identified 28 putative MAPK genes in the Gossypium raimondii genome. These MAPK members were anchored onto 11 chromosomes in G. raimondii, with uneven distribution. Phylogenetic analysis showed that the MAPK candidates could be classified into the four known A, B, C and D groups, with more MAPKs containing the TEY phosphorylation site (18 members) than the TDY motif (10 members). Furthermore, 21 cDNA sequences of MAPKs with complete open reading frames (ORFs) were identified in G. hirsutum via PCR-based approaches, including 13 novel MAPKs and eight with homologs reported previously in tetraploid cotton. The expression patterns of 23 MAPK genes reveal their important roles in diverse functions in cotton, in both various developmental stages of vegetative and reproductive growth and in the stress response. Using a reverse genetics approach based on tobacco rattle virus-induced gene silencing (TRV-VIGS), we further verified that MPK9, MPK13 and MPK25 confer resistance to defoliating isolates of Verticillium dahliae in cotton. Silencing of MPK9, MPK13 and MPK25 can significantly enhance cotton susceptibility to this pathogen. This study presents a comprehensive identification of 28 mitogen-activated protein kinase genes in G. raimondii. Their phylogenetic relationships, transcript expression patterns and responses to various stressors were verified. This study provides the first systematic analysis of MAPKs in cotton, improving our understanding of defense responses in general and laying the foundation for future crop improvement using MAPKs.

  7. Feoforbídeo (etoxi-purpurina-18 isolado de Gossypium mustelinum (Malvaceae Ethyl ester putpurin-18 from Gossypium mustelinum (Malvaceae

    Directory of Open Access Journals (Sweden)

    Tania Maria Sarmento Silva

    2010-01-01

    Full Text Available The phaeophorbide ethyl ester named Purpurin-18 and the flavonoids quercetin and kaempferol were obtained by chromatographic procedures from the chloroform fraction of aerial parts of Gossypium mustelinum. The structure of these compound was determined by NMR, IR and mass spectra data analysis. This is the first occurrence of this compound in Angiosperm.

  8. Polyploidization altered gene functions in cotton (Gossypium spp.).

    Science.gov (United States)

    Xu, Zhanyou; Yu, John Z; Cho, Jaemin; Yu, Jing; Kohel, Russell J; Percy, Richard G

    2010-12-16

    Cotton (Gossypium spp.) is an important crop plant that is widely grown to produce both natural textile fibers and cottonseed oil. Cotton fibers, the economically more important product of the cotton plant, are seed trichomes derived from individual cells of the epidermal layer of the seed coat. It has been known for a long time that large numbers of genes determine the development of cotton fiber, and more recently it has been determined that these genes are distributed across At and Dt subgenomes of tetraploid AD cottons. In the present study, the organization and evolution of the fiber development genes were investigated through the construction of an integrated genetic and physical map of fiber development genes whose functions have been verified and confirmed. A total of 535 cotton fiber development genes, including 103 fiber transcription factors, 259 fiber development genes, and 173 SSR-contained fiber ESTs, were analyzed at the subgenome level. A total of 499 fiber related contigs were selected and assembled. Together these contigs covered about 151 Mb in physical length, or about 6.7% of the tetraploid cotton genome. Among the 499 contigs, 397 were anchored onto individual chromosomes. Results from our studies on the distribution patterns of the fiber development genes and transcription factors between the At and Dt subgenomes showed that more transcription factors were from Dt subgenome than At, whereas more fiber development genes were from At subgenome than Dt. Combining our mapping results with previous reports that more fiber QTLs were mapped in Dt subgenome than At subgenome, the results suggested a new functional hypothesis for tetraploid cotton. After the merging of the two diploid Gossypium genomes, the At subgenome has provided most of the genes for fiber development, because it continues to function similar to its fiber producing diploid A genome ancestor. On the other hand, the Dt subgenome, with its non-fiber producing D genome ancestor

  9. CMD: a Cotton Microsatellite Database resource for Gossypium genomics

    Directory of Open Access Journals (Sweden)

    Liu Shaolin

    2006-05-01

    Full Text Available Abstract Background The Cotton Microsatellite Database (CMD http://www.cottonssr.org is a curated and integrated web-based relational database providing centralized access to publicly available cotton microsatellites, an invaluable resource for basic and applied research in cotton breeding. Description At present CMD contains publication, sequence, primer, mapping and homology data for nine major cotton microsatellite projects, collectively representing 5,484 microsatellites. In addition, CMD displays data for three of the microsatellite projects that have been screened against a panel of core germplasm. The standardized panel consists of 12 diverse genotypes including genetic standards, mapping parents, BAC donors, subgenome representatives, unique breeding lines, exotic introgression sources, and contemporary Upland cottons with significant acreage. A suite of online microsatellite data mining tools are accessible at CMD. These include an SSR server which identifies microsatellites, primers, open reading frames, and GC-content of uploaded sequences; BLAST and FASTA servers providing sequence similarity searches against the existing cotton SSR sequences and primers, a CAP3 server to assemble EST sequences into longer transcripts prior to mining for SSRs, and CMap, a viewer for comparing cotton SSR maps. Conclusion The collection of publicly available cotton SSR markers in a centralized, readily accessible and curated web-enabled database provides a more efficient utilization of microsatellite resources and will help accelerate basic and applied research in molecular breeding and genetic mapping in Gossypium spp.

  10. Anther development and microsporegenesis in Gossypium herbaceum L.

    Directory of Open Access Journals (Sweden)

    Zahra Tajik Khaveh

    2016-11-01

    Full Text Available Gosseypium herbaceum L. is known as cotton plant belongs to the family Malvaceae. This plant is widely distributed throughout western India, Africa, Middle East countries, central Asia, and Availability is found in Iran, Afghanistan, Russian and Turkistan. Gossypium herbaceum L. is a cultivateda cotton species (2n=2x =26,A₁ A₁ has favorable traits such as excellent drought tolerance and resistance to sucking insects and leaf curl virus. In this study, microsporegenesis and anther development of G.herbaceum were studied. The flower, in different developmental stages, were removed, fixed in formalin-glacial acetic acid- lcohol(FAA,stored in 70%ethanol,embedded in paraffin and then sliced at 8-10Mm by rotary microtom. Staining was carried out by periodic Acid Shiff (PASand contrasted with hematoxylin. Scanning electron microscope(SEM was used to analyze the mature pollen grains. The results indicated that anthers wall development followed the dicotyledonous type and were tetrasporangiate which composed of epidermal layer, endotheciumlayer, middle layer and tapetum layer.

  11. Chemical characterization and chemotaxonomy of Hypericum hirsutum L. 1753 from Vojvodina (Serbia

    Directory of Open Access Journals (Sweden)

    Kladar Nebojša V.

    2016-01-01

    Full Text Available The genus Hypericum includes over 500 widely distributed species. The main representative is St. John’s wort (Hypericum perforatum L. (1753, Hypericaceae, the only approved biological source of Hyperici herba by WHO and EMEA monographs. It is frequently used in the form of oil macerate for treatment of burns, scars, eczema and gas­trointestinal disorders, as well as in the form of water and alcoholic extracts as clinically proved antidepressant. Available data suggest that the amounts of secondary metabolites in the plant vary depending on ecological factors of the habitat, and consequently affect the quality of herbal drug. The reports show that other species of the genus have similar chemical profile as H. perforatum. But, there are also Hypericum species in which some of the secondary metabolites of interest occur in higher quantities than in H. perforatum. As previous data suggest, Hypericum hirsutum L. 1753, could be such example. Therefore, the aim of this study was to chemically characterize water-alcoholic extracts of H. hirsutum samples, collected at four localities in Vojvodina (Republic of Serbia by liquid chromatography (HPLC-DAD. The obtained results suggest a good match (in a term of a presence of investigated compounds of previously published results describing chemical profile of H. perforatum water-alcoholic extracts with examined H. hirsutum extracts. Also, chemotaxonomic analysis showed variations in quantity of secondary metabolites in the examined extracts. This opens the door to further investigation of H. hirsutum as a new source of bioactive secondary metabolites and additional markers in Hypericum chemotaxonomy.

  12. Características dos cachos e bagas de uvas ‘Centennial Seedless’ tratadas com thidiazuron e ácido giberélico / Characteristics of clusters and berries of ‘Centennial Seedless’ table grapes treated with thidiazuron and giberellic acid

    Directory of Open Access Journals (Sweden)

    Willian Rodrigues Macedo

    2010-12-01

    Full Text Available Com o objetivo de avaliar os efeitos das doses de ácido giberélico (AG3 e do thidiazuron (TDZ nas características dos cachos e bagas da uva ‘Centennial Seedless’, um experimento foi realizado em um vinhedo comercial em São Miguel Arcanjo (SP. Os tratamentos consistiram de AG3 nas doses de 0 e 5 mg L-1 associados às doses de 0, 2, 4, 6, 8 e 10 mg L-1 de TDZ, sendo estes reguladores vegetais aplicados aos 15 dias após o pleno florescimento, via pulverização direta nos cachos. Foram avaliadas as variáveis diâmetro do pedicelo, índice de esbagoamento, massa, comprimento e largura dos cachos, bagas e engaços; teores de sólidos solúveis, pH, acidez titulável e relação SS/AT do mosto. A dose de 8 mg L-1 de TDZ associada a 5 mg L-1 de AG3, resultou em maiores médias de massa, comprimento e largura dos cachos, sendo que esta interação não alterou o pH, a relação SS/AT e o índice de esbagoamento dos cachos. O TDZ promoveu aumentos lineares sobre a massa e largura das bagas e reduziu os teores de sólidos solúveis, sendo que do ponto de vista agronômico a dose de 8 mg L-1, apresentou-se mais promissora para uso comercial.Abstract With the objective of evaluating the effects of gibberellic acid (GA3 and thidiazuron (TDZ on the physicochemical characteristics of ‘Centennial Seedless’ table grapes a trial was carried out in a commercial vineyard located in São Miguel Arcanjo (SP, Brazil. The treatments consisted of GA3 on the doses at 0 and 5 mg L-1 associated to 0, 2, 4, 6, 8 and 10 mg L-1 of thidiazuron, applied 15 days after full bloom, sprayed directly to the clusters. The following variables were evaluated: pedicel diameter, drop index, weight, length and width of clusters, berries and rachis; soluble solutes content, pH, titratable acidity and ratio SS/TA of the juice. The dose at 8 mg L-1 of TDZ associated to 5 mg L-1 of AG3 resulted in the highest means of cluster weight, length and width, this interaction did not

  13. Pretreatment of radiata pine using two white rot fungal strains Stereum hirsutum and Trametes versicolor

    International Nuclear Information System (INIS)

    Shirkavand, Ehsan; Baroutian, Saeid; Gapes, Daniel J.; Young, Brent R.

    2017-01-01

    Highlights: • Fungal pretreatment by two New Zealand native white rot fungi was proposed. • Trametes versicolor was more efficient in selective degradation of pine wood chips. • Both fungal strains significantly decreased crystallinity index of biomass only after week 7 of degradation. • Structural analysis showed that Trametes versicolor and Stereum hirsutum increased porous surface area of woody biomass. - Abstract: Stereum hirsutum and Trametes versicolor, were studied over a period of 3–7 weeks for pretreatment of radiata pine wood chips. Chemical analysis of pretreated biomass showed that the two studied strains were able to selectively degrade lignin. Selective lignin degradation was greater in week 3 of the pretreatment by Trametes versicolor compared to the other strain. Lengthening pretreatment time increased both lignin and cellulose losses which caused a reduction in selective lignin degradation for both strains. X-ray diffractometry showed that after seven weeks of pretreatment, the crystallinity of the woody biomass was decreased significantly. It decreased from 46% for untreated wood chips to 37% and 44% for Stereum hirsutum and Trametes versicolor treated biomass, respectively. The pretreatment with these two white rot fungi showed that 3-week pretreatment provided a cellulose rich biomass with the minimum cellulose loss compared to the other time of pretreatment.

  14. SENSIBILIDADE DE Rhizoctonia solani Kuhn, A FUNGICIDAS “IN VITRO” E EM PLÂNTULAS DE ALGODOEIRO (Gossypium hirsutum L., EM CONDIÇÕES DE CASA DE VEGETAÇÃO SENSIBILITY OF Rhizoctonia solani Kuhn TO FUNGICIDES “IN VITRO” AND IN COTTON PLANTULES (Gossypium hirsutum L AT GREENHOUSE CONDITIONS

    Directory of Open Access Journals (Sweden)

    Wilson Ferreira de Oliveira

    2007-09-01

    Full Text Available

    Foram instalados nas dependências do Departamento Fitossanitário da Escola de Agronomia - UFG, ensaio “in vitro”, em BDA2 e a nível de Casa de Vegetação, objetivando testar a eficiência de diferentes dosagens de Iprodione + Thiran (Rovrin em comparação com PCNB (Brassicol 75 BR, TMTD (Rhodiauran 70 e Captan + Pencycuron (Monceren para o controle de Rhizoctonia solani Kuhn, na cultura do algodoeiro, através do tratamento de sementes. Os resultados obtidos, nas condições de realização dos ensaios, permitem concluir que os fungicidas Rovrin - 320 g.i.a., Monceren - 210 g.i.a., Rovrin - 240 g.i.a., Rovrin - 200 g.i.a., PCNB - 450 g.i.a./100 litros de água ou 100 kg de sementes mostraram-se eficientes e não diferiram estatisticamente entre si no controle de R. solani, enquanto que o produto TMTD (Rhodiauran 70 na dosagem de 280 g.i.a./100 litros de água ou 100 kg de sementes de algodoeiro não se mostrou eficiente no controle deste agente causal.

    Aiming to test the efficiency of different dosages of Iprodione + Thiram (Rovrin in comparison with PCNB (Brassicol 75 BR, TMTD (Rhodiauran 70 and Captan + Pencycuron (Monceren for controlling Rhizoctonia solani Kuhn, in cotton plantation, through seeds treatment, was mounted essays “in vitro” at greenhouse level and BDA, in the Phytosanitary Department annexes of School of Agronomy-UFG. The results obtained, at essays conditions, permit to conclude that fungicides Rovrin - 320 g.i.a., Monceren - 210 g.i.a., Rovrin - 240 g.i.a., Rovrin - 200 g.i.a., PCNB - 450 g.i.a./l00 liters of water or 100kg of seeds, were efficient and statistically had no variation among them, in controlling R. solani, while chemical product TMTD (Rhodiauran 70, at dosage of 280 g.i.a./100 liters of water or 100 kg of cotton seeds, was not efficient in controlling this causal agent.

  15. Development of a core set of SSR markers for the characterization of Gossypium germplasm

    Science.gov (United States)

    Molecular markers such as simple sequence repeats (SSR) are a useful tool for characterizing genetic diversity of Gossypium germplasm collections. Genetic profiles by DNA fingerprinting of cotton accessions can only be compared among different collections if a common set of molecular markers are us...

  16. Genome-Wide Characterization and Expression Profiles of the Superoxide Dismutase Gene Family in Gossypium

    Directory of Open Access Journals (Sweden)

    Jingbo Zhang

    2016-01-01

    Full Text Available Superoxide dismutase (SOD as a group of significant and ubiquitous enzymes plays a critical function in plant growth and development. Previously this gene family has been investigated in Arabidopsis and rice; it has not yet been characterized in cotton. In our study, it was the first time for us to perform a genome-wide analysis of SOD gene family in cotton. Our results showed that 10 genes of SOD gene family were identified in Gossypium arboreum and Gossypium raimondii, including 6 Cu-Zn-SODs, 2 Fe-SODs, and 2 Mn-SODs. The chromosomal distribution analysis revealed that SOD genes are distributed across 7 chromosomes in Gossypium arboreum and 8 chromosomes in Gossypium raimondii. Segmental duplication is predominant duplication event and major contributor for expansion of SOD gene family. Gene structure and protein structure analysis showed that SOD genes have conserved exon/intron arrangement and motif composition. Microarray-based expression analysis revealed that SOD genes have important function in abiotic stress. Moreover, the tissue-specific expression profile reveals the functional divergence of SOD genes in different organs development of cotton. Taken together, this study has imparted new insights into the putative functions of SOD gene family in cotton. Findings of the present investigation could help in understanding the role of SOD gene family in various aspects of the life cycle of cotton.

  17. Analysis of root-knot nematode and fusarium wilt disease resistance in cotton (Gossypium spp.) using chromosome substitution lines from two alien species.

    Science.gov (United States)

    Ulloa, M; Wang, C; Saha, S; Hutmacher, R B; Stelly, D M; Jenkins, J N; Burke, J; Roberts, P A

    2016-04-01

    Chromosome substitution (CS) lines in plants are a powerful genetic resource for analyzing the contribution of chromosome segments to phenotypic variance. In this study, a series of interspecific cotton (Gossypium spp.) CS lines were used to identify a new germplasm resource, and to validate chromosomal regions and favorable alleles associated with nematode or fungal disease resistance traits. The CS lines were developed in the G. hirsutum L. TM-1 background with chromosome or chromosome segment substitutions from G. barbadense L. Pima 3-79 or G. tomentosum. Root-knot nematode (Meloidogyne incognita) and fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) (races 1 and 4) resistance alleles and quantitative trait loci (QTL) previously placed on cotton chromosomes using SSR markers in two interspecific recombinant inbred line populations were chosen for testing. Phenotypic responses of increased resistance or susceptibility in controlled inoculation and infested field assays confirmed the resistance QTLs, based on substitution with the positive or negative allele for resistance. Lines CS-B22Lo, CS-B04, and CS-B18 showed high resistance to nematode root-galling, confirming QTLs on chromosomes 4 and 22 (long arm) with resistance alleles from Pima 3-79. Line CS-B16 had less fusarium race 1-induced vascular root staining and higher percent survival than the TM-1 parent, confirming a major resistance QTL on chromosome 16. Lines CS-B(17-11) and CS-B17 had high fusarium race 4 vascular symptoms and low survival due to susceptible alleles introgressed from Pima 3-79, confirming the localization on chromosome 17 of an identified QTL with resistance alleles from TM1 and other resistant lines. Analyses validated regions on chromosomes 11, 16, and 17 harboring nematode and fusarium wilt resistance genes and demonstrated the value of CS lines as both a germplasm resource for breeding programs and as a powerful genetic analysis tool for determining QTL effects for disease

  18. Cloning and expression of 1-aminocyclopropane-1-carboxylate oxidase cDNA induced by thidiazuron during somatic embryogenesis of alfalfa (Medicago sativa).

    Science.gov (United States)

    Feng, Bi-Hong; Wu, Bei; Zhang, Chun-Rong; Huang, Xia; Chen, Yun-Feng; Huang, Xue-Lin

    2012-01-15

    Embryogenic callus (EC) induced from petioles of alfalfa (Medicago sativa L. cv. Jinnan) on B5h medium turned green, compact and non-embryogenic when the kinetin (KN) in the medium was replaced partially or completely by thidiazuron (TDZ). The application of CoCl₂, which is an inhibitor of 1-aminocyclopropane-1-carboxylate oxidase (ACO), counteracted the effect of TDZ. Ethylene has been shown to be involved in the modulation of TDZ-induced morphogenesis responses. However, very little is known about the genes involved in ethylene formation during somatic embryogenesis (SE). To investigate whether ethylene mediated by ACO is involved in the effect of TDZ on inhibition of embryogenic competence of the alfalfa callus. In this study we cloned full-length ACO cDNA from the alfalfa callus, named MsACO, and observed changes in this gene expression during callus formation and induction of SE under treatment with TDZ or TDZ plus CoCl₂. RNA blot analysis showed that during the EC subcultural period, the expression level of MsACO in EC was significantly increased on the 2nd day, rose to the highest level on the 8th day and remained at this high level until the 21st day. However, the ACO expression in the TDZ (0.93 μM)-treated callus was higher than in the EC especially on the 8th day. Moreover the ACO expression level increased with increasing TDZ concentration during the subcultural/maintenance period of the callus. It is worth noting that comparing the treatment with TDZ alone, the treatment with 0.93 μM TDZ plus 50 μM CoCl₂ reduced both of the ACO gene expressions and ACO activity in the treated callus. These results indicate that the effect of TDZ could be counteracted by CoCl₂ either on the ACO gene expression level or ACO activity. Thus, a TDZ inhibitory effect on embryogenic competence of alfalfa callus could be mediated by ACO gene expression. Crown Copyright © 2011. Published by Elsevier GmbH. All rights reserved.

  19. Bioinformatics Analysis of Small RNAs in Pima (Gossypium barbadense L.)

    Science.gov (United States)

    Hu, Hongtao; Yu, Dazhao; Liu, Hong

    2015-01-01

    Small RNAs (sRNAs) are ~20 to 24 nucleotide single-stranded RNAs that play crucial roles in regulation of gene expression. In plants, sRNAs are classified into microRNAs (miRNAs), repeat-associated siRNAs (ra-siRNAs), phased siRNAs (pha-siRNAs), cis and trans natural antisense transcript siRNAs (cis- and trans-nat siRNAs). Pima (Gossypium barbadense L.) is one of the most economically important fiber crops, producing the best and longest spinnable fiber. Although some miRNAs are profiled in Pima, little is known about siRNAs, the largest subclass of plant sRNAs. In order to profile these gene regulators in Pima, a comprehensive analysis of sRNAs was conducted by mining publicly available sRNA data, leading to identification of 678 miRNAs, 3,559,126 ra-siRNAs, 627 pha-siRNAs, 136,600 cis-nat siRNAs and 79,994 trans-nat siRNAs. The 678 miRNAs, belonging to 98 conserved and 402 lineage-specific families, were produced from 2,138 precursors, of which 297 arose from introns, exons, or intron/UTR-exon junctions of protein-coding genes. Ra-siRNAs were produced from various repeat loci, while most (97%) were yielded from retrotransposons, especially LTRs (long terminal repeats). The genes encoding auxin-signaling-related proteins, NBS-LRRs and transcription factors were major sources of pha-siRNAs, while two conserved TAS3 homologs were found as well. Most cis-NATs in Pima overlapped in enclosed and convergent orientations, while a few hybridized in divergent and coincided orientations. Most cis- and trans-nat siRNAs were produced from overlapping regions. Additionally, characteristics of length and the 5’-first nucleotide of each sRNA class were analyzed as well. Results in this study created a valuable molecular resource that would facilitate studies on mechanism of controlling gene expression. PMID:25679373

  20. Biomonitoring of Epilobium hirsutum L. Health Status to Assess Water Ecotoxicity in Constructed Wetlands Treating Mixtures of Contaminants

    Directory of Open Access Journals (Sweden)

    Anna Guittonny-Philippe

    2015-02-01

    Full Text Available For the treatment of wastewater containing organic pollutants and metals in constructed wetlands (CWs, phytoindicators may help in guiding management practices for plants and optimizing phytoremediation processes. Hairy willow-herb (Epilobium hirsutum L. is a fast growing species commonly found in European CWs that could constitute a suitable phytoindicator of metal toxicity. E. hirsutum was exposed for 113 days in microcosm CWs, to a metal and metalloid mixture (MPM, containing Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sn, Zn, an organic pollutant mixture (OPM, containing hydrocarbonsC10-C40, phenanthrene, pyrene, anionic detergent LAS and an organic pollutant and metal and metalloid mixture (OMPM, separately and at concentration levels mimicking levels of industrial effluents. Analyses of metal and As concentrations in biomass, and different biometric and physiological measurements were performed. Results showed that metal uptake patterns were affected by the type of pollutant mixture, resulting in variation of toxicity symptoms in E. hirsutum plants. Some of them appeared to be similar under MPM and OMPM conditions (leaf chlorosis and tip-burning, decrease of green leaf proportion, while others were characteristic of each pollutant mixture (MPM: Decrease of water content, increase of phenol content; OMPM: reduction of limb length, inhibition of vegetative reproduction, increase of chlorophyll content and Nitrogen balance index. Results emphasize the potential of E. hirsutum as a bioindicator species to be used in European CWs treating water with metal, metalloid and organic pollutants.

  1. Phylogenetic analysis of Gossypium L. using restriction fragment length polymorphism of repeated sequences.

    Science.gov (United States)

    Zhang, Meiping; Rong, Ying; Lee, Mi-Kyung; Zhang, Yang; Stelly, David M; Zhang, Hong-Bin

    2015-10-01

    Cotton is the world's leading textile fiber crop and is also grown as a bioenergy and food crop. Knowledge of the phylogeny of closely related species and the genome origin and evolution of polyploid species is significant for advanced genomics research and breeding. We have reconstructed the phylogeny of the cotton genus, Gossypium L., and deciphered the genome origin and evolution of its five polyploid species by restriction fragment analysis of repeated sequences. Nuclear DNA of 84 accessions representing 35 species and all eight genomes of the genus were analyzed. The phylogenetic tree of the genus was reconstructed using the parsimony method on 1033 polymorphic repeated sequence restriction fragments. The genome origin of its polyploids was determined by calculating the diploid-polyploid restriction fragment correspondence (RFC). The tree is consistent with the morphological classification, genome designation and geographic distribution of the species at subgenus, section and subsection levels. Gossypium lobatum (D7) was unambiguously shown to have the highest RFC with the D-subgenomes of all five polyploids of the genus, while the common ancestor of Gossypium herbaceum (A1) and Gossypium arboreum (A2) likely contributed to the A-subgenomes of the polyploids. These results provide a comprehensive phylogenetic tree of the cotton genus and new insights into the genome origin and evolution of its polyploid species. The results also further demonstrate a simple, rapid and inexpensive method suitable for phylogenetic analysis of closely related species, especially congeneric species, and the inference of genome origin of polyploids that constitute over 70 % of flowering plants.

  2. Biomembrane stabilization and antiulcerogenic properties of aqueous leaf extract of Gossypium barbadense L. (Malvaceae

    Directory of Open Access Journals (Sweden)

    S. Sabiu

    2017-12-01

    Full Text Available Gossypium spp. belong to a class of botanicals with global therapeutic applications against a number of disorders including ulcers. This study evaluated the membrane stabilization and detoxification potential of aqueous leaf extract of Gossypium barbadense L. (Malvaceae in indomethacin-induced oxidative gastric ulceration in Wistar rats. The ulcerated rats were orally pretreated with the extract and esomeprazole for 4 weeks. Gastric function and antioxidative parameters were thereafter evaluated. The indomethacin-mediated significant elevations in the ulcer index, gastric volume, pepsin activity and mucosal level of malondialdehyde were dosedependently attenuated in the extract-treated animals. The extract also significantly modulated and improved the pH, mucin content, glutathione (reduced as well as gastric activities of superoxide dismutase and catalase in the ulcerated rats. These improvements may be ascribed to the antioxidant and membrane stabilization activities of the extract which are attributable to its active metabolites as revealed by the analytical chromatogram. The observed effects compared favorably with that of esomeprazole and are suggestive of the capability of the extract to prevent mucosal damage and preserve gastric functions as evidently supported by the macroscopical appearance of the stomachs and the % ulcer inhibitory values. Conclusively, the overall data from the present findings suggest that the aqueous leaf extract of G. barbadense could prevent indomethacin-mediated oxidative gastric ulceration via fortification of antioxidant defense mechanisms. Keywords: Esomeprazole, Gossypium barbadense, Indomethacin, Mucosal damage, Oxidative stress

  3. A comparative genomics approach revealed evolutionary dynamics of microsatellite imperfection and conservation in genus Gossypium.

    Science.gov (United States)

    Ahmed, Muhammad Mahmood; Shen, Chao; Khan, Anam Qadir; Wahid, Muhammad Atif; Shaban, Muhammad; Lin, Zhongxu

    2017-01-01

    Ongoing molecular processes in a cell could target microsatellites, a kind of repetitive DNA, owing to length variations and motif imperfection. Mutational mechanisms underlying such kind of genetic variations have been extensively investigated in diverse organisms. However, obscure impact of ploidization, an evolutionary process of genome content duplication prevails mostly in plants, on non-coding DNA is poorly understood. Genome sequences of diversely originated plant species were examined for genome-wide motif imperfection pattern, and various analytical tools were employed to canvass characteristic relationships among repeat density, imperfection and length of microsatellites. Moreover, comparative genomics approach aided in exploration of microsatellites conservation footprints in Gossypium evolution. Based on our results, motif imperfection in repeat length was found intricately related to genomic abundance of imperfect microsatellites among 13 genomes. Microsatellite decay estimation depicted slower decay of long motif repeats which led to predominant abundance of 5-nt repeat motif in Gossypium species. Short motif repeats exhibited rapid decay through the evolution of Gossypium lineage ensuing drastic decrease of 2-nt repeats, of which, "AT" motif type dilapidated in cultivated tetraploids of cotton. The outcome could be a directive to explore comparative evolutionary footprints of simple non-coding genetic elements i.e., repeat elements, through the evolution of genus-specific characteristics in cotton genomes.

  4. Simple Sequence Repeat (SSR Genetic Linkage Map of D Genome Diploid Cotton Derived from an Interspecific Cross between Gossypium davidsonii and Gossypium klotzschianum

    Directory of Open Access Journals (Sweden)

    Joy Nyangasi Kirungu

    2018-01-01

    Full Text Available The challenge in tetraploid cotton cultivars is the narrow genetic base and therefore, the bottleneck is how to obtain interspecific hybrids and introduce the germplasm directly from wild cotton to elite cultivars. Construction of genetic maps has provided insight into understanding the genome structure, interrelationships between organisms in relation to evolution, and discovery of genes that carry important agronomic traits in plants. In this study, we generated an interspecific hybrid between two wild diploid cottons, Gossypium davidsonii and Gossypium klotzschianum, and genotyped 188 F2:3 populations in order to develop a genetic map. We screened 12,560 SWU Simple Sequence Repeat (SSR primers and obtained 1000 polymorphic markers which accounted for only 8%. A total of 928 polymorphic primers were successfully scored and only 728 were effectively linked across the 13 chromosomes, but with an asymmetrical distribution. The map length was 1480.23 cM, with an average length of 2.182 cM between adjacent markers. A high percentage of the markers on the map developed, and for the physical map of G. raimondii, exhibited highly significant collinearity, with two types of duplication. High level of segregation distortion was observed. A total of 27 key genes were identified with diverse roles in plant hormone signaling, development, and defense reactions. The achievement of developing the F2:3 population and its genetic map constructions may be a landmark in establishing a new tool for the genetic improvement of cultivars from wild plants in cotton. Our map had an increased recombination length compared to other maps developed from other D genome cotton species.

  5. Phylogeny of the New World diploid cottons (Gossypium L., Malvaceae) based on sequences of three low-copy nuclear genes.

    Science.gov (United States)

    I. Alvarez; R. Cronn; J.F. Wendel

    2005-01-01

    American diploid cottons (Gossypium L., subgenus Houzingenia Fryxell) form a monophyletic group of 13 species distributed mainly in western Mexico, extending into Arizona, Baja California, and with one disjunct species each in the Galapagos Islands and Peru. Prior phylogenetic analyses based on an alcohol dehydrogenase gene (...

  6. GraP: platform for functional genomics analysis of Gossypium raimondii.

    Science.gov (United States)

    Zhang, Liwei; Guo, Jinyan; You, Qi; Yi, Xin; Ling, Yi; Xu, Wenying; Hua, Jinping; Su, Zhen

    2015-01-01

    Cotton (Gossypium spp.) is one of the most important natural fiber and oil crops worldwide. Improvement of fiber yield and quality under changing environments attract much attention from cotton researchers; however, a functional analysis platform integrating omics data is still missing. The success of cotton genome sequencing and large amount of available transcriptome data allows the opportunity to establish a comprehensive analysis platform for integrating these data and related information. A comprehensive database, Platform of Functional Genomics Analysis in Gossypium raimondii (GraP), was constructed to provide multi-dimensional analysis, integration and visualization tools. GraP includes updated functional annotation, gene family classifications, protein-protein interaction networks, co-expression networks and microRNA-target pairs. Moreover, gene set enrichment analysis and cis-element significance analysis tools are also provided for gene batch analysis of high-throughput data sets. Based on these effective services, GraP may offer further information for subsequent studies of functional genes and in-depth analysis of high-throughput data. GraP is publically accessible at http://structuralbiology.cau.edu.cn/GraP/, with all data available for downloading. © The Author(s) 2015. Published by Oxford University Press.

  7. Molecular cloning and characterization of GhAPm, a gene encoding the μ subunit of the clathrin-associated adaptor protein complex that is associated with cotton (Gossypium hirsutum) fiber development.

    Science.gov (United States)

    Zhou, Tao; Zhang, Rui; Yang, Dawei; Guo, Sandui

    2011-06-01

    The clathrin-associated adaptor protein (AP) complexes are the primary clathrin adaptors that contribute to the formation of clathrin-coated vesicles (CCVs). The GhAPm gene (GenBank accession number: GU359054), which encodes the medium subunit of the AP complexes, was cloned from cotton by rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The full-length cDNA was 1590 bp in size and encoded an open reading frame (ORF) of 416 amino acids with a molecular weight of 46 kDa. The GhAPm protein shared 81-85% identity at the amino acid level with the AP complex μ subunits isolated from Vitis vinifera, Glycine max, Populus trichocarpa, Ricinus communis and Arabidopsis thaliana, respectively. The corresponding genomic DNA, containing eight exons and seven introns, was isolated and analyzed. Also, a 5'-flanking region was analyzed, and a group of putative cis-acting elements were identified. DNA gel blot analysis showed that there is only one GhAPm gene in the cotton genome. Real-time RT-PCR analysis revealed that GhAPm is expressed in the root, stem, leaf, petal, ovule, and fiber. However, the interesting finding is that GhAPm expression level was shown to increase steadily as the cotton fiber develops. In 30 DPA fibers, expression increases sharply and arrives at a peak then the expression levels decrease rapidly. Based on these data, we propose that GhAPm has a critical role in cotton membrane trafficking and fiber development.

  8. EFEITO DE LÂMINAS DE IRRIGAÇÃO SOBRE O RENDIMENTO E QUALIDADE DA FIBRA DE CULTIVARES DE ALGODOEIRO HERBÁCEO (Gossypium hirsutum L. r. latifolium Hutch

    Directory of Open Access Journals (Sweden)

    José Nunes Filho

    1998-12-01

    Full Text Available RESUMO Estudou-se o rendimento e a qualidade da fibra de três cultivares (C de algodoeiro herbáceo (CNPA 7H, CNPA Precoce 1 e CNPA 6H submetidas a quatro lâminas de irrigação (LI1 = 671 mm, LI2 = 785 mm; LI3 = 872 mm e LI4 = 927 mm aplicadas em sulcos nivelados e fechados. Adotou-se o delineamento experimental de blocos ao acaso, com parcelas subdivididas, sendo a parcela principal (LI e a subparcela (C com quatro repetições; as equações de regressão, ajustadas aos dados de produtividade de algodão em caroço, seguiram um modelo quadrático com alta significância para a variável lâmina de irrigação, tendo-se obtido rendimentos máximos de 3051, 2763 e 2423 kg.ha-1 para as cultivares CNPA 7H, CNPA Precoce 1 e CNPA 6H, através de 836, 882 e 821mm de água total aplicada, respectivamente; já a uniformidade da fibra variou com o manejo e a intensidade de irrigação, de forma significativa, enquanto o comprimento, a resistência e a finura não foram afetados nas condições estudadas com essas cultivares.

  9. Comparison of growth, yield and fiber quality of the obsolete SA30 yellow leaf with four sets of modern yellow and green leaf near isogenic cotton (Gossypium hirsutum L.) lines

    Science.gov (United States)

    The Virescent Yellow leaf cotton line Seed Accession 30 (SA30) was crossed with four modern parental lines (DP5690, DES119, SG747 and MD51ne) to develop four sets of near isogenic lines (NILs) segregating for green and yellow leaves. Comparisons of these lines were made in the field in a two year re...

  10. The Effect of Integrated Weed Management (Chemical and Mechanical on Density and Dry Weight of Weed and Introduction of New Herbicide (Envoke in Cotton (Gossypium hirsutum Field in Birjand Region

    Directory of Open Access Journals (Sweden)

    H Barati Mahmoodi

    2012-02-01

    Full Text Available In order to study the effects of mechanical and chemical methods of weed control and their interaction on cotton (CV. Varamin an experiment was conducted in Agricultural Research Field, The University of Birjand during 2008 growing season using a randomize complete block design with 12 treatments and 4 replications. Treatments were: Trefelan (trifluralin 48% EC 960CC ai ha-1 (Pre-plant, Sonalan (ethalfluralin 33.3% 999CC ai ha-1 (Pre-plant, Envoke 75 WG (trifloxysulfuron sodium 11.25 gr ai ha-1 + adjuvant (Citogit 2/1000 post- emergence at 2-8 leaves stage of cotton, once cultivator at 5-8 leaves stage of cotton, using twice cultivator at 2-4 and 4-8 leaves stage of cotton, Trefelan + Envoke, Sonalan + Envoke, Envoke + Cultivator, Trefelan + Cultivator and Sonalan + Cultivator. There were also two treatments whole season weed-free and weed-infested, as controls. Result showed that the lowest weed density and dry weight was related to the treatment of using “Envoke” along with ''Citogit” and integrated treatments of Envoke + Sonalan and Envoke + Cultivator. Integration of Cultivator with Sonalan, Treflan and Envoke was more effective than Cultivator alone.

  11. Role of epicuticular waxes in the susceptibility of cotton leaf curl ...

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... on Gossypium arboreum -786 plants, while lane 16,17 and 18 shows whiteflies on Gossypium hirsutum MNH-93. amplified from RCA product of whiteflies, G. hirsutum. MNH-93 plants and wax mutant GaWM3 plants but no amplification was observed in G. arboreum variety 786 as shown in Figure 5.

  12. RNA interference for functional genomics and improvement of cotton (Gossypium spp.

    Directory of Open Access Journals (Sweden)

    Ibrokhim Y. Abdurakhmonov

    2016-02-01

    Full Text Available RNA interference (RNAi, is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium ssp.. The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialisation.

  13. Extensive and biased intergenomic nonreciprocal DNA exchanges shaped a nascent polyploid genome, Gossypium (cotton).

    Science.gov (United States)

    Guo, Hui; Wang, Xiyin; Gundlach, Heidrun; Mayer, Klaus F X; Peterson, Daniel G; Scheffler, Brian E; Chee, Peng W; Paterson, Andrew H

    2014-08-01

    Genome duplication is thought to be central to the evolution of morphological complexity, and some polyploids enjoy a variety of capabilities that transgress those of their diploid progenitors. Comparison of genomic sequences from several tetraploid (AtDt) Gossypium species and genotypes with putative diploid A- and D-genome progenitor species revealed that unidirectional DNA exchanges between homeologous chromosomes were the predominant mechanism responsible for allelic differences between the Gossypium tetraploids and their diploid progenitors. Homeologous gene conversion events (HeGCEs) gradually subsided, declining to rates similar to random mutation during radiation of the polyploid into multiple clades and species. Despite occurring in a common nucleus, preservation of HeGCE is asymmetric in the two tetraploid subgenomes. At-to-Dt conversion is far more abundant than the reciprocal, is enriched in heterochromatin, is highly correlated with GC content and transposon distribution, and may silence abundant A-genome-derived retrotransposons. Dt-to-At conversion is abundant in euchromatin and genes, frequently reversing losses of gene function. The long-standing observation that the nonspinnable-fibered D-genome contributes to the superior yield and quality of tetraploid cotton fibers may be explained by accelerated Dt to At conversion during cotton domestication and improvement, increasing dosage of alleles from the spinnable-fibered A-genome. HeGCE may provide an alternative to (rare) reciprocal DNA exchanges between chromosomes in heterochromatin, where genes have approximately five times greater abundance of Dt-to-At conversion than does adjacent intergenic DNA. Spanning exon-to-gene-sized regions, HeGCE is a natural noninvasive means of gene transfer with the precision of transformation, potentially important in genetic improvement of many crop plants. Copyright © 2014 by the Genetics Society of America.

  14. Decay of oak Wood provoked by fungus Stereum hirsutum (Willd. ex Fr. S. F. Gray. and its' essential physiological requirements

    Directory of Open Access Journals (Sweden)

    Mirić Milenko

    2005-01-01

    Full Text Available White rot fungi usually decompose cell walls of attacked wood destroying tissue elements (i.e. parenchyma cells, wood fibres, tension wood, tracheas etc in different amount, depending to wood-species as well as to its' zones. Different fungi secrete specific enzymes that are responsible for certain damages. As consequence, the wood structure use to be significantly and unfixable decomposed and changed. Microscopical analyses that have been run provided clear and indicative information relating to effects of fungal activity on wood tissue. Physiological requirements of fungi are for shore of the highest importance in understanding of mechanism of decaying process in the wood. The most important factors as like temperature and concentration of H ions, as well as main nutrients as sources of carbon, nitrogen and phosphorus can affect the behaviour of wood decaying fungi. The impacts of these factors on the growth and production on mycelial mass of Stereum hirsutum (Willd. ex Fr. S.F. Gray., have been investigated. This fungus is one of the most frequent appearing on the Sessile- and Pedunculate Oak weakened trees or felled logs, behaving as parasite as well as saprophyte. As a causer of Oak sapwood white rot S. hirsutum causes significant damages of wood at forest- as well as at industrial storages.

  15. Comportamento do algodoeiro herbáceo (Gossypium hirsutum latifolium Hutch. e controle de plantas daninhas com o uso dos herbicidas diuron e sethoxydim The behavior of upland-type cotton (G. hirsutum latifolium Hutch. and the control of weeds after the use of diuron and sethoxydim herbicides

    Directory of Open Access Journals (Sweden)

    N.E. de M. Beltrão

    1983-06-01

    Full Text Available Com a finalidade de verificar o comportamento do algodoeiro herbáceo, cultivar IAC-17, bem como o controle de plantas daninhas e aspectos competitivos do complexo floristico infestante sobre a cultura, na presença dos herbicidas diuron e sethoxydim, foi realizado um ensaio no município de Viçosa, Minas Gerais. O solo do local experimental, Podzólico Vermelho-Amarelo, apresenta textura argilosa, com 1,38% de carbono orgânico e de baixa fertilidade natural. O diuron foi aplicado em pré-emergência nas doses de 0,0; 0,8; 1,6 e 2,4 kg/ha e o sethoxydim, em pós-emergência, nas doses de 0, 150, 300, 450 e 600 g/ha. O ensaio foi instalado em blocos ao acaso, com 21 tratamentos em esquema fatorial (4 x 5 + 1, sendo 20 deles envolvendo o controle químico, resultantes de todas as combinações das doses desses herbicidas e uma testemunha relativa onde o controle foi realizado com o uso da enxada. Avaliaram-se várias características do crescimento e desen vol vimento da cul tura, tai s como área fol iar, índice de área folia r, ren dimento de algodão em rama, altura da plant a, diâmetro do caule etc.; e, por meio de mét odos sin ecológico s, a densidade populac ional e peso da fitomassa hidratada epí gea das esp éci es daninhas dominant es, e o total de todas as espécies. O diuron exerceu um elevado contro le de lat ifo liadas, como botão-de -ouro (Galin soga parvif lora Cav. e picão-preto (Biden spilosa L., nas doses de 1,6 e 2,4 kg/ ha. O sethoxydim mesmo na menor dose testada (150 g/h a controlou totalmente o capim-marmelada (Brachiaria planta ginea (Link. Hitch . Nenhum dos herbicidas controlou a falsa -serralha (Emilia sonc hi folia DC., porém referida planta daninha não reduziu o crescimento da cultura, mostrando- se de baixa força de competição. As plantas daninhas que apresentaram maiores forças de competição foram o botão-de-ouro, por apresentar maior densidade populacional, e o capim-marmelada, por ser de maior agressividade.To verify the behavior of the c. IAC -17, as well as, the control of weeds and competitive aspects of the infesting floristic complexes over the cotton culture under the presence of the herbicides, diuron and sethoxydium, atrial was contucted in Viçosa, Minas Gerais. The soil at the experimental site, Podzolic Red-yellow, had a clay texture wi th 1,38% of organic carbon an low natural fertility. Diuron was applied at pre -emergence time at the rates of 0, 0; 0, 8; 1,6 and 2,4 kg a.i. /ha and sethoxyd im at post-emergence at the rates of 0, 150, 300, 450 and 600 g a.i./ha. The trial was setup in a randomized blocks design with 2 1 treament sunder a factorial scheme (x 5 + 1 . Out of them, 20 composed all the combinations with different dosis of the two herbicides under study plus a relative control weeded with the aind of a mattock. Several traits concerning growth and plant development were evaluated, such as leaf area, leaf area in dex, seed -cotton yield, plant height, stem diameter. By means of syn ecological methods, th e population density, hydrated epigeous phytomase of dominant weed species, and the total of all species were evaluated. Diuron exerted a high control overlati foliates such as Galinsoga parviflora Cav . and Bidens pilosa L., at the rates of 1, 6 an d 2,4 kg a. i. /ha, seth oxydim, even using the lowvest tested rate (150 g. a. i. /h a fully controled Brachiaria plantaginea (Link. Hitch. None of th e herbicides was able to control Emilia sonchifolia DC. Th is species although being considered an important weed did not affect the normal crop development because of its low competition ability. The weeds showing highes trates of competition were G. parviflora (due to high population density an d B. plantaginea, because of its greater aggresivity.

  16. Selection of optimal doses for mutation induction in two species of cotton G.hirsutum and G. barbadense

    International Nuclear Information System (INIS)

    Jawdat, D.; Karajoli, I.

    2007-05-01

    Seeds from six varieties of Gossypium hirusutum and from one variety of Gossypium barbadense were cultured in plastic containers (20 x 60 x 30 cm) with compost (Terfgroup, Netherlands). Germination readings were taken 14 days after culture, where plants with first true leaf was chosen for readings. The highest percentages of germinations were 83.3 (C6040) and 80 % (Rakka 5). Seeds of Rakka 5 were subjected to gamma radiation (60 C o) with radiation activity of 4 kci using the Gamma cell (Isolvated, made in Russia) at the Radiation Technology department at the AECS. The following doses were used in a rate of 1.8548 KGry/h: 100,150, 200, 250, 300, 350,400 and 500 Gry. On the other hand, seeds of C6040 were subjected to 100,150,200, 250 and 300 Gry. The results indicated the effects of gamma radiation doses on germination rate, plant height, distance between cotyledons leaves and first true leaf and flowering time.(author)

  17. In silico comparative analysis of EST-SSRs in three cotton genomes

    African Journals Online (AJOL)

    reading 6

    2012-08-28

    Aug 28, 2012 ... In this study, expressed sequence tags- simple sequence repeat (EST-SSRs) were surveyed in three cotton genomes (Gossypium arboreum, Ga; Gossypium raimondii, Gr and Gossypium hirsutum, Gh). The frequency of EST-SSRs was highest in Gr, and motif type for hexanucleotide was obviously.

  18. Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense.

    Science.gov (United States)

    Hu, Guanjing; Koh, Jin; Yoo, Mi-Jeong; Grupp, Kara; Chen, Sixue; Wendel, Jonathan F

    2013-10-01

    Pima cotton (Gossypium barbadense) is widely cultivated because of its long, strong seed trichomes ('fibers') used for premium textiles. These agronomically advanced fibers were derived following domestication and thousands of years of human-mediated crop improvement. To gain an insight into fiber development and evolution, we conducted comparative proteomic and transcriptomic profiling of developing fiber from an elite cultivar and a wild accession. Analyses using isobaric tag for relative and absolute quantification (iTRAQ) LC-MS/MS technology identified 1317 proteins in fiber. Of these, 205 were differentially expressed across developmental stages, and 190 showed differential expression between wild and cultivated forms, 14.4% of the proteome sampled. Human selection may have shifted the timing of developmental modules, such that some occur earlier in domesticated than in wild cotton. A novel approach was used to detect possible biased expression of homoeologous copies of proteins. Results indicate a significant partitioning of duplicate gene expression at the protein level, but an approximately equal degree of bias for each of the two constituent genomes of allopolyploid cotton. Our results demonstrate the power of complementary transcriptomic and proteomic approaches for the study of the domestication process. They also provide a rich database for mining for functional analyses of cotton improvement or evolution. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  19. Development and characterization of genomic and expressed SSRs for levant cotton (Gossypium herbaceum L.).

    Science.gov (United States)

    Jena, Satya Narayan; Srivastava, Anukool; Rai, Krishan Mohan; Ranjan, Alok; Singh, Sunil K; Nisar, Tarannum; Srivastava, Meenal; Bag, Sumit K; Mantri, Shrikant; Asif, Mehar Hasan; Yadav, Hemant Kumar; Tuli, Rakesh; Sawant, Samir V

    2012-02-01

    Four microsatellite-enriched genomic libraries for CA(15), GA(15), AAG(8) and ATG(8) repeats and transcriptome sequences of five cDNA libraries of Gossypium herbaceum were explored to develop simple sequence repeat (SSR) markers. A total of 428 unique clones from repeat enriched genomic libraries were mined for 584 genomic SSRs (gSSRs). In addition, 99,780 unigenes from transcriptome sequencing were explored for 8,900 SSR containing sequences with 12,471 expressed SSRs. The present study adds 1,970 expressed SSRs and 263 gSSRs to the public domain for the use of genetic studies of cotton. When 150 gSSRs and 50 expressed SSRs were tested on a panel of four species of cotton, 68 gSSRs and 12 expressed SSRs revealed polymorphism. These 200 SSRs were further deployed on 15 genotypes of levant cotton for the genetic diversity assessment. This is the first report on the successful use of repeat enriched genomic library and expressed sequence database for microsatellite markers development in G. herbaceum.

  20. Isolation and characterization of a sterile-dwarf mutant in Asian cotton (Gossypium arboreum L.).

    Science.gov (United States)

    Wu, Chuntai; Zhou, Baoliang; Zhang, Tianzhen

    2009-06-01

    Plant height is an important trait in cotton. To elucidate the molecular mechanisms of the dwarf phenotype, a sterile-dwarf mutant derived from Gossypium arboreum L. cv. Jinhuazhongmian was developed by (60)Co gamma-ray irradiation. The results demonstrated that the sterile dwarf mutant phenotype was controlled by a pair of recessive gene, which was designated sd(a). Plants carrying the sd(a) gene contained lower levels of indole-3-acetic acid (IAA) and abscisic acid (ABA) compared with wild-type (WT) plants. The chlorophyll content and net photosynthetic rate in mutant leaves were markedly decreased. However, it was possible that ABA biosynthesis or signaling was involved in governing the sd(a) phenotype. Semi-quantitative RT-PCR analysis detected 13 differentially expressed ESTs, and the sterile-dwarf mutant exhibited decreased expression levels relative to the WT. The role of nine potential hormone biosynthetic genes in the synthesis of IAA, ABA, polyamines (PAs) and jasmonic acid (JA) were discussed.

  1. Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypium arboreum) fiber early development

    Science.gov (United States)

    Ma, Jun; Liu, Fang; Wang, Qinglian; Wang, Kunbo; Jones, Don C.; Zhang, Baohong

    2016-01-01

    TCP proteins are plant-specific transcription factors implicated to perform a variety of physiological functions during plant growth and development. In the current study, we performed for the first time the comprehensive analysis of TCP gene family in a diploid cotton species, Gossypium arboreum, including phylogenetic analysis, chromosome location, gene duplication status, gene structure and conserved motif analysis, as well as expression profiles in fiber at different developmental stages. Our results showed that G. arboreum contains 36 TCP genes, distributing across all of the thirteen chromosomes. GaTCPs within the same subclade of the phylogenetic tree shared similar exon/intron organization and motif composition. In addition, both segmental duplication and whole-genome duplication contributed significantly to the expansion of GaTCPs. Many these TCP transcription factor genes are specifically expressed in cotton fiber during different developmental stages, including cotton fiber initiation and early development. This suggests that TCP genes may play important roles in cotton fiber development. PMID:26857372

  2. Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii.

    Science.gov (United States)

    Ma, Jun; Wang, Qinglian; Sun, Runrun; Xie, Fuliang; Jones, Don C; Zhang, Baohong

    2014-10-16

    Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play versatile functions in multiple aspects of plant growth and development. However, no systematical study has been performed in cotton. In this study, we performed for the first time the genome-wide identification and expression analysis of the TCP transcription factor family in Gossypium raimondii. A total of 38 non-redundant cotton TCP encoding genes were identified. The TCP transcription factors were divided into eleven subgroups based on phylogenetic analysis. Most TCP genes within the same subfamily demonstrated similar exon and intron organization and the motif structures were highly conserved among the subfamilies. Additionally, the chromosomal distribution pattern revealed that TCP genes were unevenly distributed across 11 out of the 13 chromosomes; segmental duplication is a predominant duplication event for TCP genes and the major contributor to the expansion of TCP gene family in G. raimondii. Moreover, the expression profiles of TCP genes shed light on their functional divergence.

  3. Comparative Proteomic Analysis of Gossypium thurberi in Response to Verticillium dahliae Inoculation

    Directory of Open Access Journals (Sweden)

    Weiping Fang

    2015-10-01

    Full Text Available Verticillium wilt is threatening cotton productivity globally. This disease is caused by soil-borne Verticillium dahliae which directly infects cotton roots, and exclusively colonizes and occludes xylem vessels, finally resulting in necrosis, defoliation, and most severely, plant death. For the first time, iTRAQ (isobaric tags for relative and absolute quantification was applied to screen the differentially expressed proteins of Gossypium thurberi inoculated with V. dahliae. A total of 6533 proteins were identified from the roots of G. thurberi after inoculation with V. dahliae, and 396 showed up- and 279 down-regulated in comparison to a mock-inoculated roots. Of these identified proteins, the main functional groups were those involved in cell wall organization and reinforcement, disease-resistant chemicals of secondary metabolism, phytohormone signaling, pathogenesis-related proteins, and disease-resistant proteins. Physiological and biochemical analysis showed that peroxidase activity, which promotes the biosynthesis and accumulation of lignin, was induced early in the hypocotyl after inoculation with V. dahliae. Similarly, salicylic acid also accumulated significantly in hypocotyl of the seedlings after inoculation. These findings provide an important knowledge of the molecular events and regulatory networks occurring during G. thurberi-V. dahliae interaction, which may provide a foundation for breeding disease-resistance in cotton.

  4. Differential expression of genes regulated in response to drought stress in diploid cotton (Gossypium arboreum) (abstract)

    International Nuclear Information System (INIS)

    Hussain, T.; Majeed, A.; Maqbool, A.; Hussain, S.S.; Ali, T.; Riazuddin, S.

    2005-01-01

    Negative effects on the Water status of plants is one of the most common and deleterious stresses experienced by wild and cultivated plants throughout the World. Our project is designed to identify, clone and characterize gene sequences regulated in response to Water stress (e.g., drought). We used the differential-display reverse transcriptase polymerase chain reaction (DD-RT- PCA) methodology to accomplish our Objectives. Structural and functional characterization of environmental stress-induced genes has contributed to a better understanding of how plants respond and adapt to different abiotic stresses. Differential display was used to compare overall difference in gene expression between draught stressed and unstressed (control) plants of diploid Cotton (Gossypium arboreum). DDRT-PCR product from stressed and unstressed samples resolved side by side on 6% PAGE to compare qualitative and quantitative difference in mRNA expression. A total of 81 primer combinations were tested. DDRT -PCR enabled us to identify differentially expressed transcripts between water stressed and non-stressed cotton seedlings. PAGE revealed a total of 347 DNA transcripts in stressed samples (New Transcripts) while 110 down regulated and 209 up regulated DNA transcripts were also recorded. Similarly. 22 DNA transcripts were identified based on the comparative study of PAGE and Agarose gel electrophoresis. These sequences showed various degree homology With draught tolerant genes in the gene bank. (author)

  5. Transcriptome Sequencing and Differential Gene Expression Analysis of Delayed Gland Morphogenesis in Gossypium australe during Seed Germination

    Science.gov (United States)

    Tao, Tao; Zhao, Liang; Lv, Yuanda; Chen, Jiedan; Hu, Yan; Zhang, Tianzhen; Zhou, Baoliang

    2013-01-01

    The genus Gossypium is a globally important crop that is used to produce textiles, oil and protein. However, gossypol, which is found in cultivated cottonseed, is toxic to humans and non-ruminant animals. Efforts have been made to breed improved cultivated cotton with lower gossypol content. The delayed gland morphogenesis trait possessed by some Australian wild cotton species may enable the widespread, direct usage of cottonseed. However, the mechanisms about the delayed gland morphogenesis are still unknown. Here, we sequenced the first Australian wild cotton species ( Gossypium australe ) and a diploid cotton species ( Gossypium arboreum ) using the Illumina Hiseq 2000 RNA-seq platform to help elucidate the mechanisms underlying gossypol synthesis and gland development. Paired-end Illumina short reads were de novo assembled into 226,184, 213,257 and 275,434 transcripts, clustering into 61,048, 47,908 and 72,985 individual clusters with N50 lengths of 1,710 bp, 1544 BP and 1,743 bp, respectively. The clustered Unigenes were searched against three public protein databases (TrEMBL, SwissProt and RefSeq) and the nucleotide and protein sequences of Gossypium raimondii using BLASTx and BLASTn. A total of 21,987, 17,209 and 25,325 Unigenes were annotated. Of these, 18,766 (85.4%), 14,552 (84.6%) and 21,374 (84.4%) Unigenes could be assigned to GO-term classifications. We identified and analyzed 13,884 differentially expressed Unigenes by clustering and functional enrichment. Terpenoid-related biosynthesis pathways showed differentially regulated expression patterns between the two cotton species. Phylogenetic analysis of the terpene synthases family was also carried out to clarify the classifications of TPSs. RNA-seq data from two distinct cotton species provide comprehensive transcriptome annotation resources and global gene expression profiles during seed germination and gland and gossypol formation. These data may be used to further elucidate various mechanisms and

  6. Analysis of root-knot nematode and fusarium wilt disease resistance in cotton (Gossypium spp.) using chromosome substitution lines from two alien species

    Science.gov (United States)

    To Identify a new germplasm resource, and to validate chromosomal regions and favorable alleles associated with nematode and fungal disease resistance traits, a series of interspecific cotton (Gossypium spp.) chromosome substitution (CS) lines were used in this study. The CS lines were developed in ...

  7. Characterization of indigenous gossypium arboreum L. genotypes for various fiber quality traits

    International Nuclear Information System (INIS)

    Iqbal, M. A.; Abbas, A.; Zafar, Y.

    2015-01-01

    Diploid cotton (Gossypium arboreum L.) being an Old World cultivated cotton species, evolved in Indo-Pak subcontinent, has been known for conferring resistance to biotic and abiotic stresses. To the extent of our knowledge, there is no comprehensive report available on the characterization of G. arboreum germplasm. Hence, the present study was conducted to characterize 26 G. arboreum genotypes by deploying univariate and multivariate analysis in 2010 at NIBGE, Faisalabad. All these genotypes were characterized for boll weight, GOT percentage, micronaire value, staple length, fiber bundle strength and uniformity index. Genotypic variation was significant (p<0.01) for all the analyzed traits except boll weight. Maximum boll weight (2.47g) was observed for genotype 23718. GOT ranged from 18.75% (Haroonabad) to 36.94 percentage (DC-116).The finest fiber was obtained from synthetic (4.37 micro g/inch) and this genotype also exhibited the higher values for staple length (23.81 mm) and fiber bundle strength (27.37 g/tex). Range for uniformity index was observed from 76.19 percentage (Garohill) to 77.98 percentage (212). Principal component analysis (PCA) exhibited that first five components accounted for >63 percentage of the total variability. Cluster analysis identified four groups based on their agronomic properties. Significant relationships among different traits can be useful to select best genotypes having good fiber quality traits. These genotypes may prove a valuable resource to fuel the breeding efforts for not only broadening the genetic base of the newly developed material but can also add synergy to various cotton genomic projects. (author)

  8. Thidiazuron induced micropropagation of Hypericum triquetrifolium ...

    African Journals Online (AJOL)

    Hypericum genus is commonly used as a medicinal plant for its anti-depressant properties. Harvesting such medicinal plants from the nature is causing a loss of genetic diversity. Plants with very small seeds like Hypericum triquetrifolium Turra cannot be cultured by traditional methods, easily. In the present study, a rapid ...

  9. Development of chromosome-specific markers with high polymorphism for allotetraploid cotton based on genome-wide characterization of simple sequence repeats in diploid cottons (Gossypium arboreum L. and Gossypium raimondii Ulbrich).

    Science.gov (United States)

    Lu, Cairui; Zou, Changsong; Zhang, Youping; Yu, Daoqian; Cheng, Hailiang; Jiang, Pengfei; Yang, Wencui; Wang, Qiaolian; Feng, Xiaoxu; Prosper, Mtawa Andrew; Guo, Xiaoping; Song, Guoli

    2015-02-06

    Tetraploid cotton contains two sets of homologous chromosomes, the At- and Dt-subgenomes. Consequently, many markers in cotton were mapped to multiple positions during linkage genetic map construction, posing a challenge to anchoring linkage groups and mapping economically-important genes to particular chromosomes. Chromosome-specific markers could solve this problem. Recently, the genomes of two diploid species were sequenced whose progenitors were putative contributors of the At- and Dt-subgenomes to tetraploid cotton. These sequences provide a powerful tool for developing chromosome-specific markers given the high level of synteny among tetraploid and diploid cotton genomes. In this study, simple sequence repeats (SSRs) on each chromosome in the two diploid genomes were characterized. Chromosome-specific SSRs were developed by comparative analysis and proved to distinguish chromosomes. A total of 200,744 and 142,409 SSRs were detected on the 13 chromosomes of Gossypium arboreum L. and Gossypium raimondii Ulbrich, respectively. Chromosome-specific SSRs were obtained by comparing SSR flanking sequences from each chromosome with those from the other 25 chromosomes. The average was 7,996 per chromosome. To confirm their chromosome specificity, these SSRs were used to distinguish two homologous chromosomes in tetraploid cotton through linkage group construction. The chromosome-specific SSRs and previously-reported chromosome markers were grouped together, and no marker mapped to another homologous chromosome, proving that the chromosome-specific SSRs were unique and could distinguish homologous chromosomes in tetraploid cotton. Because longer dinucleotide AT-rich repeats were the most polymorphic in previous reports, the SSRs on each chromosome were sorted by motif type and repeat length for convenient selection. The primer sequences of all chromosome-specific SSRs were also made publicly available. Chromosome-specific SSRs are efficient tools for chromosome

  10. Generation, annotation and analysis of first large-scale expressed sequence tags from developing fiber of Gossypium barbadense L.

    Directory of Open Access Journals (Sweden)

    Daojun Yuan

    Full Text Available BACKGROUND: Cotton fiber is the world's leading natural fiber used in the manufacture of textiles. Gossypium is also the model plant in the study of polyploidization, evolution, cell elongation, cell wall development, and cellulose biosynthesis. G. barbadense L. is an ideal candidate for providing new genetic variations useful to improve fiber quality for its superior properties. However, little is known about fiber development mechanisms of G. barbadense and only a few molecular resources are available in GenBank. METHODOLOGY AND PRINCIPAL FINDINGS: In total, 10,979 high-quality expressed sequence tags (ESTs were generated from a normalized fiber cDNA library of G. barbadense. The ESTs were clustered and assembled into 5852 unigenes, consisting of 1492 contigs and 4360 singletons. The blastx result showed 2165 unigenes with significant similarity to known genes and 2687 unigenes with significant similarity to genes of predicted proteins. Functional classification revealed that unigenes were abundant in the functions of binding, catalytic activity, and metabolic pathways of carbohydrate, amino acid, energy, and lipids. The function motif/domain-related cytoskeleton and redox homeostasis were enriched. Among the 5852 unigenes, 282 and 736 unigenes were identified as potential cell wall biosynthesis and transcription factors, respectively. Furthermore, the relationships among cotton species or between cotton and other model plant systems were analyzed. Some putative species-specific unigenes of G. barbadense were highlighted. CONCLUSIONS/SIGNIFICANCE: The ESTs generated in this study are from the first large-scale EST project for G. barbadense and significantly enhance the number of G. barbadense ESTs in public databases. This knowledge will contribute to cotton improvements by studying fiber development mechanisms of G. barbadense, establishing a breeding program using marker-assisted selection, and discovering candidate genes related to

  11. Spectral discrimination of two pigweeds from cotton with different leaf colors

    Science.gov (United States)

    To implement strategies to control Palmer amaranth (Amaranthus palmeri S. Wats.) and redroot pigweed (Amaranthus retroflexus L.) infestations in cotton (Gossypium hirsutum L.) production systems, managers need effective techniques to identify the weeds. Leaf light reflectance measurements have shown...

  12. Reproduction and pathogenicity of endemic populations of Rotylenchulus reniformis on cotton

    Science.gov (United States)

    The reniform nematode (Rotylenchulus reniformis) is the predominant parasitic nematode of upland cotton (Gossypium hirsutum) in the southern United States. Little is known about variability in geographic isolates of reniform nematode. In order to evaluate the comparative reproduction and pathogenici...

  13. Genetic diversity analysis of various red spider mite- resistant ...

    African Journals Online (AJOL)

    User

    2011-05-02

    resistant cotton (Gossypium hirsutum) cultivars that are applied in cultivar identification and breeder's right protection of cottons. The genomic DNA was used as template and random primers were used to analyze the genetic diversity.

  14. Nigerian Food Journal - Vol 29, No 1 (2011)

    African Journals Online (AJOL)

    Gossypium hirsutum L) · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. AB Arowolo, CRB Oguntona, AM Bamgbose, WAO Afolabi, WO Alegbeleye, SA Oluwalana, PO Ibidapo, OF Kayode, SOA Olatope ...

  15. Genetic diversity analysis of various red spider miteresistant upland ...

    African Journals Online (AJOL)

    resistant cotton (Gossypium hirsutum) cultivars that are applied in cultivar identification and breeder's right protection of cottons. The genomic DNA was used as template and random primers were used to analyze the genetic diversity of 21 accessions ...

  16. The effects of reciprocal cross on inheritance of DNA methylation in ...

    African Journals Online (AJOL)

    enoh

    2012-03-20

    Gossypium hirsutum). Jun Wei1#, Honghong Fan1#, Tingchun Li1,2, Wanghua Wang, Ning Guo, Zhengpeng Li1,. Yongping Cai1 and Yi Lin1*. 1Department of Life Science, Anhui Agricultural University, Hefei, 230036, Peoples ...

  17. Plant reference genes for development and stress response studies

    Indian Academy of Sciences (India)

    Plant species included in thisreview are Arabidopsis thaliana, cotton (Gossypium hirsutum), tobacco (Nicotiana benthamiana and N. tabacum), soybean(Glycine max), rice (Oryza sativa), blueberry (Vaccinium corymbosum), tomato (Solanum lycopersicum), wheat (Triticumaestivum), potato (Solanum tuberosum), sugar cane ...

  18. Genome-wide identification and comparative analysis of squamosa-promoter binding proteins (sbp) transcription factor family in gossypium raimondii and arabidopsis thaliana

    International Nuclear Information System (INIS)

    Ali, M.A.; Alia, K.B.; Atif, R.M.; Rasulj, I.; Nadeem, H.U.; Shahid, A.; Azeem, F

    2017-01-01

    SQUAMOSA-Promoter Binding Proteins (SBP) are class of transcription factors that play vital role in regulation of plant tissue growth and development. The genes encoding these proteins have not yet been identified in diploid cotton. Thus here, a comprehensive genome wide analysis of SBP genes/proteins was carried out to identify the genes encoding SBP proteins in Gossypium raimondii and Arabidopsis thaliana. We identified 17 SBP genes from Arabidopsis thaliana genome and 30 SBP genes from Gossypium raimondii. Chromosome localization studies revealed the uneven distribution of SBP encoding genes both in the genomes of A. thaliana and G. raimondii. In cotton, five SBP genes were located on chromosome no. 2, while no gene was found on chromosome 9. In A. thaliana, maximum seven SBP genes were identified on chromosome 9, while chromosome 4 did not have any SBP gene. Thus, the SBP gene family might have expanded as a result of segmental as well as tandem duplications in these species. The comparative phylogenetic analysis of Arabidopsis and cotton SBPs revealed the presence of eight groups. The gene structure analysis of SBP encoding genes revealed the presence of one to eleven inrons in both Arabidopsis and G. raimondii. The proteins sharing the same phyletic group mostly demonstrated the similar intron-exon occurrence pattern; and share the common conserved domains. The SBP DNA-binding domain shared 24 absolutely conserved residues in Arabidopsis. The present study can serve as a base for the functional characterization of SBP gene family in Gossypium raimondii. (author)

  19. Antifungal activities of secondary metabolites isolated from liquid fermentations of Stereum hirsutum (Sh134-11) against Botrytis cinerea (grey mould agent).

    Science.gov (United States)

    Aqueveque, Pedro; Céspedes, Carlos L; Becerra, José; Aranda, Mario; Sterner, Olov

    2017-11-01

    Extracts obtained from liquid mycelial fermentations of the Chilean fungus Stereum hirsutum (Sh134-11) showed antifungal activity against Botrytis cinerea. Two types of extracts were obtained: EtOAc-extract (liquid phase) and MeOH-extract (mycelial phase). Plate diffusion assay showed that EtOAc-extracts were more active than MeOH-extracts. A large-scale fermentation of Sh134-11 and chromatographic methods allowed to isolated four compounds: MS-3, Vibralactone, Vibralactone B and Sterenin D. Only Sterenin D showed antifungal activity against B. cinerea in the tests performed. Effects on the mycelial growth of B. cinerea showed that Sterenin D showed inhibition at 1000-2000 μg/mL reaching 67% and 76% respectively. Sterenin D was more effective to control the sporogenesis, inhibiting in 96% the sporulation at 500 μg/mL. Assays showed that Sterenin D exhibited a minimal fungicidal concentration (MFC) of 50 μg/mL and minimal inhibitory concentration (MIC) at 20 μg/mL. Our study indicated that submerged fermentations of Chilean S. hirsutum (Sh134-11) produced extracts with antifungal activity and Sterenin D is responsible for this activity, which could be used as possible biofungicides alternative to synthetic fungicides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Isolation, characterization and mapping of genes differentially ...

    Indian Academy of Sciences (India)

    Abstract. Gossypium hirsutum and G. barbadense are two cultivated tetraploid cotton species with differences in fibre quality. The fibre of G. barbadense is longer, stronger and finer than that of G. hirsutum. To isolate genes expressed differently between the two species during fibre development, cDNA-SRAP ...

  1. Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in Gossypium raimondii

    Science.gov (United States)

    He, Qiuling; Jones, Don C.; Li, Wei; Xie, Fuliang; Ma, Jun; Sun, Runrun; Wang, Qinglian; Zhu, Shuijin; Zhang, Baohong

    2016-01-01

    The R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton. In the present study, a total of 205 putative R2R3-MYB genes were identified in cotton D genome (Gossypium raimondii), that are much larger than that found in other cash crops with fully sequenced genomes. These GrMYBs were classified into 13 groups with the R2R3-MYB genes from Arabidopsis and rice. The amino acid motifs and phylogenetic tree were predicted and analyzed. The sequences of GrMYBs were distributed across 13 chromosomes at various densities. The results showed that the expansion of the G. Raimondii R2R3-MYB family was mainly attributable to whole genome duplication and segmental duplication. Moreover, the expression pattern of 52 selected GrMYBs and 46 GaMYBs were tested in roots and leaves under different abiotic stress conditions. The results revealed that the MYB genes in cotton were differentially expressed under salt and drought stress treatment. Our results will be useful for determining the precise role of the MYB genes during stress responses with crop improvement. PMID:27009386

  2. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii.

    Science.gov (United States)

    Zhang, Feng; Zhu, Guozhong; Du, Lei; Shang, Xiaoguang; Cheng, Chaoze; Yang, Bing; Hu, Yan; Cai, Caiping; Guo, Wangzhen

    2016-02-03

    Cotton is an economically important crop throughout the world, and is a pioneer crop in salt stress tolerance research. Investigation of the genetic regulation of salinity tolerance will provide information for salt stress-resistant breeding. Here, we employed next-generation RNA-Seq technology to elucidate the salt-tolerant mechanisms in cotton using the diploid cotton species Gossypium davidsonii which has superior stress tolerance. A total of 4744 and 5337 differentially expressed genes (DEGs) were found to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation elucidated salt overly sensitive (SOS) and reactive oxygen species (ROS) signaling pathways. Furthermore, we found that photosynthesis pathways and metabolism play important roles in ion homeostasis and oxidation balance. Moreover, our studies revealed that alternative splicing also contributes to salt-stress responses at the posttranscriptional level, implying its functional role in response to salinity stress. This study not only provides a valuable resource for understanding the genetic control of salt stress in cotton, but also lays a substantial foundation for the genetic improvement of crop resistance to salt stress.

  3. Propagación clonal in vitro y enraizamiento de estacas de algodón nativo (Gossypium barbadense L.

    Directory of Open Access Journals (Sweden)

    Consuelo Rojas-Idrogo

    2013-12-01

    Full Text Available En este trabajo se evalúo el efecto de reguladores de crecimiento en la propagación clonal in vitro y el efecto de diferentes soluciones nutritivas y reguladores de crecimiento en el enraizamiento de estacas de algodón (Gossypium barbadense. En el enraizamiento se evaluó el efecto del agua corriente, las soluciones nutritivas de Knop y Knudson y los reguladores de crecimiento AIA, AIB y floroglucinol sobre estacas obtenidas de las zonas apical, media y basal de la planta. En la combinación ANA 0.1 mg/lt - BAP 1.0 y 2.0 mg/lt, después de 30 días de cultivo in vitro, se alcanzó la mayor elongación de brotes (38.1 y 30.7 mm y número de nudos formados (4.1 y 3.4; el mejor enraizamiento se observó con AIA 0.2 mg/lt formando 3.6 raíces. El enraizamiento de estacas, con brotes formados (40 y 50%, fue mayor cuando se utilizó el tercio medio y superior, tanto en agua corriente como en la solución de Knop y únicamente suplementados con AIB 25 y 50 mg/lt.

  4. Role of epicuticular waxes in the susceptibility of cotton leaf curl ...

    African Journals Online (AJOL)

    Cotton leaf curl virus (CLCuV) is the causal agent of the damaging disease of cotton that is caused by number of begomaviruses and vectored by silver leaf whitefly. In the present study, an attempt was made by infecting Gossypium arboreum variety 786, its wax mutant GaWM3 along with Gossypium hirsutum MNH-93 with ...

  5. Construction of microsatellite-based linkage map and mapping of ...

    Indian Academy of Sciences (India)

    Abstract. Gossypium tomentosum, a wild tetraploid cotton species with AD genomes, possesses genes conferring strong fibers and high heat tolerance. To effectively transfer these genes into Gossypium hirsutum, an entire microsatellite (simple sequence repeat,. SSR)-based genetic map was constructed using the ...

  6. Construction of microsatellite-based linkage map and mapping of ...

    Indian Academy of Sciences (India)

    Gossypium tomentosum, a wild tetraploid cotton species with AD genomes, possesses genes conferring strong fibers and high heat tolerance. To effectively transfer these genes into Gossypium hirsutum, an entire microsatellite (simple sequence repeat, SSR)-based genetic map was constructed using the interspecific cross ...

  7. SNP-based MAS in cotton under depressed-recombination for Renlon-flanking recombinants:results and inferences on wide-cross breeding strategies

    Science.gov (United States)

    Renlon, a gene from the wild African species, Gossypium longicalyx, confers a high level of resistance against reniform nematode (Rotylenchulus reniformis) when introgressed into Gossypium hirsutum. However, LONREN lines were stunted when grown in fields heavily infested with nematodes during early...

  8. Inhibitory effect of aqueous extract of different parts of Gossypium herbaceum on key enzymes linked with type 2 diabetes and oxidative stress in rat pancreas in vitro

    Directory of Open Access Journals (Sweden)

    Ayodeji Augustine Olabiyi

    2016-06-01

    Full Text Available This study sought to determine the inhibitory effect of aqueous extract of different parts (bark, leaf, and flower of cotton plant (Gossypium herbaceum on key enzymes linked with type 2 diabetes and oxidative stress in rat pancreas in vitro. The aqueous extract (1:10 w/v of Gossypium herbaceum was prepared and the ability of the extract to inhibit the activity of α-amylase and α-glucosidase as well as activities of pro-oxidant Fe2+-induced lipid peroxidation was determined spectrophotometrically. The results revealed that the three varieties were able to inhibit the activity of α-amylase and α-glucosidase in rat's pancreas in a dose dependent manner (0–88.8 mg/ml. Also, the incubation of pancreas tissue homogenate in the presence of Fe2+ caused a significant increase (233.3% in the malondialdehyde (MDA content of pancreas homogenate, nevertheless, the introduction of the aqueous extract inhibited MDA production dose dependently (0–33.33 mg/ml and also exhibited further antioxidant properties as represented by their high radical scavenging and Fe2+ chelating abilities. Inhibition of α-amylase and α-glucosidase activities has been the primary treatment for the management/prevention of type 2 diabetes. Therefore, the α-amylase and α-glucosidase inhibitory activities of aqueous extracts of different parts of Gossypium herbaceum in rat pancreas and prevention of lipid peroxidation in the tissue may be attributed to the presence of polyphenol content of the plant.

  9. ANÁLISIS DE LA PRESENCIA NATURAL DE MICORRIZAS EN CULTIVOS DE ALGODÓN (Gossypium barbadense L.) INOCULADOS CON Bacillus megaterium Y/O Bradyrhizobium yuanmingense

    OpenAIRE

    Valencia, Claudia; Universidad Nacional Agraria La Molina (Perú).; Zúñiga, Doris; Universidad Nacional Agraria La Molina (Perú).

    2015-01-01

    Para el proceso de optimización de protocolos se probaron diferentes modificaciones del proceso de tinción propuesto por Phillips & Hayman para permitir la identificación de estructuras intra- radicales derivadas de la interacción planta-hongo; para ello, se extrajeron las raíces de cultivos de algodón (Gossypium barbadense L.) inoculados con Bacillus megaterium (B), Bradyrhizobium yuanmingense (Br) y la interacción de ambos (I), además los controles positivo, con nitrato de potasio, (N+)...

  10. Effect ofthydiazuron and choline chloride bioregulators on yield and fruit quality ofthree apple (Malus domestica Borkh. varieties Efecto de Thidiazuron y cloruro de colina como biorreguladores sobre el rendimiento y la calidad del fruto en tres variedades de manzano (Malus domestica borkh.

    Directory of Open Access Journals (Sweden)

    Benincore Mauricio

    2000-12-01

    Full Text Available In order to improve yield and quality of Colombian apple fruits, Thydiazuron (TDZ and Choline Chloride (CC biorregulators were evaluated as supposed stimulants of growth and development of 'Princesa', 'Golden Delicious' y 'Gala' varieties in the «La Calera» zone (2650 masl. 50, lOOand 150 mg-L:' of TDZ were sprayed between 30 and 45 days after blooming (dab and 500, 1000 and 1500 mg-L-' of CC 118 dab, using a completely randomized design for 'Princesa' and 'Golden Delicious' and a completely randomized
    block design for 'Gala'. TDZ showed chemical thinning and
    cytokinine activity, decreasing the number and acidity of harvested fruits, but increased mean fruit weight, In 'Gala', TDZ increased the harvested fruit number per tree; with 150 mg-L:' fruit color increased while soluble solids (SS concentration declined. On the other side, in 'Gala' apples, CC applications decreased fruit number per tree and showed higher mean weights, volume and SS content of fruits, especially with 500 mg-L:'. In 'Golden Delicious' CC produced oblong fruits with higher SS content and lower flesh firrnness.
    Con el fin de mejorar rendimiento y calidad del fruto de la manzana nacional, se evaluaron los biorreguladores Thidiazuron (TDZ y Cloruro de Colina (CC como supuestos estimuladores del crecimiento y desarrollo del fruto en las variedades 'Princesa', 'Golden Delicious' y 'Gala' en la zona de «La Calera» (2650 msnm. Para tal fin, se aplicaron 50, 100 y 150 mg-L" de TDZ entre los 30 y 45 días después de floración (ddt y 500, 1000 y 1500 mg-L-' de CC 118 ddf,
    bajo diseño completamente aleatorizado para 'Princesa' y 'Golden Delicious' y bloque completos al azar para 'Gala'. Thidiazuron actuó como agente químico raleante y como citoquinina, disminuyendo en 'Golden Delicious' el número de frutos cosechados y la acidez, pero aumentando el peso promedio del fruto. En 'Gala', TDZ aumentó el número de frutos por árbol, a 150 mg-L-' aumentó la

  11. Transcriptomic analysis of fiber strength in upland cotton chromosome introgression lines carrying different Gossypium barbadense chromosomal segments.

    Directory of Open Access Journals (Sweden)

    Lei Fang

    Full Text Available Fiber strength is the key trait that determines fiber quality in cotton, and it is closely related to secondary cell wall synthesis. To understand the mechanism underlying fiber strength, we compared fiber transcriptomes from different G. barbadense chromosome introgression lines (CSILs that had higher fiber strengths than their recipient, G. hirsutum acc. TM-1. A total of 18,288 differentially expressed genes (DEGs were detected between CSIL-35431 and CSIL-31010, two CSILs with stronger fiber and TM-1 during secondary cell wall synthesis. Functional classification and enrichment analysis revealed that these DEGs were enriched for secondary cell wall biogenesis, glucuronoxylan biosynthesis, cellulose biosynthesis, sugar-mediated signaling pathways, and fatty acid biosynthesis. Pathway analysis showed that these DEGs participated in starch and sucrose metabolism (328 genes, glycolysis/gluconeogenesis (122 genes, phenylpropanoid biosynthesis (101 genes, and oxidative phosphorylation (87 genes, etc. Moreover, the expression of MYB- and NAC-type transcription factor genes were also dramatically different between the CSILs and TM-1. Being different to those of CSIL-31134, CSIL-35431 and CSIL-31010, there were many genes for fatty acid degradation and biosynthesis, and also for carbohydrate metabolism that were down-regulated in CSIL-35368. Metabolic pathway analysis in the CSILs showed that different pathways were changed, and some changes at the same developmental stage in some pathways. Our results extended our understanding that carbonhydrate metabolic pathway and secondary cell wall biosynthesis can affect the fiber strength and suggested more genes and/or pathways be related to complex fiber strength formation process.

  12. Systematic Analysis and Comparison of Nucleotide-Binding Site Disease Resistance Genes in a Diploid Cotton Gossypium raimondii

    Science.gov (United States)

    Wei, Hengling; Li, Wei; Sun, Xiwei; Zhu, Shuijin; Zhu, Jun

    2013-01-01

    Plant disease resistance genes are a key component of defending plants from a range of pathogens. The majority of these resistance genes belong to the super-family that harbors a Nucleotide-binding site (NBS). A number of studies have focused on NBS-encoding genes in disease resistant breeding programs for diverse plants. However, little information has been reported with an emphasis on systematic analysis and comparison of NBS-encoding genes in cotton. To fill this gap of knowledge, in this study, we identified and investigated the NBS-encoding resistance genes in cotton using the whole genome sequence information of Gossypium raimondii. Totally, 355 NBS-encoding resistance genes were identified. Analyses of the conserved motifs and structural diversity showed that the most two distinct features for these genes are the high proportion of non-regular NBS genes and the high diversity of N-termini domains. Analyses of the physical locations and duplications of NBS-encoding genes showed that gene duplication of disease resistance genes could play an important role in cotton by leading to an increase in the functional diversity of the cotton NBS-encoding genes. Analyses of phylogenetic comparisons indicated that, in cotton, the NBS-encoding genes with TIR domain not only have their own evolution pattern different from those of genes without TIR domain, but also have their own species-specific pattern that differs from those of TIR genes in other plants. Analyses of the correlation between disease resistance QTL and NBS-encoding resistance genes showed that there could be more than half of the disease resistance QTL associated to the NBS-encoding genes in cotton, which agrees with previous studies establishing that more than half of plant resistance genes are NBS-encoding genes. PMID:23936305

  13. Artificial intelligence and regression analysis for Cd(II) ion biosorption from aqueous solution by Gossypium barbadense waste.

    Science.gov (United States)

    Fawzy, Manal; Nasr, Mahmoud; Nagy, Heba; Helmi, Shacker

    2018-02-01

    In this study, batch biosorption experiments were conducted to determine the removal efficiency of Cd(II) ion from aqueous solutions by Gossypium barbadense waste. The biosorbent was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) connected with energy dispersive X-ray (EDX). The sorption mechanism was described by complexation/chelation of Cd 2+ with the functional groups of O-H, C=O, -COO-, and C-O, as well as, cation-exchange with Mg 2+ and K + . At initial Cd(II) ion concentration (C o ), 50 mg/L, the adsorption equilibrium of 89.2% was achieved after 15 min under the optimum experimental factors of pH 6.0, biosorbent dosage 10 g/L, and particle diameter 0.125-0.25 mm. Both Langmuir and Freundlich models fitted well to the sorption data, suggesting the co-existence of monolayer coverage along with heterogenous surface biosorption. Artificial neural network (ANN) with a structure of 5-10-1 was performed to predict the Cd(II) ion removal efficiency. The ANN model provided high fit (R 2 0.923) to the experimental data and indicated that C o was the most influential input. A pure-quadratic model was developed to determine the effects of experimental factors on Cd(II) ion removal efficiency, which indicated the limiting nature of pH and biosorbent dosage on Cd(II) adsorption. Based on the regression model (R 2 0.873), the optimum experimental factors were pH 7.61, biosorbent dosage 24.74 g/L, particle size 0.125-0.25 mm, and adsorption time 109.77 min, achieving Cd 2+ removal of almost 100% at C o 50 mg/L.

  14. Cotton fiber elongation network revealed by expression profiling of longer fiber lines introgressed with different Gossypium barbadense chromosome segments.

    Science.gov (United States)

    Fang, Lei; Tian, Ruiping; Li, Xinghe; Chen, Jiedan; Wang, Sen; Wang, Peng; Zhang, Tianzhen

    2014-10-02

    Cotton fiber, a highly elongated, thickened single cell of the seed epidermis, is a powerful cell wall research model. Fiber length, largely determined during the elongation stage, is a key property of fiber quality. Several studies using expressed sequence tags and microarray analysis have identified transcripts that accumulate preferentially during fiber elongation. To further show the mechanism of fiber elongation, we used Digital Gene Expression Tag Profiling to compare transcriptome data from longer fiber chromosome introgressed lines (CSILs) containing segments of various Gossypium barbadense chromosomes with data from its recurrent parent TM-1 during fiber elongation (from 5 DPA to 20 DPA). A large number of differentially expressed genes (DEGs) involved in carbohydrate, fatty acid and secondary metabolism, particularly cell wall biosynthesis, were highly upregulated during the fiber elongation stage, as determined by functional enrichment and pathway analysis. Furthermore, DEGs related to hormone responses and transcription factors showed upregulated expression levels in the CSILs. Moreover, metabolic and regulatory network analysis indicated that the same pathways were differentially altered, and distinct pathways exhibited altered gene expression, in the CSILs. Interestingly, mining of upregulated DEGs in the introgressed segments of these CSILs based on D-genome sequence data showed that these lines were enriched in glucuronosyltransferase, inositol-1, 4, 5-trisphosphate 3-kinase and desulfoglucosinolate sulfotransferase activity. These results were similar to the results of transcriptome analysis. This report provides an integrative network about the molecular mechanisms controlling fiber length, which are mainly tied to carbohydrate metabolism, cell wall biosynthesis, fatty acid metabolism, secondary metabolism, hormone responses and Transcription factors. The results of this study provide new insights into the critical factors associated with cell

  15. Identification and Characterization of miRNA Transcriptome in Asiatic Cotton (Gossypium arboreum) Using High Throughput Sequencing.

    Science.gov (United States)

    Farooq, Muhammad; Mansoor, Shahid; Guo, Hui; Amin, Imran; Chee, Peng W; Azim, M Kamran; Paterson, Andrew H

    2017-01-01

    MicroRNAs (miRNAs) are small 20-24nt molecules that have been well studied over the past decade due to their important regulatory roles in different cellular processes. The mature sequences are more conserved across vast phylogenetic scales than their precursors and some are conserved within entire kingdoms, hence, their loci and function can be predicted by homology searches. Different studies have been performed to elucidate miRNAs using de novo prediction methods but due to complex regulatory mechanisms or false positive in silico predictions, not all of them express in reality and sometimes computationally predicted mature transcripts differ from the actual expressed ones. With the availability of a complete genome sequence of Gossypium arboreum , it is important to annotate the genome for both coding and non-coding regions using high confidence transcript evidence, for this cotton species that is highly resistant to various biotic and abiotic stresses. Here we have analyzed the small RNA transcriptome of G. arboreum leaves and provided genome annotation of miRNAs with evidence from miRNA/miRNA ∗ transcripts. A total of 446 miRNAs clustered into 224 miRNA families were found, among which 48 families are conserved in other plants and 176 are novel. Four short RNA libraries were used to shortlist best predictions based on high reads per million. The size, origin, copy numbers and transcript depth of all miRNAs along with their isoforms and targets has been reported. The highest gene copy number was observed for gar-miR7504 followed by gar-miR166, gar-miR8771, gar-miR156, and gar-miR7484. Altogether, 1274 target genes were found in G. arboreum that are enriched for 216 KEGG pathways. The resultant genomic annotations are provided in UCSC, BED format.

  16. Identification and Characterization of miRNA Transcriptome in Asiatic Cotton (Gossypium arboreum Using High Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Muhammad Farooq

    2017-06-01

    Full Text Available MicroRNAs (miRNAs are small 20–24nt molecules that have been well studied over the past decade due to their important regulatory roles in different cellular processes. The mature sequences are more conserved across vast phylogenetic scales than their precursors and some are conserved within entire kingdoms, hence, their loci and function can be predicted by homology searches. Different studies have been performed to elucidate miRNAs using de novo prediction methods but due to complex regulatory mechanisms or false positive in silico predictions, not all of them express in reality and sometimes computationally predicted mature transcripts differ from the actual expressed ones. With the availability of a complete genome sequence of Gossypium arboreum, it is important to annotate the genome for both coding and non-coding regions using high confidence transcript evidence, for this cotton species that is highly resistant to various biotic and abiotic stresses. Here we have analyzed the small RNA transcriptome of G. arboreum leaves and provided genome annotation of miRNAs with evidence from miRNA/miRNA∗ transcripts. A total of 446 miRNAs clustered into 224 miRNA families were found, among which 48 families are conserved in other plants and 176 are novel. Four short RNA libraries were used to shortlist best predictions based on high reads per million. The size, origin, copy numbers and transcript depth of all miRNAs along with their isoforms and targets has been reported. The highest gene copy number was observed for gar-miR7504 followed by gar-miR166, gar-miR8771, gar-miR156, and gar-miR7484. Altogether, 1274 target genes were found in G. arboreum that are enriched for 216 KEGG pathways. The resultant genomic annotations are provided in UCSC, BED format.

  17. Analyse écophysiologique et modélisation de l’interaction génotype x environnement x itinéraire technique chez le cotonnier (Gossypium hirsutum L.) au Cameroun pour la conception d'idéotypes

    OpenAIRE

    Loison , Romain

    2015-01-01

    Cotton lint is the first natural fiber used in the world. Cotton provides income to more than 10 million persons in West and Central Africa. In Cameroon, it is produced under rainfed conditions and water shortage is the major abiotic factor limiting yield and lint quality. In this context, a breeding program was initiated in 1950 by IRCT (Institut de Recherches du Coton et des Textiles Exotiques) to increase lint yield, fiber quality and disease resistance. After 60 years, this program has re...

  18. Aplicação de misturas de diuron com MSMA, e com paraquat, no controle de plantas daninhas de folhas largas em cultura de algodão (Gossypium hirsutum L. Mixture of diuron whit MSMA and with paraquat for broadleaved weeds control in cotton

    Directory of Open Access Journals (Sweden)

    L. S. P. Cruz

    1978-01-01

    Full Text Available Em ensaio de campo conduzido em 1975/76 procurou-se avaliar a ação de misturas de MSMA com diuron e de paraquat com diuron, aplicadas em pós-emergência, em jato dirigido, em duas épocas diferentes, no controle de algumas plantas daninhas de folhas largas em algodão: carrapicho- do-campo (Acanthospermum australe (Loef O. Kuntze , falsa-poaia (Borreria ala ta (Aubl DC, poaia-branca (Richardia brasiliensis Gomez e guanxuma (Sida spp . A vegetação natural da área do ensaio era formada ainda pela gramínea capim-de-colchão (Digitaria sanguinalis (L. Scop . Os resultados mostraram que as misturas de 2,00 kg e 2,70 kg/ha de MSMA com, respectivamente 0,30 kg e 0,40 kg/ha de diuron, e a mistura de 0.60 kg/ha de paraquat com 0,60 kg/ ha de diuron, foram eficientes no co ntro le daquelas dicotiledôneas, e também no da gramínea. Todos os tratamentos provocaram leves sintomas de fitotoxicidade nos algodoeiros, mas desapareceram depois e não prejudicaram o desenvolvimento vegetativo das plantas, assim como a produção de algodão em caroço.In a field trial carried out in 1975/76, a diuron mixtu re with MSMA and another with paraquat was tested on broadleaved weeds in cotton crops. The applications were done in postemergence, directed-spray, in two different periods. The broadleaved weeds observed in the trial were Acanthospermum australe , Borreria alata, Richardia brasiliensis, and Sida spp, also the grass Digitaria sanguinalis. Best results were obtained with the mixture of 0,60 kg/ha of paraquat with 0,60 kg/ha of diuron, and 2,70 kg/ha of MSMA with 0,40 kg/ ha of diuron, or 2,00 kg/ha of MSMA with 0,30 kg/ha of diuron. All the treatments caused sl ight symptons of toxic ity in cotton, which disappeared later and did not damage the production.

  19. SNS vil høre om det supplerende materiale giver anledning til ændringer i de tidligere fremsendte risikovurderinger. Gossypium hirsutum (281-24-236/3006-210-23). Supplerende materiale til sagen (Four questions: Molecular characterisation / Food-feed assessment). Modtaget 12-12-2005, deadline 16-01-2006, svar 13-01-2006

    DEFF Research Database (Denmark)

    Kjellsson, Gøsta; Damgaard, Christian; Strandberg, Morten Tune

    2004-01-01

    spørgsmål 2 og 3 er risikovurderingen baseret på at der er mindst et funktionelt gen som bestemmer de modificerede egenskaber, og eventuelle yderligere funktionelle eller ikke-funktionelle kopier vurderes ikke at have nogen uønskede økologiske konsekvenser. Spørgsmål 4 drejer sig om mulig allergenvirkning...

  20. Caracterización de los ácidos húmicos extraídos de cuatro lombricompuestos y su efecto sobre la germinación de semillas de maíz Zea mays L., algodón Gossypium hirsutum y tomate Lycopersicon esculentum L.

    Directory of Open Access Journals (Sweden)

    Gómez Zambrano Jairo

    1996-12-01

    Full Text Available

    The work perfomed to characterize the elemental composition and functional groups of humic acids extracted from four lombricompost cow dung, filter press cake of sugar cane, coffee pulp and grass residue the total content of essential elements and its distribution in the humic and no humic fractions were determined. It was evalued the effect of two concentrations of humic acids (150 and 300 ppm upon seed germination of maize, cotton and tomat. There were found differences in the elemental composition (CHON and functional groups (COOH, OH phedic and carbony of the humic acids atributed to variations in composition of the original substrates. The lombricompost of cow dung showed higher oxidation values (O/H = 0.49 than the lombricompost of filter press cake of sugar cane (0.40 sugering a higher grade of humification of the first. The grass residue showed higher contribution to the CIC (COOH + OH = 9. O me/g than the coffe pulp (7. 1 me/g the total essential elements were concentrated in the remanent residue, with lower content in the water and 0.1M HCL solutions; the fulvic and humic fractions had very low content of these elements. The humic acid at the concentrations tested did not have any effect on the germination of maize and cotton, and depressed the germination of tomato seeds.

    El trabajo se realizó con el fin de caracterizar por su composición elemental y contenido de grupos funcionales, los acidos húmicos extraídos de cuatro lombricompuestos (bovinaza, cachaza, pulpa de café y residuo de prado. Se determinó el contenido y distribución de los elementos esenciales totales en las fracciones húmicas y no de acidos húmicas. Se evaluó el efecto de dos concentraciones de acidos húmicos (150 y 300 ppm sobre la germinación de semillas de maíz, algodón y tomate. Se encontraron diferencias en el contenido elemental (CHON y grupos funcionales (COOH, OH fenólico y carbonilo atribuido a variaciones en la composición de los materiales de origen. La bovinaza (O/H = 0.49 mostró mayor oxidación que la cachaza (0.40 sugiriendo mayor grado de humificación de la primera. El residuo de prado mostró la mayor contribución a la CIC (COOH + OH = 9. O m.e/g y la pulpa de café la menor (7.1 m.e/g. Los elementos esenciales totales se distribuyeron con preferencia en el residuo remanente y en las fracciones solubles en agua y HCL 0.1M, con muy bajos contenidos en los fulvatos yacidos húmicos. No se encontró respuesta a la acción de los acidos húmicos sobre la germinación de semillas de maíz y algodón y se produjo efectos depresivos en los de tomate.

  1. Kommentarer til opdateret risikovurdering og ansøgning. Gossypium hirsutum (281-24-236/3006-210-23), Insect resistance by Bt-toxin (lepidoptera) X Insect resistance by Bt-toxin (coleoptera); herbicide tolerance to glyphosate. Modtaget 03-04-2006, deadline 02-05-2006, svar 07-04-2006

    DEFF Research Database (Denmark)

    Kjellsson, Gøsta; Strandberg, Morten Tune; Christensen, Christian Dam

    2006-01-01

    "DMUs konklusioner vedr. den økologiske risikovurdering af den genmodificerede, insektresistente bomuldshybrid mellem event 281-24-236 og 3006-210-23. Den genmodificerede bomuldskrydsning 281-24-236/3006-210-23, adskiller sig fra konventionel bomuld ved at have indsat gener der gør planterne tole...

  2. The Hairless Stem Phenotype of Cotton (Gossypium barbadense) Is Linked to a Copia-Like Retrotransposon Insertion in a Homeodomain-Leucine Zipper Gene (HD1).

    Science.gov (United States)

    Ding, Mingquan; Ye, Wuwei; Lin, Lifeng; He, Shae; Du, Xiongming; Chen, Aiqun; Cao, Yuefen; Qin, Yuan; Yang, Fen; Jiang, Yurong; Zhang, Hua; Wang, Xiyin; Paterson, Andrew H; Rong, Junkang

    2015-09-01

    Cotton (Gossypium) stem trichomes are mostly single cells that arise from stem epidermal cells. In this study, a homeodomain-leucine zipper gene (HD1) was found to cosegregate with the dominant trichome locus previously designated as T1 and mapped to chromosome 6. Characterization of HD1 orthologs revealed that the absence of stem trichomes in modern Gossypium barbadense varieties is linked to a large retrotransposon insertion in the ninth exon, 2565 bp downstream from the initial codon in the At subgenome HD1 gene (At-GbHD1). In both the At and Dt subgenomes, reduced transcription of GbHD1 genes is caused by this insertion. The disruption of At-HD1 further affects the expression of downstream GbMYB25 and GbHOX3 genes. Analyses of primitive cultivated accessions identified another retrotransposon insertion event in the sixth exon of At-GbHD1 that might predate the previously identified retrotransposon in modern varieties. Although both retrotransposon insertions results in similar phenotypic changes, the timing of these two retrotransposon insertion events fits well with our current understanding of the history of cotton speciation and dispersal. Taken together, the results of genetics mapping, gene expression and association analyses suggest that GbHD1 is an important component that controls stem trichome development and is a promising candidate gene for the T1 locus. The interspecific phenotypic difference in stem trichome traits also may be attributable to HD1 inactivation associated with retrotransposon insertion. Copyright © 2015 by the Genetics Society of America.

  3. Evolution of insect pest and disease resistant, high-yielding and improved quality varieties of cotton by use of ionizing radiation. Part of a coordinated programme on the use of induced mutations for disease resistance in crop plants

    International Nuclear Information System (INIS)

    Vasti, S.M.

    1981-06-01

    Disease resistant, high yielding and higher quality cotton varieties were developed. 42 interspecific hybrid progenies of earlier crosses between Gossypium barbadense and Gossypium tomentosum or Gossypium barbadense and Gossypium hirsutum were included. Out of these, 22 progenies in F 3 generation were irradiated by gamma radiation doses of 20 and 25 kR. A list is given of interspecific hybrid progenies, as are the lists of boll rot susceptible and resistant plants in the irradiated and non-irradiated populations and/or successful crosses made between 1977 and 1978

  4. (Gossypium barbadense) germplasm resources

    Indian Academy of Sciences (India)

    QI MA

    The SPSS 21.0 software (http://www.spss.com.cn/) was used to conduct variation, correlation and principal com- ponent analysis (PCA). The broad-sense heritability (h2. B. ) of each trait was estimated using SAS 8.1 software (SAS. Institute 1999). Results. Fibre yield and quality properties of G. barbadense germplasm.

  5. (Gossypium barbadense) germplasm resources

    Indian Academy of Sciences (India)

    Navya

    2017-03-28

    Mar 28, 2017 ... Because population structure analysis does not require any prior knowledge of the origin, geographic ..... barbadense germplasm accession and partitioned into segments representing admixture of ancestral ... The length of segments represents the percentage of a single ancestral background in that line.

  6. (Gossypium barbadense) germplasm resources

    Indian Academy of Sciences (India)

    QI MA

    species, accounting for 2% and 95%, respectively, of the annual worldwide cotton production (Cai et al. 2014). Although, G. barbadense has some shortcomings such as low-fibre yield, poor adaptability and difficulty in picking, it has superior fibre quality traits. The fibre traits of G. barbadense offer great potential for progress ...

  7. (Gossypium barbadense) germplasm resources

    Indian Academy of Sciences (India)

    Navya

    2017-03-28

    Mar 28, 2017 ... The R2 value represented the correlation between alleles at two loci, which is informative for evaluating the resolution of association approaches (Kantartzi et al. 2008). The SPSS 21.0 software (http://www.spss.com.cn/) was used to conduct variation, correlation and principal component analysis (PCA).

  8. Thidiazuron-induced shoot organogenesis of Cleome viscosa (L ...

    African Journals Online (AJOL)

    The highest rate of seed germination (55.3%) was noticed on full strength MS basal medium fortified with 0.5 mg/L GA3 after 30 days of culture. The excised 7 to 10 days old cotyledonary leaf, cotyledonary node and hypocotyls explants cultured on MS medium fortified with different concentration of individual cytokinin ...

  9. Thidiazuron-induced shoot organogenesis of Cleome viscosa (L ...

    African Journals Online (AJOL)

    MBA

    2014-02-26

    Feb 26, 2014 ... a simultaneous stress response (Guo et al., 2011). Therefore, TDZ emerged as an .... changes were recorded on the basis of visual observation. All experiments were .... Table 3. Optimum level of TDZ along with different auxins on microshoot induction in various explants of Cleome viscosa L. Explants.

  10. Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase

    Czech Academy of Sciences Publication Activity Database

    Nisler, Jaroslav; Kopečný, D.; Končitíková, R.; Zatloukal, Marek; Bazgier, Václav; Berka, K.; Zalabák, D.; Briozzo, P.; Strnad, Miroslav; Spíchal, Lukáš

    2016-01-01

    Roč. 92, 1-2 (2016), s. 235-248 ISSN 0167-4412 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GA15-22322S Institutional support: RVO:61389030 Keywords : Cytokinin oxidase/dehydrogenase * Crystal structure * Molecular docking Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.356, year: 2016

  11. Thidiazuron: A multi-dimensional plant growth regulator

    African Journals Online (AJOL)

    Jane

    2011-08-17

    Aug 17, 2011 ... the production of economically important secondary metabolites in some plant species (Nabila et al., 2003). The exogenous application of TDZ affects concentration of endogenous plant growth regulators in some members of dicots. TDZ affects pathways of purines and cytokinin metabolisms (Capelle et al., ...

  12. 40 CFR 180.403 - Thidiazuron; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... metabolites in or on the following food commodities: Commodity Parts per million Cattle, fat 0.4 Cattle, meat 0.4 Cattle, meat byproducts 0.4 Cotton, gin byproducts 24.0 Cotton, undelinted seed 0.3 Goat, fat 0..., fat 0.4 Horse, meat 0.4 Horse, meat byproducts 0.4 Milk 0.05 Sheep, fat 0.4 Sheep, meat 0.4 Sheep...

  13. CLARIFICAÇÃO CONVENCIONAL DE ÓLEO DE SEMENTES DE ALGODÃO (Gossipium hirsutum

    Directory of Open Access Journals (Sweden)

    HELENA MARIA BOLINI CARDELLO

    2009-07-01

    Full Text Available

    RESUMO: Durante o processo de refino de óleos comestíveis, a clarificação é geralmente considerada como etapa de importância crítica na determinação da qualidade e estabilidade do produto final. O óleo de semente de algodão (Gossipium hirsutum é o mais antigo óleo vegetal produzido industrialmente no Brasil, teve seu consumo reduzido com o aumento da produção de soja, mas ocupa ainda hoje lugar de importância econômica. A clarificação remove tecoferóis, produtos de oxidação, sabões, metais, ácidos graxos livres, impurezas, fosfatídeos, além dos pigmentos. O presente estudo teve como objetivo comparar duas marcas de argila comercial, Tonsil Optimum FF (importada e Argitex O. V. 270 (nacional, em termos de eficiência na clarificação de óleo de sementes de algodão. Foram realizadas determinações de cor, ácidos graxos livres, fósforo total, sabões e clorofila nas amostras clarificadas através das argilas mencionadas. As duas argilas utilizadas foram igualmente eficientes na redução de ácidos graxos livres, sabões, clorofila e cor, indicando que a argila brasileira pode ser comparada à importada. PALAVRAS – CHAVE: Argila ativada; clarificação; óleo de algodão; semente de algodão.

  14. Comparative Analysis of the Cytology and Transcriptomes of the Cytoplasmic Male Sterility Line H276A and Its Maintainer Line H276B of Cotton (Gossypium barbadense L.

    Directory of Open Access Journals (Sweden)

    Xiangjun Kong

    2017-10-01

    Full Text Available In this study, the tetrad stage of microspore development in a new cotton (Gossypium barbadense L. cytoplasmic male sterility (CMS line, H276A, was identified using paraffin sections at the abortion stage. To explore the molecular mechanism underlying CMS in cotton, a comparative transcriptome analysis between the CMS line H276A and its maintainer line H276B at the tetrad stage was conducted using an Illumina HiSeq 4000 platform. The comparison of H276A with H276B revealed a total of 64,675 genes, which consisted of 59,255 known and 5420 novel genes. An analysis of the two libraries with a given threshold yielded a total of 3603 differentially expressed genes (DEGs, which included 1363 up- and 2240 down-regulated genes. Gene Ontology (GO annotation showed that 2171 DEGs were distributed into 38 categories, and a Kyoto Encyclopedia of Genes and Genomes (KEGG analysis showed that 2683 DEGs were classified into 127 groups. Thirteen DEGs were randomly selected and detected by quantitative reverse-transcribed PCR (qRT-PCR, and the results indicated that the transcriptome sequencing results were reliable. The bioinformatic analysis results in conjunction with previously reported data revealed key DEGs that might be associated with the male sterility features of H276A. Our results provide a comprehensive foundation for understanding anther development and will accelerate the study of the molecular mechanisms of CMS in cotton.

  15. Demonstration of a diel trend in sensitivity of Gossypium to ozone: a step toward relating O3 injury to exposure or flux

    Science.gov (United States)

    Grantz, D.A.

    2013-01-01

    Plant injury by ozone (O3) occurs in three stages, O3 entrance through stomata, overcoming defences, and attack on bioreceptors. Concentration, deposition, and uptake of O3 are accessible by observation and modelling, while injury can be assessed visually or through remote sensing. However, the relationship between O3 metrics and injury is confounded by variation in sensitivity to O3. Sensitivity weighting parameters have previously been assigned to different plant functional types and growth stages, or by differentially weighting O3 concentrations, but diel and seasonal variability have not been addressed. Here a plant sensitivity parameter (S) is introduced, relating injury to O3 dose (uptake) using three independent injury endpoints in the crop species, Pima cotton (Gossypium barbadense). The diel variability of S was determined by assessment at 2h intervals. Pulses of O3 (15min) were used to assess passive (constitutive) defence mechanisms and dose was used rather than concentration to avoid genetic or environmental effects on stomatal regulation. A clear diel trend in S was apparent, with maximal sensitivity in mid-afternoon, not closely related to gas exchange, whole leaf ascorbate, or total antioxidant capacity. This physiologically based sensitivity parameter provides a novel weighting factor to improve modelled relationships between either flux or exposure to O3, and O3 impacts. This represents a substantial improvement over concentration- or phenology-based weighting factors currently in use. Future research will be required to characterize the variability and metabolic drivers of diel changes in S, and the performance of this parameter in prediction of O3 injury. PMID:23404900

  16. In situ and genetic characterization of Gossypium barbadense populations from the states of Pará and Amapá, Brazil Caracterização in situ e genética de Gossypium barbadense dos Estados do Pará e do Amapá

    Directory of Open Access Journals (Sweden)

    Vanessa Cavalcante de Almeida

    2009-07-01

    Full Text Available The objective of this work was to characterize the populations of Gossypium barbadense in the states of Amapá and Pará, Brazil. In situ characterization was conducted through interviews with the owners of the plants and environmental observations. Leaf or petal tissue as well as seed samples were collected for genetic characterization by single sequence repeats markers and for storage in germplasm banks, respectively. The plants were maintained in dooryards and used mainly for medical purposes. The genetic analysis showed no heterozygous plants at the loci tested (f = 1, indicating that reproduction occurs mainly through selfing. The total genetic diversity was high (He = 0.39; and a high level of differentiation was observed between cotton plants from the two states (F ST = 0.36. Conventional methods of in situ maintenance of G. barbadense populations are not applicable. The conservation of the genetic variability of populations present in the two states could be achieved through germplasm collection and establishing of ex situ seed banks.O objetivo deste trabalho foi caracterizar populações de Gossypium barbadense dos estados do Amapá e Pará. A caracterização in situ foi conduzida por meio de entrevistas com os proprietários das plantas e por observações sobre o ambiente. Tecidos de folhas ou de pétalas, além de sementes, foram coletados para a caracterização genética com marcadores SSR ("single sequence repeats" e para o armazenamento em bancos de germoplasma, respectivamente. As plantas eram mantidas em fundos de quintal e usadas, principalmente, para fins medicinais. As análises genéticas não mostraram plantas heterozigotas nos locos testados (f = 1, o que indica que a reprodução ocorre principalmente por meio de autofecundação. A diversidade genética total foi alta (He = 0,39, e um alto nível de diferenciação foi observado entre as plantas de algodoeiro dos dois estados (F ST = 0,36. Métodos convencionais para a

  17. Capítulo VI: evaluación de la resistencia al pasador del fruto de tomate Neoleucinodes elegantalis (Gueneé en materiales L. hirsutum Humb y Bonpl y L. pimpinellifolium (Just mill y su transferencia a materiales cultivados de tomate L. esculentum Mill

    Directory of Open Access Journals (Sweden)

    Salinas Helbert

    1994-12-01

    Full Text Available

    La investigación tuvo como objetivo estudiar el ciclo de vida del pasador  del fruto del tomate, N. elegantalis y evaluar la resistencia genética en diferentes accesiones de Lycopersicon y en poblaciones derivadas de cruzamientos interespecíficos entre L. esculentum, L. pimpinellifolium y L. hirsutum. La evaluación se realizó en condiciones de campo, utilizando un diseño de bloques completos al azar, con cuatro repeticiones. Se midieron los siguientes caracteres: estados del ciclo de vida, número de posturas, cantidad de frutos dañados, número de perforaciones de entrada, número de larvas por fruto e intensidad del daño. Se determinó el ciclo de vida del insecto plaga. Las especies silvestres fueron calificadas como muy resistentes o resistentes. Las variedades comerciales fueron calificadas como susceptible o medianamente susceptibles. Las poblaciones segregantes provenientes de los cruzamientos interespecíficos fueron calificados como resistentes o ligeramente susceptibles, indicando la posibilidad de introgresión genética de la resistencia. El insecto plaga  tiene mayor preferencia por fenotipos con frutos de mayor peso promedio y pericarpio duro.

    The research was carried out to study the life cicle of N. elegantalis, and the identification of resistence to the insect among Lycopersicon accessions and derivated populations from crossing between L. esculentum, L. pimpinellifolium and L. hirsutum. The life cicle of N. elegantalis was determinated. The wild species L. hirsutum and L. pimpinellifolium were very resistant and resistant, respectively. The Lycopersicon cultivars were susceptibles and derivated populationes from interspecific crossing were resistant or intermedium susceptible. There were associations between the fruit size, fruit firmness, fruit weight and susceptible expression in the plants from crossing between L. hirsutum, L. pimpinellifolium and commercial cultivars.

  18. Molecular Evolution and Phylogenetic Analysis of Eight COL Superfamily Genes in Group I Related to Photoperiodic Regulation of Flowering Time in Wild and Domesticated Cotton (Gossypium) Species

    Science.gov (United States)

    Zhang, Rui; Ding, Jian; Liu, Chunxiao; Cai, Caiping; Zhou, Baoliang; Zhang, Tianzhen; Guo, Wangzhen

    2015-01-01

    Flowering time is an important ecological trait that determines the transition from vegetative to reproductive growth. Flowering time in cotton is controlled by short-day photoperiods, with strict photoperiod sensitivity. As the CO-FT (CONSTANS-FLOWER LOCUS T) module regulates photoperiodic flowering in several plants, we selected eight CONSTANS genes (COL) in group I to detect their expression patterns in long-day and short-day conditions. Further, we individually cloned and sequenced their homologs from 25 different cotton accessions and one outgroup. Finally, we studied their structures, phylogenetic relationship, and molecular evolution in both coding region and three characteristic domains. All the eight COLs in group I show diurnal expression. In the orthologous and homeologous loci, each gene structure in different cotton species is highly conserved, while length variation has occurred due to insertions/deletions in intron and/or exon regions. Six genes, COL2 to COL5, COL7 and COL8, exhibit higher nucleotide diversity in the D-subgenome than in the A-subgenome. The Ks values of 98.37% in all allotetraploid cotton species examined were higher in the A-D and At-Dt comparison than in the A-At and D-Dt comparisons, and the Pearson’s correlation coefficient (r) of Ks between A vs. D and At vs. Dt also showed positive, high correlations, with a correlation coefficient of at least 0.797. The nucleotide polymorphism in wild species is significantly higher compared to G. hirsutum and G. barbadense, indicating a genetic bottleneck associated with the domesticated cotton species. Three characteristic domains in eight COLs exhibit different evolutionary rates, with the CCT domain highly conserved, while the B-box and Var domain much more variable in allotetraploid species. Taken together, COL1, COL2 and COL8 endured greater selective pressures during the domestication process. The study improves our understanding of the domestication-related genes/traits during cotton

  19. Molecular evolution and phylogenetic analysis of eight COL superfamily genes in group I related to photoperiodic regulation of flowering time in wild and domesticated cotton (Gossypium species.

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    Full Text Available Flowering time is an important ecological trait that determines the transition from vegetative to reproductive growth. Flowering time in cotton is controlled by short-day photoperiods, with strict photoperiod sensitivity. As the CO-FT (CONSTANS-FLOWER LOCUS T module regulates photoperiodic flowering in several plants, we selected eight CONSTANS genes (COL in group I to detect their expression patterns in long-day and short-day conditions. Further, we individually cloned and sequenced their homologs from 25 different cotton accessions and one outgroup. Finally, we studied their structures, phylogenetic relationship, and molecular evolution in both coding region and three characteristic domains. All the eight COLs in group I show diurnal expression. In the orthologous and homeologous loci, each gene structure in different cotton species is highly conserved, while length variation has occurred due to insertions/deletions in intron and/or exon regions. Six genes, COL2 to COL5, COL7 and COL8, exhibit higher nucleotide diversity in the D-subgenome than in the A-subgenome. The Ks values of 98.37% in all allotetraploid cotton species examined were higher in the A-D and At-Dt comparison than in the A-At and D-Dt comparisons, and the Pearson's correlation coefficient (r of Ks between A vs. D and At vs. Dt also showed positive, high correlations, with a correlation coefficient of at least 0.797. The nucleotide polymorphism in wild species is significantly higher compared to G. hirsutum and G. barbadense, indicating a genetic bottleneck associated with the domesticated cotton species. Three characteristic domains in eight COLs exhibit different evolutionary rates, with the CCT domain highly conserved, while the B-box and Var domain much more variable in allotetraploid species. Taken together, COL1, COL2 and COL8 endured greater selective pressures during the domestication process. The study improves our understanding of the domestication-related genes

  20. EFEITO DO EXTRATO FOLIAR DE Gossypium arboreum L. (ALGODÃO SOB O CRESCIMENTO MICELIAL DE Lasiodiplodia theobromae (PAT. GRIFFON & MAUBL

    Directory of Open Access Journals (Sweden)

    Caroline da Cruz Vasconcelos

    2017-03-01

    Full Text Available O uso de extratos vegetais tem sido amplamente estudado como controle biológico alternativo de doenças de plantas, especialmente aquelas causadas por fungos patogênicos. Nesse sentido, o objetivo do presente estudo foi avaliar a atividade antifúngica in vitro do extrato bruto etanólico obtido de folhas de algodão (Gossypium arboreum L., Malvaceae em diferentes concentrações sob o desenvolvimento micelial do fungo fitopatogênico Lasiodiplodia theobromae. O ensaio foi conduzido nos Laboratórios de Microbiologia/Fitopatologia/Genética e de Cultivo/Isolamento da Universidade do Estado do Amapá/UEAP, em Macapá, Amapá. Em um Delineamento Inteiramente Casualizado (DIC, seis tratamentos e seis repetições foram organizados: T1 (controle negativo – BDA (Batata-Dextrose-Ágar + 0 mg.mL-1 (extrato foliar; T2 - BDA + 5 mg.mL-1 (extrato foliar; T3 - BDA + 10 mg.mL-1 (extrato foliar; T4 - BDA + 20 mg.mL-1 (extrato foliar; T5 - BDA + 2,5 mL de etanol e T6 (controle positivo - BDA + 2,5 mL de fungicida comercial (Derosal®. As variáveis inibição do crescimento micelial (ICM, índice de velocidade de crescimento micelial (IVCM e área abaixo da curva de cobertura de crescimento micelial (AACCM foram calculadas ao final do experimento. Os resultados mostraram que o extrato bruto etanólico das folhas de G. arboreum não apresentou atividade antifúngica in vitro frente ao fungo L. theobromae nas concentrações testadas. O extrato induziu o crescimento micelial do fungo, especialmente na concentração 10 mg.mL-1, a qual apresentou condição ideal para o desenvolvimento das estruturas do fungo. Palavras-chave: Malvaceae, extrato vegetal, controle biológico, fitopatógeno.

  1. Identification of Multiple Stress Responsive Genes by Sequencing a Normalized cDNA Library from Sea-Land Cotton (Gossypium barbadense L..

    Directory of Open Access Journals (Sweden)

    Bin Zhou

    Full Text Available Plants often face multiple stresses including drought, extreme temperature, salinity, nutrition deficiency and biotic stresses during growth and development. All the stresses result in a series of physiological and metabolic reactions and then generate reversible inhibition of metabolism and growth and can cause seriously irreversible damage, even death. At each stage of cotton growth, environmental stress conditions pose devastating threats to plant growth and development, especially yield and quality. Due to the complex stress conditions and unclear molecular mechanisms of stress response, there is an urgent need to explore the mechanisms of cotton response against abiotic stresses.A normalized cDNA library was constructed using Gossypium barbadense Hai-7124 treated with different stress conditions (heat, cold, salt, drought, potassium and phosphorus deficit and Verticillium dahliae infection. Random sequencing of this library generated 6,047 high-quality expressed sequence tags (ESTs. The ESTs were clustered and assembled into 3,135 uniESTs, composed of 2,497 contigs and 638 singletons. The blastx results demonstrated 2,746 unigenes showing significant similarity to known genes, 74 uniESTs displaying significant similarity to genes of predicted proteins, and 315 uniESTs remain uncharacterized. Functional classification unveiled the abundance of uniESTs in binding, catalytic activity, and structural molecule activity. Annotations of the uniESTs by the plant transcription factor database (PlantTFDB and Plant Stress Protein Database (PSPDB disclosed that transcription factors and stress-related genes were enriched in the current library. The expression of some transcription factors and specific stress-related genes were verified by RT-PCR under various stress conditions.Annotation results showed that a huge number of genes respond to stress in our study, such as MYB-related, C2H2, FAR1, bHLH, bZIP, MADS, and mTERF. These results will improve our

  2. Inheritance of okra leaf type in different genetic backgrounds and its ...

    African Journals Online (AJOL)

    use

    2011-11-21

    Nov 21, 2011 ... of bolls/plant, boll weight and seed cotton yield/plant principal yield assuring traits showed ... flow and maximum sunlight penetration through the leaves of the plant. Key words: Gossypium hirsutum L, trichomes, inheritance, fibre traits, agronomic traits. ... has not lost its significance even in the presence of.

  3. Application of mixed models for the assessment genotype and ...

    African Journals Online (AJOL)

    SAM

    2014-05-07

    May 7, 2014 ... genotype and environment interactions in cotton. (Gossypium hirsutum) cultivars ... genotype interaction with environment allows the evaluation of the stability and adaptability of genotypes where one intends .... to 2009/2010. All the locations are situated in Agro-ecological Regions 6, 7 and 8. (INIA, 2000).

  4. Cotton Flowers: Pollen and Petal Humidity Sensitivities Determine Reproductive Competitiveness in Diverse Environments

    Science.gov (United States)

    Genetic diversity in reproductive abiotic stress tolerance has been reported for cotton [Gossypium hirsutum (L.)] based upon the percentage of anther dehiscence of mature pollen in adverse environments. This study investigated the abiotic stress tolerance of mature pollen and identified genetic vari...

  5. Cotton Water Use Efficiency Under Two Different Deficit Irrigation Scheduling Methods

    Science.gov (United States)

    Declines in Ogallala aquifer levels used for irrigation has prompted research to identify methods for optimizing water use efficiency (WUE) of cotton (Gossypium hirsutum L). In this experiment, conducted at Lubbock, Texas in 2014, our objective was to test two canopy temperature based stress indices...

  6. Isolation, characterization and mapping of genes differentially ...

    Indian Academy of Sciences (India)

    National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong. Agricultural University, Wuhan 430070, Hubei, People's Republic of China. Abstract. Gossypium hirsutum and G. barbadense are two cultivated tetraploid cotton species with differences in fibre quality. The fibre.

  7. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Molecular markers linked to QTL contributing to agronomic and fibre quality traits would be useful for cotton improvement. We have attempted to tag yield and fibre quality traits with AFLP and SSR markers using F2 and F3 populations of a cross between two Gossypium hirsutum varieties, PS56-4 and RS2013. Out of 50 ...

  8. An update on conventional and molecular breeding approaches for ...

    African Journals Online (AJOL)

    Ezedom Theresa

    2014-03-05

    Mar 5, 2014 ... Gossypium hirsutum is the most cultivated species in many countries. Breeding for high cotton yield is still the primary goal of cotton breeding programs, but improving fibre quality has become increasingly important. The enhancement of fibre quality traits like fibre length, strength, and fibre fineness is an.

  9. Transgressive segregation of root-knot nematode resistance in cotton determined by QTL analysis

    Science.gov (United States)

    Transgressive resistance to root-knot nematode, Meloidogyne incognita, was found in intraspecific (Gossypium hirsutum; resistant Acala NemX x susceptible Acala SJ-2) and interspecific (G. barbadense susceptible Pima-S7 x Acala NemX) cotton recombinant inbred line (RIL) populations. Similar contribut...

  10. Relationship between NDVI at early bloom and yield in germplasm evaluation trials

    Science.gov (United States)

    The use of high-throughput phenotyping (HTP) equipment is expanding as it offers the potential to increase the efficiency of making selections in cotton (Gossypium hirsutum L.) improvement programs. Measurements often being collected on HTP field equipment include normalized difference vegetative in...

  11. Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions

    NARCIS (Netherlands)

    Cui, J.J.; Luo, J.Y.; Werf, van der W.; Ma, Y.; Xia, J.Y.

    2011-01-01

    Transgenic cotton (Gossypium hirsutum L.) varieties, adapted to China, have been bred that express two genes for resistance to insects. the Cry1Ac gene from Bacillus thuringiensis (Berliner) (Bt), and a trypsin inhibitor gene from cowpea (CpTI). Effectiveness of the double gene modification in

  12. Biological control of cotton aphid (Aphis gossypii Glover) in cotton (inter)cropping systems in China : a simulation study

    NARCIS (Netherlands)

    Xia, J.

    1997-01-01

    Cotton aphid ( Aphis gossypii Glover) is the key insect pest of seedling cotton ( Gossypium hirsutum L. ) in China, particularly in the North China cotton region. The resulting annual losses amount to 10-15% of the attainable yield. Sole reliance on

  13. Insecticide use and practices among cotton farmers in northern ...

    African Journals Online (AJOL)

    Cotton (Gossypium hirsutum L.) is an important cash crop in Uganda. Insecticide application practices among cotton growers in northern Uganda were examined to determine the pests targeted and the compliance of control measures with the standards recommended by the Uganda's Cotton Development Organization ...

  14. Case Study: Transgenic Crop Controversy in Costa Rica

    Science.gov (United States)

    Hague, Steve S.

    2009-01-01

    Costa Rica has rich ecological resources and has been a steady political force in turbulent Central America. Most recently, it has become a battleground between pro- and anti-genetically modified organism (GMO) political forces. This case study examines the roles of U.S.-based cotton ("Gossypium hirsutum" L.) seed companies, anti-GMO…

  15. Linkage disequilibrium and association mapping of drought ...

    African Journals Online (AJOL)

    Drought stress is a major abiotic stress that limits crop production. Molecular association mapping techniques through linkage disequilibrium (LD) can be effectively used to tag genomic regions involved in drought stress tolerance. With the association mapping approach, 90 genotypes of cotton Gossypium hirsutum, from ...

  16. Proline accumulation in response to drought and heat stress in cotton.

    African Journals Online (AJOL)

    Water and heat stress are the most important environmental variables affecting cotton growth and development. The main objective of our study was to evaluate the effect of water stress and a combination of water and heat stress on proline accumulation in six cotton cultivars (Gossypium hirsutum) and to determine the ...

  17. Evaluation of various substrates and supplements for biological ...

    African Journals Online (AJOL)

    An experiment was conducted to determine the effects of different substrates namely wheat straw (Triticum aestivum), maize stover (Zea mays L), thatch grass (Hyparrhenia filipendula) and oil/protein rich supplements (maize bran, cottonseed hull [Gossypium hirsutum]) on biological efficiency of two oyster mushroom ...

  18. 2773-IJBCS-Article-Mokho Sarr

    African Journals Online (AJOL)

    hp

    Le cotonnier (Gossypium hirsutum L.), deuxième culture de rente au Sénégal, fournit d'importantes ressources financières à la population rurale. Il est exposé à diverses attaques parasitaires essentiellement occasionnées par les chenilles carpophages (Helicoverpa armigera et Earias spp) et les insectes piqueurs suceurs ...

  19. Crop yield response to increasing biochar rates

    Science.gov (United States)

    The benefit or detriment to crop yield from biochar application varies with biochar type/rate, soil, crop, or climate. The objective of this research was to identify yield response of cotton (Gossypium hirsutum L.), corn (Zea mayes L.), and peanut (Arachis hypogaea L.) to hardwood biochar applied at...

  20. Mapping of genes for flower-related traits and QTLs for flowering ...

    Indian Academy of Sciences (India)

    Mapping of genes for flower-related traits and QTLs for flowering time in an interspecific population of Gossypium hirsutum × G. darwinii. Shuwen Zhang, Qianqian Lan, Xiang Gao, Biao Yang, Caiping Cai, Tianzhen Zhang and Baoliang Zhou. J. Genet. 95, 197–201. Table 1. Loci composition and recombination distances of ...

  1. Arabidopsis CDS blastp result: AK070842 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070842 J023074O14 At4g35000.1 L-ascorbate peroxidase 3 (APX3) identical to ascorbat...e peroxidase 3 [Arabidopsis thaliana] GI:2444019, L-ascorbate peroxidase [Arabidopsis thaliana] gi|1523791...|emb|CAA66926; similar to ascorbate peroxidase [Gossypium hirsutum] gi|1019946|gb|AAB52954 1e-112 ...

  2. Arabidopsis CDS blastp result: AK108458 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108458 002-143-D05 At4g35000.1 L-ascorbate peroxidase 3 (APX3) identical to ascorbat...e peroxidase 3 [Arabidopsis thaliana] GI:2444019, L-ascorbate peroxidase [Arabidopsis thaliana] gi|152379...1|emb|CAA66926; similar to ascorbate peroxidase [Gossypium hirsutum] gi|1019946|gb|AAB52954 2e-35 ...

  3. Planting geometry and growing season effects on the growth and yield of dryland cotton

    Science.gov (United States)

    The declining Ogallala Aquifer beneath the Southern High Plains may necessitate dryland crop production and cotton (Gossypium hirsutum L.) is a well-adapted and potentially profitable alternative crop. The limited growing season duration of the Texas Panhandle and southwestern Kansas, however, impos...

  4. Submission to GenBank of the Plasma membrane intrinsic protein (PIP) Subfamily in Cotton – GenBank Accession No. GU998827-GU998830 and GenBank Accession TPA;inferential No. BK007045-BK007052

    Science.gov (United States)

    The plasma membrane intrinsic proteins (PIP) are one of the five aquaporin protein subfamilies. Aquaporin proteins are known to facilitate water transport through biological membranes. In order to identify NIP aquaporin gene candidates in cotton (Gossypium hirsutum L.), in silico and molecular clon...

  5. Effect of nitrates on embryo induction efficiency in cotton ...

    African Journals Online (AJOL)

    Cotton (Gossypium hirsutum L.) cv Coker-312 callus culture was assessed in terms of its usefulness as a system for investigating the effect of nitrates from different chemical compounds of nitrogen on embryo induction percentage in calli as the plant growth and cell differentiation mainly based on nitrogen. Both sources and ...

  6. Genetic variation and heterotic effects for seed oil, seed protein and ...

    African Journals Online (AJOL)

    Ezedom Theresa

    2013-08-14

    Aug 14, 2013 ... high seed oil content through line x tester (L x T) analysis. MATERIALS AND METHODS. Genetic material. A field experiment was conducted to evaluate the growth, yield and fibre quality traits performance of four commercially cultivated varie- ties of cotton (Gossypium hirsutum L.) as viz., MCU 5, MCU 12,.

  7. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Volume 97, Online resources. March 2018, pages e1-e52. pp e1-e12 ONLINE RESOURCES. Association mapping and favourable QTL alleles for fibre quality traits in Upland cotton (Gossypium hirsutum L.) CHENG-GUANG DONG JUAN WANG YU YU BAO-CHENG LI QUAN-JIA CHEN · More Details Abstract Fulltext PDF.

  8. Genetic diversity, population structure and marker trait associations ...

    Indian Academy of Sciences (India)

    Supplementary data: Genetic diversity, population structure and marker trait associations for seed quality traits in cotton (Gossypium hirsutum). Ashok Badigannavar and Gerald O. Myers. J. Genet. 94, 87–94. Table 1. List of cotton germplasm lines used in this study. Germplasm no. Cultivar. Region. Germplasm no. Cultivar.

  9. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Studies on meiosis in pollen mother cells (PMCs) of a triploid interspecific hybrid ( 3 x = 39 chromosomes, AAD) between tetraploid Gossypium hirsutum ( 4 n = 2 x = 52 ,AADD) and diploid G. arboreum ( 2 n = 2 x = 26 ,AA) are reported. During meiotic metaphase I, 13 AA bivalents and 13 D univalents are expected in the ...

  10. African Journal of Biotechnology - Vol 8, No 15 (2009)

    African Journals Online (AJOL)

    Effect of potassium on micromorphological and chemical composition of three cotton (Gossypium hirsutum L.) genotypes · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD ... Remediation of azo dyes by using household used black tea as an adsorbent · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  11. Long-term effects of conservation systems on productivity for the old rotation

    Science.gov (United States)

    Winter legumes in cotton (Gossypium hirsutum L.) production is not new to the Southeast. In 1896, the Old Rotation experiment at Auburn University was established to study the feasibility of producing cotton in crop rotations with winter legumes managed as a green manure crop. Throughout the experim...

  12. Evaluating cotton seed gland initiation by microscopy

    Science.gov (United States)

    Gossypol is a terpenoid aldehyde found in cotton (Gossypium hirsutum L.) glands and helps protect the seed from pests and pathogens. However, gossypol is toxic to many animals, so the seed is used mainly in cattle feed, as ruminants are tolerant to the effects of gossypol. In order to develop strat...

  13. Can leguminous cover crops partially replace nitrogen fertilization in Mississippi delta cotton production

    Science.gov (United States)

    Petroleum prices impacts cotton (Gossypium hirsutum L.) N fertilization cost. A 3-year field study was conducted on a Dundee silt loam to assess the interactions of leguminous cover crops [none, Austrian winter field pea (Pisum sativum L.) or hairy vetch (Vicia villosa Roth] and N fertilization rate...

  14. Ade-Ademilua and Okpoma (8)

    African Journals Online (AJOL)

    DELL

    Gossypium barbadense L. Leaf samples from mature G. hirsutum and G. barbadense plants were collected, shade- dried and powdered. Phytochemical .... was prepared in a water bath at 75 C for one and half hours. The ethanolic extraction ..... Chew, Y.L., Goh, J.K. and Lim, Y.Y. 2009. Assessment of in vitro Antioxidant.

  15. Tobacco rattle virus (TRV) based silencing of cotton enoyl-CoA reductase (ECR) gene and the role of very long chain fatty acids in normal leaf development and resistance to wilt disease

    Science.gov (United States)

    A Tobacco rattle virus (TRV) based virus-induced gene silencing (VIGS) assay was employed as a reverse genetic approach to study gene function in cotton (Gossypium hirsutum). This approach was used to investigate the function of Enoyl-CoA reductase (GhECR) in pathogen defense. Amino acid sequence al...

  16. Employing canopy hyperspectral narrowband data and random forest algorithm to differentiate palmer amaranth from colored cotton

    Science.gov (United States)

    Palmer amaranth (Amaranthus palmeri S. Wats.) invasion negatively impacts cotton (Gossypium hirsutum L.) production systems throughout the United States. The objective of this study was to evaluate canopy hyperspectral narrowband data as input into the random forest machine learning algorithm to dis...

  17. Manure-derived biochars for use as a phosphorus fertilizer in cotton production

    Science.gov (United States)

    Biochars made from animal manure feedstocks appear to be a potential P fertilizer source. Our objective was to assess five different manure-derived biochars, pyrolyzed at two different temperatures (350 and 700 °C), for their potential as a Phosphorus (P) fertilizer for cotton (Gossypium hirsutum L....

  18. Sugar alcohols-induced oxidative metabolism in cotton callus culture

    African Journals Online (AJOL)

    Sugar alcohols (mannitol and sorbitol) may cause oxidative damage in plants if used in higher concentration. Our present experiment was undertaken to study physiological and metabolic responses in cotton (Gossypium hirsutum L.) callus against mannitol and sorbitol higher doses. Both markedly declined mean values of ...

  19. A comparison of soda and soda-AQ pulps from cotton stalks | Akgül ...

    African Journals Online (AJOL)

    In this study, cotton stalks (Gossypium hirsutum L.) were cooked using soda and soda-anthraquinone (AQ) process. Nine soda cooks were conducted by changing cooking conditions including active alkali charge and pulping time. Soda-AQ cooks were obtained by adding 0.075, 0.10, 0.15, 0.2% AQ (based on o.d stalks) to ...

  20. Detecting cotton boll rot with an electronic nose

    Science.gov (United States)

    South Carolina Boll Rot is an emerging disease of cotton, Gossypium hirsutum L., caused by the opportunistic bacteria, Pantoea agglomerans (Ewing and Fife). Unlike typical fungal diseases, bolls infected with P. agglomerans continue to appear normal externally, complicating early and rapid detectio...

  1. Use of GIS-based Site-specific Nitrogen Management for Improving Energy Efficiency

    Science.gov (United States)

    To our knowledge, geographical information system (GIS)-based site-specific nitrogen management (SSNM) techniques have not been used to assess agricultural energy costs and efficiency. This chapter uses SSNM case studies for corn (Zea mays L.) grown in Missouri and cotton (Gossypium hirsutum L.) gro...

  2. Quantitative trait loci mapping and genetic dissection for lint ...

    Indian Academy of Sciences (India)

    2014-08-01

    Aug 1, 2014 ... Quantitative trait loci mapping and genetic dissection for lint percentage in upland cotton (Gossypium hirsutum). MIN WANG1, CHENGQI LI2 and QINGLIAN WANG2∗. 1Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University,. Beijing 100048 ...

  3. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g24000.1 68417.m03449 cellulose synthase family protein similar to cellulose... synthase from Gossypium hirsutum [gi:1706956], cellulose synthase-5 from Zea mays [gi:9622882] 2e-27 ...

  4. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g24000.1 68417.m03449 cellulose synthase family protein similar to cellulose... synthase from Gossypium hirsutum [gi:1706956], cellulose synthase-5 from Zea mays [gi:9622882] 5e-27 ...

  5. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g24000.1 68417.m03449 cellulose synthase family protein similar to cellulose... synthase from Gossypium hirsutum [gi:1706956], cellulose synthase-5 from Zea mays [gi:9622882] 1e-123 ...

  6. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At4g24000.1 68417.m03449 cellulose synthase family protein similar to cellulose... synthase from Gossypium hirsutum [gi:1706956], cellulose synthase-5 from Zea mays [gi:9622882] 4e-48 ...

  7. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g24000.1 68417.m03449 cellulose synthase family protein similar to cellulose... synthase from Gossypium hirsutum [gi:1706956], cellulose synthase-5 from Zea mays [gi:9622882] 4e-25 ...

  8. Characteristics and management options of crusting soils in a ...

    African Journals Online (AJOL)

    agriculture is practised (Nyamapfene and Hungwe 1986). Farmers experience considerable economic losses due to poor establishment of small-seeded crops, e.g. cotton. (Gossypium hirsutum) and soybean (Glycine max), reduced water infiltration and accelerated soil erosion resulting from soil crusting (Borseli et al. 1996 ...

  9. Detoxification of the Fusarium toxin fusaric acid by the soil fungus Aspergillus

    Science.gov (United States)

    The fungal pathogen Fusarium oxysporum f. sp. vasinfectum (Fov) causes Fusarium wilt in cotton (Gossypium hirsutum L.) and produces the toxin fusaric acid (FA). Previous research indicates that in the high producing strains of Fov, FA plays an important role in virulence. To address the problems o...

  10. Efficacy of vegetable oils against dry bean beetles Acanthoscelides ...

    African Journals Online (AJOL)

    Acanthoscelides obtectus (Say) is a major pest of stored dry beans (Phaseolus vulgaris L.) and other legumes world wide. The objective of this study was to assess the efficacy of castor (Ricinus communis L.) and cottonseed (Gossypium hirsutum) oils against A. obtectus on stored dry beans under laboratory conditions.

  11. Irrigation strategies that use cutout for optimum boll maturation and yield where growing season duration is limited

    Science.gov (United States)

    Irrigation water availability is decreasing due to declining water sources and greater competition. Many producers must now comply with annual pumping restrictions that may limit overall productivity of crops like corn (Zea mays L.). Cotton [Gossypium hirsutum (L.)] water demand is less than corn, b...

  12. AcEST: DK947415 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 7|CATA2_GOSHI Catalase isozyme 2 OS=Gossypium hirsutum G... 74 3e-13 sp|O24339|CATA_SOLAP Catalase OS=Soldan...RLNVRPSI 492 >sp|O24339|CATA_SOLAP Catalase OS=Soldanella alpina PE=2 SV=1 Length = 492 Score = 73.2 bits (1

  13. AcEST: DK952437 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 04 sp|P30567|CATA2_GOSHI Catalase isozyme 2 OS=Gossypium hirsutum G... 376 e-104 sp|O24339|CATA_SOLAP Catala...ALKPNPKSHIQENWRILDFFSHHP 180 Query: 619 ESMHMFSW 642 ES+HMF++ Sbjct: 181 ESLHMFTF 188 >sp|O24339|CATA_SOLAP

  14. AcEST: DK949197 [AcEST

    Lifescience Database Archive (English)

    Full Text Available GOSHI Catalase isozyme 2 OS=Gossypium hirsutum G... 432 e-121 sp|O24339|CATA_SOLAP Catalase OS=Soldanella al...t: 181 ESLHMFTFLFDDIGVPQDYRHMDGSGVHTYTLINKAGKSHYVKFH 225 >sp|O24339|CATA_SOLAP Catalase OS=Soldanella alpina

  15. AcEST: DK949890 [AcEST

    Lifescience Database Archive (English)

    Full Text Available _GOSHI Catalase isozyme 1 OS=Gossypium hirsutum G... 401 e-111 sp|O24339|CATA_SOLAP Catalase OS=Soldanella a...8 EGFMNFMHRDEEINYFPSRYDPVRHAEMFPIPPAVCT 414 >sp|O24339|CATA_SOLAP Catalase OS=Soldanella alpina PE=2 SV=1 Le

  16. Using Population Genomics to Reveal Temporal Patterns of Host Use in the Cotton Fleahopper (Pseudatomoscelis seriatus)

    Science.gov (United States)

    The cotton fleahopper (CFH), Pseudatomoscelis seriatus (Reuter, 1876) (Hemiptera: Miridae), is a pest of commercial cotton (Gossypium hirsutum L.) with over 100 known host plants across its range. Both adults and nymphs attack small, developing squares, leading to abscission of the square. A new t...

  17. Coupling of MIC-3 overexpression with the chromosome 11 and 14 root-knot nematode (RKN) (Meloidogyne incognita) resistance QTLs provides insights into the regulation of the RKN resistance response in Upland cotton...

    Science.gov (United States)

    High levels of resistance to root-knot nematode (RKN) (Meloidogyne incognita) in Upland cotton (Gossypium hirsutum) is mediated by two major quantitative trait loci (QTL) located on chromosomes 11 and 14. We had previously determined that MIC-3 expression played a direct role in suppressing RKN egg...

  18. Molecular cloning, structural analysis and expression of a zinc ...

    African Journals Online (AJOL)

    The results of prokaryotic expression of ZnBP and overexpression of the ZnBP gene in A. thaliana improve our understanding of the function of this gene. Future studies should investigate the molecular mechanisms involved in gland morphogenesis in cotton. Key words: Gossypium hirsutum, pigment gland, zinc binding ...

  19. Area-wide management approach for tarnished plant bug in the Mississippi Delta

    Science.gov (United States)

    The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), is the major insect pest of cotton, Gossypium hirsutum (L.), within the Mid-South region. From 2001 to 2012, the tarnished plant bug has been the number one insect pest of cotton in Louisiana and Mississippi in eleven and nine of those...

  20. Yield response and economics of shallow subsurface drip irrigation systems

    Science.gov (United States)

    Field tests were conducted using shallow subsurface drip irrigation (S3DI) on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) in rotation to investigate yield potential and economic sustainability of this irrigation system technique over a six year period. Dri...

  1. Canopy Reflectance-Based Nitrogen Management Strategies for Subsurface Drip Irrigated Cotton in the Texas High Plains

    Science.gov (United States)

    Nitrogen fertilizer management in subsurface drip irrigation (SDI) systems for cotton (Gossypium hirsutum L.) can be very efficient when N is injected with the irrigation water (fertigated) on a daily basis. However, the daily rates and total amounts of N fertigation are uncertain. Normalized diffe...

  2. Water quality of surface runoff and lint yield in cotton under furrow irrigation in Northeast Arkansas

    Science.gov (United States)

    Use of furrow irrigation in row crop production is a common practice through much of the Midsouth US. Problems with these systems arise when nutrients are transported off-site through surface runoff. A field study with cotton (Gossypium hirsutum, L.) was conducted to understand the impact of tillage...

  3. Journal of Genetics, Volume 86, 2007

    Indian Academy of Sciences (India)

    Comparative characteristics and gene action in three petal- spotted mutants of Gossypium hirsutum (Research note). 81. Archana, N. see Sharmila Bharathi, N. .... FOXL2 mutations in Indian families with blepharophimosis- ptosis-epicanthus inversus syndrome (Research note). 165. 304. Journal of Genetics, Vol. 86, No.

  4. Brief communication

    Indian Academy of Sciences (India)

    Madhsudhan

    by a Research Fellowship from the Council of Scientific and. Industrial Research (CSIR), New Delhi. References. Chaudhary B, Kumar S, Prasad K V S K, Oinam G S, Burma P. K and Pental D 2003 Slow desiccation leads to high-frequency shoot recovery from transformed somatic embryos of cotton. (Gossypium hirsutum L.

  5. Earthworm populations are affected from Long-Term Crop Sequences and Bio-Covers under No-Tillage

    Science.gov (United States)

    Earthworms are crucial for improving soil biophysical properties in cropping systems. Consequently, effects of cropping rotation and bio-covers were assessed on earthworm populations under no-tillage sites. Main effects of 6 different cropping sequences [corn (Zea mays), cotton (Gossypium hirsutum),...

  6. Pink bollworm (Lepidoptera: Gelechiidae) on the Southern Plains of Texas and in New Mexico: Distribution; and eradication of a remnant population

    Science.gov (United States)

    Pink bollworm, Pectinophora gossypiella (Saunders), is one of the most economically important insect pests of cotton, Gossypium hirsutum L., in the world. Losses in the U.S. before widespread use of Bt cotton were estimated at $32 million per year. Eradication programs were initiated in the El Pas...

  7. A New Synthetic Allotetraploid (A1A1G2G2) between Gossypium herbaceum and G. australe: Bridging for Simultaneously Transferring Favorable Genes from These Two Diploid Species into Upland Cotton

    Science.gov (United States)

    Chen, Yu; Wang, Yingying; Chen, Jinjin; Zhang, Tianzhen; Zhou, Baoliang

    2015-01-01

    Gossypium herbaceum, a cultivated diploid cotton species (2n = 2x = 26, A1A1), has favorable traits such as excellent drought tolerance and resistance to sucking insects and leaf curl virus. G. australe, a wild diploid cotton species (2n = 2x = 26, G2G2), possesses numerous economically valuable characteristics such as delayed pigment gland morphogenesis (which is conducive to the production of seeds with very low levels of gossypol as a potential food source for humans and animals) and resistance to insects, wilt diseases and abiotic stress. Creating synthetic allotetraploid cotton from these two species would lay the foundation for simultaneously transferring favorable genes into cultivated tetraploid cotton. Here, we crossed G. herbaceum (as the maternal parent) with G. australe to produce an F1 interspecific hybrid and doubled its chromosome complement with colchicine, successfully generating a synthetic tetraploid. The obtained tetraploid was confirmed by morphology, cytology and molecular markers and then self-pollinated. The S1 seedlings derived from this tetraploid gradually became flavescent after emergence of the fifth true leaf, but they were rescued by grafting and produced S2 seeds. The rescued S1 plants were partially fertile due to the existence of univalents at Metaphase I of meiosis, leading to the formation of unbalanced, nonviable gametes lacking complete sets of chromosomes. The S2 plants grew well and no flavescence was observed, implying that interspecific incompatibility, to some extent, had been alleviated in the S2 generation. The synthetic allotetraploid will be quite useful for polyploidy evolutionary studies and as a bridge for transferring favorable genes from these two diploid species into Upland cotton through hybridization. PMID:25879660

  8. Adult attractiveness and oviposition preference of Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae) B-biotype in cotton genotypes

    OpenAIRE

    Boiça Júnior,Arlindo Leal; Campos,Zeneide Ribeiro; Lourenção,André Luiz; Campos,Alcebíades Ribeiro

    2007-01-01

    The silverleaf whitefly Bemisia tabaci B-biotype is an important pest of cotton; it affects plant vigour, transmits geminivirus and reduces lint quality. In order to evaluate the resistance of cotton genotypes, Gossypium hirsutum (L.), to the whitefly Bemisia tabaci B-biotype, both free-choice and no-choice attractiveness and non-preference for oviposition tests were carried out in a shade house, at room temperature. Low attractiveness to adults of this whitefly was observed for plants of gen...

  9. Quantification of Climate Warming and Crop Management Impacts on Cotton Phenology

    OpenAIRE

    Shakeel Ahmad; Qaiser Abbas; Ghulam Abbas; Zartash Fatima; Atique-ur-Rehman; Sahrish Naz; Haseeb Younis; Rana Jahanzeb Khan; Wajid Nasim; Muhammad Habib ur Rehman; Ashfaq Ahmad; Ghulam Rasul; Muhammad Azam Khan; Mirza Hasanuzzaman

    2017-01-01

    Understanding the impact of the warming trend on phenological stages and phases of cotton (Gossypium hirsutum L.) in central and lower Punjab, Pakistan, may assist in optimizing crop management practices to enhance production. This study determined the influence of the thermal trend on cotton phenology from 1980?2015 in 15 selected locations. The results demonstrated that observed phenological stages including sowing (S), emergence (E), anthesis (A) and physiological maturity (M) occurred ear...

  10. Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions

    OpenAIRE

    Cui, J.J.; Luo, J.Y.; Werf, van der, W.; Ma, Y.; Xia, J.Y.

    2011-01-01

    Transgenic cotton (Gossypium hirsutum L.) varieties, adapted to China, have been bred that express two genes for resistance to insects. the Cry1Ac gene from Bacillus thuringiensis (Berliner) (Bt), and a trypsin inhibitor gene from cowpea (CpTI). Effectiveness of the double gene modification in conferring resistance to cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), was studied in laboratory and field experiments. In each experiment, performance of Bt+CpTI cotton was c...

  11. Untitled

    African Journals Online (AJOL)

    Département de Biologie et Physiologie Végétales, Faculté des Sciences, Université de Yaoundé Yaoundé I, B.P.. 812 Yaoundé — Cameroun. RÉSUMÉ. Les travaux de recherche sont réalisés au Cameroun de Juillet 2001 à Septembre 2003 sur les plantules d'une glycophyte tolérante ; Gossypium hirsutum (Malvaceae).

  12. The influence of thidiazuron on shoot regeneration from leaf explants of fifteen cultivars of Rhododendron

    Czech Academy of Sciences Publication Activity Database

    Pavingerová, Daniela

    2009-01-01

    Roč. 53, č. 4 (2009), s. 797-799 ISSN 0006-3134 Institutional research plan: CEZ:AV0Z50510513 Keywords : plant growth regulators * tissue culture * Rhododendron Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.656, year: 2009

  13. Carry-over effect of Thidiazuron on banana in vitro proliferation at ...

    African Journals Online (AJOL)

    USER

    2010-05-24

    May 24, 2010 ... Shoot tip culture for propagation and conservation of Musa germplasm. Trop. Agric. (Trinidad) 62(4): 323-328. Vuylsteke D, Swennen R, de Langhe E (1990). Tissue culture technology for improvement of African plantains. INIBAP workshop on sigatoka leaf spot disease of bananas. San Jose, Costa Rica.

  14. Effect of thidiazuron on in vivo shoot proliferation of popular banana ...

    African Journals Online (AJOL)

    Moistened sawdust was steam-sterilized for 45 minutes and then filled for cooling in wooden propagators. Banana suckers were cleaned to remove roots and surface-sterilized for 15 seconds. The sterilized corms were deshealthed to expose axillary buds and decorticated to suppress the apical meristems. These corns ...

  15. Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons.

    Science.gov (United States)

    Fang, Lei; Gong, Hao; Hu, Yan; Liu, Chunxiao; Zhou, Baoliang; Huang, Tao; Wang, Yangkun; Chen, Shuqi; Fang, David D; Du, Xiongming; Chen, Hong; Chen, Jiedan; Wang, Sen; Wang, Qiong; Wan, Qun; Liu, Bingliang; Pan, Mengqiao; Chang, Lijing; Wu, Huaitong; Mei, Gaofu; Xiang, Dan; Li, Xinghe; Cai, Caiping; Zhu, Xiefei; Chen, Z Jeffrey; Han, Bin; Chen, Xiaoya; Guo, Wangzhen; Zhang, Tianzhen; Huang, Xuehui

    2017-02-20

    Cotton has been cultivated and used to make fabrics for at least 7000 years. Two allotetraploid species of great commercial importance, Gossypium hirsutum and Gossypium barbadense, were domesticated after polyploidization and are cultivated worldwide. Although the overall genetic diversity between these two cultivated species has been studied with limited accessions, their population structure and genetic variations remain largely unknown. We resequence the genomes of 147 cotton accessions, including diverse wild relatives, landraces, and modern cultivars, and construct a comprehensive variation map to provide genomic insights into the divergence and dual domestication of these two important cultivated tetraploid cotton species. Phylogenetic analysis shows two divergent groups for G. hirsutum and G. barbadense, suggesting a dual domestication processes in tetraploid cottons. In spite of the strong genetic divergence, a small number of interspecific reciprocal introgression events are found between these species and the introgression pattern is significantly biased towards the gene flow from G. hirsutum into G. barbadense. We identify selective sweeps, some of which are associated with relatively highly expressed genes for fiber development and seed germination. We report a comprehensive analysis of the evolution and domestication history of allotetraploid cottons based on the whole genomic variation between G. hirsutum and G. barbadense and between wild accessions and modern cultivars. These results provide genomic bases for improving cotton production and for further evolution analysis of polyploid crops.

  16. Genetic relationships of cotton (Gossypium barbadense L ...

    African Journals Online (AJOL)

    The cluster analysis of the 24 cotton genotypes depending upon the morphological traits divided them into two main groups (A and B) while molecular data divided them into six groups. The cotton genotypes were distributed according to principal coordinate analysis (PCOORDA) analysis of both morphological traits and ...

  17. A genetic and metabolic analysis revealed that cotton fiber cell development was retarded by flavonoid naringenin.

    Science.gov (United States)

    Tan, Jiafu; Tu, Lili; Deng, Fenglin; Hu, Haiyan; Nie, Yichun; Zhang, Xianlong

    2013-05-01

    The cotton (Gossypium spp.) fiber is a unique elongated cell that is useful for investigating cell differentiation. Previous studies have demonstrated the importance of factors such as sugar metabolism, the cytoskeleton, and hormones, which are commonly known to be involved in plant cell development, while the secondary metabolites have been less regarded. By mining public data and comparing analyses of fiber from two cotton species (Gossypium hirsutum and Gossypium barbadense), we found that the flavonoid metabolism is active in early fiber cell development. Different flavonoids exhibited distinct effects on fiber development during ovule culture; among them, naringenin (NAR) could significantly retard fiber development. NAR is a substrate of flavanone 3-hydroxylase (F3H), and silencing the F3H gene significantly increased the NAR content of fiber cells. Fiber development was suppressed following F3H silencing, but the overexpression of F3H caused no obvious effects. Significant retardation of fiber growth was observed after the introduction of the F3H-RNA interference segment into the high-flavonoid brown fiber G. hirsutum T586 line by cross. A greater accumulation of NAR as well as much shorter fibers were also observed in the BC1 generation plants. These results suggest that NAR is negatively associated with fiber development and that the metabolism mediated by F3H is important in fiber development, thus highlighting that flavonoid metabolism represents a novel pathway with the potential for cotton fiber improvement.

  18. Benzilaminopurina (BAP e thidiazuron (TDZ na propagação in vitro de Pfaffia glomerata (Spreng. Pedersen Benzylaminopurine (BAP and thidiazuron (TDZ on in vitro propagation of Pfaffia glomerata (Spreng. Pedersen

    Directory of Open Access Journals (Sweden)

    R. Flores

    2009-01-01

    Full Text Available Pfaffia glomerata (Spreng. Pedersen, conhecida como ginseng brasileiro, é muito utilizada pela medicina popular devido suas propriedades fitoterápicas. Este trabalho teve como objetivo avaliar o efeito de concentrações de BAP e de TDZ na propagação in vitro de dois acessos (BRA e JB-UFSM desta espécie. Segmentos nodais, provenientes de plantas assépticas, foram cultivados em meio Murashige e Skoog (MS suplementado com 0, 1 e 5 μM de BAP ou TDZ. Após 30 dias, as plantas foram transferidas para meio MS não suplementado com citocinina. Observou-se que a organogênese in vitro de P. glomerata é genótipo-dependente. O acesso BRA mostrou um maior potencial para a propagação in vitro em relação ao JB-UFSM. O cultivo dos segmentos nodais do acesso BRA em meio com 1 μM de TDZ, seguido pelo subcultivo dos brotos para meio isento de citocininas mostrou ser um método viável para a propagação in vitro devido à alta taxa de multiplicação e o bom desenvolvimento das plantas. No acesso JB-UFSM, o cultivo dos segmentos nodais em meio não acrescido de citocinina mostrou ser o método mais adequado para a produção de um grande número de plantas com alta qualidade.The plant Pfaffia glomerata (Spreng. Pedersen, known as Brazilian ginseng, is extensively used in folk medicine due to its phytotherapic characteristics. This work aimed to evaluate the effect of BAP and TDZ concentrations on the in vitro propagation of two sources (BRA and JB-UFSM of this species. Nodal segments originated from aseptically grown plants were cultured on Murashige and Skoog (MS medium supplemented with 0, 1 and 5 μM BAP or TDZ. After 30 days, the plants were transferred to MS medium without cytokinin. The in vitro organogenesis of P. glomerata is genotype-dependent. The source BRA had greater potential for in vitro propagation than JB-UFSM. The culture of BRA nodal segments on medium with 1 μM TDZ, followed by subcultivation of sprouts on cytokinin-free medium, showed to be a viable method for in vitro propagation due to high multiplication rate and good plant development. In the source JB-UFSM, the culture of nodal segments on medium without cytokinin was the best method to obtain a large number of high-quality plants.

  19. Topolins and hydroxylated thidiazuron derivatives are substrates of cytokinin O-glucosyltransferase with position specificity related to receptor recognition

    Czech Academy of Sciences Publication Activity Database

    Mok, M. C.; Martin, R. C.; Dobrev, Petre; Vaňková, Radomíra; Yonekura-Sakakibara, K.; Sakakibara, H.; Mok, D. W. S.

    2005-01-01

    Roč. 137, č. 3 (2005), s. 1057-1066 ISSN 0032-0889 R&D Projects: GA ČR GA522/04/0549; GA MŠk ME 406 Institutional research plan: CEZ:AV0Z50380511 Keywords : ARABIDOPSIS-THALIANA * AROMATIC CYTOKININS * PHASEOLUS - VULGARIS Subject RIV: EF - Botanics Impact factor: 6.114, year: 2005

  20. Thidiazuron: A potent cytokinin for efficient plant regeneration in Himalayan poplar (Populus ciliata Wall. using leaf explants

    Directory of Open Access Journals (Sweden)

    Gaurav Aggarwal

    2012-11-01

    Full Text Available Populus species are important resource for certain branches of industry and have special roles for scientific study on biological and agricultural systems. The present investigation was undertaken with an objective of enhancing the frequency of plant regeneration in Himalayan poplar (Populus ciliata Wall.. The effect of Thiadizuron (TDZ alone and in combination with adenine and α-Naphthalene acetic acid (NAA were studied on the regeneration potential of leaf explants. A high efficiency of shoot regeneration was observed in leaf (80.00% explants on MS basal medium supplemented with 0.024 mg/l TDZ and 79.7 mg/l adenine. Elongation and multiplication of shoots were obtained on Murashige and Skoog (MS basal medium, containing 0.5 mg/l 6. Benzyl aminopurine (BAP + 0.2mg/l Indole 3-acetic acid (IAA + 0.3 mg/l Gibberellic acid (GA3. High frequency root regeneration from in vitro developed shoots was observed on MS basal medium supplemented with 0.10 mg/l Indole 3-butyric acid(IBA. Maximum of the in vitro rooted plantlets were well accomplished to the mixture of sand: soil (1:1 and exhibited similar morphology with the field plants. A high efficiency plant regeneration protocol has been developedfrom leaf explants in Himalayan poplar (Populus ciliata Wall..

  1. Effects of thidiazuron and paclobutrazol on regeneration potential of tulip flower stalk explants in vitro and subsequent shoot multiplication

    Directory of Open Access Journals (Sweden)

    Małgorzata Podwyszyńska

    2011-01-01

    Full Text Available The effects of TDZ and paclobutrazol on the primary regeneration on tulip flower stalk explants of six cultivars and subsequent shoot multiplication were examined. Explants, flower stalk slices, were excised from cooled and subsequently forced bulbs. The explants were incubated for two months in darkness on medium containing NAA and cytokinins, 2iP and BAP, as control, or TDZ (0.5-4 mg l-1 and paclobutrazol (0.05-0.4 mg l-1. Then, the regenerating explants were subcultured on medium with TDZ and NAA applied at low concentrations. Different regeneration capabilities were found depending on cultivar and growth regulators. The percentage of explants forming leaf-like structures ranged, on the control medium, from 80% in 'Blue Parrot' and 'Prominence' to below 30% in 'Apeldoorn' and 'Mirjoran'. TDZ, applied at optimum for each cultivar concentration, greatly increased the regeneration potential up to 70-100%. Paclobutrazol, added to the TDZ-containing medium, significantly enhanced the response of explants, resulting in high numbers of leaf-like structures formed per explant (13.7-22.8. The structures developed gradually into characteristic forms: the growing up cotyledonary leaf, the probable root primordium formed at its base, the growing downwards stolon and the shoot meristem developed finely on its tip. It is suggested that such primary regeneration may have a nature of somatic embryogenesis. Then, the adventitious shoots developed and formed clusters, which were divided into 2-3 smaller ones every two months. The growth regulators, used at initial stage, markedly influenced subsequent shoot multiplication. Thus, the most intensive shoot formation was noted with TDZ at concentrations of 0.5-2 mg l-1 and paclobutrazol of 0.05-0.1 mg l-1.

  2. Alterações anatômicas em plantas de algodoeiro com sintomas de murchamento avermelhado Anatomical alterations in cotton plants with reddish withering symptoms

    Directory of Open Access Journals (Sweden)

    Rachel Benetti Queiroz-Voltan

    1995-01-01

    Full Text Available Estudaram-se as alterações anatômicas em plantas de algodoeiro com sintomas de murchamento avermelhado em dezembro de 1993-fevereiro de 94. Analisaram-se amostras de raiz, caule e folha de Gossypium hirsutum L. 'IAC 20' provenientes de áreas de ocorrência do sintoma. Estimou-se o número de glândulas secretoras das folhas dos cultivares IAC 20 e CNPA ITA 90 (que se tem mostrado resistente. Observou-se que as células parenquimáticas apresentavam, no interior, substâncias insolúveis em água, cuja concentração aumentava à medida do grau do sintoma. As folhas apresentaram uma concentração maior dessas substâncias em relação ao restante do corpo vegetal. Os núcleos das células do parênquima paliçádico encontravam-se aumentados e os cloroplastos do mesofilo, parcialmente destruídos. As plantas com alto grau de sintoma apresentavam também um número maior de glândulas secretoras nas folhas.Anatomical alterations in cotton plants (Gossypium hirsutum L. with reddish withering symptons observated between December/93 to February/94 were studied. Samples of root, stem and leaf of Gossypium hirsutum L. 'IAC 20' collected in several sites with symptoms occurrence were analised. The number of secretory glands in the leaves of cultivar IAC 20, and for the resistent cultivar CNPA ITA 90 was estimated. The parenchyma cells included insoluble substances, and these concentrations increased with the crescent symptoms. The leaves presented higher concentration of these substances than the remaining plant body. The nucleus of palisade parenchyma cells was increased and the chloroplasts partially destroyed. The leave secretory glands number increases proportionally to the advance of the symptoms.

  3. Variation in water-use efficiency and its relation to carbon isotope ratio in cotton

    International Nuclear Information System (INIS)

    Saranga, Y.; Flash, I.; Yakir, D.

    1998-01-01

    Cotton (Gossypium spp.) is often exposed to drought, which adversely affects both yield and quality. Improved water-use efficiency (WUE = total dry matter produced or yield harvested / water used) is expected to reduce these adverse effects. Genetic variability in WUE and its association with photosynthetic rate and carbon isotope ratio (13C/12C) in cotton are reported in this paper. WUE of six cotton cultivars--G. hirsutum L., G. barbadense L., and an interspecific F1 hybrid (G. hirsutum x G. barbadense, ISH), was examined under two irrigation regimes in two field trials. The greatest WUE was obtained by two G. hirsutum cultivars (2.55 g dry matter or 1.12 g seed-cotton L-1 H2O) the ISH obtained similar or somewhat lower values, and that G. barbadense cultivars and one G. hirsutum cultivar exhibited the lowest values (2.1 g dry matter or 0.8 to 0.85 g seed-cotton L-1 H2O). These results indicate that different cotton cultivars may have evolved different environmental adaptations that affect their WUE. Photosynthetic rate was correlated with WUE in only a few cases emphasizing the limitation of this parameter as a basis for estimating crop WUE. Under both trials WUE was positively correlated with carbon isotope ratio, indicating the potential of this technique as a selection criterion for improving cotton WUE

  4. Larval Dispersal of Spodoptera frugiperda Strains on Bt Cotton: A Model for Understanding Resistance Evolution and Consequences for its Management

    OpenAIRE

    Malaquias, José B.; Godoy, Wesley A. C.; Garcia, Adriano G.; Ramalho, Francisco de S.; Omoto, Celso

    2017-01-01

    High dispersal of Lepidoptera larvae between non-Bt and Bt cotton plants can favour the evolution of insect resistance; however, information on host acceptance of neonates in tropical transgenic crops is scarce. Therefore, the purposes of this study were as follows: (i) to investigate the feeding behaviour of susceptible and Cry1F-resistant strains of Spodoptera frugiperda (J.E. Smith) on Bt and non-Bt cotton (Gossypium hirsutum L.) varieties and (ii) to understand the possible effects of cot...

  5. Evaluación del riesgo agroambiental de los suelos de las comunidades indígenas del estado Anzoátegui, Venezuela

    OpenAIRE

    D. R. Lugo-Morin

    2007-01-01

    Evaluación del riesgo agroambiental de los suelos de las comunidades indígenas del estado Anzoátegui, Venezuela. Con el propósito de realizar una evaluación del riesgo agroambiental en los suelos de las comunidades indígenas del Estado Anzoátegui Venezuela, se evaluaron cinco unidades de tierra de la zona de interés frente a diez usos agropecuarios; Algodón (Gossypium hirsutum), Fríjol (Vigna sinensis), Maíz (Zea mays), Maní (Arachis hypogea), Melón (Cucumis melo), Ñame (Dioscorea al...

  6. Evaluación del riesgo agroambiental de los suelos de las comunidades indígenas del estado Anzoátegui, Venezuela

    OpenAIRE

    Lugo Morin, Diosey Ramón

    2007-01-01

    Con el propósito de realizar una evaluación del riesgo agroambiental en los suelos de las comunidades indígenas del Estado Anzoátegui Venezuela, se evaluaron cinco unidades de tierra de la zona de interés frente a diez usos agropecuarios; Algodón (Gossypium hirsutum), Fríjol (Vigna sinensis), Maíz (Zea mays), Maní (Arachis hypogea), Melón (Cucumis melo), Ñame (Dioscorea alata), Ganadería (pasto), Patilla (Citrullus vulgaris), Sorgo (Sorghum bicolor) y Yuca (Manihot esculenta). La ...

  7. The Phytotoxicity of Designated Pollutants

    Science.gov (United States)

    1981-12-01

    carota L. subsp. Red-cored Chantenay sativus [Huffm.] Arcang. Corn Zea mays L. Subsp. mays HX980, Golden Cross and Bantam Cotton Gossypium hirsutum L...squash and radish may be particularly resistant. 38 TABLE 20 GERMINATION AND SEEDLING ýENGTH OF FOUR SPECIES OF SEEDS EXPOSED TO 10 mg HF m- AND...copie’s of’ this report 1Loin Air Force Aerospace Medical Research Labloratory. Additional (topics may tim tuicrcliasc’d f’rom: Mitiojia 1 A1 eellealk1

  8. Sequence and RT-PCR expression analysis of two peroxidases from Arabidopsis thaliana belonging to a novel evolutionary branch of plant perioxidases

    DEFF Research Database (Denmark)

    Kjærsgård, I.V.H.; Jespersen, H.M.; Rasmussen, Søren Kjærsgård

    1997-01-01

    sequence to the well characterized group of basic plant peroxidases represented by the horseradish (Armoracia rusticana) isoperoxidases HRP C, HRP E5 and the similar Arabidopsis isoperoxidases ATP Ca, ATP Cb, and ATP Ea. However ATP 1a is 87% identical in amino acid sequence to a peroxidase encoded by an m......RNA isolated from cotton (Gossypium hirsutum). As cotton and Arabidopsis belong to rather diverse families (Malvaceae and Crucifereae, respectively), in contrast with Arabidopsis and horseradish (both Crucifereae), the high degree of sequence identity indicates that this novel type of peroxidase, albeit...

  9. Independent Domestication of Two Old World Cotton Species.

    Science.gov (United States)

    Renny-Byfield, Simon; Page, Justin T; Udall, Joshua A; Sanders, William S; Peterson, Daniel G; Arick, Mark A; Grover, Corrinne E; Wendel, Jonathan F

    2016-07-02

    Domesticated cotton species provide raw material for the majority of the world's textile industry. Two independent domestication events have been identified in allopolyploid cotton, one in Upland cotton (Gossypium hirsutum L.) and the other to Egyptian cotton (Gossypium barbadense L.). However, two diploid cotton species, Gossypium arboreum L. and Gossypium herbaceum L., have been cultivated for several millennia, but their status as independent domesticates has long been in question. Using genome resequencing data, we estimated the global abundance of various repetitive DNAs. We demonstrate that, despite negligible divergence in genome size, the two domesticated diploid cotton species contain different, but compensatory, repeat content and have thus experienced cryptic alterations in repeat abundance despite equivalence in genome size. Evidence of independent origin is bolstered by estimates of divergence times based on molecular evolutionary analysis of f7,000 orthologous genes, for which synonymous substitution rates suggest that G. arboreum and G. herbaceum last shared a common ancestor approximately 0.4-2.5 Ma. These data are incompatible with a shared domestication history during the emergence of agriculture and lead to the conclusion that G. arboreum and G. herbaceum were each domesticated independently. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Study of earliness in commercial cotton (G. hirsutum L) genotypes

    International Nuclear Information System (INIS)

    Ali, R.; Arshad, M.; Khan, M.I.; Afzal, M.

    2003-01-01

    The research work was conducted at Central Cotton Research Institute (CCRI), Multan during the normal crop growing season 2002-03, including fourteen varieties, (thirteen from Punjab and one from Sindh province) with the aim to find out the earliness in the said varieties. From the experimental results it is concluded that CIM-443 produced significantly lowest main stem node number of first sympodial branch (4.6) followed by CIM-240 and Krishma (5.7). while the highest main stem node bearing first sympodial branch number was recorded in variety CIM-1100. The less number of days to first flower was taken by variety CIM-443 followed by CIM-240, while the more number of days were recorded in variety CIM-1100. Therefore, it is concluded that CIM-443 is the earliest maturing variety among all the fourteen varieties.(author)

  11. miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton.

    Directory of Open Access Journals (Sweden)

    Qian-Hao Zhu

    Full Text Available In this study, we characterized the miR482 family in cotton using existing small RNA datasets and the recently released draft genome sequence of Gossypium raimondii, a diploid cotton species whose progenitor is the putative contributor of the Dt (representing the D genome of tetraploid genome of the cultivated tetraploid cotton species G. hirsutum and G. barbadense. Of the three ghr-miR482 members reported in G. hirsutum, ghr-miR482a has no homolog in G. raimondii, ghr-miR482b and ghr-miR482c each has a single homolog in G. raimondii. Gra-miR482d has five homologous loci (gra-miR482d, f-i in G. raimondii and also exists in G. hirsutum (ghr-miR482d. A variant, miR482.2 that is a homolog of miR2118 in other species, is produced from several GHR-MIR482 loci in G. hirsutum. Approximately 12% of the G. raimondii NBS-LRR genes were predicted targets of various members of the gra-miR482 family. Based on the rationale that the regulatory relationship between miR482 and NBS-LRR genes will be conserved in G. raimondii and G. hirsutum, we investigated this relationship using G. hirsutum miR482 and G. raimondii NBS-LRR genes, which are not currently available in G. hirsutum. Ghr-miR482/miR482.2-mediated cleavage was confirmed for three of the four NBS-LRR genes analysed. As in tomato, miR482-mediated cleavage of NBS-LRR genes triggered production of phased secondary small RNAs in cotton. In seedlings of the susceptible cultivar Sicot71 (G. hirsutum infected with the fungal pathogen Verticillium dahliae, the expression levels of ghr-miR482b/miR482b.2, ghr-miR482c and ghr-miR482d.2 were down-regulated, and several NBS-LRR targets of ghr-miR482c and ghr-miR482d were up-regulated. These results imply that, like tomato plants infected with viruses or bacteria, cotton plants are able to induce expression of NBS-LRR defence genes by suppression of the miRNA-mediated gene silencing pathway upon fungal pathogen attack.

  12. The promoter structure differentiation of a MYB transcription factor RLC1 causes red leaf coloration in Empire Red Leaf Cotton under light.

    Science.gov (United States)

    Gao, Zhenrui; Liu, Chuanliang; Zhang, Yanzhao; Li, Ying; Yi, Keke; Zhao, Xinhua; Cui, Min-Long

    2013-01-01

    The red leaf coloration of Empire Red Leaf Cotton (ERLC) (Gossypium hirsutum L.), resulted from anthocyanin accumulation in light, is a well known dominant agricultural trait. However, the underpin molecular mechanism remains elusive. To explore this, we compared the molecular biological basis of anthocyanin accumulation in both ERLC and the green leaf cotton variety CCRI 24 (Gossypium hirsutum L.). Introduction of R2R3-MYB transcription factor Rosea1, the master regulator anthocyanin biosynthesis in Antirrhinum majus, into CCRI 24 induced anthocyanin accumulation, indicating structural genes for anthocyanin biosynthesis are not defected and the leaf coloration might be caused by variation of regulatory genes expression. Expression analysis found that a transcription factor RLC1 (Red Leaf Cotton 1) which encodes the ortholog of PAP1/Rosea1 was highly expressed in leaves of ERLC but barely expressed in CCRI 24 in light. Ectopic expression of RLC1 from ERLC and CCRI 24 in hairy roots of Antirrhinum majus and CCRI 24 significantly enhanced anthocyanin accumulation. Comparison of RLC1 promoter sequences between ERLC and CCRI 24 revealed two 228-bp tandem repeats presented in ERLC with only one repeat in CCRI 24. Transient assays in cotton leave tissue evidenced that the tandem repeats in ERLC is responsible for light-induced RLC1 expression and therefore anthocyanin accumulation. Taken together, our results in this article strongly support an important step toward understanding the role of R2R3-MYB transcription factors in the regulatory menchanisms of anthocyanin accumulation in red leaf cotton under light.

  13. DEFICIÊNCIAS MINERAIS NO CULTIVAR DE ALGODÃO IAC-22

    Directory of Open Access Journals (Sweden)

    CIRO ANTONIO ROSOLEM

    1997-01-01

    Full Text Available Desenvolveu-se um experimento em solução nutritiva, omitindo-se os nutrientes, um a um, com o objetivo de descrever as deficiências minerais no cultivar de algodão (Gossypium hirsutum L. IAC 22. As deficiências de N, P, K, Ca, Mg e B causaram reduções significativas na produção de matéria seca da parte aérea das plantas, enquanto a produção de matéria seca das raízes foi diminuída na deficiência de N, K, Ca, Mg e B, assim como quando houve excesso de Mn. Plantas deficientes em Fe e Mo mostraram maior desenvolvimento vegetativo que aquelas do tratamento completo, mas o número de estruturas reprodutivas foi menor.An experiment was set up in nutrient solutions, in order to describe the nutrient deficiency symptoms of cotton plants (Gossypium hirsutum L. cultivar IAC 22. Plants were grown either in complete solution or solutions lacking one nutrient. The absence of N, P, K, Ca, Mg and B in the nutrient solution led to significant decreases in shoot dry matter. Root dry matter decreased in solutions lacking N, K, Ca, Mg and B, as well as in excess of Mn. Plants deficient for Fe and for Mo had less flowers and buds but an increased vegetative growth.

  14. Meiosis in a triploid hybrid of Gossypium: high frequency of ...

    Indian Academy of Sciences (India)

    1Division of Genetics, Indian Agricultural Research Institute, New Delhi 110 012, India. 2Present ... Journal of Genetics, Vol. 86, No. 1, April .... spindle probably occurs through the combined effects of mi- crotubule bundling and specific motor activities (Waters and. Salmon 1997). In Lilium longiflorum, for example, bipolarity.

  15. Genetic transformation of cry1EC gene into cotton (Gossypium ...

    African Journals Online (AJOL)

    welcome

    2013-04-10

    Apr 10, 2013 ... cry1EC gene (Figure 4). No amplified product was detected from non transformed plant and the transformation efficiency measured as % of confirmed transgenic plant out of total number of plants raised and it was found to be 80% in T0 generation. Transgenic plant showing highest larval mortality rate has.

  16. Genetic transformation of cry1EC gene into cotton ( Gossypium ...

    African Journals Online (AJOL)

    Cotton is the chief fibre crop of global importance. It plays a significant role in the national economy. Cotton crop is vulnerable to a number of insect species, especially to the larvae of lepidopteron pests. 60% insecticides sprayed on cotton are meant to control the damage caused by bollworm complex. Transgenic ...

  17. A Mechanism for the Anti-inflammatory Activity of Gossypium ...

    African Journals Online (AJOL)

    -inflammatory action. The extract showed membrane stabilizing activities between 73.18 + 0.54% and 88.58 + 0.77% at an extract concentration range of 2.34 to 11.70mg/ml. The conventional drugs used as positive controls, acetylsalicylic acid ...

  18. Cochlospermum religiosum (L.) Alston Syn. C. gossypium DC ...

    Indian Academy of Sciences (India)

    flowered cotton tree;. Hindi Gabdi, Galgal) of Cochlospermaceae is a small deciduous tree with smooth ash-coloured fibrous, deeply furrowed bark containing gum and lobed leaves. Flowers (in the foreground) which appear after leaffall are ...

  19. Meiosis in a triploid hybrid of Gossypium: high frequency of ...

    Indian Academy of Sciences (India)

    ... in a cell, meiosis I proceeded normally, with polyad formation. These observations strongly support the view that in plant meiocytes bilateral kinetochore symmetry is not required for establishing a bipolar spindle and that single unpaired chromosomes can initiate and stabilize the formation of a functional bipolar spindle.

  20. Effects of cottonseed oil (Gossypium Spp.) and cottonseed meal on ...

    African Journals Online (AJOL)

    Experiments were conducted to determine the effects of various forms of cottonseed oil (whole Cottonseed, “Refined” industrially extracted Cottonseed oil and “Crude” locally extracted Cottonseed oil) on the Estrous cycle and Ovulation, and Histoarchitecture of female reproductive organs. Regular 4-day adult cyclic female ...