WorldWideScience

Sample records for thick wall foam

  1. Helium ion microscopy based wall thickness and surface roughness analysis of polymer foams obtained from high internal phase emulsion

    International Nuclear Information System (INIS)

    Rodenburg, C.; Viswanathan, P.; Jepson, M.A.E.; Liu, X.; Battaglia, G.

    2014-01-01

    Due to their wide range of applications, porous polymers obtained from high internal phase emulsions have been widely studied using scanning electron microscopy. However, due to their lack of electrical conductivity, quantitative information of wall thicknesses and surface roughness, which are of particular interest to tissue engineering, has not been obtained. Here, Helium Ion Microscopy is used to examine uncoated polymer foams and some very strong but unexpected contrast is observed, the origin of which is established here. Based on this analysis, a method for the measurement of wall thickness variations and wall roughness measurements has been developed, based on the modeling of Helium ion transmission. The results presented here indicate that within the walls of the void structure there exist small features with height variations of ∼30 nm and wall thickness variations from ∼100 nm to larger 340 nm in regions surrounding interconnecting windows within the structure. The suggested imaging method is applicable to other porous carbon based structures with wall thicknesses in the range of 40–340 nm. - Highlights: • The first helium ion microscopy image of uncoated structures formed from HIPEs is presented. • Unusually high contrast features that change with accelerating voltage are observed. • The origin of the observed contrast is determined to be mass thickness contrast. • A new method for quantitative wall thickness variation/roughness measurements is demonstrated

  2. Helium ion microscopy based wall thickness and surface roughness analysis of polymer foams obtained from high internal phase emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Rodenburg, C., E-mail: c.rodenburg@sheffield.ac.uk [Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Viswanathan, P. [Department of Biomedical Sciences, University of Sheffield, Firth Court, Western Bank Sheffield, Sheffield S10 2 TN (United Kingdom); Jepson, M.A.E. [Department of Materials, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Liu, X. [Carl Zeiss Microscopy GmbH, Carl-Zeiss-Strasse 22, 73447 Oberkochen (Germany); Battaglia, G. [Department of Chemistry University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); The MRC/UCL Centre for Medical Molecular Virology, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2014-04-01

    Due to their wide range of applications, porous polymers obtained from high internal phase emulsions have been widely studied using scanning electron microscopy. However, due to their lack of electrical conductivity, quantitative information of wall thicknesses and surface roughness, which are of particular interest to tissue engineering, has not been obtained. Here, Helium Ion Microscopy is used to examine uncoated polymer foams and some very strong but unexpected contrast is observed, the origin of which is established here. Based on this analysis, a method for the measurement of wall thickness variations and wall roughness measurements has been developed, based on the modeling of Helium ion transmission. The results presented here indicate that within the walls of the void structure there exist small features with height variations of ∼30 nm and wall thickness variations from ∼100 nm to larger 340 nm in regions surrounding interconnecting windows within the structure. The suggested imaging method is applicable to other porous carbon based structures with wall thicknesses in the range of 40–340 nm. - Highlights: • The first helium ion microscopy image of uncoated structures formed from HIPEs is presented. • Unusually high contrast features that change with accelerating voltage are observed. • The origin of the observed contrast is determined to be mass thickness contrast. • A new method for quantitative wall thickness variation/roughness measurements is demonstrated.

  3. Application of Multi-Layered Polyurethane Foams for Flat-Walled Anechoic Linings

    DEFF Research Database (Denmark)

    Xu, J. F.; Buchholz, Jörg; Fricke, Fergus R.

    2006-01-01

    of the application of multi-layered polyurethane foams as the flat-walled anechoic lining. The investigation includes aspects such as the efficacy of a single layer of material, the minimum number of layers of linings to achieve the minimum overall thickness for low (100Hz), mid (250Hz) and high (500Hz) cut...

  4. Terahertz inline wall thickness monitoring system for plastic pipe extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Hauck, J., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Stich, D., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Heidemeyer, P., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Bastian, M., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Hochrein, T., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de [SKZ - German Plastics Center, Wuerzburg (Germany)

    2014-05-15

    Conventional and commercially available inline wall thickness monitoring systems for pipe extrusion are usually based on ultrasonic or x-ray technology. Disadvantages of ultrasonic systems are the usual need of water as a coupling media and the high damping in thick walled or foamed pipes. For x-ray systems special safety requirements have to be taken into account because of the ionizing radiation. The terahertz (THz) technology offers a novel approach to solve these problems. THz waves have many properties which are suitable for the non-destructive testing of plastics. The absorption of electrical isolators is typically very low and the radiation is non-ionizing in comparison to x-rays. Through the electromagnetic origin of the THz waves they can be used for contact free measurements. Foams show a much lower absorption in contrast to acoustic waves. The developed system uses THz pulses which are generated by stimulating photoconductive switches with femtosecond laser pulses. The time of flight of THz pulses can be determined with a resolution in the magnitude of several ten femtoseconds. Hence the thickness of an object like plastic pipes can be determined with a high accuracy by measuring the time delay between two reflections on materials interfaces e.g. at the pipe's inner and outer surface, similar to the ultrasonic technique. Knowing the refractive index of the sample the absolute layer thickness from the transit time difference can be calculated easily. This method in principle also allows the measurement of multilayer systems and the characterization of foamed pipes.

  5. An approach for characterising cellular polymeric foam structures using computed tomography

    Science.gov (United States)

    Chen, Youming; Das, Raj; Battley, Mark

    2018-02-01

    Global properties of foams depend on foam base materials and microstructures. Characterisation of foam microstructures is important for developing numerical foam models. In this study, the microstructures of four polymeric structural foams were imaged using a micro-CT scanner. Image processing and analysis methods were proposed to quantify the relative density, cell wall thickness and cell size of these foams from the captured CT images. Overall, the cells in these foams are fairly isotropic, and cell walls are rather straight. The measured average relative densities are in good agreement with the actual values. Relative density, cell size and cell wall thickness in these foams are found to vary along the thickness of foam panel direction. Cell walls in two of these foams are found to be filled with secondary pores. In addition, it is found that the average cell wall thickness measured from 2D images is around 1.4 times of that measured from 3D images, and the average cell size measured from 3D images is 1.16 times of that measured from 2D images. The distributions of cell wall thickness and cell size measured from 2D images exhibit lager dispersion in comparison to those measured from 3D images.

  6. Experimental and theoretical study of flowing foam and of the liquid film formed on the wall for the improvement of decontamination processes using foams

    International Nuclear Information System (INIS)

    Pouvreau, J.

    2002-01-01

    Amongst chemical decontamination techniques, the foam cleaning process has the advantage of reducing the amount of liquid used, thus limiting the quantity of the chemical reagents and the secondary waste volume. In order to improve this process, it is essential to understand the behaviour of the foam in the vicinity of the contaminated surface. Two methods of study have been initiated. Firstly, the characterization of the liquid film formed on the wall, and secondly, the characterization of the foam bed. Furthermore, our goal is to set up a drainage model which enables a choice of process parameters. Flush-mounted conductance probes have been developed in order to determine the thickness of the liquid film at the surface and the foam liquid fraction. The influence of the foam on the film structure and the interpretation of the thickness measured is discussed. The process studied consists of filling the facility with foam and letting the foam drain once the facility is full. It was demonstrated that the liquid film thickness varies between a few microns and 50 μm and that the value depends on position and time. Furthermore, a strong correlation links the film thickness and the foam liquid fraction. A drift-flux model has been built to describe the drainage of the upstream flow or static foam. The model is solved by using the method of characteristics. Analytical solutions are obtained and the liquid fraction evolution can easily be represented on a single diagram. The parameters of the void-drift closure law have been deducted from the experiments. The comparison to experimental data has shown that the model is well adapted. The laboratory therefore has experimental and theoretical equipment to study any foam. Finally, the model is applied to realistic decontamination configurations in order to present how determine the parameters of the process. (author) [fr

  7. Foam pad of appropriate thickness can improve diagnostic value of foam posturography in detecting postural instability.

    Science.gov (United States)

    Liu, Bo; Leng, Yangming; Zhou, Renhong; Liu, Jingjing; Liu, Dongdong; Liu, Jia; Zhang, Su-Lin; Kong, Wei-Jia

    2018-04-01

    The present study investigated the effect of foam thickness on postural stability in patients with unilateral vestibular hypofunction (UVH) during foam posturography. Static and foam posturography were performed in 33 patients (UVH group) and 30 healthy subjects (control group) with eyes open (EO) and closed (EC) on firm surface and on 1-5 foam pad(s). Sway velocity (SV) of center of pressure, standing time before falling (STBF) and falls reaction were recorded and analyzed. (1) SVs had an increasing tendency in both groups as the foam pads were added under EO and EC conditions. (2) STBFs, only in UVH group with EC, decreased with foam thickness increasing. (3) Significant differences in SV were found between the control and UVH group with EO (except for standing on firm surface, on 1 and 2 foam pad(s)) and with EC (all surface conditions). (4) Receiver operating characteristic curve analysis showed that the SV could better reflect the difference in postural stability between the two groups while standing on the 4 foam pads with EC. Our study showed that diagnostic value of foam posturography in detecting postural instability might be enhanced by using foam pad of right thickness.

  8. A study on fracture characteristic of aluminum foam by thickness

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Teng [Dept. of Mechanical Engineering, Graduate School, Kongju National University, Kongju (Korea, Republic of); Cho, Jae Ung [Div. of Mechanical and Automotive Engineering, Kongju National University, Kongju (Korea, Republic of)

    2015-10-15

    Because foam metal has the excellent physical characteristics and mechanical performance, they are applied extensively into a lot of advanced technology areas. The aluminum foam with closed cell is one of the foam metals. It is applied widely into automobile and airplane because of the excellent absorption performance of impact energy. In this study, the mechanical characteristics by thickness was analyzed through the impact experiment of closed-cell aluminum foam, and the simulation analysis was performed for the verification. As the simulation analysis method, a finite-element analysis was carried under the same boundary conditions as the experiment by using ANSYS. By comparing with the results of experiment and simulation, it was thought that the case of thickness of 20 mm was the most efficient of among the cases of thicknesses of 10 mm, 20 mm and 30 mm. At the case of thickness of 20 mm, the absorption energy by comparing with the specimen thickness is shown to become the most among three models. By using the result of this study, it is thought that it can apply the material necessary to develop the mechanical structure with aluminum foam.

  9. Reducing wall plasma expansion with gold foam irradiated by laser

    International Nuclear Information System (INIS)

    Zhang, Lu; Ding, Yongkun; Jiang, Shaoen; Yang, Jiamin; Li, Hang; Kuang, Longyu; Lin, Zhiwei; Jing, Longfei; Li, Liling; Deng, Bo; Yuan, Zheng; Chen, Tao; Yuan, Guanghui; Tan, Xiulan; Li, Ping

    2015-01-01

    The experimental study on the expanding plasma movement of low-density gold foam (∼1% solid density) irradiated by a high power laser is reported in this paper. Experiments were conducted using the SG-III prototype laser. Compared to solid gold with 19.3 g/cc density, the velocities of X-ray emission fronts moving off the wall are much smaller for gold foam with 0.3 g/cc density. Theoretical analysis and MULTI 1D simulation results also show less plasma blow-off, and that the density contour movement velocities of gold foam are smaller than those of solid gold, agreeing with experimental results. These results indicate that foam walls have advantages in symmetry control and lowering plasma fill when used in ignition hohlraum

  10. Reducing wall plasma expansion with gold foam irradiated by laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lu; Ding, Yongkun, E-mail: ding-yk@vip.sina.com; Jiang, Shaoen, E-mail: jiangshn@vip.sina.com; Yang, Jiamin; Li, Hang; Kuang, Longyu; Lin, Zhiwei; Jing, Longfei; Li, Liling; Deng, Bo; Yuan, Zheng; Chen, Tao; Yuan, Guanghui; Tan, Xiulan; Li, Ping [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China)

    2015-11-15

    The experimental study on the expanding plasma movement of low-density gold foam (∼1% solid density) irradiated by a high power laser is reported in this paper. Experiments were conducted using the SG-III prototype laser. Compared to solid gold with 19.3 g/cc density, the velocities of X-ray emission fronts moving off the wall are much smaller for gold foam with 0.3 g/cc density. Theoretical analysis and MULTI 1D simulation results also show less plasma blow-off, and that the density contour movement velocities of gold foam are smaller than those of solid gold, agreeing with experimental results. These results indicate that foam walls have advantages in symmetry control and lowering plasma fill when used in ignition hohlraum.

  11. Electromagnetic Shielding Characteristics of Eco-Friendly Foamed Concrete Wall

    Directory of Open Access Journals (Sweden)

    Sung-Sil Cho

    2017-01-01

    Full Text Available The electromagnetic shielding characteristics according to the material composition of foamed concrete, which was manufactured to reduce environmental pollution and to economically apply it in actual building walls, were researched herein. Industrial by-products such as ladle furnace slag (LFS, gypsum, and blast furnace slag (BFS were added to manufacture foamed concrete with enhanced functionalities such as lightweight, heat insulation, and sound insulation. The electrical characteristics such as permittivity and loss tangent according to the foam and BFS content were calculated and measured. Free space measurement was used to measure the electromagnetic shielding characteristics of the actually manufactured foamed concrete. It was confirmed that electromagnetic signals were better blocked when the foam content was low and the BFS content was high in the measured frequency bands (1–8 GHz and that approximately 90% of the electromagnetic signals were blocked over 4 GHz.

  12. Shrinkage deformation of cement foam concrete

    Science.gov (United States)

    Kudyakov, A. I.; Steshenko, A. B.

    2015-01-01

    The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.

  13. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 2: 2x4 Walls

    Energy Technology Data Exchange (ETDEWEB)

    Kochkin, V. [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, J. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2017-06-01

    Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.

  14. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 2: 2x4 Walls

    Energy Technology Data Exchange (ETDEWEB)

    Kochkin, V. [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, J. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2017-08-31

    Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.

  15. Literature Review: An Overview of Epoxy Resin Syntactic Foams with Glass Microballoons

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jennie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-12

    Syntactic foams are an important category of composite materials that have abundant applications in a wide variety of fields. The bulk phase of syntactic foams is a three-part epoxy resin formulation that consists of a base resin, a curative (curing agent) and a modifier (diluent and/or accelerator) [12]. These thermoset materials [12] are used frequently for their thermal stability [9], low moisture absorption and high compressive strength [10]. The characteristic feature of a syntactic foam is a network of beads that forms pores within the epoxy matrix [3]. In this review, hollow glass beads (known as glass microballoons) are considered, however, solid beads or microballoons made from materials such as ceramic, polymer or metal can also be used [3M, Peter]. The network of hollow beads forms a closed-cell foam; the term closed-cell comes from the fact that the microspheres used in the resin matrix are completely closed and filled with gas (termed hollow). In contrast, the microspheres used in open-cell foams are either not completely closed or broken so that matrix material can fill the spheres [11]. Although closed foams have been found to possess higher densities than open cell foams, their rigid structures give them superior mechanical properties [12]. Past research has extensively studied the effects that changing the volume fraction of microballoons to epoxy will have on the resulting syntactic foam [3,4,9]. In addition, published literature also explores how the microballoon wall thickness affects the final product [4,9,10]. Findings detail that indeed both the mechanical and some thermal properties of syntactic foams can be tailored to a specific application by varying either the volume fraction or the wall thickness of the microballoons used [10]. The major trends in syntactic foam research show that microballoon volume fraction has an inversely proportionate relationship to dynamic properties, while microballoon wall thickness is proportional to those

  16. Turbine airfoil with outer wall thickness indicators

    Science.gov (United States)

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  17. Estimation of surface elasticity by the thickness change of liquid film and its correlation with foam stability

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jung Ryoul; Park, Jai Koo [Hanyang University, Seoul (Korea, Republic of)

    1996-04-30

    The relationship between foam stability and surface elasticity by the thickness change of liquid film was investigated. Foam stability was measured by draining liquid volume and decreasing gas volume as a function of time. Foam was formed by the fixed gas-injection the surfactant aqueous solution of different concentration. The used surfactants were sodium lauryl sulfate, hexadecane sulfonic acid sodium salt, and octane sulfonic acid sodium salt. Thickness of liquid film was estimated by using the volume ratio of liquid to gas in foam and surface elasticity of lamella was calculated by the surface tension and adsorbed amount. The thinning of liquid film is due to the combined effects of gravity and capillary suction, it would be ruptured at the minimum of lamella thickness which is called critical thickness. The lamella thickness of bubble which was formed at CMC(critical micelle concentration) was very thin. In the case of sodium lauryl sulfate, the thinning of lamella was continued in the range of measurement. The critical thicknesses of octane sulfonic acid sodium salt solution, hexadecane sulfonic acid sodium salt solution were determined to 0.479{approx}0.316, 0.209{approx}0.200 {mu}m, respectively. It was found that the tendency for foam stability was similar to that of lamella thickness. It was considered that foam which was formed at CMC has very high stability, and the order of foam stability for surfactant aqueous solution was sodium lauryl sulfate > hexadecane sulfonic acid sodium salt > octane sulfonic acid sodium salt. These results was considered that the lamella-rupturing was retarded by the relatively high surface elasticity of lamella. The saturated adsorption of surfactant was determined to 3.25{approx}3.04 * 10{sup -6} mol/m{sup 2} and the surface elasticity of lamella was also determined to 3{approx}56 mN/m. (author). 19 refs., 1 tab., 11 figs.

  18. NUMERICAL ESTIMATION OF EFFECTIVE ELASTIC MODULI OF SYNTACTIC FOAMS REINFORCED BY SHORT GLASS FIBERS

    Directory of Open Access Journals (Sweden)

    Wei Yu

    2016-03-01

    Full Text Available The mechanical properties of hollow glass microsphere/epoxy resin syntactic foams reinforced by short glass fibers are studied using representative volume elements. Both the glass fibers and the hollow glass microspheres exhibit random arrangement in the epoxy resin. The volume fraction and wall thickness of hollow glass microspheres and the volume fraction of glass fibers are considered as parameters. It is observed that the elastic modulus values of syntactic foams decrease with the increase of microsphere volume fraction when the microsphere relative wall thickness is lower. However, it increases with the increase of microsphere volume fraction when the relative wall thickness exceeds a critical value. The elastic modulus value goes through a maximum when the relative wall thickness is around 0.06 at 25 % volume fraction of microspheres. The addition of glass fibers reduces the critical wall thickness values of the microspheres and increases the mechanical properties of the composites. The highest stress lies on the equatorial plane perpendicular to the loading direction. Adding fibers reduces the large stress distribution areas on the microspheres, and the fibers aligned with the loading direction play an important load-bearing role.

  19. Biometric estimation of chest wall thickness of females

    International Nuclear Information System (INIS)

    Berger, C.D.; Lane, B.H.

    1985-01-01

    Optimal use of whole-body counting data to estimate pulmonary deposition of many of the actinides is dependent upon accurate measurement of the thickness of the chest wall because of severe attenuation of low-energy x rays and photons associated with the decay of these radionuclides. An algorithm for estimation of female chest wall thicknesses, verified by real-time ultrasonic measurements, has been derived based on the correlation of measured chest wall thickness and other common biometric quantities. Use of this algorithm will reduce the error generally associated with estimation of internal actinide deposition previously resulting from assuming an average chest wall thickness for all female subjects

  20. Finite element limit loads for non-idealized through-wall cracks in thick-walled pipe

    International Nuclear Information System (INIS)

    Shim, Do-Jun; Han, Tae-Song; Huh, Nam-Su

    2013-01-01

    Highlights: • The lower bound bulging factor of thin-walled pipe can be used for thick-walled pipe. • The limit loads are proposed for thick-walled, transition through-wall cracked pipe. • The correction factors are proposed for estimating limit loads of transition cracks. • The limit loads of short transition cracks are similar to those of idealized cracks. - Abstract: The present paper provides plastic limit loads for non-idealized through-wall cracks in thick-walled pipe. These solutions are based on detailed 3-dimensional finite element (FE) analyses which can be used for structural integrity assessment of nuclear piping. To cover a practical range of interest, the geometric variables and loading conditions affecting the plastic limit loads of thick-walled pipe with non-idealized through-wall cracks were systematically varied. In terms of crack orientation, both circumferential and axial through-wall cracks were considered. As for loading conditions, axial tension, global bending, and internal pressure were considered for circumferential cracks, whereas only internal pressure was considered for axial cracks. Furthermore, the values of geometric factor representing shape characteristics of non-idealized through-wall cracks were also systematically varied. In order to provide confidence in the present FE analyses results, plastic limit loads of un-cracked, thick-walled pipe resulting from the present FE analyses were compared with the theoretical solutions. Finally, correction factors to the idealized through-wall crack solutions were developed to determine the plastic limit loads of non-idealized through-wall cracks in thick-walled pipe

  1. Study of the relationships between nuclear decontamination foams stability and their physicochemical properties

    International Nuclear Information System (INIS)

    Dame, C.

    2006-03-01

    The LPAD (French Atomic Energy Commission) develops innovative processes in the frame of the future dismantling of nuclear facilities. Formulations were developed using high viscosified foams stabilized by biodegradable nonionic surfactants: alkyl poly-glucosides and viscosifiers (xanthan gum), which allow us to increase the foam lifetime and thus contact time of chemical reactants with the facility walls. We have considered the relationships between physicochemical properties and foam stability through the exploration of the foam at three different scales: from the molecular range (micelles, surface tension and visco-elasticity), to the film and Plateau border range (XR reflectivity, surface shear viscosity) and to macroscopic range, meaning the whole foam (foaminess, liquid fraction and wall film thickness evolution). Finally, exploratory study is presented concerning simultaneous foam three scales characterisation by small angle neutron scattering. (author)

  2. Thick domain wall spacetimes with and without reflection symmetry

    International Nuclear Information System (INIS)

    Melfo, Alejandra; Pantoja, Nelson; Skirzewski, Aureliano

    2003-01-01

    We show that different thick domain wall spacetimes, for which the scalar field configuration and the potential are the same, can be found as solutions to the coupled Einstein-scalar field equations, depending on whether or not reflection symmetry on the wall is imposed. Spacetimes with reflection symmetry may be dynamic or static, while the asymmetric ones are static. Asymmetric walls are asymptotically flat on one side and reduce to the Taub spacetime on the other. Examples of asymmetric thick walls in D-dimensional spacetimes are given, and previous analysis on the distributional thin-wall limit of the dynamic symmetric thick walls are extended to the asymmetric case. A new family of reflection symmetric, static thick domain wall spacetimes, including previously known Bogomol'nyi-Prasad-Sommerfield walls, is presented

  3. One-dimensional thermal response modeling of a transuranic foamed overpack system to a fire

    International Nuclear Information System (INIS)

    Suchsland, K.E.; Kwong, K.C.; Fretter, E.F.; Boyd, R.D.; Auerbach, I.; Yoshimura, H.R.

    1980-01-01

    Procedures have been established for modeling the thermal response of TRU container walls (TRUPACT) exposed to a fire environment. The effort included simulation testing and thermal modeling of the wall material. In this study, both testing and modeling were directed at determining a one-dimensional thermal model for undamaged polyurethane foam. The foam was assumed to exist in a nonoxidizing environment and was exposed to an almost step change in surface temperature. Results indicate that if the TRU waste container wall includes a polyurethane foam (64 kg/m 3 density) of thickness greater than 20 cm and the wall is otherwise undamaged, there will be no change in the waste content temperature where the container is subjected to a surface temperature as high as 1333 K for times less than 3600 s. Further improvements are needed in the thermal model to include transpiration, better estimates of the temperature-dependent thermal conductivity, effects of damaged wall structure and radiation absorption effects for the charged foam. 10 figures

  4. Negative pressure wound therapy using polyvinyl alcohol foam to bolster full-thickness mesh skin grafts in dogs.

    Science.gov (United States)

    Or, Matan; Van Goethem, Bart; Kitshoff, Adriaan; Koenraadt, Annika; Schwarzkopf, Ilona; Bosmans, Tim; de Rooster, Hilde

    2017-04-01

    To report the use of negative pressure wound therapy (NPWT) with polyvinyl alcohol (PVA) foam to bolster full-thickness mesh skin grafts in dogs. Retrospective case series. Client-owned dogs (n = 8). Full-thickness mesh skin graft was directly covered with PVA foam. NPWT was maintained for 5 days (in 1 or 2 cycles). Grafts were evaluated on days 2, 5, 10, 15, and 30 for graft appearance and graft take, granulation tissue formation, and complications. Firm attachment of the graft to the recipient bed was accomplished in 7 dogs with granulation tissue quickly filling the mesh holes, and graft take considered excellent. One dog had bandage complications after cessation of the NPWT, causing partial graft loss. The PVA foam did not adhere to the graft or damage the surrounding skin. The application of NPWT with a PVA foam after full-thickness mesh skin grafting in dogs provides an effective method for securing skin grafts, with good graft acceptance. PVA foam can be used as a primary dressing for skin grafts, obviating the need for other interposing materials to protect the graft and the surrounding skin. © 2017 The American College of Veterinary Surgeons.

  5. Testing and modeling the dynamic response of foam materials for blast protection

    Science.gov (United States)

    Fitek, John H.

    The pressure wave released from an explosion can cause injury to the lungs. A personal armor system concept for blast lung injury protection consists of a polymer foam layer behind a rigid armor plate to be worn over the chest. This research develops a method for testing and modeling the dynamic response of foam materials to be used for down-selection of materials for this application. Constitutive equations for foam materials are incorporated into a lumped parameter model of the combined armor plate and foam system. Impact testing and shock tube testing are used to measure the foam model parameters and validate the model response to a pressure wave load. The plate and foam armor model is then coupled to a model of the human thorax. With a blast pressure wave input, the armor model is evaluated based on how it affects the injury-causing mechanism of chest wall motion. Results show that to reduce chest wall motion, the foam must compress at a relatively constant stress level, which requires a sufficient foam thickness.

  6. Enhancement in insulation and mechanical properties of PMMA nanocomposite foams infused with multi-walled carbon nanotubes.

    Science.gov (United States)

    Yeh, Jui-Ming; Chang, Kung-Chin; Peng, Chih-Wei; Lai, Mei-Chun; Hwang, Shyh-Shin; Lin, Hong-Ru; Liou, Shir-Joe

    2011-08-01

    In this study, PMMA/CNTs composite materials with carboxyl-multi walled carbon nanotubes (c-MWNTs) or untreated MWNTs were prepared via in-situ bulk polymerization. The as-prepared PMMA/CNTs composite materials were then characterized by Fourier-Transformation infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The molecular weights of PMMA extracted from PMMA/CNTs composite materials and bulk PMMA were determined by gel permeation chromatography (GPC) with THF used as the eluant. The PMMA/CNTs composite materials were used to produce foams by a batch process in an autoclave using nitrogen as foaming agent. The cellular microstructure, insulation and compressive mechanical properties of PMMA/CNTs composite foams were also investigated in detail. Compared to neat PMMA foam, the presence of CNTs increases in cell density and reduces cell size. The insulation and compressive mechanical properties of PMMA/CNTs composite foams were found to improve substantially those of neat PMMA foam. In particular, 22.6% decrease in thermal conductivity, 19.7% decrease in dielectric constant and 160% increase in compressive modulus were observed with the addition of 0.3 wt% carboxyl-multi walled carbon nanotubes (c-MWNTs).

  7. Bladder wall thickness mapping for magnetic resonance cystography

    International Nuclear Information System (INIS)

    Zhao Yang; Liang Zhengrong; Zhu Hongbin; Han Hao; Yan Zengmin; Duan Chaijie; Lu Hongbing; Gu Xianfeng

    2013-01-01

    Clinical studies have shown evidence that the bladder wall thickness is an effective biomarker for bladder abnormalities. Clinical optical cystoscopy, the current gold standard, cannot show the wall thickness. The use of ultrasound by experts may generate some local thickness information, but the information is limited in field-of-view and is user dependent. Recent advances in magnetic resonance (MR) imaging technologies lead MR-based virtual cystoscopy or MR cystography toward a potential alternative to map the wall thickness for the entire bladder. From a high-resolution structural MR volumetric image of the abdomen, a reasonable segmentation of the inner and outer borders of the bladder wall can be achievable. Starting from here, this paper reviews the limitation of a previous distance field-based approach of measuring the thickness between the two borders and then provides a solution to overcome the limitation by an electric field-based strategy. In addition, this paper further investigates a surface-fitting strategy to minimize the discretization errors on the voxel-like borders and facilitate the thickness mapping on the three-dimensional patient-specific bladder model. The presented thickness calculation and mapping were tested on both phantom and human subject datasets. The results are preliminary but very promising with a noticeable improvement over the previous distance field-based approach. (paper)

  8. Finite element modeling of single-walled carbon nanotubes with introducing a new wall thickness

    International Nuclear Information System (INIS)

    Jalalahmadi, B; Naghdabadi, R

    2007-01-01

    A three-dimensional finite element (FE) model for armchair, zigzag and chiral single-walled carbon nanotubes (SWCNTs) is proposed. By considering the covalent bonds as connecting elements between carbon atoms, a nanotube is simulated as a space frame-like structure. Here, the carbon atoms act as joints of the connecting elements. To create the FE models, nodes are placed at the locations of carbon atoms and the bonds between them are modeled using three-dimensional elastic beam elements. Using Morse atomic potential, the elastic moduli of beam elements are obtained via considering a linkage between molecular and continuum mechanics. Also, a new wall thickness ( bond diameter) equal to 0.1296 nm is introduced. In order to demonstrate the applicability of FE model and new wall thickness, the influence of tube wall thickness, diameter and chirality on the Young's modulus of SWCNTs is investigated. It is found that the choice of wall thickness significantly affects the calculation of Young's modulus. For the values of wall thickness used in the literature, the Young's moduli are estimated which agree very well with the corresponding theoretical results and experimental measurements. We also investigate the dependence of elastic moduli on diameter and chirality of the nanotube. The larger tube diameter, the higher Young's modulus of SWCNT. The Young's modulus of chiral SWCNTs is found to be generally larger than that of armchair and zigzag SWCNTs. The presented results demonstrate that the proposed FE model and wall thickness may provide a valuable tool for studying the mechanical behavior of carbon nanotubes and their application in nano-composites

  9. Ultrasonographic study of gallbladder wall thickness in acute viral hepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jin Sook; Kim, Kyung Jung; Park, Yang Hee; Kang, Ik Won; Yoon, Jong Sup [Hanyang Sacred Heart Hospital, Hallym University Medical Center, Seoul (Korea, Republic of)

    1984-09-15

    Prospective study of gallbladder wall thickness by ultrasonography was performed in 38 patients of acute viral hepatitis and 50 normal subjects as a control group from June 1983 to April 1984. The results were as follows; 1. In normal population, the range of gallbladder wall thickness is from 1 mm to 3 mm with peak incidence in 2 mm (66%, 33 case). Mean thickness of gallbladder wall is about 1.9 {+-} 0.6 mm. 2. In acute viral hepatitis, the range of gallbladder wall thickness is from 2 mm to 8 mm with peak incidence in 3 mm (34%, 13 case), second peak in 4 mm (29%, 11 case). Mean thickness of gallbladder wall is about 3.6 {+-} 1.6 mm, which is thicker than normal with statistical significance. (p<0.005) 3. In acute viral hepatitis, the mean thickness of gallbladder wall is about 4.4 {+-} 1.8 mm in the group of SGOT/SGPT level above 400 IU, and 2.8 {+-} 0.8 mm in the group of SGOT/ SGPT level below 400 IU. This difference is significant statistically. (p<0.05)

  10. Ultrasonographic study of gallbladder wall thickness in acute viral hepatitis

    International Nuclear Information System (INIS)

    Lim, Jin Sook; Kim, Kyung Jung; Park, Yang Hee; Kang, Ik Won; Yoon, Jong Sup

    1984-01-01

    Prospective study of gallbladder wall thickness by ultrasonography was performed in 38 patients of acute viral hepatitis and 50 normal subjects as a control group from June 1983 to April 1984. The results were as follows; 1. In normal population, the range of gallbladder wall thickness is from 1 mm to 3 mm with peak incidence in 2 mm (66%, 33 case). Mean thickness of gallbladder wall is about 1.9 ± 0.6 mm. 2. In acute viral hepatitis, the range of gallbladder wall thickness is from 2 mm to 8 mm with peak incidence in 3 mm (34%, 13 case), second peak in 4 mm (29%, 11 case). Mean thickness of gallbladder wall is about 3.6 ± 1.6 mm, which is thicker than normal with statistical significance. (p<0.005) 3. In acute viral hepatitis, the mean thickness of gallbladder wall is about 4.4 ± 1.8 mm in the group of SGOT/SGPT level above 400 IU, and 2.8 ± 0.8 mm in the group of SGOT/ SGPT level below 400 IU. This difference is significant statistically. (p<0.05)

  11. Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls

    Directory of Open Access Journals (Sweden)

    Omer Kaynakli

    2011-06-01

    Full Text Available Numerous studies have estimated the optimum thickness of thermal insulation materials used in building walls for different climate conditions. The economic parameters (inflation rate, discount rate, lifetime and energy costs, the heating/cooling loads of the building, the wall structure and the properties of the insulation material all affect the optimum insulation thickness. This study focused on the investigation of these parameters that affect the optimum thermal insulation thickness for building walls. To determine the optimum thickness and payback period, an economic model based on life-cycle cost analysis was used. As a result, the optimum thermal insulation thickness increased with increasing the heating and cooling energy requirements, the lifetime of the building, the inflation rate, energy costs and thermal conductivity of insulation. However, the thickness decreased with increasing the discount rate, the insulation material cost, the total wall resistance, the coefficient of performance (COP of the cooling system and the solar radiation incident on a wall. In addition, the effects of these parameters on the total life-cycle cost, payback periods and energy savings were also investigated.

  12. Load bearing capacity of welded joints between dissimilar pipelines with unequal wall thickness

    Energy Technology Data Exchange (ETDEWEB)

    Beak, Jonghyun; Kim, Youngpyo; Kim, Woosik [Korea Gas Corporation, Suwon (Korea, Republic of)

    2012-09-15

    The behavior of the load bearing capacity of a pipeline with unequal wall thickness was evaluated using finite element analyses. Pipelines with a wall thickness ratio of 1.22-1.89 were adopted to investigate plastic collapse under tensile, internal pressure, or bending stress. A parametric study showed that the tensile strength and moment of a pipeline with a wall thickness ratio less than 1.5 were not influenced by the wall thickness ratio and taper angle; however, those of a pipeline with a wall thickness ratio more than 1.5 decreased considerably at a low taper angle. The failure pressure of a pipeline with unequal wall thickness was not influenced by the wall thickness ratio and taper angle.

  13. Preparation and properties of polymer foams for ICF targets

    International Nuclear Information System (INIS)

    Letts, S.A.; Lucht, L.M.

    1986-09-01

    Low density small cell sized foams were developed to localize the liquid DT layer in a direct drive wetted foam laser fusion target. We have developed foams made from ultrahigh molecular weight polyethylene gels and polystyrene inverse emulsions. Materials in the density range of from 0.020 to 0.300 g/cc were prepared and characterized for cell size, mechanical properties, machinability, specific surface area, and wetting. Foams with a density of 0.05 g/cc were made with a cell size of less than 5 μm. A cell structure model was developed which relates the density and specific surface area to cell size and cell wall thickness. Wetting tests in organic solvents and in liquid hydrogen were used to characterize the capillary pressure, pore structure and uniformity of the foams. 13 refs., 9 figs., 2 tabs

  14. Wall thickness of major coronary arteries in Pakistani population

    International Nuclear Information System (INIS)

    Ullah, Q.W.; Qamar, K.; Butt, S.A.; Butt, S.A.

    2012-01-01

    To measure the wall thickness of major coronary arteries in Pakistani population, through micrometry. Study design: An observational study. Place and duration of study: Combined Military Hospital Rawalpindi, Khyber Medical College Peshawar and District Headquarter Hospital, Rawalpindi, in collaboration with Departments of Anatomy and Pathology, Army Medical College Rawalpindi. The duration of study was six months with effect from September 2009 to March 2010. Material and methods: After incising pericardium, 1 mm long segments of major coronary arteries i.e. right coronary artery (RCA), left anterior descending artery (LAD) and left circumflex artery (LCX) were taken 1cm distal to their origin, from adult male cadavers of up to 40 years age. After processing for paraffin embedding, 5 mu m thick sections were prepared, mounted on glass slides and subsequently stained with Hematoxylin and Eosin (H and E) for routine histological study. Verhoeff's elastic stain was used to make the elastic lamina more prominent. Wall thickness for each section was measured through micrometry, circumferentially at eight different places along the planes at 45 deg. to each other and then their mean taken as a reading for the respective artery. Results: The total wall thickness of major coronary arteries and of the individual tunicae was less in Pakistani population. The mean thickness of RCA was 0.61 +- 0.05 mm; LAD had mean thickness of 0.55 +- 0.06 mm whereas that of LCX was 0.66 +- 0.13 mm. The mean thickness of tunica intima of RCA was noted to be 0.230 +- 0.044 mm; tunica media measured 0.205 +- 0.031 mm whereas tunica adventitia was 0.172 +- 0.023 mm thick. The mean thickness of tunica intima of LAD measured 0.156 +- 0.032 mm; tunica media was observed to be 0.224 +- 0.026 mm thick whereas the tunica adventitia was 0.170 +- 0.032 mm thick. The mean thickness of tunica intima of LCX was observed to be 0.203 +- 0.059 mm; tunica media to be 0.282 +- 0.097 mm whereas that of tunica

  15. Vesicular thick-walled swollen hyphae in pulmonary zygomycosis.

    Science.gov (United States)

    Kimura, Masatomo; Ito, Hiroyuki

    2009-03-01

    An autopsy case of pulmonary zygomycosis in a patient with rheumatoid arthritis on immunosuppressive therapy is presented herein. There was a pulmonary cavitated infarct caused by mycotic thrombosis. Thin-walled narrow hyphae and vesicular thick-walled swollen hyphae were found on the pleural surface and in the necrotic tissue at the periphery of the cavity. Findings of such shaped fungal elements may cause erroneous histopathological diagnosis because pauciseptate broad thin-walled hyphae are usually the only detectable fungal elements in zygomycosis tissue. Although immunohistochemistry confirmed these unusual elements to be zygomycetous in the present case, it is important for the differential diagnosis to be aware that zygomycetes can form thin narrow hyphae and vesicular thick-walled swollen hyphae.

  16. Mortality by Level of Emphysema and Airway Wall Thickness

    DEFF Research Database (Denmark)

    Johannessen, Ane; Skorge, Trude Duelien; Bottai, Matteo

    2013-01-01

    There is limited knowledge of the prognostic value of quantitative computed tomography (CT) measures of emphysema and airway wall thickness (AWT) on mortality.......There is limited knowledge of the prognostic value of quantitative computed tomography (CT) measures of emphysema and airway wall thickness (AWT) on mortality....

  17. Applications of Polymer Matrix Syntactic Foams

    Science.gov (United States)

    Gupta, Nikhil; Zeltmann, Steven E.; Shunmugasamy, Vasanth Chakravarthy; Pinisetty, Dinesh

    2013-11-01

    A collection of applications of polymer matrix syntactic foams is presented in this article. Syntactic foams are lightweight porous composites that found their early applications in marine structures due to their naturally buoyant behavior and low moisture absorption. Their light weight has been beneficial in weight sensitive aerospace structures. Syntactic foams have pushed the performance boundaries for composites and have enabled the development of vehicles for traveling to the deepest parts of the ocean and to other planets. The high volume fraction of porosity in syntactic foams also enabled their applications in thermal insulation of pipelines in oil and gas industry. The possibility of tailoring the mechanical and thermal properties of syntactic foams through a combination of material selection, hollow particle volume fraction, and hollow particle wall thickness has helped in rapidly growing these applications. The low coefficient of thermal expansion and dimensional stability at high temperatures are now leading their use in electronic packaging, composite tooling, and thermoforming plug assists. Methods have been developed to tailor the mechanical and thermal properties of syntactic foams independent of each other over a wide range, which is a significant advantage over other traditional particulate and fibrous composites.

  18. Average chest wall thickness at two anatomic locations in trauma patients.

    Science.gov (United States)

    Schroeder, Elizabeth; Valdez, Carrie; Krauthamer, Andres; Khati, Nadia; Rasmus, Jessica; Amdur, Richard; Brindle, Kathleen; Sarani, Babak

    2013-09-01

    Needle thoracostomy is the emergent treatment for tension pneumothorax. This procedure is commonly done using a 4.5cm catheter, and the optimal site for chest wall puncture is controversial. We hypothesize that needle thoracostomy cannot be performed using this catheter length irrespective of the site chosen in either gender. A retrospective review of all chest computed tomography (CT) scans obtained on trauma patients from January 1, 2011 to December 31, 2011 was performed. Patients aged 18 and 80 years were included and patients whose chest wall thickness exceeded the boundary of the images acquired were excluded. Chest wall thickness was measured at the 2nd intercostal (ICS), midclavicular line (MCL) and the 5th ICS, anterior axillary line (AAL). Injury severity score (ISS), chest wall thickness, and body mass index (BMI) were analyzed. 201 patients were included, 54% male. Average (SD) BMI was 26 (7)kg/m(2). The average chest wall thickness in the overall cohort was 4.08 (1.4)cm at the 2nd ICS/MCL and 4.55 (1.7)cm at the 5th ICS/AAL. 29% of the overall cohort (27 male and 32 female) had a chest wall thickness greater than 4.5cm at the 2nd ICS/MCL and 45% (54 male and 36 female) had a chest wall thickness greater than 4.5cm at the 5th ICS/AAL. There was no significant interaction between gender and chest wall thickness at either site. BMI was positively associated with chest wall thickness at both the 2nd and 5th ICS/AAL. A 4.5cm catheter is inadequate for needle thoracostomy in most patients regardless of puncture site or gender. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Clad vent set cup open end (closure weld zone) wall-thickness study

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, G.B.; Sherrill, M.W.

    1994-09-01

    The wall thickness at the open end of Clad Vent Set (CVS) cups is a very important parameter for maintaining control of the fueled CVS closure weld process. Ideally, the wall thickness in the closure weld zone should be constant. The DOP-26 iridium alloy is very difficult to machine; therefore, key dimensional features are established during the two-draw warm-forming operation. Unfortunately, anisotropy in the forming blanks produces four ears at the open end of each cup. Formation of these ears produces axial and circumferential variations in wall thickness. The cup certification requirement is that the wall thickness in the closure weld zone, defined as the 2.5-mm band at the open end of a cup, measure from 0.63 to 0.73 mm. The wall thickness certification data for the open end of the CVS cups have been statistically evaluated. These data show that the cups recently produced for the Cassini mission have well-controlled open-end wall thicknesses.

  20. Sonographic Measurement of AP Diameter and Wall Thickness of the Gallbladder

    International Nuclear Information System (INIS)

    Chung, S.K.; Lee, J. S.; Huh, S. J.; Baek, I. S.

    1982-01-01

    Call bladder size and wall thickness are important in the assessment of the pathologic condition. Authors have measured AP diameter of gallbladder and evaluated the change of all thickness between fasting and postprandial state. The results were as follows: 1. The mean of AP diameter was 2.18+0.49cm 2. The wall thickness was 2.7+0.6mm in fasting state and 3.3+0.8mm after meal. 3. The increase of wall thickness after fat meal was significant statistically(p<.001)

  1. Quantitative estimation of myocardial thickness by the wall thickness map with Tl-201 myocardial SPECT and its clinical use

    International Nuclear Information System (INIS)

    Sekiai, Yasuhiro; Sawai, Michihiko; Murayama, Susumu

    1988-01-01

    To estimate the wall thickness of left ventricular myocardium objectively and quantitatively, we adopted the device of wall thickness map (WTM) with Tl-201 myocardial SPECT. For validation on measuring left ventricular wall thickness with SPECT, fundamental studies were carried out with phantom models, and clinical studies were performed in 10 cases comparing the results from SPECT with those in echocardiography. To draw the WTM, left ventricular wall thickness was measured using the cut off method from SPECT images obtained at 5.6 mm intervals from the base and middle of left ventricle: short-axis image for the base and middle of left ventricle and vertical and horizontal long-axis images for the apical region. Wall thickness was defined from the number of pixel above the cut off level. Results of fundamental studies disclosed that it is impossible to evaluate the thickness of less than 10 mm by Tl-201 myocardial SPECT but possible to discriminate wall thickness of 10 mm, 15 mm, and 20 mm by Tl-201 myocardial SPECT. Echocardiographic results supported the validity of WTM, showing a good linear correlation (r = 0.96) between two methods on measuring wall thickness of left ventricle. We conclude that the WTM applied in this report may be useful for objective and quantitative estimation of myocardial hypertrophy. (author)

  2. Revisited the mathematical derivation wall thickness measurement of pipe for radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hamzah, A.R.; Amir, S.M.M. [Non Destructive Testing(NDT) Group, Industrial Technology Div., Malaysian Nuclear Agency, Selangor (Malaysia)

    2007-07-01

    Wall thickness measurement of pipe is very important of the structural integrity of the industrial plant. However, the radiography method has an advantage because the ability of penetrating the insulated pipe. This will have economic benefit for industry. Moreover, the era of digital radiography has more advantages because the speed of radiographic work, less exposure time and no chemical used for film development. Either the conventional radiography or digital radiology, the wall thickness measurement is using the tangential radiography technique (TRT). In case, of a large diameter, pipe (more than inches) the determination maximum penetration wall thickness must be taken into the consideration. This paper is revisited the mathematical derivation of the determination of wall thickness measurement based on tangential radiography technique (TRT). The mathematical approach used in this derivation is the Pythagoras theorem and geometrical principles. In order to derive the maximum penetration wall thickness a similar approach is used. (authors)

  3. Increased Bladder Wall Thickness in Diabetic and Nondiabetic Women With Overactive Bladder

    Directory of Open Access Journals (Sweden)

    Hakkı Uzun

    2013-06-01

    Full Text Available Purpose: Bladder wall thickness has been reported to be associated with overactive bladder (OAB in women. Diabetic women have an increased risk for OAB syndrome and may have an increased risk for bladder wall thickness. Methods: A total of 235 female patients aged 40 to 75 years were categorized into four groups. The first group consisted of women free of urgency or urge urinary incontinence. The second group included nondiabetic women with idiopathic OAB. The third group consisted of women with diabetes and clinical OAB, and women with diabetes but without OAB constituted the fourth group. Bladder wall thickness at the anterior wall was measured by ultrasound by the suprapubic approach with bladder filling over 250 mL. Results: The diabetic (third group and nondiabetic (second group women with OAB had significantly greater bladder wall thickness at the anterior bladder wall than did the controls. However, the difference was not significant between the diabetic (third group and the nondiabetic (second group women with OAB. Women with diabetes but without OAB (fourth group had greater bladder wall thickness than did the controls but this difference was not significant. Additionally, the difference in bladder wall thickness between diabetic women with (third group and without (fourth group OAB was not significant. Conclusions: This is the first study to show that bladder wall thickness is increased in diabetic women with and without OAB. Additionally, nondiabetic women with OAB had increased bladder wall thickness. Further studies may provide additional information for diabetic and nondiabetic women with OAB, in whom the etiopathogenesis of the disease may be similar.

  4. Gastric wall thickness and stapling in laparoscopic sleeve gastrectomy - a literature review.

    Science.gov (United States)

    Barski, Krzysztof; Binda, Artur; Kudlicka, Emilia; Jaworski, Paweł; Tarnowski, Wiesław

    2018-03-01

    Despite the growing experience of bariatric surgeons in performing laparoscopic sleeve gastrectomy, the number of complications involving staple line leaks remains constant. Hence a solution to avoid such complications is still sought. A defect of the staple line may be the consequence of an inappropriate choice of staple size in relation to gastric wall thickness. Due to the variable nature of gastric wall thickness, the choice of proper staple height is not obvious. In the few studies in which gastric wall thickness was measured, it was observed to decrease gradually from the antrum to the fundus. However, the authors are divided on the issue of whether gender and body mass index influence gastric wall thickness. The question whether there are other perioperative factors that would allow gastric wall thickness to be predicted remains unanswered.

  5. Image-based correlation between the meso-scale structure and deformation of closed-cell foam

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yongle, E-mail: yongle.sun@manchester.ac.uk [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom); Zhang, Xun [Henry Moseley X-ray Imaging Facility, School of Materials, The University of Manchester, Upper Brook Street, Manchester M13 9PL (United Kingdom); Shao, Zhushan [School of Civil Engineering, Xi' an University of Architecture & Technology, Xi' an 710055 (China); Li, Q.M. [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2017-03-14

    In the correlation between structural parameters and compressive behaviour of cellular materials, previous studies have mostly focused on averaged structural parameters and bulk material properties for different samples. This study focuses on the meso-scale correlation between structure and deformation in a 2D foam sample generated from a computed tomography slice of Alporas™ foam, for which quasi-static compression was simulated using 2D image-based finite element modelling. First, a comprehensive meso-scale structural characterisation of the 2D foam was carried out to determine the size, aspect ratio, orientation and anisotropy of individual cells, as well as the length, straightness, inclination and thickness of individual cell walls. Measurements were then conducted to obtain the axial distributions of local structural parameters averaged laterally to compression axis. Second, the meso-scale deformation was characterised by cell-wall strain, cell area ratio, digital image correlation strain and local compressive engineering strain. According to the results, the through-width sub-regions over an axial length between the average (lower bound) and the maximum (upper bound) of cell size should be used to characterise the meso-scale heterogeneity of the cell structure and deformation. It was found that the first crush band forms in a sub-region where the ratio of cell-wall thickness to cell-wall length is a minimum, in which the collapse deformation is dominated by the plastic bending and buckling of cell walls. Other morphological parameters have secondary effect on the initiation of crush band in the 2D foam. The finding of this study suggests that the measurement of local structural properties is crucial for the identification of the “weakest” region which determines the initiation of collapse and hence the corresponding collapse load of a heterogeneous cellular material.

  6. Image-based correlation between the meso-scale structure and deformation of closed-cell foam

    International Nuclear Information System (INIS)

    Sun, Yongle; Zhang, Xun; Shao, Zhushan; Li, Q.M.

    2017-01-01

    In the correlation between structural parameters and compressive behaviour of cellular materials, previous studies have mostly focused on averaged structural parameters and bulk material properties for different samples. This study focuses on the meso-scale correlation between structure and deformation in a 2D foam sample generated from a computed tomography slice of Alporas™ foam, for which quasi-static compression was simulated using 2D image-based finite element modelling. First, a comprehensive meso-scale structural characterisation of the 2D foam was carried out to determine the size, aspect ratio, orientation and anisotropy of individual cells, as well as the length, straightness, inclination and thickness of individual cell walls. Measurements were then conducted to obtain the axial distributions of local structural parameters averaged laterally to compression axis. Second, the meso-scale deformation was characterised by cell-wall strain, cell area ratio, digital image correlation strain and local compressive engineering strain. According to the results, the through-width sub-regions over an axial length between the average (lower bound) and the maximum (upper bound) of cell size should be used to characterise the meso-scale heterogeneity of the cell structure and deformation. It was found that the first crush band forms in a sub-region where the ratio of cell-wall thickness to cell-wall length is a minimum, in which the collapse deformation is dominated by the plastic bending and buckling of cell walls. Other morphological parameters have secondary effect on the initiation of crush band in the 2D foam. The finding of this study suggests that the measurement of local structural properties is crucial for the identification of the “weakest” region which determines the initiation of collapse and hence the corresponding collapse load of a heterogeneous cellular material.

  7. Influence of slice thickness on the determination of left ventricular wall thickness and dimension by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Shusaku; Fukui, Sugao; Atsumi, Chisato and others

    1989-02-01

    Wall thickness of the ventricular septum and left ventricle, and left ventricular cavity dimension were determined on magnetic resonance (MR) images with slices 5 mm and 10 mm in thickness. Subjects were 3 healthy volunteers and 7 patients with hypertension (4), hypertrophic cardiomyopathy (one) or valvular heart disease (2). In visualizing the cardiac structures such as left ventricular papillary muscle and right and left ventricles, 5 mm-thick images were better than 10 mm-thick images. Edges of ventricular septum and left ventricular wall were more clearly visualized on 5 mm-thick images than 10 mm-thick images. Two mm-thick MR images obtained from 2 patients yielded the most excellent visualization in end-systole, but failed to reveal cardiac structures in detail in end-diastole. Phantom studies revealed no significant differences in image quality of 10 mm and 5 mm in thickness in the axial view 80 degree to the long axis. In the axial view 45 degree to the long axis, 10 mm-thick images were inferior to 5 mm-thick images in detecting the edge of the septum and the left ventricular wall. These results indicate that the selection of slice thickness is one of the most important determinant factors in the measurement of left ventricular wall thickness and cavity dimension. (Namekawa, K).

  8. Influence of slice thickness on the determination of left ventricular wall thickness and dimension by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ohnishi, Shusaku; Fukui, Sugao; Atsumi, Chisato

    1989-01-01

    Wall thickness of the ventricular septum and left ventricle, and left ventricular cavity dimension were determined on magnetic resonance (MR) images with slices 5 mm and 10 mm in thickness. Subjects were 3 healthy volunteers and 7 patients with hypertension (4), hypertrophic cardiomyopathy (one) or valvular heart disease (2). In visualizing the cardiac structures such as left ventricular papillary muscle and right and left ventricles, 5 mm-thick images were better than 10 mm-thick images. Edges of ventricular septum and left ventricular wall were more clearly visualized on 5 mm-thick images than 10 mm-thick images. Two mm-thick MR images obtained from 2 patients yielded the most excellent visualization in end-systole, but failed to reveal cardiac structures in detail in end-diastole. Phantom studies revealed no significant differences in image quality of 10 mm and 5 mm in thickness in the axial view 80 degree to the long axis. In the axial view 45 degree to the long axis, 10 mm-thick images were inferior to 5 mm-thick images in detecting the edge of the septum and the left ventricular wall. These results indicate that the selection of slice thickness is one of the most important determinant factors in the measurement of left ventricular wall thickness and cavity dimension. (Namekawa, K)

  9. Morphological comparison of PVA scaffolds obtained by gas foaming and microfluidic foaming techniques.

    Science.gov (United States)

    Colosi, Cristina; Costantini, Marco; Barbetta, Andrea; Pecci, Raffaella; Bedini, Rossella; Dentini, Mariella

    2013-01-08

    In this article, we have exploited a microfluidic foaming technique for the generation of highly monodisperse gas-in-liquid bubbles as a templating system for scaffolds characterized by an ordered and homogeneous porous texture. An aqueous poly(vinyl alcohol) (PVA) solution (containing a surfactant) and a gas (argon) are injected simultaneously at constant flow rates in a flow-focusing device (FFD), in which the gas thread breaks up to form monodisperse bubbles. Immediately after its formation, the foam is collected and frozen in liquid nitrogen, freeze-dried, and cross-linked with glutaraldehyde. In order to highlight the superior morphological quality of the obtained porous material, a comparison between this scaffold and another one, also constituted of PVA but obtained with a traditional gas foaming technique, was carried out. Such a comparison has been conducted by analyzing electron microscopy and X-ray microtomographic images of the two samples. It turned out that the microfluidic produced scaffold was characterized by much more uniform porous texture than the gas-foaming one as witnessed by narrower pore size, interconnection, and wall thickness distributions. On the other side, scarce pore interconnectivity, relatively low pore volume, and limited production rate represent, by now, the principal disadvantages of microfluidic foaming as scaffold fabrication method, emphasizing the kind of improvement that this technique needs to undergo.

  10. Studying energy absorption in tapered thick walled tubes

    Directory of Open Access Journals (Sweden)

    P. Hosseini Tehrani

    Full Text Available In many engineering structures different energy absorption systems may be used to improve crashworthiness capability of the system and to control damages that may occur in a system during an accident. Therefore, extensive research has been done on the energy-absorbing cells. In this paper, energy absorption in tapered thick walled tubes has been investigated. As a practical case, studies have been focused on the crush element of Siemens ER24PC locomotive. To investigate performance of this part at collision time, it has been modeled in Abaqus software and its collision characteristics have been evaluated. Considering that the crash element is folded at time of collision, an analytical approach has been presented for calculation of instantaneous folding force under axial load. Basis of this method is definition and analysis of main folding mechanism and calculation of average folding force. This method has been used for validation of the results of numerical solution. Since sheet thickness of the crash element is high and may be ruptured at time of collision, some damage models have been used for numerical simulations. One of the three damage models used in this paper is available in the software and coding has been done for two other damage models and desirable damage model has been specified by comparing results of numerical solution with results of laboratory test. In addition, authenticity of the desirable damage model has been studied through ECE R 66 standard. To improve crashworthiness characteristic some attempts, such as use of metal foam and creation of trigger in suitable situations to reduce maximum force resulting from collision, have been performed. Finally though different simulation optimal crush element has been introduced and its performance and efficiency have been evaluated.

  11. Foam Core Particleboards with Intumescent FRT Veneer: Cone Calorimeter Testing With Varying Adhesives, Surface Layer Thicknesses, and Processing Conditions

    Science.gov (United States)

    Mark A. Dietenberger; Johannes Welling; Ali Shalbafan

    2014-01-01

    Intumescent FRT Veneers adhered to the surface of foam core particleboard to provide adequate fire protection were evaluated by means of cone calorimeter tests (ASTM E1354). The foam core particleboards were prepared with variations in surface layer treatment, adhesives, surface layer thicknesses, and processing conditions. Ignitability, heat release rate profile, peak...

  12. Compressibility and phase contrast imaging of a irradiated polyurethane foam blocks

    International Nuclear Information System (INIS)

    Naik, Y.; Kulkarni, S.G.; Manjunath, B.S.; Patel, R.J.; Agarwal, A.K.; Kashyap, Y.; Sinha, A.

    2013-01-01

    Polyurethane foam was prepared with a view to use them as a protective enclosure for radioactive material transport package against accidental mechanical shock and fire. The foam samples were prepared by mixing the polyol premixed with additives such as water as blowing agent, melamine polyphosphate as a flame retardants (FR) and catalyst with isocynate keeping NCO/OH ratio as 1.1. It was observed that the irradiation of the foam results in cross linking leading to increased wall thickness and shrinkage of cellular structure. This leads to increased strain around the foam bubble. Increased exposure to gamma rays to higher doses results in reptures at the cellular boundary connecting the bubble structure, leading to decreased mechanical strength. This leads again to increase in deformation seen in the 15 and 20 kGy irradiated samples

  13. Observation of normal appearance and wall thickness of esophagus on CT images

    International Nuclear Information System (INIS)

    Xia Fan; Mao Jingfang; Ding Jinquan; Yang Huanjun

    2009-01-01

    Purpose: This study sought to observe the appearance of normal esophagus, measure and record the thickness of esophageal wall in order to offer reference for estimating esophageal wall abnormalities and delineating gross tumor target of esophageal carcinomas on CT images. Materials and methods: From September 2006 to February 2007, 110 consecutive CT films from adult patients without esophageal diseases were collected and studied. On CT images the entire esophagus was divided into cervical, thoracic, retrocardiac and intraabdominal segments. The appearance of esophagus was described when the esophagus contracted or dilated. Thickness of esophageal wall and diameters of esophageal cavities were measured by hard-copy reading with a magnifying glass. Age, sex and the thickness of subcutaneous fat of each patient were recorded. Results: It was observed that the esophagus presented both contracted and dilated status on CT images. In each segment there were certain portions of esophagus in complete contraction or dilatation. 47 images (42.7%) showed contracted esophagus in each segment available for measurement. The largest wall thickness when esophagus was in contraction and dilatation was 4.70 (95%CI: 4.44-4.95) mm and 2.11 (95%CI: 2.00-2.23) mm, respectively. When contracting, the intraabdominal esophagus was thicker than the cervical, thoracic and retrocardiac parts, and the average thickness was 5.68 (95%CI: 5.28-6.09) mm, 4.67 (95%CI: 4.36-4.86) mm, 4.56 (95%CI: 4.31-4.87) mm, and 4.05 (95%CI: 3.71-4.21) mm, respectively. When the esophagus was dilating, the average esophageal wall thickness was between 1.87 and 2.70 mm. The thickest part was cervical esophagus. Thickness of esophageal wall was larger in males than that of females (5.26 mm vs. 4.34 mm p < 0.001). Age and the thickness of subcutaneous fat had no significant impact on the thickness of esophageal wall (p-value was 0.056 and 0.173, respectively). Conclusion: The Observation of normal appearance and

  14. The influence of fiber thickness, wall thickness and gap distance on the spiral nanofibrous scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    Wang Junping; Shah, Ami; Yu Xiaojun

    2011-01-01

    We have developed a 3D nanofibrous spiral scaffold for bone tissue engineering which has shown enhanced cell attachment, proliferation and differentiation compared to traditional cylindrical scaffolds due to the spiral structures and the nanofiber incorporation. Some important parameters of these spiral scaffolds including gap distance, wall thickness and especially fiber thickness are crucial to the performance of the spiral structured scaffolds. In this study, we investigated the fiber thickness, gap distance and wall thickness of the spiral structure on the behavior of osteoblast cells. The human osteoblast cells are seeded on spiral structured scaffolds with various fiber thickness, gap distance and wall thickness and cell attachment, proliferation, differentiation and mineralized matrix deposition on the scaffolds are evaluated. It was found that increasing the thickness of nanofiber layer not only limited the cell infiltration into the scaffolds, but also restrained the osteoblastic cell phenotype development. Moreover, the geometric effect studies indicated that scaffolds with the thinner wall and gap distance 0.2 mm show the best bioactivity for osteoblasts.

  15. Methods for determining the wall thickness variation of tubular heaters used in thermalhydraulic studies

    International Nuclear Information System (INIS)

    Cubizolles, G.; Garnier, J.; Groeneveld, D.; Tanase, A.

    2009-01-01

    Fuel bundle simulators used in thermalhydraulic studies typically consist of bundles of directly heated tubes. It is usually assumed that the heater tubes have a uniform circumferential heat flux distribution. In practice, this heat flux distribution is never exactly uniform because of wall thickness variations and bore eccentricity. Ignoring the non-uniformity in wall thickness can lead to under-estimating the local heat transfer coefficients. During nucleate boiling tests in a 5x5 PWR-type bundle subassembly at CEA-Grenoble, a sinusoidal temperature distribution was observed around the inside circumference of the heater rods. These heater rods were equipped with high-accuracy sliding thermocouple probes that permit the detailed measurement of the internal wall temperature distribution, both axially and circumferentially. The sinusoidal temperature distribution strongly suggests a variation in wall thickness. A methodology was subsequently derived to determine the circumferential wall thickness variation. The method is based on the principle that for directly heated fuel-element simulators, the nucleate boiling wall superheat at high pressures is nearly uniform around the heater rod circumference. The results show wall thickness variations of up to ±4% which was confirmed by subsequent ultrasonic wall-thickness measurements performed after bundle disassembly. Non-uniformities in circumferential temperature distributions were also observed during parallel thermalhydraulic tests at the University of Ottawa (UofO) on an electrically heated tube cooled internally by R-134a and equipped with fixed thermocouples on the outside. From the measured wall temperatures and knowledge of the inside heat transfer coefficient or wall temperature distribution, the variations in wall thickness and surface heat flux to the coolant were evaluated by solving conduction equations using three separate sets of data (1) single phase heat transfer data, (2) nucleate boiling data, and (3

  16. Pipe Wall Thickness Monitoring Using Dry-Coupled Ultrasonic Waveguide Technique

    International Nuclear Information System (INIS)

    Cheong, Yong Moo; Kim, Ha Nam; Kim, Hong Pyo

    2012-01-01

    In order to monitor a corrosion or FAC (Flow Accelerated Corrosion) in a pipe, there is a need to measure pipe wall thickness at high temperature. Ultrasonic thickness gauging is the most commonly used non-destructive testing technique for wall thickness measurement. However, current commonly available ultrasonic transducers cannot withstand high temperatures, such as above 200 .deg. C. It is therefore necessary to carry out manual measurements during plant shutdowns. The current method thus reveals several disadvantages: inspection have to be performed during shutdowns with the possible consequences of prolonging down time and increasing production losses, insulation has to be removed and replaced for each manual measurement, and scaffolding has to be installed to inaccessible areas, resulting in considerable cost for interventions. It has been suggested that a structural health monitoring approach with permanently installed ultrasonic thickness gauges could have substantial benefits over current practices. The main reasons why conventional piezoelectric ultrasonic transducers cannot be used at high temperatures are that the piezo-ceramic becomes depolarized at temperature above the Curie temperature and because differential thermal expansion of the substrate, couplant, and piezoelectric materials cause failure. In this paper, a shear horizontal waveguide technique for wall thickness monitoring at high temperature is investigated. Two different designs for contact to strip waveguide are shown and the quality of output signal is compared and reviewed. After a success of acquiring high quality ultrasonic signal, experiment on the wall thickness monitoring at high temperature is planned

  17. Reliability assessment for thickness measurements of pipe wall using probability of detection

    International Nuclear Information System (INIS)

    Nakamoto, Hiroyuki; Kojima, Fumio; Kato, Sho

    2013-01-01

    This paper proposes a reliability assessment method for thickness measurements of pipe wall using probability of detection (POD). Thicknesses of pipes are measured by qualified inspectors with ultrasonic thickness gauges. The inspection results are affected by human factors of the inspectors and include some errors, because the inspectors have different experiences and frequency of inspections. In order to ensure reliability for inspection results, first, POD evaluates experimental results of pipe-wall thickness inspection. We verify that the results have differences depending on inspectors including qualified inspectors. Second, two human factors that affect POD are indicated. Finally, it is confirmed that POD can identify the human factors and ensure reliability for pipe-wall thickness inspections. (author)

  18. Accuracy of thick-walled hollows during piercing on three-high mill

    International Nuclear Information System (INIS)

    Potapov, I.N.; Romantsev, B.A.; Shamanaev, V.I.; Popov, V.A.; Kharitonov, E.A.

    1975-01-01

    The results of investigations are presented concerning the accuracy of geometrical dimensions of thick-walled sleeves produced by piercing on a 100-ton trio screw rolling mill MISiS with three schemes of fixing and centering the rod. The use of a spherical thrust journal for the rod and of a long centering bushing makes it possible to diminish the non-uniformity of the wall thickness of the sleeves by 30-50%. It is established that thick-walled sleeves with accurate geometrical dimensions (nonuniformity of the wall thickness being less than 10%) can be produced if the system sleeve - mandrel - rod is highly rigid and the rod has a two- or three-fold stability margin over the length equal to that of the sleeve being pierced. The process of piercing is expedient to be carried out with increased angles of feed (14-16 deg). Blanks have been made from steel 12Kh1MF

  19. Fluid-Structure Simulations of a Ruptured Intracranial Aneurysm: Constant versus Patient-Specific Wall Thickness

    Directory of Open Access Journals (Sweden)

    S. Voß

    2016-01-01

    Full Text Available Computational Fluid Dynamics is intensively used to deepen the understanding of aneurysm growth and rupture in order to support physicians during therapy planning. However, numerous studies considering only the hemodynamics within the vessel lumen found no satisfactory criteria for rupture risk assessment. To improve available simulation models, the rigid vessel wall assumption has been discarded in this work and patient-specific wall thickness is considered within the simulation. For this purpose, a ruptured intracranial aneurysm was prepared ex vivo, followed by the acquisition of local wall thickness using μCT. The segmented inner and outer vessel surfaces served as solid domain for the fluid-structure interaction (FSI simulation. To compare wall stress distributions within the aneurysm wall and at the rupture site, FSI computations are repeated in a virtual model using a constant wall thickness approach. Although the wall stresses obtained by the two approaches—when averaged over the complete aneurysm sac—are in very good agreement, strong differences occur in their distribution. Accounting for the real wall thickness distribution, the rupture site exhibits much higher stress values compared to the configuration with constant wall thickness. The study reveals the importance of geometry reconstruction and accurate description of wall thickness in FSI simulations.

  20. Electrical conductivity and electromagnetic interference shielding of epoxy nanocomposite foams containing functionalized multi-wall carbon nanotubes

    Science.gov (United States)

    Li, Jiantong; Zhang, Guangcheng; Zhang, Hongming; Fan, Xun; Zhou, Lisheng; Shang, Zhengyang; Shi, Xuetao

    2018-01-01

    Epoxy/functionalized multi-wall carbon nanotube (EP/F-MWCNT) microcellular foams were fabricated through a supercritical CO2 (scCO2) foaming method. MWCNTs with carboxylation treatment were disentangled by using alpha-zirconium phosphate (ZrP) assisting dispersion method and functionalized with sulfanilamide. The F-MWCNTs were redispersed in acetone for mixing with epoxy resins to prepare nanocomposites. It was found that the dispersion of MWCNTs could be improved, thus heterogeneous nucleation effect of F-MWCNTs took place effectively during the foaming process, resulting in the formation of microcellular structure with larger cell density and smaller cell size. The volume conductivity and electromagnetic interference shielding performance of foamed EP/F-MWCNT nanocomposites were studied. When the F-MWCNT addition was 5 wt%, the conductivity of the foamed EP/F-MWCNT nanocomposites was 3.02 × 10-4 S/cm and the EMI shielding effectiveness (SE) reached 20.5 dB, significantly higher than the corresponding results of nanocomposite counterparts, indicating that introducing microcellular structure in EP/F-MWCNT nanocomposites would beneficial to improve their electrical conductivity and electromagnetic interference shielding performance.

  1. Pulse wave velocity as a diagnostic index: The effect of wall thickness

    Science.gov (United States)

    Hodis, Simona

    2018-06-01

    Vascular compliance is a major determinant of wave propagation within the vascular system, and hence the measurement of pulse wave velocity (PWV) is commonly used clinically as a method of detecting vascular stiffening. The accuracy of that assessment is important because vascular stiffening is a major risk factor for hypertension. PWV is usually measured by timing a pressure wave as it travels from the carotid artery to the femoral or radial artery and estimating the distance that it traveled in each case to obtain the required velocity. A major assumption on which this technique is based is that the vessel wall thickness h is negligibly small compared with the vessel radius a . The extent to which this assumption is satisfied in the cardiovascular system is not known because the ratio h /a varies widely across different regions of the vascular tree and under different pathological conditions. Using the PWV as a diagnostic test without knowing the effect of wall thickness on the measurement could lead to error when interpreting the PWV value as an index of vessel wall compliance. The aim of the present study was to extend the validity of the current practice of assessing wall stiffness by developing a method of analysis that goes beyond the assumption of a thin wall. We analyzed PWVs calculated with different wall models, depending on the ratio of wall thickness to vessel radius and the results showed that PWV is not reliable when it is estimated with the classic thin wall theory if the vessel wall is not around 25% of vessel radius. If the arterial wall is thicker than 25% of vessel radius, then the wave velocity calculated with the thin wall theory could be overestimated and in the clinical setting, this could lead to a false positive. For thicker walls, a thick wall model presented here should be considered to account for the stresses within the wall thickness that become dominant compared with the wall inertia.

  2. Quality assurance in thick-walled weldments

    International Nuclear Information System (INIS)

    Straub, H.

    1978-01-01

    Some guidelines are given here for judging the magnitude of flaws in welded thick-walled components (such as nuclear reactor vessels). The actually critical defect sizes are analysed, taking into account the residual stresses after welding and after annealing also. Various procedures for repairing such work are then indicated. (Auth.)

  3. Numerical simulation of heat transfer in metal foams

    Science.gov (United States)

    Gangapatnam, Priyatham; Kurian, Renju; Venkateshan, S. P.

    2018-02-01

    This paper reports a numerical study of forced convection heat transfer in high porosity aluminum foams. Numerical modeling is done considering both local thermal equilibrium and non local thermal equilibrium conditions in ANSYS-Fluent. The results of the numerical model were validated with experimental results, where air was forced through aluminum foams in a vertical duct at different heat fluxes and velocities. It is observed that while the LTE model highly under predicts the heat transfer in these foams, LTNE model predicts the Nusselt number accurately. The novelty of this study is that once hydrodynamic experiments are conducted the permeability and porosity values obtained experimentally can be used to numerically simulate heat transfer in metal foams. The simulation of heat transfer in foams is further extended to find the effect of foam thickness on heat transfer in metal foams. The numerical results indicate that though larger foam thicknesses resulted in higher heat transfer coefficient, this effect weakens with thickness and is negligible in thick foams.

  4. Prediction of the Stress-Strain Behavior of Open-Cell Aluminum Foam under Compressive Loading and the Effects of Various RVE Boundary Conditions

    Science.gov (United States)

    Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein

    2018-04-01

    The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.

  5. Prediction of the Stress-Strain Behavior of Open-Cell Aluminum Foam under Compressive Loading and the Effects of Various RVE Boundary Conditions

    Science.gov (United States)

    Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein

    2018-05-01

    The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.

  6. Drop Weight Impact Behavior of Al-Si-Cu Alloy Foam-Filled Thin-Walled Steel Pipe Fabricated by Friction Stir Back Extrusion

    Science.gov (United States)

    Hangai, Yoshihiko; Nakano, Yukiko; Utsunomiya, Takao; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2017-02-01

    In this study, Al-Si-Cu alloy ADC12 foam-filled thin-walled stainless steel pipes, which exhibit metal bonding between the ADC12 foam and steel pipe, were fabricated by friction stir back extrusion. Drop weight impact tests were conducted to investigate the deformation behavior and mechanical properties of the foam-filled pipes during dynamic compression tests, which were compared with the results of static compression tests. From x-ray computed tomography observation, it was confirmed that the fabricated foam-filled pipes had almost uniform porosity and pore size distributions. It was found that no scattering of the fragments of collapsed ADC12 foam occurred for the foam-filled pipes owing to the existence of the pipe surrounding the ADC12 foam. Preventing the scattering of the ADC12 foam decreases the drop in stress during dynamic compression tests and therefore improves the energy absorption properties of the foam.

  7. Wall thickness measurements using digital radiography - state of the art

    International Nuclear Information System (INIS)

    Wawrzinek, T.; Zscherpel, U.; Bellon, C.

    1997-01-01

    Projection radiography is a method long since used for wall thickness measurements in pipes. Another method sometimes applied is thickness determination based on measuring changes of the optical density by using radioactive isotopes, as in this case the effects of stray radiation are negligible. The two methods hitherto were to be performed manually, and wall thickness data were derived by calculations with a pocket calculator. The required measuring and calculating work can now be automated by way of computerized processing of digitised images. The paper presents the software for automated evaluation of data of a selected location after system calibration. (orig./CB) [de

  8. Optimized thick-wall cylinders by virtue of Poisson's ratio selection

    International Nuclear Information System (INIS)

    Whitty, J.P.M.; Henderson, B.; Francis, J.; Lloyd, N.

    2011-01-01

    The principal stress distributions in thick-wall cylinders due to variation in the Poisson's ratio are predicted using analytical and finite element methods. Analyses of appropriate brittle and ductile failure criteria show that under the isochoric pressure conditions investigated that auextic (i.e. those possessing a negative Poisson's ratio) materials act as stress concentrators; hence they are predicted to fail before their conventional (i.e. possessing a positive Poisson's ratio) material counterparts. The key finding of the work presented shows that for constrained thick-wall cylinders the maximum tensile principal stress can vanish at a particular Poisson's ratio and aspect ratio. This phenomenon is exploited in order to present an optimized design criterion for thick-wall cylinders. Moreover, via the use of a cogent finite element model, this criterion is also shown to be applicable for the design of micro-porous materials.

  9. Study of Individual Characteristic Abdominal Wall Thickness Based on Magnetic Anchored Surgical Instruments

    Directory of Open Access Journals (Sweden)

    Ding-Hui Dong

    2015-01-01

    Full Text Available Background: Magnetic anchored surgical instruments (MASI, relying on magnetic force, can break through the limitations of the single port approach in dexterity. Individual characteristic abdominal wall thickness (ICAWT deeply influences magnetic force that determines the safety of MASI. The purpose of this study was to research the abdominal wall characteristics in MASI applied environment to find ICAWT, and then construct an artful method to predict ICAWT, resulting in better safety and feasibility for MASI. Methods: For MASI, ICAWT is referred to the thickness of thickest point in the applied environment. We determined ICAWT through finding the thickest point in computed tomography scans. We also investigated the traits of abdominal wall thickness to discover the factor that can be used to predict ICAWT. Results: Abdominal wall at C point in the middle third lumbar vertebra plane (L3 is the thickest during chosen points. Fat layer thickness plays a more important role in abdominal wall thickness than muscle layer thickness. "BMI-ICAWT" curve was obtained based on abdominal wall thickness of C point in L3 plane, and the expression was as follow: f(x = P1 × x 2 + P2 × x + P3, where P1 = 0.03916 (0.01776, 0.06056, P2 = 1.098 (0.03197, 2.164, P3 = −18.52 (−31.64, −5.412, R-square: 0.99. Conclusions: Abdominal wall thickness of C point at L3 could be regarded as ICAWT. BMI could be a reliable predictor of ICAWT. In the light of "BMI-ICAWT" curve, we may conveniently predict ICAWT by BMI, resulting a better safety and feasibility for MASI.

  10. Femtosecond laser ablation and cutting technology on PMP foam

    International Nuclear Information System (INIS)

    Song Chengwei; Li Guo; Huang Yanhua; Du Kai; Yang Liang

    2013-01-01

    The femtosecond laser ablation results of PMP foam (density of 90 mg/cm 3 ) were analyzed. The laser pulses used for the study were 800 nm in wavelength, 50 fs in pulse duration and the repetition rate was 1000 Hz. The ablation threshold of the foam was 0.91 J/cm 2 when it was shot by 100 laser pulses. The impacts of laser power, the pulse number and the numerical aperture of the focusing objective on the crater diameter were obtained. In the same femtosecond laser machining system, comparing with the ablation shape into copper foil, the important factor causing the irregular shape of the ablation region was verified that there were many different sizes and randomly distributed pores inside PMP foam. The carbonation phenomenon was observed on the edge of the ablated areas when the sample was ablated using high laser power or/and more laser pulses. Thermal effect was considered to be the causes of the carbonation. A new method based on coupling laser beam to cut thickness greater than 1 mm film-foam with femtosecond laser was proposed. Using this method, the femtosecond laser cutting thickness was greater than 1.5 mm, the angle between the cutting side wall and the laser beam optical axis might be less than 5°, and the cutting surface was clean. (authors)

  11. Study of the relationships between nuclear decontamination foams stability and their physicochemical properties; Etude des relations entre la stabilite des mousses de decontamination nucleaire et leurs proprietes physico-chimiques

    Energy Technology Data Exchange (ETDEWEB)

    Dame, C

    2006-03-15

    The LPAD (French Atomic Energy Commission) develops innovative processes in the frame of the future dismantling of nuclear facilities. Formulations were developed using high viscosified foams stabilized by biodegradable nonionic surfactants: alkyl poly-glucosides and viscosifiers (xanthan gum), which allow us to increase the foam lifetime and thus contact time of chemical reactants with the facility walls. We have considered the relationships between physicochemical properties and foam stability through the exploration of the foam at three different scales: from the molecular range (micelles, surface tension and visco-elasticity), to the film and Plateau border range (XR reflectivity, surface shear viscosity) and to macroscopic range, meaning the whole foam (foaminess, liquid fraction and wall film thickness evolution). Finally, exploratory study is presented concerning simultaneous foam three scales characterisation by small angle neutron scattering. (author)

  12. Semiautomatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms

    International Nuclear Information System (INIS)

    Shum, Judy; DiMartino, Elena S.; Goldhammer, Adam; Goldman, Daniel H.; Acker, Leah C.; Patel, Gopal; Ng, Julie H.; Martufi, Giampaolo; Finol, Ender A.

    2010-01-01

    Purpose: Quantitative measurements of wall thickness in human abdominal aortic aneurysms (AAAs) may lead to more accurate methods for the evaluation of their biomechanical environment. Methods: The authors describe an algorithm for estimating wall thickness in AAAs based on intensity histograms and neural networks involving segmentation of contrast enhanced abdominal computed tomography images. The algorithm was applied to ten ruptured and ten unruptured AAA image data sets. Two vascular surgeons manually segmented the lumen, inner wall, and outer wall of each data set and a reference standard was defined as the average of their segmentations. Reproducibility was determined by comparing the reference standard to lumen contours generated automatically by the algorithm and a commercially available software package. Repeatability was assessed by comparing the lumen, outer wall, and inner wall contours, as well as wall thickness, made by the two surgeons using the algorithm. Results: There was high correspondence between automatic and manual measurements for the lumen area (r=0.978 and r=0.996 for ruptured and unruptured aneurysms, respectively) and between vascular surgeons (r=0.987 and r=0.992 for ruptured and unruptured aneurysms, respectively). The authors' automatic algorithm showed better results when compared to the reference with an average lumen error of 3.69%, which is less than half the error between the commercially available application Simpleware and the reference (7.53%). Wall thickness measurements also showed good agreement between vascular surgeons with average coefficients of variation of 10.59% (ruptured aneurysms) and 13.02% (unruptured aneurysms). Ruptured aneurysms exhibit significantly thicker walls (1.78±0.39 mm) than unruptured ones (1.48±0.22 mm), p=0.044. Conclusions: While further refinement is needed to fully automate the outer wall segmentation algorithm, these preliminary results demonstrate the method's adequate reproducibility and

  13. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fasoyinu, Yemi [CanmetMATERIALS; Griffin, John A. [University of Alabama - Birmingham

    2014-03-31

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their long freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.

  14. Mass transfer measurements in foams

    International Nuclear Information System (INIS)

    Leblond, J.G.; Fournel, B.

    2004-01-01

    Full text of publication follows:This study participates to the elaboration of a method for decontamination of the inside surfaces of steel structures (pipes, tanks,...). The solution which has been chosen is to attack the surface of the structure by a dipping solution. In order to reduce the quantity of product to be recovered and treated at the end of the cleaning process, the active solution will be introduced as a foam. During its free or forced drainage the foam supplies an active liquid film along the structure surfaces. It was important to know if the transfers of the dipping liquid inside the foam and between foam and wall film are sufficient to allow a correct supplying of the active liquid at the wall and a correct dragging of the dipped products. The objective of this work is to develop a numerical model which simulates the various transfers. However such a modeling cannot be performed without a thorough knowledge of the different transfer parameters in the foam and in the film. The following study has been performed on a model foam (foaming water + air) held in a smooth vertical glass pipe and submitted to a forced drainage by the foaming water (water + surfactants). The liquid transfer involves the dispersion of the drainage liquid inside the foam and the transfer between the foam and the liquid film flowing down at the wall. The different transfers has been analyzed by NMR using a PFGSE-NMR sequence, which allows to determine the propagator, i.e., the probability density of the liquid particle displacements during a given time interval Δt, along a selected direction. This study allowed to measure, firstly, the mean liquid and the liquid dispersion in the foam along the vertical and horizontal direction, and secondly, the vertical mean velocity in the parietal liquid film. (authors)

  15. Comparison of sound absorbing performances of copper foam and iron foam with the same parameters

    Science.gov (United States)

    Yang, X. C.; Shen, X. M.; Xu, P. J.; Zhang, X. N.; Bai, P. F.; Peng, K.; Yin, Q.; Wang, D.

    2018-01-01

    Sound absorbing performances of the copper foam and the iron foam with the same parameters were investigated by the AWA6128A detector according to standing wave method. Two modes were investigated, which included the pure metal foam mode and the combination mode with the settled thickness of metal foam. In order to legibly compare the sound absorbing coefficients of the two metal foams, the detected sound frequency points were divided into the low frequency range (100 Hz ~ 1000 Hz), the middle frequency range (1000 Hz ~ 3200 Hz), and the high frequency range (3500 Hz ~ 6000 Hz). Sound absorbing performances of the two metal foams in the two modes were discussed within the three frequency ranges in detail. It would be calculated that the average sound absorbing coefficients of copper foam in the pure metal foam mode were 12.6%, 22.7%, 34.6%, 43.6%, 51.1%, and 56.2% when the thickness was 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, and 30 mm. meanwhile, in the combination mode, the average sound absorbing coefficients of copper foam with the thickness of 10 mm were 30.6%, 34.8%, 36.3%, and 35.8% when the cavity was 5 mm, 10 mm, 15 mm, and 20 mm. In addition, those of iron foam in the pure metal foam mode were 13.4%, 20.1%, 34.4%, 43.1%, 49.6%, and 56.1%, and in the combination mode were 25.6%, 30.5%, 34.3%, and 33.4%.

  16. The environmental impacts of foamed concrete production and exploitation

    Science.gov (United States)

    Namsone, E.; Korjakins, A.; Sahmenko, G.; Sinka, M.

    2017-10-01

    This paper presents a study focusing on the environmental impacts of foamed concrete production and exploitation. CO2 emissions are very important factor for describing durability and sustainability of any building material and its life cycle. The building sector is one of the largest energy-consuming sectors in the world. In this study CO2 emissions are evaluated with regard to three types of energy resources (gas, coal and eco-friendly fuel). The related savings on raw materials are up to 120 t of water per 1000 t of traditionally mixed foamed concrete and up to 350 t of sand per 1000 t of foamed concrete produced with intensive mixing technology. In addition, total reduction of CO2 emissions (up to 60 t per 1000 m3 of material) and total energy saving from introduction of foamed concrete production (depending on the type of fuel) were calculated. In order to analyze the conditions of exploitation, both thermal conductivity and thickness of wall was determined. All obtained and calculated results were compared to those of the commercially produced autoclaved aerated concrete.

  17. Defect generation during solidification of aluminium foams

    International Nuclear Information System (INIS)

    Mukherjee, M.; Garcia-Moreno, F.; Banhart, J.

    2010-01-01

    The reason for the frequent occurrence of cell wall defects in metal foams was investigated. Aluminium foams often expand during solidification, a process which is referred as solidification expansion (SE). The effect of SE on the structure of aluminium foams was studied in situ by X-ray radioscopy and ex situ by X-ray tomography. A direct correlation between the magnitude of SE and the number of cell wall ruptures during SE and finally the number of defects in the solidified foams was found.

  18. Computed simulation of radiographies of pipes - validation of techniques for wall thickness measurements

    International Nuclear Information System (INIS)

    Bellon, C.; Tillack, G.R.; Nockemann, C.; Wenzel, L.

    1995-01-01

    A macroscopic model of radiographic NDE methods and applications is given. A computer-aided approach for determination of wall thickness from radiographs is presented, guaranteeing high accuracy and reproducibility of wall thickness determination by means of projection radiography. The algorithm was applied to computed simulations of radiographies. The simulation thus offers an effective means for testing such automated wall thickness determination as a function of imaging conditions, pipe geometries, coatings, and media tracking, and likewise is a tool for validation and optimization of the method. (orig.) [de

  19. On thick domain walls in general relativity

    Science.gov (United States)

    Goetz, Guenter; Noetzold, Dirk

    1989-01-01

    Planar scalar field configurations in general relativity differ considerably from those in flat space. It is shown that static domain walls of finite thickness in curved space-time do not possess a reflection symmetry. At infinity, the space-time tends to the Taub vacuum on one side of the wall and to the Minkowski vacuum (Rindler space-time) on the other. Massive test particles are always accelerated towards the Minkowski side, i.e., domain walls are attractive on the Taub side, but repulsive on the Minkowski side (Taub-vacuum cleaner). It is also proved that the pressure in all directions is always negative. Finally, a brief comment is made concerning the possibility of infinite, i.e., bigger than horizon size, domain walls in our universe. All of the results are independent of the form of the potential V(phi) greater than or equal to 0 of the scalar field phi.

  20. Comparison of Simulated PEC Probe Performance for Detecting Wall Thickness Reduction

    International Nuclear Information System (INIS)

    Shin, Young Kil; Choi, Dong Myung; Jung, Hee Sung

    2009-01-01

    In this paper, four different types of pulsed eddy current(PEC) probe are designed and their performance of detecting wall thickness reduction is compared. By using the backward difference method in time and the finite element method in space, PEC signals from various thickness and materials are numerically calculated and three features of the signal are selected. Since PEC signals and features are obtained by various types and sizes of probe, the comparison is made through the normalized features which reflect the sensitivity of the feature to thickness reduction. The normalized features indicate that the shielded reflection probe provides the best sensitivity to wall thickness reduction for all three signal features. Results show that the best sensitivity to thickness reduction can be achieved by the peak value, but also suggest that the time to peak can be a good candidate because of its linear relationship with the thickness variation.

  1. Effect of Various Interface Thicknesses on the Behaviour of Infilled frame Subjected to Lateral Load

    Science.gov (United States)

    Senthil, K.; Muthukumar, S.; Rupali, S.; Satyanarayanan, K. S.

    2018-03-01

    Two dimensional numerical investigations were carried out to study the influence of interface thickness on the behaviour of reinforced concrete frames subjected to in-plane lateral loads using commercial finite element tool SAP 2000. The cement mortar, cork and foam was used as interface material and their effect was studied by varying thicknesses as 6, 8, 10, 14 and 20 mm. The effect of lateral loads on infill masonry wall was also studied by varying arbitrary loads as 10, 20, 40 and 60 kN. The resistance of the frame with cement mortar was found maximum with the interface thickness 10 mm therefore, it is concluded that the maximum influence of interface thickness of 10 mm was found effective. The resistance of integral infill frame with cork and foam interface was found maximum with the interface thickness 6 mm and it is concluded that 6 mm thick interface among the chosen thickness was found effective.

  2. Inflatable Tubular Structures Rigidized with Foams

    Science.gov (United States)

    Tinker, Michael L.; Schnell, Andrew R.

    2010-01-01

    Inflatable tubular structures that have annular cross sections rigidized with foams, and the means of erecting such structures in the field, are undergoing development. Although the development effort has focused on lightweight structural booms to be transported in compact form and deployed in outer space, the principles of design and fabrication are also potentially applicable to terrestrial structures, including components of ultralightweight aircraft, lightweight storage buildings and shelters, lightweight insulation, and sales displays. The use of foams to deploy and harden inflatable structures was first proposed as early as the 1960s, and has been investigated in recent years by NASA, the U.S. Air Force Research Laboratory, industry, and academia. In cases of deployable booms, most of the investigation in recent years has focused on solid cross sections, because they can be constructed relatively easily. However, solid-section foam-filled booms can be much too heavy for some applications. In contrast, booms with annular cross sections according to the present innovation can be tailored to obtain desired combinations of stiffness and weight through choice of diameters, wall thicknesses, and foam densities. By far the most compelling advantage afforded by this innovation is the possibility of drastically reducing weights while retaining or increasing the stiffnesses, relative to comparable booms that have solid foamfilled cross sections. A typical boom according to this innovation includes inner and outer polyimide film sleeves to contain foam that is injected between them during deployment.

  3. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  4. Study on fluidity of squeeze cast AZ91D magnesium alloy with different wall thicknesses

    Directory of Open Access Journals (Sweden)

    Chen Yun

    2014-03-01

    Full Text Available Rectangular cross-section specimens with different section thicknesses were prepared to study the influences of pouring temperature, mould temperature and squeeze velocity on the fluidity of squeeze cast AZ91D magnesium alloy by means of orthogonal test design method. The results show that pouring temperature, mould temperature and squeeze velocity can significantly affect the fluidity of magnesium alloy specimens with wall thickness no more than 4 mm, and the pouring temperature is the most influential factor on the fluidity of specimens with wall thickness of 1, 2 and 3 mm, while mould temperature is the one for specimens with wall thickness of 4 mm. Increasing pouring temperature between 700 °C and 750 °C is beneficial to the fluidity of AZ91D magnesium alloy, and increasing mould temperature significantly enhances the filling ability of thick (3 and 4 mm section castings. The fluidity of squeeze cast magnesium alloy increases with the increase of wall thickness. It is not recommended to produce magnesium alloy casting with wall thickness of smaller than 3 mm by squeeze cast process due to the poor fluidity. The software DPS was used to generate the regression model, and linear regression equations of the fluidity of squeeze cast AZ91D with different wall thicknesses are obtained using the test results.

  5. Post-cast EDM method for reducing the thickness of a turbine nozzle wall

    Science.gov (United States)

    Jones, Raymond Joseph; Bojappa, Parvangada Ganapathy; Kirkpatrick, Francis Lawrence; Schotsch, Margaret Jones; Rajan, Rajiv; Wei, Bin

    2002-01-01

    A post-cast EDM process is used to remove material from the interior surface of a nozzle vane cavity of a turbine. A thin electrode is passed through the cavity between opposite ends of the nozzle vane and displaced along the interior nozzle wall to remove the material along a predetermined path, thus reducing the thickness of the wall between the cavity and the external surface of the nozzle. In another form, an EDM process employing a profile as an electrode is disposed in the cavity and advanced against the wall to remove material from the wall until the final wall thickness is achieved, with the interior wall surface being complementary to the profile surface.

  6. Structural applications of metal foams considering material and geometrical uncertainty

    Science.gov (United States)

    Moradi, Mohammadreza

    the composite tube, including the sensitivity of the strength to input parameters such as the foam density, tube wall thickness, steel properties etc. Monte Carlo simulation is performed on aluminum foam filled tubes under three point bending conditions. The simulation method is nonlinear finite element analysis. Results show that the steel foam properties have a greater effect on ductility of the steel foam filled tube than its strength. Moreover, flexural strength is more sensitive to steel properties than to aluminum foam properties. Finally, the properties of hypothetical structural steel foam C-channels foamed are investigated via simulations. In thin-walled structural members, stability of the walls is the primary driver of structural limit states. Moreover, having a light weight is one of the main advantages of the thin-walled structural members. Therefore, thin-walled structural members made of steel foam exhibit improved strength while maintaining their low weight. Linear eigenvalue, finite strip method (FSM) and plastic collapse FE analysis is used to evaluate the strength and ductility of steel foam C-channels under uniform compression and bending. It is found that replacing steel walls of the C-channel with steel foam walls increases the local buckling resistance and decreases the global buckling resistance of the C-channel. By using the Sobol' decomposition, an optimum configuration for the variable density steel foam C-channel can be found. For high relative density, replacing solid steel of the lips and flange elements with steel foam increases the buckling strength. On the other hand, for low relative density replacing solid steel of the lips and flange elements with steel foam deceases the buckling strength. Moreover, it is shown that buckling strength of the steel foam C-channel is sensitive to the second order Sobol' indices. In summary, it is shown in this research that the metal foams have a great potential to improve different types of structural

  7. Impact of plasma tube wall thickness on power coupling in ICP sources

    International Nuclear Information System (INIS)

    Nawaz, Anuscheh; Herdrich, Georg

    2009-01-01

    The inductively heated plasma source at the Institute of Space Systems was investigated with respect to the wall thickness of the plasma tube using an air plasma. For this, the wall thickness of the quartz tube was reduced in steps from 2.5 to 1.25 mm. The significance of reducing the wall thickness was analyzed with respect to both the maximum allowable tube cooling power and the coupling efficiency. While the former results from thermal stresses in the tube's wall, the latter results from a minimization of magnetic field losses near the coil turns of the inductively coupled plasma (ICP) source. Analysis of the thermal stress could be validated by experimental data, i.e. the measurement of the tube cooling power when the respective tube structure failed. The coupling efficiency could be assessed qualitatively by simplified models, and the experimental data recorded show that coupling was improved far more than predicted.

  8. A semi-empirical method for measuring thickness of pipe-wall using gamma scattering technique

    International Nuclear Information System (INIS)

    Vo Hoang Nguyen; Hua Tuyet Le; Le Dinh Minh Quan; Hoang Duc Tam; Le Bao Tran; Tran Thien Thanh; Tran Nguyen Thuy Ngan; Chau Van Tao; VNUHCM-University of Science, Ho Chi Minh City; Huynh Dinh Chuong

    2016-01-01

    In this work, we propose a semi-empirical method for determining the thickness of pipe-wall, of which the determination is performed by combining the experimental and Monte Carlo simulation data. The testing measurements show that this is an efficient method to measure the thickness of pipe-wall. In addition, this work also shows that it could use a NaI(Tl) scintillation detector and a low activity source to measure the thickness of pipe-wall, which is simple, quick and high accuracy method. (author)

  9. Quantification of esophageal wall thickness in CT using atlas-based segmentation technique

    Science.gov (United States)

    Wang, Jiahui; Kang, Min Kyu; Kligerman, Seth; Lu, Wei

    2015-03-01

    Esophageal wall thickness is an important predictor of esophageal cancer response to therapy. In this study, we developed a computerized pipeline for quantification of esophageal wall thickness using computerized tomography (CT). We first segmented the esophagus using a multi-atlas-based segmentation scheme. The esophagus in each atlas CT was manually segmented to create a label map. Using image registration, all of the atlases were aligned to the imaging space of the target CT. The deformation field from the registration was applied to the label maps to warp them to the target space. A weighted majority-voting label fusion was employed to create the segmentation of esophagus. Finally, we excluded the lumen from the esophagus using a threshold of -600 HU and measured the esophageal wall thickness. The developed method was tested on a dataset of 30 CT scans, including 15 esophageal cancer patients and 15 normal controls. The mean Dice similarity coefficient (DSC) and mean absolute distance (MAD) between the segmented esophagus and the reference standard were employed to evaluate the segmentation results. Our method achieved a mean Dice coefficient of 65.55 ± 10.48% and mean MAD of 1.40 ± 1.31 mm for all the cases. The mean esophageal wall thickness of cancer patients and normal controls was 6.35 ± 1.19 mm and 6.03 ± 0.51 mm, respectively. We conclude that the proposed method can perform quantitative analysis of esophageal wall thickness and would be useful for tumor detection and tumor response evaluation of esophageal cancer.

  10. Prevalence and histopathological finding of thin-walled and thick-walled Sarcocysts in slaughtered cattle of Karaj abattoir, Iran.

    Science.gov (United States)

    Nourollahi-Fard, Saeid R; Kheirandish, Reza; Sattari, Saeid

    2015-06-01

    Sarcocystosis is a zoonotic disease caused by Sarcocystis spp. with obligatory two host life cycle generally alternating between an herbivorous intermediate host and a carnivorous definitive host. Some species of this coccidian parasite can cause considerable morbidity and mortality in cattle. The present study was set to investigate the prevalence of Sarcocystis spp. and type of cyst wall in slaughtered cattle of Karaj abattoir, Iran. For this purpose 125 cattle (88 males and 37 females) were investigated for the presence of macroscopic and microscopic Sarcocystis cysts in muscular tissues. No macroscopic Sarcocystis cysts were found in any of the samples. In light microscopy, 121 out of 125 cattle (96.8 %) had thin-walled cysts of Sarcocystis cruzi, while 43 out of them (34.4 %) had thick-walled Sarcocystis cyst. In this survey, the most infected tissue was esophagus and heart and the less was diaphragm. Thin-walled cysts (S. cruzi) mostly found in heart and skeletal muscle showed the less. However, thick-walled cyst (S. hominis or S. hirsuta) mostly were detected in diaphragm, heart muscle showed no thick-walled cyst. No significant relation was observed between age and sex and the rate of infection. The results showed that Sarcocystis cyst is prevalent in cattle in the North part of Iran and the evaluation of infection potential can be useful when considering control programs.

  11. Wall Thickness Measurement Of Insulated Pipe By Tangential Radiography Technique Using Ir 192

    International Nuclear Information System (INIS)

    Soedarjo

    2000-01-01

    Insulation pipe wall thickness by tangential radiography technique has been carried out using 41 Curie Iridium 192 source has activity for two carbon steel pipes. The outer diameter of the first pipe is 90 mm, wall thickness is 75.0 mm, source film film distance is 609.5 mm, source tangential point of insulation is 489.5 mm and exposure time 3 minute and 25 second. From the calculation, the first pipe thickness is found to be 12.54 mm and for the second pipe is 8.42 mm. The thickness is due to inaccuracy in reading the pipe thickness on radiography film and the geometry distortion radiation path

  12. Effect of Rigid Polyurethane Foam Core Density on Flexural and Compressive Properties of Sandwich Panels with Glass/Epoxy Faces

    Directory of Open Access Journals (Sweden)

    saeed Nemati

    2013-01-01

    Full Text Available Sandwich panels as composite materials have two external walls of either metallic or polymer type. The space between these walls is filled by hard foam or other materials and the thickness of different layers is based on the final application of the panel. In the present work, the extent of variation in core density of polyether urethane foam and subsequent flexural and compressive changes in sandwich panels with glass or epoxy face sheets are tested and investigated. A number of hard polyether urethane foams with different middle panel layers density 80-295 kg/m3 are designed to study the effect of foam density on mechanical properties including flexural and compressive properties. Flexural and compressive test resultsshow that increased core density leads to improved mechanical properties. The slope of the curve decreases beyond density of 235 kg/m3. The reason may be explained on the limitation of shear intensity in increasing the mechanical properties. In this respect an optimum density of 235 kg/m3 is obtained for the system under examinations and for reaching higher strength panels, foams of different core materials should be selected.

  13. Wall thickness dependence of the scaling law for ferroic stripe domains

    International Nuclear Information System (INIS)

    Catalan, G; Scott, J F; Schilling, A; Gregg, J M

    2007-01-01

    The periodicity of 180 0 stripe domains as a function of crystal thickness scales with the width of the domain walls, both for ferroelectric and for ferromagnetic materials. Here we derive an analytical expression for the generalized ferroic scaling factor and use this to calculate the domain wall thickness and gradient coefficients (exchange constants) in some ferroelectric and ferromagnetic materials. We then use these to discuss some of the wider implications for the physics of ferroelectric nanodevices and periodically poled photonic crystals. (fast track communication)

  14. Advanced nondestructive techniques applied for the detection of discontinuities in aluminum foams

    Science.gov (United States)

    Katchadjian, Pablo; García, Alejandro; Brizuela, Jose; Camacho, Jorge; Chiné, Bruno; Mussi, Valerio; Britto, Ivan

    2018-04-01

    Metal foams are finding an increasing range of applications by their lightweight structure and physical, chemical and mechanical properties. Foams can be used to fill closed moulds for manufacturing structural foam parts of complex shape [1]; foam filled structures are expected to provide good mechanical properties and energy absorption capabilities. The complexity of the foaming process and the number of parameters to simultaneously control, demand a preliminary and hugely wide experimental activity to manufacture foamed components with a good quality. That is why there are many efforts to improve the structure of foams, in order to obtain a product with good properties. The problem is that even for seemingly identical foaming conditions, the effective foaming can vary significantly from one foaming trial to another. The variation of the foams often is related by structural imperfections, joining region (foam-foam or foam-wall mold) or difficulties in achieving a complete filling of the mould. That is, in a closed mold, the result of the mold filling and its structure or defects are not known a priori and can eventually vary significantly. These defects can cause a drastic deterioration of the mechanical properties [2] and lead to a low performance in its application. This work proposes the use of advanced nondestructive techniques for evaluating the foam distribution after filling the mold to improve the manufacturing process. To achieved this purpose ultrasonic technique (UT) and cone beam computed tomography (CT) were applied on plate and structures of different thicknesses filled with foam of different porosity. UT was carried out on transmission mode with low frequency air-coupled transducers [3], in focused and unfocused configurations.

  15. Optimization of foam-filled bitubal structures for crashworthiness criteria

    International Nuclear Information System (INIS)

    Zhang, Yong; Sun, Guangyong; Li, Guangyao; Luo, Zhen; Li, Qing

    2012-01-01

    Highlights: ► The paper aims to optimize foam-filled bitubal squared column for crashworthiness. ► It explores different formulations and configurations of design. ► The optimal foam-filled bitubal column is better than foam-filled monotubal column. ► The optimal foam-filled bitubal column is better than empty bitubal column. -- Abstract: Thin-walled structures have been widely used as key components in automobile and aerospace industry to improve the crashworthiness and safety of vehicles while maintaining overall light-weight. This paper aims to explore the design issue of thin-walled bitubal column structures filled with aluminum foam. As a relatively new filler material, aluminum foam can increase crashworthiness without sacrificing too much weight. To optimize crashworthiness of the foam-filled bitubal square column, the Kriging meta-modeling technique is adopted herein to formulate the objective and constraint functions. The genetic algorithm (GA) and Non-dominated Sorting Genetic Algorithm II (NSGA II) are used to seek the optimal solutions to the single and multiobjective optimization problems, respectively. To compare with other thin-walled configurations, the design optimization is also conducted for empty bitubal column and foam-filled monotubal column. The results demonstrate that the foam-filled bitubal configuration has more room to enhance the crashworthiness and can be an efficient energy absorber.

  16. Comparison of Maximal Wall Thickness in Hypertrophic Cardiomyopathy Differs Between Magnetic Resonance Imaging and Transthoracic Echocardiography.

    Science.gov (United States)

    Bois, John P; Geske, Jeffrey B; Foley, Thomas A; Ommen, Steve R; Pellikka, Patricia A

    2017-02-15

    Left ventricular (LV) wall thickness is a prognostic marker in hypertrophic cardiomyopathy (HC). LV wall thickness ≥30 mm (massive hypertrophy) is independently associated with sudden cardiac death. Presence of massive hypertrophy is used to guide decision making for cardiac defibrillator implantation. We sought to determine whether measurements of maximal LV wall thickness differ between cardiac magnetic resonance imaging (MRI) and transthoracic echocardiography (TTE). Consecutive patients were studied who had HC without previous septal ablation or myectomy and underwent both cardiac MRI and TTE at a single tertiary referral center. Reported maximal LV wall thickness was compared between the imaging techniques. Patients with ≥1 technique reporting massive hypertrophy received subset analysis. In total, 618 patients were evaluated from January 1, 2003, to December 21, 2012 (mean [SD] age, 53 [15] years; 381 men [62%]). In 75 patients (12%), reported maximal LV wall thickness was identical between MRI and TTE. Median difference in reported maximal LV wall thickness between the techniques was 3 mm (maximum difference, 17 mm). Of the 63 patients with ≥1 technique measuring maximal LV wall thickness ≥30 mm, 44 patients (70%) had discrepant classification regarding massive hypertrophy. MRI identified 52 patients (83%) with massive hypertrophy; TTE, 30 patients (48%). Although guidelines recommend MRI or TTE imaging to assess cardiac anatomy in HC, this study shows discrepancy between the techniques for maximal reported LV wall thickness assessment. In conclusion, because this measure clinically affects prognosis and therapeutic decision making, efforts to resolve these discrepancies are critical. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Gastric full-thickness suturing during EMR and for treatment of gastric-wall defects (with video).

    Science.gov (United States)

    von Renteln, Daniel; Schmidt, Arthur; Riecken, Bettina; Caca, Karel

    2008-04-01

    The endoscopic full-thickness Plicator device was initially developed to provide an endoscopic treatment option for patients with GERD. Because the endoscopic full-thickness Plicator enables rapid and easy placement of transmural sutures, comparable with surgical sutures, we used the Plicator device for endoscopic treatment or prevention of GI-wall defects. To describe the outcomes and complications of endoscopic full-thickness suturing during EMR and for the treatment of gastric-wall defects. A report of 4 cases treated with the endoscopic full-thickness suturing between June 2006 and April 2007. A large tertiary-referral center. Four subjects received endoscopic full-thickness suturing. The subjects were women, with a mean age of 67 years. Of the 4 subjects, 3 received endoscopic full-thickness suturing during or after an EMR. One subject received endoscopic full-thickness suturing for treatment of a fistula. Primary outcome measurements were clinical procedural success and procedure-related adverse events. The mean time for endoscopic full-thickness suturing was 15 minutes. In all cases, GI-wall patency was restored or ensured, and no procedure-related complications occurred. All subjects responded well to endoscopic full-thickness suturing. The resection of one GI stromal tumor was incomplete. Because of the Plicator's 60F distal-end diameter, endoscopic full-thickness suturing could only be performed with the patient under midazolam and propofol sedation. The durable Plicator suture might compromise the endoscopic follow-up after EMR. The endoscopic full-thickness Plicator permits rapid and easy placement of transmural sutures and seems to be a safe and effective alternative to surgical intervention to restore GI-wall defects or to ensure GI-wall patency during EMR procedures.

  18. In situ production of microporous foams in sub-millimeter cylindrical gold targets

    International Nuclear Information System (INIS)

    Fan Yongheng; Luo Xuan; Fang Yu; Ren Hongbo; Yuan Guanghui; Wang Honglian; Zhou Lan; Zhang Lin; Du Kai

    2009-01-01

    The preparation of microcellular foam in sub-millimeter cylindrical gold targets is described. Small, open-ended, gold cylinders of 400 μm diameter, 700 μm length, and 20 μm wall thickness were fabricated by electroplating gold onto a silicon bronze mandrel and leaching the mandrel with concentrated nitric acid. After several rinsing and cleaning steps, the cylinders were filled with a solution containing acrylate monomers. The solution was polymerized in situ with ultraviolet light to produce a gel. Precipitation of these gels in a non-solvent such as methanol and subsequent drying by means of a critical point drying apparatus produced cylinders filled with microporous foams. The foams have densities of 50 mg · cm -3 and cell sizes on more than 1 μm. They fill the cylinders completely without shrinkage during the drying process, and need no subsequent machining. (authors)

  19. Aerosol-foam interaction experiments

    International Nuclear Information System (INIS)

    Ball, M.H.E.; Luscombe, C.DeM.; Mitchell, J.P.

    1990-03-01

    Foam treatment offers the potential to clean gas streams containing radioactive particles. A large decontamination factor has been claimed for the removal of airborne plutonium dust when spraying a commercially available foam on the walls and horizontal surfaces of an alpha-active room. Experiments have been designed and undertaken to reproduce these conditions with a non-radioactive simulant aerosol. Careful measurements of aerosol concentrations with and without foam treatment failed to provide convincing evidence to support the earlier observation. The foam may not have been as well mixed with the aerosol in the present studies. Further work is required to explore more efficient mixing methods, including systems in which the aerosol steam is passed through the foam, rather than merely spraying foam into the path of the aerosol. (author)

  20. Development of thick wall welding and cutting tools for ITER

    International Nuclear Information System (INIS)

    Nakahira, Masataka; Takahashi, Hiroyuki; Akou, Kentaro; Koizumi, Koichi

    1998-01-01

    The Vacuum Vessel, which is a core component of International Thermonuclear Experimental Reactor (ITER), is required to be exchanged remotely in a case of accident such as superconducting coil failure. The in-vessel components such as blanket and divertor are planned to be exchanged or fixed. In these exchange or maintenance operations, the thick wall welding and cutting are inevitable and remote handling tools are necessary. The thick wall welding and cutting tools for blanket are under developing in the ITER R and D program. The design requirement is to weld or cut the stainless steel of 70 mm thickness in the narrow space. Tungsten inert gas (TIG) arc welding, plasma cutting and iodine laser welding/cutting are selected as primary option. Element welding and cutting tests, design of small tools to satisfy space requirement, test fabrication and performance tests were performed. This paper reports the tool design and overview of welding and cutting tests. (author)

  1. Development of thick wall welding and cutting tools for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Nakahira, Masataka; Takahashi, Hiroyuki; Akou, Kentaro; Koizumi, Koichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The Vacuum Vessel, which is a core component of International Thermonuclear Experimental Reactor (ITER), is required to be exchanged remotely in a case of accident such as superconducting coil failure. The in-vessel components such as blanket and divertor are planned to be exchanged or fixed. In these exchange or maintenance operations, the thick wall welding and cutting are inevitable and remote handling tools are necessary. The thick wall welding and cutting tools for blanket are under developing in the ITER R and D program. The design requirement is to weld or cut the stainless steel of 70 mm thickness in the narrow space. Tungsten inert gas (TIG) arc welding, plasma cutting and iodine laser welding/cutting are selected as primary option. Element welding and cutting tests, design of small tools to satisfy space requirement, test fabrication and performance tests were performed. This paper reports the tool design and overview of welding and cutting tests. (author)

  2. Three-dimensional atrial wall thickness maps to inform catheter ablation procedures for atrial fibrillation.

    Science.gov (United States)

    Bishop, Martin; Rajani, Ronak; Plank, Gernot; Gaddum, Nicholas; Carr-White, Gerry; Wright, Matt; O'Neill, Mark; Niederer, Steven

    2016-03-01

    Transmural lesion formation is critical to success in atrial fibrillation ablation and is dependent on left atrial wall thickness (LAWT). Pre- and peri-procedural planning may benefit from LAWT measurements. To calculate the LAWT, the Laplace equation was solved over a finite element mesh of the left atrium derived from the segmented computed tomographic angiography (CTA) dataset. Local LAWT was then calculated from the length of field lines derived from the Laplace solution that spanned the wall from the endocardium or epicardium. The method was validated on an atrium phantom and retrospectively applied to 10 patients who underwent routine coronary CTA for standard clinical indications at our institute. The Laplace wall thickness algorithm was validated on the left atrium phantom. Wall thickness measurements had errors of atrial wall thickness measurements were performed on 10 patients. Successful comprehensive LAWT maps were generated in all patients from the coronary CTA images. Mean LAWT measurements ranged from 0.6 to 1.0 mm and showed significant inter and intra patient variability. Left atrial wall thickness can be measured robustly and efficiently across the whole left atrium using a solution of the Laplace equation over a finite element mesh of the left atrium. Further studies are indicated to determine whether the integration of LAWT maps into pre-existing 3D anatomical mapping systems may provide important anatomical information for guiding radiofrequency ablation. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  3. Damping of liquid sloshing by foams

    Science.gov (United States)

    Sauret, A.; Boulogne, F.; Cappello, J.; Dressaire, E.; Stone, H. A.

    2015-02-01

    When a container is set in motion, the free surface of the liquid starts to oscillate or slosh. Such effects can be observed when a glass of water is handled carelessly and the fluid sloshes or even spills over the rims of the container. However, beer does not slosh as readily as water, which suggests that foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of a liquid foam placed on top of a liquid bath. We generate a monodisperse two-dimensional liquid foam in a rectangular container and track the motion of the foam. The influence of the foam on the sloshing dynamics is experimentally characterized: only a few layers of bubbles are sufficient to significantly damp the oscillations. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient through viscous dissipation on the walls of the container. Then we extend our study to confined three-dimensional liquid foam and observe that the behavior of 2D and confined 3D systems are very similar. Thus, we conclude that only the bubbles close to the walls have a significant impact on the dissipation of energy. The possibility to damp liquid sloshing using foam is promising in numerous industrial applications such as the transport of liquefied gas in tankers or for propellants in rocket engines.

  4. Quantitative CT: Associations between Emphysema, Airway Wall Thickness and Body Composition in COPD

    DEFF Research Database (Denmark)

    Rutten, Erica P A; Grydeland, Thomas B; Pillai, Sreekumar G

    2011-01-01

    , CT scans were performed to determine emphysema (%LAA), airway wall thickness (AWT-Pi10), and lung mass. Muscle wasting based on FFMI was assessed by bioelectrical impedance. In both the men and women with COPD, FFMI was negatively associated with %LAA. FMI was positively associated with AWT-Pi10......The objective of the present study was to determine the association between CT phenotypes-emphysema by low attenuation area and bronchitis by airway wall thickness-and body composition parameters in a large cohort of subjects with and without COPD. In 452 COPD subjects and 459 subjects without COPD...... in both subjects with and without COPD. Among the subjects with muscle wasting, the percentage emphysema was high, but the predictive value was moderate. In conclusion, the present study strengthens the hypothesis that the subgroup of COPD cases with muscle wasting have emphysema. Airway wall thickness...

  5. Quantitative CT: Associations between Emphysema, Airway Wall Thickness and Body Composition in COPD

    DEFF Research Database (Denmark)

    Rutten, Erica P A; Grydeland, Thomas B; Pillai, Sreekumar G

    2011-01-01

    The objective of the present study was to determine the association between CT phenotypes-emphysema by low attenuation area and bronchitis by airway wall thickness-and body composition parameters in a large cohort of subjects with and without COPD. In 452 COPD subjects and 459 subjects without COPD......, CT scans were performed to determine emphysema (%LAA), airway wall thickness (AWT-Pi10), and lung mass. Muscle wasting based on FFMI was assessed by bioelectrical impedance. In both the men and women with COPD, FFMI was negatively associated with %LAA. FMI was positively associated with AWT-Pi10...... in both subjects with and without COPD. Among the subjects with muscle wasting, the percentage emphysema was high, but the predictive value was moderate. In conclusion, the present study strengthens the hypothesis that the subgroup of COPD cases with muscle wasting have emphysema. Airway wall thickness...

  6. Hot isostatically pressed (HIPed) thick-walled component for a pressurised water reactor (PWR) application

    International Nuclear Information System (INIS)

    Hookham, I.; Burdett, B.; Bridger, K.; Sulley, J.L.

    2009-01-01

    This paper presents the work conducted to justify and provide a quality assured HIPed thick-walled component for a PWR application; the component being designed and manufactured by Rolls-Royce. Rolls-Royce has previously published (ICAPP 08) its overall, staged approach to the introduction of powder HIPed components; starting with thin-walled, leak limited pressure boundaries, and culminating in the use of the powder HIPed process for thick walled components. This paper presents details specific to a thick walled pressure vessel component. Results are presented of non-destructive and destructive examinations of one of a batch of components. Mechanical testing and metallurgical examination results of sample material taken from different sections of the component are presented. A full range of test results is provided covering, as examples: tensile, Charpy impact and sensitization susceptibility. Differences in weldability between the HIPed and the previous forged form are also documented. (author)

  7. Quantitative computed tomography measures of emphysema and airway wall thickness are related to respiratory symptoms

    DEFF Research Database (Denmark)

    Grydeland, Thomas B; Dirksen, Asger; Coxson, Harvey O

    2010-01-01

    There is limited knowledge about the relationship between respiratory symptoms and quantitative high-resolution computed tomography measures of emphysema and airway wall thickness.......There is limited knowledge about the relationship between respiratory symptoms and quantitative high-resolution computed tomography measures of emphysema and airway wall thickness....

  8. Effect of subcooling and wall thickness on pool boiling from downward-facing curved surfaces in water

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Glebov, A.G. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-09-01

    Quenching experiments were performed to investigate the effects of water subcooling and wall thickness on pool boiling from a downward-facing curved surface. Experiments used three copper sections of the same diameter (50.8 mm) and surface radius (148 mm), but different thickness (12.8, 20 and 30 mm). Local and average pool boiling curves were obtained at saturation and 5 K, 10 K, and 14 K subcooling. Water subcooling increased the maximum heat flux, but decreased the corresponding wall superheat. The minimum film boiling heat flux and the corresponding wall superheat, however, increased with increased subcooling. The maximum and minimum film boiling heat fluxes were independent of wall thickness above 20 mm and Biot Number > 0.8, indicating that boiling curves for the 20 and 30 thick sections were representative of quasi steady-state, but not those for the 12.8 mm thick section. When compared with that for a flat surface section of the same thickness, the data for the 12.8 mm thick section showed significant increases in both the maximum heat flux (from 0.21 to 0.41 MW/m{sup 2}) and the minimum film boiling heat flux (from 2 to 13 kW/m{sup 2}) and about 11.5 K and 60 K increase in the corresponding wall superheats, respectively.

  9. Detrusor wall thickness compared to other non-invasivemethods in ...

    African Journals Online (AJOL)

    Introduction: The current study aims to compare the diagnostic accuracy of detrusor wall thickness to othernoninvasive, tools, using pressure flow studies as a reference, in the assessment of bladder outlet, obstructionamong men presenting with lower urinary tract symptoms. Patients and Methods: Men aged 50 or older ...

  10. Relaxation of Thick-Walled Cylinders and Spheres

    DEFF Research Database (Denmark)

    Saabye Ottosen, N.

    1982-01-01

    Using the nonlinear creep law proposed by Soderberg, (1936) closed-form solutions are derived for the relaxation of incompressible thick-walled spheres and cylinders in plane strain. These solutions involve series expressions which, however, converge very quickly. By simply ignoring these series...... expressions, extremely simple approximate solutions are obtained. Despite their simplicity these approximations possess an accuracy that is superior to approximations currently in use. Finally, several physical aspects related to the relaxation of cylinders and spheres are discussed...

  11. Design and fabrication of foam-insulated cryogenic target for wet-wall laser fusion reactor

    International Nuclear Information System (INIS)

    Norimatsu, T.; Takeda, T.; Nagai, K.; Mima, K.; Yamanaka, T.

    2003-01-01

    A foam insulated cryogenic target was proposed for use in a future laser fusion reactor with a wet wall. This scheme can protect the solid DT layer from melting due to surface heating by adsorption of metal vapor without significant reduction in the target gain. Design spaces for the injection velocity and the acceptable vapor pressure in the reactor are discussed. Basic technology to fabricate such structure was demonstrated by emulsion process. Concept of a cryogenic fast-ignition target with a gold guiding cone was proposed together with direct injection filling of liquid DT. (author)

  12. Three dimensional carbon-bubble foams with hierarchical pores for ultra-long cycling life supercapacitors.

    Science.gov (United States)

    Wang, Bowen; Zhang, Weigang; Wang, Lei; Wei, Jiake; Bai, Xuedong; Liu, Jingyue; Zhang, Guanhua; Duan, Huigao

    2018-07-06

    Design and synthesis of integrated, interconnected porous structures are critical to the development of high-performance supercapacitors. We develop a novel and facile synthesis technic to construct three-dimensional carbon-bubble foams with hierarchical pores geometry. The carbon-bubble foams are fabricated by conformally coating, via catalytic decomposition of ethanol, a layer of carbon coating onto the surfaces of pre-formed ZnO foams and then the removal of the ZnO template by a reduction-evaporation process. Both the wall thickness and the pore size can be well tuned by adjusting the catalytic decomposition time and temperature. The as-synthesized carbon-bubble foams electrode retains 90.3% of the initial capacitance even after 70 000 continuous cycles under a high current density of 20 A g -1 , demonstrating excellent long-time electrochemical and cycling stability. The symmetric device displays rate capability retention of 81.8% with the current density increasing from 0.4 to 20 A g -1 . These achieved electrochemical performances originate from the unique structural design of the carbon-bubble foams, which provide not only abundant transport channels for electron and ion but also high active surface area accessible by the electrolyte ions.

  13. Acoustic Test Results of Melamine Foam with Application to Payload Fairing Acoustic Attenuation Systems

    Science.gov (United States)

    Hughes, William O.; McNelis, Anne M.

    2014-01-01

    A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.

  14. Association Between the Lateral Wall Thickness of the Maxillary Sinus and the Dental Status: Cone Beam Computed Tomography Evaluation

    International Nuclear Information System (INIS)

    Khajehahmadi, Saeedeh; Rahpeyma, Amin; Hoseini Zarch, Seyed Hosein

    2014-01-01

    Assessment of the lateral wall thickness of the maxillary sinus is very important in decision making for many surgical interventions. The association between the thickness of the lateral wall of the maxillary sinus and the dental status is not well identified. To compare the thickness of the lateral wall of the maxillary sinus in individuals with and without teeth to determine if extraction of the teeth can lead to a significant reduction in the thickness of the maxillary sinus lateral wall or not. In a retrospective study on fifty patients with an edentulous space, the thickness of the lateral wall of the maxillary sinus,one centimeter above the sinus floor in the second premolar (P2), first molar (M1) and second molar (M2) areas was determined by cone beam computed tomography scans(CBCTs) and a digital ruler in Romexis F software (Planmeca Romexis 2.4.2.R) and it was compared with values measured in fifty dentated individuals. Three way analysis of variance was applied for comparison after confirmation of the normal distribution of data. The mean of the wall thickness in each of these points was lower in patients with edentulous spaces; however it was not significant. There was no association between gender and the thickness of the lateral wall of the maxillary sinus, but location was associated with different thicknesses. The differences in the thickness based on the location and dental status necessitates assessment of the wall thickness of the maxillary sinus in addition to the current evaluation of bone thickness between the sinus floor and the edentulous crest before maxillary sinus surgery

  15. Investigation of Mild Steel Thin-Wall Tubes in Unfilled and Foam-Filled Triangle, Square, and Hexagonal Cross Sections Under Compression Load

    Science.gov (United States)

    Rajak, Dipen Kumar; Kumaraswamidhas, L. A.; Das, S.

    2018-02-01

    This study has examined proposed structures with mild steel-reinforced LM30 aluminum (Al) alloy having diversely unfilled and 10 wt.% SiCp composite foam-filled tubes for improving axial compression performance. This class of material has novel physical, mechanical, and electrical properties along with low density. In the present experiment, Al alloy foams were prepared by the melt route technique using metal hydride powder as a foaming agent. Crash energy phenomena for diverse unfilled and foam-filled in mild steel thin-wall tubes (triangular, square and hexagonal) were studied as well. Compression deformation investigation was conducted at strain rates of 0.001-0.1/s for evaluating specific energy absorption (SEA) under axial loading conditions. The results were examined to measure plateau stress, maximum densification strain, and deformation mechanism of the materials. Specific energy absorption and total energy absorption capacities of the unfilled and filled sections were determined from the compressive stress-strain curves, which were then compared with each other.

  16. Nano-Aramid Fiber Reinforced Polyurethane Foam

    Science.gov (United States)

    Semmes, Edmund B.; Frances, Arnold

    2008-01-01

    Closed cell polyurethane and, particularly, polyisocyanurate foams are a large family of flexible and rigid products the result of a reactive two part process wherein a urethane based polyol is combined with a foaming or "blowing" agent to create a cellular solid at room temperature. The ratio of reactive components, the constituency of the base materials, temperature, humidity, molding, pouring, spraying and many other processing techniques vary greatly. However, there is no known process for incorporating reinforcing fibers small enough to be integrally dispersed within the cell walls resulting in superior final products. The key differentiating aspect from the current state of art resides in the many processing technologies to be fully developed from the novel concept of milled nano pulp aramid fibers and their enabling entanglement capability fully enclosed within the cell walls of these closed cell urethane foams. The authors present the results of research and development of reinforced foam processing, equipment development, strength characteristics and the evolution of its many applications.

  17. Normal wall thickness and tumorous changes in the gastrointestinal tract demonstrated by CT

    International Nuclear Information System (INIS)

    Zwaan, M.; Gmelin, E.; Borgis, K.J.; Neubauer, B.

    1991-01-01

    55 patients with tumours of the gastroinstinal tract were ecamined by CT, using a paraffin emulsion as a negative oral contrast medium. These were compared with 119 normal patients. The appearance of normal and tumour bearing portions of the gut wall against the contrast medium was studied. Under hypotonic conditions the gut wall could regularly be distinguished from surrounding organs and gut content. Mural thickness of the oesophagus > 7 mm and of the stomach and colon > 8 mm must be regarded as abnormal. Benign diseases cannot be distinguished from malignant conditions on the basis of wall thickness. Artifacts, such as are caused by positive oral contrast, were of less significance when using paraffin emulsion. (orig.) [de

  18. The Effect of Selected Conditions in a Thermoforming Process on Wall Thickness Variations

    Directory of Open Access Journals (Sweden)

    Emil Sasimowski

    2017-12-01

    Full Text Available The paper reports the results of a study on the effect of selected conditions in a thermoforming process for thin polystyrene sheet by vacuum assisted drape forming on the wall thickness non-uniformity of finished parts. The investigation was performed using Statistica’s DOE module for three variables: temperatures in the external and internal zones of the heater as well as heating time of the plastic sheet. The results demonstrate that the wall thickness in the finished parts at the measuring points is primarily affected by the heating time and the temperature in the internal zone of the heater, while the temperature in the external zone only affects some regions of the finished part. The results demonstrate that a short heating time and hence a lower temperature of the plastic sheet lead to a more uniform deformation of both the bottom and the side walls of the finished part, and as a consequence, to smaller variations in the wall thickness. The shortening of the heating time is however limited by the necessity of accurate reproduction of the shape of the finished part.

  19. Bi-liquid foams

    International Nuclear Information System (INIS)

    Sonneville, Odile

    1997-01-01

    Concentrated emulsions have structures similar to foams; for this reason they are also called 'bi-liquid foams'. For oil in water emulsions, they are made of polyhedral oil cells separated by aqueous surfactant films. The limited stability of these Systems is a major nuisance in their applications. In this work, we tried to understand and to control the mechanisms through which bi-liquid foams can loose their stability. In a first stage, we characterized the states of surfactant films in bi-liquid foams submitted to different pressures. We determined their hydration, the surfactant density at interfaces as well as their thicknesses. The bi-liquid foams were made by concentrating hexadecane-in-water emulsions through centrifugation. The initial emulsions contained submicron oil droplets that were completely covered with surfactant. We measured the resistance of the films to dehydration, and we represented it by pressure-film thickness curves or pressure-film hydration curves. We also obtained evidence that the interfacial surfactant density increases when the film thickness is decreased (SDS case). The Newton Black Film state is the most dehydrated metastable state that can be reached. In this state, the films can be described as surfactant bilayers that only contain the hydration water of the surfactant polar heads. Two different processes are involved the destabilization of bi-liquid foams: Ostwald ripening (oil transfer from small cells to large cells) and coalescence (films rupture). The first mechanism can be controlled by choosing oils that are very insoluble in water, avoiding ethoxylated nonionic surfactants of low molecular weight, and making emulsions that are not too fine. The second mechanism is responsible for the catastrophic destabilization of bi-liquid foams made of droplets above one micron or with a low coverage in surfactant. In these cases, destabilization occurs in the early stages of concentration, when the films are still thick. It is caused

  20. MDCT assessment of airway wall thickness in COPD patients using a new method: correlations with pulmonary function tests

    International Nuclear Information System (INIS)

    Achenbach, Tobias; Weinheimer, Oliver; Schmitt, Sabine; Freudenstein, Daniela; Kunz, Richard Peter; Dueber, Christoph; Biedermann, Alexander; Buhl, Roland; Goutham, Edula; Heussel, Claus Peter

    2008-01-01

    Quantitative assessment of airway-wall dimensions by computed tomography (CT) has proven to be a marker of airway-wall remodelling in chronic obstructive pulmonary disease (COPD) patients. The objective was to correlate the wall thickness of large and small airways with functional parameters of airflow obstruction in COPD patients on multi-detector (MD) CT images using a new quantification procedure from a three-dimensional (3D) approach of the bronchial tree. In 31 patients (smokers/COPD, non-smokers/controls), we quantitatively assessed contiguous MDCT cross-sections reconstructed orthogonally along the airway axis, taking the point-spread function into account to circumvent over-estimation. Wall thickness and wall percentage were measured and the per-patient mean/median correlated with FEV1 and FEV1%. A median of 619 orthogonal airway locations was assessed per patient. Mean wall percentage/mean wall thickness/median wall thickness in non-smokers (29.6%/0.69 mm/0.37 mm) was significantly different from the COPD group (38.9%/0.83 mm/0.54 mm). Correlation coefficients (r) between FEV1 or FEV1% predicted and intra-individual means of the wall percentage were -0.569 and -0.560, respectively, with p<0.001. Depending on the parameter, they were increased for airways of 4 mm and smaller in total diameter, being -0.621 (FEV1) and -0.537 (FEV1%) with p < 0.002. The wall thickness was significantly higher in smokers than in non-smokers. In COPD patients, the wall thickness measured as a mean for a given patient correlated with the values of FEV1 and FEV1% predicted. Correlation with FEV1 was higher when only small airways were considered. (orig.)

  1. Investigation of microstructural and mechanical properties of cell walls of closed-cell aluminium alloy foams

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.A.; Kader, M.A.; Hazell, P.J.; Brown, A.D. [School of Engineering and Information Technology, UNSW Canberra, ACT 2610 (Australia); Saadatfar, M. [Department of Applied Mathematics, Australian National University, Canberra ACT 0200 (Australia); Quadir, M.Z [Electron Microscope Unit, Mark Wainwright Analytical Centre (MWAC), The University of New South Wales, Sydney, NSW 2052 (Australia); Microscopy and Microanalysis Facility (MMF), John de Laeter Centre (JdLC), Curtin University, WA 6102 (Australia); Escobedo, J.P., E-mail: J.Escobedo-Diaz@adfa.edu.au [School of Engineering and Information Technology, UNSW Canberra, ACT 2610 (Australia)

    2016-06-01

    This study investigates the influence of microstructure on the strength properties of individual cell walls of closed-cell stabilized aluminium foams (SAFs). Optical microscopy (OM), micro-computed X-ray tomography (µ-CT), electron backscattering diffraction (EBSD), and energy dispersive X-ray spectroscopy (EDS) analyses were conducted to examine the microstructural properties of SAF cell walls. Novel micro-tensile tests were performed to investigate the strength properties of individual cell walls. Microstructural analysis of the SAF cell walls revealed that the material consists of eutectic Al-Si and dendritic a-Al with an inhomogeneous distribution of intermetallic particles and micro-pores (void defects). These microstructural features affected the micro-mechanism fracture behaviour and tensile strength of the specimens. Laser-based extensometer and digital image correlation (DIC) analyses were employed to observe the strain fields of individual tensile specimens. The tensile failure mode of these materials has been evaluated using microstructural analysis of post-mortem specimens, revealing a brittle cleavage fracture of the cell wall materials. The micro-porosities and intermetallic particles reduced the strength under tensile loading, limiting the elongation to fracture on average to ~3.2% and an average ultimate tensile strength to ~192 MPa. Finally, interactions between crack propagation and obstructing intermetallic compounds during the tensile deformation have been elucidated.

  2. Application of water flowing PVC pipe and EPS foam bead as insulation for wall panel

    Science.gov (United States)

    Ali, Umi Nadiah; Nor, Norazman Mohamad; Yusuf, Mohammed Alias; Othman, Maidiana; Yahya, Muhamad Azani

    2018-02-01

    Malaysia located in tropical climate which have a typical temperature range between 21 °C to 36 °C. Due to this, air-conditioning system for buildings become a necessity to provide comfort to occupants. In order to reduce the energy consumption of the air-conditioning system, the transmission of heat from outdoor to indoor space should be kept as minimum as possible. This article discuss about a technology to resist heat transfer through concrete wall panel using a hybrid method. In this research, PVC pipe was embedded at the center of concrete wall panel while the EPS foam beads were added about 1% of the cement content in the concrete mix forming the outer layer of the wall panel. Water is regulated in the PVC pipe from the rainwater harvesting system. The aim of this study is to minimize heat transfer from the external environment into the building. Internal building temperature which indicated in BS EN ISO 7730 or ASHRAE Standard 55 where the comfort indoor thermal is below 25°C during the daytime. Study observed that the internal surface temperature of heat resistance wall panel is up to 3°C lower than control wall panel. Therefore, we can conclude that application of heat resistance wall panel can lead to lower interior building temperature.

  3. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    International Nuclear Information System (INIS)

    He, Qingyun; Feng, Jingchao; Chen, Hongli

    2016-01-01

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  4. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    Energy Technology Data Exchange (ETDEWEB)

    He, Qingyun; Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-02-15

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  5. Quantitative CT measures of emphysema and airway wall thickness are related to D(L)CO

    DEFF Research Database (Denmark)

    Grydeland, Thomas B; Thorsen, Einar; Dirksen, Asger

    2011-01-01

    There is limited knowledge on the relationship between diffusing capacity of the lung for carbon monoxide (D(L)CO) and quantitative computed tomography (CT) measures of emphysema and airway wall thickness.......There is limited knowledge on the relationship between diffusing capacity of the lung for carbon monoxide (D(L)CO) and quantitative computed tomography (CT) measures of emphysema and airway wall thickness....

  6. Wall thickness tests by means of rotating electrodynamic transducers

    International Nuclear Information System (INIS)

    Hueschelrath, G.

    1986-01-01

    For about three years, the EROT system has been employed for measuring wall thicknesses on pipes of ferritic steels. The experience gathered and the degree of reliability reached up to now are definitely encouraging, so that an increased use of electrodynamic transducers can be expected for measuring pipes with outside diameters of up to 22 inches. (orig.) [de

  7. Water hammer with fluid-structure interaction in thick-walled pipes

    NARCIS (Netherlands)

    Tijsseling, A.S.

    2007-01-01

    A one-dimensional mathematical model is presented which describes the acoustic behaviour of thick-walled liquid-filled pipes. The model is based on conventional water-hammer and beam theories. Fluid–structure interaction (FSI) is taken into account. The equations governing straight pipes are derived

  8. Airway wall thickness associated with forced expiratory volume in 1 second decline and development of airflow limitation

    NARCIS (Netherlands)

    Hoesein, Firdaus A. A. Mohamed; de Jong, Pim A.; Lammers, Jan-Willem J.; Mali, Willem P. T. M.; Schmidt, Michael; de Koning, Harry J.; van der Aalst, Carlijn; Oudkerk, Matthijs; Vliegenthart, Rozemarijn; Groen, Harry J. M.; van Ginneken, Bram; van Rikxoort, Eva M.; Zanen, Pieter

    Airway wall thickness and emphysema contribute to airflow limitation. We examined their association with lung function decline and development of airflow limitation in 2021 male smokers with and without airflow limitation. Airway wall thickness and emphysema were quantified on chest computed

  9. Usefulness of left ventricular wall thickness-to-diameter ratio in thallium-201 scintigraphy

    International Nuclear Information System (INIS)

    Manno, B.; Hakki, A.H.; Kane, S.A.; Iskandrian, A.S.

    1983-01-01

    The ratio of left ventricular wall thickness to the cavity dimension, as seen on thallium-201 images, was used in this study to predict left ventricular ejection fraction and volume. We obtained rest thallium-201 images in 50 patients with symptomatic coronary artery disease. The thickness of a normal-appearing segment of the left ventricular wall and the transverse diameter of the cavity were measured in the left anterior oblique projection. The left ventricular ejection fraction and volume in these patients were determined by radionuclide ventriculography. There was a good correlation between thickness-to-diameter ratio and ejection fraction and end-systolic volume. In 18 patients with a thickness-to-diameter ratio less than 0.70, the ejection fraction was lower than in the 16 patients with thickness-to-diameter ratio greater than or equal to 1.0. Similarly, in patients with a thickness-to-diameter ratio less than 0.70, the end-diastolic and end-systolic volume were higher than in the remaining patients with higher thickness-to-diameter ratios. All 18 patients with a thickness-to-diameter ratio less than 0.70 had ejection fractions less than 40%; 14 of 15 patients with a thickness-to-diameter ratio greater than or equal to 1.0 had an ejection fraction greater than 40%. The remaining 16 patients with a thickness-to-diameter ratio of 0.7-0.99 had intermediate ejection fractions and volumes.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Compact assembly generates plastic foam, inflates flotation bag

    Science.gov (United States)

    1965-01-01

    Device for generating plastic foam consists of an elastomeric bag and two containers with liquid resin and a liquid catalyst. When the walls of the containers are ruptured the liquids come into contact producing foam which inflates the elastomeric bag.

  11. Fine-Tuning the Wall Thickness of Ordered Mesoporous Graphene by Exploiting Ligand Exchange of Colloidal Nanocrystals

    Directory of Open Access Journals (Sweden)

    Dandan Han

    2017-12-01

    Full Text Available Because of their unique physical properties, three-dimensional (3D graphene has attracted enormous attention over the past years. However, it is still a challenge to precisely control the layer thickness of 3D graphene. Here, we report a novel strategy to rationally adjust the wall thickness of ordered mesoporous graphene (OMG. By taking advantage of ligand exchange capability of colloidal Fe3O4 nanocrystals, we are able to fine-tune the wall thickness of OMG from 2 to 6 layers of graphene. When evaluated as electrocatalyst for oxygen reduction reaction upon S and N doping, the 4-layer OMG is found to show better catalytic performance compared with their 2- and 6-layer counterparts, which we attribute to the enhanced exposure of active sites arising from the thin wall thickness and high surface area.

  12. Anatomical Variation in the Wall Thickness of Wood Fibres of ...

    African Journals Online (AJOL)

    The wall thickness of wood fibres of rubber (Hevea brasiliensis) grown and tapped for latex in south eastern Nigeria were investigated to determine anatomical variation. The rubber trees which were overmature for tapping and keeping were sampled in hierarchical order of plantations, bud classes, trees, discs, cardinal ...

  13. Inverse Transient Analysis for Classification of Wall Thickness Variations in Pipelines

    Directory of Open Access Journals (Sweden)

    Jeffrey Tuck

    2013-12-01

    Full Text Available Analysis of transient fluid pressure signals has been investigated as an alternative method of fault detection in pipeline systems and has shown promise in both laboratory and field trials. The advantage of the method is that it can potentially provide a fast and cost effective means of locating faults such as leaks, blockages and pipeline wall degradation within a pipeline while the system remains fully operational. The only requirement is that high speed pressure sensors are placed in contact with the fluid. Further development of the method requires detailed numerical models and enhanced understanding of transient flow within a pipeline where variations in pipeline condition and geometry occur. One such variation commonly encountered is the degradation or thinning of pipe walls, which can increase the susceptible of a pipeline to leak development. This paper aims to improve transient-based fault detection methods by investigating how changes in pipe wall thickness will affect the transient behaviour of a system; this is done through the analysis of laboratory experiments. The laboratory experiments are carried out on a stainless steel pipeline of constant outside diameter, into which a pipe section of variable wall thickness is inserted. In order to detect the location and severity of these changes in wall conditions within the laboratory system an inverse transient analysis procedure is employed which considers independent variations in wavespeed and diameter. Inverse transient analyses are carried out using a genetic algorithm optimisation routine to match the response from a one-dimensional method of characteristics transient model to the experimental time domain pressure responses. The accuracy of the detection technique is evaluated and benefits associated with various simplifying assumptions and simulation run times are investigated. It is found that for the case investigated, changes in the wavespeed and nominal diameter of the

  14. Inverse Transient Analysis for Classification of Wall Thickness Variations in Pipelines

    Science.gov (United States)

    Tuck, Jeffrey; Lee, Pedro

    2013-01-01

    Analysis of transient fluid pressure signals has been investigated as an alternative method of fault detection in pipeline systems and has shown promise in both laboratory and field trials. The advantage of the method is that it can potentially provide a fast and cost effective means of locating faults such as leaks, blockages and pipeline wall degradation within a pipeline while the system remains fully operational. The only requirement is that high speed pressure sensors are placed in contact with the fluid. Further development of the method requires detailed numerical models and enhanced understanding of transient flow within a pipeline where variations in pipeline condition and geometry occur. One such variation commonly encountered is the degradation or thinning of pipe walls, which can increase the susceptible of a pipeline to leak development. This paper aims to improve transient-based fault detection methods by investigating how changes in pipe wall thickness will affect the transient behaviour of a system; this is done through the analysis of laboratory experiments. The laboratory experiments are carried out on a stainless steel pipeline of constant outside diameter, into which a pipe section of variable wall thickness is inserted. In order to detect the location and severity of these changes in wall conditions within the laboratory system an inverse transient analysis procedure is employed which considers independent variations in wavespeed and diameter. Inverse transient analyses are carried out using a genetic algorithm optimisation routine to match the response from a one-dimensional method of characteristics transient model to the experimental time domain pressure responses. The accuracy of the detection technique is evaluated and benefits associated with various simplifying assumptions and simulation run times are investigated. It is found that for the case investigated, changes in the wavespeed and nominal diameter of the pipeline are both important

  15. Local wall thickness reductions in operative high-pressure gas pipelines; Lokale Wanddickenminderungen an in Betrieb befindlichen Gashochdruckleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Hass, Georg [Netzdienste Rhein-Main GmbH, Frankfurt am Main (Germany); Hoffmann, Ulrich [Verbundnetz Gas AG (VNG), Leipzig (Germany); Konarske, Juergen [RWE Westfalen-Weser-Ems Netzservice GmbH, Recklinghausen (Germany); Soppa, Thorsten [NG Netz Gas+Wasser (Germany); Steiner, Michael [Open Grid Europe GmbH, Essen (Germany)

    2011-04-15

    TUeV Nord, Salzgitter Mannesmann Forschung and DVGW investigated methods to assess local wall thickness reductions in operative high-pressure gas pipelines. Methods described in the relevant literature were reviewed with regard to the limiting criteria defined for maximum permissible wall thickness reductions. (orig./GL)

  16. Discrimination of Cylinders with Different Wall Thicknesses using Neural Networks and Simulated Dolphin Sonar Signals

    DEFF Research Database (Denmark)

    Andersen, Lars Nonboe; Au, Whitlow; Larsen, Jan

    1999-01-01

    This paper describes a method integrating neural networks into a system for recognizing underwater objects. The system is based on a combination of simulated dolphin sonar signals, simulated auditory filters and artificial neural networks. The system is tested on a cylinder wall thickness...... difference experiment and demonstrates high accuracy for small wall thickness differences. Results from the experiment are compared with results obtained by a false killer whale (pseudorca crassidens)....

  17. Hairy foam" : carbon nanofibers grown on solid foam. A fully accessible, high surface area, graphitic catalyst support

    NARCIS (Netherlands)

    Wenmakers, P.W.A.M.; Schaaf, van der J.; Kuster, B.F.M.; Schouten, J.C.

    2008-01-01

    This paper describes the synthesis of carbon nanofibers (CNFs) on solid carbon foam ("Hairy Foam") by catalytic decompn. of ethylene. The effect of nickel loading on fiber diam. and morphol., CNF coverage, and fiber layer thickness is studied using SEM and N2/Kr-physisorption. The surface area

  18. Manual versus automatic bladder wall thickness measurements: a method comparison study

    NARCIS (Netherlands)

    Oelke, M.; Mamoulakis, C.; Ubbink, D.T.; de la Rosette, J.J.; Wijkstra, H.

    2009-01-01

    Purpose To compare repeatability and agreement of conventional ultrasound bladder wall thickness (BWT) measurements with automatically obtained BWT measurements by the BVM 6500 device. Methods Adult patients with lower urinary tract symptoms, urinary incontinence, or postvoid residual urine were

  19. Compressive Behaviour and Energy Absorption of Aluminium Foam Sandwich

    Science.gov (United States)

    Endut, N. A.; Hazza, M. H. F. Al; Sidek, A. A.; Adesta, E. T. Y.; Ibrahim, N. A.

    2018-01-01

    Development of materials in automotive industries plays an important role in order to retain the safety, performance and cost. Metal foams are one of the idea to evolve new material in automotive industries since it can absorb energy when it deformed and good for crash management. Recently, new technology had been introduced to replace metallic foam by using aluminium foam sandwich (AFS) due to lightweight and high energy absorption behaviour. Therefore, this paper provides reliable data that can be used to analyze the energy absorption behaviour of aluminium foam sandwich by conducting experimental work which is compression test. Six experiments of the compression test were carried out to analyze the stress-strain relationship in terms of energy absorption behavior. The effects of input variables include varying the thickness of aluminium foam core and aluminium sheets on energy absorption behavior were evaluated comprehensively. Stress-strain relationship curves was used for energy absorption of aluminium foam sandwich calculation. The result highlights that the energy absorption of aluminium foam sandwich increases from 12.74 J to 64.42 J respectively with increasing the foam and skin thickness.

  20. Fine-tuning the Wall Thickness of Ordered Mesoporous Graphene by Exploiting Ligand Exchange of Colloidal Nanocrystals

    Science.gov (United States)

    Han, Dandan; Yan, Yancui; Wei, Jishi; Wang, Biwei; Li, Tongtao; Guo, Guannan; Yang, Dong; Xie, Songhai; Dong, Angang

    2017-12-01

    Because of their unique physical properties, three-dimensional (3D) graphene has attracted enormous attention over the past years. However, it is still a challenge to precisely control the layer thickness of 3D graphene. Here, we report a novel strategy to rationally adjust the wall thickness of ordered mesoporous graphene (OMG). By taking advantage of ligand exchange capability of colloidal Fe3O4 nanocrystals, we are able to fine-tune the wall thickness of OMG from 2 to 6 layers of graphene by tailoring the hydrocarbon ligands attached to the nanocrystal surface. When evaluated as electrocatalyst for oxygen reduction reaction upon S and N doping, the 4-layer OMG is found to show better catalytic performance compared with its 2- and 6-layer counterparts, which we attribute to the enhanced exposure of active sites resulting from its ultrathin wall thickness and high surface area.

  1. Experimental Investigation into Pull-Out Strength of Foamed Concrete Using Different Types of Screw

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.

    2014-01-01

    Full Text Available This study focuses on the results of the comprehensive strength test to quantify the mechanical properties of the screw’s pullout strength on foamed concrete. Foamed concrete is classified as lightweight concrete that been produced by cement paste or mortar in which air-voids are entrapped in the mortar by a suitable foaming agent. These days, the use of foamed concrete has been recognized in the construction industry as wall blocks, wall panels and also material floor and roof screeds. Hence, the applications of this material should be maximized as it is multi-functional. As we know, the use of screws on the wall or ceiling is common in a building. The objective of this research is to examine and determine the pullout strength of various properties and types of screws in lightweight foamed concrete with various densities that may depict the best result of the pullout strength on foamed concrete. To visualize the different results of pullout strength, screws with and without wall plug will be used as well. The pullout strength will be tested using the Universal Testing Machine where it shall measure the ultimate load of the screws attached to the foamed concrete may resist.

  2. Nitrate Diffusional Releases from the Saltstone Facility, Vault 2, with Respect to Different Concrete Wall Thicknesses

    International Nuclear Information System (INIS)

    ROBERT, HIERGESELL

    2005-01-01

    To assist the Saltstone Vault 2 Design Team, an investigation was conducted to evaluate the effectiveness of alternative concrete wall thicknesses in limiting nitrate diffusion away from the planned facility. While the current design calls for 18-inch concrete walls, alternative thicknesses of 12-in, 8-in, and 6-in were evaluated using a simplified 1-D numerical model. To serve as a guide for Saltstone Vault 2 conceptual design, the results of this investigation were applied to Saltstone Vault 4 to determine what the hypothetical limits would be for concrete wall thicknesses thinner than the planned 18-inches. This was accomplished by adjusting the Vault 4 Limits, based on the increased nitrate diffusion rates through the thinner concrete walls, such that the 100-m well limit of 44 mg/L of nitrate as nitrate was not exceeded. The implication of these preliminary results is that as thinner vault walls are implemented there is a larger release of nitrate, thus necessitating optimal vault placement to minimize the number of vaults placed along a single groundwater flow path leading to the discharge zone

  3. Polyethoxylated carboxylic surfactant for ion foam flotation: fundamental study from solution to foam

    International Nuclear Information System (INIS)

    Micheau, Cyril

    2013-01-01

    Ion foam flotation allows to concentrate ions in a foam phase formed by a soap. For classical systems, the strong interaction between ions and surfactant generally leads to the formation of precipitates and of froth. When the froth collapses, the solid residue thus recovered requires a recycling or conversion. In order to remedy this, the present work uses as collector a polyethoxylated carboxylic surfactant, AKYPO RO 90 VG, which forms soluble ion/surfactant complexes, even with multi-charge ions. This work presents a detailed study of the fundamental mechanisms that govern the extraction of ions by foaming. In the first part, surface activity and acid/base properties of the surfactant in solution are determined by combining numerous independent techniques which are pH-metric dosage, tensiometry and small angle scattering. The evolution of these properties in the presence of different nitrate salts (Nd, Eu, Ca, Sr, Cu, Li, Na, Cs) coupled with electrophoretic measurements give a first approach to selectivity. Finally, all of these data combined with a study of the formation of surfactant/ion complexes allow us to determine the speciation of Nd/AKYPO system as a function of pH. In the second part, the analysis of the foam by conductivity and neutron scattering provides information on the wetness and foam film thickness, parameters governing foam stability. The pH and the nature of the added ions, their number of charge and also their chemical nature thus appear to be major parameters that governed wetness and foam film thickness. The last part is devoted to the understanding of the ion extraction/separation experiments by flotation based on all previous results. It is shown that the flotation of neodymium is strongly related to its speciation, which could lead to its re-extraction or its flotation in precipitated form. It is shown that, neodymium induces a phenomenon of mono-charge ion depletion in the foam. This ionic specificity allows to consider the studied

  4. Conjugate heat transfer for turbulent flow in a thick walled plain pipe

    Directory of Open Access Journals (Sweden)

    Canli Eyub

    2018-01-01

    Full Text Available Laminar and turbulent flow have their own characteristics in respect of heat transfer in pipes. While conjugate heat transfer is a major concern for a thick walled pipe with laminar flow inside it, there are limited studies about a turbulent flow in a thick walled plain pipe considering the conjugate heat transfer. In order to conduct such a work by means of in-house developed code, it was desired to make a preliminary investigation with commercially available CFD codes. ANSYS CFD was selected as the tool since it has a positive reputation in the literature for reliability. Defined heat transfer problem was solved with SIMPLE and Coupled Schemes for pressure velocity coupling and results are presented accordingly.

  5. Nonlinear seismic analysis of a thick-walled concrete canyon structure

    International Nuclear Information System (INIS)

    Winkel, B.V.; Wagenblast, G.R.

    1989-01-01

    Conventional linear seismic analyses of a thick-walled lightly reinforced concrete structure were found to grossly underestimate its seismic capacity. Reasonable estimates of the seismic capacity were obtained by performing approximate nonlinear spectrum analyses along with static collapse evaluations. A nonlinear time history analyses is planned as the final verification of seismic adequacy

  6. SU-C-BRA-04: Use of Esophageal Wall Thickness in Evaluation of the Response to Chemoradiation Therapy for Esophageal Cancer

    International Nuclear Information System (INIS)

    Wang, J; Kligerman, S; Lu, W; Kang, M

    2015-01-01

    Purpose: To quantitatively evaluate the esophageal cancer response to chemoradiation therapy (CRT) by measuring the esophageal wall thickness in CT. Method: Two datasets were used in this study. The first dataset is composed of CT scans of 15 esophageal cancer patients and 15 normal controls. The second dataset is composed of 20 esophageal cancer patients who underwent PET/CT scans before (Pre-CRT) and after CRT (Post-CRT). We first segmented the esophagus using a multi-atlas-based algorithm. The esophageal wall thickness was then computed, on each slice, as the equivalent circle radius of the segmented esophagus excluding the lumen. To evaluate the changes of wall thickness, we computed the standard deviation (SD), coefficient of variation (COV, SD/Mean), and flatness [(Max–Min)/Mean] of wall thickness along the entire esophagus. Results: For the first dataset, the mean wall thickness of cancer patients and normal controls were 6.35 mm and 6.03 mm, respectively. The mean SD, COV, and flatness of the wall thickness were 2.59, 0.21, and 1.27 for the cancer patients and 1.99, 0.16, and 1.13 for normal controls. Statistically significant differences (p < 0.05) were identified in SD and flatness. For the second dataset, the mean wall thickness of pre-CRT and post-CRT patients was 7.13 mm and 6.84 mm, respectively. The mean SD, COV, and flatness were 1.81, 0.26, and 1.06 for pre-CRT and 1.69, 0.26, and 1.06 for post-CRT. Statistically significant difference was not identified for these measurements. Current results are based on the entire esophagus. We believe significant differences between pre- and post-CRT scans could be obtained, if we conduct the measurements at tumor sites. Conclusion: Results show thicker wall thickness in pre-CRT scans and differences in wall thickness changes between normal and abnormal esophagus. This demonstrated the potential of esophageal wall thickness as a marker in the tumor CRT response evaluation. This work was supported in part by

  7. Quantification of common carotid artery and descending aorta vessel wall thickness from MR vessel wall imaging using a fully automated processing pipeline.

    Science.gov (United States)

    Gao, Shan; van 't Klooster, Ronald; Brandts, Anne; Roes, Stijntje D; Alizadeh Dehnavi, Reza; de Roos, Albert; Westenberg, Jos J M; van der Geest, Rob J

    2017-01-01

    To develop and evaluate a method that can fully automatically identify the vessel wall boundaries and quantify the wall thickness for both common carotid artery (CCA) and descending aorta (DAO) from axial magnetic resonance (MR) images. 3T MRI data acquired with T 1 -weighted gradient-echo black-blood imaging sequence from carotid (39 subjects) and aorta (39 subjects) were used to develop and test the algorithm. The vessel wall segmentation was achieved by respectively fitting a 3D cylindrical B-spline surface to the boundaries of lumen and outer wall. The tube-fitting was based on the edge detection performed on the signal intensity (SI) profile along the surface normal. To achieve a fully automated process, Hough Transform (HT) was developed to estimate the lumen centerline and radii for the target vessel. Using the outputs of HT, a tube model for lumen segmentation was initialized and deformed to fit the image data. Finally, lumen segmentation was dilated to initiate the adaptation procedure of outer wall tube. The algorithm was validated by determining: 1) its performance against manual tracing; 2) its interscan reproducibility in quantifying vessel wall thickness (VWT); 3) its capability of detecting VWT difference in hypertensive patients compared with healthy controls. Statistical analysis including Bland-Altman analysis, t-test, and sample size calculation were performed for the purpose of algorithm evaluation. The mean distance between the manual and automatically detected lumen/outer wall contours was 0.00 ± 0.23/0.09 ± 0.21 mm for CCA and 0.12 ± 0.24/0.14 ± 0.35 mm for DAO. No significant difference was observed between the interscan VWT assessment using automated segmentation for both CCA (P = 0.19) and DAO (P = 0.94). Both manual and automated segmentation detected significantly higher carotid (P = 0.016 and P = 0.005) and aortic (P < 0.001 and P = 0.021) wall thickness in the hypertensive patients. A reliable and reproducible pipeline for fully

  8. Exercise-mediated changes in conduit artery wall thickness in humans: role of shear stress

    NARCIS (Netherlands)

    Thijssen, D.H.J.; Dawson, E.A.; Munckhof, I.C. van den; Tinken, T.M.; Drijver, E. den; Hopkins, N.; Cable, N.T.; Green, D.J.

    2011-01-01

    Episodic increases in shear stress have been proposed as a mechanism that induces training-induced adaptation in arterial wall remodeling in humans. To address this hypothesis in humans, we examined bilateral brachial artery wall thickness using high-resolution ultrasound in healthy men across an

  9. A graphite foam reinforced by graphite particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.J.; Wang, X.Y.; Guo, L.F.; Wang, Y.M.; Wang, Y.P.; Yu, M.F.; Lau, K.T.T. [DongHua University, Shanghai (China). College of Material Science and Engineering

    2007-11-15

    Graphite foam was obtained after carbonization and graphitization of a pitch foam formed by the pyrolysis of coal tar based mesophase pitch mixed with graphite particles in a high pressure and temperature chamber. The graphite foam possessed high mechanical strength and exceptional thermal conductivity after adding the graphite particles. Experimental results showed that the thermal conductivity of modified graphite foam reached 110W/m K, and its compressive strength increased from 3.7 MPa to 12.5 MPa with the addition of 5 wt% graphite particles. Through the microscopic observation, it was also found that fewer micro-cracks were formed in the cell wall of the modified foam as compared with pure graphite foam. The graphitization degree of modified foam reached 84.9% and the ligament of graphite foam exhibited high alignment after carbonization at 1200{sup o}C for 3 h and graphitization at 3000{sup o}C for 10 min.

  10. Preparation and characterization of PMMA graded microporous foams via one-step supercritical carbon dioxide foaming

    International Nuclear Information System (INIS)

    Yuan Huan; Li Junguo; Xiong Yuanlu; Luo Guoqiang; Shen Qiang; Zhang Lianmeng

    2013-01-01

    Supercritical carbon dioxide (ScCO 2 ) foaming which is inexpensive and environmental friendly has been widely used to prepare polymer-based microporous materials. In this paper, PMMA graded microporous materials were foamed by PMMA matrix after an unstable saturation process which was done under supercritical condition of 28MPa and 50 °C. The scanning electron microscopy (SEM) was utilized to observe the morphology of the graded foam. A gas adsorption model was proposed to predict the graded gas concentration in the different region of the polymer matrix. The SEM results showed that the solid and foam region of the graded foam can be connected without laminated layers. With the increasing thickness position of the graded microporous foam, the cell size increased from 3.4 to 27.5 μm, while the cell density decreased from 1.04 × 10 9 to 1.96 × 10 7 cells/cm 3 . It also found that the gradient microporous structure of the foam came from graded gas concentration which was obtained in the initial saturation process.

  11. Controlling of density uniformity of polyacrylate foams

    International Nuclear Information System (INIS)

    Shan Wenwen; Yuan Baohe; Wang Yanhong; Xu Jiayun; Zhang Lin

    2010-01-01

    The density non-uniformity existing in most low-density foams will affect performance of the foams. The trimethylolpropane trimethacrylate (TMPTA) foam targets were prepared and controlling methods of the foams, density uniformity were explored together with its forming mechanism. It has been found that the UV-light with high intensity can improve the distribution uniformity of the free radicals induced by UV photons in the solvents, thus improve the density uniformity of the foams. In addition, container wall would influence the concentration distribution of the solution, which affects the density uniformity of the foams. Thus, the UV-light with high intensity was chosen together with polytetrafluoroethylene molds instead of glass molds to prepare the foams with the density non-uniformity less than 10%. β-ray detection technology was used to measure the density uniformity of the TMPTA foams with the density in the range of 10 to 100 mg · cm -3 , and the results show that the lower the foam density is, the worse the density uniformity is. (authors)

  12. Optimization of Surface Roughness and Wall Thickness in Dieless Incremental Forming Of Aluminum Sheet Using Taguchi

    Science.gov (United States)

    Hamedon, Zamzuri; Kuang, Shea Cheng; Jaafar, Hasnulhadi; Azhari, Azmir

    2018-03-01

    Incremental sheet forming is a versatile sheet metal forming process where a sheet metal is formed into its final shape by a series of localized deformation without a specialised die. However, it still has many shortcomings that need to be overcome such as geometric accuracy, surface roughness, formability, forming speed, and so on. This project focus on minimising the surface roughness of aluminium sheet and improving its thickness uniformity in incremental sheet forming via optimisation of wall angle, feed rate, and step size. Besides, the effect of wall angle, feed rate, and step size to the surface roughness and thickness uniformity of aluminium sheet was investigated in this project. From the results, it was observed that surface roughness and thickness uniformity were inversely varied due to the formation of surface waviness. Increase in feed rate and decrease in step size will produce a lower surface roughness, while uniform thickness reduction was obtained by reducing the wall angle and step size. By using Taguchi analysis, the optimum parameters for minimum surface roughness and uniform thickness reduction of aluminium sheet were determined. The finding of this project helps to reduce the time in optimising the surface roughness and thickness uniformity in incremental sheet forming.

  13. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    Science.gov (United States)

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-05

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Experimental study of a foam concrete based on local Tunisian materials

    Directory of Open Access Journals (Sweden)

    Ellouze Dorra

    2018-01-01

    Full Text Available The building sector in Tunisia is very energy-intensive, the largest share of energy consumption comes from factories of building materials namely brick and cement plants. This work is part of the reduction of the energy bill in the building envelope. Indeed, the foam concrete can be walls in single or double wall with better insulating power. This paper presents an experimental study on the technical problems related to the formulation and manufacture of a new cellular concrete in Tunisia, called "foam" concrete, from Tunisian local materials. Indeed, six varieties of sand of different provenance and grain size will be analyzed, the "good" sand is the one that is best suited for the manufacture of foam concrete. Two clean, fine-grained (0/2mm rolled grain sands were retained. Then four foam concretes were formulated using each time a single type of sand and varying the density namely 0.8 and 1. These four formulations were tested mechanically and thermally. The results found showed that compressive strengths do not exceed 1.5 MPa at 28 days. Thus, the foam concrete can be used only as a filling concrete in non-load bearing elements such as partition walls. The guarded hot plate method was used to determine the thermal conductivities of the four foamed concretes studied. A low thermal conductivity was found of the order of 0.22 W/m°K which prove the insulating power of foam concrete.

  15. Effect of melter feed foaming on heat flux to the cold cap

    Science.gov (United States)

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard; Klouzek, Jaroslav; VanderVeer, Bradley J.; Dixon, Derek R.; Luksic, Steven A.; Rodriguez, Carmen P.; Chun, Jaehun; Schweiger, Michael J.; Kruger, Albert A.

    2017-12-01

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolved gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in quenched cold caps from the laboratory-scale melter.

  16. Effect of melter feed foaming on heat flux to the cold cap

    Energy Technology Data Exchange (ETDEWEB)

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard; Klouzek, Jaroslav; VanderVeer, Bradley J.; Dixon, Derek R.; Luksic, Steven A.; Rodriguez, Carmen P.; Chun, Jaehun; Schweiger, Michael J.; Kruger, Albert A.

    2017-12-01

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolved gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in the laboratory-scale melter.

  17. Structural Foams of Biobased Isosorbide-Containing Copolycarbonate

    Directory of Open Access Journals (Sweden)

    Stefan Zepnik

    2017-01-01

    Full Text Available Isosorbide-containing copolycarbonate (Bio-PC is a partly biobased alternative to conventional bisphenol A (BPA based polycarbonate (PC. Conventional PC is widely used in polymer processing technologies including thermoplastic foaming such as foam injection molding. At present, no detailed data is available concerning the foam injection molding behavior and foam properties of Bio-PC. This contribution provides first results on injection-molded foams based on isosorbide-containing PC. The structural foams were produced by using an endothermic chemical blowing agent (CBA masterbatch and the low pressure foam injection molding method. The influence of weight reduction and blowing agent concentration on general foam properties such as density, morphology, and mechanical properties was studied. The test specimens consist of a foam core in the center and compact symmetrical shell layers on the sides. The thickness of the foam core increases with increasing weight reduction irrespective of the CBA concentration. The specific (mechanical bending properties are significantly improved and the specific tensile properties can almost be maintained while reducing the density of the injection-molded parts.

  18. Spray Foam Exterior Insulation with Stand-Off Furring

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anastasia [IBACOS, Inc., Pittsburgh, PA (United States); Baker, Richard [IBACOS, Inc., Pittsburgh, PA (United States); Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using 'L' clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and 'picture framing' the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  19. Spray Foam Exterior Insulation with Stand-Off Furring

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anatasia [IBACOS, Inc., Pittsburgh, PA (United States); Baker, Richard [IBACOS, Inc., Pittsburgh, PA (United States); Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using "L" clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and "picture framing" the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  20. Foam flow in a model porous medium: I. The effect of foam coarsening.

    Science.gov (United States)

    Jones, S A; Getrouw, N; Vincent-Bonnieu, S

    2018-05-09

    Foam structure evolves with time due to gas diffusion between bubbles (coarsening). In a bulk foam, coarsening behaviour is well defined, but there is less understanding of coarsening in confined geometries such as porous media. Previous predictions suggest that coarsening will cause foam lamellae to move to low energy configurations in the pore throats, resulting in greater capillary resistance when restarting flow. Foam coarsening experiments were conducted in both a model-porous-media micromodel and in a sandstone core. In both cases, foam was generated by coinjecting surfactant solution and nitrogen. Once steady state flow had been achieved, the injection was stopped and the system sealed off. In the micromodel, the foam coarsening was recorded using time-lapse photography. In the core flood, the additional driving pressure required to reinitiate flow after coarsening was measured. In the micromodel the bubbles coarsened rapidly to the pore size. At the completion of coarsening the lamellae were located in minimum energy configurations in the pore throats. The wall effect meant that the coarsening did not conform to the unconstricted growth laws. The coreflood tests also showed coarsening to be a rapid process. The additional driving pressure to restart flow reached a maximum after just 2 minutes.

  1. Foam shell project: Progress report

    International Nuclear Information System (INIS)

    Overturf, G.; Reibold, B.; Cook, B.; Schroen-Carey, D.

    1994-01-01

    The authors report on their work to produce a foam shell target for two possible applications: (1) as liquid-layered cryogenic target on Omega Upgrade, and (2) as a back-up design for the NIF. This target consists of a roughly 1 mm diameter and 100 μm thick spherical low-density foam shell surrounding a central void. The foam will be slightly overfilled with liquid D 2 or DT, the overfilled excess being symmetrically distributed on the inside of the shell and supported by thermal gradient techniques. The outside of the foam is overcoated with full density polymer which must be topologically smooth. The technology for manufacturing this style of foam shell involves microencapsulation techniques and has been developed by the Japanese at ILE. Their goal is to determine whether this technology can be successfully adapted to meet US ICF objectives. To this end a program of foam shell development has been initiated at LLNL in collaboration with both the General Atomics DOE Target Fabrication Contract Corporation and the Target Fabrication Group at LLE

  2. Simulation on the Effect of Bottle Wall Thickness Distribution using Blow Moulding Technique

    International Nuclear Information System (INIS)

    Suraya, S; Azman, M D; Fatchurrohman, N; Jaafar, A A; Yusoff, A R

    2016-01-01

    The aims of this study are to assess the deformation behavior of a polymeric material during a blow moulding process. Transient computations of two dimensional model of a PP bottle were performed using ANSYS Polyflow computer code to predict the wall thickness distribution at four different parison's diameter; 8mm, 10mm, 18mm, and 20mm. Effects on the final wall thickness diameter and time step are studied. The simulated data shows that the inflation performance degrades with increasing parison diameter. It is concluded that the blow moulding process using 10mm parison successfully meet the product processing requirements. Factors that contribute to the variation in deformation behaviour of the plastic during the manufacturing process are discussed. (paper)

  3. Microbial analysis in biogas reactors suffering by foaming incidents

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; De Francisci, Davide; Treu, Laura

    2014-01-01

    , lipids and carbohydrates before and after foaming incidents was characterized using 16S rRNA gene sequencing. Moreover, the microbial diversity between the liquid and foaming layer was assessed. A number of genera that are known to produce biosurfactants, contain mycolic acid in their cell wall...

  4. The development and structure of thick-walled, multicellular, aerial spores in Diheterospora chlamydosporia (=Verticillium chlamydosporium).

    Science.gov (United States)

    Cambell, W P; Griffiths, D A

    1975-07-01

    The aerial, thick-walled spores in Diheterospara chlamydosporia arose as terminal swellings on erect hyphae. Repeated septation of the continuously swelling spore resulted in a multicellular structure. Immediately after the onset of septation secondary wall material was laid down between the two-layered primary wall and the plasmalemma. The presence of secondary wall material indicates that the multicellular spore is a dictyochlamydospore and not an aleuriospore. The relationship between chlamydospores and aleuriospores in other fungi is discussed.

  5. Multislice helical CT analysis of small-sized airway wall thickness in smokers and patients with bronchial asthma

    International Nuclear Information System (INIS)

    Sekimura, Kenshi; Ito, Harumasa; Nakamura, Yutaka; Kobayashi, Hitoshi; Oikawa, Hirobumi; Inoue, Hiroshi; Ehara, Shigeru; Yamauchi, Kohei

    2010-01-01

    There is accumulating evidence that airway remodeling, which contributes to airway narrowing, plays a role in the pathogenesis of bronchial asthma (BA) and chronic obstructive pulmonary disease (COPD). Development of the multislice helical CT (MSCT) with improved spatial resolution has made it possible to obtain more precise imaging of small-sized airways. Small-sized airway wall-thickness was measured using the MSCT scan to analyze small-sized airways of smokers and BA patients, and examine the effects of a β 2 agonists on small-sized airway wall-thickness of BA patients. Thirty-six non-asthmatics who participated in the Health Check Program of Iwate Medical University and 25 patients with asthma were recruited. Amongst the 36 non-asthmatics were 20 healthy never-smokers and 15 smokers. The other 25 asthmatics were recruited from the outpatient clinic at Iwate Medical University. MSCT was performed and the right B10 bronchus was chosen for dimensional analysis. Airway wall thickness was expressed as a percentage of wall area (WA%). WA% of the 7 asthmatics before and 30 mim after procaterol (20μg) inspiration were compared. Small-sized airway wall thickness was significantly increased in smokers and patients with asthma compared to healthy never-smokers, when determined by MSCT. Both %V 50 and %V 25 had significant negative correlations with WA% among the healthy never-smokers and smoker population. Procaterol inspiration reduced WA% in the small airway of patients with asthma. Increase of small-sized airway thickness measured by MSCT scan may reflect peripheral obstructive lesions of smokers and BA patients. (author)

  6. Modeling of Flexible Polyurethane Foam Shrinkage for Bra Cup Moulding Process Control

    Directory of Open Access Journals (Sweden)

    Long Wu

    2018-04-01

    Full Text Available Nowadays, moulding technology has become a remarkable manufacturing process in the intimate apparel industry. Polyurethane (PU foam sheets are used to mould three-dimensional (3D seamless bra cups of various softness and shapes, which eliminate bulky seams and reduce production costs. However, it has been challenging to accurately and effectively control the moulding process and bra cup thickness. In this study, the theoretical mechanism of heat transfer and the thermal conductivity of PU foams are first examined. Experimental studies are carried out to investigate the changes in foam materials at various moulding conditions (viz., temperatures, and lengths of dwell time in terms of surface morphology and thickness by using electron and optical microscopy. Based on the theoretical and experimental investigations of the thermal conductivity of the foam materials, empirical equations of shrinkage ratio and thermal conduction of foam materials were established. A regression model to predict flexible PU foam shrinkage during the bra cup moulding process was formulated by using the Levenberg-Marquardt method of nonlinear least squares algorithm and verified for accuracy. This study therefore provides an effective approach that optimizes control of the bra cup moulding process and assures the ultimate quality and thickness of moulded foam cups.

  7. A tale of two neglected systems - structure and function of the thin- and thick-walled sieve tubes in monocotyledonous leaves.

    Directory of Open Access Journals (Sweden)

    Ted eBotha

    2013-08-01

    Full Text Available There is a large body of information relating to the ontogeny, development and the vasculature of eudicotyledonous leaves. However there is less information available concerning the vascular anatomy of monocotyledonous leaves. This is surprising, given that there are two uniquely different phloem systems present in large groups such as grasses and sedges. Monocotyledonous leaves contain marginal, large, intermediate and small longitudinal veins that are interconnected by numerous transverse veins. The longitudinal veins contain two metaphloem sieve tube types, which, based upon their ontogeny and position within the phloem, are termed early (thin-walled and late (thick-walled sieve tubes. Early metaphloem comprises sieve tubes, companion cells and vascular parenchyma cells, whilst the late metaphloem, contains thick-walled sieve tubes that lack companion cells. Thick-walled sieve tubes are generally adjacent to, or no more than one cell removed from the metaxylem. Unlike thin-walled sieve tube-companion cell complexes, thick-walled sieve tubes are connected to parenchyma by pore-plasmodesma units and are generally symplasmically isolated from the thin walled sieve tubes. This paper addresses key structural and functional differences between thin- and thick-walled sieve tubes and explores the unique advantages of alternate transport strategies that this 5 to 7 million year old dual system may offer. It would seem that these two systems may enhance, add to, or play a significant role in increasing the efficiency of solute retrieval as well as of assimilate transfer.

  8. Porosity and cell size control in alumina foam preparation by thermo-foaming of powder dispersions in molten sucrose

    Directory of Open Access Journals (Sweden)

    Sujith Vijayan

    2016-09-01

    Full Text Available The foaming characteristics of alumina powder dispersions in molten sucrose have been studied as a function of alumina powder to sucrose weight ratio (WA/S and foaming temperature. The increase in foaming temperature significantly decreases the foaming and foam setting time and increases the foam volume due to an increase in the rate of OH condensation as well as a decrease in the viscosity of the dispersion. Nevertheless, the foam collapses beyond a critical foaming temperature, which depends on the WA/S. The sintering shrinkage depends mainly on the WA/S and marginally on the foaming temperature. The porosity (83.4–94.6 vol.% and cell size (0.55–1.6 mm increase with an increase in foaming temperature (120–170 °C and a decrease in WA/S (0.8–1.6. The drastic decrease in compressive strength and modulus beyond a WA/S of 1.2 is due to the pores generated on the cell walls and struts as a result of particle agglomeration. Gibson and Ashby plots show large deviation with respect to the model constants ‘C’ and ‘n’, especially at higher alumina powder to sucrose weight ratios.

  9. Mechanical Characterization of Lightweight Foamed Concrete

    OpenAIRE

    Marcin Kozłowski; Marta Kadela

    2018-01-01

    Foamed concrete shows excellent physical characteristics such as low self weight, relatively high strength and superb thermal and acoustic insulation properties. It allows for minimal consumption of aggregate, and by replacement of a part of cement by fly ash, it contributes to the waste utilization principles. For many years, the application of foamed concrete has been limited to backfill of retaining walls, insulation of foundations and roof tiles sound insulation. However, during the last ...

  10. Radiography of large-volume thick-walled structures using transportable high-energy sources

    International Nuclear Information System (INIS)

    Vanek, J.; Gross, E.

    1994-01-01

    Carried by a Renault Saviem truck, the ORION 4 MeV linear accelerator manufactured by the French company CGR MeV proved to be well suited for quality control of welded joints of heavy thick-walled facilities performed directly in the manufacturing plant halls or at the construction sites, as well as for radiographic testing of steel and concrete structures. The operating principles and parameters of the accelerator are given. Steel up to 200 mm thick and concrete up to 550 mm thick can be inspected. Dosimetric data show that the use of the accelerator is radiologically safe. (Z.S.). 2 figs., 5 refs

  11. Low Velocity Impact Properties of Aluminum Foam Sandwich Structural Composite

    Directory of Open Access Journals (Sweden)

    ZHAO Jin-hua

    2018-01-01

    Full Text Available Sandwich structural composites were prepared by aluminum foam as core materials with basalt fiber(BF and ultra-high molecular weight polyethylene(UHMWPE fiber composite as faceplate. The effect of factors of different fiber type faceplates, fabric layer design and the thickness of the corematerials on the impact properties and damage mode of aluminum foam sandwich structure was studied. The impact properties were also analyzed to compare with aluminum honeycomb sandwich structure. The results show that BF/aluminum foam sandwich structural composites has bigger impact damage load than UHMWPE/aluminum foam sandwich structure, but less impact displacement and energy absorption. The inter-layer hybrid fabric design of BF and UHMWPE has higher impact load and energy absorption than the overlay hybrid fabric design faceplate sandwich structure. With the increase of the thickness of aluminum foam,the impact load of the sandwich structure decreases, but the energy absorption increases. Aluminum foam sandwich structure has higher impact load than the aluminum honeycomb sandwich structure, but smaller damage energy absorption; the damage mode of aluminum foam core material is mainly the fracture at the impact area, while aluminum honeycomb core has obvious overall compression failure.

  12. Experiments, modeling and simulation of the magnetic behavior of inhomogeneously coated nickel/aluminum hybrid foams

    Energy Technology Data Exchange (ETDEWEB)

    Jung, A., E-mail: anne.jung@mx.uni-saarland.de [Universität des Saarlandes, Institute of Applied Mechanics, Campus A4 2, 66123 Saarbrücken (Germany); Klis, D., E-mail: d.klis@lte.uni-saarland.de [Universität des Saarlandes, Laboratory for Electromagnetic Theory, Campus C6 3, 66123 Saarbrücken (Germany); Goldschmidt, F., E-mail: f.goldschmidt@mx.uni-saarland.de [Universität des Saarlandes, Institute of Applied Mechanics, Campus A4 2, 66123 Saarbrücken (Germany)

    2015-03-15

    Open-cell metal foams are used as lightweight construction elements, energy absorbers or as support for catalytic coatings. Coating of open-cell metal foams is not only used for catalytic applications, but it leads also to tremendous increase in stiffness and energy absorption capacity. A non-line of sight coating technique for complex 3D structures is electrodeposition. Unfortunately, due to the 3D porosity and the related problems in mass transport limitation during the deposition, it is not possible to produce homogeneously coated foams. In the present contribution, we present a semi-non-destructive technique applicable to determine the coating thickness distribution of magnetic coatings by measuring the remanent magnetic field of coated foams. In order to have a closer look at the mass transport mechanism, a numerical model was developed to predict the field scans for different coating thickness distributions in the foams. For long deposition times the deposition reaches a steady state whereas a Helmholtz equation is sufficient to predict the coating thickness distribution. The applied current density could be identified as the main influencing parameter. Based on the developed model, it is possible to improve the electrodeposition process and hence the homogeneity in the coating thickness of coated metal foams. This leads to enhanced mechanical properties of the hybrid foams and contributes to better and resource-efficient energy absorbers and lightweight materials. - Highlights: • Production of hybrid foams by electrodeposition of nickel on open-cell metal foams. • Magnetic field scans for visualization of spatial coating thickness distribution. • Modeling of magnetic fields of inhomogeneously coated hybrid foams. • Investigation of mass transport limitation during coating by a Helmholtz equation. • Increasing coating homogeneity by use of low current densities and deposition rates.

  13. Silicone foam for penetration seal

    International Nuclear Information System (INIS)

    Hoshino, Yoshikazu

    1986-01-01

    In nuclear power plants or general buildings, it is very important to form a fire-resistant seal around cables, cable trays and conduits passing through a wall or a floor. Rockwool, asbestos, glasswool and flame-retarded urethane foam have so far been used for these purposes. However, they were not satisfactory in sealing property, workability and safety. The silicone foam newly developed, ''TOSSEAL'' 300, has cleared these defects. It has now come to be used for fire resistant seal in nuclear power plants. (author)

  14. Ultrasonic measurements of chest wall thickness and realistic chest phantom for calibration of Pu lung counting facilities

    International Nuclear Information System (INIS)

    Shirotani, Takashi

    1990-01-01

    There are four important problems for the measurements of chest wall thickness using ultrasonic device: (1) selection of optimum position of transducer and the number of measured points on the chest covered with detector, (2) estimation of adipose-to-muscle ratio in the chest wall, especially for dispersed adipose like 'marbled beef', (3) determination of regression equations for the prediction of chest wall thickness, derived from groups of different body shape, i.e. corpulent and lean, and (4) estimation of effective chest wall thickness involved self-absorption layer of lung tissue, which changes with distribution of activity in the lungs. This quantity can not be measured with ultrasonic device. Realistic chest phantom was developed. The phantom contains removable model organs (lungs, liver, kidneys and heart), model trachea and artificial rib cage, and also includes chest plates that can be placed over the chest to simulate wide range adipose-to-muscle ratio in the chest wall. Various soft tissue substitutes were made of polyurethane with different concentrations of additive, and the rib cage were made of epoxy resin with calcium carbonate. The experimental data have shown that the phantom can be used as a standard phantom for the calibration. (author)

  15. External Tank (ET) Foam Thermal/Structural Analysis Project

    Science.gov (United States)

    Moore, David F.; Ungar, Eugene K.; Chang, Li C.; Malroy, Eric T.; Stephan, Ryan A.

    2008-01-01

    An independent study was performed to assess the pre-launch thermally induced stresses in the Space Shuttle External Tank Bipod closeout and Ice/Frost ramps (IFRs). Finite element models with various levels of detail were built that included the three types of foam (BX-265, NCFI 24-124, and PDL 1034) and the underlying structure and bracketry. Temperature profiles generated by the thermal analyses were input to the structural models to calculate the stress levels. An area of high stress in the Bipod closeout was found along the aluminum tank wall near the phenolic insulator and along the phenolic insulator itself. This area of high stress might be prone to cracking and possible delamination. There is a small region of slightly increased stress in the NCFI 24-124 foam near its joint with the Bipod closeout BX-265 foam. The calculated stresses in the NCFI 24-124 acreage foam are highest at the NCFI 24-124/PDL 1034/tank wall interface under the LO2 and LH2 IFRs. The highest calculated stresses in the LH2 NCFI 24-124 foam are higher than in similar locations in the LO2 IFR. This finding is consistent with the dissection results of IFRs on ET-120.

  16. Positive association between increased popliteal artery vessel wall thickness and generalized osteoarthritis: is OA also part of the metabolic syndrome?

    International Nuclear Information System (INIS)

    Kornaat, Peter R.; Sharma, Ruby; Geest, Rob J. van der; Lamb, Hildo J.; Bloem, Johan L.; Watt, Iain; Kloppenburg, Margreet; Hellio le Graverand, Marie-Pierre

    2009-01-01

    The purpose of the study was to determine if a positive association exists between arterial vessel wall thickness and generalized osteoarthritis (OA). Our hypothesis is that generalized OA is another facet of the metabolic syndrome. The medical ethical review board of our institution approved the study. Written informed consent was obtained from each patient prior to the study. Magnetic resonance (MR) images of the knee were obtained in 42 patients who had been diagnosed with generalized OA at multiple joint sites. Another 27 MR images of the knee were obtained from a matched normal (non-OA) reference population. Vessel wall thickness of the popliteal artery was quantitatively measured by dedicated software. Linear regression models were used to investigate the association between vessel wall thickness and generalized OA. Adjustments were made for age, sex, and body mass index (BMI). Confidence intervals (CI) were computed at the 95% level and a significance level of α = 0.05 was used. Patients in the generalized OA population had a significant higher average vessel wall thickness than persons from the normal reference population (p ≤ α), even when correction was made for sex, age, and BMI. The average vessel wall thickness of the popliteal artery was 1.09 mm in patients with generalized OA, and 0.96 mm in the matched normal reference population. The association found between increased popliteal artery vessel wall thickness and generalized osteoarthritis suggests that generalized OA might be another facet of the metabolic syndrome. (orig.)

  17. Positive association between increased popliteal artery vessel wall thickness and generalized osteoarthritis: is OA also part of the metabolic syndrome?

    Energy Technology Data Exchange (ETDEWEB)

    Kornaat, Peter R.; Sharma, Ruby; Geest, Rob J. van der; Lamb, Hildo J.; Bloem, Johan L.; Watt, Iain [Leiden University Medical Center, Department of Radiology, Leiden (Netherlands); Kloppenburg, Margreet [Leiden University Medical Center, Department of Rheumatology, Leiden (Netherlands); Hellio le Graverand, Marie-Pierre [Pfizer Global Research and Development, New London, CT (United States)

    2009-12-15

    The purpose of the study was to determine if a positive association exists between arterial vessel wall thickness and generalized osteoarthritis (OA). Our hypothesis is that generalized OA is another facet of the metabolic syndrome. The medical ethical review board of our institution approved the study. Written informed consent was obtained from each patient prior to the study. Magnetic resonance (MR) images of the knee were obtained in 42 patients who had been diagnosed with generalized OA at multiple joint sites. Another 27 MR images of the knee were obtained from a matched normal (non-OA) reference population. Vessel wall thickness of the popliteal artery was quantitatively measured by dedicated software. Linear regression models were used to investigate the association between vessel wall thickness and generalized OA. Adjustments were made for age, sex, and body mass index (BMI). Confidence intervals (CI) were computed at the 95% level and a significance level of {alpha} = 0.05 was used. Patients in the generalized OA population had a significant higher average vessel wall thickness than persons from the normal reference population (p {<=} {alpha}), even when correction was made for sex, age, and BMI. The average vessel wall thickness of the popliteal artery was 1.09 mm in patients with generalized OA, and 0.96 mm in the matched normal reference population. The association found between increased popliteal artery vessel wall thickness and generalized osteoarthritis suggests that generalized OA might be another facet of the metabolic syndrome. (orig.)

  18. Development of Wall-Thinning Evaluation Procedure for Nuclear Power Plant Piping—Part 1: Quantification of Thickness Measurement Deviation

    Directory of Open Access Journals (Sweden)

    Hun Yun

    2016-06-01

    Full Text Available Pipe wall thinning by flow-accelerated corrosion and various types of erosion is a significant and costly damage phenomenon in secondary piping systems of nuclear power plants (NPPs. Most NPPs have management programs to ensure pipe integrity due to wall thinning that includes periodic measurements for pipe wall thicknesses using nondestructive evaluation techniques. Numerous measurements using ultrasonic tests (UTs; one of the nondestructive evaluation technologies have been performed during scheduled outages in NPPs. Using the thickness measurement data, wall thinning rates of each component are determined conservatively according to several evaluation methods developed by the United States Electric Power Research Institute. However, little is known about the conservativeness or reliability of the evaluation methods because of a lack of understanding of the measurement error. In this study, quantitative models for UT thickness measurement deviations of nuclear pipes and fittings were developed as the first step for establishing an optimized thinning evaluation procedure considering measurement error. In order to understand the characteristics of UT thickness measurement errors of nuclear pipes and fittings, round robin test results, which were obtained by previous researchers under laboratory conditions, were analyzed. Then, based on a large dataset of actual plant data from four NPPs, a quantitative model for UT thickness measurement deviation is proposed for plant conditions.

  19. Photoelastic Analysis of Cracked Thick Walled Cylinders

    Science.gov (United States)

    Pastramă, Ştefan Dan

    2017-12-01

    In this paper, the experimental determination of the stress intensity factor in thick walled cylinders subject to uniform internal pressure and having longitudinal non-penetrating cracks is presented. Photoelastic measurements were used together with the expressions of the stress field near the crack tip for Mode I crack extension and a specific methodology for stress intensity factor determination. Two types of longitudinal cracks - internal and external - were considered. Four plane models were manufactured and analyzed in a plane polariscope at different values of the applied internal pressure. The values of the normalized stress intensity factor were calculated and the results were compared to those reported by other authors. A good accuracy was noticed, showing the reliability of the experimental procedure.

  20. Leukoaraiosis is associated with arterial wall thickness: a quantitative analysis.

    Science.gov (United States)

    Auriel, Eitan; Csiba, Laszlo; Berenyi, Ervin; Varkonyi, Ildiko; Mehes, Gabor; Kardos, Laszlo; Karni, Arnon; Bornstein, Natan M

    2012-06-01

    Leukoaraiosis refers to an age-related, abnormal appearance of the brain white matter on neuroimaging. The association between leukoaraiosis and cerebrovascular disease suggests that ischemia may be an important contributing factor; however, the pathogenesis of the condition remains controversial. We hypothesized that physical abnormalities of blood vessels might be culpable and compared the external and internal measurements of blood vessel walls between brains that demonstrated leukoaraiosis on imaging and normal control brains. Fourteen brains of individuals who had been diagnosed as having severe leukoaraiosis and five non-leukoaraiosis control brains were studied. Arterial cross-sections were evaluated by length measurements with an image analysis device. Arterial wall thickness and the ratio of the outer and inner diameters of the vessel were measured. We measured a total of 108 vessels in the leukoaraiosis group and 95 vessels in the control group. The vessel walls of the leukoaraiosis patients were an average of 5.5 µm thicker than the walls of control vessels of the same inside diameter (P = 0.0000, 95% CI 3.01-8.08) and an average of 2.3 µm thicker than walls of control vessels of the same outside diameter (P = 0.016, 95% CI 0.48-4.17). Our data provide evidence that leukoaraiosis is associated with vessel wall thickening in an additive fashion and indicate that structural vascular abnormalities are associated with leukoaraiosis. © 2011 Japanese Society of Neuropathology.

  1. Chest wall thickness measurements and the dosimetric implications for male workers in the uranium industry

    International Nuclear Information System (INIS)

    Kramer, Gary H.; Hauck, Barry M.; Allen, Steve A.

    2000-01-01

    The Human Monitoring Laboratory has measured the chest wall thickness and adipose mass fraction of a group of workers at three Canadian uranium refinery, conversion plant, and fuel fabrication sites using ultrasound. A site specific biometric equation has been developed for these workers, who seem to be somewhat larger than other workers reported in the literature. The average chest wall thickness of the seated persons measured at the uranium conversion plant and refinery was about 3.8 cm, and at the fuel fabrication facility was 3.4 cm. These values are not statistically different. Persons measured in a seated geometry had a thinner chest wall thickness than persons measured in a supine geometry - the decrease was in the range of 0.3 cm to 0.5 cm. It follows that a seated geometry will give a lower MDA (or decision level) than a supine geometry. Chest wall thickness is a very important modifier for lung counting efficiency and this data has been put into the perspective of the impending Canadian dose limits that will reduce the limit of occupationally exposed workers to essentially 20 mSv per year. Natural uranium must be measured based on the 235 U emissions at these type of facilities. The refining and conversion process removes 234 Th and the equilibrium is disturbed. This is unfortunate as the MDA values for this nuclide are approximately a factor of three lower than the values quoted below. The sensitivity of the germanium and phoswich based lung counting system has been compared. Achievable MDA's (30 minute counting time) with a four-phoswich-detector array lie in the range of 4.7 mg to 13.5 mg of natural uranium based on the 235 U emissions over a range of chest wall thicknesses of 1.6 cm to 6.0 cm. The average achievable MDA is about 8.5 mg which can be reduced to about 6.2 mg by doubling the counting time. Similarly, MDA's (30 minute counting time) obtainable with a germanium lung counting system will lie in the range of 3 mg to 28 mg of natural uranium

  2. Biometric estimation of chest wall thickness of female radiation workers as an aid in in-vivo detection of the actinides

    International Nuclear Information System (INIS)

    Lane, B.H.; Berger, C.D.

    1983-01-01

    An equation was derived to estimate female chest wall thickness from a series of biometric measurements. This technique will result in improved performance for actinide detection in females by accounting for variations in chest wall thickness in derivation of calibration factors

  3. Development of a Flexible Broadband Rayleigh Waves Comb Transducer with Nonequidistant Comb Interval for Defect Detection of Thick-Walled Pipelines.

    Science.gov (United States)

    Zhao, Huamin; He, Cunfu; Yan, Lyu; Zhang, Haijun

    2018-03-02

    It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the -3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ -3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth.

  4. Risk Assessment of Abdominal Wall Thickness Measured on Pre-Operative Computerized Tomography for Incisional Surgical Site Infection after Abdominal Surgery.

    Science.gov (United States)

    Tongyoo, Assanee; Chatthamrak, Putipan; Sriussadaporn, Ekkapak; Limpavitayaporn, Palin; Mingmalairak, Chatchai

    2015-07-01

    The surgical site infection (SSI) is a common complication of abdominal operation. It relates to increased hospital stay, increased healthcare cost, and decreased patient's quality of life. Obesity, usually defined by BMI, is known as one of the risks of SSI. However, the thickness of subcutaneous layers of abdominal wall might be an important local factor affecting the rate of SSI after the abdominal operations. The objective of this study is to assess the importance of the abdominal wall thickness on incisional SSI rate. The subjects of the present study were patients who had undergone major abdominal operations at Thammasat University Hospital between June 2013 and May 2014, and had been investigated with CT scans before their operations. The demographic data and clinical information of these patients were recorded. The thickness ofsubcutaneous fatty tissue from skin down to the most superficial layer of abdominal wall muscle at the surgical site was measured on CT images. The wound infectious complication was reviewed and categorized as superficial and deep incisional SSIfollowing the definition from Centersfor Disease Control and Prevention (CDC) guidelines. The significance ofeach potentialfactors on SSI rates was determined separately with student t-test for quantitative data and χ2-test for categorical data. Then all factors, which had p operative CTscans. Post-operative SSI was 25.2% (35/139), superficial and deep types in 27 and 8 patients, respectively. The comparison of abdominal wall thickness between patients with and without infection was significantly different (20.0 ± 8.4 mm and 16.0 ± 7.2 mm, respectively). When the thickness at 20 mm was used as the cut-off value, 43 of 139 patients had abdominal wall thickness ≥ 20 mm. The incidence of SSI of the thickness ±20 mm group was 37.2% (16/43) and of the less thickness group was 19.8% (19/96), with p operation. However, only abdominal wall thickness and wound classification were still significant

  5. AUTOMATIC THICKNESS AND VOLUME ESTIMATION OF SPRAYED CONCRETE ON ANCHORED RETAINING WALLS FROM TERRESTRIAL LIDAR DATA

    Directory of Open Access Journals (Sweden)

    J. Martínez-Sánchez

    2016-06-01

    Full Text Available When ground conditions are weak, particularly in free formed tunnel linings or retaining walls, sprayed concrete can be applied on the exposed surfaces immediately after excavation for shotcreting rock outcrops. In these situations, shotcrete is normally applied conjointly with rock bolts and mesh, thereby supporting the loose material that causes many of the small ground falls. On the other hand, contractors want to determine the thickness and volume of sprayed concrete for both technical and economic reasons: to guarantee their structural strength but also, to not deliver excess material that they will not be paid for. In this paper, we first introduce a terrestrial LiDAR-based method for the automatic detection of rock bolts, as typically used in anchored retaining walls. These ground support elements are segmented based on their geometry and they will serve as control points for the co-registration of two successive scans, before and after shotcreting. Then we compare both point clouds to estimate the sprayed concrete thickness and the expending volume on the wall. This novel methodology is demonstrated on repeated scan data from a retaining wall in the city of Vigo (Spain, resulting in a rock bolts detection rate of 91%, that permits to obtain a detailed information of the thickness and calculate a total volume of 3597 litres of concrete. These results have verified the effectiveness of the developed approach by increasing productivity and improving previous empirical proposals for real time thickness estimation.

  6. Automatic Thickness and Volume Estimation of Sprayed Concrete on Anchored Retaining Walls from Terrestrial LIDAR Data

    Science.gov (United States)

    Martínez-Sánchez, J.; Puente, I.; GonzálezJorge, H.; Riveiro, B.; Arias, P.

    2016-06-01

    When ground conditions are weak, particularly in free formed tunnel linings or retaining walls, sprayed concrete can be applied on the exposed surfaces immediately after excavation for shotcreting rock outcrops. In these situations, shotcrete is normally applied conjointly with rock bolts and mesh, thereby supporting the loose material that causes many of the small ground falls. On the other hand, contractors want to determine the thickness and volume of sprayed concrete for both technical and economic reasons: to guarantee their structural strength but also, to not deliver excess material that they will not be paid for. In this paper, we first introduce a terrestrial LiDAR-based method for the automatic detection of rock bolts, as typically used in anchored retaining walls. These ground support elements are segmented based on their geometry and they will serve as control points for the co-registration of two successive scans, before and after shotcreting. Then we compare both point clouds to estimate the sprayed concrete thickness and the expending volume on the wall. This novel methodology is demonstrated on repeated scan data from a retaining wall in the city of Vigo (Spain), resulting in a rock bolts detection rate of 91%, that permits to obtain a detailed information of the thickness and calculate a total volume of 3597 litres of concrete. These results have verified the effectiveness of the developed approach by increasing productivity and improving previous empirical proposals for real time thickness estimation.

  7. Experimental investigation of solidification in metal foam enhanced phase change material

    Science.gov (United States)

    Beyne, W.; Bağci, O.; Huisseune, H.; Canière, H.; Danneels, J.; Daenens, D.; De Paepe, M.

    2017-10-01

    A major challenge for the use of phase change materials (PCMs) in thermal energy storage (TES) is overcoming the low thermal conductivity of PCM’s. The low conductivity gives rise to limited power during charging and discharging TES. Impregnating metal foam with PCM, however, has been found to enhance the heat transfer. On the other hand, the effect of foam parameters such as porosity, pore size and material type has remained unclear. In this paper, the effect of these foam parameters on the solidification time is investigated. Different samples of PCM-impregnated metal foam were experimentally tested and compared to one without metal foam. The samples varied with respect to choice of material, porosity and pore size. They were placed in a rectangular cavity and cooled from one side using a coolant flowing through a cold plate. The other sides of the rectangular cavity were Polymethyl Methacrylate (PM) walls exposed to ambient. The temperature on the exterior walls of the cavity was monitored as well as the coolant flow rate and its temperature. The metal foam inserts reduced the solidification times by at least 25 %. However, the difference between the best performing and worst performing metal foam is about 28 %. This shows a large potential for future research.

  8. Creep collapse of thick-walled heat transfer tube subjected to external pressure at high temperature

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Kaji, Yoshiyuki; Terunuma, Isao; Nekoya, Shin-ichi; Miyamoto, Yoshiaki

    1994-09-01

    A series of creep collapse tests of thick-walled heat transfer tube were examined experimentally and analytically to confirm an analytical method for creep deformation behavior of a heat transfer tube of an intermediate heat exchanger (IHX) at a depressurization accident of secondary cooling system of HTTR (High Temperature Engineering Test Reactor). The tests were carried out using thick-walled heat transfer tubes made of Hastelloy XR at 950degC in helium gas environment. The predictions of creep collapse time obtained by a general purpose FEM-code ABAQUS were in good agreement with the experimental results. A lot of cracks were observed on the outer surface of the test tubes after the creep collapse. However, the cracks did not pass through the tube wall and, therefore, the leak tightness was maintained regardless of a collapse deformation for all tubes tested. (author)

  9. Preparation and Stability of Inorganic Solidified Foam for Preventing Coal Fires

    Directory of Open Access Journals (Sweden)

    Botao Qin

    2014-01-01

    Full Text Available Inorganic solidified foam (ISF is a novel material for preventing coal fires. This paper presents the preparation process and working principle of main installations. Besides, aqueous foam with expansion ratio of 28 and 30 min drainage rate of 13% was prepared. Stability of foam fluid was studied in terms of stability coefficient, by varying water-slurry ratio, fly ash replacement ratio of cement, and aqueous foam volume alternatively. Light microscope was utilized to analyze the dynamic change of bubble wall of foam fluid and stability principle was proposed. In order to further enhance the stability of ISF, different dosage of calcium fluoroaluminate was added to ISF specimens whose stability coefficient was tested and change of hydration products was detected by scanning electron microscope (SEM. The outcomes indicated that calcium fluoroaluminate could enhance the stability coefficient of ISF and compact hydration products formed in cell wall of ISF; naturally, the stability principle of ISF was proved right. Based on above-mentioned experimental contents, ISF with stability coefficient of 95% and foam expansion ratio of 5 was prepared, which could sufficiently satisfy field process requirements on plugging air leakage and thermal insulation.

  10. A comparison of mechanical properties of some foams and honeycombs

    Science.gov (United States)

    Bhat, Balakrishna T.; Wang, T. G.

    1990-01-01

    A comparative study is conducted of the mechanical properties of foam-core and honeycomb-core sandwich panels, using a normalizing procedure based on common properties of cellular solids and related properties of dense solids. Seven different honeycombs and closed-foam cells are discussed; of these, three are commercial Al alloy honeycombs, one is an Al-alloy foam, and two are polymeric foams. It is concluded that ideal, closed-cell foams may furnish compressive strengths which while isotropic can be fully comparable to the compressive strengths of honeycombs in the thickness direction. The shear strength of ideal closed-cell foams may be superior to the shear strength of honeycombs.

  11. Prototype gauge for measuring contour and wall thicknesses of hemispherical parts

    International Nuclear Information System (INIS)

    Aarts, H.J.; Robertson, J.H.

    1976-01-01

    A prototype gauge (gage) was designed and fabricated using air bearings in a new configuration to provide less error and distortion during inspection of hemispherical parts. No wear occurs on the moving parts during operations and accuracy of alignment is maintained. The gauge will check outside radial distance, inside radial, and outside radial and wall, and inner radial and wall thicknesses of parts. The gauge contains only four moving parts, which increases the measuring accuracy. A horizontal table rotates. A table mounted on the horizontal table at 45 0 rotates through two transducers. All moving parts are mounted on hydrostatic gas bearings. Laser interferometric, air-bearing gauge heads are used to obtain the required data. Investigation of a hemispherical part is in any desired spiral path from equator to pole. Measurement information is obtained from two laser interferometric transducers using linear air bearings. The transducers use a Spectra Physics Model-120 helium and neon laser. Working range of each transducer is 1.5 inches. The fringe voltage signals are amplified and converted to inches to be displayed on a digital readout. A punched paper tape contains the nominal inside diameter (ID) and outside diameter (OD) information in Binary Coded Decimal form. The tape is fed into a digital computer which calculates error information on ID, OD, and wall thickness. This information is converted to analog form and displayed simultaneously on a strip-chart recorder

  12. Incidence of non-pulmonary cancer and lung cancer by amount of emphysema and airway wall thickness: a community-based cohort.

    Science.gov (United States)

    Aamli Gagnat, Ane; Gjerdevik, Miriam; Gallefoss, Frode; Coxson, Harvey O; Gulsvik, Amund; Bakke, Per

    2017-05-01

    There is limited knowledge about the prognostic value of quantitative computed tomography (CT) measures of emphysema and airway wall thickness in cancer.The aim of this study was to investigate if using CT to quantitatively assess the amount of emphysema and airway wall thickness independently predicts the subsequent incidence of non-pulmonary cancer and lung cancer.In the GenKOLS study of 2003-2005, 947 ever-smokers performed spirometry and underwent CT examination. The main predictors were the amount of emphysema measured by the percentage of low attenuation areas (%LAA) on CT and standardised measures of airway wall thickness (AWT-PI10). Cancer data from 2003-2013 were obtained from the Norwegian Cancer Register. The hazard ratio associated with emphysema and airway wall thickness was assessed using Cox proportional hazards regression for cancer diagnoses.During 10 years of follow-up, non-pulmonary cancer was diagnosed in 11% of the subjects with LAA emphysema remained a significant predictor of the incidence of non-pulmonary cancer and lung cancer. Airway wall thickness did not predict cancer independently.This study offers a strong argument that emphysema is an independent risk factor for both non-pulmonary cancer and lung cancer. Copyright ©ERS 2017.

  13. Ultrasonographic wall thickness measurement of the upper and lower uterine segments in the prediction of the progress of preterm labour.

    Science.gov (United States)

    Sayed Ahmed, W A; Madny, E H; Habash, Y H; Ibrahim, Z M; Morsy, A G K; Said, M E

    2015-01-01

    To assess the role of ultrasonographic measurement of the upper and lower uterine segments wall thickness in predicting the progress of preterm labour in patients presenting with preterm labour pains. Fifty pregnant women presenting at Obstetrics Department - Suez Canal University, Egypt with regular lower abdominal pains and diagnosed as having preterm labour were enrolled in the study. Measurements of the upper and lower uterine segments wall thickness by transabdominal ultrasonography in-between contractions and with full bladder were taken. The upper/lower uterine wall thickness ratio was calculated and correlated to the progress of the preterm labour and to the response to tocolytics. The ultrasonographic upper/lower uterine wall thickness ratio was directly related to the progress of preterm delivery (PTD). The change in this ratio is correlated inversely with the response to tocolysis. Using the ROC curve, when the upper/lower uterine wall thickness ratio was ≤ 1.26 the sensitivity was 94.74 and the specificity was 100.00, and when the ratio was ≤ 1.52 the sensitivity was 100.00 and the specificity was 83.33. These data may serve as a baseline ultrasonographic reference values for further studies in prediction the progress of preterm labour in patients presenting with preterm labour pains.

  14. Relationship between Pipeline Wall Thickness (Gr. X60) and Water Depth towards Avoiding Failure during Installation

    Science.gov (United States)

    Razak, K. Abdul; Othman, M. I. H.; Mat Yusuf, S.; Fuad, M. F. I. Ahmad; yahaya, Effah

    2018-05-01

    Oil and gas today being developed at different water depth characterized as shallow, deep and ultra-deep waters. Among the major components involved during the offshore installation is pipelines. Pipelines are a transportation method of material through a pipe. In oil and gas industry, pipeline come from a bunch of line pipe that welded together to become a long pipeline and can be divided into two which is gas pipeline and oil pipeline. In order to perform pipeline installation, we need pipe laying barge or pipe laying vessel. However, pipe laying vessel can be divided into two types: S-lay vessel and J-lay vessel. The function of pipe lay vessel is not only to perform pipeline installation. It also performed installation of umbilical or electrical cables. In the simple words, pipe lay vessel is performing the installation of subsea in all the connecting infrastructures. Besides that, the installation processes of pipelines require special focus to make the installation succeed. For instance, the heavy pipelines may exceed the lay vessel’s tension capacities in certain kind of water depth. Pipeline have their own characteristic and we can group it or differentiate it by certain parameters such as grade of material, type of material, size of diameter, size of wall thickness and the strength. For instances, wall thickness parameter studies indicate that if use the higher steel grade of the pipelines will have a significant contribution in pipeline wall thickness reduction. When running the process of pipe lay, water depth is the most critical thing that we need to monitor and concern about because of course we cannot control the water depth but we can control the characteristic of the pipe like apply line pipe that have wall thickness suitable with current water depth in order to avoid failure during the installation. This research will analyse whether the pipeline parameter meet the requirements limit and minimum yield stress. It will overlook to simulate pipe

  15. Optimum Insulation Thickness for Walls and Roofs for Reducing Peak Cooling Loads in Residential Buildings in Lahore

    Directory of Open Access Journals (Sweden)

    SIBGHA SIDDIQUE SIDDIQUE

    2016-10-01

    Full Text Available Thermal insulation is the most effective energy saving measure for cooling in buildings. Therefore, the main subject of many engineering investigations is the selection and determination of the optimum insulation thickness. In the present study, the optimum insulation thickness on external walls and roofs is determined based on the peak cooling loads for an existing residential building in Lahore, Pakistan. Autodesk® Revit 2013 is used for the analysis of the building and determination of the peak cooling loads. The analysis shows that the optimum insulation thickness to reduce peak cooling loads up to 40.1% is 1 inch for external walls and roof respectively.

  16. Optimum Insulation Thickness for Walls and Roofs for Reducing Peak Cooling Loads in Residential Buildings in Lahore

    International Nuclear Information System (INIS)

    Siddique, S.; Arif, S.; Khan, A.; Alam, A.T.

    2016-01-01

    Thermal insulation is the most effective energy saving measure for cooling in buildings. Therefore, the main subject of many engineering investigations is the selection and determination of the optimum insulation thickness. In the present study, the optimum insulation thickness on external walls and roofs is determined based on the peak cooling loads for an existing residential building in Lahore, Pakistan. Autodesk at the rate Revit 2013 is used for the analysis of the building and determination of the peak cooling loads. The analysis shows that the optimum insulation thickness to reduce peak cooling loads up to 40.1 percent is 1 inch for external walls and roof respectively. (author)

  17. Plane symmetric cosmological model with thick domain walls in Brans-Dicke theory of gravitation

    International Nuclear Information System (INIS)

    Pawar, D.; Bayaskar, S.; Patil, V.

    2009-01-01

    We have investigated plane symmetric cosmological model in presence of thick domain walls in Brans-Dicke theory of gravitation, some geometrical and physical behavior of the model are discussed. (authors)

  18. Extended Plate and Beam Wall System: Concept Investigation and Initial Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J. [Partnership for Home Innovation, Upper Marlboro, MD (United States); Kochkin, V. [Partnership for Home Innovation, Upper Marlboro, MD (United States)

    2015-08-01

    A new and innovative High-R wall design, referred to as the Extended Plate & Beam (EP&B), is under development. The EP&B system uniquely integrates foam sheathing insulation with wall framing such that wood structural panels are installed exterior of the foam sheathing, enabling the use of standard practices for installation of drainage plane, windows and doors, claddings, cavity insulation, and the standard exterior foam sheathing installation approach prone to damage of the foam during transportation of prefabricated wall panels. As part of the ongoing work, the EP&B wall system concept has undergone structural verification testing and has been positively vetted by a group of industry stakeholders. Having passed these initial milestone markers, the advanced wall system design has been analyzed to assess cost implications relative to other advanced wall systems, undergone design assessment to develop construction details, and has been evaluated to develop representative prescriptive requirements for the building code. This report summarizes the assessment steps conducted to-date and provides details of the concept development.

  19. Covering sources of toxic vapors with foam

    International Nuclear Information System (INIS)

    Aue, W. P.; Guidetti, F.

    2009-01-01

    In a case of chemical terrorism, first responders might well be confronted with a liquid source of toxic vapor which keeps spreading out its hazardous contents. With foam as an efficient and simple means, such a source could be covered up in seconds and the spread of vapors mitigated drastically. Once covered, the source could then wait for a longer time to be removed carefully and professionally by a decontamination team. In order to find foams useful for covering up toxic vapor sources, a large set of measurements has been performed in order to answer the following questions: - Which foams could be used for this purpose? - How thick should the foam cover be? - For how long would such a foam cover be effective? - Could the practical application of foam cause a spread of the toxic chemical? The toxic vapors sources included GB, GD and HD. Among the foams were 10 fire fighter foams (e.g. AFFF, protein) and the aqueous decontamination foam CASCAD. Small scale experiments showed that CASCAD is best suited for covering a toxic source; a 10 cm layer of it covers and decontaminates GB. The large scale experiments confirmed that any fire fighter foam is a suitable cover for a longer or shorter period.(author)

  20. Comparison of OpenFOAM and EllipSys3D for neutral atmospheric flow over complex terrain

    DEFF Research Database (Denmark)

    Cavar, Dalibor; Réthoré, Pierre-Elouan; Bechmann, Andreas

    2016-01-01

    The flow solvers OpenFOAM and EllipSys3D are compared in the case of neutral atmospheric flow over terrain using the test cases of Askervein and Bolund hills. Both solvers are run using the steady-state Reynolds-averaged Navier–Stokes k– turbulence model. One of the main modeling differences...... between the two solvers is the wall-function approach. The Open-FOAM v.1.7.1 uses a Nikuradse’s sand roughness model, while EllipSys3D uses a model based on the atmospheric roughness length. It is found that Nikuradse’s model introduces an error dependent on the near-wall cell height. To mitigate...... this error the near-wall cells should be at least 10 times larger than the surface roughness. It is nonetheless possible to obtain very similar results between EllipSys3D and OpenFOAM v.1.7.1. The more recent OpenFOAM v.2.2.1, which includes the atmospheric roughness length wall-function approach, has also...

  1. Making continuous bubble type polyethylene foam incombustible

    International Nuclear Information System (INIS)

    Kaji, Kanako; Hatada, Motoyoshi; Yoshizawa, Iwao; Komai, Kuniaki; Kohara, Choji.

    1989-01-01

    Since continuous bubble type plastic foam has excellent compression characteristics and sound absorption characteristics, it has been widely used as cushion material, sealing material, sound insulating material and so on. However, the most part of plastic foam is taken by air, therefore at the time of fires, it becomes a very dangerous material. At present, the material used mostly as the seat cushions for airliners, railroad coaches, automobiles and others is polyurethane foam, but since it contains C-N couples in its molecules, it is feared to generate cyanic gas according to the condition of combustion. As the plastic foam that does not generate harmful gas at the time of fires, there is continuous bubble type polyethylene which is excellent in its weathering property and chemical resistance. A reactive, phosphorus-containing oligomer has large molecular weight and two or more double couplings in a molecule, therefore, it does not enter the inside of polyethylene, and polymerizes and crosslinks on the surfaces of bubble walls in the foam, accordingly it is expected that the apparent graft polymerization is carried out, and it is very effective for making polyethylene foam incombustible. The method of making graft foam, the properties of graft foam and so on are reported. When the graft polymerization of this oligomer to continuous bubble type polyethylene foam was tried, highly incombustible polyethylene foam was obtained. (K.I.)

  2. Dynamic film thickness between bubbles and wall in a narrow channel

    Science.gov (United States)

    Ito, Daisuke; Damsohn, Manuel; Prasser, Horst-Michael; Aritomi, Masanori

    2011-09-01

    The present paper describes a novel technique to characterize the behavior of the liquid film between gas bubbles and the wall in a narrow channel. The method is based on the electrical conductance. Two liquid film sensors are installed on both opposite walls in a narrow rectangular channel. The liquid film thickness underneath the gas bubbles is recorded by the first sensor, while the void fraction information is obtained by measuring the conductance between the pair of opposite sensors. Both measurements are taken on a large two-dimensional domain and with a high speed. This makes it possible to obtain the two-dimensional distribution of the dynamic liquid film between the bubbles and the wall. In this study, this method was applied to an air-water flow ranging from bubbly to churn regimes in the narrow channel with a gap width of 1.5 mm.

  3. Mechanical Characterization of Lightweight Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Marcin Kozłowski

    2018-01-01

    Full Text Available Foamed concrete shows excellent physical characteristics such as low self weight, relatively high strength and superb thermal and acoustic insulation properties. It allows for minimal consumption of aggregate, and by replacement of a part of cement by fly ash, it contributes to the waste utilization principles. For many years, the application of foamed concrete has been limited to backfill of retaining walls, insulation of foundations and roof tiles sound insulation. However, during the last few years, foamed concrete has become a promising material for structural purposes. A series of tests was carried out to examine mechanical properties of foamed concrete mixes without fly ash and with fly ash content. In addition, the influence of 25 cycles of freezing and thawing on the compressive strength was investigated. The apparent density of hardened foamed concrete is strongly correlated with the foam content in the mix. An increase of the density of foamed concrete results in a decrease of flexural strength. For the same densities, the compressive strength obtained for mixes containing fly ash is approximately 20% lower in comparison to the specimens without fly ash. Specimens subjected to 25 freeze-thaw cycles show approximately 15% lower compressive strengths compared to the untreated specimens.

  4. Combined aerobic and resistance exercise training decreases peripheral but not central artery wall thickness in subjects with type 2 diabetes.

    NARCIS (Netherlands)

    Schreuder, T.H.A.; Munckhof, I.C.L. van den; Poelkens, F.; Hopman, M.T.; Thijssen, D.H.

    2015-01-01

    OBJECTIVE: Little is known about the impact of exercise training on conduit artery wall thickness in type 2 diabetes. We examined the local and systemic impact of exercise training on superficial femoral (SFA), brachial (BA), and carotid artery (CA) wall thickness in type 2 diabetes patients and

  5. A study of tensile test on open-cell aluminum foam sandwich

    Science.gov (United States)

    Ibrahim, N. A.; Hazza, M. H. F. Al; Adesta, E. Y. T.; Abdullah Sidek, Atiah Bt.; Endut, N. A.

    2018-01-01

    Aluminum foam sandwich (AFS) panels are one of the growing materials in the various industries because of its lightweight behavior. AFS also known for having excellent stiffness to weight ratio and high-energy absorption. Due to their advantages, many researchers’ shows an interest in aluminum foam material for expanding the use of foam structure. However, there is still a gap need to be fill in order to develop reliable data on mechanical behavior of AFS with different parameters and analysis method approach. Least of researcher focusing on open-cell aluminum foam and statistical analysis. Thus, this research conducted by using open-cell aluminum foam core grade 6101 with aluminum sheets skin tested under tension. The data is analyzed using full factorial in JMP statistical analysis software (version 11). ANOVA result show a significant value of the model which less than 0.500. While scatter diagram and 3D plot surface profiler found that skins thickness gives a significant impact to stress/strain value compared to core thickness.

  6. Torsion Property of the Structure Bonded Aluminum Foam Due to Impact

    Directory of Open Access Journals (Sweden)

    Hwang G.W.

    2017-06-01

    Full Text Available An aluminum foam added with foaming agent, is classified into an open-cell type for heat transfer and a closed-cell type for shock absorption. This study investigates the characteristic on the torsion of aluminum foam for a closed-cell type under impact. The fracture characteristics are investigated through the composite of five types of aluminum foam (the thicknesses of 25, 35, 45, 55 and 65 mm, when applying the torsional moment of impact energy on the junction of a porous structure attached by an adhesive. When applying the impact energy of 100, 200 and 300J, the aluminum foams with thicknesses of 25 mm and 35 mm broke off under all conditions. For the energy over 200J, aluminums thicker than 55 mm continued to be attached. Furthermore, the aluminum specimens with thicknesses of 55 mm and 65 mm that were attached with more than 30% of bonding interface remained, proving that they could maintain bonding interface against impact energy. By comparing the data based on the analysis and test result, an increase in the thickness of specimen leads to the plastic deformation as the stress at the top and bottom of bonding interface moves to the middle by spreading the stress horizontally. Based on this fracture characteristic, this study can provide the data on the destruction and separation of bonding interface and may contribute to the safety design.

  7. Infrared Thermography As Quality Control For Foamed In-Place Insulation

    Science.gov (United States)

    Schwartz, Joel A.

    1989-03-01

    Since November of 1985, FOAM-TECH, INC. has been utilizing an I.S.I. Model 91 Videotherm Camera to quality control the installation of foamed in-place polyurethane and polyisocyanurate insulation. Monitoring the injection of foam into the walls and roofs of new construction and during the the retrofitting of older buildings has become an integral and routine step in daily operations. The Videotherm is also used to monitor the injection of foam into hot water tanks, trailer bodies for refrigeration trucks, and pontoons and buoys for flotation. The camera is also used for the detection of heat loss and air infiltration for conventionally insulated buildings. Appendix A are thermograms of foamed in-place insulation.

  8. Behavior of deep flaws in a thick-wall cylinder under thermal shock loading

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1979-01-01

    Behavior of inner-surface flaws in thick-walled vessels was studied in a 991-mm OD x 152 mm wall x 1220 mm length cylinder with toughness properties similar to those for HSST Plate. The initial temperature of 93 0 C and a thermal shock medium of liquid nitrogen (-197 0 C) were employed. The initial flaw selected was a sharp, 16 mm deep, long (1220 mm) axial crack. Crack arrest methodology was shown to be valid for deep flaws under severe thermal shock

  9. Adhesion aspects of polyurethane foam sandwich panels.

    OpenAIRE

    Ng, Simon L.

    2016-01-01

    Sandwich panels, polyurethane foam sandwiched between two sheets of steel, form the walls and roofs in the construction of buildings. ArcelorMittal is a manufacturer of the steel as well as these finished panels. For this project they combined with a supplier of the polyurethane foams, Huntsman Polyurethanes, to joint-fund a research project investigating the fundamental mechanisms of adhesion, as well as the causes of failures in the product which manifests primarily in two different ways...

  10. Quasi-static characterisation and impact testing of auxetic foam for sports safety applications

    International Nuclear Information System (INIS)

    Duncan, Olly; Alderson, Andrew; Foster, Leon; Senior, Terry; Allen, Tom

    2016-01-01

    This study compared low strain rate material properties and impact force attenuation of auxetic foam and the conventional open-cell polyurethane counterpart. This furthers our knowledge with regards to how best to apply these highly conformable and breathable auxetic foams to protective sports equipment. Cubes of auxetic foam measuring 150 × 150 × 150 mm were fabricated using a thermo–mechanical conversion process. Quasi-static compression confirmed the converted foam to be auxetic, prior to being sliced into 20 mm thick cuboid samples for further testing. Density, Poisson’s ratio and the stress–strain curve were all found to be dependent on the position of each cuboid from within the cube. Impact tests with a hemispherical drop hammer were performed for energies up to 6 J, on foams covered with a polypropylene sheet between 1 and 2 mm thick. Auxetic samples reduced peak force by ∼10 times in comparison to the conventional foam. This work has shown further potential for auxetic foam to be applied to protective equipment, while identifying that improved fabrication methods are required. (paper)

  11. CARBONIZED STARCH MICROCELLULAR FOAM-CELLULOSE FIBER COMPOSITE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Andrew R. Rutledge

    2008-11-01

    Full Text Available The production of microporous carbon foams from renewable starch microcellular foam-fiber (SMCF-Fiber composites is described. Carbon foams are used in applications such as thermal insulation, battery electrodes, filters, fuel cells, and medical devices. SMCF-Fiber compos-ites were created from an aquagel. The water in the aquagel was exchanged with ethanol and then dried and carbonized. Higher amylose content starches and fiber contents of up to 4% improved the processability of the foam. The SMCF structure revealed agglomerates of swollen starch granules connected by a web of starch with pores in the 50-200 nanometer range. Heating the SMCF-fiber in a nitrogen atmosphere to temperatures between 350-700˚C produced carbon foams with a three-dimensional closed cell foam structure with cell diameters around 50 microns and pore walls around 1-3 microns. The stress versus strain compression data for carbonized samples displayed a linear elastic region and a plateau indicative of brittle crushing, typical of an elastic-brittle foam. The carbon foam products from these renew-able precursors are promising carbon structures with moderate strength and low density.

  12. Radiation testing of thick-wall objects using a linear accelerator or Co-60

    International Nuclear Information System (INIS)

    Depending on the energy required, a 60 Co source or various types of betatrons and linear accelerators may be used for radiation testing of thick-walled metal parts. While 60 Co sources are easily transported, accelerators are not, but a transportable linear accelerator is described

  13. Study on a Novel Gelled Foam for Conformance Control in High Temperature and High Salinity Reservoirs

    Directory of Open Access Journals (Sweden)

    Tong Li

    2018-05-01

    Full Text Available A novel gelled foam for conformance control was investigated for its ability to enhance oil recovery (EOR in high temperature and high salinity reservoirs. The formulation optimization, foaming performance, and core flooding performance of the gelled foam were systematically evaluated under harsh reservoir conditions. The gelled foam formulation was optimized with 0.4% polymer (hydrolyzed polyacrylamide; HPAM, 0.06% cross-linker (phenolic and 0.2% foaming agent (sulphobetaine; SB. The addition of the gel improved the stability of the foam system by 3.8 times that of traditional foam. A stabilization mechanism in the gelled foam was proposed to describe the stabilization process of the foam film. The uniformly distributed three-dimensional network structure of the gel provided a thick protective layer for the foam system that maintained the stability of the foam and improved the strength and thickness of the liquid film. The gelled foam exhibited good formation adaptability, profile control, and EOR performance. The foam flowed into the high permeability layer, plugged the dominant channel, and increased the swept volume. Oil recovery was enhanced by 29.4% under harsh high -temperature and high salinity conditions.

  14. Sound Velocity in Soap Foams

    International Nuclear Information System (INIS)

    Wu Gong-Tao; Lü Yong-Jun; Liu Peng-Fei; Li Yi-Ning; Shi Qing-Fan

    2012-01-01

    The velocity of sound in soap foams at high gas volume fractions is experimentally studied by using the time difference method. It is found that the sound velocities increase with increasing bubble diameter, and asymptotically approach to the value in air when the diameter is larger than 12.5 mm. We propose a simple theoretical model for the sound propagation in a disordered foam. In this model, the attenuation of a sound wave due to the scattering of the bubble wall is equivalently described as the effect of an additional length. This simplicity reasonably reproduces the sound velocity in foams and the predicted results are in good agreement with the experiments. Further measurements indicate that the increase of frequency markedly slows down the sound velocity, whereas the latter does not display a strong dependence on the solution concentration

  15. A clue for the diagnosis of lung cancer looking lobar consolidation with emphasis on thickness and enhancement pattern of bronchial wall on CT

    International Nuclear Information System (INIS)

    Yoo, Ho Seok; Kwon, Woo Cheol; Cha, Seung Whan; Kim, Sang Ha; Koh, Sang Baek; Kim, Myung Soon

    2007-01-01

    To differentiate between lung cancer and pneumonia for cases of lobar consolidation, with an emphasis on the thickness and enhancement pattern of the bronchial wall viewed by a CT. We retrospectively analyzed 17 patients with evidence of lobar consolidation, from a simple-chest radiographs, and divided them into groups by condition (lung cancer, n = 5; pneumonia, n 12). CT scans were performed on all patients and bronchial wall thickness, which is the cranio-caudal length of the bronchial wall thickness and the enhancement pattern, were measured and analyzed at the mediastinal window setting. The thickness of the bronchial wall in the lung cancer group (2.46 ± 0.37 mm) was significantly greater than the pneumonia group (1.73 ± 0.36 mm) (ρ = 0.002). Moreover, the bronchial wall thickness was greater than 2.0 mm for all patients in the cancer group. Further, if a diagnostic criterion was set to be larger than 2.0 mm, 100% sensitivity and 66.7% specificity would be achieved for the study subjects. The cranio-caudal length of the bronchial wall thickness in the cancer group was 37.5 ± 16.4 mm, which was significantly greater than the pneumonia group (16.3 ± 6.6 mm) (ρ = 0.001). We found no significant difference for the degree of contrast enhancement between the two groups. A CT scan measurement of the bronchial wall thickness greater than 2 mm in CT scans can be an indicator for diagnosing lung cancer in patients with lobar consolidation

  16. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition

    Directory of Open Access Journals (Sweden)

    Mario Boehme

    2011-02-01

    Full Text Available Conductive nanotubes consisting of indium tin oxide (ITO were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless deposition based on aqueous solutions. All these methods previously developed, are not adaptable in the case of ITO nanotubes, even with modifications. In the present work, therefore, we investigated the necessary conditions for the growth of ITO-NTs to achieve a wall thickness of around 10 nm. In addition, the effects of pH and reductive concentrations for the formation of ITO-NTs are also discussed.

  17. Clinical efficiency of Piezo-ICSI using micropipettes with a wall thickness of 0.625 μm.

    Science.gov (United States)

    Hiraoka, Kenichiro; Kitamura, Seiji

    2015-12-01

    The purposes of the present study are to assess the clinical efficiency of Piezo-intracytoplasmic sperm injection (ICSI) and to improve the Piezo-ICSI method for human oocytes. We examined three ICSI methods to determine their clinical efficiency by comparing the survival, fertilization, good-quality day-3 embryo, pregnancy, and live birth rates. The three ICSI methods tested were conventional ICSI (CI) (using beveled spiked micropipettes with a wall thickness of 1 μm), conventional Piezo-ICSI (CPI) (using flat-tipped micropipettes with a wall thickness of 0.925 μm), and improved Piezo-ICSI (IPI) (using flat-tipped micropipettes with a wall thickness of 0.625 μm). We collectively investigated 2020 mature oocytes retrieved from 437 patients between October 2010 and January 2014. The survival rates after CI, CPI, and IPI were 90, 95, and 99 %, respectively. The fertilization rates after CI, CPI, and IPI were 68, 75, and 89 %, respectively. The good-quality day-3 embryo rates after CI, CPI, and IPI were 37, 43, and 55 %, respectively. The pregnancy rates after the transfer of good-quality day-3 embryo of CI, CPI, and IPI were 19, 21, and 31 %, respectively. The live birth rates of CI, CPI, and IPI were 15, 16, and 25 %, respectively. Significantly higher survival, fertilization, good-quality day-3 embryo, pregnancy, and live birth rates were obtained using IPI. When comparing the IPI to the CI and CPI, the results revealed that the Piezo-ICSI using flat-tipped micropipettes with a wall thickness of 0.625 μm significantly improves survival, fertilization, good-quality day-3 embryo, pregnancy, and live birth rates.

  18. Sarcocystis sinensis is the most prevalent thick-walled Sarcocystis species in beef on sale for consumers in Germany.

    Science.gov (United States)

    Moré, G; Pantchev, A; Skuballa, J; Langenmayer, M C; Maksimov, P; Conraths, F J; Venturini, M C; Schares, G

    2014-06-01

    Bovines are intermediate hosts of Sarcocystis cruzi, Sarcocystis hirsuta, and Sarcocystis hominis, which use canids, felids, or primates as definitive hosts, respectively. Cattle represent also intermediate hosts of Sarcocystis sinensis, but the definitive hosts of this parasite are not yet known. Sarcocystosis in cattle is frequently asymptomatic. The infection is characterized by the presence of thin-walled (S. cruzi) or thick-walled muscle cysts or sarcocysts (S. hominis, S. sinensis, and S. hirsuta). Recent reports suggest high prevalence of the zoonotic S. hominis in beef in Europe. We therefore aimed at differentiating Sarcocystis spp. in beef offered to consumers in Germany using molecular and microscopical methods, focusing on those species producing thick-walled sarcocysts. A total of 257 beef samples were obtained from different butcheries and supermarkets in Germany and processed by conventional and multiplex real-time PCR. In addition, 130 of these samples were processed by light microscopy and in 24.6% thick-walled cysts were detected. Transmission electron microscopical analysis of six of these samples revealed an ultrastructural cyst wall pattern compatible with S. sinensis in five samples and with S. hominis in one sample. PCR-amplified 18S ribosomal DNA (rDNA) fragments of 28 individual thick-walled cysts were sequenced, and sequence identities of ≥98% with S. sinensis (n = 22), S. hominis (n = 5) and S. hirsuta (n = 1) were observed. Moreover, nine Sarcocystis sp. 18S rDNA full length gene sequences were obtained, five of S. sinensis, three of S. hominis, and one of S. hirsuta. Out of all samples (n = 257), 174 (67.7%) tested positive by conventional PCR and 179 (69.6%) by multiplex real-time PCR for Sarcocystis spp. Regarding individual species, 134 (52%), 95 (37%), 17 (6.6%), and 16 (6.2%) were positive for S. cruzi, S. sinensis, S. hirsuta, and S. hominis, respectively. In conclusion, S. sinensis is the most prevalent thick-walled

  19. Emissivity Measurements of Foam-Covered Water Surface at L-Band for Low Water Temperatures

    Directory of Open Access Journals (Sweden)

    En-Bo Wei

    2014-11-01

    Full Text Available For a foam-covered sea surface, it is difficult to retrieve sea surface salinity (SSS with L-band brightness temperature (1.4 GHz because of the effect of a foam layer with wind speeds stronger than 7 m/s, especially at low sea surface temperature (SST. With foam-controlled experiments, emissivities of a foam-covered water surface at low SST (−1.4 °C to 1.7 °C are measured for varying SSS, foam thickness, incidence angle, and polarization. Furthermore, a theoretical model of emissivity is introduced by combining wave approach theory with the effective medium approximation method. Good agreement is obtained upon comparing theoretical emissivities with those of experiments. The results indicate that foam parameters have a strong influence on increasing emissivity of a foam-covered water surface. Increments of experimental emissivities caused by foam thickness of 1 cm increase from about 0.014 to 0.131 for horizontal polarization and 0.022 to 0.150 for vertical polarization with SSS increase and SST decrease. Contributions of the interface between the foam layer and water surface to the foam layer emissivity increments are discussed for frequencies between 1 and 37 GHz.

  20. Measurement of radiant properties of ceramic foam

    International Nuclear Information System (INIS)

    Hoornstra, J.; Turecky, M.; Maatman, D.

    1994-07-01

    An experimental facility is described for the measurement of the normal spectral and total emissivity and transmissivity of semi-transparent materials in the temperature range of 600 C to 1200 C. The set-up was used for the measurement of radiation properties of highly porous ceramic foam which is used in low NO x radiant burners. Emissivity and transmissivity data were measured and are presented for coated and uncoated ceramic foam of different thicknesses. (orig.)

  1. Shear flow over a plane wall with an axisymmetric cavity or a circular orifice of finite thickness

    International Nuclear Information System (INIS)

    Pozrikidis, C.

    1994-01-01

    Shear flow over a plane wall that contains an axisymmetric depression or pore is studied using a new boundary integral method which is suitable for computing three-dimensional Stokes flow within axisymmetric domains. Numerical results are presented for cavities in the shape of a section of a sphere or a circular cylinder of finite length, and for a family of pores or orifices with finite thickness. The results illustrate the distribution of shear stresses over the plane wall and inside the cavities or pores. It is found that in most cases, the distribution of shear stresses over the plane wall, around the depressions, is well approximated with that for flow over an orifice of infinitesimal thickness for which an exact solution is available. The kinematic structure of the flow is discussed with reference to eddy formation and three-dimensional flow reversal. It is shown that the thickness of a circular orifice or depth of a pore play an important role in determining the kinematical structure of the flow underneath the orifice in the lower half-space

  2. Effect of bladder wall thickness on miniature pneumatic artificial muscle performance.

    Science.gov (United States)

    Pillsbury, Thomas E; Kothera, Curt S; Wereley, Norman M

    2015-09-28

    Pneumatic artificial muscles (PAMs) are actuators known for their high power to weight ratio, natural compliance and light weight. Due to these advantages, PAMs have been used for orthotic devices and robotic limbs. Small scale PAMs have the same advantages, as well as requiring greatly reduced volumes with potential application to prostheses and small scale robotics. The bladder of a PAM affects common actuator performance metrics, specifically: blocked force, free contraction, hysteresis, and dead-band pressure. This paper investigates the effect that bladder thickness has on static actuation performance of small scale PAMs. Miniature PAMs were fabricated with a range of bladder thicknesses to quantify the change in common actuator performance metrics specifically: blocked force, free contraction, and dead-band pressure. These PAMs were then experimentally characterized in quasi-static conditions, where results showed that increasing bladder wall thickness decreases blocked force and free contraction, while dead-band pressure increases. A nonlinear model was then applied to determine the structure of the stress-strain relationship that enables accurate modeling and the minimum number of terms. Two nonlinear models are compared and the identified parameters are analyzed to study the effect of the bladder thickness on the model.

  3. Thermal Behaviour of a Gypsum Fibre Board Associated with Rigid Polyurethane Foam under Standard Fire Conditions

    DEFF Research Database (Denmark)

    Dreau, Jerome Le; Jensen, Rasmus Lund; Kolding, Klaus

    2015-01-01

    Due to its low thermal conductivity (λ ≈ 20 mW/m.K), rigid polyurethane (PUR) foam has the potential to improve the thermal performance of buildings without increasing the thickness of construction elements. Nevertheless, PUR foam has the drawback of having a low resistance to fire: non-flaming t......Due to its low thermal conductivity (λ ≈ 20 mW/m.K), rigid polyurethane (PUR) foam has the potential to improve the thermal performance of buildings without increasing the thickness of construction elements. Nevertheless, PUR foam has the drawback of having a low resistance to fire: non...

  4. Characterization of compressive and short beam shear strength of bamboo opened cell foam core sandwich composites

    Energy Technology Data Exchange (ETDEWEB)

    Setyawan, Paryanto Dwi, E-mail: paryanto-ds@yahoo.com; Sugiman,; Saputra, Yudhi [Department of Mechanical Engineering, Faculty of Engineering, University of Mataram, Mataram, West Nusa Tenggara (Indonesia)

    2016-03-29

    The paper presents the compressive and the short beam shear strength of a sandwich composite with opened cell foam made of bamboo fiber as the core and plywood as the skins. The core thickness was varied from 10 mm to 40 mm keeping the volume fraction of fiber constant. Several test s were carried out including the core density, flatwise compressive and the short beam shear testing in three point bending. The results show that the density of bamboo opened cell foam is comparable with commercial plastic foam, such as polyurethane foam. The compressive strength tends to increase linearly with increasing the core thickness. The short beam shear failure load of the sandwich composite increases with the increase of core thickness, however on the contrary, the short beam shear strength which tends to sharply decrease from the thickness of 10 mm to 30 mm and then becomes flat.

  5. Determination of optimum insulation thicknesses of the external walls and roof (ceiling) for Turkey's different degree-day regions

    International Nuclear Information System (INIS)

    Sisman, Nuri; Kahya, Emin; Aras, Nil; Aras, Haydar

    2007-01-01

    The external walls and roof of a building are the interface between its interior and the outdoor environment. Insulation of the external walls and roof is the most cost-effective way of controlling the outside elements to make homes more comfortable. Although insulation is generally accepted as a factor increasing the building costs, with the calculations we have shown that this is not the case. Fuel consumption and operational costs are reduced by increasing the thickness of the external walls and roof (ceiling), despite an increase in the investment costs. According to Turkish Standard Number 825 (TS 825), there are four different degree-day (DD) regions, and the required heat loads for the buildings in these regions exhibit large differences. Therefore, a method based on costs is needed for the determination of optimum insulation thicknesses of different DD regions. In this study, optimum insulation thicknesses for different DD regions of Turkey, namely, Izmir (DD: 1450), Bursa (DD: 2203), Eskisehir (DD: 3215) and Erzurum (DD: 4856), have been determined for a lifetime of N years, maximizing the present worth value of annual energy savings for insulated external walls

  6. Study of a flowing aqueous decontamination foam drainage mechanisms and hydrodynamic behaviour

    International Nuclear Information System (INIS)

    Boissonnet, G.

    1998-01-01

    For the decontamination of nuclear facilities, the use of foams has a great potentiality. This work deals with the study of a flowing aqueous foam regarding two aspects: the structure and the drainage on one hand, the hydrodynamic behaviour on the other hand. The foam has been studied from a photograph of a plexiglass column wall, in which the foam flows vertically. Image processing and analysis have been used to measure the foam structure parameters and demonstrate that the smaller the average diameter of the bubbles is, the more stable the foam is. The competition between the gravity and the interfacial forces has been showed by two types of fluid flow in the inter-bubble channels: one where the gravity is preponderant, the other where the two forces exist. Two drainage models based on the Darcy law and the Weaire model have been elaborated. From an hydrodynamic behaviour point of view, the sliding of a shear core in the liquid film on wall, has been demonstrated. A Ostwald De Weale type behaviour appears concerning the whole flow; a Herschel Bulkley type behaviour of the foam core appears when the shearing and the sliding are dissociated. The sliding speed is 5 to 95% of the global speed according to the experiment conditions. A method to forecast the pressure losses, based on the Moody diagram has been established. (A.L.B.)

  7. Experimental study on microstructure characters of foamed lightweight soil

    Science.gov (United States)

    Qiu, Youqiang; Li, Yongliang; Li, Meixia; Liu, Yaofu; Zhang, Liujun

    2018-01-01

    In order to verify the microstructure of foamed lightweight soil and its characters of compressive strength, four foamed lightweight soil samples with different water-soild ratio were selected and the microstructure characters of these samples were scanned by electron microscope. At the same time, the characters of compressive strength of foamed lightweight soil were analyzed from the microstructure. The study results show that the water-soild ratio has a prominent effect on the microstructure and compressive strength of foamed lightweight soil, with the decrease of water-solid ratio, the amount and the perforation of pores would be reduced significantly, thus eventually forming a denser and fuller interior structure. Besides, the denser microstructure and solider pore-pore wall is benefit to greatly increase mechanical intensity of foamed lightweight soil. In addition, there are very few acicular ettringite crystals in the interior of foamed lightweight soil, its number is also reduced with the decrease in water-soild ratio.

  8. An Improved Model for FE Modeling and Simulation of Closed Cell Al-Alloy Foams

    OpenAIRE

    Hasan, MD. Anwarul

    2010-01-01

    Cell wall material properties of Al-alloy foams have been derived by a combination of nanoindentation experiment and numerical simulation. Using the derived material properties in FE (finite element) modeling of foams, the existing constitutive models of closed-cell Al-alloy foams have been evaluated against experimental results. An improved representative model has been proposed for FE analysis of closed-cell Al-alloy foams. The improved model consists of a combination of spherical and cruci...

  9. Characterization of Ti-6Al-4V open cellular foams fabricated by additive manufacturing using electron beam melting

    International Nuclear Information System (INIS)

    Murr, L.E.; Gaytan, S.M.; Medina, F.; Martinez, E.; Martinez, J.L.; Hernandez, D.H.; Machado, B.I.; Ramirez, D.A.; Wicker, R.B.

    2010-01-01

    Ti-6Al-4V open cellular foams were fabricated by additive manufacturing using electron beam melting (EBM). Foam models were developed from CT-scans of aluminum open cellular foams and embedded in CAD for EBM. These foams were fabricated with solid cell structures as well as hollow cell structures and exhibit tailorable stiffness and strength. The strength in proportion to the measured microindentation hardness is as much as 40% higher for hollow cell (wall) structures in contrast to solid, fully dense EBM fabricated components. Plots of relative stiffness versus relative density were in good agreement with the Gibson-Ashby model for open cellular foam materials. Stiffness or Young's modulus values measured using a resonant frequency-damping analysis technique were found to vary inversely with porosity especially for solid cell wall, open cellular structure foams. These foams exhibit the potential for novel biomedical, aeronautics, and automotive applications.

  10. Elastic-plastic behaviour of thick-walled containers considering plastic compressibility

    International Nuclear Information System (INIS)

    Betten, J.; Frosch, H.G.

    1983-01-01

    In this paper the elastic-plastic behaviour of thick-walled pressure vessels with internal and external pressure is studied. To describe the mechanical behaviour of isotropic, plastic compressible materials we use a plastic potential which is a single-valued function of the principle stresses. For cylinders and spheres an analytic expression for the computation of stresses and residual stresses is specified. Afterwards the strains are calculated by using the finite difference method. Some examples will high-light the influence of the plastic compressibility on the behaviour of pressure vessels. (orig.) [de

  11. New portable pipe wall thickness measuring technique

    Science.gov (United States)

    Pascente, Joseph E.

    1998-03-01

    One of the biggest inspection challenges facing many of the process industries; namely the petrochemical, refining, fossil power, and pulp and paper industries is: How to effectively examine their insulated piping? While there are a number of failure mechanisms involved in various process piping systems, piping degradation through corrosion and erosion are by far the most prevalent. This degradation can be in the form of external corrosion under insulation, internal corrosion through a variety of mechanisms, and internal erosion caused by the flow of the product through the pipe. Refineries, chemical plants and electrical power plants have MANY thousands of miles of pipe that are insulated to prevent heat loss or heat absorption. This insulation is often made up of several materials, with calcium based material being the most dense. The insulating material is usually wrapped with an aluminum or stainless steel outer wrap. Verification of wall thickness of these pipes can be accomplished by removing the insulation and doing an ultrasound inspection or by taking x- rays at a tangent to the edge of the pipe through the insulation. Both of these processes are slow and expensive. The time required to obtain data is measured in hours per meter. The ultrasound method requires that the insulation be plugged after the inspection. The surface needs to be cleaned or the resulting data will not be accurate. The tangent x-ray only shows two thicknesses and requires that the area be roped off because of radiation safety.

  12. The Usability of Boric Acid as an Alternative Foaming Agent on the Fabrication of Al/Al2O3 Composite Foams

    Science.gov (United States)

    Yaman, Bilge; Onuklu, Eren; Korpe, Nese O.

    2017-09-01

    Pure Al and alumina (2, 5, 10 wt.% Al2O3)-added Al composite foams were fabricated through powder metallurgy technique, where boric acid (H3BO3) is employed as a new alternative foaming agent. It is aimed to determine the effects of boric acid on the foaming behavior and cellular structure and also purposed to develop the mechanical properties of Al foams by addition of Al2O3. Al and Al composite foams with porosity fraction in the range of 46-53% were achieved by sintering at 620 °C for 2 h. Cell morphology was characterized using a combination of stereomicroscope equipped with image analyzer and scanning electron microscopy. Microhardness values were measured via using Vickers indentation technique. Quasi-static compression tests were performed at strain rate of 10-3 s-1. Compressive strength and energy absorption of the composite foams enhanced not only by the increasing weight fraction of alumina, but also by the usage of boric acid which leads to formation of boron oxide (B2O3) acting as a binder in obtaining dense cell walls. The results revealed that the boric acid has outstanding potential as foaming agent in the fabrication of Al and Al composite foams by providing improved mechanical properties.

  13. An Experimental Study of the Effect of Thermal Radiation Feedback on the Room Burning Behaviour of Horizontal Blocks of Polyurethane Foam

    DEFF Research Database (Denmark)

    Poulsen, Annemarie; Bwalya, A.C.

    -fire-retarded polyurethane foam measuring 1200 x 600 x 200 mm and weighing approximately 4.8 kg. The room tests were conducted in a small compartment measuring 2400 mm wide x 2800 mm deep x 2400 mm high with a rectangular vent (opening under a calorimeter hood) measuring 740 mm wide x 1500 mm high (a ventilation limit...... of approximately 2000 kW) located in one of the 2400 mm walls. The room was lined with one of two different non-combustible materials – 12.7 mm thick cement board or 50 mm thick mineral wool insulation – with substantially differential thermal inertias in order to subject the test specimen to one of two thermal...

  14. Ceramic inlays and partial ceramic crowns: influence of remaining cusp wall thickness on the marginal integrity and enamel crack formation in vitro.

    Science.gov (United States)

    Krifka, Stephanie; Anthofer, Thomas; Fritzsch, Marcus; Hiller, Karl-Anton; Schmalz, Gottfried; Federlin, Marianne

    2009-01-01

    No information is currently available about what the critical cavity wall thickness is and its influence upon 1) the marginal integrity of ceramic inlays (CI) and partial ceramic crowns (PCC) and 2) the crack formation of dental tissues. This in vitro study of CI and PCC tested the effects of different remaining cusp wall thicknesses on marginal integrity and enamel crack formation. CI (n = 25) and PCC (n = 26) preparations were performed in extracted human molars. Functional cusps of CI and PCC were adjusted to a 2.5 mm thickness; for PCC, the functional cusps were reduced to a thickness of 2.0 mm. Non-functional cusps were adjusted to wall thicknesses of 1) 1.0 mm and 2) 2.0 mm. Ceramic restorations (Vita Mark II, Cerec3 System) were fabricated and adhesively luted to the cavities with Excite/Variolink II. The specimens were exposed to thermocycling and central mechanical loading (TCML: 5000 x 5 degrees C-55 degrees C; 30 seconds/cycle; 500000 x 72.5N, 1.6Hz). Marginal integrity was assessed by evaluating a) dye penetration (fuchsin) on multiple sections after TCML and by using b) quantitative margin analysis in the scanning electron microscope (SEM) before and after TCML. Ceramic- and tooth-luting agent interfaces (LA) were evaluated separately. Enamel cracks were documented under a reflective light microscope. The data were statistically analyzed with the Mann Whitney U-test (alpha = 0.05) and the Error Rates Method (ERM). Crack formation was analyzed with the Chi-Square-test (alpha = 0.05) and ERM. In general, the remaining cusp wall thickness, interface, cavity design and TCML had no statistically significant influence on marginal integrity for both CI and PCC (ERM). Single pairwise comparisons showed that the CI and PCC of Group 2 had a tendency towards less microleakage along the dentin/LA interface than Group 1. Cavity design and location had no statistically significant influence on crack formation, but the specimens with 1.0 mm of remaining wall

  15. Male gender and sonographic gall bladder wall thickness: important predictable factors for empyema and gangrene in acute cholecystitis

    International Nuclear Information System (INIS)

    Khan, M.L.U.; Jawed, M.; Shaikh, U.; Abbassi, M.R.

    2014-01-01

    Objective: To underline the status of male gender and gall bladder wall thickness as significant risk factors for acute cholecystitis complications. Methods: The retrospective study, with purposive sampling of the patients of acute cholecystits in age above 18 years, who were operated within 10 days of onset of symptoms, was conducted at the Department of Surgery, Dow University Hospital, Karachi, by reviewing the patients' medical record from March 2010 to August 2012. Correlation of incidence of acute cholecystitis complications (empyema and gangrene) to male gender and to the sonographic gall bladder wall thickness more than 4.5mm was analysed using SPSS 16. Result: Out of 62 patients, 8 (13%) patients had gangrene while 10 (16.12%) had empyema. Overall, there were 21 (33.87%) males in the study. Ten (47.6%) of the male patients developed empyema or gangrene of the gall bladder as a complication of acute cholecystitis. Of the 41 (66.12%) female patients, only 8 (19.5%) developed these complications. There were 22 (35.48%) cases of gall bladders with sonographic wall thickness more than 4.5mm who were operated for acute cholecystitis. Of them, 16 (72.7%) had empyema or gangrene. Conclusion: Male gender and sonographic gall bladder wall thickness more than 4.5mm were statistically significant risk factors for suspicion of complicated acute cholecystitis (empyema/gangrene) and by using these risk factors, we can prioritise patients for surgery in the emergency room. (author)

  16. Development of on-line wall thickness gauge for small size seamless tube. Shokei seamless netsukan nikuatsukei no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, T; Konya, N; Oka, H; Kasuya, T [Kawasaki Steel Corp., Tokyo (Japan)

    1991-03-01

    In order to heighten the accuracy of small size seamless tube wall thickness, hot wall thickness gauge was developed to be installed, immediately behind the finishing/rolling mill, for the on-line measurement, of which the method was by the parallel-beam transmissivity of gamma-ray. The measurement unit, aiming at flexible manufacturing system (FMS), is completely automated in correcting the accuracy, changing the sizes, etc. The damping characteristics of gamma-ray beam can be expressed by a characteristic function, taking the outside diameter and wall thickness of subject tube as parameters. The functional calculation, as based on measurement of transmitted quantity of gamma-ray through the three-dimensional steel material, changes, depending upon the outside diameter, wall thickness and material specification of subject tube. System was so applied as to calculate it therefore on a case-by-case basis. Though in the vicinity of tube end, the transmitted quantity of gamma-ray is largely influenced by the horizontal dislocation, that influence is slack in the middle part of tube. Therefore, the cross sectional division was made dense and sparse in the end part and middle part, respectively of tube, which division could diminish the error from several percent to less than 0.1%. The static noise was compressed by the optimized digital filter. That gauge is presently applied for the operational administration of small size seamless tube rolling. 2 refs., 11 figs., 2 tabs.

  17. Minimization of thermal insulation thickness taking into account condensation on external walls

    Directory of Open Access Journals (Sweden)

    Nurettin Yamankaradeniz

    2015-09-01

    Full Text Available Condensation occurs in the inner layers of construction materials at whatever point the partial pressure of water vapor diffuses and reaches its saturation pressure. Condensation, also called sweating, damages materials, reduces thermal resistance, and by increasing the total heat transfer coefficient, results in unwanted events such as increased heat loss. This study applied minimization of thermal insulation thickness with consideration given to condensation in the external walls. The calculations of heat and mass transfers in the structure elements are expressed in a graphical form. While there was an increase in the required thermal insulation thickness subsequent to an increase in the internal environment’s temperature, relative humidity, and the external environment’s relative humidity, the required thickness decreased with an increase in the external environment’s temperature. The amount of water vapor transferred varied with internal or external conditions and the thickness of the insulation. A change in the vapor diffusion resistance of the insulation material can increase the risk of condensation on the internal or external surfaces of the insulation.

  18. Measurement of wall thickness with electrodynamic test heads

    International Nuclear Information System (INIS)

    Koch, R.; Maurer, A.

    1993-01-01

    Starting from the boundary conditions fixed by the physical properties of the electromagnetic/acoustic conversion and the operating limits which result from these for the sensors used, the use of electro-dynamic ultrasonic transducers for measuring wall thickness and double checks in plants for automatic production inspection and production control is shown. The sensor itself is the heart of a test system, but only the equipment and plant concepts surrounding the sensor make economic solution of the test problem possible. The quality of the signals which are supplied by a sensor, determines the quality of a test system. This can only be achieved by optimising all parts of a complex automatic test rig, such as the test head, mechanics, electronics and evaluation for the test problem concerned. (orig./HP) [de

  19. A swirl generator case study for OpenFOAM

    International Nuclear Information System (INIS)

    Petit, O; Nilsson, H; Bosioc, A I; Susan-Resiga, R F; Muntean, S

    2010-01-01

    This work presents numerical results, using OpenFOAM, of the flow in the swirl flow generator test rig developed at Politehnica University of Timisoara, Romania. The work shows results computed by solving the unsteady Reynolds Averaged Navier Stokes equations. The unsteady method couples the rotating and stationary parts using a sliding grid interface based on a GGI formulation. Turbulence is modeled using the standard k-ε model, and block structured wall function ICEM-Hexa meshes are used. The numerical results are validated against experimental LDV results, and against designed velocity profiles. The investigation shows that OpenFOAM gives results that are comparable to the experimental and designed profiles. This case study was presented at the 5th OpenFOAM Workshop, held in Gothenburg, Sweden, as a tutorial on how to treat turbomachinery applications in OpenFOAM.

  20. Domain growth kinetics in stratifying foam films

    Science.gov (United States)

    Zhang, Yiran; Sharma, Vivek

    2015-11-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Typical foam films consist of two surfactant-laden surfaces that are ~ 5 nm - 10 micron apart. Sandwiched between these interfacial layers is a fluid that drains primarily under the influence of viscous and interfacial forces, including disjoining pressure. Interestingly, a layered ordering of micelles inside the foam films (thickness characteristic scaling laws. Though several studies have focused on the expansion dynamics of isolated domains that exhibit a diffusion-like scaling, the change in expansion kinetics observed after domains contact with the Plateau border has not been reported and analyzed before.

  1. Tissue factor levels and the fibrinolytic system in thin and thick intraluminal thrombus and underlying walls of abdominal aortic aneurysms.

    Science.gov (United States)

    Siennicka, Aldona; Zuchowski, Marta; Kaczmarczyk, Mariusz; Cnotliwy, Miłosław; Clark, Jeremy Simon; Jastrzębska, Maria

    2018-03-20

    The hemostatic system cooperates with proteolytic degradation in processes allowing abdominal aortic aneurysm (AAA) formation. In previous studies, it has been suggested that aneurysm rupture depends on intraluminal thrombus (ILT) thickness, which varies across each individual aneurysm. We hypothesized that hemostatic components differentially accumulate in AAA tissue in relation to ILT thickness. Thick (A1) and thin (B1) segments of ILTs and aneurysm wall sections A (adjacent to A1) and B (adjacent to B1) from one aneurysm sac were taken from 35 patients undergoing elective repair. Factor levels were measured using enzyme-linked immunosorbent assay of protein extract. Tissue factor (TF) activities were significantly higher in thinner segments of AAA (B1 vs A1, P = .003; B vs A, P thick thrombus-covered wall segments (A) than in B, A1, and B1 (P = .015, P thick ILT (P = .021) and thick ILT (A1; P thick ILT (A1). However, no correlations were found at B sites, except for a correlation between plasmin and TF activities (r = 0.55; P = .004). These results suggest that higher TF activities are present in thinner AAA regions. These parameters and local fibrinolysis may be part of the processes leading to destruction of the aneurysm wall. Copyright © 2018 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  2. Development of automated welding process for field fabrication of thick walled pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, U A

    1981-01-01

    Research on automatic welding processes for the fabrication of thick-walled pressure vessels continued. A literature review on the subject was completed. A laboratory study of criteria for judging acceptable root parameters continued. Equipment for a demonstration facility to test the components and processes of the automated welding system has been specified and is being obtained. (LCL)

  3. Development of automated welding process for field fabrication of thick walled pressure vessels

    International Nuclear Information System (INIS)

    Schneider, U.A.

    Research on automatic welding processes for the fabrication of thick-walled pressure vessels continued. A literature review on the subject was completed. A laboratory study of criteria for judging acceptable root parameters continued. Equipment for a demonstration facility to test the components and processes of the automated welding system has been specified and is being obtained

  4. Standard guide for mutual inductance bridge applications for wall thickness determinations in boiler tubing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide describes a procedure for obtaining relative wall thickness indications in ferromagnetic and non-ferromagnetic steels using the mutual inductance bridge method. The procedure is intended for use with instruments capable of inducing two substantially identical magnetic fields and noting the change in inductance resulting from differing amounts of steel. It is used to distinguish acceptable wall thickness conditions from those which could place tubular vessels or piping at risk of bursting under high temperature and pressure conditions. 1.2 This guide is intended to satisfy two general needs for users of industrial Mutual Inductance Bridge (MIB) equipment: (1) the need for a tutorial guide addressing the general principles of Mutual Inductance Bridges as they apply to industrial piping; and (2) the need for a consistent set of MIB performance parameter definitions, including how these performance parameters relate to MIB system specifications. Potential users and buyers, as well as experienced M...

  5. Graphite Foam Heat Exchangers for Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Klett, J.W.

    2004-06-07

    -bond{reg_sign}, but still better than the standard heat sinks. Next, work with evaporative cooling techniques, such as heat pipes, demonstrated some unique behavior with the foam that is not seen with standard wick materials. This was that as the thickness of the foam increased, the performance got better, where with standard wick materials, as the thickness increases, the performance decreases. This is yet to be completely explained. Last, the designs from the thermal model were used to fabricate a series of cold plates with the graphite foam and compare them to similar designs using high performance folded fin aluminum sinks (considered standard in the industry). It was shown that by corrugating the foam parallel to fluid flow, the pressure drop can be reduced significantly while maintaining the same heat transfer as that in the folded fin heat sink. In fact, the results show that the graphite foam heat sink can utilized 5% the pumping power as that required with the folded fin aluminum heat sink, yet remove the same amount of heat.

  6. Minimization of thermal insulation thickness taking into account condensation on external walls

    OpenAIRE

    Nurettin Yamankaradeniz

    2015-01-01

    Condensation occurs in the inner layers of construction materials at whatever point the partial pressure of water vapor diffuses and reaches its saturation pressure. Condensation, also called sweating, damages materials, reduces thermal resistance, and by increasing the total heat transfer coefficient, results in unwanted events such as increased heat loss. This study applied minimization of thermal insulation thickness with consideration given to condensation in the external walls. The calcu...

  7. Thick-Walled Cylinder Theory Applied on a Conical Wedge Anchorage

    DEFF Research Database (Denmark)

    Bennitz, Anders; Grip, Niklas; Schmidt, Jacob Wittrup

    2011-01-01

    for further development of the anchorage.In this paper, we derive and examine an analytical model for the internal stresses and strains within the anchorage for a prescribed presetting distance. This model is derived from the theory of thick walled cylinders under the assumptions regarding plane stress...... and axial symmetry. We simplify the resulting system of ten nonlinear equations and derive a method for solving them numerically. A comparison of plotted results for three different angles on the wedge’s outer surface and six different presetting distances follows.These results are also compared to both axi...

  8. An Analysis of the Quality of the Thick-Walled S355J2+N Steel Joint Welded by the Mag Method

    Directory of Open Access Journals (Sweden)

    Krawczyk R.

    2017-06-01

    Full Text Available An analysis of the quality of the thick-walled S355J2+N steel welded joint used most frequently in the general-building, power and other contemporary steel constructions is presented in the following article. A process of examining welding technologies was made on the tick-walled butt joints of plates by using the MAG – 135 welding method. The aim of the discussed topic was to optimize the process of welding thick-walled welded joints due to their mechanical strength properties and efficiency.

  9. Multi objective optimization of foam-filled circular tubes for quasi-static and dynamic responses

    Directory of Open Access Journals (Sweden)

    Fauzan Djamaluddin

    Full Text Available AbstractFuel consumption and safety are currently key aspects in automobile design. The foam-filled thin-walled aluminium tube represents a potentially effective material for use in the automotive industry, due to its energy absorption capability and light weight. Multi-objective crashworthiness design optimization for foam-filled double cylindrical tubes is presented in this paper. The double structures are impacted by a rigid wall simulating quasi-static and dynamic loadings. The optimal parameters under consideration are the minimum peak crushing force and maximum specific energy absorption, using the non-dominated sorting genetic algorithm-II (NSGA-II technique. Radial basis functions (RBF and D-Optimal are adopted to determine the more complex crashworthiness functional objectives. The comparison is performed by finite element analysis of the impact crashworthiness characteristics in tubes under static and dynamic loads. Finally, the optimum crashworthiness performance of empty and foam-filled double tubes is investigated and compared to the traditional single foam-filled tube. The results indicate that the foam-filled double aluminium circular tube can be recommended for crashworthy structures.

  10. Reversed preparation of low-density poly(divinylbenzene/styrene) foam columns coated with gold films

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yinhai; Wang, Ni; Li, Yaling; Yao, Mengqi; Gan, Haibo; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-06-15

    Highlights: • A reversed fabrication of low density foam columns coated with gold films was proposed. • The uniformity in thickness and purity of gold film are easy to be controlled. • A compact layer is prepared through an electrophoretic deposition method. • A low density (12 mg/cc) foam column coated with gold film is obtained. - Abstract: This work aims to fabricate low-density, porous, non-conductive, structural poly(divinylbenzene/styrene) foam columns by high-internal-phase emulsion templating. We prepare these non-conductive foam columns coated with a thin gold layer by electrochemical deposition and the reversed preparation technique. As expected, the density of the foam obtained through this novel method was about 12 mg cm{sup −3}, and the thickness of the gold coating was about 3 μm. We performed field emission scanning electron microscopy to morphologically and microstructurally characterize the products and X-ray diffraction and energy dispersive spectroscopy to determine the composition of the gold coating.

  11. Acoustic scattering from a contrast agent microbubble near an elastic wall of finite thickness

    International Nuclear Information System (INIS)

    Doinikov, Alexander A; Aired, Leila; Bouakaz, Ayache

    2011-01-01

    Interest in the problem under consideration in this study is motivated by targeted ultrasound imaging where one has to deal with microbubble contrast agents pulsating near blood vessel walls. A modified Rayleigh–Plesset equation is derived that describes the oscillation of a contrast agent microbubble near an elastic wall of finite thickness. It is assumed that the medium behind the wall is a fluid but it is shown that the equation obtained is easily transformable to the case that the medium behind the wall is an elastic solid. In contrast to the model of a rigid wall, which predicts decreasing natural frequency of a bubble near the wall, the elastic wall model reveals that the bubble natural frequency can both decrease and increase, and in cases of interest for medical applications, the bubble natural frequency usually increases. It is found that the influence of an elastic wall on the acoustic response of a bubble is determined by the ratio between a cumulative parameter, which integrally characterizes the mechanical properties of the wall and has the dimension of density, and the density of the liquid surrounding the bubble. It is shown that the acoustic influence of the arterial wall on the bubble is weak and apparently cannot be used to recognize the moment when the bubble approaches the wall. However, in experiments where the behavior of bubbles near various plastic walls is observed, changes in the bubble response, such as increasing natural frequency and decreasing oscillation amplitude, are detectable.

  12. Heat exchange performance of stainless steel and carbon foams modified with carbon nano fibers

    NARCIS (Netherlands)

    Tuzovskaya, I.; Pacheco Benito, Sergio; Chinthaginjala, J.K.; Reed, C.P.; Lefferts, Leonardus; van der Meer, Theodorus H.

    2012-01-01

    Carbon nanofibers (CNF), with fishbone and parallel wall structures, were grown by catalytic chemical vapor deposition on the surface of carbon foam and stainless steel foam, in order to improve their heat exchange performance. Enhancement in heat transfer efficiency between 30% and 75% was achieved

  13. Validation of a Polyimide Foam Model for Use in Transmission Loss Applications

    Science.gov (United States)

    Hong, Kwanwoo; Bolton, J. Stuart; Cano, Roberto J.; Weiser, Erik S.; Jensen, Brian J.; Silcox, Rich; Howerton, Brian M.; Maxon, John; Wang, Tongan; Lorenzi, Tyler

    2010-01-01

    The work described in this paper was focused on the use of a new polyimide foam in a double wall sound transmission loss application. Recall that polyimide foams are functionally attractive, compared to polyurethane foams, for example, owing to their fire resistance. The foam considered here was found to have a flow resistivity that was too high for conventional acoustical applications, and as a result, it was processed by partial crushing to lower the flow resistivity into an acceptable range. Procedures for measuring the flow resistivity and Young s modulus of the material have been described, as was an inverse characterization procedure for estimating the remaining Biot parameters based on standing wave tube measurements of transmission loss and absorption coefficient. The inverse characterization was performed using a finite element model implementation of the Biot poro-elastic material theory. Those parameters were then used to predict the sound transmission loss of a double panel system lined with polyimide foam, and the predictions were compared with full-scale transmission loss measurements. The agreement between the two was reasonable, especially in the high and low frequency limits; however, it was found that the SEA model resulted in an under-prediction of the transmission loss in the mid-frequency range. Nonetheless, it was concluded that the performance of polyimide foam could be predicted using conventional poro-elastic material models and that polyimide foam may offer an attractive alternative to other double wall linings in certain situations: e.g., when fire resistance is a key issue. Future work will concentrate on reducing the density of the foam to values similar to those used in current aircraft sidewall treatments, and developing procedures to improve the performance of the foam in transmission loss applications.

  14. Experimental Evaluation of Equivalent-Fluid Models for Melamine Foam

    Science.gov (United States)

    Allen, Albert R.; Schiller, Noah H.

    2016-01-01

    Melamine foam is a soft porous material commonly used in noise control applications. Many models exist to represent porous materials at various levels of fidelity. This work focuses on rigid frame equivalent fluid models, which represent the foam as a fluid with a complex speed of sound and density. There are several empirical models available to determine these frequency dependent parameters based on an estimate of the material flow resistivity. Alternatively, these properties can be experimentally educed using an impedance tube setup. Since vibroacoustic models are generally sensitive to these properties, this paper assesses the accuracy of several empirical models relative to impedance tube measurements collected with melamine foam samples. Diffuse field sound absorption measurements collected using large test articles in a laboratory are also compared with absorption predictions determined using model-based and measured foam properties. Melamine foam slabs of various thicknesses are considered.

  15. Foam flows through a local constriction

    Science.gov (United States)

    Chevalier, T.; Koivisto, J.; Shmakova, N.; Alava, M. J.; Puisto, A.; Raufaste, C.; Santucci, S.

    2017-11-01

    We present an experimental study of the flow of a liquid foam, composed of a monolayer of millimetric bubbles, forced to invade an inhomogeneous medium at a constant flow rate. To model the simplest heterogeneous fracture medium, we use a Hele-Shaw cell consisting of two glass plates separated by a millimetric gap, with a local constriction. This single defect localized in the middle of the cell reduces locally its gap thickness, and thus its local permeability. We investigate here the influence of the geometrical property of the defect, specifically its height, on the average steady-state flow of the foam. In the frame of the flowing foam, we can observe a clear recirculation around the obstacle, characterized by a quadrupolar velocity field with a negative wake downstream the obstacle, which intensity evolves systematically with the obstacle height.

  16. Synchrotron-based radioscopy employing spatio-temporal micro-resolution for studying fast phenomena in liquid metal foams

    International Nuclear Information System (INIS)

    Rack, A.; García-Moreno, F.; Baumbach, T.; Banhart, J.

    2009-01-01

    High-speed synchrotron-based radioscopy is applied to study a coalescence event (which lasts ∼2 ms) in situ in a liquid metal foam. Investigations of pore coalescence and individual cell wall collapse in an expanding liquid metal foam by means of X-ray radioscopy with spatio-temporal micro-resolution are reported. By using white synchrotron radiation for imaging, the rupture of a film and the subsequent merger of two neighbouring bubbles could be recorded with a time sampling rate of 40000 frames s −1 (25 µs exposure time) and a spatial sampling rate of 20 µm. The rupture time of a cell wall was found to be in the range of 300 µs. This value is in agreement with theoretical considerations which assume an inertia-dominated rupture time of cell walls in liquid metal foams

  17. Impact of Age and Aerobic Exercise Training on Conduit Artery Wall Thickness: Role of the Shear Pattern.

    Science.gov (United States)

    Tanahashi, Koichiro; Kosaki, Keisei; Sawano, Yuriko; Yoshikawa, Toru; Tagawa, Kaname; Kumagai, Hiroshi; Akazawa, Nobuhiko; Maeda, Seiji

    2017-01-01

    Hemodynamic shear stress is the frictional force of blood on the arterial wall. The shear pattern in the conduit artery affects the endothelium and may participate in the development and progression of atherosclerosis. We investigated the role of the shear pattern in age- and aerobic exercise-induced changes in conduit artery wall thickness via cross-sectional and interventional studies. In a cross-sectional study, we found that brachial shear rate patterns and brachial artery intima-media thickness (IMT) correlated with age. Additionally, brachial artery shear rate patterns were associated with brachial artery IMT in 102 middle-aged and older individuals. In an interventional study, 39 middle-aged and older subjects were divided into 2 groups: control and exercise. The exercise group completed 12 weeks of aerobic exercise training. Aerobic exercise training significantly increased the antegrade shear rate and decreased the retrograde shear rate and brachial artery IMT. Moreover, changes in the brachial artery antegrade shear rate and the retrograde shear rate correlated with the change in brachial artery IMT. The results of the present study indicate that changes in brachial artery shear rate patterns may contribute to age- and aerobic exercise training-induced changes in brachial artery wall thickness. © 2017 S. Karger AG, Basel.

  18. An Approach for Patient-Specific Multi-domain Vascular Mesh Generation Featuring Spatially Varying Wall Thickness Modeling

    OpenAIRE

    Raut, Samarth S.; Liu, Peng; Finol, Ender A.

    2015-01-01

    In this work, we present a computationally efficient image-derived volume mesh generation approach for vasculatures that implements spatially varying patient-specific wall thickness with a novel inward extrusion of the wall surface mesh. Multi-domain vascular meshes with arbitrary numbers, locations, and patterns of both iliac bifurcations and thrombi can be obtained without the need to specify features or landmark points as input. In addition, the mesh output is coordinate-frame independent ...

  19. Numerical investigation on residual stress distribution and evolution during multipass narrow gap welding of thick-walled stainless steel pipes

    International Nuclear Information System (INIS)

    Liu, C.; Zhang, J.X.; Xue, C.B.

    2011-01-01

    Research highlights: → We performed pass-by-pass simulation of stresses for welding of thick-walled pipes. → The distributions and evolution of the residual stresses are demonstrated. → After the groove is filled to a height, the through-wall stress is almost unchanged. - Abstracts: The detailed pass-by-pass finite element (FE) simulation is presented to investigate the residual stresses in narrow gap multipass welding of pipes with a wall thickness of 70 mm and 73 weld passes. The simulated residual stress on the outer surface is validated with the experimental one. The distribution and evolution of the through-wall residual stresses are demonstrated. The investigated results show that the residual stresses on the outer and inner surfaces are tensile in the weld zone and its vicinity. The through-wall axial residual stresses at the weld center line and the HAZ line demonstrate a distribution of bending type. The through-wall hoop residual stress within the weld is mostly tensile. After the groove is filled to a certain height, the peak tensile stresses and the stress distribution patterns for both axial and hoop stresses remain almost unchanged.

  20. Measurement of thickness of film deposited on the plasma-facing wall in the QUEST tokamak by colorimetry.

    Science.gov (United States)

    Wang, Z; Hanada, K; Yoshida, N; Shimoji, T; Miyamoto, M; Oya, Y; Zushi, H; Idei, H; Nakamura, K; Fujisawa, A; Nagashima, Y; Hasegawa, M; Kawasaki, S; Higashijima, A; Nakashima, H; Nagata, T; Kawaguchi, A; Fujiwara, T; Araki, K; Mitarai, O; Fukuyama, A; Takase, Y; Matsumoto, K

    2017-09-01

    After several experimental campaigns in the Kyushu University Experiment with Steady-state Spherical Tokamak (QUEST), the originally stainless steel plasma-facing wall (PFW) becomes completely covered with a deposited film composed of mixture materials, such as iron, chromium, carbon, and tungsten. In this work, an innovative colorimetry-based method was developed to measure the thickness of the deposited film on the actual QUEST wall. Because the optical constants of the deposited film on the PFW were position-dependent and the extinction coefficient k 1 was about 1.0-2.0, which made the probing light not penetrate through some thick deposited films, the colorimetry method developed can only provide a rough value range of thickness of the metal-containing film deposited on the actual PFW in QUEST. However, the use of colorimetry is of great benefit to large-area inspections and to radioactive materials in future fusion devices that will be strictly prohibited from being taken out of the limited area.

  1. Cylindrical multiwire two-coordinate chamber with foam-polyurethane supporting element

    International Nuclear Information System (INIS)

    Vakhtin, V.G.; Travkin, V.I.

    1988-01-01

    Construction and technology of producing the two-coordinate cylindrical chamber with foam-polyurethane supporting element are described. Use of foam-polyurethane permits to reduce the substance quantity at particle path up to 0.2 g/cm 2 . The supporting element represents a foam-polyurethane tube the outside diameter being 126 mm, the thickness - 6.5 mm and the length 600 mm. Special attention was paid to study of elastic properties of foam-polyurethane tubes and to the effect of the chamber working fluid vapors on the tube sizes. It is stated that after a sustained load (3750 N for 6 days) the tube shrinks by 1.25 %. The foam-polyurethane supporting element arranged in 50% argon + 33% methane + 17% methylane mixture didn't change its sizes in the limit of 0.05% for three weeks. The chamber operates under self-qquenching streamer conditions

  2. The thick left ventricular wall of the giraffe heart normalises wall tension, but limits stroke volume and cardiac output

    DEFF Research Database (Denmark)

    Smerup, Morten Holdgaard; Damkjær, Mads; Brøndum, Emil

    2016-01-01

    Giraffes - the tallest extant animals on Earth - are renowned for their high central arterial blood pressure, which is necessary to secure brain perfusion. The pressure which may exceed 300 mmHg has historically been attributed to an exceptionally large heart. Recently, this has been refuted...... by several studies demonstrating that the mass of giraffe heart is similar to that of other mammals when expressed relative to body mass. It remains enigmatic, however, how the normal-sized giraffe heart generates such massive arterial pressures.We hypothesized that giraffe hearts have a small...... intraventricular cavity and a relatively thick ventricular wall, allowing for generation of high arterial pressures at normal left ventricular wall tension. In nine anaesthetized giraffes (495±38 kg), we determined in vivo ventricular dimensions using echocardiography along with intraventricular and aortic...

  3. An analytical method for calculating stresses and strains of ATF cladding based on thick walled theory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hyun; Kim, Hak Sung [Hanyang University, Seoul (Korea, Republic of); Kim, Hyo Chan; Yang, Yong Sik; In, Wang kee [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, an analytical method based on thick walled theory has been studied to calculate stress and strain of ATF cladding. In order to prescribe boundary conditions of the analytical method, two algorithms were employed which are called subroutine 'Cladf' and 'Couple' of FRACAS, respectively. To evaluate the developed method, equivalent model using finite element method was established and stress components of the method were compared with those of equivalent FE model. One of promising ATF concepts is the coated cladding, which take advantages such as high melting point, a high neutron economy, and low tritium permeation rate. To evaluate the mechanical behavior and performance of the coated cladding, we need to develop the specified model to simulate the ATF behaviors in the reactor. In particular, the model for simulation of stress and strain for the coated cladding should be developed because the previous model, which is 'FRACAS', is for one body model. The FRACAS module employs the analytical method based on thin walled theory. According to thin-walled theory, radial stress is defined as zero but this assumption is not suitable for ATF cladding because value of the radial stress is not negligible in the case of ATF cladding. Recently, a structural model for multi-layered ceramic cylinders based on thick-walled theory was developed. Also, FE-based numerical simulation such as BISON has been developed to evaluate fuel performance. An analytical method that calculates stress components of ATF cladding was developed in this study. Thick-walled theory was used to derive equations for calculating stress and strain. To solve for these equations, boundary and loading conditions were obtained by subroutine 'Cladf' and 'Couple' and applied to the analytical method. To evaluate the developed method, equivalent FE model was established and its results were compared to those of analytical model. Based on the

  4. The Temperature Effect on the Compressive Behavior of Closed-Cell Aluminum-Alloy Foams

    Science.gov (United States)

    Movahedi, Nima; Linul, Emanoil; Marsavina, Liviu

    2018-01-01

    In this research, the mechanical behavior of closed-cell aluminum (Al)-alloy foams was investigated at different temperatures in the range of 25-450 °C. The main mechanical properties of porous Al-alloy foams are affected by the testing temperature, and they decrease with the increase in the temperature during uniaxial compression. From both the constant/serrated character of stress-strain curves and macro/microstructural morphology of deformed cellular structure, it was found that Al foams present a transition temperature from brittle to ductile behavior around 192 °C. Due to the softening of the cellular structure at higher temperatures, linear correlations of the stress amplitude and that of the absorbed energy with the temperature were proposed. Also, it was observed that the presence of inherent defects like micropores in the foam cell walls induced further local stress concentration which weakens the cellular structure's strength and crack propagation and cell-wall plastic deformation are the dominant collapse mechanisms. Finally, an energy absorption study was performed and an optimum temperature was proposed.

  5. Ultrasonic guided wave tomography for wall thickness mapping in pipes

    Science.gov (United States)

    Willey, Carson L.

    Corrosion and erosion damage pose fundamental challenges to operation of oil and gas infrastructure. In order to manage the life of critical assets, plant operators must implement inspection programs aimed at assessing the severity of wall thickness loss (WTL) in pipelines, vessels, and other structures. Maximum defect depth determines the residual life of these structures and therefore represents one of the key parameters for robust damage mitigation strategies. In this context, continuous monitoring with permanently installed sensors has attracted significant interest and currently is the subject of extensive research worldwide. Among the different monitoring approaches being considered, significant promise is offered by the combination of guided ultrasonic wave technology with the principles of model based inversion under the paradigm of what is now referred to as guided wave tomography (GWT). Guided waves are attractive because they propagate inside the wall of a structure over a large distance. This can yield significant advantages over conventional pulse-echo thickness gage sensors that provide insufficient area coverage -- typically limited to the sensor footprint. While significant progress has been made in the application of GWT to plate-like structures, extension of these methods to pipes poses a number of fundamental challenges that have prevented the development of sensitive GWT methods. This thesis focuses on these challenges to address the complex guided wave propagation in pipes and to account for parametric uncertainties that are known to affect model based inversion and which are unavoidable in real field applications. The main contribution of this work is the first demonstration of a sensitive GWT method for accurately mapping the depth of defects in pipes. This is achieved by introducing a novel forward model that can extract information related to damage from the complex waveforms measured by pairs of guided wave transducers mounted on the pipe

  6. Enhanced washout of 99mTc-tetrofosmin in hypertrophic cardiomyopathy: quantitative comparisons with regional 123I-BMIPP uptake and wall thickness determined by MRI

    International Nuclear Information System (INIS)

    Thet-Thet-Lwin, Tohoru; Takeda, Jin; Wu, Yuko; Fumikura, Keiji; Iida, Satoru; Kawano, Iwao; Yamaguchi, Yuji; Itai

    2003-01-01

    The diagnostic value of technetium-99m tetrofosmin (TF) washout in hypertrophic cardiomyopathy (HCM) was examined by investigating its relation to the metabolic abnormality depicted by iodine-123 β-methyl-p-iodophenylpentadecanoic acid (BMIPP) uptake and the left ventricular (LV) myocardial wall thickness as measured by magnetic resonance imaging (MRI). TF washout was evaluated in 31 patients with HCM and 23 normal control subjects using 30-min (early) and 3-h (delayed) TF single-photon emission tomography images. The LV myocardial wall was divided into 19 segments and the percentage TF washout, regional BMIPP uptake and LV wall thickness were measured in each segment. Mean TF washout in the patients with HCM was significantly faster than that in normal control subjects (23.7±5.7 vs 13.4±4.1, P<0.0001). In the patients with HCM, TF washout showed an excellent correlation with MRI wall thickness (r=0.82, P<0.0001) and a good inverse correlation with regional BMIPP uptake (r=-0.72, P<0.0001). In addition, a good linear correlation was observed between TF uptake and MRI wall thickness in the 19 regional segments. In conclusion, the degree of TF washout corresponds well with the severity of myocardial wall thickness and the degree of metabolic abnormality in patients with HCM. These results suggest that enhanced TF washout might provide additional clinical information regarding metabolic alterations in HCM. (orig.)

  7. Enhanced washout of 99mTc-tetrofosmin in hypertrophic cardiomyopathy: quantitative comparisons with regional 123I-BMIPP uptake and wall thickness determined by MRI.

    Science.gov (United States)

    Thet-Thet-Lwin; Takeda, Tohoru; Wu, Jin; Fumikura, Yuko; Iida, Keiji; Kawano, Satoru; Yamaguchi, Iwao; Itai, Yuji

    2003-07-01

    The diagnostic value of technetium-99m tetrofosmin (TF) washout in hypertrophic cardiomyopathy (HCM) was examined by investigating its relation to the metabolic abnormality depicted by iodine-123 beta-methyl- p-iodophenylpentadecanoic acid (BMIPP) uptake and the left ventricular (LV) myocardial wall thickness as measured by magnetic resonance imaging (MRI). TF washout was evaluated in 31 patients with HCM and 23 normal control subjects using 30-min (early) and 3-h (delayed) TF single-photon emission tomography images. The LV myocardial wall was divided into 19 segments and the percentage TF washout, regional BMIPP uptake and LV wall thickness were measured in each segment. Mean TF washout in the patients with HCM was significantly faster than that in normal control subjects (23.7+/-5.7 vs 13.4+/-4.1, P<0.0001). In the patients with HCM, TF washout showed an excellent correlation with MRI wall thickness ( r=0.82, P<0.0001) and a good inverse correlation with regional BMIPP uptake ( r=-0.72, P<0.0001). In addition, a good linear correlation was observed between TF uptake and MRI wall thickness in the 19 regional segments. In conclusion, the degree of TF washout corresponds well with the severity of myocardial wall thickness and the degree of metabolic abnormality in patients with HCM. These results suggest that enhanced TF washout might provide additional clinical information regarding metabolic alterations in HCM.

  8. Design of foam-buffered high gain target with Fokker-Planck implosion simulation for thermal insulation and imprint mitigation

    International Nuclear Information System (INIS)

    Takeda, T.; Mima, K.; Norimatsu, T.; Nagatomo, H.; Nishiguchi, A.

    2003-01-01

    It is proposed that a thick foam layer on a plastic capsule of fusion pellet is effective not only for reducing the initial imprint, but also for solving the melting problem of cryogenic deuterium-tritium layer, in a reactor chamber. Investigated are the dependences of gain, thermal insulation for preventing the melting, and imprint mitigation of a foam-buffered target on the foam layer thickness. The imprint mitigation, the Rayleigh-Taylor growth factor and the fusion gain of a foam-buffered target are evaluated by the hydrodynamic implosion code HIMICO [A. Nishiguchi et al., Phys. Fluids B 4, 417 (1992)], which includes a Fokker-Planck transport code. As the result, it is found that high gain can be achieved by the foam-buffered target together with thermal insulation and imprint mitigation

  9. Creep properties in similar weld joint of a thick-walled P92 steel pipe

    Czech Academy of Sciences Publication Activity Database

    Sklenička, Václav; Kuchařová, Květa; Svobodová, M.; Kvapilová, Marie; Král, Petr; Horváth, P.

    2016-01-01

    Roč. 119, č. 1 (2016), s. 1-12 ISSN 1044-5803 R&D Projects: GA ČR(CZ) GA16-09518S; GA MPO FR-TI4/406 Institutional support: RVO:68081723 Keywords : 9–12%Cr steels * Creep testing * High temperature creep * Thick-walled pipe * Welding Subject RIV: JG - Metallurgy Impact factor: 2.714, year: 2016

  10. The effect of wall thickness distribution on mechanical reliability and strength in unidirectional porous ceramics

    Science.gov (United States)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-01-01

    Macroporous ceramics exhibit an intrinsic strength variability caused by the random distribution of defects in their structure. However, the precise role of microstructural features, other than pore volume, on reliability is still unknown. Here, we analyze the applicability of the Weibull analysis to unidirectional macroporous yttria-stabilized-zirconia (YSZ) prepared by ice-templating. First, we performed crush tests on samples with controlled microstructural features with the loading direction parallel to the porosity. The compressive strength data were fitted using two different fitting techniques, ordinary least squares and Bayesian Markov Chain Monte Carlo, to evaluate whether Weibull statistics are an adequate descriptor of the strength distribution. The statistical descriptors indicated that the strength data are well described by the Weibull statistical approach, for both fitting methods used. Furthermore, we assess the effect of different microstructural features (volume, size, densification of the walls, and morphology) on Weibull modulus and strength. We found that the key microstructural parameter controlling reliability is wall thickness. In contrast, pore volume is the main parameter controlling the strength. The highest Weibull modulus (?) and mean strength (198.2 MPa) were obtained for the samples with the smallest and narrowest wall thickness distribution (3.1 ?m) and lower pore volume (54.5%).

  11. Numerical modelling of closed-cell aluminium foam under dynamic loading

    Science.gov (United States)

    Hazell, Paul; Kader, M. A.; Islam, M. A.; Escobedo, J. P.; Saadatfar, M.

    2015-06-01

    Closed-cell aluminium foams are extensively used in aerospace and automobile industries. The understanding of their behaviour under impact loading conditions is extremely important since impact problems are directly related to design of these engineering structures. This research investigates the response of a closed-cell aluminium foam (CYMAT) subjected to dynamic loading using the finite element software ABAQUS/explicit. The aim of this research is to numerically investigate the material and structural properties of closed-cell aluminium foam under impact loading conditions with interest in shock propagation and its effects on cell wall deformation. A μ-CT based 3D foam geometry is developed to simulate the local cell collapse behaviours. A number of numerical techniques are applied for modelling the crush behaviour of aluminium foam to obtain the more accurate results. The simulation results are compared with experimental data. Comparison of the results shows a good correlation between the experimental results and numerical predictions.

  12. Molded ultra-low density microcellular foams

    International Nuclear Information System (INIS)

    Rand, P.B.; Montoya, O.J.

    1986-07-01

    Ultra-low density (< 0.01 g/cc) microcellular foams were required for the NARYA pulsed-power-driven x-ray laser development program. Because of their extreme fragility, molded pieces would be necessary to successfully field these foams in the pulsed power accelerator. All of the foams evaluated were made by the thermally induced phase separation technique from solutions of water soluble polymers. The process involved rapidly freezing the solution to induce the phase separation, and then freeze drying to remove the water without destroying the foam's structure. More than sixty water soluble polymers were evaluated by attempting to make their solutions into foams. The foams were evaluated for shrinkage, density, and microstructure to determine their suitability for molding and meeting the required density and cell size requirements of 5.0 mg/cc and less than twenty μmeters. Several promising water soluble polymers were identified including the polyactylic acids, guar gums, polyactylamide, and polyethylene oxide. Because of thier purity, structure, and low shrinkage, the polyacrylic acids were chosen to develop molding processes. The initial requirements were for 2.0 cm. long molded rods with diameters of 1.0, 2.0. and 3.0 mm. These rods were made by freezing the solution in thin walled silicon rubber molds, extracting the frozen preform from the mold, and then freeze drying. Requirements for half rods and half annuli necessitated using aluminum molds. Again we successfully molded these shapes. Our best efforts to date involve molding annuli with 3.0 mm outside diameters and 2.0 mm inside diameters

  13. Airway wall thickness of allergic asthma caused by weed pollen or house dust mite assessed by computed tomography.

    Science.gov (United States)

    Liu, Liping; Li, Guangrun; Sun, Yuemei; Li, Jian; Tang, Ningbo; Dong, Liang

    2015-03-01

    Little was known about Airway wall thickness of asthma patients with different allergen allergy. So we explored the possible difference of Airway wall thickness of asthma patients mono-sensitized to weed pollen or HDM using high-resolution computed tomography. 85 severe asthma patients were divided into weed pollen group and HDM group according to relevant allergen. 20 healthy donors served as controls. Airway wall area, percentage wall area and luminal area at the trunk of the apical bronchus of the right upper lobe were quantified using HRCT and compared. The values of pulmonary function were assessed as well. There were differences between HDM group and weed pollen group in WA/BSA,WA% and FEF25-75% pred, and no significant difference in FEV1%pred, FEV1/FVC and LA/BSA. In weed pollen group, WA/BSA was observed to correlate with the duration of rhinitis, whereas in HDM group, WA/BSA and LA/BSA was observed to correlate with the duration of asthma. In weed pollen group, FEV1/FVC showed a weak but significant negative correlation with WA%, but in HDM group FEV1/FVC showed a significant positive correlation with WA% and a statistical negative correlation with LA/BSA. FEV1/FVC and FEF25-75% pred were higher and WA/BSA and LA/BSA were lower in healthy control group than asthma group. FEV1%pred and WA% was no significant difference between asthma patients and healthy subjects. There are differences between HDM mono-sensitized subjects and weed pollen mono-sensitized subjects, not only in airway wall thickness, but also small airway obstruction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. An investigation on the fatigue behavior of DCB specimen bonded with aluminum foam at Mode III

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Cho, J. U. [Kongju University, Cheonan (Korea, Republic of); Zhao, G [School of Aerospace, Xian Jiaotong University, Xian (China); Cho, C. [Dept. of Mechanical Engineering, Inha University, Incheon (Korea, Republic of)

    2016-10-15

    Aluminum foam with its excellent physical and mechanical characteristics is a lightweight metallic material used with good quality in vehicle bumpers, internal shock absorbers on planes, as materials for vessel joints etc. On the contrary, when aluminum foam is used without sufficient investigation, there is the likelihood of damage or destruction of the machine or mechanical structure, and in extreme case it may cause to human casualties. This study aims to analyze the characteristics of adhesive structures with aluminum foam for the closed-type aluminum foam used primarily as shock absorbers. The fatigue analyses of the DCB test specimens at mode III with aluminum foam are verified through a fatigue experiment. As the analysis results, test specimen models with the thicknesses (t) of 35 mm, 45 mm and 55 mm showed the peak load occurrence approximately after the progress from 0 to 50 cycles. And afterwards the load gradually decreased as the cycles increased. The peak loads for each DCB test specimens were ±0.80 kN for the specimen thickness(t) of 35 mm, ±0.98 kN for the specimen thickness(t) of 45 mm and ±1.18 kN for the specimen thickness(t) of 55 mm. It is also shown that the peak load occurring on the specimen increased as specimen thickness increased. These study results are compared with the specimen thickness of 35 mm model as the basis. When the specimen thickness is increased as much as 10 mm, the peak load is increased approximately 1.25 times. When the specimen thickness is also increased as much as 20 mm, the peak load is increased 1.5 times. The analysis data and the real experiment data showed similar results each other. Therefore, it can be thought that the analysis data is applicable in real field. And it is estimated that the mechanical characteristics of the DCB test specimen at mode III during the fatigue load conditions can be systematically and efficiently analyzed.

  15. Limit load analysis of thick-walled concrete structures

    International Nuclear Information System (INIS)

    Argyris, J.H.; Faust, G.; Willam, K.J.

    1975-01-01

    The paper illustrates the interaction of constitutive modeling and finite element solution techniques for limit load prediction of concrete structures. On the constitutive side, an engineering model of concrete fracture is developed in which the Mohr-Coulomb criterion is augmented by tension cut-off to describe incipient failure. Upon intersection with the stress path the failure surface collapses for brittle behaviour according to one of three softening rules, no-tension, no-cohesion, and no-friction. The stress transfer accompanying the energy dissipation during local failure is modelled by several fracture rules which are examined with regard to ultimate load prediction. On the numerical side the effect of finite element idealization is studied first as far as ultimate load convergence is concerned. Subsequently, incremental tangential and initial load techniques are compared together with the effect of step size. Limit load analyses of a thick-walled concrete ring and a lined concrete reactor closure conclude the paper with examples from practical engineering. (orig.) [de

  16. NDE of stresses in thick-walled components by ultrasonic methods

    International Nuclear Information System (INIS)

    Goebbels, K.; Pitsch, H.; Schneider, E.; Nowack, H.

    1985-01-01

    The possibilty of measuring stresses - especially residual stresses - by ultrasonic methods has been presented at the 4th and 5th International Conference on NDE in Nuclear Industry. This contribution now presents results of several applications to thick walled components such as turbines and generators for power plants. The measurement technique using linearly polarized shear waves allows one to characterize the homogeneitry of the residual stress situation along and around cylindrically shaped components. Some important results show that the stress distribution integrated over the cross section of the component has not followed in any case the simple relations derived by stress analysts. Conclusions referring to the stress situation inside the components are discussed

  17. Simultaneous measurements of thickness and temperature profile in a wavy liquid film falling freely on a heating wall

    International Nuclear Information System (INIS)

    Lyu, T.; Mudawar, I.

    1990-01-01

    This paper reports on a technique for measuring the thickness of liquid films that was developed and tested. The feasibility of this technique was demonstrated in stagnant liquid films as well as in liquid jets. A procedure for in-situ calibration of the thickness probe was developed, allowing the adaptation of the probe to measurements of wavy liquid films. The thickness probe was constructed from a platinum-rhodium wire that was stretched across the film. A constant DC current was supplied through the probe wire, and film thickness was determined from variations in the probe voltage drop resulting from the large differences in the electrical resistances of the wetted and unwetted segments of the wire. Unlike electrical admittance thickness probes, the new probe did not require dissolving an electrolyte in the liquid, making the new probe well suited to studies involving sensible heating of a film of pure dielectric liquid that is in direct contact with a current- carrying wall. Also presented is a composite probe that facilitated simultaneous measurements of temperature profile across a wavy liquid film and film thickness. Experimental results demonstrate a strong influence of waviness on liquid temperature in a film of deionized water falling freely on the outside wall of a vertical, electrically heated tube for film Reynolds numbers smaller than 10,000

  18. Criteria of assessment for local wall thickness reductions in operative high-pressure gas pipelines; Beurteilungskriterien fuer lokale Wanddickenminderungen an in Betrieb befindlichen Gashochdruckleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Hass, Georg [NetzDienste Rhein/Main GmbH, Frankfurt am Main (Germany); Hoffman, Ulrich [VNG - Verbundnetz Gas AG, Leipzig (Germany); Konarske, Juergen [RWE Westfalen-Weser-Ems Netzservice GmbH, Recklinghausen (Germany); Soppa, Thorsten [NG Netz Gas+Wasser (Germany). Bau/Betrieb Hochdrucknetz; Steiner, Michael [Open Grid Europe GmbH, Essen (Germany). Integritaet/Werkstofftechnik

    2011-07-01

    TUeV Nord, Salzgitter Mannesmann Forschung and DVGW investigated methods to assess local wall thickness reductions in operative high-pressure gas pipelines. Methods described in the relevant literature were reviewed with regard to the limiting criteria defined for maximum permissible wall thickness reductions. On the basis of this literature study and additional calculations, a comparative evaluation of the available methods was made. Several methods were identified that are compatible with the existing safety concept and general availability. It was found that - nearly independent of the method - burst safeties of 1.8 to 2.0 were used. The ultimate goal is the development of a German standard evaluation concept for local wall thickness reductions in high-pressure gas pipelines in order to avoid uncertainties and/or misinterpretations.

  19. Simulation of Stress Distribution in a Thick- Walled Bushing Produced by Die-Casting

    Directory of Open Access Journals (Sweden)

    Pisarek B.P.

    2017-12-01

    Full Text Available Metallographic investigations and a computer simulation of stresses in a gravity die-casting bushing were performed. Simulation of the casting process, solidification of the thick-walled bushing and calculations of the stress was performed using MAGMA5.3 software. The size variability of phases κII affecting the formation of phase stresses σf, depending on the location of the metallographic test area, was identified. The distribution of thermal σt and shrinkage stresses σs, depending on the location of the control point SC in the bushing's volume, was estimated. Probably the nature of these stresses will change slightly even after machining. This can cause variations in operating characteristics (friction coefficient, wear. Due to the strong inhomogeneity of the stress distribution in the bushing's casting, it is necessary to perform further tests of the possibility to conduct thermal treatment guaranteeing homogenization of the internal stresses in the casting, as well as to introduce changes in the bushing' s construction and the casting technology. The paper presents the continuation of the results of research aimed at identifying the causes of defects in the thick-walled bushing, die-casting made of CuAl10Fe5Ni5Cr aluminium bronze.

  20. Follow-up of CT-derived airway wall thickness : Correcting for changes in inspiration level improves reliability

    NARCIS (Netherlands)

    Pompe, Esther; van Rikxoort, Eva M; Mets, Onno M; Charbonnier, Jean-Paul; Kuhnigk, Jan-Martin; de Koning, Harry J; Oudkerk, Matthijs; Vliegenthart, Rozemarijn; Zanen, Pieter; Lammers, Jan-Willem J; van Ginneken, Bram; de Jong, Pim A; Mohamed Hoesein, Firdaus A A

    2016-01-01

    OBJECTIVES: Airway wall thickness (AWT) is affected by changes in lung volume. This study evaluated whether correcting AWT on computed tomography (CT) for differences in inspiration level improves measurement agreement, reliability, and power to detect changes over time. METHODS: Participants of the

  1. Follow-up of CT-derived airway wall thickness : Correcting for changes in inspiration level improves reliability

    NARCIS (Netherlands)

    Pompe, Esther; van Rikxoort, Eva M.; Mets, Onno M.; Charbonnier, Jean-Paul; Kuhnigk, Jan-Martin; de Koning, Harry J.; Oudkerk, Matthijs; Vliegenthart, Rozemarijn; Zanen, Pieter; Lammers, Jan-Willem J.; van Ginneken, Bram; de Jong, Pim A.; Hoesein, Firdaus A. A. Mohamed

    2016-01-01

    Objectives: Airway wall thickness (AWT) is affected by changes in lung volume. This study evaluated whether correcting AWT on computed tomography (CT) for differences in inspiration level improves measurement agreement, reliability, and power to detect changes over time. Methods: Participants of the

  2. Forming foam structures with carbon foam substrates

    Science.gov (United States)

    Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.

    2012-11-06

    The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.

  3. Manufacture of polyethylene foam by electron beam cross-linking

    International Nuclear Information System (INIS)

    Tamai, Isamu

    1976-01-01

    The manufacturing process of polyethylene foam, comparison between electron beam cross-linking process and chemical cross-linking process, the electron beam irradiation technique for continuous sheets, the characteristics and uses of polyethylene foam are reviewed. The pore diameter can be controlled by selecting the dose rate, because there is strong relationship between the pore diameter and the dose rate. As the dose if higher, the foam becomes finer. The electron accelerators having large capacity show the lowest cost as the radiation source, and are applicable industrially. If the production capacity exceeds about 200 tons per month, the costs of electron beam irradiation process may be more advantageous than that of chemical process according to the circumstances. It is difficult to obtain the uniform distribution of absorption dose in the direction of thickness. General characteristics of cross-linked polyethylene foam are listed. The special feature of electron beam process is that the degree of cross-linking can be controlled arbitrarily before foaming. The products obtained by the electron beam cross-linking process have finer foams and smoother surfaces than those obtained by the chemical process, because the separation of the decomposition of foaming agents from that of cross-linking agents in the chemical cross-linking is difficult. (Iwakiri, K.)

  4. Heat deposition, damage, and tritium breeding characteristics in thick liquid wall blanket concepts

    International Nuclear Information System (INIS)

    Youssef, M.Z.; Abdou, M.A.

    2000-01-01

    The advanced power extraction (APEX) study aims at exploring new and innovative blanket concepts that can efficiently extract power from fusion devices with high neutron wall load. Among the concepts under investigation is the free liquid FW/liquid blanket concept in which a fast flowing liquid FW (∼2-3 cm) is followed by thick flowing blanket (B) of ∼40-50 cm thickness with minimal amount of structure. The liquid FW/B are contained inside the vacuum vessel (VV) with a shielding zone (S) located either behind the VV and outside the vacuum boundary (case A) or placed after the FW/B and inside the VV (case B). In this paper we investigate the nuclear characteristics of this concept in terms of: (1) attenuation capability of the liquid FW/B/S and protection of the VV and magnet against radiation damage; (2) profiles of tritium production rate and tritium breeding ratio (TBR) for several liquid candidates; and (3) profiles of heat deposition rate and power multiplication. The candidate liquid breeders considered are Li, Flibe, Li-Sn, and Li-Pb. Parameters varied are (1) FW/B thickness, L, (2) Li-6 enrichment and (3) thickness of the shield

  5. Conjugate heat transfer in a porous cavity filled with nano-fluids and heated by a triangular thick wall

    International Nuclear Information System (INIS)

    Chamkha, Ali J.; Ismael, Muneer A.

    2013-01-01

    The conjugate natural convection-conduction heat transfer in a square domain composed of nano-fluids filled porous cavity heated by a triangular solid wall is studied under steady-state conditions. The vertical and horizontal walls of the triangular solid wall are kept isothermal and at the same hot temperature Th. The other boundaries surrounding the porous cavity are kept adiabatic except the right vertical wall where it is kept isothermally at the lower temperature T c . Equations governing the heat transfer in the triangular wall and heat and nano-fluid flow, based on the Darcy model, in the nano-fluid-saturated porous medium together with the derived relation of the interface temperature are solved numerically using the over-successive relaxation finite-difference method. A temperature independent nano-fluids properties model is adopted. Three nano-particle types dispersed in one base fluid (water) are investigated. The investigated parameters are the nano-particles volume fraction φ (0-0.2), Rayleigh number Ra (10-1000), solid wall to base-fluid saturated porous medium thermal conductivity ratio K ro (0.44, 1, 23.8), and the triangular wall thickness D (0.1-1). The results are presented in the conventional form; contours of streamlines and isotherms and the local and average Nusselt numbers. At a very low Rayleigh number Ra = 10, a significant enhancement in heat transfer within the porous cavity with φ is observed. Otherwise, the heat transfer may be enhanced or deteriorated with φ depending on the wall thickness D and the Rayleigh number Ra. At high Rayleigh numbers and low conductivity ratios, critical values of D, regardless of 4, are observed and accounted. (authors)

  6. Stress-intensity factors for a thick-walled cylinder containing an annular imbedded or external or internal surface crack

    Science.gov (United States)

    Erdol, R.; Erdogan, F.

    1976-01-01

    The elastostatic axisymmetric problem for a long thick-walled cylinder containing a ring-shaped internal or edge crack is considered. Using the standard transform technique the problem is formulated in terms of an integral equation which has a simple Cauchy kernel for the internal crack and a generalized Cauchy kernel for the edge crack as the dominant part. As examples the uniform axial load and the steady-state thermal stress problems have been solved and the related stress intensity factors have been calculated. Among other findings the results show that in the cylinder under uniform axial stress containing an internal crack the stress intensity factor at the inner tip is always greater than that at the outer tip for equal net ligament thicknesses and in the cylinder with an edge crack which is under a state of thermal stress the stress intensity factor is a decreasing function of the crack depth, tending to zero as the crack depth approaches the wall thickness.

  7. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    Science.gov (United States)

    Howard, Stanley R [Windsor, SC; Korinko, Paul S [Aiken, SC

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  8. Wall thickness measurements of tubes by Internal Rotary Inspection System (IRIS)- a comparative study with metallography

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Joseph, A.; Ramesh, A.S.; Jayakumar, T.; Kalyanasundaram, P.; Baldev Raj

    1996-01-01

    Internal Rotary Inspection System (IRIS) is a relatively new ultrasonic system of heat exchanger/ steam condenser tubes and pipelines for measurement of wall thinning and pitting due to corrosion. The wall thickness measurements made during a scan around the circumference of the tube are displayed as a stationary rectilinear display of circumferential cross section (Bscan) of the tube. The paper describes the results obtained on tubes of various materials used in process industries having corrosion on inner and outer surfaces of the tube. (author)

  9. New decontamination process using foams containing particles

    International Nuclear Information System (INIS)

    Guignot, S.; Faure, S.

    2008-01-01

    One key point in the dismantling of nuclear facilities is the thorough cleaning of radiation- exposed surfaces on which radioactive deposits have formed. This cleaning step is often achieved by successive liquid rinses with specific solutions containing alkaline, acidic, or even oxidizing species depending on whether the aim is to dissolve greasy deposits (like ter-butylphosphate) or to corrode surfaces on micrometric thicknesses. An alternative process to reduce the amount of chemicals and the volume of the resulting nuclear wastes consists in using the same but foamed solutions (1). Carrying less liquid, the resulting foams still display similar kinetics of dissolution rates and their efficiency is determined by their ability to hold sufficient wetnesses during the time required for the decontamination. Classical foam decontamination process illustrated by foam pulverization or circulation in the 90 turned five years ago into a specific static process using high-lifetime viscosified foam at a steady state. One way to slow down the liquid drainage is to raise liquid viscosity by adding organic viscosifiers like xanthan gum (2). In 2005, new studies started on an innovative process proposed by S. Faure and based on triphasic foams containing particles [3]. The aim is to generate new decontamination foams containing less quantities of organics materials (surfactants and viscosifiers). Silica particles are obviously known to stabilize or destabilize foams (4). In the frame of S. Guignot Ph.D., new fundamental studies are initiated in order to clarify the role of silica solid microparticles in these foams. Our final goal is to determine whether this kind of new foam can be stable for several hours for a decontamination process. The results we will report focus on wet foams used for nuclear decontamination and incorporating fumed silica. The study is conducted on a vertical foam column in a pseudo-free drainage configuration, and aims at investigating the influence of

  10. Characteristics of wall pressure over wall with permeable coating

    Energy Technology Data Exchange (ETDEWEB)

    Song, Woo Seog; Shin, Seungyeol; Lee, Seungbae [Inha Univ., Incheon (Korea, Republic of)

    2012-11-15

    Fluctuating wall pressures were measured using an array of 16 piezoelectric transducers beneath a turbulent boundary layer. The coating used in this experiment was an open cell, urethane type foam with a porosity of approximately 50 ppi. The ultimate objective of the coating is to provide a mechanical filter to reduce the wall pressure fluctuations. The ultimate objective of the coating is to provide a mechanical filter to reduce the wall pressure fluctuations. The boundary layer on the flat plate was measured by using a hot wire probe, and the CPM method was used to determine the skin friction coefficient. The wall pressure autospectra and streamwise wavenumber frequency spectra were compared to assess the attenuation of the wall pressure field by the coating. The coating is shown to attenuate the convective wall pressure energy. However, the relatively rough surface of the coating in this investigation resulted in a higher mean wall shear stress, thicker boundary layer, and higher low frequency wall pressure spectral levels compared to a smooth wall.

  11. Focal depth measurements of the vaginal wall: a new method to noninvasively quantify vaginal wall thickness in the diagnosis and treatment of vaginal atrophy

    NARCIS (Netherlands)

    Weber, Maaike A.; Diedrich, Chantal M.; Ince, Can; Roovers, Jan-Paul

    2016-01-01

    The aim of the study was to evaluate if vaginal focal depth measurement could be a noninvasive method to quantify vaginal wall thickness. Postmenopausal women undergoing topical estrogen therapy because of vaginal atrophy (VA) were recruited. VA was diagnosed based on the presence of symptoms and

  12. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  13. Managing burn wounds with SMARTPORE Technology polyurethane foam: two case reports.

    Science.gov (United States)

    Imran, Farrah-Hani; Karim, Rahamah; Maat, Noor Hidayah

    2016-05-12

    Successful wound healing depends on various factors, including exudate control, prevention of microbial contaminants, and moisture balance. We report two cases of managing burn wounds with SMARTPORE Technology polyurethane foam dressing. In Case 1, a 2-year-old Asian girl presented with a delayed (11 days) wound on her right leg. She sustained a thermal injury from a hot iron that was left idle on the floor. Clinical inspection revealed an infected wound with overlying eschar that traversed her knee joint. As her parents refused surgical debridement under general anesthesia, hydrotherapy and wound dressing using SMARTPORE Technology Polyurethane foam were used. Despite the delay in presentation of this linear thermal pediatric burn injury that crossed the knee joint, the patient's response to treatment and its outcome were highly encouraging. She was cooperative and tolerated each dressing change without the need of supplemental analgesia. Her wound was healed by 24 days post-admission. In Case 2, a 25-year-old Asian man presented with a mixed thickness thermal flame burn on his left leg. On examination, the injury was a mix of deep and superficial partial thickness burn, comprising approximately 3% of his total body surface area. SMARTPORE Technology polyurethane foam was used on his wound; his response to the treatment was very encouraging as the dressing facilitated physiotherapy and mobility. The patient rated the pain during dressing change as 2 on a scale of 10 and his pain score remained the same in every subsequent change. His wound showed evidence of epithelialization by day 7 post-burn. There were no adverse events reported. Managing burn wounds with SMARTPORE Technology polyurethane foam resulted in reduced pain during dressing changes and the successful healing of partial and mixed thickness wounds. The use of SMARTPORE Technology polyurethane foam dressings showed encouraging results and requires further research as a desirable management option in

  14. Foam, Foam-resin composite and method of making a foam-resin composite

    Science.gov (United States)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  15. Two dimensional dynamic analysis of sandwich plates with gradient foam cores

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Lin; Xiao, Deng Bao; Zhao, Guiping [State Key Laboratory for Mechanical structure Strength and Vibration, School of AerospaceXi' an Jiaotong University, Xi' an (China); Cho, Chong Du [Dept. of Mechanical Engineering, Inha University, Inchon (Korea, Republic of)

    2016-09-15

    Present investigation is concerned about dynamic response of composite sandwich plates with the functionally gradient foam cores under time-dependent impulse. The analysis is based on a model of the gradient sandwich plate, in which the face sheets and the core adopt the Kirchhoff theory and a [2, 1]-order theory, respectively. The material properties of the gradient foam core vary continuously along the thickness direction. The gradient plate model is validated with the finite element code ABAQUS®. And the results show that the proposed model can predict well the free vibration of composite sandwich plates with gradient foam cores. The influences of gradient foam cores on the natural frequency, deflection and energy absorbing of the sandwich plates are also investigated.

  16. Effect of Coversheet Materials on the Acoustic Performance of Melamine Foam

    Science.gov (United States)

    McNelis, Anne M.; Hughes, William O.

    2015-01-01

    Melamine foam is a highly absorptive material that is often used inside the payload fairing walls of a launch vehicle. This foam reduces the acoustic excitation environment that the spacecraft experiences during launch. Often, the melamine foam is enclosed by thin coversheet materials for contamination protection, thermal protection, and electrostatic discharge control. Previous limited acoustic testing by NASA Glenn Research Center has shown that the presence of a coversheet material on the melamine foam can have a significant impact on the absorption coefficient and the transmission loss. As a result of this preliminary finding a more extensive acoustic test program using several different coversheet materials on melamine foam was performed. Those test results are summarized in this paper. Additionally, a method is provided to use the acoustic absorption and transmission loss data obtained from panel level testing to predict their combined effect for the noise reduction of a launch vehicle payload fairing.

  17. Foam films as thin liquid gas separation membranes.

    Science.gov (United States)

    Ramanathan, Muruganathan; Müller, Hans Joachim; Möhwald, Helmuth; Krastev, Rumen

    2011-03-01

    In this letter, we testify the feasibility of using freestanding foam films as a thin liquid gas separation membrane. Diminishing bubble method was used as a tool to measure the permeability of pure gases like argon, nitrogen, and oxygen in addition to atmospheric air. All components of the foam film including the nature of the tail (fluorocarbon vs hydrocarbon), charge on the headgroup (anionic, cationic, and nonionic) and the thickness of the water core (Newton black film vs Common black film) were systematically varied to understand the permeation phenomena of pure gases. Overall results indicate that the permeability values for different gases are in accordance with magnitude of their molecular diameter. A smaller gaseous molecule permeates faster than the larger ones, indicating a new realm of application for foam films as size selective separation membranes.

  18. Magnet Fall inside a Conductive Pipe: Motion and the Role of the Pipe Wall Thickness

    Science.gov (United States)

    Donoso, G.; Ladera, C. L.; Martin, P.

    2009-01-01

    Theoretical models and experimental results are presented for the retarded fall of a strong magnet inside a vertical conductive non-magnetic tube. Predictions and experimental results are in good agreement modelling the magnet as a simple magnetic dipole. The effect of varying the pipe wall thickness on the retarding magnetic drag is studied for…

  19. Experimental Study and Application of Inorganic Solidified Foam Filling Material for Coal Mines

    Directory of Open Access Journals (Sweden)

    Hu Wen

    2017-01-01

    Full Text Available Spontaneous combustion of residual coal in a gob due to air leakage poses a major risk to mining safety. Building an airtight wall is an effective measure for controlling air leakage. A new type of inorganic solidified foam-filled material was developed and its physical and chemical properties were analyzed experimentally. The compressive strength of this material increased with the amount of sulphoaluminate cement. With an increasing water–cement ratio, the initial setting time was gradually extended while the final setting time firstly shortened and then extended. The change in compressive strength had the opposite tendency. Additionally, as the foam expansion ratio increased, the solidification time tended to decrease but the compressive strength remained approximately constant. With an increase in foam production, the solidification time increased and the compressive strength decreased exponentially. The results can be used to determine the optimal material ratios of inorganic solidified foam-filled material for coal mines, and filling technology for an airtight wall was designed. A field application of the new material demonstrated that it seals crossheadings tightly, leaves no fissures, suppresses air leakage to the gob, and narrows the width of the spontaneous combustion and heat accumulation zone.

  20. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    International Nuclear Information System (INIS)

    Kim, Nohyu; Yang, Seung Yong

    2016-01-01

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method

  1. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nohyu; Yang, Seung Yong [School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2016-02-15

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

  2. Deformation and energy absorption properties of powder-metallurgy produced Al foams

    International Nuclear Information System (INIS)

    Michailidis, N.; Stergioudi, F.; Tsouknidas, A.

    2011-01-01

    Highlights: → Porous Al fabricated via a dissolution and sintering method using raw cane sugar. → Different deformation mode depending on the relative density of the foams. → Enhanced energy absorption by reducing pore size and relative density of the foam. → Pore size uniformity and sintering temperature affect energy absorption. - Abstract: Al-foams with relative densities ranging from 0.30 to 0.60 and mean pore sizes of 0.35, 0.70 and 1.35 mm were manufactured by a powder metallurgy technology, based on raw cane sugar as a space-holder material. Compressive tests were carried out to investigate the deformation and energy absorbing characteristics and mechanisms of the produced Al-foams. The deformation mode of low density Al-foams is dominated by the bending and buckling of cell walls and the formation of macroscopic deformation bands whereas that of high density Al-foams is predominantly attributed to plastic yielding. The energy absorbing capacity of Al-foams rises for increased relative density and compressive strength. The sintering temperature of Al-foams having similar relative densities has a marked influence on both, energy absorbing efficiency and capacity. Pore size has a marginal effect on energy efficiency aside from Al-foams with mean pore size of 0.35 which exhibit enhanced energy absorption as a result of increased friction during deformation at lower strain levels.

  3. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter

    International Nuclear Information System (INIS)

    Bifano, Michael F P; Kaul, Pankaj B; Prakash, Vikas

    2010-01-01

    This paper reports dependency of specific heat and ballistic thermal conductance on cross-sectional geometry (tube versus rod) and size (i.e., diameter and wall thickness), in free-standing isotropic non-metallic crystalline nanostructures. The analysis is performed using dispersion relations found by numerically solving the Pochhammer-Chree frequency equation for a tube. Estimates for the allowable phonon dispersion relations within the crystal lattice are obtained by modifying the elastic acoustic dispersion relations so as to account for the discrete nature of the material's crystal lattice. These phonon dispersion relations are then used to evaluate the specific heat and ballistic thermal conductance in the nanostructures as a function of the nanostructure geometry and size. Two major results are revealed in the analysis: increasing the outer diameter of a nanotube while keeping the ratio of the inner to outer tube radius (γ) fixed increases the total number of available phonon modes capable of thermal population. Secondly, decreasing the wall thickness of a nanotube (i.e., increasing γ) while keeping its outer diameter fixed, results in a drastic decrease in the available phonon mode density and a reduction in the frequency of the longitudinal and flexural acoustic phonon modes in the nanostructure. The dependency of the nanostructure's specific heat on temperature indicates 1D, 2D, and 3D geometric phonon confinement regimes. Transition temperatures for each phonon confinement regime are shown to depend on both the nanostructure's wall thickness and outer radius. Compared to nanowires (γ = 0), the frequency reduction of acoustic phonon modes in thinner walled nanotubes (γ = 0.96) is shown to elevate the ballistic thermal conductance of the thin-walled nanotube between 0.2 and 150 K. At 20 K, the ballistic thermal conductance of the thin-walled nanotube (γ = 0.96) becomes 300% greater than that of a solid nanowire. For temperatures above 150 K, the trend

  4. mdFoam+: Advanced molecular dynamics in OpenFOAM

    Science.gov (United States)

    Longshaw, S. M.; Borg, M. K.; Ramisetti, S. B.; Zhang, J.; Lockerby, D. A.; Emerson, D. R.; Reese, J. M.

    2018-03-01

    This paper introduces mdFoam+, which is an MPI parallelised molecular dynamics (MD) solver implemented entirely within the OpenFOAM software framework. It is open-source and released under the same GNU General Public License (GPL) as OpenFOAM. The source code is released as a publicly open software repository that includes detailed documentation and tutorial cases. Since mdFoam+ is designed entirely within the OpenFOAM C++ object-oriented framework, it inherits a number of key features. The code is designed for extensibility and flexibility, so it is aimed first and foremost as an MD research tool, in which new models and test cases can be developed and tested rapidly. Implementing mdFoam+ in OpenFOAM also enables easier development of hybrid methods that couple MD with continuum-based solvers. Setting up MD cases follows the standard OpenFOAM format, as mdFoam+ also relies upon the OpenFOAM dictionary-based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of an MD simulation is not typical of most OpenFOAM applications. Results show that mdFoam+ compares well to another well-known MD code (e.g. LAMMPS) in terms of benchmark problems, although it also has additional functionality that does not exist in other open-source MD codes.

  5. Methanol wetting enthalpy on few-layer graphene decorated hierarchical carbon foam for cooling applications

    Energy Technology Data Exchange (ETDEWEB)

    Paul, R., E-mail: paul24@purdue.edu [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Zemlyanov, D. [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Voevodin, A.A.; Roy, A.K. [Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, OH 45433 (United States); Fisher, T.S. [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2014-12-01

    Vertical few-layer thick graphene petals are grown on macro-porous carbon foam surfaces having an intrinsic open porosity of 75%. This provides a hierarchical porous structure with a potential for surface adsorption/desorption or wetting/dewetting based thermal energy storage applications. Carbon foams have a combined advantage of large surface area and high thermal conductivity critical for thermal energy storage, but they are prone to oxidation and exhibit low adsorption enthalpies for lightweight hydrocarbons. Here we report graphene petal decoration of carbon foam surfaces and subsequent chemical modification through boron nitride incorporation in hexagonal carbon planes of both carbon foams and graphene petals. This chemically reactive hierarchical structure is characterized with FESEM, Raman, XRD, and XPS measurements. Methanol wetting enthalpy of this three-dimensional hierarchical material was measured with a solution calorimeter, and had shown a six fold increase (from 78 to 522 J/g of foam) as compared to the carbon foam prior to the surface modification. Influences of petal decoration on the surface morphology of carbon foam, BN chemical modification, structure and stoichiometry of the hierarchical material surface, and methanol wetting enthalpy improvement are discussed in detail. The applicability of this hierarchical porous material for thermal energy applications is established. - Highlights: • 500 nm thick few layer graphene petals decoration vertically on macroporous carbon foam surface. • Microwave heating assisted chemical treatment for boron-nitride modification. • Defective petals edges due to boron nitride domain formation. • 20 at. % boron and nitrogen incorporation. • Six fold increase in methanol wetting enthalpy on boron-nitride modification.

  6. Methanol wetting enthalpy on few-layer graphene decorated hierarchical carbon foam for cooling applications

    International Nuclear Information System (INIS)

    Paul, R.; Zemlyanov, D.; Voevodin, A.A.; Roy, A.K.; Fisher, T.S.

    2014-01-01

    Vertical few-layer thick graphene petals are grown on macro-porous carbon foam surfaces having an intrinsic open porosity of 75%. This provides a hierarchical porous structure with a potential for surface adsorption/desorption or wetting/dewetting based thermal energy storage applications. Carbon foams have a combined advantage of large surface area and high thermal conductivity critical for thermal energy storage, but they are prone to oxidation and exhibit low adsorption enthalpies for lightweight hydrocarbons. Here we report graphene petal decoration of carbon foam surfaces and subsequent chemical modification through boron nitride incorporation in hexagonal carbon planes of both carbon foams and graphene petals. This chemically reactive hierarchical structure is characterized with FESEM, Raman, XRD, and XPS measurements. Methanol wetting enthalpy of this three-dimensional hierarchical material was measured with a solution calorimeter, and had shown a six fold increase (from 78 to 522 J/g of foam) as compared to the carbon foam prior to the surface modification. Influences of petal decoration on the surface morphology of carbon foam, BN chemical modification, structure and stoichiometry of the hierarchical material surface, and methanol wetting enthalpy improvement are discussed in detail. The applicability of this hierarchical porous material for thermal energy applications is established. - Highlights: • 500 nm thick few layer graphene petals decoration vertically on macroporous carbon foam surface. • Microwave heating assisted chemical treatment for boron-nitride modification. • Defective petals edges due to boron nitride domain formation. • 20 at. % boron and nitrogen incorporation. • Six fold increase in methanol wetting enthalpy on boron-nitride modification

  7. Effect of the three-dimensional microstructure on the sound absorption of foams: A parametric study.

    Science.gov (United States)

    Chevillotte, Fabien; Perrot, Camille

    2017-08-01

    The purpose of this work is to systematically study the effect of the throat and the pore sizes on the sound absorbing properties of open-cell foams. The three-dimensional idealized unit cell used in this work enables to mimic the acoustical macro-behavior of a large class of cellular solid foams. This study is carried out for a normal incidence and also for a diffuse field excitation, with a relatively large range of sample thicknesses. The transport and sound absorbing properties are numerically studied as a function of the throat size, the pore size, and the sample thickness. The resulting diagrams show the ranges of the specific throat sizes and pore sizes where the sound absorption grading is maximized due to the pore morphology as a function of the sample thickness, and how it correlates with the corresponding transport parameters. These charts demonstrate, together with typical examples, how the morphological characteristics of foam could be modified in order to increase the visco-thermal dissipation effects.

  8. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    Science.gov (United States)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  9. Contribution of CT quantified emphysema, air trapping and airway wall thickness on pulmonary function in male smokers with and without COPD.

    Science.gov (United States)

    Mohamed Hoesein, Firdaus A A; de Jong, Pim A; Lammers, Jan-Willem J; Mali, Willem P Th M; Mets, Onno M; Schmidt, Michael; de Koning, Harry J; Aalst, Carlijn van der; Oudkerk, Matthijs; Vliegenthart, Rozemarijn; Ginneken, Bram van; van Rikxoort, Eva M; Zanen, Pieter

    2014-09-01

    Emphysema, airway wall thickening and air trapping are associated with chronic obstructive pulmonary disease (COPD). All three can be quantified by computed tomography (CT) of the chest. The goal of the current study is to determine the relative contribution of CT derived parameters on spirometry, lung volume and lung diffusion testing. Emphysema, airway wall thickening and air trapping were quantified automatically on CT in 1,138 male smokers with and without COPD. Emphysema was quantified by the percentage of voxels below -950 Hounsfield Units (HU), airway wall thickness by the square root of wall area for a theoretical airway with 10 mm lumen perimeter (Pi10) and air trapping by the ratio of mean lung density at expiration and inspiration (E/I-ratio). Spirometry, residual volume to total lung capacity (RV/TLC) and diffusion capacity (Kco) were obtained. Standardized regression coefficients (β) were used to analyze the relative contribution of CT changes to pulmonary function measures. The independent contribution of the three CT measures differed per lung function parameter. For the FEV1 airway wall thickness was the most contributing structural lung change (β = -0.46), while for the FEV1/FVC this was emphysema (β = -0.55). For the residual volume (RV) air trapping was most contributing (β = -0.35). Lung diffusion capacity was most influenced by emphysema (β = -0.42). In a cohort of smokers with and without COPD the effect of different CT changes varies per lung function measure and therefore emphysema, airway wall thickness and air trapping need to be taken in account.

  10. Magnet fall inside a conductive pipe: motion and the role of the pipe wall thickness

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, G; Ladera, C L; Martin, P [Departamento de Fisica, Universidad Simon BolIvar, Apdo. 89000, Caracas 1080 (Venezuela, Bolivarian Republic of)], E-mail: clladera@usb.ve, E-mail: pmartin@usb.ve

    2009-07-15

    Theoretical models and experimental results are presented for the retarded fall of a strong magnet inside a vertical conductive non-magnetic tube. Predictions and experimental results are in good agreement modelling the magnet as a simple magnetic dipole. The effect of varying the pipe wall thickness on the retarding magnetic drag is studied for pipes of different materials. Conductive pipes of thinner walls produce less dragging force and the retarded fall of the magnet is seen to consist of an initial transient accelerated regime followed by a stage of uniform motion. Alternative models of the magnet field are also presented that improve the agreement between theory and experiments.

  11. Residual life assessment of thick wall boiler parts

    International Nuclear Information System (INIS)

    Mehdizadeh, M.; Rayatpour, M.

    2004-01-01

    Thick wall components of boiler, such as headers, main steam lines and hot reheat lines, operate at high temperature and stress condition. This condition makes various failure mechanisms to activate during service exposure that gradually deteriorate the microstructure of components. Consequently, knowing about metallurgical condition and remaining life sensitive components particularly in power plants with at least 100,000 her life time is of considerable importance. In this regard, to eliminate unexpected interruptions and reduce the repairing costs, life assessment technology is being used. Various life assessment methods have been developed for power plants components and entered industrial fields. In the present work, remaining life of drums, headers and main steam lines of a power plant were evaluated, using microstructural, hardness changes and dimensional checking methods with non destructive tests. The results show that, the components have appropriate condition according to their service life. Further more, it was revealed that hardness evaluation technique is not a reliable evaluation criteria and various methods should be used for accurate life assessment

  12. Validation of the simpleFoam (RANS solver for the atmospheric boundary layer in complex terrain

    Directory of Open Access Journals (Sweden)

    Peralta C.

    2014-01-01

    Full Text Available We validate the simpleFoam (RANS solver in OpenFOAM (version 2.1.1 for simulating neutral atmospheric boundary layer flows in complex terrain. Initial and boundary conditions are given using Richards and Hoxey proposal [1]. In order to obtain stable simulation of the ABL, modified wall functions are used to set the near-wall boundary conditions, following Blocken et al remedial measures [2]. A structured grid is generated with the new library terrainBlockMesher [3,4], based on OpenFOAM's blockMesh native mesher. The new tool is capable of adding orographic features and the forest canopy. Additionally, the mesh can be refined in regions with complex orography. We study both the classical benchmark case of Askervein hill [5] and the more recent Bolund island data set [6]. Our purpose is two-folded: to validate the performance of OpenFOAM steady state solvers, and the suitability of the new meshing tool to generate high quality structured meshes, which will be used in the future for performing more computationally intensive LES simulations in complex terrain.

  13. Enhanced washout of {sup 99m}Tc-tetrofosmin in hypertrophic cardiomyopathy: quantitative comparisons with regional {sup 123}I-BMIPP uptake and wall thickness determined by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Thet-Thet-Lwin, Tohoru; Takeda, Jin; Wu, Yuko; Fumikura, Keiji; Iida, Satoru; Kawano, Iwao; Yamaguchi, Yuji; Itai [Institute of Clinical Medicine, University of Tsukuba, Tennodai 1-1-1, 305-8575, Tsukuba-shi, Ibaraki-ken (Japan)

    2003-07-01

    The diagnostic value of technetium-99m tetrofosmin (TF) washout in hypertrophic cardiomyopathy (HCM) was examined by investigating its relation to the metabolic abnormality depicted by iodine-123 {beta}-methyl-p-iodophenylpentadecanoic acid (BMIPP) uptake and the left ventricular (LV) myocardial wall thickness as measured by magnetic resonance imaging (MRI). TF washout was evaluated in 31 patients with HCM and 23 normal control subjects using 30-min (early) and 3-h (delayed) TF single-photon emission tomography images. The LV myocardial wall was divided into 19 segments and the percentage TF washout, regional BMIPP uptake and LV wall thickness were measured in each segment. Mean TF washout in the patients with HCM was significantly faster than that in normal control subjects (23.7{+-}5.7 vs 13.4{+-}4.1, P<0.0001). In the patients with HCM, TF washout showed an excellent correlation with MRI wall thickness (r=0.82, P<0.0001) and a good inverse correlation with regional BMIPP uptake (r=-0.72, P<0.0001). In addition, a good linear correlation was observed between TF uptake and MRI wall thickness in the 19 regional segments. In conclusion, the degree of TF washout corresponds well with the severity of myocardial wall thickness and the degree of metabolic abnormality in patients with HCM. These results suggest that enhanced TF washout might provide additional clinical information regarding metabolic alterations in HCM. (orig.)

  14. Effect of a new specimen size on fatigue crack growth behavior in thick-walled pressure vessels

    International Nuclear Information System (INIS)

    Shariati, Mahmoud; Mohammadi, Ehsan; Masoudi Nejad, Reza

    2017-01-01

    Fatigue crack growth in thick-walled pressure vessels is an important factor affecting their fracture. Predicting the path of fatigue crack growth in a pressure vessel is the main issue discussed in fracture mechanics. The objective of this paper is to design a new geometrical specimen in fatigue to define the behavior of semi-elliptical crack growth in thick-walled pressure vessels. In the present work, the importance of the behavior of fatigue crack in test specimen and real conditions in thick-walled pressure vessels is investigated. The results of fatigue loading on the new specimen are compared with the results of fatigue loading in a cylindrical pressure vessel and a standard specimen. Numerical and experimental methods are used to investigate the behavior of fatigue crack growth in the new specimen. For this purpose, a three-dimensional boundary element method is used for fatigue crack growth under stress field. The modified Paris model is used to estimate fatigue crack growth rates. In order to verify the numerical results, fatigue test is carried out on a couple of specimens with a new geometry made of ck45. A comparison between experimental and numerical results has shown good agreement. - Highlights: • This paper provides a new specimen to define the behavior of fatigue crack growth. • We estimate the behavior of fatigue crack growth in specimen and pressure vessel. • A 3D finite element model has been applied to estimate the fatigue life. • We compare the results of fatigue loading for cylindrical vessel and specimens. • Comparison between experimental and numerical results has shown a good agreement.

  15. EXPERIMENTAL STUDIES ON THE QUASI-STATIC AXIAL CRUSHING BEHAVIOR OF FOAM-FILLED STEEL EXTRUSION TUBES

    OpenAIRE

    AL EMRAN ISMAIL

    2010-01-01

    The concerns of automotive safety have been given special attention in order to reduce human fatalities or injuries. One of the techniques to reduce collision impact or compression energy is by filling polymeric foam into metallic tubes. In this work, polyurethane foam was introduced into the steel extrusion tubes and quasi-statically compressed at constant cross-head displacement. Different tube thicknesses and foam densities were used and these parameters were related to the crashwor...

  16. MODELING OF TRANSIENT HEAT TRANSFER IN FOAMED CONCRETE SLAB

    Directory of Open Access Journals (Sweden)

    MD AZREE OTHUMAN MYDIN

    2013-06-01

    Full Text Available This paper reports the basis of one-dimensional Finite Difference method to obtain thermal properties of foamed concrete in order to solve transient heat conduction problems in multi-layer panels. In addition, this paper also incorporates the implementation of the method and the validation of thermal properties model of foamed concrete. A one-dimensional finite difference heat conduction programme has been developed to envisage the temperature development through the thickness of the foamed concrete slab, based on an initial estimate of the thermal conductivity-temperature relationship as a function of porosity and radiation within the voids. The accuracy of the model was evaluated by comparing predicted and experimental temperature profiles obtained from small scale heat transfer test on foamed concrete slabs, so that the temperature history of the specimen calculated by the programme closely matches those recorded during the experiment. Using the thermal properties of foamed concrete, the validated heat transfer program predicts foamed concrete temperatures in close agreement with experimental results obtained from a number of high temperature tests. The proposed numerical and thermal properties are simple yet efficient and can be utilised to aid manufacturers to develop their products without having to conduct numerous large-scale fire tests.

  17. Influences of lumped passes on welding residual stress of a thick-walled nuclear rotor steel pipe by multipass narrow gap welding

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Long, E-mail: mse.longtan@gmail.com [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Jianxun; Zhuang, Dong [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Chuan [Provincial Key Lab of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003 (China)

    2014-07-01

    Highlights: • The internal residual stress of the thick-walled pipe is measured by using the local removal blind hole method. • Two lumped-pass models are developed to reduce computational cost. • The effect of lumped passes on the welding residual stress is discussed. • Reasonable lumped-pass model can guarantee the accuracy and improve the computational efficiency. - Abstract: The purpose of this study is to investigate the effect of the lumped passes simulation on the distribution of residual stresses before and after heat treatment in a thick-walled nuclear power rotor pipe with a 89-pass narrow gap welding process. The local removal blind hole method was used to measure internal residual stress of the thick-walled pipe after post weld heat treatment (PWHT). Based on the ANSYS software, a two-dimensional axisymmetric finite element model is employed. Two lumped-pass models of M-5th model (five weld beads as one lumped pass) and M-10th model (ten weld beads as one lumped pass) were developed to reduce computational cost. Based on the results in this study, the distributions of residual stresses of a thick-walled welded pipe before and after PWHT are developed. Meanwhile, the distribution of the through-wall axial residual stress along the weld center line is demonstrated to be a self-equilibrating type. In addition, the investigation results show that reasonable and reliable lumped-pass model can not only guarantee the accuracy of the simulated results, but also improve the computational efficiency in the thermo-elastic–plastic FE analysis procedure. Therefore, from the viewpoint of engineering application the developed lumped-pass computational procedure is a promising and useful method to predict residual stress of large and complex welded structures.

  18. Influences of lumped passes on welding residual stress of a thick-walled nuclear rotor steel pipe by multipass narrow gap welding

    International Nuclear Information System (INIS)

    Tan, Long; Zhang, Jianxun; Zhuang, Dong; Liu, Chuan

    2014-01-01

    Highlights: • The internal residual stress of the thick-walled pipe is measured by using the local removal blind hole method. • Two lumped-pass models are developed to reduce computational cost. • The effect of lumped passes on the welding residual stress is discussed. • Reasonable lumped-pass model can guarantee the accuracy and improve the computational efficiency. - Abstract: The purpose of this study is to investigate the effect of the lumped passes simulation on the distribution of residual stresses before and after heat treatment in a thick-walled nuclear power rotor pipe with a 89-pass narrow gap welding process. The local removal blind hole method was used to measure internal residual stress of the thick-walled pipe after post weld heat treatment (PWHT). Based on the ANSYS software, a two-dimensional axisymmetric finite element model is employed. Two lumped-pass models of M-5th model (five weld beads as one lumped pass) and M-10th model (ten weld beads as one lumped pass) were developed to reduce computational cost. Based on the results in this study, the distributions of residual stresses of a thick-walled welded pipe before and after PWHT are developed. Meanwhile, the distribution of the through-wall axial residual stress along the weld center line is demonstrated to be a self-equilibrating type. In addition, the investigation results show that reasonable and reliable lumped-pass model can not only guarantee the accuracy of the simulated results, but also improve the computational efficiency in the thermo-elastic–plastic FE analysis procedure. Therefore, from the viewpoint of engineering application the developed lumped-pass computational procedure is a promising and useful method to predict residual stress of large and complex welded structures

  19. Tinjauan Kuat Tekan Bata Ringan Menggunakan Bahan Tambah Foaming Agent

    OpenAIRE

    Arita, Deri; Kurniawandy, Alex; Taufik, Hendra

    2017-01-01

    Lightweight bricks could be used as the substitute of conventional bricks for building wall materials. Lightweight brick has a weights beetween 600 to 1800 kg/m3. In this research, lightweight bricks were made by trial and errors made by adding combination of 0.3%, 0.6%, 0.9%, 1.2% and 1.5% of foam agent by cellular lighweight concrete (CLC) method. The optimum compresive strength was gain at 0.9% of foam agent. CLC lightweight brick is the type of bricks which is constructed by adding air bu...

  20. New powder compaction method using a styrene foam

    International Nuclear Information System (INIS)

    Kinemuchi, Y.; Takata, A.; Ishizaki, K.

    1999-01-01

    In general, metallic and ceramic powder compacts for sintering are shaped by uni-axial pressing or cold isostatic pressing (CIPing). Since metal or rubber is used as dies or moulds, it is difficult to form complicated shapes and flat disks, i.e., the ratio of diameter / thickness more than 50, by using uni-axial or CIPing. Rubber moulding, a moulding method with a rubber bag, can not press powder uniformly into flat disks because rubber deforms significantly. To solve this problem, we developed a new shaping technique to obtain complicated or thin flat shape by using styrene foam, which is cheap and has good machinability. Plastic foams such as styrene and acrylic foam contain many pores, and shrink uniformly by applying external pressure when the pores are collapsed. In this study, shrinking behavior of styrene and acrylic rubber moulds related to CIPing pressure was investigated. The experimental results show that the plastic foams shrink uniformly and the plastic deformation is linearly increased as CIP pressure increases. Copyright (1999) AD-TECH - International Foundation for the Advancement of Technology Ltd

  1. Simulation of the development and interaction of instabilities in a relativistic electron beam under variation of the beam wall thickness

    Energy Technology Data Exchange (ETDEWEB)

    Badarin, A. A.; Kurkin, S. A. [Saratov State University (Russian Federation); Koronovskii, A. A. [Yuri Gagarin State Technical University (Russian Federation); Rak, A. O. [Belorussian State University of Informatics and Radioelectronics (Belarus); Hramov, A. E., E-mail: hramovae@gmail.com [Saratov State University (Russian Federation)

    2017-03-15

    The development and interaction of Bursian and diocotron instabilities in an annular relativistic electron beam propagating in a cylindrical drift chamber are investigated analytically and numerically as functions of the beam wall thickness and the magnitude of the external uniform magnetic field. It is found that the interaction of instabilities results in the formation of a virtual cathode with a complicated rotating helical structure and several reflection regions (electron bunches) in the azimuthal direction. It is shown that the number of electron bunches in the azimuthal direction increases with decreasing beam wall thickness and depends in a complicated manner on the magnitude of the external magnetic field.

  2. Electron arc therapy: chest wall irradiation of breast cancer patients

    International Nuclear Information System (INIS)

    McNeely, L.K.; Jacobson, G.M.; Leavitt, D.D.; Stewart, J.R.

    1988-01-01

    From 1980 to October 1985 we treated 45 breast cancer patients with electron arc therapy. This technique was used in situations where optimal treatment with fixed photon or electron beams was technically difficult: long scars, recurrent tumor extending across midline or to the posterior thorax, or marked variation in depth of target tissue. Forty-four patients were treated following mastectomy: 35 electively because of high risk of local failure, and 9 following local recurrence. One patient with advanced local regional disease was treated primarily. The target volume boundaries on the chest wall were defined by a foam lined cerrobend cast which rested on the patient during treatment, functioning as a tertiary collimator. A variable width secondary collimator was used to account for changes in the radius of the thorax from superior to inferior border. All patients had computerized tomography performed to determine Internal Mammary Chain depth and chest wall thickness. Electron energies were selected based on these thicknesses and often variable energies over different segments of the arc were used. The chest wall and regional node areas were irradiated to 45 Gy-50 Gy in 5-6 weeks by this technique. The supraclavicular and upper axillary nodes were treated by a direct anterior photon field abutted to the superior edge of the electron arc field. Follow-up is from 10-73 months with a median of 50 months. No major complications were observed. Acute and late effects and local control are comparable to standard chest wall irradiation. The disadvantages of this technique are that the preparation of the tertiary field defining cast and CT treatment planning are labor intensive and expensive. The advantage is that for specific clinical situations large areas of chest wall with marked topographical variation can be optimally, homogeneously irradiated while sparing normal uninvolved tissues

  3. Superplastically foaming method to make closed pores inclusive porous ceramics

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Hayashi, Hidetaka

    2011-01-01

    Porous ceramics incorporates pores to improve several properties including thermal insulation maintaining inherenet ceramic properties such as corrosion resistance and large mechanical strength. Conventional porous ceramics is usually fabricated through an insufficient sintering. Since the sintering accompanies the exclusion of pores, it must be terminated at the early stage to maintain the high porosity, leading to degraded strength and durability. Contrary to this, we have innovated superplastically foaming method to make ceramic foams only in the solid state. In this method, the previously inserted foam agent evaporates after the full densification of matrix at around the sintering temperature. Closed pores expand utilizing the superplastic deformation driven by the evolved gas pressure. The typical features of this superplastically foaming method are listed as follows, 1. The pores are introduced after sintering the solid polycrystal. 2. Only closed pores are introduced, improving the insulation of gas and sound in addition to heat. 3. The pore walls are fully densified expecting a large mechanical strength. 4. Compared with the melt foaming method, this method is practical because the fabrication temperature is far below the melting point and it does not need molds. 5. The size and the location pores can be controlled by the amount and position of the foam agent.

  4. Clinical evaluation of left ventricular wall thickness by combined technique with gated planer 201Tl image and gated cardiac pool image

    International Nuclear Information System (INIS)

    Nakai, Kenji; Katsuragawa, Shigehiko; Takahashi, Tsuneo; Matsushita, Kazuo; Kawamura, Akiyoshi

    1983-01-01

    To evaluate the left ventricular (LV) wall thickness, combined technique with gated planer 201-Thallium image and gated cardiac pool image was applied to 6 patients with hypertrophic cardiomyopathy (HCM) and 4 patients with secondary hypertrophy due to hypertension (HHD) proven by electrocardiography and ultrasonic-echocardiography. Scintigraphic pattern of hypertrophy on reconstructed planer 201 Tl image showed diffuse or asymmetrical apical hypertrophy in HHD, asymmetrical septal hypertrophy in HCM. It was very interesting that abnormal perfusion was shown in 201 Tl image, despite symmetrical hypertrophy in echocardiography. This techniques provided useful information for evaluating the LV wall thickness and cardiac performance. (author)

  5. Nanostructuring effect of multi-walled carbon nanotubes on electrochemical properties of carbon foam as constructive electrode for lead acid battery

    Science.gov (United States)

    Kumar, Rajeev; Kumari, Saroj; Mathur, Rakesh B.; Dhakate, Sanjay R.

    2015-01-01

    In the present study, nanostructuring effect of multi-walled carbon nanotubes (MWCNTs) on electrochemical properties of coal tar pitch (CTP) based carbon foam (CFoam) was investigated. The different weight fractions of MWCNTs were mixed with CTP and foam was developed from the mixture of CTP and MWCNTs by sacrificial template technique and heat treated at 1,400 and 2,500 °C in inert atmosphere. These foams were characterized by scanning electron microscopy, X-ray diffraction, and potentiostat PARSTAT for cyclic voltammetry. It was observed that, bulk density of CFoam increases with increasing MWCNTs content and decreases after certain amount. The MWCNTs influence the morphology of CFoam and increase the width of ligaments as well as surface area. During the heat treatment, stresses exerting at MWCNTs/carbon interface accelerate ordering of the graphene layer which have positive effect on the electrochemical properties of CFoam. The current density increases from 475 to 675 mA/cm2 of 1,400 °C heat treated and 95 to 210 mA/cm2 of 2,500 °C heat-treated CFoam with 1 wt% MWCNTs. The specific capacitance was decreases with increasing the scan rate from 100 to 1,000 mV/s. In case of 1 % MWCNTs content CFoam the specific capacitance at the scan rate 100 mV/s was increased from 850 to 1,250 μF/cm2 and 48 to 340 μF/cm2 of CFoam heat treated at 1,400 °C and 2,500 °C respectively. Thus, the higher value surface area and current density of MWCNTs-incorporated CFoam heat treated to 1,400 °C can be suitable for lead acid battery electrode with improved charging capability.

  6. Foam flow and liquid films motion: role of the surfactants properties

    Science.gov (United States)

    Cantat, Isabelle

    2011-11-01

    Liquid foams absorb energy in a much more efficient way than each of its constituents, taken separately. However, the local process at the origin of the energy dissipation is not entirely elucidated yet, and several models may apply, thus making worth local studies on simpler systems. We investigate the motion through a wet tube of transverse soap films, or lamellae, combining local thickness and velocity measurements in the wetting film. For foaming solution with a high dilatational surface modulus, we reveal a zone of several centimeters in length, the dynamic wetting film, which is significantly influenced by a moving lamella. The dependence of this influence length on lamella velocity and wetting film thickness provides an accurate discrimination among several possible surfactants models. In collaboration with B. Dollet.

  7. Foam topology. Bending versus stretching dominated architectures

    International Nuclear Information System (INIS)

    Deshpande, V.; Ashby, M.; Fleck, N.

    2000-01-01

    Cellular solids can deform by either the bending or stretching of the cell walls. While most cellular solids are bending-dominated, those that are stretching-dominated are much more weight-efficient for structural applications. In this study we have investigated the topological criteria that dictate the deformation mechanism of a cellular solid by analysing the rigidity (or otherwise) of pin-jointed frameworks comprising inextensional struts. We show that the minimum node connectivity for a special class of lattice structured materials to be stretching-dominated is 6 for 2D foams and 12 for 3D foams. Similarly, sandwich plates comprising of truss cores faced with planar trusses require a minimum node connectivity of 9 to undergo stretching-dominated deformation for all loading states. (author)

  8. Thinner regions of intracranial aneurysm wall correlate with regions of higher wall shear stress: a 7.0 tesla MRI

    Science.gov (United States)

    Blankena, Roos; Kleinloog, Rachel; Verweij, Bon H.; van Ooij, Pim; ten Haken, Bennie; Luijten, Peter R.; Rinkel, Gabriel J.E.; Zwanenburg, Jaco J.M.

    2016-01-01

    Purpose To develop a method for semi-quantitative wall thickness assessment on in vivo 7.0 tesla (7T) MRI images of intracranial aneurysms for studying the relation between apparent aneurysm wall thickness and wall shear stress. Materials and Methods Wall thickness was analyzed in 11 unruptured aneurysms in 9 patients, who underwent 7T MRI with a TSE based vessel wall sequence (0.8 mm isotropic resolution). A custom analysis program determined the in vivo aneurysm wall intensities, which were normalized to signal of nearby brain tissue and were used as measure for apparent wall thickness (AWT). Spatial wall thickness variation was determined as the interquartile range in AWT (the middle 50% of the AWT range). Wall shear stress was determined using phase contrast MRI (0.5 mm isotropic resolution). We performed visual and statistical comparisons (Pearson’s correlation) to study the relation between wall thickness and wall shear stress. Results 3D colored AWT maps of the aneurysms showed spatial AWT variation, which ranged from 0.07 to 0.53, with a mean variation of 0.22 (a variation of 1.0 roughly means a wall thickness variation of one voxel (0.8mm)). In all aneurysms, AWT was inversely related to WSS (mean correlation coefficient −0.35, P<0.05). Conclusions A method was developed to measure the wall thickness semi-quantitatively, using 7T MRI. An inverse correlation between wall shear stress and AWT was determined. In future studies, this non-invasive method can be used to assess spatial wall thickness variation in relation to pathophysiologic processes such as aneurysm growth and –rupture. PMID:26892986

  9. Characterization of synthesized polyurethane/montmorillonite nanocomposites foams

    International Nuclear Information System (INIS)

    Ansari, Farahnaz; Njuguna, James; Sachse, Sophia; Kavosh, Masoud; Michalowski, S; Pielichowski, Krzysztof

    2014-01-01

    Nanophased hybrid composites based on polyurethane/montmorillonite (PU/MMT) have been fabricated. The nanocomposite which was formed by the addition of a polyol premix with 4,4'-diphenylmethane diisocyanate to obtain nanophased polyurethane foams which were then used for fabrication of nanocomposite panels has been shown to have raised strength, stiffness and thermal insulation properties. The nanophased polyurethane foam was characterized by means of scanning electron microscope (SEM), transmission electron microscope (TEM) measurements and X-ray diffraction (XRD). TEM and SEM analysis indicated that nanophased particles are dispersed homogeneously in the polyurethane matrix on the nanometer scale indicating that PU/MMT is an intercalated nanocomposite with a 2-3 nm nanolayer thickness

  10. Study on the Thick-Walled Pipe Ultrasonic Signal Enhancement of Modified S-Transform and Singular Value Decomposition

    Directory of Open Access Journals (Sweden)

    Haichao Cai

    2015-01-01

    Full Text Available When detecting the ultrasonic flaw of thick-walled pipe, the flaw echo signals are often interrupted by scanning system frequency and background noise. In particular when the thick-walled pipe defect is small, echo signal amplitude is often drowned in noise signal and affects the extraction of defect signal and the position determination accuracy. This paper presents the modified S-transform domain singular value decomposition method for the analysis of ultrasonic flaw echo signals. By changing the scale rule of Gaussian window functions with S-transform to improve the time-frequency resolution. And the paper tries to decompose the singular value decomposition of time-frequency matrix after the S-transform to determine the singular entropy of effective echo signal and realize the adaptive filter. Experiments show that, using this method can not only remove high frequency noise but also remove the low frequency noise and improve the signal-to-noise ratio of echo signal.

  11. Compressive characteristics of closed-cell aluminum foams with different percentages of Er element

    Directory of Open Access Journals (Sweden)

    Wei-min Zhao

    2016-01-01

    Full Text Available In the present study, closed-cell aluminum foams with different percentages of erbium (Er element were successfully prepared. The distribution and existence form of erbium (Er element and its effect on the compressive properties of the foams were investigated. Results show that Er uniformly distributes in the cell walls in the forms of Al3Er intermetallic compound and Al-Er solid solutions. Compared with commercially pure aluminum foam, Er-containing foams possess higher micro-hardness, compressive strength and energy absorption capacity due to solid solution strengthening and second phase strengthening effects. Additionally, the amount of Er element should be controlled in the range of 0.10wt.%-0.50wt.% in order to obtain a good combination of compressive strength and energy absorption properties.

  12. A study on the calculation of the shielding wall thickness in medical linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Yeon [Dept. of Radiation Oncology, Dongnam Ins. of Radiological and Medical Science, Busan (Korea, Republic of); Park, Eun Tae [Dept. of Radiation Oncology, Inje University Busan Paik Hospital, Busan (Korea, Republic of); Kim, Jung Hoon [Dept. of Radiological science, college of health sciences, Catholic University of Pusan, Busan (Korea, Republic of)

    2017-06-15

    The purpose of this study is to calculate the thickness of shielding for concrete which is mainly used for radiation shielding and study of the walls constructed to shield medical linear accelerator. The optimal shielding thickness was calculated using MCNPX(Ver.2.5.0) for 10 MV of photon beam energy generated by linear accelerator. As a result, the TVL for photon shielding was formed at 50⁓100 cm for pure concrete and concrete with Boron+polyethylene at 80⁓100 cm. The neutron shielding was calculated 100⁓140 cm for pure concrete and concrete with Boron+polyethylene at 90⁓100 cm. Based on this study, the concrete is considered to be most efficient method of using steel plates and adding Boron+polyethylene th the concrete.

  13. Quantitative computed tomography: emphysema and airway wall thickness by sex, age and smoking

    DEFF Research Database (Denmark)

    Grydeland, T B; Dirksen, A; Coxson, H O

    2009-01-01

    We investigated how quantitative high-resolution computed tomography (HRCT) measures of emphysema and airway wall thickness (AWT) vary with sex, age and smoking history. We included 463 chronic obstructive pulmonary disease (COPD) cases and 431 controls. All included subjects were current or ex...... cases, respectively, and 0.488+/-0.028 and 0.463+/-0.025 in male and female controls, respectively. AWT decreased with increasing age in cases, and increased with the degree of current smoking in all subjects. We found significant differences in quantitative HRCT measures of emphysema and AWT between...

  14. Methodology to calculate wall thickness in metallic pipes

    International Nuclear Information System (INIS)

    Ramirez, G.F.; Feliciano, H.J.

    1992-01-01

    The principal objective in the developing of the activities of industrial type is to carry out a efficient and productive task: that implies necessarily to know the best working conditions of the equipment and installations to be concerned. The applications of the radioisotope techniques have a long time as useful tools in several fields of human work. For example, in the Petroleos Mexicanos petrochemical complexes, by safety reasons and for to avoid until maximum the losses, it must be know with a high possible precision the operation regimes of the lines of tubes that they conduce the hydrocarbons, with the purpose to know when they should be replaced the defective or wasted pieces. In the Mexican Petroleum Institute is carrying out a work that it has by objective to develop a methodology bases in the use of radioisotopes that permits to determine the average thickness of the metallic tubes wall, that they have thermic insulator, with a precision of ±0.127 mm (±5 thousandth inch). The method is based in the radiation use emitted by Cs-137 sources. In this work it is described the methodology development so as the principal results obtained. (Author)

  15. Electricity in foams: from one soapy interface to the macroscopic material

    Science.gov (United States)

    Biance, Anne-Laure

    2017-11-01

    Liquid foams (a dispersion of gas bubbles in a soapy solution) destabilize with time due to coarsening, coalescence and gravity driven drainage. We propose here to inhibit (or trigger) the foam destabilization by applying an electric field to the material. This effect is investigated at the different scales of the system: one soapy interface, one liquid film, the macroscopic foam. The generation of an electroosmotic flow near a soapy liquid/gas interface raises many issues. How does the flow affect surfactant repartition? Is there a Marangoni stress at the interface? At the scale of one soap film, how the electric field affects the film stability and deformation? In a macroscopic foam, one can wonder whether the electric field can indeed reverse gravity driven drainage and increase foam lifetime? These different issues are considered by developing new experimental techniques allowing us to probe surfactant repartition at liquid interfaces, soap film thicknesses and liquid foam properties when an electric field is applied. The results will be presented together with a comprehensive picture of the mechanisms arising at each scale of the material, to conclude with the potential use of electricity in liquid foams to control destabilization. Collaborators: Baptiste Blanc, Oriane Bonhomme, Laurent Joly, Christophe Ybert.

  16. Solid cellulose nanofiber based foams - Towards facile design of sustained drug delivery systems

    DEFF Research Database (Denmark)

    Svagan, Anna J; Benjamins, Jan-Willem; Al-Ansari, Zeinab

    2016-01-01

    acceptable surfactant (lauric acid sodium salt). The drug was suspended in the wet-stable foams followed by a drying step to obtain dry foams. Flexible cellular solid materials of different thicknesses, shapes and drug loadings (up to 50wt%) could successfully be prepared. The drug was released from...... the solid foams in a diffusion-controlled, sustained manner due to the presence of intact air bubbles which imparted a tortuous diffusion path. The diffusion coefficient was assessed using Franz cells and shown to be more than one order of magnitude lower for the cellular solids compared to the bubble...

  17. High coupling efficiency of foam spherical hohlraum driven by 2ω laser light

    Science.gov (United States)

    Chen, Yao-Hua; Lan, Ke; Zheng, Wanguo; Campbell, E. M.

    2018-02-01

    The majority of solid state laser facilities built for laser fusion research irradiate targets with third harmonic light (0.35 μm) up-converted from the fundamental Nd wavelength at 1.05 μm. The motivation for this choice of wavelength is improved laser-plasma coupling. Significant disadvantages to this choice of wavelength are the reduced damage threshold of optical components and the efficiency of energy conversion to third harmonic light. Both these issues are significantly improved if second harmonic (0.53 μm) radiation is used, but theory and experiments have shown lower optical to x-ray energy conversion efficiency and increased levels of laser-plasma instabilities, resulting in reduced laser-target coupling. In this letter, we propose to use a 0.53 μm laser for the laser ignition facilities and use a low density foam wall to increase the coupling efficiency from the laser to the capsule and present two-dimensional radiation-hydrodynamic simulations of 0.53 μm laser light irradiating an octahedral-spherical hohlraum with a low density foam wall. The simulations show that the reduced optical depth of the foam wall leads to an increased laser-light conversion into thermal x-rays and about 10% higher radiation flux on the capsule than that achieved with 0.35 μm light irradiating a solid density wall commonly used in laser indirect drive fusion research. The details of the simulations and their implications and suggestions for wavelength scaling coupled with innovative hohlraum designs will be discussed.

  18. Suprascarpal fat pad thickness may predict venous drainage patterns in abdominal wall flaps.

    Science.gov (United States)

    Bast, John; Pitcher, Austin A; Small, Kevin; Otterburn, David M

    2016-02-01

    Abdominal wall flaps are routinely used in reconstructive procedures. In some patients inadequate venous drainage from the deep vein may cause fat necrosis or flap failure. Occasionally the superficial inferior epigastric vessels (SIEV) are of sufficient size to allow for microvascular revascularization. This study looked at the ratio of the sub- and suprascarpal fat layers, the number of deep system perforators, and SIEV diameter to determine any correlation of the fat topography and SIEV. 50 abdominal/pelvic CT angiograms (100 hemiabdomens) were examined in women aged 34-70 years for number of perforators, SIEV diameter, and fat pad thickness above and below Scarpa's fascia. Data was analyzed using multivariate model. The average suprascarpal and subscarpal layers were 18.6 ± 11.5 mm and 6.2 ± 7.2 mm thick, respectively. The average SIEV diameter was 2.06 ± 0.81 mm and the average number of perforators was 2.09 ± 1.03 per hemiabdomen. Hemiabdomens with suprascarpal thickness>23 mm had greater SIEV diameter [2.69 mm vs. 1.8 mm (P fat layer thickness did not correlate with the number of perforators. Neither subscarpal fat thickness nor suprascarpal-to-subscarpal fat layer thickness correlated significantly with SIEV caliber or number of perforators in multivariate model. Suprascarpal fat pad thicker than 23 mm had larger SIEVs irrespective of the number of deep system perforators. This may indicate a cohort of patients at risk of venous congestion from poor venous drainage if only the deep system is revascularized. We recommend harvesting the SIEV in patients with suprascarpal fat pad >23 mm to aid in superficial drainage. © 2015 Wiley Periodicals, Inc.

  19. Impact of foamed matrix components on foamed concrete properties

    Science.gov (United States)

    Tarasenko, V. N.

    2018-03-01

    The improvement of the matrix foam structure by means of foam stabilizing additives is aimed at solving the technology-oriented problems as well as at the further improvement of physical and mechanical properties of cellular-concrete composites. The dry foam mineralization is the mainstream of this research. Adding the concrete densifiers, foam stabilizers and mineral powders reduces the drying shrinkage, which makes the foam concrete products technologically effective.

  20. Direct sputtering- and electro-deposition of gold coating onto the closed surface of ultralow-density carbon-hydrogen foam cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jiaqiu; Yin, Jialing; Zhang, Hao; Yao, Mengqi; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-12-15

    Highlights: • The surface pores of P(DVB/St) foam cylinder are sealed by CVD method. • Gold film was deposited on the surface of foam cylinder by magnetron sputtering. • Electroless plating was excluded in the present experiments. • The gold coatings were thickened through the electrodeposition process. - Abstract: This work aimed to fabricate a gold coating on the surface of ultralow-density carbon-hydrogen foam cylinder without electroless plating. Poly (divinylbenzene/styrene) foam cylinder was synthetized by high internal phase emulsion, and chemical vapor deposition polymerization approach was used to form a compact poly-p-xylylene film on the foam cylinder. Conducting gold thin films were directly deposited onto the poly-p-xylylene-modified foam cylinder by magnetron sputtering, and electrochemical deposition was adopted to thicken the gold coatings. The micro-structures and morphologies of poly (divinylbenzene/styrene) foam cylinder and gold coating were observed by field-emission scanning electron microscopy. The gold coating content was investigated by energy-dispersive X-ray. The thicknesses of poly-p-xylylene coating and sputtered gold thin-film were approximately 500 and 100 nm, respectively. After electrochemical deposition, the thickness of gold coating increased to 522 nm, and the gold coating achieved a compact and uniform structure.

  1. Outgassing From Open And Closed Magma Foams

    Science.gov (United States)

    von Aulock, Felix W.; Kennedy, Ben M.; Maksimenko, Anton; Wadsworth, Fabian B.; Lavallée, Yan

    2017-06-01

    During magma ascent, bubbles nucleate, grow, coalesce, and form a variably permeable porous network. The volcanic system opens and closes as bubble walls reorganize, seal or fail. In this contribution we cause obsidian to nucleate and grow bubbles to high gas volume fraction at atmospheric pressure by heating samples to 950 ºC for different times and we image the growth through a furnace. Following the experiment, we imaged the internal pore structure of selected samples in 3D and then dissected for analysis of textures and dissolved water content remnant in the glass. We demonstrate that in these high viscosity systems, during foaming and subsequent foam-maturation, bubbles near a free surface resorb via diffusion to produce an impermeable skin of melt around a foam. The skin thickens nonlinearly through time. The water concentrations at the outer and inner skin margins reflect the solubility of water in the melt at the partial pressure of water in atmospheric and water-rich bubble conditions, respectively. In this regime, mass transfer of water out of the system is diffusion limited and the sample shrinks slowly. In a second set of experiments in which we polished off the skin of the foamed samples and placed them back in the furnace, we observe rapid sample contraction and collapse of the connected pore network under surface tension as the system efficiently outgasses. In this regime, mass transfer of water is permeability limited. The mechanisms described here are relevant to the evolution of pore network heterogeneity in permeable magmas. We conclude that diffusion-driven skin formation can efficiently seal connectivity in foams. When rupture of melt film around gas bubbles (i.e. skin removal) occurs, then rapid outgassing and consequent foam collapse modulate gas pressurisation in the vesiculated magma.

  2. Outgassing from Open and Closed Magma Foams

    Directory of Open Access Journals (Sweden)

    Felix W. von Aulock

    2017-06-01

    Full Text Available During magma ascent, bubbles nucleate, grow, coalesce, and form a variably permeable porous network. The reorganization, failing and sealing of bubble walls may contribute to the opening and closing of the volcanic system. In this contribution we cause obsidian to nucleate and grow bubbles to high gas volume fraction at atmospheric pressure by heating samples to 950°C for different times and we image the growth through a furnace. Following the experiment, we imaged the internal pore structure of selected samples in 3D and then dissected for analysis of textures and dissolved water content remnant in the glass. We demonstrate that in these high viscosity systems, during foaming and subsequent foam-maturation, bubbles near a free surface resorb via diffusion to produce an impermeable skin of melt around a foam. The skin thickens non-linearly through time. The water concentrations at the outer and inner skin margins reflect the solubility of water in the melt at the partial pressure of water in atmospheric and water-rich bubble conditions, respectively. In this regime, mass transfer of water out of the system is diffusion limited and the sample shrinks slowly. In a second set of experiments in which we polished off the skin of the foamed samples and placed them back in the furnace to allow open system outgassing, we observe rapid sample contraction and collapse of the connected pore network under surface tension as the system efficiently outgasses. In this regime, mass transfer of water is permeability limited. We conclude that diffusion-driven skin formation can efficiently seal connectivity in foams. When rupture of melt film around gas bubbles (i.e., skin removal occurs, then rapid outgassing and consequent foam collapse modulate gas pressurization in the vesiculated magma. The mechanisms described here are relevant to the evolution of pore network heterogeneity in permeable magmas.

  3. Numerical Determination of Natural Frequencies and Modes of the Vibrations of a Thick-Walled Cylindrical Shell

    Science.gov (United States)

    Grigorenko, A. Ya.; Borisenko, M. Yu.; Boichuk, E. V.; Prigoda, A. P.

    2018-01-01

    The dynamic characteristics of a thick-walled cylindrical shell are determined numerically using the finite-element method implemented with licensed FEMAR software. The natural frequencies and modes are compared with those obtained earlier experimentally by the method of stroboscopic holographic interferometry. Frequency coefficients demonstrating how the natural frequency depends on the physical and mechanical parameters of the material are determined.

  4. Effect of gas type on foam film permeability and its implications for foam flow in porous media.

    Science.gov (United States)

    Farajzadeh, R; Muruganathan, R M; Rossen, W R; Krastev, R

    2011-10-14

    The aim of this paper is to provide a perspective on the effect of gas type on the permeability of foam films stabilized by different types of surfactant and to present a critical overview of the tracer gas experiments, which is the common approach to determine the trapped fraction of foam in porous media. In these experiments some part of the gas is replaced by a "tracer gas" during the steady-state stage of the experiments and trapped fraction of foam is determined by fitting the effluent data to a capacitance mass-transfer model. We present the experimental results on the measurement of the gas permeability of foam films stabilized with five surfactants (non-ionic, anionic and cationic) and different salt concentrations. The salt concentrations assure formation of either common black (CBF) or Newton black films (NBF). The experiments are performed with different single gasses. The permeability of the CBF is in general higher than that of the NBF. This behavior is explained by the higher density of the surfactant molecules in the NBF compared to that of CBF. It is also observed that the permeability coefficient, K(cm/s), of CBF and NBF for non-ionic and cationic surfactants are similar and K is insensitive to film thickness. Compared to anionic surfactants, the films made by the non-ionic surfactant have much lower permeability while the films made by the cationic surfactant have larger permeability. This conclusion is valid for all gasses. For all types of surfactant the gas permeability of foam film is largely dependent on the dissolution of gas in the surfactant solution and increases with increasing gas solubility in the bulk liquid. The measured values of K are consistent with rapid diffusion of tracer gasses through trapped gas adjacent to flowing gas in porous media, and difficulties in interpreting the results of tracer-foam experiments with conventional capacitance models. The implications of the results for foam flow in porous media and factors leading

  5. Use of computed tomography to identify atrial fibrillation associated differences in left atrial wall thickness and density.

    Science.gov (United States)

    Dewland, Thomas A; Wintermark, Max; Vaysman, Anna; Smith, Lisa M; Tong, Elizabeth; Vittinghoff, Eric; Marcus, Gregory M

    2013-01-01

    Left atrial (LA) tissue characteristics may play an important role in atrial fibrillation (AF) induction and perpetuation. Although frequently used in clinical practice, computed tomography (CT) has not been employed to describe differences in LA wall properties between AF patients and controls. We sought to noninvasively characterize AF-associated differences in LA tissue using CT. CT images of the LA were obtained in 98 consecutive patients undergoing AF ablation and in 89 controls. A custom software algorithm was used to measure wall thickness and density in four prespecified regions of the LA. On average, LA walls were thinner (-15.5%, 95% confidence interval [CI] -23.2 to -7.8%, P identified significant thinning of the LA wall and regional alterations in tissue density in patients with a history of AF. These findings suggest differences in LA tissue composition can be noninvasively identified and quantified using CT. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  6. Rheological properties of the soft-disk model of two-dimensional foams

    DEFF Research Database (Denmark)

    Langlois, Vincent; Hutzler, Stefan; Weaire, Denis

    2008-01-01

    The soft-disk model previously developed and applied by Durian [D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995)] is brought to bear on problems of foam rheology of longstanding and current interest, using two-dimensional systems. The questions at issue include the origin of the Herschel-Bulkley re......The soft-disk model previously developed and applied by Durian [D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995)] is brought to bear on problems of foam rheology of longstanding and current interest, using two-dimensional systems. The questions at issue include the origin of the Herschel......-Bulkley relation, normal stress effects (dilatancy), and localization in the presence of wall drag. We show that even a model that incorporates only linear viscous effects at the local level gives rise to nonlinear (power-law) dependence of the limit stress on strain rate. With wall drag, shear localization...

  7. Mechanisms of nanoclay-enhanced plastic foaming processes: effects of nanoclay intercalation and exfoliation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Anson; Wijnands, Stephan F. L.; Kuboki, Takashi; Park, Chul B., E-mail: park@mie.utoronto.ca [University of Toronto, Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering (Canada)

    2013-08-15

    The foaming behaviors of high-density polypropylene-nanoclay composites with intercalated and exfoliated nanoclay particles blown with carbon dioxide were examined via in situ observation of the foaming processes in a high-temperature/high-pressure view-cell. The intercalated nanoclay particles were 300-600 nm in length and 50-200 nm in thickness, while the exfoliated nanoclay particles were 100-200 nm in length and 1 nm in thickness. Contrary to common belief, it was discovered that intercalated nanoclay yielded higher cell density than exfoliated nanoclay despite its lower particle density. This was attributed to the higher tensile stresses generated around the larger and stiffer intercalated nanoclay particles, which led to increase in supersaturation level for cell nucleation. Also, the coupling agent used to exfoliate nanoclay would increase the affinity between polymer and surface of nanoclay particles. Consequently, the critical work needed for cell nucleation would be increased; pre-existing microvoids, which could act as seeds for cell nucleation, were also less likely to exist. Meanwhile, exfoliated nanoclay had better cell stabilization ability to prevent cell coalescence and cell coarsening. This investigation clarifies the roles of nanoclay in plastic foaming processes and provides guidance for the advancement of polymer nanocomposite foaming technology.

  8. FoamVis, A Visualization System for Foam Research: Design and Implementation

    OpenAIRE

    Lipsa, Dan; Roberts, Richard; Laramee, Robert

    2015-01-01

    Liquid foams are used in areas such as mineral separation, oil recovery, food and beverage production, sanitation and fire fighting. To improve the quality of products and the efficiency of processes in these areas, foam scientists wish to understand and control foam behaviour. To this end, foam scientists have used foam simulations to model foam behaviour; however, analysing these simulations presents difficult challenges. We describe the main foam research challenges and present the design ...

  9. Monitoring of Double-Stud Wall Moisture Conditions in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Westford, MA (United States)

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double-stud walls have a higher risk of interior-sourced condensation moisture damage when compared with high-R approaches using exterior insulating sheathing. Moisture conditions in double-stud walls were monitored in Zone 5A (Massachusetts); three double-stud assemblies were compared.

  10. Monitoring of Double Stud Wall Moisture Conditions in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Westford, MA (United States)

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing.; Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.

  11. Analysis of the Causes of Cracks in a Thick-Walled Bush Made of Die-Cast Aluminum Bronze

    Directory of Open Access Journals (Sweden)

    Pisarek B.P.

    2016-12-01

    Full Text Available For the die casting conditions of aluminium bronzes assumed based on the literature data, a thick-walled bush was cast, made of complex aluminium bronze (Cu-Al-Fe-Ni-Cr. After the cast was removed from the mould, cracks were observed inside it. In order to identify the stage in the technological production process at which, potentially, the formation of stresses damaging the continuity of the microstructure created in the cast was possible (hot cracking and/or cold cracking, a computer simulation was performed. The article presents the results of the computer simulation of the process of casting the material into the gravity die as well as solidifying and cooling of the cast in the shape of a thick-walled bush. The simulation was performed with the use of the MAGMA5 program and by application of the CuAl10Ni5,5Fe4,5 alloy from the MAGMA5 program database. The results were compared with the location of the defects identified in the actual cast. As a result of the simulation of the die-casting process of this bush, potential regions were identified where significant principal stresses accumulate, which can cause local hot and cold cracking. Until now, no research has been made of die-cast aluminium bronzes with a Cr addition. Correlating the results of the computer simulation validated by the analysis of the actual cast made it possible to clearly determine the critical regions in the cast exposed to cracking and point to the causes of its occurrence. Proposals of changes in the bush die casting process were elaborated, in order to avoid hot tearing and cold cracking. The article discusses the results of preliminary tests being a prologue to the optimization of the die-casting process parameters of complex aluminium bronze thick-walled bushs.

  12. Automated Production of High Rep Rate Foam Targets

    Science.gov (United States)

    Hall, F.; Spindloe, C.; Haddock, D.; Tolley, M.; Nazarov, W.

    2016-04-01

    Manufacturing low density targets in the numbers needed for high rep rate experiments is highly challenging. This report summarises advances from manual production to semiautomated and the improvements that follow both in terms of production time and target uniformity. The production process is described and shown to be improved by the integration of an xyz robot with dispensing capabilities. Results are obtained from manual and semiautomated production runs and compared. The variance in the foam thickness is reduced significantly which should decrease experimental variation due to target parameters and could allow for whole batches to be characterised by the measurement of a few samples. The work applies to both foil backed and free standing foam targets.

  13. Calculation of concrete shielding wall thickness for 450kVp X-ray tube with MCNP simulation and result comparison with half value layer method calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Heon; Lee, Eun Joong; Kim, Chan Kyu; Cho, Gyu Seong [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Hur, Sam Suk [Sam Yong Inspection Engineering Co., Ltd., Seoul (Korea, Republic of)

    2016-11-15

    Radiation generating devices must be properly shielded for their safe application. Although institutes such as US National Bureau of Standards and National Council on Radiation Protection and Measurements (NCRP) have provided guidelines for shielding X-ray tube of various purposes, industry people tend to rely on 'Half Value Layer (HVL) method' which requires relatively simple calculation compared to the case of those guidelines. The method is based on the fact that the intensity, dose, and air kerma of narrow beam incident on shielding wall decreases by about half as the beam penetrates the HVL thickness of the wall. One can adjust shielding wall thickness to satisfy outside wall dose or air kerma requirements with this calculation. However, this may not always be the case because 1) The strict definition of HVL deals with only Intensity, 2) The situation is different when the beam is not 'narrow'; the beam quality inside the wall is distorted and related changes on outside wall dose or air kerma such as buildup effect occurs. Therefore, sometimes more careful research should be done in order to verify the effect of shielding specific radiation generating device. High energy X-ray tubes which is operated at the voltage above 400 kV that are used for 'heavy' nondestructive inspection is an example. People have less experience in running and shielding such device than in the case of widely-used low energy X-ray tubes operated at the voltage below 300 kV. In this study, Air Kerma value per week, outside concrete shielding wall of various thickness surrounding 450 kVp X-ray tube were calculated using MCNP simulation with the aid of Geometry Splitting method which is a famous Variance Reduction technique. The comparison between simulated result, HVL method result, and NCRP Report 147 safety goal 0.02 mGy wk-1 on Air Kerma for the place where the public are free to pass showed that concrete wall of thickness 80 cm is needed to achieve the

  14. Calculation of concrete shielding wall thickness for 450kVp X-ray tube with MCNP simulation and result comparison with half value layer method calculation

    International Nuclear Information System (INIS)

    Lee, Sang Heon; Lee, Eun Joong; Kim, Chan Kyu; Cho, Gyu Seong; Hur, Sam Suk

    2016-01-01

    Radiation generating devices must be properly shielded for their safe application. Although institutes such as US National Bureau of Standards and National Council on Radiation Protection and Measurements (NCRP) have provided guidelines for shielding X-ray tube of various purposes, industry people tend to rely on 'Half Value Layer (HVL) method' which requires relatively simple calculation compared to the case of those guidelines. The method is based on the fact that the intensity, dose, and air kerma of narrow beam incident on shielding wall decreases by about half as the beam penetrates the HVL thickness of the wall. One can adjust shielding wall thickness to satisfy outside wall dose or air kerma requirements with this calculation. However, this may not always be the case because 1) The strict definition of HVL deals with only Intensity, 2) The situation is different when the beam is not 'narrow'; the beam quality inside the wall is distorted and related changes on outside wall dose or air kerma such as buildup effect occurs. Therefore, sometimes more careful research should be done in order to verify the effect of shielding specific radiation generating device. High energy X-ray tubes which is operated at the voltage above 400 kV that are used for 'heavy' nondestructive inspection is an example. People have less experience in running and shielding such device than in the case of widely-used low energy X-ray tubes operated at the voltage below 300 kV. In this study, Air Kerma value per week, outside concrete shielding wall of various thickness surrounding 450 kVp X-ray tube were calculated using MCNP simulation with the aid of Geometry Splitting method which is a famous Variance Reduction technique. The comparison between simulated result, HVL method result, and NCRP Report 147 safety goal 0.02 mGy wk-1 on Air Kerma for the place where the public are free to pass showed that concrete wall of thickness 80 cm is needed to achieve the safety goal

  15. [Experimental Study of PMI Foam Composite Properties in Terahertz].

    Science.gov (United States)

    Xing, Li-yun; Cui, Hong-liang; Shi, Chang-cheng; Han, Xiao-hui; Zhang, Zi-yin; Li, Wei; Ma, Yu-ting; Zheng, Yan; Zhang, Song-nian

    2015-12-01

    Polymethacrylimide (PMI) foam composite has many excellent properties. Currently, PMI is heat-resistant foam, with the highest strength and stiffness. It is suitable as a high-performance sandwich structure core material. It can replace the honeycomb structure. It is widely used in aerospace, aviation, military, marine, automotive and high-speed trains, etc. But as new sandwich materials, PMI performance testing in the THz band is not yet visible. Based on the Terahertz (THz) time-domain spectroscopy technique, we conducted the transmission and reflection experiments, got the time domain waveforms and power density spectrum. And then we analyzed and compared the signals. The MATALB and Origin 8. 0 was used to calculate and obtain the transmittance (transfer function), absorptivity Coefficient, reflectance and the refractive index of the different thickness Degussa PMI (Model: Rohacell WF71), which were based on the application of the time-domain and frequency-domain analysis methods. We used the data to compared with the THz refractive index and absorption spectra of a domestic PMI, Baoding Meiwo Technology Development Co. , Ltd. (Model: SP1D80-P-30). The result shows that the impact of humidity on the measurement results is obvious. The refractive index of PMI is about 1. 05. The attenuation of power spectrum is due to the signal of the test platform is weak, the sample is thick and the internal scattering of PMI foam microstructure. This conclusion provides a theoretical basis for the THz band applications in the composite PMI. It also made a good groundwork for THz NDT (Non-Destructive Testing, NDT) technology in terms of PMI foam composites.

  16. Characterization of Ti6Al7Nb alloy foams surface treated in aqueous NaOH and CaCl2 solutions.

    Science.gov (United States)

    Bütev, Ezgi; Esen, Ziya; Bor, Şakir

    2016-07-01

    Ti6Al7Nb alloy foams having 53-73% porosity were manufactured via evaporation of magnesium space holders. A bioactive 1µm thick sodium hydrogel titanate layer, NaxH2-xTiyO2y+1, formed after 5M NaOH treatment, was converted to crystalline sodium titanate, Na2TiyO2y+1, as a result of post-heat treatment. On the other hand, subsequent CaCl2 treatment of NaOH treated specimens induced calcium titanate formation. However, heat treatment of NaOH-CaCl2 treated specimens led to the loss of calcium and disappearance of the titanate phase. All of the aforementioned surface treatments reduced yield strengths due to the oxidation of the cell walls of the foams, while elastic moduli remained mostly unchanged. Accordingly, equiaxed dimples seen on the fracture surfaces of as-manufactured foams turned into relatively flat and featureless fracture surfaces after surface treatments. On the other hand, Ca- and Na-rich coating preserved their mechanical stabilities and did not spall during fracture. The relation between mechanical properties of foams and macro-porosity fraction were found to obey a power law. The foams with 63 and 73% porosity met the desired biocompatibility requirements with fully open pore structures and elastic moduli similar to that of bone. In vitro tests conducted in simulated body fluid (SBF) showed that NaOH-heat treated surfaces exhibit the highest bioactivity and allow the formation of Ca-P rich phases having Ca/P ratio of 1.3 to form within 5 days. Although Ca-P rich phases formed only after 15 days on NaOH-CaCl2 treated specimens, the Ca/P ratio was closer to that of apatite found in bone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Determination of optimum insulation thicknesses using economical analyse for exterior walls of buildings with different masses

    Directory of Open Access Journals (Sweden)

    Okan Kon

    2017-07-01

    Full Text Available In this study, five different cities were selected from the five climatic zones according to Turkish standard TS 825, and insulation thicknesses of exterior walls of sample buildings were calculated by using optimization. Vertical perforated bricks with density of 550 kg/m3 and 1000 kg/m3 were chosen within the study content. Glass wool, expanded polystyrene (XPS, extruded polystyrene (EPS were considered as insulation materials. Additionally, natural gas, coal, fuel oil and LPG were utilized as fuel for heating process while electricity was used for cooling.  Life cycle cost (LCC analysis and degree-day method were the approaches for optimum insulation thickness calculations. As a result, in case of usage vertical perforated bricks with density of 550 kg/m3 and 1000 kg/m3 resulted different values in between 0.005-0.007 m (5-7 mm in the optimum insulation thickness calculations under different insulation materials.  Minimum optimum insulation thickness was calculated in case XPS was preferred as insulation material, and the maximum one was calculated in case of using glass wool.

  18. Clinical evaluation of left ventricular wall thickness by combined technique with gated planer /sup 201/Tl image and gated cardiac pool image

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Kenji; Katsuragawa, Shigehiko; Takahashi, Tsuneo; Matsushita, Kazuo; Kawamura, Akiyoshi

    1983-11-01

    To evaluate the left ventricular (LV) wall thickness, a combined technique with gated planer 201-thallium image and gated cardiac pool image was applied to 6 patients with hypertrophic cardiomyopathy (HCM) and 4 patients with secondary hypertrophy due to hypertension (HHD) proven by electrocardiography and ultrasonic-echocardiography. Scintigraphic pattern of hypertrophy on reconstructed planer /sup 201/Tl image showed diffuse or asymmetrical apical hypertrophy in HHD, asymmetrical septal hypertrophy in HCM. It was very interesting that abnormal perfusion was shown in /sup 201/Tl image, despite symmetrical hypertrophy in echocardiography. This techniques provided useful information for evaluating the LV wall thickness and cardiac performance.

  19. Role of foam drainage in producing protein aggregates in foam fractionation.

    Science.gov (United States)

    Li, Rui; Zhang, Yuran; Chang, Yunkang; Wu, Zhaoliang; Wang, Yanji; Chen, Xiang'e; Wang, Tao

    2017-10-01

    It is essential to obtain a clear understanding of the foam-induced protein aggregation to reduce the loss of protein functionality in foam fractionation. The major effort of this work is to explore the roles of foam drainage in protein aggregation in the entire process of foam fractionation with bovine serum albumin (BSA) as a model protein. The results show that enhancing foam drainage increased the desorption of BSA molecules from the gas-liquid interface and the local concentration of desorbed molecules in foam. Therefore, it intensified the aggregation of BSA in foam fractionation. Simultaneously, it also accelerated the flow of BSA aggregates from rising foam into the residual solution along with the drained liquid. Because enhancing foam drainage increased the relative content of BSA molecules adsorbed at the gas-liquid interface, it also intensified the aggregation of BSA during both the defoaming process and the storage of the foamate. Furthermore, enhancing foam drainage more readily resulted in the formation of insoluble BSA aggregates. The results are highly important for a better understanding of foam-induced protein aggregation in foam fractionation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The secondary stress analyses in the fuel pin cladding due to the swelling gradient across the wall thickness

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ukai, Shigeharu

    2002-01-01

    Irradiation deformation analyses of FBR fuel cladding were made by using the finite element method. In these analyses the history of the stress occurred in the cladding was evaluated paying attention to the secondary stress induced by the swelling difference across the wall thickness. It was revealed that the difference of the swelling incubation dose in the direction of the thickness and the irradiation creep deformation play an important role in the history of the secondary stress. The effect of the stress-enhanced swelling was also analyzed in this study

  1. Mechanical behaviour of cyclic olefin copolymer/exfoliated graphite nanoplatelets nanocomposites foamed through supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    A. Biani

    2016-12-01

    Full Text Available A cycloolefin copolymer matrix was melt mixed with exfoliated graphite nanoplatelets (xGnP and the resulting nanocomposites were foamed by supercritical carbon dioxide. The density of the obtained foams decreased with the foaming pressure. Moreover, xGnP limited the cell growth during the expansion process thus reducing the cell diameter (from 1.08 to 0.22 mm with an XGnP amount of 10 wt% at 150 bar and increasing the cell density (from 12 to 45 cells/mm2 with a nanofiller content of 10 wt% at 150 bar. Electron microscopy observations of foams evidenced exfoliation and orientation of the nanoplatelets along the cell walls. Quasi-static compressive tests and tensile creep tests on foams clearly indicated that xGnP improved the modulus (up to a factor of 10 for a xGnP content of 10 wt% and the creep stability.

  2. The separation of silica nanoparticle by cetyltrimethylammonium bromide from decontamination foam waste

    International Nuclear Information System (INIS)

    Choi, Man Soo; Yoon, In Ho; Jung, Chong Hun; Moon, Jei Kwon; Choi, Wang Kyu

    2016-01-01

    Decontamination foam has been considered as a potential application for the cleaning of radioactive contaminant in the field of metallic walls, overhead surfaces, and complex components. Moreover, foam decontamination could generate the low secondary waste amount owing to its volume expansion. In order to increase the decontamination efficiency, it is essential to improve the foam stability with low amount of chemical decontamination agent. Yoon et al. reported that the silica nanoparticle containing surfactant increased the foam stability compared to only surfactant solution[3]. Nanoparticle has been used with surfactant, which they adsorb at fluid/fluid interface, to stabilize emulsions or bubbles in foams. Despite of improving foam stability, they still used the surfactant, silica nanoparticle (1 wt%), and viscosifier. In addition, it is difficult to separate silica nanoparticle from decontamination solution. Because nanoparticles differ from classical solid particles due to smaller particle size and their specific properties. Thus, the separation method for nanoparticle should be also developed with high recovery rates. The flocculation of silica nanoparticle added by CTAB could be quickly achieved for only 30 min. The particle size of SiO_2 was larger as CTAB amount increased, and SiO_2 contents in the top solution were decreased after centrifugation

  3. The separation of silica nanoparticle by cetyltrimethylammonium bromide from decontamination foam waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Man Soo; Yoon, In Ho; Jung, Chong Hun; Moon, Jei Kwon; Choi, Wang Kyu [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Decontamination foam has been considered as a potential application for the cleaning of radioactive contaminant in the field of metallic walls, overhead surfaces, and complex components. Moreover, foam decontamination could generate the low secondary waste amount owing to its volume expansion. In order to increase the decontamination efficiency, it is essential to improve the foam stability with low amount of chemical decontamination agent. Yoon et al. reported that the silica nanoparticle containing surfactant increased the foam stability compared to only surfactant solution[3]. Nanoparticle has been used with surfactant, which they adsorb at fluid/fluid interface, to stabilize emulsions or bubbles in foams. Despite of improving foam stability, they still used the surfactant, silica nanoparticle (1 wt%), and viscosifier. In addition, it is difficult to separate silica nanoparticle from decontamination solution. Because nanoparticles differ from classical solid particles due to smaller particle size and their specific properties. Thus, the separation method for nanoparticle should be also developed with high recovery rates. The flocculation of silica nanoparticle added by CTAB could be quickly achieved for only 30 min. The particle size of SiO{sub 2} was larger as CTAB amount increased, and SiO{sub 2} contents in the top solution were decreased after centrifugation.

  4. Generation of sclerosant foams by mechanical methods increases the foam temperature.

    Science.gov (United States)

    Tan, Lulu; Wong, Kaichung; Connor, David; Fakhim, Babak; Behnia, Masud; Parsi, Kurosh

    2017-08-01

    Objective To investigate the effect of agitation on foam temperature. Methods Sodium tetradecyl sulphate and polidocanol were used. Prior to foam generation, the sclerosant and all constituent equipment were cooled to 4-25℃ and compared with cooling the sclerosant only. Foam was generated using a modified Tessari method. During foam agitation, the temperature change was measured using a thermocouple for 120 s. Results Pre-cooling all the constituent equipment resulted in a cooler foam in comparison with only cooling the sclerosant. A starting temperature of 4℃ produced average foam temperatures of 12.5 and 13.2℃ for sodium tetradecyl sulphate and polidocanol, respectively. It was also found that only cooling the liquid sclerosant provided minimal cooling to the final foam temperature, with the temperature 20 and 20.5℃ for sodium tetradecyl sulphate and polidocanol, respectively. Conclusion The foam generation process has a noticeable impact on final foam temperature and needs to be taken into consideration when creating foam.

  5. FoamVis, A Visualization System for Foam Research: Design and Implementation

    Directory of Open Access Journals (Sweden)

    Dan R. Lipsa

    2015-03-01

    Full Text Available Liquid foams are used in areas such as mineral separation, oil recovery, food and beverage production, sanitation and fire fighting. To improve the quality of products and the efficiency of processes in these areas, foam scientists wish to understand and control foam behaviour. To this end, foam scientists have used foam simulations to model foam behaviour; however, analysing these simulations presents difficult challenges. We describe the main foam research challenges and present the design of FoamVis, the only existing visualization, exploration and analysis application created to address them. We describe FoamVis’ main features, together with relevant design and implementation notes. Our goal is to provide a global overview and individual feature implementation details that would allow a visualization scientist to extend the FoamVis system with new algorithms and adapt it to new requirements. The result is a detailed presentation of the software that is not provided in previous visualization research papers.

  6. Sound absorption effects in a rectangular enclosure with the foamed aluminum sheet absorber

    International Nuclear Information System (INIS)

    Oh, Jae Eung; Chung, Jin Tai; Kim, Sang Hun; Chung, Kyung Ryul

    1998-01-01

    For the purpose of finding out the optimal thickness of sound absorber and the sound absorption effects due to the selected thickness at an interested frequency range, the analytical study identifies the interior and exterior sound field characteristics of a rectangular enclosure with foamed aluminum lining and the experimental verification is performed with random noise input. By using a two-microphone impedance tube, we measure experimentally the absorption coefficient and the impedance of simple sound absorbing materials. Measured acoustical parameters of the test samples are applied to the theoretical analysis to predict sound pressure field in the cavity. The sound absorption effects from measurements are compared to predicted ones in both cases with and without foamed aluminum lining in the cavity of the rectangular enclosure

  7. In hypertrophic cardiomyopathy reduction of relative resting myocardial blood flow is related to late enhancement, T2-signal and LV wall thickness.

    Directory of Open Access Journals (Sweden)

    Katja Hueper

    Full Text Available To quantify resting myocardial blood flow (MBF in the left ventricular (LV wall of HCM patients and to determine the relationship to important parameters of disease: LV wall thickness, late gadolinium enhancement (LGE, T2-signal abnormalities (dark and bright signal, LV outflow tract obstruction and age.Seventy patients with proven HCM underwent cardiac MRI. Absolute and relative resting MBF were calculated from cardiac perfusion MRI by using the Fermi function model. The relationship between relative MBF and LV wall thickness, T2-signal abnormalities (T2 dark and T2 bright signal, LGE, age and LV outflow gradient as determined by echocardiography was determined using simple and multiple linear regression analysis. Categories of reduced and elevated perfusion in relation to non- or mildly affected reference segments were defined, and T2-signal characteristics and extent as well as pattern of LGE were examined. Statistical testing included linear and logistic regression analysis, unpaired t-test, odds ratios, and Fisher's exact test.804 segments in 70 patients were included in the analysis. In a simple linear regression model LV wall thickness (p<0.001, extent of LGE (p<0.001, presence of edema, defined as focal T2 bright signal (p<0.001, T2 dark signal (p<0.001 and age (p = 0.032 correlated inversely with relative resting MBF. The LV outflow gradient did not show any effect on resting perfusion (p = 0.901. Multiple linear regression analysis revealed that LGE (p<0.001, edema (p = 0.026 and T2 dark signal (p = 0.019 were independent predictors of relative resting MBF. Segments with reduced resting perfusion demonstrated different LGE patterns compared to segments with elevated resting perfusion.In HCM resting MBF is significantly reduced depending on LV wall thickness, extent of LGE, focal T2 signal abnormalities and age. Furthermore, different patterns of perfusion in HCM patients have been defined, which may represent different stages of

  8. Quantification of progression and regression of descending thoracic aortic wall thickness by enhanced computed tomography

    International Nuclear Information System (INIS)

    Yokoyama, Kenichi; Takasu, Junichiro; Yamamoto, Rie; Taguchi, Rie; Itani, Yasutaka; Ito, Yuichi; Watanabe, Shigeru; Masuda, Yoshiaki

    2001-01-01

    The purpose of this study is to verify the usefulness of the quantification of aortic wall involvement by enhanced computed tomography (CT). One-hundred thirteen Japanese patients underwent two enhanced CT of the descending thoracic aorta at intervals. We sliced the descending thoracic aorta continuously from the level of the tracheal bifurcation with 1 cm intervals, and we defined aortic wall volume (AWV) (cm 3 ) as the sum of a 7-slice area of aortic wall involving calcification. The average of AWV increased from 7.95±2.92 cm 3 to 8.70±2.98 cm 3 . The developmental rate of AWV (ΔAWV) was 0.270±0.281 cm 3 /year. ΔAWV did not have a significant correlation with any risk factor at the baseline. ΔAWV had significant correlation with total cholesterol, (LDL-C) low-density lipoprotein cholesterol and LDL-C/(HDL-C) high-density lipoprotein cholesterol ratio at the follow-up, and by multivariate analysis with only the LDL-C/HDL-C ratio. ΔAWV was not correlated with the intake status of hypoglycemic, antihypertensive or lipid-lowering drugs. The cut-off level of total cholesterol with the most significant odds ratio for progression of aortic wall was 190 mg/dl, and that of LDL-C was 130 mg/dl. This method proved to be useful for the non-invasive assessment of aortic wall thickness. (author)

  9. Thick-walled anisotropic elliptic tube analyzed via curvilinear tensor calculus

    Directory of Open Access Journals (Sweden)

    Mareš T.

    2007-10-01

    Full Text Available After a brief introduction into the tensor calculus, the thick-walled anisotropic elliptic tube is analyzed. A procedure of the analysis is described in a stepwise manner. A choice of the appropriate coordinate systems is the first step. The second step consists of the determination of corresponding metric tensors. Then the elasticity tensor of a local orthotropy is transformed into a global computational coordinate system. Next the appropriate Christoffel symbols of the second kind are determined and the total potential energy of the system is expressed. At the end the solution is approximated by a Fourier series and for given geometrical values and loading the numerical results are obtained and graphically represented.It must be said that throughout the calculation the free software only was used and for the numerical operations an old laptop is sufficient. The author regards both the former and the latter as a great advantage of the demonstrated method.

  10. On some perculiarities of microstructure formation and the mechanical properties in thick-walled pieces of cast iron and their application as reactor structural materials

    International Nuclear Information System (INIS)

    Janakiev, N.

    1975-01-01

    The following problems are dealt with in the present work: Microstructure formation and mechanical properties of thick-walled cast pieces, influence of neutron irradiation on the mechanical properties, manufacture of thick-walled castings for reactor construction, application of cast iron as reactor structural material. It is shown that graphite formation plays an extremely important role regarding the mechanical properties. A new construction for vertically stressed pressure vessels is given. These vessels can be fabricated mainly of cast iron with graphite spheres, cast steel, or a combination of both depending on the operational pressure. (GSCH) [de

  11. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    International Nuclear Information System (INIS)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-01-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO 2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)

  12. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Science.gov (United States)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-05-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength).

  13. The development of a 3D mesoscopic model of metallic foam based on an improved watershed algorithm

    Science.gov (United States)

    Zhang, Jinhua; Zhang, Yadong; Wang, Guikun; Fang, Qin

    2018-06-01

    The watershed algorithm has been used widely in the x-ray computed tomography (XCT) image segmentation. It provides a transformation defined on a grayscale image and finds the lines that separate adjacent images. However, distortion occurs in developing a mesoscopic model of metallic foam based on XCT image data. The cells are oversegmented at some events when the traditional watershed algorithm is used. The improved watershed algorithm presented in this paper can avoid oversegmentation and is composed of three steps. Firstly, it finds all of the connected cells and identifies the junctions of the corresponding cell walls. Secondly, the image segmentation is conducted to separate the adjacent cells. It generates the lost cell walls between the adjacent cells. Optimization is then performed on the segmentation image. Thirdly, this improved algorithm is validated when it is compared with the image of the metallic foam, which shows that it can avoid the image segmentation distortion. A mesoscopic model of metallic foam is thus formed based on the improved algorithm, and the mesoscopic characteristics of the metallic foam, such as cell size, volume and shape, are identified and analyzed.

  14. Liquid foam templating - A route to tailor-made polymer foams.

    Science.gov (United States)

    Andrieux, Sébastien; Quell, Aggeliki; Stubenrauch, Cosima; Drenckhan, Wiebke

    2018-06-01

    Solid foams with pore sizes between a few micrometres and a few millimetres are heavily exploited in a wide range of established and emerging applications. While the optimisation of foam applications requires a fine control over their structural properties (pore size distribution, pore opening, foam density, …), the great complexity of most foaming processes still defies a sound scientific understanding and therefore explicit control and prediction of these parameters. We therefore need to improve our understanding of existing processes and also develop new fabrication routes which we understand and which we can exploit to tailor-make new porous materials. One of these new routes is liquid templating in general and liquid foam templating in particular, to which this review article is dedicated. While all solid foams are generated from an initially liquid(-like) state, the particular notion of liquid foam templating implies the specific condition that the liquid foam has time to find its "equilibrium structure" before it is solidified. In other words, the characteristic time scales of the liquid foam's stability and its solidification are well separated, allowing to build on the vast know-how on liquid foams established over the last 20 years. The dispersed phase of the liquid foam determines the final pore size and pore size distribution, while the continuous phase contains the precursors of the desired porous scaffold. We review here the three key challenges which need to be addressed by this approach: (1) the control of the structure of the liquid template, (2) the matching of the time scales between the stability of the liquid template and solidification, and (3) the preservation of the structure of the template throughout the process. Focusing on the field of polymer foams, this review gives an overview of recent research on the properties of liquid foam templates and summarises a key set of studies in the emerging field of liquid foam templating. It

  15. Investigation of residual stresses in thick-walled vessels with combination of autofrettage and wire-winding

    International Nuclear Information System (INIS)

    Sedighi, M.; Jabbari, A.H.

    2013-01-01

    Wire-winding and autofrettage processes can be used to introduce beneficial residual stress in the cylinder of thick-walled pressure vessels. In both techniques, internal residual compressive stress will increase internal pressure capacity, improve fatigue life and reduce fatigue crack initiation. The purpose of this paper is to analyze the effects of wire-winding on an autofrettaged thick-walled vessel. Direct method which is a modified Variable Material Properties (VMP) method has been used in order to calculate residual stresses in an autofrettaged vessel. Since wire-winding is done after autofrettage process, the tangent and/or Young's modulus could be changed. For this reason, a new wire-winding method based on Direct Method is introduced. The obtained results for wire-wound autofrettaged vessels are validated by finite element method. The results show that by using this approach, the residual hoop stresses in a wire-wound autofrettaged vessel have a more desirable distribution in the cylinder. -- Highlights: • Combination of autofrettage and wire-winding in pressure vessels has been presented. • A new method based on Direct method is presented for wire-winding process. • Residual hoop stresses are compared in vessels cylinders for different cases. • The residual hoop stress has a more desirable stress distribution. • The benefits of the combined vessel are highlighted in comparison with single cases

  16. Experimental characterization of fire-induced response of rigid polyurethane foam

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.Y.; Gill, W.; Moore, J.W.; Hobbs, M.L.; Gritzo, L.A.; Moya, J.L.

    1995-12-31

    Reported is the result of an experimental investigation of fire-induced response of a 96 kg/m{sup 3} closed cell rigid polyurethane foam. The specimen is 0.37 m in diameter, and 152 mm thick, placed in a cylindrical test vessel. The fire condition is simulated by heating the bottom of the test vessel to 1283 K using a radiant heat source. Real-time x-ray shows that the degradation process involves the progression of a charring front into the virgin material. The charred region has a regular and graded structure consisting of a packed bubble outer layer and successive layers of thin shells. The layer-to-layer permeability appears to be poor. There are indications that gas vents laterally. The shell-like structure might be the result of lateral venting. Although the foam degradation process is quite complicated, the in-depth temperature responses in the uncharted foam appear to be consistent with steady state ablation. The measured temperature responses are well represented by the exponential distribution for steady state ablation. An estimate of the thermal diffusivity of the foam is obtained from the ablation model. The experiment is part of a more comprehensive program to develop material response models of foams and encapsulants.

  17. Structural Foaming at the Nano-, Micro-, and Macro-Scales of Continuous Carbon Fiber Reinforced Polymer Matrix Composites

    Science.gov (United States)

    2012-10-29

    structural porosity at MNM scales could be introduced into the matrix, the carbon fiber reinforcement, and during prepreg lamination processing, without...areas, including fibers. Furthermore, investigate prepreg thickness and resin content effects on the thermomechanical performance of laminated ...Accomplishment 4) 5 Develop constitutive models for nano- foamed and micro- foamed PMC systems from single ply prepreg to multilayer laminated

  18. Blending Novatein{sup ®} thermoplastic protein with PLA for carbon dioxide assisted batch foaming

    Energy Technology Data Exchange (ETDEWEB)

    Walallavita, Anuradha, E-mail: asw15@students.waikato.ac.nz; Verbeek, Casparus J. R., E-mail: jverbeek@waikato.ac.nz; Lay, Mark, E-mail: mclay@waikato.ac.nz [University of Waikato, Hamilton 3240 (New Zealand)

    2016-03-09

    The convenience of polymeric foams has led to their widespread utilisation in everyday life. However, disposal of synthetic petroleum-derived foams has had a detrimental effect on the environment which needs to be addressed. This study uses a clean and sustainable approach to investigate the foaming capability of a blend of two biodegradable polymers, polylactic acid (PLA) and Novatein® Thermoplastic Protein (NTP). PLA, derived from corn starch, can successfully be foamed using a batch technique developed by the Biopolymer Network Ltd. NTP is a patented formulation of bloodmeal and chemical additives which can be extruded and injection moulded similar to other thermoplastics. However, foaming NTP is a new area of study and its interaction with blowing agents in the batch process is entirely unknown. Subcritical and supercritical carbon dioxide have been examined individually in two uniquely designed pressure vessels to foam various compositions of NTP-PLA blends. Foamed material were characterised in terms of expansion ratio, cell size, and cellular morphology in order to study how the composition of NTP-PLA affects foaming with carbon dioxide. It was found that blends with 5 wt. % NTP foamed using subcritical CO{sub 2} expanded up to 11 times due to heterogeneous nucleation. Morphology analysis using scanning electron microscopy showed that foams blown with supercritical CO{sub 2} had a finer cell structure with consistent cell size, whereas, foams blown with subcritical CO{sub 2} ranged in cell size and showed cell wall rupture. Ultimately, this research would contribute to the production of a biodegradable foam material to be used in packaging applications, thereby adding to the application potential of NTP.

  19. Experimental investigation on temperature distribution of foamed concrete filled steel tube column under standard fire

    Science.gov (United States)

    Kado, B.; Mohammad, S.; Lee, Y. H.; Shek, P. N.; Kadir, M. A. A.

    2018-04-01

    Standard fire test was carried out on 3 hollow steel tube and 6 foamed concrete filled steel tube columns. Temperature distribution on the columns was investigated. 1500 kg/m3 and 1800 kg/m3 foamed concrete density at 15%, 20% and 25% load level are the parameters considered. The columns investigated were 2400 mm long, 139.7 mm outer diameter and 6 mm steel tube thickness. The result shows that foamed concrete filled steel tube columns has the highest fire resistance of 43 minutes at 15% load level and low critical temperature of 671 ºC at 25% load level using 1500 kg/m3 foamed concrete density. Fire resistance of foamed concrete filled column increases with lower foamed concrete strength. Foamed concrete can be used to provide more fire resistance to hollow steel column or to replace normal weight concrete in concrete filled columns. Since filling hollow steel with foamed concrete produce column with high fire resistance than unfilled hollow steel column. Therefore normal weight concrete can be substituted with foamed concrete in concrete filled column, it will reduces the self-weight of the structure because of its light weight at the same time providing the desired fire resistance.

  20. Thermal fatigue crack growth on a thick wall tube containing a semi elliptical circumferential crack

    International Nuclear Information System (INIS)

    Deschanels, H.; Wakai, T.; Lacire, M.H.; Michel, B.

    2001-01-01

    In order to check the ability of the simplified assessment procedure (A16 guide) to predict fatigue crack growth, a benchmark problem was conducted. This work is carried out under the project ''agreement on the Exchange of Information and Collaboration in the field of Research and Development of Fast Breeder Reactor (FBR) between Europe (EU) and Japan''. Experimental work is conducted by PNC using Air cooled Thermal transient Test Facility (ATTF). Specimen is a thick wall tube containing a semi elliptical (3-D) circumferential crack and subjected to cyclic thermal transients. The constitutive material is the 304 austenitic stainless steel type SUS304. Due to thermal shock (650 C-300 C) the stress distribution through the wall is non-linear and well approximated using a 3 rd order polynomial. When comparing computations and tests data we observe a good agreement for the crack propagation in length. In crack depth, accurate results are obtained in the first part of the test, but on the later stage of the experiment the computations slightly underestimate the propagation (deep crack). In addition, we notice the importance of good evaluation of fracture mechanics parameters for non-linear stress distribution through the wall. At present A16 guide handbook gives stress intensity factor solutions for non-linear stress distribution through the wall. (author)

  1. Hypertensive heart disease versus hypertrophic cardiomyopathy: multi-parametric cardiovascular magnetic resonance discriminators when end-diastolic wall thickness ≥ 15 mm

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Jonathan C.L. [University Hospitals Bristol NHS Foundation Trust, NIHR Bristol Cardiovascular Biomedical Research Unit, Cardiac Magnetic Resonance Department, Bristol Heart Institute (United Kingdom); University of Bristol, School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences (United Kingdom); Rohan, Stephen [University of Bristol, Medical School, Faculty of Medicine and Dentistry (United Kingdom); Ghosh Dastidar, Amardeep; Harries, Iwan; Lawton, Christopher B. [University Hospitals Bristol NHS Foundation Trust, NIHR Bristol Cardiovascular Biomedical Research Unit, Cardiac Magnetic Resonance Department, Bristol Heart Institute (United Kingdom); Ratcliffe, Laura E.; Burchell, Amy E.; Nightingale, Angus K. [University Hospitals Bristol NHS Foundation Trust, CardioNomics Research Group, Clinical Research and Imaging Centre, Bristol Heart Institute (United Kingdom); Hart, Emma C.; Paton, Julian F.R. [University of Bristol, School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences (United Kingdom); University Hospitals Bristol NHS Foundation Trust, CardioNomics Research Group, Clinical Research and Imaging Centre, Bristol Heart Institute (United Kingdom); Hamilton, Mark C.K. [University Hospitals Bristol NHS Foundation Trust, Department of Radiology, Bristol Royal Infirmary (United Kingdom); Manghat, Nathan E. [University Hospitals Bristol NHS Foundation Trust, NIHR Bristol Cardiovascular Biomedical Research Unit, Cardiac Magnetic Resonance Department, Bristol Heart Institute (United Kingdom); University Hospitals Bristol NHS Foundation Trust, Department of Radiology, Bristol Royal Infirmary (United Kingdom)

    2017-03-15

    European guidelines state left ventricular (LV) end-diastolic wall thickness (EDWT) ≥15 mm suggests hypertrophic cardiomyopathy (HCM), but distinguishing from hypertensive heart disease (HHD) is challenging. We identify cardiovascular magnetic resonance (CMR) predictors of HHD over HCM when EDWT ≥15 mm. 2481 consecutive clinical CMRs between 2014 and 2015 were reviewed. 464 segments from 29 HCM subjects with EDWT ≥15 mm but without other cardiac abnormality, hypertension or renal impairment were analyzed. 432 segments from 27 HHD subjects with EDWT ≥15 mm but without concomitant cardiac pathology were analyzed. Magnitude and location of maximal EDWT, presence of late gadolinium enhancement (LGE), LV asymmetry (>1.5-fold opposing segment) and systolic anterior motion of the mitral valve (SAM) were measured. Multivariate logistic regression was performed. Significance was defined as p<0.05. HHD and HCM cohorts were age-/gender-matched. HHD had significantly increased indexed LV mass (110±27 g/m{sup 2} vs. 91±31 g/m{sup 2}, p=0.016) but no difference in site or magnitude of maximal EDWT. Mid-wall LGE was significantly more prevalent in HCM. Elevated indexed LVM, mid-wall LGE and absence of SAM were significant multivariate predictors of HHD, but LV asymmetry was not. Increased indexed LV mass, absence of mid-wall LGE and absence of SAM are better CMR discriminators of HHD from HCM than EDWT ≥15 mm. circle Hypertrophic cardiomyopathy (HCM) is often diagnosed with end-diastolic wall thickness ≥15 mm. (orig.)

  2. Hypertensive heart disease versus hypertrophic cardiomyopathy: multi-parametric cardiovascular magnetic resonance discriminators when end-diastolic wall thickness ≥ 15 mm

    International Nuclear Information System (INIS)

    Rodrigues, Jonathan C.L.; Rohan, Stephen; Ghosh Dastidar, Amardeep; Harries, Iwan; Lawton, Christopher B.; Ratcliffe, Laura E.; Burchell, Amy E.; Nightingale, Angus K.; Hart, Emma C.; Paton, Julian F.R.; Hamilton, Mark C.K.; Manghat, Nathan E.

    2017-01-01

    European guidelines state left ventricular (LV) end-diastolic wall thickness (EDWT) ≥15 mm suggests hypertrophic cardiomyopathy (HCM), but distinguishing from hypertensive heart disease (HHD) is challenging. We identify cardiovascular magnetic resonance (CMR) predictors of HHD over HCM when EDWT ≥15 mm. 2481 consecutive clinical CMRs between 2014 and 2015 were reviewed. 464 segments from 29 HCM subjects with EDWT ≥15 mm but without other cardiac abnormality, hypertension or renal impairment were analyzed. 432 segments from 27 HHD subjects with EDWT ≥15 mm but without concomitant cardiac pathology were analyzed. Magnitude and location of maximal EDWT, presence of late gadolinium enhancement (LGE), LV asymmetry (>1.5-fold opposing segment) and systolic anterior motion of the mitral valve (SAM) were measured. Multivariate logistic regression was performed. Significance was defined as p<0.05. HHD and HCM cohorts were age-/gender-matched. HHD had significantly increased indexed LV mass (110±27 g/m"2 vs. 91±31 g/m"2, p=0.016) but no difference in site or magnitude of maximal EDWT. Mid-wall LGE was significantly more prevalent in HCM. Elevated indexed LVM, mid-wall LGE and absence of SAM were significant multivariate predictors of HHD, but LV asymmetry was not. Increased indexed LV mass, absence of mid-wall LGE and absence of SAM are better CMR discriminators of HHD from HCM than EDWT ≥15 mm. circle Hypertrophic cardiomyopathy (HCM) is often diagnosed with end-diastolic wall thickness ≥15 mm. (orig.)

  3. Foam Microrheology

    International Nuclear Information System (INIS)

    KRAYNIK, ANDREW M.; LOEWENBERG, MICHAEL; REINELT, DOUGLAS A.

    1999-01-01

    The microrheology of liquid foams is discussed for two different regimes: static equilibrium where the capillary number Ca is zero, and the viscous regime where viscosity and surface tension are important and Ca is finite. The Surface Evolver is used to calculate the equilibrium structure of wet Kelvin foams and dry soap froths with random structure, i.e., topological disorder. The distributions of polyhedra and faces are compared with the experimental data of Matzke. Simple shearing flow of a random foam under quasistatic conditions is also described. Viscous phenomena are explored in the context of uniform expansion of 2D and 3D foams at low Reynolds number. Boundary integral methods are used to calculate the influence of Ca on the evolution of foam microstructure, which includes bubble shape and the distribution of liquid between films, Plateau borders, and (in 3D) the nodes where Plateau borders meet. The micromechanical point of view guides the development of structure-property-processing relationships for foams

  4. Uniformly coated highly porous graphene/MnO2 foams for flexible asymmetric supercapacitors

    Science.gov (United States)

    Drieschner, Simon; von Seckendorff, Maximilian; del Corro, Elena; Wohlketzetter, Jörg; Blaschke, Benno M.; Stutzmann, Martin; Garrido, Jose A.

    2018-06-01

    Supercapacitors are called to play a prominent role in the newly emerging markets of electric vehicles, flexible displays and sensors, and wearable electronics. In order to compete with current battery technology, supercapacitors have to be designed with highly conductive current collectors exhibiting high surface area per unit volume and uniformly coated with pseudocapacitive materials, which is crucial to boost the energy density while maintaining a high power density. Here, we present a versatile technique to prepare thickness-controlled thin-film micro graphene foams (μGFs) with pores in the lower micrometer range grown by chemical vapor deposition which can be used as highly conductive current collectors in flexible supercapacitors. To fabricate the μGF, we use porous metallic catalytic substrates consisting of nickel/copper alloy synthesized on nickel foil by electrodeposition in an electrolytic solution. Changing the duration of the electrodeposition allows the control of the thickness of the metal foam, and thus of the μGF, ranging from a few micrometers to the millimeter scale. The resulting μGF with a thickness and pores in the micrometer regime exhibits high structural quality which leads to a very low intrinsic resistance of the devices. Transferred onto flexible substrates, we demonstrate a uniform coating of the μGFs with manganese oxide, a pseudocapacitively active material. Considering the porous structure and the thickness of the μGFs, square wave potential pulses are used to ensure uniform coverage by the oxide material boosting the volumetric and areal capacitance to 14 F cm‑3 and 0.16 F cm‑2. The μGF with a thickness and pores in the micrometer regime in combination with a coating technique tuned to the porosity of the μGF is of great relevance for the development of supercapacitors based on state-of-the-art graphene foams.

  5. Uniformly coated highly porous graphene/MnO2 foams for flexible asymmetric supercapacitors.

    Science.gov (United States)

    Drieschner, Simon; Seckendorff, Maximilian von; Corro, Elena Del; Wohlketzetter, Jörg; Blaschke, Benno M; Stutzmann, Martin; Garrido, Jose A

    2018-06-01

    Supercapacitors are called to play a prominent role in the newly emerging markets of electric vehicles, flexible displays and sensors, and wearable electronics. In order to compete with current battery technology, supercapacitors have to be designed with highly conductive current collectors exhibiting high surface area per unit volume and uniformly coated with pseudocapacitive materials, which is crucial to boost the energy density while maintaining a high power density. Here, we present a versatile technique to prepare thickness-controlled thin-film micro graphene foams (μGFs) with pores in the lower micrometer range grown by chemical vapor deposition which can be used as highly conductive current collectors in flexible supercapacitors. To fabricate the μGF, we use porous metallic catalytic substrates consisting of nickel/copper alloy synthesized on nickel foil by electrodeposition in an electrolytic solution. Changing the duration of the electrodeposition allows the control of the thickness of the metal foam, and thus of the μGF, ranging from a few micrometers to the millimeter scale. The resulting μGF with a thickness and pores in the micrometer regime exhibits high structural quality which leads to a very low intrinsic resistance of the devices. Transferred onto flexible substrates, we demonstrate a uniform coating of the μGFs with manganese oxide, a pseudocapacitively active material. Considering the porous structure and the thickness of the μGFs, square wave potential pulses are used to ensure uniform coverage by the oxide material boosting the volumetric and areal capacitance to 14 F cm -3 and 0.16 F cm -2 . The μGF with a thickness and pores in the micrometer regime in combination with a coating technique tuned to the porosity of the μGF is of great relevance for the development of supercapacitors based on state-of-the-art graphene foams.

  6. dsmcFoam+: An OpenFOAM based direct simulation Monte Carlo solver

    Science.gov (United States)

    White, C.; Borg, M. K.; Scanlon, T. J.; Longshaw, S. M.; John, B.; Emerson, D. R.; Reese, J. M.

    2018-03-01

    dsmcFoam+ is a direct simulation Monte Carlo (DSMC) solver for rarefied gas dynamics, implemented within the OpenFOAM software framework, and parallelised with MPI. It is open-source and released under the GNU General Public License in a publicly available software repository that includes detailed documentation and tutorial DSMC gas flow cases. This release of the code includes many features not found in standard dsmcFoam, such as molecular vibrational and electronic energy modes, chemical reactions, and subsonic pressure boundary conditions. Since dsmcFoam+ is designed entirely within OpenFOAM's C++ object-oriented framework, it benefits from a number of key features: the code emphasises extensibility and flexibility so it is aimed first and foremost as a research tool for DSMC, allowing new models and test cases to be developed and tested rapidly. All DSMC cases are as straightforward as setting up any standard OpenFOAM case, as dsmcFoam+ relies upon the standard OpenFOAM dictionary based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of a DSMC simulation is not typical of most OpenFOAM applications. We show that dsmcFoam+ compares well to other well-known DSMC codes and to analytical solutions in terms of benchmark results.

  7. Finite Element Analysis and Crashworthiness Optimization of Foam-filled Double Circular under Oblique Loading

    Directory of Open Access Journals (Sweden)

    Fauzan Djamaluddin

    Full Text Available Abstract Finite element analysis and optimization design carry out for the quasi static responses of foam-filled double circular tube is presented in this paper. In the investigation of the crashworthiness capability, some aspects were considered for variations in geometry parameters of tubes and the loading condition to investigate the crashworthiness capability. Empty, foam-filled, and full foam-filled doublé tubes of thin walled structures were observed subjected to oblique impact (0˚ - 40˚. The numerical solution was used to determine the crashworthiness parameters. In addition, NSGA II and Radial Basis Function were used to optimize the crashworthiness capability of tubes. In conclution, the crash performaces of foam-filled double tube is better than the other structures in this work. The outcome that expected is the new design information of various kinds of cylindrical tubes for energy absorber application.

  8. Evaluation of the room shielding thickness of Hi-Art tomotherapy system

    International Nuclear Information System (INIS)

    Liu Haikuan; Wu Jinhai; Gu Naigu; Gao Yiming; Wang Li; Huang Weiqin; Wang Fengxian

    2010-01-01

    In this paper, we calculate and evaluate the room shielding thickness of a Hi-Art tomotherapy system, which is a new type of radiotherapy facility. Due to the self-shielding of the accelerator,only scattered beam and beam leakage were considered in calculating the room shielding thickness. The radiation field of the tomotherapy system was used as the basic data to calculate the shielding thickness of every 15 degree solid angle. The maximum shielding thickness required of each shielding wall was at the position with the angle of 15 degree, and the calculated shielding thickness were 1023, 975, 917, 1460, 1147 and 1189 mm for the east wall,south wall,west wall, north wall, the roof and the floor,respectively. According to the calculation results, all shielding walls, ceiling and floor could meet the requirement of the radiation protection, but the north wall thickness of 1200 mm was a little thinner. (authors)

  9. Flexible Foam Model.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K.; Lu, Wei-Yang; Werner, Brian T.; Scherzinger, William M.; Lo, Chi S.

    2018-03-01

    Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented into SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.

  10. Determination of Optimum Thermal Insulation Thicknesses for External Walls Considering the Heating, Cooling and Annual Energy Requirement

    Directory of Open Access Journals (Sweden)

    Ömer KAYNAKLI

    2016-06-01

    Full Text Available In this study, optimization of thermal insulation thickness applied to the external walls of buildings has been carried out comparatively based on the seasonal (space-heating and cooling and the annual energy requirements considering solar radiation effect. This study has been performed for four degree-day regions of Turkey, namely, Iskenderun (in the first region, Istanbul (in the second region, Ankara (in the third region and Ardahan (in the fourth region. By determining the sol-air temperatures for each region and maximizing the present worth value of seasonal and annual energy savings, the optimum thermal insulation thicknesses have been calculated. The effects of solar radiation on heating-cooling energy requirements, the variation of optimum insulation thicknesses and payback periods with respect to degree-day regions, the differences between the analyses based on seasonal and annual have been presented in tabular and graphical form.

  11. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.

    Science.gov (United States)

    Xu, Ziyue; Bagci, Ulas; Foster, Brent; Mansoor, Awais; Udupa, Jayaram K; Mollura, Daniel J

    2015-08-01

    Inflammatory and infectious lung diseases commonly involve bronchial airway structures and morphology, and these abnormalities are often analyzed non-invasively through high resolution computed tomography (CT) scans. Assessing airway wall surfaces and the lumen are of great importance for diagnosing pulmonary diseases. However, obtaining high accuracy from a complete 3-D airway tree structure can be quite challenging. The airway tree structure has spiculated shapes with multiple branches and bifurcation points as opposed to solid single organ or tumor segmentation tasks in other applications, hence, it is complex for manual segmentation as compared with other tasks. For computerized methods, a fundamental challenge in airway tree segmentation is the highly variable intensity levels in the lumen area, which often causes a segmentation method to leak into adjacent lung parenchyma through blurred airway walls or soft boundaries. Moreover, outer wall definition can be difficult due to similar intensities of the airway walls and nearby structures such as vessels. In this paper, we propose a computational framework to accurately quantify airways through (i) a novel hybrid approach for precise segmentation of the lumen, and (ii) two novel methods (a spatially constrained Markov random walk method (pseudo 3-D) and a relative fuzzy connectedness method (3-D)) to estimate the airway wall thickness. We evaluate the performance of our proposed methods in comparison with mostly used algorithms using human chest CT images. Our results demonstrate that, on publicly available data sets and using standard evaluation criteria, the proposed airway segmentation method is accurate and efficient as compared with the state-of-the-art methods, and the airway wall estimation algorithms identified the inner and outer airway surfaces more accurately than the most widely applied methods, namely full width at half maximum and phase congruency. Copyright © 2015. Published by Elsevier B.V.

  12. Load capacity of a thick-walled cylinder with a radial hole

    International Nuclear Information System (INIS)

    Laczek, S.; Rys, J.; Zielinski, A.P.

    2010-01-01

    The paper deals with elastic-plastic analysis of the stress-strain state in the vicinity of a hole in a thick-walled cylindrical pressure vessel. The investigations have been inspired by the phenomenon of ductile fracture observed in a high-pressure reactor. Using finite element calculations, different failure criteria are proposed to aid design and control of high-pressure vessels with piping attachments. They are compared with suggestions of American (ASME) and European (EN) standards. A simple shakedown analysis of the structure is also presented. The local stress distribution near the hole results in a specific failure of the vessel. A plastic zone appears in the vicinity of the internal cylinder surface and propagates along the hole side. The vessel unloading can cause local reverse plasticity, which leads to plastic shakedown in the small zone and then to progressive ductile fracture in this zone. This is dangerous for the whole structure.

  13. Method and apparatus to produce and maintain a thick, flowing, liquid lithium first wall for toroidal magnetic confinement DT fusion reactors

    Science.gov (United States)

    Woolley, Robert D.

    2002-01-01

    A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.

  14. Encapsulation of low density plastic foam materials for the fast ignition realization experiment (FIREX). Control of microstructure and density

    International Nuclear Information System (INIS)

    Nagai, Keiji; Yang, H.; Iwamoto, A.

    2008-10-01

    Development of foam capsule fabrication for cryogenically cooled fuel targets is overviewed in the present paper. The fabrication development was initiated as a part of the Fast Ignition Realization Experiment (FIREX) Project at the ILE, Osaka University in the way of bilateral collaboration between Osaka University and National Institute for Fusion Science (NIFS). A foam cryogenic target was designed where low-density foam shells with a conical light guide will be cooled down to the cryogenic temperature and will be fueled through a narrow pipe. The required diameter and thickness of the capsule are 500 μm and 20 μm, respectively. The material should be low-density plastics foam. We have prepared such capsules using 1) mixtureing a new material of (phloroglucinolcarboxylic acid)/formalin (PF) linear polymer to control kinematic viscosity of the precursor, 2) phase-transfer-catalyzed gelation process to keep density matching of three phases of the emulsion. 3) non-volatile silicone oil as outer oil of emulsion in order to prevent hazard halogenated hydrocarbon and flammable mineral oil. The obtained foam capsule had fine structure of 180 nm (outer surface) to 220 nm (inner surface) and uniform thickness reaching to resolution limit of optical analysis (∼0.5 μm). A small hole was made before the solvent exchange and the drying process to prevent distortion due to volume changes. The density of dried foam was 0.29 g/cm 3 . After attaching the petawatt laser guiding cone and fueling glass tube, poly([2,2]paracyclophane) was coated on the foam surface and supplied for a fueling test of cryogenic hydrogen. Generally, lower density is from larger pore, then precise control of thickness and its encapsulation becomes more difficult. We have clarified the relation between pore size and preparation conditions using several precursor materials, and revealed how to control pore size of low density foams, where the solvent affinity for the polymer chain plays fundamental

  15. Comparison of characteristics parameters in the evaluation of wall thickness diminishing in admiralty brass tubes of the steam condenser, tested by eddy currents

    International Nuclear Information System (INIS)

    Obrutsky, Alba E.; Mendez, Jorge A.; Acosta, Cesar D.; Scopelliti, Jose D.

    1999-01-01

    This work is aimed to appraise the measure of the wall thickness diminishing in the signals evaluation obtained in the inspection of steam condenser by eddy currents. In the analysis of the obtained signals were observed in the brass tubes a great quantity of internal defects whose signal indicates that there were diminishing of the wall thickness between 80% and 100%. With all this information and analyzing the data acquired, the tubes with more important indications were selected to make a more exhaustive study of the found defectology. As first test, it was measured the thickness of the worn tubes, comparing them with the original ones that are in stock. It was verified that the tubes separated for this study presented a 30% less thickness in comparison with the new tubes. A semiquantitative chemical test (EDAX) was made to verify if it was the same material. One of the extracted tubes (066 Y1) was reinspected in order to isolate the area with indications. Once this was performed, it was decided to cut the tube to make a visual inspection and to evaluate to what type of defect corresponds to the signals obtained. In the metallography it was confirm that it was a horseshoe type defect. When performing a dimensional control test of the found real defect, it was checked that the information obtained by eddy currents regarding the diminishing of the wall thickness diminishing was valid. At a last stage of the test, it was proceed to make an study and verification of the used parameters, probes, standards and finally determine which shall be the convenient modifications to minimize errors. (author)

  16. PUR-PIR foam produced based on poly(hydroxybutyl citrate foamed founded with different factories

    Directory of Open Access Journals (Sweden)

    Liszkowska Joanna

    2018-03-01

    Full Text Available A poly(hydroxybutyl citrate p(HBC was obtained. The product compound produced in the solution during esterification, was added to rigid polyurethane-polyisocyanurate foams (PUR-PIR. The amount of petrochemical polyol in the foams was decreased in favor of the p(HBC from 0.1 to 0.5 equivalent. The foams were foamed in two ways: with distilled water (W foams and with Solkane 365/227 (S foams. The examination results of both foam series were compared. They showed that the foams foamed with water have higher softening temperature than the foams foamed with solkane. The retention values for both foam series are around 91–95%, and water absorption in the range of 0.7–3.2%. The anisotropy coefficient did not exceed 1.08 (the lowest value being 1.01.

  17. Infiltrated carbon foam composites

    Science.gov (United States)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  18. Effect of foam on temperature prediction and heat recovery potential from biological wastewater treatment.

    Science.gov (United States)

    Corbala-Robles, L; Volcke, E I P; Samijn, A; Ronsse, F; Pieters, J G

    2016-05-15

    Heat is an important resource in wastewater treatment plants (WWTPs) which can be recovered. A prerequisite to determine the theoretical heat recovery potential is an accurate heat balance model for temperature prediction. The insulating effect of foam present on the basin surface and its influence on temperature prediction were assessed in this study. Experiments were carried out to characterize the foam layer and its insulating properties. A refined dynamic temperature prediction model, taking into account the effect of foam, was set up. Simulation studies for a WWTP treating highly concentrated (manure) wastewater revealed that the foam layer had a significant effect on temperature prediction (3.8 ± 0.7 K over the year) and thus on the theoretical heat recovery potential (30% reduction when foam is not considered). Seasonal effects on the individual heat losses and heat gains were assessed. Additionally, the effects of the critical basin temperature above which heat is recovered, foam thickness, surface evaporation rate reduction and the non-absorbed solar radiation on the theoretical heat recovery potential were evaluated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Testing and analysis to determine the shell thickness required to prevent puncture

    International Nuclear Information System (INIS)

    Ammerman, D.J.; Radloff, H.D.; Eifert, E.J.

    1998-05-01

    Type B radioactive material packages are required to withstand a hypothetical puncture accident of a free fall from a height of one meter onto a 15 cm diameter mild steel puncture probe. For many packages it is desirable to have this accident event not result in puncture or tearing of the outer shell of the package. The wall thickness necessary to prevent this has historically been determined by test or the use of empirical relations. This technique generally results in overly conservative designs, but the degree of conservatism is uncertain. The use of modem finite element codes to determine package response to puncture accidents can result in designs that are both safe and economical. The work reported in this paper is aimed at developing a method to analytically determine the wall thickness required to prevent puncture. For designers and regulators to have confidence in this analytical method, however, it must be benchmarked against test results. A series of tests has been conducted with differing shell thicknesses, shell materials of mild steel and stainless steel, and shell backing materials of lead, foam, and air. The results of these tests have been compared with pre-test analytical predictions of the response obtained from the nonlinear transient dynamic finite element program PRONTO-2D. From this comparison it can be seen that the finite element method can accurately predict the response of packages to puncture accidents. This implies that an analytical technique based on the finite element method can be used to design packages having known response and margin of safety against tearing of the outer shell. In addition, the analytical technique can accurately predict the deformed shape of the package following the test. This may be important for subsequent calculations, such as external dose and heat input during a thermal event

  20. Fast mean and variance computation of the diffuse sound transmission through finite-sized thick and layered wall and floor systems

    Science.gov (United States)

    Decraene, Carolina; Dijckmans, Arne; Reynders, Edwin P. B.

    2018-05-01

    A method is developed for computing the mean and variance of the diffuse field sound transmission loss of finite-sized layered wall and floor systems that consist of solid, fluid and/or poroelastic layers. This is achieved by coupling a transfer matrix model of the wall or floor to statistical energy analysis subsystem models of the adjacent room volumes. The modal behavior of the wall is approximately accounted for by projecting the wall displacement onto a set of sinusoidal lateral basis functions. This hybrid modal transfer matrix-statistical energy analysis method is validated on multiple wall systems: a thin steel plate, a polymethyl methacrylate panel, a thick brick wall, a sandwich panel, a double-leaf wall with poro-elastic material in the cavity, and a double glazing. The predictions are compared with experimental data and with results obtained using alternative prediction methods such as the transfer matrix method with spatial windowing, the hybrid wave based-transfer matrix method, and the hybrid finite element-statistical energy analysis method. These comparisons confirm the prediction accuracy of the proposed method and the computational efficiency against the conventional hybrid finite element-statistical energy analysis method.

  1. Continuous thickness control of extruded pipes with assistance of microcomputers

    International Nuclear Information System (INIS)

    Breil, J.

    1983-06-01

    Because of economic and quality securing reasons a constant wall thickness of extruded pipes in circumference and extrusion direction is an important production aim. Therefore a microcomputer controlled system was developed, which controls die centering with electric motors. The control of wall thickness distribution; was realized with two conceptions: a dead time subjected control with a rotating on line wall thickness measuring instrument and an adaptive control with sensors in the pipe die. With a PI-algorithm excentricities of 30% of the wall thickness could be controlled below a trigger level of 2% within three dead times. (orig.) [de

  2. Milestone 5 test report. Task 5, subtask 5.2: Tile to foam strength tests

    Science.gov (United States)

    Greenberg, H. S.

    1994-01-01

    This report summarizes work that has been performed to date on the strength of a cryotank insulation system using Rohacell foam and TUFI-coated AETB-12 ceramic tiles directly bonded to a simulated graphite-epoxy tank wall. Testing utilized a custom specimen design which consists of a long tensile specimen with eccentric loading to induce curvature similar to the curvature expected due to 'pillowing' of the tank when pressurized. A finite element model was constructed to predict the specific element strains in the test article, and to assist with design of the test specimen to meet the specific goals of curvature and laminate strain. The results indicate that the heat treated 3.25-pcf density Rohacell foam does not provide sufficient strength for the induced stresses due to curvature and stress concentration at the RTV bondline to the TUFI tile. The test was repeated using higher density non-heat treated Rohacell foam (6.9 pcf) without foam failure. The finite element model was shown to predict specimen behavior, and validation of the model was successful. It is pertinent to mention that the analyses described herein accurately predicted the failure of the heat treated foams and based on this analysis method it is expected that the untreated 3.25 pcf Rohacell foam will be successful.

  3. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    OpenAIRE

    Peter W. Gaiser; Magdalena D. Anguelova

    2012-01-01

    Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam ...

  4. Urinary albumin excretion in hospitalized patients with acute myocardial infarction. Prevalence of microalbuminuria and correlation to left ventricle wall thickness

    DEFF Research Database (Denmark)

    Taskiran, M; Feldt-Rasmussen, B; Jensen, G B

    1998-01-01

    was independent of blood pressure, body weight, smoking, diabetes mellitus, renal disease, and thrombolytic treatment. There was a positive correlation between urinary albumin excretion and thickness of the left ventricle wall (R = 0.28; p = 0.001) which was independent of blood pressure. Follow-up examination...

  5. Operator spin foam models

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Hellmann, Frank; Kaminski, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2011-01-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin

  6. Bubble and foam chemistry

    CERN Document Server

    Pugh, Robert J

    2016-01-01

    This indispensable guide will equip the reader with a thorough understanding of the field of foaming chemistry. Assuming only basic theoretical background knowledge, the book provides a straightforward introduction to the principles and properties of foams and foaming surfactants. It discusses the key ideas that underpin why foaming occurs, how it can be avoided and how different degrees of antifoaming can be achieved, and covers the latest test methods, including laboratory and industrial developed techniques. Detailing a variety of different kinds of foams, from wet detergents and food foams, to polymeric, material and metal foams, it connects theory to real-world applications and recent developments in foam research. Combining academic and industrial viewpoints, this book is the definitive stand-alone resource for researchers, students and industrialists working on foam technology, colloidal systems in the field of chemical engineering, fluid mechanics, physical chemistry, and applied physics.

  7. Chest-wall thickness and percent thoracic fat estimation by B-mode ultrasound: system and procedure review

    International Nuclear Information System (INIS)

    Berger, C.D.; Lane, B.H.; Dunsmore, M.R.

    1983-02-01

    Accurate measurement of chest wall thickness is necessary for estimation of lung burden of transuranic elements in humans. To achieve tis capability, the ORNL Whole Body Counter has acquired a B-mode ultrasonic imaging system for defining the structure within the thorax of the body. This report contains a review of the ultrasound system in use at the ORNL Whole Body Counter, including its theory of operation, and te procedure for use of the system. Future developmental plans are also presented

  8. A multilayered polyurethane foam technique for skin graft immobilization.

    Science.gov (United States)

    Nakamura, Motoki; Ito, Erika; Kato, Hiroshi; Watanabe, Shoichi; Morita, Akimichi

    2012-02-01

    Several techniques are applicable for skin graft immobilization. Although the sponge dressing is a popular technique, pressure failure near the center of the graft is a weakness of the technique that can result in engraftment failure. To evaluate the efficacy of a new skin graft immobilization technique using multilayered polyurethane foam in vivo and in vitro. Twenty-six patients underwent a full-thickness skin graft. Multiple layers of a hydrocellular polyurethane foam dressing were used for skin graft immobilization. In addition, we created an in vitro skin graft model that allowed us to estimate immobilization pressure at the center and edges of skin grafts of various sizes. Overall mean graft survival was 88.9%. In the head and neck region (19 patients), mean graft survival was 93.6%. Based on the in vitro outcomes, this technique supplies effective pressure (skin graft. This multilayered polyurethane foam dressing is simple, safe, and effective for skin graft immobilization. © 2011 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  9. Reducing the Impact of Electroconductivity and the Gap between the Pipe and the Transducer at Measuring Thickness of Electroconductive Pipe Walls using the Eddy-Current Method

    Directory of Open Access Journals (Sweden)

    Yakimov Evgeny

    2016-01-01

    Full Text Available The paper describes a dual-frequency method for reducing the impact of changes in the gap size between the eddy-current transducer and the pipe, as well as the pipe electrical conductivity on the eddy-current thickness gauge readings. A block-diagram of the dual-frequency eddycurrent thickness gauge is proposed for light-alloy drill pipes. The amplitude and signal phase dependencies on the wall thickness in the range from 6 to 17 mm and the gap in the range from 0 to 13.5 mm were studied, the results are presented. The digital signal processing algorithms based on the piecewise-linear approximation of low-frequency and high-frequency signal phase dependencies on the wall thickness are proposed. It is shown that the proposed correction algorithms can reduce the error caused by variations of electrical conductivity and the gap between the transducer and the pipe.

  10. Foam engineering fundamentals and applications

    CERN Document Server

    2012-01-01

    Containing contributions from leading academic and industrial researchers, this book provides a much needed update of foam science research. The first section of the book presents an accessible summary of the theory and fundamentals of foams. This includes chapters on morphology, drainage, Ostwald ripening, coalescence, rheology, and pneumatic foams. The second section demonstrates how this theory is used in a wide range of industrial applications, including foam fractionation, froth flotation and foam mitigation. It includes chapters on suprafroths, flotation of oil sands, foams in enhancing petroleum recovery, Gas-liquid Mass Transfer in foam, foams in glass manufacturing, fire-fighting foam technology and consumer product foams.

  11. Foams theory, measurements, and applications

    CERN Document Server

    Khan, Saad A

    1996-01-01

    This volume discusses the physics and physical processes of foam and foaming. It delineates various measurement techniques for characterizing foams and foam properties as well as the chemistry and application of foams. The use of foams in the textile industry, personal care products, enhanced oil recovery, firefighting and mineral floatation are highlighted, and the connection between the microstructure and physical properties of foam are detailed. Coverage includes nonaqueous foams and silicone antifoams, and more.

  12. Drying Spirulina with Foam Mat Drying at Medium Temperature

    Directory of Open Access Journals (Sweden)

    Aji Prasetyaningrum

    2012-10-01

    Full Text Available Spirulina is a single cell blue green microalgae (Cyanobacteria containing many Phytonutrients (Beta-carotene, Chlorophyl, Xanthophyl, Phyocianin using as anti-carcinogen in food. Producing dry spirulina by quick drying process at medium temperature is very important to retain the Phytonutrient quality. Currently, the work is still challenging due to the gel formation that block the water diffusion from inside to the surface.  This research studies the performance of foam-mat drying on production of dry spirulina. In this method the spirulina was mixed with foaming agent (glair/egg albumen, popular as white egg at 2.5% by weight at air velocity 2.2 m/sec. Here, the effect of spirulina thickness and operational temperature on drying time and quality (Beta-carotene and color were observed. The drying time was estimated based on the measurement of water content in spirulina versus time. Result showed that the thicker spirulina, the longer drying time. Conversely, the higher operational temperature, faster drying time. At thickness ranging 1-3 mm and operational temperature below 70oC, the quality of spirulina can fit the market requirement

  13. Starch/fiber/poly(lactic acid) foam and compressed foam composites

    Science.gov (United States)

    Composites of starch, fiber, and poly(lactic acid) (PLA) were made using a foam substrate formed by dehydrating starch or starch/fiber gels. PLA was infiltrated into the dry foam to provide better moisture resistance. Foam composites were compressed into plastics using force ranging from 4-76MPa. Te...

  14. Experimental Investigation of Closed Porosity of Inorganic Solidified Foam Designed to Prevent Coal Fires

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2015-01-01

    Full Text Available In order to overcome the deficiency of the existing fire control technology and control coal spontaneous combustion by sealing air leakages in coal mines, inorganic solidified foam (ISF with high closed porosity was developed. The effect of sodium dodecyl sulfate (SDS concentration on the porosity of the foams was investigated. The results showed that the optimized closed porosity of the solidified foam was 38.65 wt.% for an SDS concentration of approximately 7.4×10-3 mol/L. Based on observations of the microstructure of the pore walls after solidification, it was inferred that an equilibrium between the hydration process and the drainage process existed. Therefore, the ISF was improved using three different systems. Gelatin can increase the viscosity of the continuous phase to form a viscoelastic film around the air cells, and the SDS + gelatin system can create a mixed surfactant layer at gas/liquid interfaces. The accelerator (AC accelerates the hydration process and coagulation of the pore walls before the end of drainage. The mixed SDS + gelatin + AC systems produced an ISF with a total porosity of 79.89% and a closed porosity of 66.89%, which verified the proposed stabilization mechanism.

  15. MICROCT AND PREPARATION OF ß-TCP GRANULAR MATERIAL BY THE POLYURETHANE FOAM METHOD

    Directory of Open Access Journals (Sweden)

    Robert Filmon

    2011-05-01

    Full Text Available Commercial ß-tricalcium phosphate (ß-TCP is commercialy available in granules manufactured by sintering of powders. We have evaluated the different steps of the manufacturing process of ß-TCP ceramics granules prepared from blocks obtained with the polyurethane foam technology. Three types of slurry were prepared with 10, 15 and 25 g of ß-TCP per gram of polyurethane foam. Analysis was done by scanning electron microscopy, EDX, Raman spectroscopy and microcomputed tomography combined with image analysis. A special algorithm was used to identify the internal microporosity (created by the calcination of the foam from the internal macroporosity due to the spatial repartition of the material. The low ß-TCP dosages readily infiltrated the foam and the slurry was deposited along the polymer rods. On the contrary, the highest concentration produced inhomogeneous infiltrated blocks and foam cavities appeared completely filled in some areas. 2D microcomputed sections and reconstructed 3D models evidenced this phenomenon and the frequency distribution of the thickness and separation of material trabeculae confirmed the heterogeneity of the distribution. When crushed, blocks prepared with the 25 g slurry provided the largest and irregular granulates.

  16. Continuous monitoring of the wall thickness of pipelines with ultrasonic waves; Dauerueberwachung der Wanddicke von Rohrleitungen mit Ultraschall

    Energy Technology Data Exchange (ETDEWEB)

    Mueck, Andreas [SONOTEC Ultraschallsensorik Halle GmbH, Halle (Saale) (Germany); Imhof, Dietmar [TUeV NORD MPA GmbH und Co.KG, Leuna (Germany)

    2015-07-01

    Pipelines in industrial plants must be constantly monitored due to occurring erosion and corrosion. The determination of the residual wall thickness is generally carried out with ultrasound. Often, the critical points are difficult to access and the pipes insulated. The preparation and evaluation of a measurement is therefore very costly. The measuring system SONOWALL S ultrasonic probes are firmly attached to the pipeline and installed into isolation. The number and position of the probes can be freely selected. Often, the load is not known exactly why the monitoring of the pipe wall thickness over the entire circumference is necessary. The acoustic coupling to the pipe is done with proven adhesives that do not lose their adhesive strength even under changing ambient temperatures. The connecting cables are housed away up to 20 m in an easily accessible place in a terminal box. There can be done a wall thickness measurement with conventional ultrasonic testing devices. By using standardized components, the measuring system meets the requirements of DIN EN 12668 and DIN EN 14127. [German] Rohrleitungen in industriellen Anlagen muessen aufgrund der auftretenden Erosion und Korrosion permanent ueberwacht werden. Die Bestimmung der Restwanddicke erfolgt in der Regel mit Ultraschall. Oftmals sind die kritischen Stellen schwer zugaenglich und die Rohrleitungen isoliert. Die Vor- und Nachbereitung einer Messung ist dadurch sehr aufwendig. Beim Messsystem SONOWALL S werden Ultraschallpruefkoepfe fest an der Rohrleitung angebracht und in die Isolation eingebaut. Die Anzahl und Position der Pruefkoepfe ist dabei frei waehlbar. Oft ist die Belastung nicht genau bekannt, weshalb eine Ueberwachung der Rohrwanddicke ueber den gesamten Umfang notwendig ist. Die akustische Ankopplung an das Rohr erfolgt mit erprobten Klebstoffen, die auch bei wechselnden Umgebungstemperaturen ihre Haftfestigkeit nicht verlieren. Die Anschlusskabel werden bis zu 20m entfernt an einer gut

  17. The influence of wall permeability on laminar and turbulent flows : Theory and simulations

    NARCIS (Netherlands)

    Breugem, W.P.

    2005-01-01

    The study of flows over permeable walls is relevant to many applications. Examples are flows over and through porous river beds, vegetation, snow, heat exchangers of foam metal, and oil wells. The main objectives of this thesis are to gain insight in the influence of wall permeability on both

  18. Ni foam assisted synthesis of high quality hexagonal boron nitride with large domain size and controllable thickness

    Science.gov (United States)

    Ying, Hao; Li, Xiuting; Li, Deshuai; Huang, Mingqiang; Wan, Wen; Yao, Qian; Chen, Xiangping; Wang, Zhiwei; Wu, Yanqing; Wang, Le; Chen, Shanshan

    2018-04-01

    The scalable synthesis of two-dimensional (2D) hexagonal boron nitride (h-BN) is of great interest for its numerous applications in novel electronic devices. Highly-crystalline h-BN films, with single-crystal sizes up to hundreds of microns, are demonstrated via a novel Ni foam assisted technique reported here for the first time. The nucleation density of h-BN domains can be significantly reduced due to the high boron solubility, as well as the large specific surface area of the Ni foam. The crystalline structure of the h-BN domains is found to be well aligned with, and therefore strongly dependent upon, the underlying Pt lattice orientation. Growth-time dependent experiments confirm the presence of a surface mediated self-limiting growth mechanism for monolayer h-BN on the Pt substrate. However, utilizing remote catalysis from the Ni foam, bilayer h-BN films can be synthesized breaking the self-limiting effect. This work provides further understanding of the mechanisms involved in the growth of h-BN and proposes a facile synthesis technique that may be applied to further applications in which control over the crystal alignment, and the numbers of layers is crucial.

  19. Development and validation of cryogenic foam insulation for LH2 subsonic transports

    Science.gov (United States)

    Anthony, F. M.; Colt, J. Z.; Helenbrook, R. G.

    1981-01-01

    Fourteen foam insulation specimens were tested. Some were plain foam while others contained flame retardants, chopped fiberglass reinforcement and/or vapor barriers. The thermal performance of the insulation was determined by measuring the rate at which LH2 boiled from an aluminum tank insulated with the test material. The test specimens were approximately 50 mm (2 in.) thick. They were structurally scaled so that the test cycle would duplicate the maximum thermal stresses predicted for the thicker insulation of an aircraft liquid hydrogen fuel tank during a typical subsonic flight. The simulated flight cycle of approximately 10 minutes duration heated the other insulation surface to 316 K (110 F) and cooled it to 226 K (20 F) while the inner insulation surface remained at liquid hydrogen temperature of 20 K (-423 F). Two urethane foam insulations exceeded the initial life goal of 2400 simulated flight cycles and sustained 4400 cycles with only minor damage. The addition of fiberglass reinforcement of flame retardant materials to an insulation degraded thermal performance and/or the life of the foam material. Installation of vapor barriers enhanced the structural integrity of the material but did not improve thermal performance. All of the foams tested were available materials; none were developed specifically for LH2 service.

  20. Multifunctional foaming agent to prepare aluminum foam with enhanced mechanical properties

    Science.gov (United States)

    Li, Xun; Liu, Ying; Ye, Jinwen; An, Xuguang; Ran, Huaying

    2018-03-01

    In this paper, CuSO4 was used as foaming agent to prepare close cell Aluminum foam(Al foam) at the temperature range of 680 °C ∼ 758 °C for the first time. The results show that CuSO4 has multifunctional such as, foaming, viscosity increasing, reinforcement in Al matrix, it has a wide decomposition temperature range of 641 °C ∼ 816 °C, its sustain-release time is 5.5 min at 758 °C. The compression stress and energy absorption of CuSO4-Al foam is 6.89 Mpa and 4.82 × 106 J m‑3(compression strain 50%), which are 77.12% and 99.17% higher than that of TiH2-Al foam at the same porosity(76% in porosity) due to the reinforcement in Al matrix and uniform pore dispersion.

  1. Foam Glass for Construction Materials

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund

    2016-01-01

    Foaming is commonly achieved by adding foaming agents such as metal oxides or metal carbonates to glass powder. At elevated temperature, the glass melt becomes viscous and the foaming agents decompose or react to form gas, causing a foamy glass melt. Subsequent cooling to room temperature, result...... in a solid foam glass. The foam glass industry employs a range of different melt precursors and foaming agents. Recycle glass is key melt precursors. Many parameters influence the foaming process and optimising the foaming conditions is very time consuming. The most challenging and attractive goal is to make...... low density foam glass for thermal insulation applications. In this thesis, it is argued that the use of metal carbonates as foaming agents is not suitable for low density foam glass. A reaction mechanism is proposed to justify this result. Furthermore, an in situ method is developed to optimise...

  2. The role of graphite foam pore structure on saturated pool boiling enhancement

    International Nuclear Information System (INIS)

    Pranoto, I.; Leong, K.C.; Jin, L.W.

    2012-01-01

    This paper presents an experimental study of the pool boiling phenomena and performance of porous graphite foam evaporators of different structures and thermophysical properties. Two dielectric liquids viz. FC-72 and HFE-7000 were used as working fluids. Block and fin evaporators of different fin-to-block-surface-area ratios (AR) were designed to study the role of the internal pore structure of graphite foams in a compact air-cooled thermosyphon under saturated pool boiling condition for high heat flux electronics cooling applications. The wall temperatures were measured and the boiling heat transfer coefficients were calculated to analyze the boiling performance. It was found that both fin structures with AR = 3.70 and 2.73 result in reduced boiling heat transfer performances and higher wall temperatures. The experimental results show that the boiling heat transfer coefficients of the block structures are about 1.2–1.6 times higher than those of the fin structures. The total internal surface area to volume ratio (β) and the total exposed areas (A T ) of the graphite foams were calculated in this study. The results show that the values of β and A T of the block structures are much higher than the fin structures for both tested “Pocofoam” 61% porosity and “Kfoam” 78% porosity evaporators which resulted in higher boiling heat transfer coefficient and lower wall temperature of the block structures. A visualization study shows that more bubbles were generated from the block structures compared to the fin structures due to the larger number of nucleation sites from the block structures. It was also found that use of FC-72 resulted in better boiling heat transfer performance compared to HFE-7000. - Highlights: ► We studied the pool boiling performance of a thermosyphon with graphite foam evaporators of block and fin structures. ► FC-72 and HFE-7000 were used as the working fluids. ► The boiling heat transfer coefficients of the block structures are 1.2

  3. Development of sea water pipe thickness measurement technique

    International Nuclear Information System (INIS)

    Morimoto, Kazuo; Wakayama, Seiichi; Takeuchi, Iwao; Masamori, Sigero; Yamasita, Takesi.

    1995-01-01

    In nuclear and thermal power plants, wall wear of sea water pipes is reported to occur in the inner surface due to corrosion and erosion. From the viewpoint of improving the equipments reliability, it is desirable that wall thickness should be measured from the outer surface of the pipe during operation. In the conventional method, paint on the outer surface of the pipe was locally removed at each point of a 20 by 50 mm grid, and inspection was carried out at these spots. However, this method had some problems, such as (1) it was necessary to replace the paint, and (2) it was difficult to obtain the precise distribution of wall thickness. Therefore, we have developed a wall thickness measuring system which has the following features. (1) It is possible to perform inspection from the outer surface without removing paint during operation. (2) It is possible to measure the distribution of wall thickness and display it as color contour map simultaneously. (3) The work of inspectors can be alleviated by the automatic recording of measured data. (author)

  4. Preparation of three-dimensional shaped aluminum alloy foam by two-step foaming

    International Nuclear Information System (INIS)

    Shang, J.T.; Xuming, Chu; Deping, He

    2008-01-01

    A novel method, named two-step foaming, was investigated to prepare three-dimensional shaped aluminum alloy foam used in car industry, spaceflight, packaging and related areas. Calculations of thermal decomposition kinetics of titanium hydride showed that there is a considerable amount of hydrogen releasing when the titanium hydride is heated at a relatively high temperature after heated at a lower temperature. The hydrogen mass to sustain aluminum alloy foam, having a high porosity, was also estimated by calculations. Calculations indicated that as-received titanium hydride without any pre-treatment can be used as foaming agents in two-step foaming. The processes of two-step foaming, including preparing precursors and baking, were also studied by experiments. Results showed that, low titanium hydride dispersion temperature, long titanium hydride dispersion time and low precursors porosity are beneficial to prepare three-dimensional shaped aluminum alloy foams with uniform pores

  5. Preparation of amine-impregnated silica foams using agar as the gelling agent

    Energy Technology Data Exchange (ETDEWEB)

    Jardim, Iara M., E-mail: iaramj01@yahoo.com.br [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais – UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG, CEP: 31270-901, Escola de Engenharia, bloco 2, sala, 2230 (Brazil); Department of Chemical Engineering, Federal University of Minas Gerais – UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG, CEP: 31270-901, Escola de Engenharia, bloco 2, 5° andar (Brazil); Souza, Douglas F.; Vasconcelos, Daniela C.L.; Nunes, Eduardo H.M. [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais – UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG, CEP: 31270-901, Escola de Engenharia, bloco 2, sala, 2230 (Brazil); Vasconcelos, Wander L., E-mail: wlv@demet.ufmg.br [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais – UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG, CEP: 31270-901, Escola de Engenharia, bloco 2, sala, 2230 (Brazil)

    2016-10-15

    In this work we successfully prepared amine-impregnated gel-cast silica foams using agar and atmospheric air as the gelling agent and heat treatment atmosphere, respectively. The concentration of 3,6-anhydrogalactose in agar was evaluated by ultraviolet–visible spectroscopy (UV–Vis). The obtained foams were examined by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG) coupled to mass spectrometry (TG-MS), scanning electron microscopy (SEM), X-ray microtomography (micro-CT), and Archimedes method. The cold crushing strength of the materials prepared in this work was assessed using a mechanical testing stage available in the micro-CT system. The obtained foams exhibited a highly interconnected pore network, with an expressive presence of open pores. Samples heat-treated at 1300 °C for 2 h showed both an expressive porosity (≈ 77%) and a significant cold crushing strength (≈ 1.4 MPa). It was observed that the calcination of the prepared materials at 1200 °C for times as long as 16 h may lead to the rupture of pore walls. FTIR and TG-MS revealed that amine groups were properly incorporated into the foams structure. - Highlights: •Successful preparation of amine-impregnated gel-cast silica foams •Agar used as the gelling agent •Samples with expressive porosity and cold crushing strength •Sintering times as long as 16 h led to the rupture of the pore network.

  6. Preparation of amine-impregnated silica foams using agar as the gelling agent

    International Nuclear Information System (INIS)

    Jardim, Iara M.; Souza, Douglas F.; Vasconcelos, Daniela C.L.; Nunes, Eduardo H.M.; Vasconcelos, Wander L.

    2016-01-01

    In this work we successfully prepared amine-impregnated gel-cast silica foams using agar and atmospheric air as the gelling agent and heat treatment atmosphere, respectively. The concentration of 3,6-anhydrogalactose in agar was evaluated by ultraviolet–visible spectroscopy (UV–Vis). The obtained foams were examined by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG) coupled to mass spectrometry (TG-MS), scanning electron microscopy (SEM), X-ray microtomography (micro-CT), and Archimedes method. The cold crushing strength of the materials prepared in this work was assessed using a mechanical testing stage available in the micro-CT system. The obtained foams exhibited a highly interconnected pore network, with an expressive presence of open pores. Samples heat-treated at 1300 °C for 2 h showed both an expressive porosity (≈ 77%) and a significant cold crushing strength (≈ 1.4 MPa). It was observed that the calcination of the prepared materials at 1200 °C for times as long as 16 h may lead to the rupture of pore walls. FTIR and TG-MS revealed that amine groups were properly incorporated into the foams structure. - Highlights: •Successful preparation of amine-impregnated gel-cast silica foams •Agar used as the gelling agent •Samples with expressive porosity and cold crushing strength •Sintering times as long as 16 h led to the rupture of the pore network.

  7. Thermal performance enhancement of erythritol/carbon foam composites via surface modification of carbon foam

    Science.gov (United States)

    Li, Junfeng; Lu, Wu; Luo, Zhengping; Zeng, Yibing

    2017-03-01

    The thermal performance of the erythritol/carbon foam composites, including thermal diffusivity, thermal capacity, thermal conductivity and latent heat, were investigated via surface modification of carbon foam using hydrogen peroxide as oxider. It was found that the surface modification enhanced the wetting ability of carbon foam surface to the liquid erythritol of the carbon foam surface and promoted the increase of erythritol content in the erythritol/carbon foam composites. The dense interfaces were formed between erythritol and carbon foam, which is due to that the formation of oxygen functional groups C=O and C-OH on the carbon surface increased the surface polarity and reduced the interface resistance of carbon foam surface to the liquid erythritol. The latent heat of the erythritol/carbon foam composites increased from 202.0 to 217.2 J/g through surface modification of carbon foam. The thermal conductivity of the erythritol/carbon foam composite before and after surface modification further increased from 40.35 to 51.05 W/(m·K). The supercooling degree of erythritol also had a large decrease from 97 to 54 °C. Additionally, the simple and effective surface modification method of carbon foam provided an extendable way to enhance the thermal performances of the composites composed of carbon foams and PCMs.

  8. Methodology for characterization of corrosive agents of thermal insulating foams; Desenvolvimento de metodologia para caracterizacao de agentes corrosivos de espumas de isolamento termico

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Flavio V. Vasques de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Fundacao Coordenacao de Projetos, Pesquisas e Estudos Tecnologicos - COPPETEC; Mattos, Oscar R.; Mota, Rafael O. da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Metalurgica e de Materiais; Margarit-Mattos, Isabel C.P. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica. Dept. de Processos Organicos; Quintela, Joaquim P. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Vieira, Magda M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2005-07-01

    Warming up oil and derivatives is a required procedure to make their transportation more efficient due to the increase in fluidity. Therefore, the use of thermally insulated pipeline becomes essential. The commonly practice has been the use of pipelines covered with an optional anticorrosive coating, followed by a polyurethane foam layer, as thermal insulator, and a polyethylene top coating for mechanical protection. During the life time of the pipeline, local ruptures of the polyethylene coating frequently occur, allowing the water permeation throughout the thermal insulator. This water may cause foam leaching that would release corrosive agents on the external wall pipe. The objective of the present work was to investigate the effects of the blowing agents, the addition of flame retardant to the foam as well as operating temperatures on the generation of corrosive solutions on the external wall of thermally insulated pipes. In this sense, polyurethane foams expanded with HCFC-141b, CFC-11 and CO{sub 2}, with and without flame retardant, were evaluated at the temperatures of 80 and 120 deg C. (author)

  9. Localizing gravity on exotic thick 3-branes

    International Nuclear Information System (INIS)

    Castillo-Felisola, Oscar; Melfo, Alejandra; Pantoja, Nelson; Ramirez, Alba

    2004-01-01

    We consider localization of gravity on thick branes with a nontrivial structure. Double walls that generalize the thick Randall-Sundrum solution, and asymmetric walls that arise from a Z 2 symmetric scalar potential, are considered. We present a new asymmetric solution: a thick brane interpolating between two AdS 5 spacetimes with different cosmological constants, which can be derived from a 'fake supergravity' superpotential, and show that it is possible to confine gravity on such branes

  10. Foam-oil interaction in porous media: implications for foam assisted enhanced oil recovery.

    Science.gov (United States)

    Farajzadeh, R; Andrianov, A; Krastev, R; Hirasaki, G J; Rossen, W R

    2012-11-15

    The efficiency of a foam displacement process in enhanced oil recovery (EOR) depends largely on the stability of foam films in the presence of oil. Experimental studies have demonstrated the detrimental impact of oil on foam stability. This paper reviews the mechanisms and theories (disjoining pressure, coalescence and drainage, entering and spreading of oil, oil emulsification, pinch-off, etc.) suggested in the literature to explain the impact of oil on foam stability in the bulk and porous media. Moreover, we describe the existing approaches to foam modeling in porous media and the ways these models describe the oil effect on foam propagation in porous media. Further, we present various ideas on an improvement of foam stability and longevity in the presence of oil. The outstanding questions regarding foam-oil interactions and modeling of these interactions are pointed out. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Carbon particle induced foaming of molten sucrose for the preparation of carbon foams

    International Nuclear Information System (INIS)

    Narasimman, R.; Vijayan, Sujith; Prabhakaran, K.

    2014-01-01

    Graphical abstract: - Highlights: • An easy method for the preparation of carbon foam from sucrose is presented. • Wood derived activated carbon particles are used to stabilize the molten sucrose foam. • The carbon foams show relatively good mechanical strength. • The carbon foams show excellent CO 2 adsorption and oil absorption properties. • The process could be scaled up for the preparation of large foam bodies. - Abstract: Activated carbon powder was used as a foaming and foam setting agent for the preparation of carbon foams with a hierarchical pore structure from molten sucrose. The rheological measurements revealed the interruption of intermolecular hydrogen bonding in molten sucrose by the carbon particles. The carbon particles stabilized the bubbles in molten sucrose by adsorbing on the molten sucrose–gas interface. The carbon foams obtained at the activated carbon powder to sucrose weight ratios in the range of 0–0.25 had a compressive strength in the range of 1.35–0.31 MPa. The produced carbon foams adsorb 2.59–3.04 mmol/g of CO 2 at 760 mmHg at 273 K and absorb oil from oil–water mixtures and surfactant stabilized oil-in-water emulsions with very good selectivity and recyclability

  12. In-situ long-term thermal performance of impermeably face polyiso foam boards

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyaya, Phalguni; Normandin, Nicole; Van Reenen, David; Lackey, John [National Research Council Canada, Institute for Reserch in Construction, Ottawa, (Canada); Drouin, Michel [Consultant, Dorion, (Canada)

    2010-07-01

    Closed-cell polyisocyanurate (polyiso) foam insulation products are widely used in building envelope constructions as they have one of the highest R-values per unit thickness among the insulations used in the construction industry. The introduction of impermeable facers on the surface of polyiso rigid board is aimed at enhancing the long-term thermal resistance (LTTR) properties of the foam. This paper evaluated the thermal performance of impermeably faced polyiso boards after more than six years of field exposure. Boards were installed and instrumented at NRC-IRC's field test facility. Field monitoring was performed on a regular basis for six years of exposure until 2008. Then, nine specimens were cut from the boards which were removed from the test hut to evaluate their thermal characteristic using a heat flow meter apparatus. It was found that the impermeably faced polyiso foam insulation boards aged significantly.

  13. State-of-the-Art Review on the Characteristics of Surfactants and Foam from Foam Concrete Perspective

    Science.gov (United States)

    Sahu, Sritam Swapnadarshi; Gandhi, Indu Siva Ranjani; Khwairakpam, Selija

    2018-06-01

    Foam concrete finds application in many areas, generally as a function of its relatively lightweight and its beneficial properties in terms of reduction in dead load on structure, excellent thermal insulation and contribution to energy conservation. For production of foam concrete with desired properties, stable and good quality foam is the key requirement. It is to be noted that the selection of surfactant and foam production parameters play a vital role in the properties of foam which in turn affects the properties of foam concrete. However, the literature available on the influence of characteristics of foaming agent and foam on the properties of foam concrete are rather limited. Hence, a more systematic research is needed in this direction. The focus of this work is to provide a review on characteristics of surfactant (foaming agent) and foam for use in foam concrete production.

  14. Pore-scale analysis of the minimum liquid film thickness around elongated bubbles in confined gas-liquid flows

    Science.gov (United States)

    Magnini, M.; Beisel, A. M.; Ferrari, A.; Thome, J. R.

    2017-11-01

    The fluid mechanics of elongated bubbles in confined gas-liquid flows in micro-geometries is important in pore-scale flow processes for enhanced oil recovery and mobilization of colloids in unsaturated soil. The efficiency of such processes is traditionally related to the thickness of the liquid film trapped between the elongated bubble and the pore's wall, which is assumed constant. However, the surface of long bubbles presents undulations in the vicinity of the rear meniscus, which may significantly decrease the local thickness of the liquid film, thus impacting the process of interest. This study presents a systematic analysis of these undulations and the minimum film thickness induced in the range Ca = 0.001- 0.5 and Re = 0.1- 2000 . Pore-scale Computational Fluid Dynamics (CFD) simulations are performed with a self-improved version of the opensource solver ESI OpenFOAM which is based on a Volume of Fluid method to track the gas-liquid interface. A lubrication model based on the extension of the classical axisymmetric Bretherton theory is utilized to better understand the CFD results. The profiles of the rear meniscus of the bubble obtained with the lubrication model agree fairly well with those extracted from the CFD simulations. This study shows that the Weber number of the flow, We = Ca Re , is the parameter that best describes the dynamics of the interfacial waves. When We 0.1, a larger number of wave crests becomes evident on the surface of the rear meniscus of the bubble. The liquid film thickness at the crests of the undulations thins considerably as the Reynolds number is increased, down to less than 60% of the value measured in the flat film region. This may significantly influence important environmental processes, such as the detachment and mobilization of micron-sized pollutants and pathogenic micro-organisms adhering at the pore's wall in unsaturated soil.

  15. Application of flexi-wall in noise barriers renewal

    Directory of Open Access Journals (Sweden)

    B. Daee

    2015-12-01

    Full Text Available This paper presents an experimental study on structural performance of an innovative noise barrier consisting of poly-block, light polyurethane foam (LPF and polyurea. This wall system (flexi-wall is intended to be employed as a vertical extension to existing noise barriers (sound walls in an accelerated construction method. To aid in the wall design, several mechanical tests were conducted on LPF specimens and two full-scale walls were then fabricated employing the same LPF material. The full-scale walls were subjected to lateral loading in order to establish their lateral resistance. A cyclic fatigue test was also performed on a full-scale flexi-wall in order to evaluate the performance of the wall under a repetitive loading condition. The results of the experiments indicated the suitability of flexi-wall in accelerated construction and confirmed that the structural performance of the wall system under lateral loading is satisfactory for the sound wall application. The experimental results were discussed and a preliminary design procedure for application of flexi-wall in sound wall applications was also developed.

  16. Analysis of Influence of Foaming Mixture Components on Structure and Properties of Foam Glass

    Science.gov (United States)

    Karandashova, N. S.; Goltsman, B. M.; Yatsenko, E. A.

    2017-11-01

    It is recommended to use high-quality thermal insulation materials to increase the energy efficiency of buildings. One of the best thermal insulation materials is foam glass - durable, porous material that is resistant to almost any effect of substance. Glass foaming is a complex process depending on the foaming mode and the initial mixture composition. This paper discusses the influence of all components of the mixture - glass powder, foaming agent, enveloping material and water - on the foam glass structure. It was determined that glass powder is the basis of the future material. A foaming agent forms a gas phase in the process of thermal decomposition. This aforementioned gas foams the viscous glass mass. The unreacted residue thus changes a colour of the material. The enveloping agent slows the foaming agent decomposition preventing its premature burning out and, in addition, helps to accelerate the sintering of glass particles. The introduction of water reduces the viscosity of the foaming mixture making it evenly distributed and also promotes the formation of water gas that additionally foams the glass mass. The optimal composition for producing the foam glass with the density of 150 kg/m3 is defined according to the results of the research.

  17. Multiwall carbon nanotube embedded phenolic resin-based carbon foam for the removal of As (V) from contaminated water

    Science.gov (United States)

    Rani Agrawal, Pinki; Singh, Nahar; Kumari, Saroj; Dhakate, Sanjay R.

    2018-03-01

    It is well proposed that micron or nano size filters requires to separate adsorbent from water after removal of adsorbate. However, even after filtration trace quantity of adsorbent remains in purified water, which deteriorates the quality of water for potability. To overcome these problems, multi walled carbon nanotube (MWCNT) loaded Carbon Foam (CF) was fabricated by a sacrificial template process. In this process, multi walled carbon nanotubes (MWCNTs) and phenolic resin mixture was used for the impregnation of the polyurethane (PU) template. Impregnated PU Foam stabilized and carbonized to get MWCNTs embedded Carbon Foam (CF). The MWCNT loaded CF (MWCNTs-CF) was used for the removal of As (V) species from water. The proposed foam efficiently removes arsenic (As (V)) from water and it can be easily separated from water after purification without any sophisticated tools. The adsorption capacity of the proposed material was found to be 90.5 μg*g-1 at optimized condition of pH, time and concentration, which is excellent in comparison to several other materials utilized for removal of As (V). Kinetic and isotherm studies reveal that the multilayer adsorption over heterogeneous surface follows pseudo second order kinetics. The adsorption phenomena were further confirmed by several characterization techniques like scanning electron microscope (SEM), x-ray diffraction (XRD) spectroscopy and x-ray photoelectron spectroscopy (XPS).

  18. The influence of wall thickness on the microstructure of bronze BA1055 with the additions of Si, Cr, Mo and/or W

    Directory of Open Access Journals (Sweden)

    B.P. Pisarek

    2008-12-01

    Full Text Available Aluminium bronzes belong to the high-grade constructional materials applied on the put under strongly load pieces of machines, about good sliding, resistant properties on corrosion both in the cast state how and after the thermal processing. It moves to them Cr and Si in the aim of the improvement of their usable proprieties. Additions Mo and/or W were not applied so far in the larger concentration, these elements were introduced to the melts of the copper as the components of modifiers. It was worked out therefore the new kind of bronzes casting including these elements. Make additions to the Cu-Al-Fe-Ni bronze of Si, Cr, Mo and/or W in the rise of these properties makes possible. The investigations of the influence of the wall thickness of the cast on size of crystallites were conducted: the primary phase β and intermetallic phase κ and the width separates of the secondary phase α precipitate at phase boundary. It results from conducted investigations, that in the aluminium bronze BA1055 after simultaneous makes additions Si, Cr, Mo and in the primary phase β it undergoes considerable reducing size. The addition W reduce size of the grain phase β in the thin walls of the cast 3-6 mm, and addition Cr in the range of the thickness of the wall of the cast 3-6 mm it favors to reducing size the phase β, in walls 12-25 mm the growth causes it. The addition Mo does not influence the change of the size of the grain of the β phase significantly. The make addition singly or simultaneously of the Cr, Mo and W to the bronze CuAl10Fe5Ni5Si it influences the decrease of the quantity separates of the phase α on the interface boundary and of width it separates independently from the thickness of the wall of the cast. The simultaneous make addition of the Si, Cr, Mo and W it enlarges the surface of the phase κFe, κMo. The make addition to the bronze CuAl10Fe5Ni5Si of the Cr, Mo or W the quantity of crystallizing hard phase κ enlarges and the

  19. THIRD-GENERATION FOAM BLOWING AGENTS FOR FOAM INSULATION

    Science.gov (United States)

    The report gives results of a study of third-generation blowing agents for foam insulation. (NOTE: the search for third-generation foam blowing agents has led to the realization that, as the number of potential substitutes increases, new concerns, such as their potential to act a...

  20. Manufacturing and maintenance technologies developed for a thick-wall structure of the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Onozuka, M.; Alfile, J.P.; Aubert, Ph.; Dagenais, J.-F.; Grebennikov, D.; Ioki, K.; Jones, L.; Koizumi, K.; Krylov, V.; Maslakowski, J.; Nakahira, M.; Nelson, B.; Punshon, C.; Roy, O.; Schreck, G.

    2001-01-01

    Development of welding, cutting and non-destructive testing (NDT) techniques, and development of remotized systems have been carried out for on-site manufacturing and maintenance of the thick-wall structure of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV). Conventional techniques, including tungsten inert gas welding, plasma cutting, and ultrasonic inspection, have been improved and optimized for the application to thick austenitic stainless steel plates. In addition, advanced methods have been investigated, including reduced-pressure electron-beam and multi-pass neodymium-doped yttrium aluminum garnet (NdYAG) laser welding, NdYAG laser cutting, and electro-magnetic acoustic transducer inspection, to improve cost and technical performance. Two types of remotized systems with different payloads have been investigated and one of them has been fabricated and demonstrated in field joint welding, cutting, and NDT tests on test mockups and full-scale ITER VV sector models. The progress and results of this development to date provide a high level of confidence that the manufacturing and maintenance of the ITER VV is feasible

  1. Manufacturing and maintenance technologies developed for a thick-wall structure of the ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. E-mail: onozukm@itereu.de; Alfile, J.P.; Aubert, Ph.; Dagenais, J.-F.; Grebennikov, D.; Ioki, K.; Jones, L.; Koizumi, K.; Krylov, V.; Maslakowski, J.; Nakahira, M.; Nelson, B.; Punshon, C.; Roy, O.; Schreck, G

    2001-09-01

    Development of welding, cutting and non-destructive testing (NDT) techniques, and development of remotized systems have been carried out for on-site manufacturing and maintenance of the thick-wall structure of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV). Conventional techniques, including tungsten inert gas welding, plasma cutting, and ultrasonic inspection, have been improved and optimized for the application to thick austenitic stainless steel plates. In addition, advanced methods have been investigated, including reduced-pressure electron-beam and multi-pass neodymium-doped yttrium aluminum garnet (NdYAG) laser welding, NdYAG laser cutting, and electro-magnetic acoustic transducer inspection, to improve cost and technical performance. Two types of remotized systems with different payloads have been investigated and one of them has been fabricated and demonstrated in field joint welding, cutting, and NDT tests on test mockups and full-scale ITER VV sector models. The progress and results of this development to date provide a high level of confidence that the manufacturing and maintenance of the ITER VV is feasible.

  2. Transient Response of a Fluid-Filled, Thick-Walled Spherical Shell Embedded in an Elastic Medium

    Directory of Open Access Journals (Sweden)

    Bahari Ako

    2016-01-01

    Full Text Available The paper addresses the problem of transient elastodynamics analysis of a thick-walled, fluid-filled spherical shell embedded in an elastic medium with an analytical approach. This configuration is investigated at first step for a full-space case. Different constitutive relations for the elastic medium, shell material and filling fluid can be considered, as well as different excitation sources (including S/P wave or plane/spherical incident wave at different locations. With mapmaking visualisation, the wave propagation phenomena can be described and better understood. The methodology is going to be applied to analysis of the tunnels or other shell like structures under the effect of nearby underground explosion.

  3. Low-density carbonized resorcinol-formaldehyde foams

    International Nuclear Information System (INIS)

    Kong, F.M.; Buckley, S.R.; Giles, C.L. Jr.; Haendler, B.L.; Hair, L.M.; Letts, S.A.; Overturf, G.E. III; Price, C.W.; Cook, R.C.

    1991-01-01

    This report documents research and development on resorcinol- formaldehyde-based foam materials conducted between 1986 and June 1990, when the effort was discontinued. The foams discussed are resorcinol-formaldehyde (RF) foam, carbonized RF (CRF) foam, and two composite foams, a polystyrene/RF (PS/RF) foam and its carbonized derivative (CPR). The RF foams are synthesized by the polycondensation of resorcinol with formaldehyde in a slightly basic solution. Their structure and density depend strongly on the concentration of the sodium carbonate catalyst. The have an interconnected bead structure similar to that of silica aerogels; bead sizes range from 30 to 130 Angstrom, and cell sizes are less than 0.1 μm. We have achieved densities of 16 to 200 mg/cm 3 . The RF foams can be pyrolyzed in an inert atmosphere to form a vitreous carbon foam (CRF), which has a similar microstructure but much higher mechanical strength. The PS/RF foams are obtained by filling the 2- to 3-μm cells of PS foam (a low-density hydrocarbon foam we have developed) with RF. The resultant foams have the outstanding handling and machinability of the PS foam matrix and the small cell size of RF. Pyrolyzing PS/RF foams causes depolymerization and loss of the PS; the resulting CPR foams have a structure similar to the PS foams in which CRF both replicates and fills the PS cells

  4. Comparison of OpenFOAM and EllipSys3D for neutral atmospheric flow over complex terrain

    Directory of Open Access Journals (Sweden)

    D. Cavar

    2016-05-01

    Full Text Available The flow solvers OpenFOAM and EllipSys3D are compared in the case of neutral atmospheric flow over terrain using the test cases of Askervein and Bolund hills. Both solvers are run using the steady-state Reynolds-averaged Navier–Stokes k–ϵ turbulence model. One of the main modeling differences between the two solvers is the wall-function approach. The OpenFOAM v.1.7.1 uses a Nikuradse's sand roughness model, while EllipSys3D uses a model based on the atmospheric roughness length. It is found that Nikuradse's model introduces an error dependent on the near-wall cell height. To mitigate this error the near-wall cells should be at least 10 times larger than the surface roughness. It is nonetheless possible to obtain very similar results between EllipSys3D and OpenFOAM v.1.7.1. The more recent OpenFOAM v.2.2.1, which includes the atmospheric roughness length wall-function approach, has also been tested and compared to the results of OpenFOAM v.1.7.1 and EllipSys3D. The numerical results obtained using the same wall-modeling approach in both EllipSys3D and OpenFOAM v.2.1.1 proved to be almost identical. Two meshing strategies are investigated using HypGrid and SnappyHexMesh. The performance of OpenFOAM on SnappyHexMesh-based low-aspect-ratio unstructured meshes is found to be almost an order of magnitude faster than on HypGrid-based structured and high-aspect-ratio meshes. However, proper control of boundary layer resolution is found to be very difficult when the SnappyHexMesh tool is utilized for grid generation purposes. The OpenFOAM is generally found to be 2–6 times slower than EllipSys3D in achieving numerical results of the same order of accuracy on similar or identical computational meshes, when utilization of EllipSys3D default grid sequencing procedures is included.

  5. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  6. Optimization of wall thickness and lay-up for the shell-like composite structure loaded by non-uniform pressure field

    Science.gov (United States)

    Shevtsov, S.; Zhilyaev, I.; Oganesyan, P.; Axenov, V.

    2017-01-01

    The glass/carbon fiber composites are widely used in the design of various aircraft and rotorcraft components such as fairings and cowlings, which have predominantly a shell-like geometry and are made of quasi-isotropic laminates. The main requirements to such the composite parts are the specified mechanical stiffness to withstand the non-uniform air pressure at the different flight conditions and reduce a level of noise caused by the airflow-induced vibrations at the constrained weight of the part. The main objective of present study is the optimization of wall thickness and lay-up of composite shell-like cowling. The present approach assumes conversion of the CAD model of the cowling surface to finite element (FE) representation, then its wind tunnel testing simulation at the different orientation of airflow to find the most stressed mode of flight. Numerical solutions of the Reynolds averaged Navier-Stokes (RANS) equations supplemented by k-w turbulence model provide the spatial distributions of air pressure applied to the shell surface. At the formulation of optimization problem the global strain energy calculated within the optimized shell was assumed as the objective. A wall thickness of the shell had to change over its surface to minimize the objective at the constrained weight. We used a parameterization of the problem that assumes an initiation of auxiliary sphere with varied radius and coordinates of the center, which were the design variables. Curve that formed by the intersection of the shell with sphere defined boundary of area, which should be reinforced by local thickening the shell wall. To eliminate a local stress concentration this increment was defined as the smooth function defined on the shell surface. As a result of structural optimization we obtained the thickness of shell's wall distribution, which then was used to design the draping and lay-up of composite prepreg layers. The global strain energy in the optimized cowling was reduced in2

  7. Connection of thin-walled casings

    Energy Technology Data Exchange (ETDEWEB)

    Druyan, V.M.; Grinev, A.F.; Gruzdev, V.D.; Perchanik, V.V.; Syplenko, V.T.

    1981-08-28

    A connection is suggested for castings which contains a nipple and coupling part with conical triangular threading. in order to improve the strength of the connection of thin-walled casings with ratio D/S>22, where D is the outer diameter of the casing, S is the thickness of the wall of the casing, the end of the pipe on the length from the end to the main plane of the thread is conical with constant thickness of the wall and conicity eqal to the conicity of the thread.

  8. The impact of transcatheter aortic valve implantation on left ventricular performance and wall thickness – single-centre experience

    Science.gov (United States)

    Szymański, Piotr; Dąbrowski, Maciej; Zakrzewski, Dariusz; Michałek, Piotr; Orłowska-Baranowska, Ewa; El-Hassan, Kamal; Chmielak, Zbigniew; Witkowski, Adam; Hryniewiecki, Tomasz

    2015-01-01

    Introduction Transcatheter aortic valve implantation (TAVI) is a treatment alternative for the elderly population with severe symptomatic aortic stenosis (AS) at high risk for surgical aortic valve replacement (SAVR). Aim To assess the impact of TAVI on echocardiographic parameters of left ventricular (LV) performance and wall thickness in patients subjected to the procedure in a single-centre between 2009 and 2013. Material and methods The initial group consisted of 170 consecutive patients with severe AS unsuitable for SAVR. Logistic European System for Cardiac Operative Risk Evaluation (EuroSCORE) was 21.73 ±12.42% and mean age was 79.9 ±7.5 years. Results The TAVI was performed in 167 (98.2%) patients. Mean aortic gradient decreased significantly more rapidly after the procedure (from 58.6 ±16.7 mm Hg to 11.9 ±4.9 mm Hg, p < 0.001). The LV ejection fraction (LVEF) significantly increased in both short-term and long-term follow-up (57 ±14% vs. 59 ±13%, p < 0.001 and 56 ±14% vs. 60 ±12%, p < 0.001, respectively). Significant regression of interventricular septum diameter at end-diastole (IVSDD) and end-diastolic posterior wall thickness (EDPWth) was noted in early (15.0 ±2.4 mm vs. 14.5 ±2.3 mm, p < 0.001 and 12.7 ±2.1 mm vs. 12.4 ±1.9 mm, p < 0.028, respectively) and late post-TAVI period (15.1 ±2.5 mm to 14.3 ±2.5 mm, p < 0.001 and 12.8 ±2.0 mm to 12.4 ±1.9 mm, p < 0.007, respectively). Significant paravalvular leak (PL) was noted in 21 (13.1%) patients immediately after TAVI and in 13 (9.6%) patients in follow-up (p < 0.001). Moderate or severe mitral regurgitation (msMR) was seen in 24 (14.9%) patients from the initial group and in 19 (11.8%) patients after TAVI (p < 0.001). Conclusions The TAVI had an immediate beneficial effect on LVEF, LV walls thickness, and the incidence of msMR. The results of the procedure are comparable with those described in other centres. PMID:25848369

  9. Foam patterns

    Science.gov (United States)

    Chaudhry, Anil R; Dzugan, Robert; Harrington, Richard M; Neece, Faurice D; Singh, Nipendra P; Westendorf, Travis

    2013-11-26

    A method of creating a foam pattern comprises mixing a polyol component and an isocyanate component to form a liquid mixture. The method further comprises placing a temporary core having a shape corresponding to a desired internal feature in a cavity of a mold and inserting the mixture into the cavity of the mold so that the mixture surrounds a portion of the temporary core. The method optionally further comprises using supporting pins made of foam to support the core in the mold cavity, with such pins becoming integral part of the pattern material simplifying subsequent processing. The method further comprises waiting for a predetermined time sufficient for a reaction from the mixture to form a foam pattern structure corresponding to the cavity of the mold, wherein the foam pattern structure encloses a portion of the temporary core and removing the temporary core from the pattern independent of chemical leaching.

  10. 3D morphological analysis of copper foams as current collectors for Li-ion batteries by means of X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Etiemble, A. [Institut National des Sciences Appliquées de Lyon, Laboratoire MATEIS, F-69621 Villeurbanne (France); Institut National de la Recherche Scientifique – Centre Énergie, Matériaux, Télécommunications, Varennes, Québec J3X 1S2 (Canada); Adrien, J. [Institut National des Sciences Appliquées de Lyon, Laboratoire MATEIS, F-69621 Villeurbanne (France); Maire, E., E-mail: eric.maire@insa-lyon.fr [Institut National des Sciences Appliquées de Lyon, Laboratoire MATEIS, F-69621 Villeurbanne (France); Idrissi, H. [Institut National des Sciences Appliquées de Lyon, Laboratoire MATEIS, F-69621 Villeurbanne (France); Reyter, D. [Institut National de la Recherche Scientifique – Centre Énergie, Matériaux, Télécommunications, Varennes, Québec J3X 1S2 (Canada); Roué, L., E-mail: roue@emt.inrs.ca [Institut National de la Recherche Scientifique – Centre Énergie, Matériaux, Télécommunications, Varennes, Québec J3X 1S2 (Canada)

    2014-09-15

    Highlights: • X-ray tomography analysis of open-cell copper foams is performed. • The effect of a dissolution treatment on the foam morphology is highlighted. • The interest of such Cu foams as current collectors for Li-ion batteries is discussed. - Abstract: As-received and chemically treated copper foams were characterized by means of laboratory X-ray tomography with a resolution of 0.5 μm. 3D image processing and analysis allowed the morphological parameters (size, sphericity, tortuosity etc.) of the pores and copper skeleton to be determined. The chemical dissolution of the Cu foam in an acid hydrogen peroxide solution results in an increase of the open pore size (from 54 to 93 μm) and a decrease of the foam thickness (from 140 to 115 μm). With an open porosity of 81.8% and a specific surface area as high as 280,000 (49,000) m{sup 2}/m{sup 3} of Cu (foam), the chemically-treated Cu foam appears very attractive for use as a 3D current collector for metal (e.g. Si) based anodes for Li-ion batteries.

  11. Thermosetting Fluoropolymer Foams

    Science.gov (United States)

    Lee, Sheng Yen

    1987-01-01

    New process makes fluoropolymer foams with controllable amounts of inert-gas fillings in foam cells. Thermosetting fluoropolymers do not require foaming additives leaving undesirable residues and do not have to be molded and sintered at temperatures of about 240 to 400 degree C. Consequently, better for use with electronic or other parts sensitive to high temperatures or residues. Uses include coatings, electrical insulation, and structural parts.

  12. Effects of microporosity on the elasticity and yielding of thin-walled metallic hollow spheres

    International Nuclear Information System (INIS)

    Song, Jinliang; Sun, Quansheng; Yang, Zhenning; Luo, Shengmin; Xiao, Xianghui; Arwade, Sanjay R.; Zhang, Guoping

    2017-01-01

    Knowledge of the mechanical properties of porous metallic hollow spheres (MHS) thin wall is of key importance for understanding the engineering performance of both individual ultralight MHS and the innovative MHS-based bulk foams. This paper presents the first integrated experimental and numerical study to determine the elasticity and yielding of the porous MHS wall and their dependence on its microporosity. Nanoindentation was used to probe the Young's modulus and hardness of the nonporous MHS wall material, and synchrotron X-ray computed tomography (XCT) conducted to obtain its porous microstructure and pore morphology. Three-dimensional finite element modeling was performed to obtain the mechanical response of microcubes with varying porosity trimmed from the XCT-derived real digital model of the porous MHS wall. Results show that both the Young's modulus and yield strength of the porous wall decrease nonlinearly with increasing porosity, and their relationships follow the same format of a power law function and agree well with prior experimental results. The empirical relations also reflect certain features of pore morphology, such as pore connectivity and shape. These findings can shed lights on the design, manufacturing, and modeling of individual MHS and MHS-based foams.

  13. Effects of microporosity on the elasticity and yielding of thin-walled metallic hollow spheres

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jinliang [Department of Civil Engineering, Northeast Forestry University, Harbin 150040 (China); Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Sun, Quansheng [Department of Civil Engineering, Northeast Forestry University, Harbin 150040 (China); Yang, Zhenning; Luo, Shengmin [Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Xiao, Xianghui [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Arwade, Sanjay R. [Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Zhang, Guoping, E-mail: zhangg@umass.edu [Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States)

    2017-03-14

    Knowledge of the mechanical properties of porous metallic hollow spheres (MHS) thin wall is of key importance for understanding the engineering performance of both individual ultralight MHS and the innovative MHS-based bulk foams. This paper presents the first integrated experimental and numerical study to determine the elasticity and yielding of the porous MHS wall and their dependence on its microporosity. Nanoindentation was used to probe the Young's modulus and hardness of the nonporous MHS wall material, and synchrotron X-ray computed tomography (XCT) conducted to obtain its porous microstructure and pore morphology. Three-dimensional finite element modeling was performed to obtain the mechanical response of microcubes with varying porosity trimmed from the XCT-derived real digital model of the porous MHS wall. Results show that both the Young's modulus and yield strength of the porous wall decrease nonlinearly with increasing porosity, and their relationships follow the same format of a power law function and agree well with prior experimental results. The empirical relations also reflect certain features of pore morphology, such as pore connectivity and shape. These findings can shed lights on the design, manufacturing, and modeling of individual MHS and MHS-based foams.

  14. Advanced Extended Plate and Beam Wall System in a Cold-Climate House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, Dave [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, Joseph [Home Innovation Research Labs, Upper Marlboro, MD (United States); Kochkin, Vladimir [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2016-01-29

    This report presents the design and evaluation of an innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders. The EP&B design combines optimized framing with integrated rigid foam sheathing to increase the wall system's R-value and reduce thermal bridging. The foam sheathing is installed between the wall studs and structural wood sheathing. The exterior wood sheathing is attached directly to a framing extension formed by extended top and bottom plates. The exterior wood sheathing can dry to the exterior and provides bracing, a clear drainage plane and flashing surface for window and door openings, and a nailing surface for siding attachment. With support of the DOE Building America program, Home Innovation Research Labs partnered with Lancaster County Career and Technology Center (LCCTC) to build a NCTH in Lancaster, PA to demonstrate the EP&B wall design in a cold climate (IECC climate zone 5A). The results of the study confirmed the benefits of the systems and the viability of its integration into the house construction process.

  15. Ultrasonic wall thickness gauging for ferritic steam generator tubing as an in-service inspection tool

    International Nuclear Information System (INIS)

    Haesen, W.M.J.; Tromp, Th.J.

    1980-01-01

    In-service inspection of LWR steam generators is more or less a standard routine operation. The situation can be very different for LMFBRs. For the SNR 300 (Kalkar Power Station) the situation is different because the steam generators have ferritic tubing. The tube walls are comparatively thick, 2 to 4.5 mm. During inservice examinations the steam generators will be drained on both sides, however on the sodium side a sodium film will be present. Furthermore the SNR 300 will have two types of steam generator. A straight tube design and a helical coil design will be used. Both types consist of a evaporator and superheater. The steam generators are of course not radioactive. It is obvious that in this case the eddy current (EC) technique is not an enviable inservice inspection tool. Basically EC is a surface flaw detection technique. Only the saturation magnetisation method will improve the EC technique sufficiently for ferritic material. However the 'in bore examination' with the saturation technique was, in case of the SNR 300 steam generator tubing, considered impossible since the inner diameters are fairly small. Furthermore sodium traces may influence the EC method. Although multifrequency methods can solve this problem, EC is not considered as a useful tool for examining ferritic tubing. Another method is to employ the 'stray flux' method which is under development with the TNO organization in Holland. The EC and stray flux method do have one drawback, these methods do not detect gradual changes in wall thickness. Ultrasonic examinations will be used in the SNR 300 as the main inspection tool for the steam generators. In this paper the reasons why ultrasonic examination was selected are explained. The results of the development work on this subject are discussed

  16. Pipe Decontamination Involving String-Foam Circulation

    International Nuclear Information System (INIS)

    Turchet, J.P.; Estienne, G.; Fournel, B.

    2002-01-01

    Foam applications number for nuclear decontamination purposes has recently increased. The major advantage of foam decontamination is the reduction of secondary liquid wastes volumes. Among foam applications, we focus on foam circulation in contaminated equipment. Dynamic properties of the system ensures an homogeneous and rapid effect of the foam bed-drifted chemical reagents present in the liquid phase. This paper describes a new approach of foam decontamination for pipes. It is based on an alternated air and foam injections. We called it 'string-foam circulation'. A further reduction of liquid wastes is achieved compared to continuous foam. Secondly, total pressure loss along the pipe is controlled by the total foam length in the pipe. It is thus possible to clean longer pipes keeping the pressure under atmospheric pressure value. This ensures the non dispersion of contamination. This study describes experimental results obtained with a neutral foam as well with an acid foam on a 130 m long loop. Finally, the decontamination of a 44 meters pipe is presented. (authors)

  17. Percent wall thickness evaluated by Gd-DTPA enhanced cine MRI as an indicator of local parietal movement in hypertrophic cardiomyopathy

    International Nuclear Information System (INIS)

    Hirano, Masaharu

    1998-01-01

    Hypertrophic cardiomyopathy (HCM) is a cardiac disease, the basic pathology of which consists of a decrease in left ventricular dilation compliance due to uneven hypertrophy of the left ventricular wall. Magnetic resonance imaging (MRI) is useful in monitoring uneven parietal hypertrophy and kinetics in HCM patients. The present study was undertaken in 47 HCM patients who showed asymmetrical septal hypertrophy to determine if percent thickness can be an indicator of left ventricular local movement using cine MRI. Longest and shortest axis images were acquired by the ECG synchronization method using a 1.5 T MR imager. Cardiac function was analyzed based on longest axis cine images, and telediastolic and telesystolic parietal thickness were measured based on shorter axis cine images at the papillary muscle level. Parietal movement index and percent thickness were used as indicators of local parietal movement. The correlation between these indicators and parietal thickness was evaluated. The percent thickness changed at an earlier stage of hypertrophy than the parietal movement index, thus it is thought to be useful in detecting left ventricular parietal movement disorders at an early stage of HCM. (author)

  18. Percent wall thickness evaluated by Gd-DTPA enhanced cine MRI as an indicator of local parietal movement in hypertrophic cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Masaharu [Tokyo Medical Coll. (Japan)

    1998-11-01

    Hypertrophic cardiomyopathy (HCM) is a cardiac disease, the basic pathology of which consists of a decrease in left ventricular dilation compliance due to uneven hypertrophy of the left ventricular wall. Magnetic resonance imaging (MRI) is useful in monitoring uneven parietal hypertrophy and kinetics in HCM patients. The present study was undertaken in 47 HCM patients who showed asymmetrical septal hypertrophy to determine if percent thickness can be an indicator of left ventricular local movement using cine MRI. Longest and shortest axis images were acquired by the ECG synchronization method using a 1.5 T MR imager. Cardiac function was analyzed based on longest axis cine images, and telediastolic and telesystolic parietal thickness were measured based on shorter axis cine images at the papillary muscle level. Parietal movement index and percent thickness were used as indicators of local parietal movement. The correlation between these indicators and parietal thickness was evaluated. The percent thickness changed at an earlier stage of hypertrophy than the parietal movement index, thus it is thought to be useful in detecting left ventricular parietal movement disorders at an early stage of HCM. (author)

  19. INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Arney, Ph.D.

    2002-12-31

    The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

  20. Influence of foaming agents on solid thermal conductivity of foam glasses prepared from CRT panel glass

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2017-01-01

    The understanding of the thermal transport mechanism of foam glass is still lacking. The contribution of solid- and gas conduction to the total thermal conductivity remains to be reported. In many foam glasses, the solid phase consist of a mix of an amorphous and a crystalline part where foaming...... containing glass and crystalline foaming agents and amorphous samples where the foaming agents are completely dissolved in the glass structure, respectively. Results show that the samples prepared by sintering have a higher thermal conductivity than the samples prepared by melt-quenching. The thermal...... conductivities of the sintered and the melt-quenched samples represent an upper and lower limit of the solid phase thermal conductivity of foam glasses prepared with these foaming agents. The content of foaming agents dissolved in the glass structure has a major impact on the solid thermal conductivity of foam...

  1. Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams

    Science.gov (United States)

    Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.

    2016-06-01

    Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.

  2. Evaluation of local allowable wall thickness of thinned pipe considering internal pressure and bending moment

    International Nuclear Information System (INIS)

    Kim, J. W.; Park, C. Y.; Kim, B. Y.

    2000-01-01

    This study proposed the local allowable wall thickness (LAWT) evaluation method for local wall thinned pipe subjected by internal pressure and bending moment. Also, LAWT was evaluated for simplified thinned pipe and the effect of axial extent of thinned area on LAWT was investigated. The results showed that LAWT predicted by present method was thinner, about 50%, than that evaluated by construction code and ASME Code Case N-597, while it was thicker, about 2 times, than that calculated by evaluation model based on pipe experiments. LAWT decreased with increasing axial extent of thinned area and was saturated above axial extent of pipe radius, which was a contrast to the results of ASME Code Case N-597 evaluation. The results of stress analysis with applied loading type indicated that the effect of axial extent of thinned area on LAWT was dependent on loading type considering in the evaluation. That is, the dependence of axial extent on LAWT is determined by magnitude of bending moment, and the contrary trend with axial extent in ASME Code Case is because ASME Code Case N-597 considers only internal pressure in the evaluation

  3. Flow characteristics and scaling past highly porous wall-mounted fences

    Science.gov (United States)

    Rodríguez-López, Eduardo; Bruce, Paul J. K.; Buxton, Oliver R. H.

    2017-07-01

    An extensive characterization of the flow past wall-mounted highly porous fences based on single- and multi-scale geometries has been performed using hot-wire anemometry in a low-speed wind tunnel. Whilst drag properties (estimated from the time-averaged momentum equation) seem to be mostly dependent on the grids' blockage ratio; wakes of different size and orientation bars seem to generate distinct behaviours regarding turbulence properties. Far from the near-grid region, the flow is dominated by the presence of two well-differentiated layers: one close to the wall dominated by the near-wall behaviour and another one corresponding to the grid's wake and shear layer, originating from between this and the freestream. It is proposed that the effective thickness of the wall layer can be inferred from the wall-normal profile of root-mean-square streamwise velocity or, alternatively, from the wall-normal profile of streamwise velocity correlation. Using these definitions of wall-layer thickness enables us to collapse different trends of the turbulence behaviour inside this layer. In particular, the root-mean-square level of the wall shear stress fluctuations, longitudinal integral length scale, and spanwise turbulent structure is shown to display a satisfactory scaling with this thickness rather than with the whole thickness of the grid's wake. Moreover, it is shown that certain grids destroy the spanwise arrangement of large turbulence structures in the logarithmic region, which are then re-formed after a particular streamwise extent. It is finally shown that for fences subject to a boundary layer of thickness comparable to their height, the effective thickness of the wall layer scales with the incoming boundary layer thickness. Analogously, it is hypothesized that the growth rate of the internal layer is also partly dependent on the incoming boundary layer thickness.

  4. Foam-mat drying technology: A review.

    Science.gov (United States)

    Hardy, Z; Jideani, V A

    2017-08-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.

  5. The experimental study of sinal wall thickening on CT

    International Nuclear Information System (INIS)

    Kase, Yasuhiro; Iinuma, Tositaka; Oyama, Kazuyuki.

    1988-01-01

    In our previous report, we investigated several factors which cause apparent thickening of the walls of maxillary sinus. We confirmed, however, that the major factor for the sinal wall thickening is the artifact of CT. In present study, we report the results obtained by phantom models of isolated maxillary bone and egg shell. As the substance corresponding to the soft tissue density, solutions of CaCl 2 in various concentrations were used. In the maxillary bone studies, the thickness of the anterior sinus wall by CT was larger than the actual value even though only the air was contained. When solutions of CaCl 2 were contained and in touch with the anterior wall, the thickness by CT was larger than that of containing air. In the egg shell studies, the increase in thickness by CT correlated to the increase in percentage of solutions. The above results indicate that the apparent increased thickness of the sinal walls by CT is largely the artifact by CT and is dependent upon the soft tissue density or CT value (X-ray attenuation coefficient) of substances in touch with the sinal walls. In CT images obtained by clinical cases, the increased thickness of the sinal walls, in sinuses filled with soft tissue density, is more apparent than real. (author)

  6. Influence of the elastic deformation of a foam on its mobility in channels of linearly varying width.

    Science.gov (United States)

    Dollet, Benjamin; Jones, Siân A; Méheust, Yves; Cantat, Isabelle

    2014-08-01

    We study foam flow in an elementary model porous medium consisting of a convergent and a divergent channel positioned side by side and possessing a fixed joint porosity. Configurations of converging or diverging channels are ubiquitous at the pore scale in porous media, as all channels linking pores possess a converging and diverging part. The resulting flow kinematics imposes asymmetric bubble deformations in the two channels, which modulate foam-wall friction and strongly impact the flux distribution. We measure, as well as quantitatively predict, the ratio of the fluxes in the two channels as a function of the channel widths by modeling pressure drops of both viscous and capillary origins. This study reveals the crucial importance of boundary-induced bubble deformation on the mobility of a flowing foam, resulting in particular in flow irreversibility.

  7. Production of lightweight foam glass (invited talk)

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass production allows low cost recycling of postconsumer glass and industrial waste materials as foaming agent or as melt resource. Foam glass is commonly produced by utilising milled glass mixed with a foaming agent. The powder mixture is heat-treated to around 10^3.7 – 10^6 Pa s, which...... result in viscous sintering and subsequent foaming of the glass melt. The porous glass melt is cooled down to room temperature to freeze-in the foam structure. The resulting foam glass is applied in constructions as a light weight material to reduce load bearing capacity and as heat insulating material...... in buildings and industry. We foam panel glass from old televisions with different foaming agents. We discuss the foaming ability and the foaming mechanism of different foaming systems. We compare several studies to define a viscous window for preparing low density foam glass. However, preparing foam glass...

  8. Polyurethane-Foam Maskant

    Science.gov (United States)

    Bodemeijer, R.

    1985-01-01

    Brown wax previously used to mask hardware replaced with polyurethane foam in electroplating and electroforming operations. Foam easier to apply and remove than wax and does not contaminate electrolytes.

  9. Transient Thermal Response of Lightweight Cementitious Composites Made with Polyurethane Foam Waste

    Science.gov (United States)

    Kismi, M.; Poullain, P.; Mounanga, P.

    2012-07-01

    The development of low-cost lightweight aggregate (LWA) mortars and concretes presents many advantages, especially in terms of lightness and thermal insulation performances of structures. Low-cost LWA mainly comes from the recovery of vegetal or plastic wastes. This article focuses on the characterization of the thermal conductivity of innovative lightweight cementitious composites made with fine particles of rigid polyurethane (PU) foam waste. Five mortars were prepared with various mass substitution rates of cement with PU-foam particles. Their thermal conductivity was measured with two transient methods: the heating-film method and the hot-disk method. The incorporation of PU-foam particles causes a reduction of up to 18 % of the mortar density, accompanied by a significant improvement of the thermal insulating performance. The effect of segregation on the thermal properties of LWA mortars due to the differences of density among the cementitious matrix, sand, and LWA has also been quantified. The application of the hot-disk method reveals a gradient of thermal conductivity along the thickness of the specimens, which could be explained by a non-uniform repartition of fine PU-foam particles and mineral aggregates within the mortars. The results show a spatial variation of the thermal conductivity of the LWA mortars, ranging from 9 % to 19 %. However, this variation remains close to or even lower than that observed on a normal weight aggregate mortar. Finally, a self-consistent approach is proposed to estimate the thermal conductivity of PU-foam cement-based composites.

  10. Foam - novel delivery technology for remediation of vadose zone environments - 59019

    International Nuclear Information System (INIS)

    Jansik, Danielle; Wellman, Dawn M.; Mattigod, Shas V.; Zhong, Lirong; Zhang, Fred; Foote, Martin; Wu, Yuxin; Hubbard, Susan

    2012-01-01

    Deep vadose zone environments can be a primary source and pathway for contaminant migration to groundwater. These environments present unique characterization and remediation challenges that necessitate scrutiny and research. The thickness, depth, and intricacies of the deep vadose zone, combined with a lack of understanding of the key subsurface processes (e.g., biogeochemical and hydrologic) affecting contaminant migration, make it difficult to create validated conceptual and predictive models of subsurface flow dynamics and contaminant behavior across multiple scales. These factors also make it difficult to design and deploy sustainable remedial approaches and monitor long-term contaminant behavior after remedial actions. Functionally, methods for addressing contamination must remove and/or reduce transport of contaminants. This problem is particularly challenging in the arid western United States where the vadose zone is hundreds of feet thick, rendering transitional excavation methods exceedingly costly and ineffective. Delivery of remedial amendments is one of the most challenging and critical aspects for all remedy-based approaches. The conventional approach for delivery is through injection of aqueous remedial solutions. However, heterogeneous deep vadose zone environments present hydrologic and geochemical challenges that limit the effectiveness. Because the flow of solution infiltration is dominantly controlled by gravity and suction, injected liquid preferentially percolates through highly permeable pathways, by-passing low-permeability zones that frequently contain the majority of contamination. Moreover, the wetting front can readily mobilize and enhance contaminant transport to the underlying aquifer prior to stabilization. Development of innovative in-situ technologies may be the only means to meet remedial action objectives and long-term stewardship goals. Surfactants can be used to lower the liquid surface tension and create stabile foams, which

  11. Fire-retardant foams

    Science.gov (United States)

    Gagliani, J.

    1978-01-01

    Family of polyimide resins are being developed as foams with exceptional fire-retardant properties. Foams are potentially useful for seat cushions in aircraft and ground vehicles and for applications such as home furnishings and building-construction materials. Basic formulations can be modified with reinforcing fibers or fillers to produce celular materials for variety of applications. By selecting reactants, polymer structure can be modified to give foams with properties ranging from high resiliency and flexibility to brittleness and rigidity.

  12. Design and development of polyphenylene oxide foam as a reusable internal insulation for LH2 tanks, phase 2

    Science.gov (United States)

    1972-01-01

    PPO form was tested for mechanical strength, for the effects of 100 thermal cycles from 450 K (359 F) to 21 K (-423 F) and for gas flow resistance characteristics. PPO foam panels were investigated for density variations, methods for joining panels were studied and panel joint thermal test specimens were fabricated. The range of foam panel thickness under investigation was extended to include 7 mm (0.3 in) and 70 mm (2.8 in) panels which also were tested for thermal performance.

  13. Influence of the glass particle size on the foaming process and physical characteristics of foam glasses

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2016-01-01

    We have prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. The effect of the glass particle size on the foaming process, the apparent density and the pore morphology is revealed. The results show that the foaming is mainly caused...... by the reduction of manganese. Foam glasses with a density of

  14. Calendering effect on the electrochemical performances of the thick Li-ion battery electrodes using a three dimensional Ni alloy foam current collector

    International Nuclear Information System (INIS)

    Yang, Gui-Fu; Joo, Seung-Ki

    2015-01-01

    High surface area and a three dimensional NiCrAl alloy foam current collector was used for two kinds of thick lithium iron phosphate electrodes. One kind of electrodes were compressed after the slurry of active material in the metal foam was dried and then annealed at 140 °C for half a day whereas the other kind of electrodes were prepared without pressing. When the addition of carbon black was 4 wt% for the two kinds of electrodes, a charge-discharge test revealed that the capacity of the cell using the pressed electrode faded much more although the voltage-drop was much smaller at the plateau region. For example, the capacity of the pressed electrode exhibited 85 mA h g −1 , while it was 135 mA h g −1 for the unpressed electrode although the voltage-drop at the plateau region was 250 mV higher at 0.5C-rate for the unpressed electrode. The AC impedance analysis showed that the charge transfer resistance of the pressed electrode was only 15 Ω whereas it was 4 times higher for the unpressed electrode. The results illustrated that the effective redox area was much larger for the unpressed electrode since the cell using the unpressed electrode exhibited much higher capacity even at the condition of poor electronic conductivity. To solve the low electronic conductivity issue for the unpressed electrode, the addition of carbon black was further increased to 14 wt% and as a result, there was almost no difference in voltage drop at plateau region or charge transfer resistance between the two kinds of electrodes. Obviously, the capacity of unpressed electrode exhibited much higher at higher current rate due to the larger effective redox area

  15. Activated, coal-based carbon foam

    Science.gov (United States)

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  16. Bio-based Polymer Foam from Soyoil

    Science.gov (United States)

    Bonnaillie, Laetitia M.; Wool, Richard P.

    2006-03-01

    The growing bio-based polymeric foam industry is presently lead by plant oil-based polyols for polyurethanes and starch foams. We developed a new resilient, thermosetting foam system with a bio-based content higher than 80%. The acrylated epoxidized soybean oil and its fatty acid monomers is foamed with pressurized carbon dioxide and cured with free-radical initiators. The foam structure and pore dynamics are highly dependent on the temperature, viscosity and extent of reaction. Low-temperature cure hinds the destructive pore coalescence and the application of a controlled vacuum results in foams with lower densities ˜ 0.1 g/cc, but larger cells. We analyze the physics of foam formation and stability, as well as the structure and mechanical properties of the cured foam using rigidity percolation theory. The parameters studied include temperature, vacuum applied, and cross-link density. Additives bring additional improvements: nucleating agents and surfactants help produce foams with a high concentration of small cells and low bulk density. Hard and soft thermosetting foams with a bio content superior to 80% are successfully produced and tested. Potential applications include foam-core composites for hurricane-resistant housing, structural reinforcement for windmill blades, and tissue scaffolds.

  17. Mechanical Characterization of Rigid Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Mechanics of Materials

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  18. Study of two-phase foam flow

    Energy Technology Data Exchange (ETDEWEB)

    Gurbanov, R S; Guliev, B B; Mekhtiev, K G; Kerimov, R G

    1970-01-01

    The objectives of this study were to determine characteristics of aqueous foam flow through porous media and to estimate the depth of foam penetration into a formation. Foam was generated by mixing air and 1% solution of surfactant PO-1. Foam density was maintained at 0.14 g/cc in all experiments. The foam was passed through sand columns (800 mm long x 30 mm diam) of permeabilities 26, 39, 80, 111, and 133 darcys. Flow rates were measured at various pressure drops and the relationship between system parameters was expressed analytically and graphically. From the data, distance of foam penetration into a formation as a function of pressure drop and permeability was calculated. The data indicate that under most conditions, foam will penetrate the formation to a negligible distance. This study indicates that when foam is used to remove sand from a well, a negligible loss of foam to the formation occurs.

  19. Structure–function relationship of the foam-like pomelo peel (Citrus maxima)—an inspiration for the development of biomimetic damping materials with high energy dissipation

    International Nuclear Information System (INIS)

    Thielen, M; Schmitt, C N Z; Eckert, S; Speck, T; Seidel, R

    2013-01-01

    The mechanical properties of artificial foams are mainly determined by the choice of bulk materials and relative density. In natural foams, in contrast, variation to optimize properties is achieved by structural optimization rather than by conscious substitution of bulk materials. Pomelos (Citrus maxima) have a thick foam-like peel which is capable of dissipating considerable amounts of kinetic energy and thus this fruit represents an ideal role model for the development of biomimetic impact damping structures. This paper focuses on the analysis of the biomechanics of the pomelo peel and on its structure–function relationship. It deals with the determination of the onset strain of densification of this foam-like tissue and on how this property is influenced by the arrangement of vascular bundles. It was found here that the vascular bundles branch in a very regular manner—every 16.5% of the radial peel thickness—and that the surrounding peel tissue (pericarp) attains its exceptional thickness mainly by the expansion of existing interconnected cells causing an increasing volume of the intercellular space, rather than by cell division. These findings lead to the discussion of the pomelo peel as an inspiration for fibre-reinforced cast metallic foams with the capacity for excellent energy dissipation. (paper)

  20. Polyimide Foams Offer Superior Insulation

    Science.gov (United States)

    2012-01-01

    At Langley Research Center, Erik Weiser and his colleagues in the Advanced Materials and Processing Branch were working with a new substance for fabricating composites for use in supersonic aircraft. The team, however, was experiencing some frustration. Every time they tried to create a solid composite from the polyimide (an advanced polymer) material, it bubbled and foamed. It seemed like the team had reached a dead end in their research - until they had another idea. "We said, This isn t going to work for composites, but maybe we could make a foam out of it," Weiser says. "That was kind of our eureka moment, to see if we could go in a whole other direction. And it worked." Weiser and his colleagues invented a new kind of polyimide foam insulation they named TEEK. The innovation displayed a host of advantages over existing insulation options. Compared to other commercial foams, Weiser explains, polyimide foams perform well across a broad range of temperatures, noting that the NASA TEEK foams provide effective structural insulation up to 600 F and down to cryogenic temperatures. The foam does not burn or off-gas toxic fumes, and even at -423 F - the temperature of liquid hydrogen - the material stays flexible. The inventors could produce the TEEK foam at a range of densities, from 0.5 pounds per cubic foot up to 20 pounds per cubic foot, making the foam ideal for a range of applications, including as insulation for reusable launch vehicles and for cryogenic tanks and lines. They also developed a unique, friable balloon format for manufacturing the foam, producing it as hollow microspheres that allowed the foam to be molded and then cured into any desired shape - perfect for insulating pipes of different sizes and configurations. The team s originally unplanned invention won an "R&D 100" award, and a later form of the foam, called LaRC FPF-44 (Spinoff 2009), was named "NASA Invention of the Year" in 2007.

  1. Foaming in manure based digesters: Effect of overloading and foam suppression using antifoam agents

    OpenAIRE

    Kougias, Panagiotis; Tsapekos, Panagiotis; Boe, Kanokwan; Angelidaki, Irini

    2013-01-01

    Anaerobic digestion foaming is one of the major problems that occasionally occur in full-scale biogas plants, affecting negatively the overall digestion process. The foam is typically created either in the main biogas reactor or/and in the pre-storage tank and the entrapped solids in the foam cause severe operational problems, such as blockage of mixing devices and collapse of pumps. Furthermore, the foaming problem is linked with economic consequences for biogas plants, due to income losses ...

  2. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Care for Lightweight Fan Blade Design

    Science.gov (United States)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. Traditionally, these components have been fabricated using expensive materials such as light weight titanium alloys, polymeric composite materials and carbon-carbon composites. The present study investigates the use of P sandwich foam fan blade made up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The stiffness of the sandwich structure is increased by separating the two face sheets by a foam core. The resulting structure possesses a high stiffness while being lighter than a similar solid construction. Since the face sheets carry the applied bending loads, the sandwich architecture is a viable engineering concept. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of the sandwich structure for a fan blade application. A vibration analysis for natural frequencies and P detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of skin thickness and core volume %re presented with a comparison to a solid titanium blade.

  3. Influence of Rubber Powders on Foaming Behavior and Mechanical Properties of Foamed Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    HE Yue

    2017-02-01

    Full Text Available Polypropylene/rubber powders composites with different kinds of rubber powders were foamed by injection molding machine equipped with volume-adjustable cavity. The effect of dispersity of rubber powders and crystallization behavior of composites on the foaming behavior and mechanical properties was investigated. The results show that the addition of rubber powders can improve the cell structure of foamed PP with fine and uniform cell distribution. And cell density and size of PP/PP-MAH/NBR foams are 7.64×106cell/cm3 and 29.78μm respectively, which are the best among these foams. Combining cell structures with mechanical properties, notch impact strength of PP/PP-MAH/CNBR composites increases approximately by 2.2 times while tensile strength is reduced just by 26% compared with those of the pure PP. This indicates that PP/PP-MAH/CNBR composites are ideal foamed materials.

  4. Chaotic bubbling and nonstagnant foams.

    Science.gov (United States)

    Tufaile, Alberto; Sartorelli, José Carlos; Jeandet, Philippe; Liger-Belair, Gerard

    2007-06-01

    We present an experimental investigation of the agglomeration of bubbles obtained from a nozzle working in different bubbling regimes. This experiment consists of a continuous production of bubbles from a nozzle at the bottom of a liquid column, and these bubbles create a two-dimensional (2D) foam (or a bubble raft) at the top of this column. The bubbles can assemble in various dynamically stable arrangement, forming different kinds of foams in a liquid mixture of water and glycerol, with the effect that the bubble formation regimes influence the foam obtained from this agglomeration of bubbles. The average number of bubbles in the foam is related to the bubble formation frequency and the bubble mean lifetime. The periodic bubbling can generate regular or irregular foam, while a chaotic bubbling only generates irregular foam.

  5. Global limit load solutions for thick-walled cylinders with circumferential cracks under combined internal pressure, axial force and bending moment − Part II: Finite element validation

    International Nuclear Information System (INIS)

    Li, Yuebing; Lei, Yuebao; Gao, Zengliang

    2014-01-01

    Global limit load solutions for thick-walled cylinders with circumferential internal/external surface and through-wall defects under combined positive/negative axial force, positive/negative global bending moment and internal pressure have been developed in Part I of this paper. In this Part II, elastic-perfectly plastic 3-D finite element (FE) analyses are performed for selected cases, covering a wide range of geometries and load combinations, to validate the developed limit load solutions. The results show that these limit load solutions can predict the FE data very well for the cases with shallow or deep and short cracks and are conservative. For the cases with very long and deep cracks, the predictions are reasonably accurate and more conservative. -- Highlights: • Elastic-perfectly plastic 3D finite element limiting analyses of cylinders. • Thin/thick-walled cylinders with circumferential surface defects. • Combined loading for pressure, end-force and global bending moment. • Totally 1458 cases analysed and tabulated normalised results provided. • Results used to validate the developed limit load solutions in Part I of this paper

  6. Determination of Acreage Thermal Protection Foam Loss From Ice and Foam Impacts

    Science.gov (United States)

    Carney, Kelly S.; Lawrence, Charles

    2015-01-01

    A parametric study was conducted to establish Thermal Protection System (TPS) loss from foam and ice impact conditions similar to what might occur on the Space Launch System. This study was based upon the large amount of testing and analysis that was conducted with both ice and foam debris impacts on TPS acreage foam for the Space Shuttle Project External Tank. Test verified material models and modeling techniques that resulted from Space Shuttle related testing were utilized for this parametric study. Parameters varied include projectile mass, impact velocity and impact angle (5 degree and 10 degree impacts). The amount of TPS acreage foam loss as a result of the various impact conditions is presented.

  7. A review of aqueous foam in microscale.

    Science.gov (United States)

    Anazadehsayed, Abdolhamid; Rezaee, Nastaran; Naser, Jamal; Nguyen, Anh V

    2018-06-01

    In recent years, significant progress has been achieved in the study of aqueous foams. Having said this, a better understanding of foam physics requires a deeper and profound study of foam elements. This paper reviews the studies in the microscale of aqueous foams. The elements of aqueous foams are interior Plateau borders, exterior Plateau borders, nodes, and films. Furthermore, these elements' contribution to the drainage of foam and hydraulic resistance are studied. The Marangoni phenomena that can happen in aqueous foams are listed as Marangoni recirculation in the transition region, Marangoni-driven flow from Plateau border towards the film in the foam fractionation process, and Marangoni flow caused by exposure of foam containing photosurfactants under UV. Then, the flow analysis of combined elements of foam such as PB-film along with Marangoni flow and PB-node are studied. Next, we contrast the behavior of foams in different conditions. These various conditions can be perturbation in the foam structure caused by injected water droplets or waves or using a non-Newtonian fluid to make the foam. Further review is about the effect of oil droplets and particles on the characteristics of foam such as drainage, stability and interfacial mobility. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Multi-Scale Modeling for Predicting the Stiffness and Strength of Hollow-Structured Metal Foams with Structural Hierarchy

    Directory of Open Access Journals (Sweden)

    Yong Yi

    2018-03-01

    Full Text Available This work was inspired by previous experiments which managed to establish an optimal template-dealloying route to prepare ultralow density metal foams. In this study, we propose a new analytical–numerical model of hollow-structured metal foams with structural hierarchy to predict its stiffness and strength. The two-level model comprises a main backbone and a secondary nanoporous structure. The main backbone is composed of hollow sphere-packing architecture, while the secondary one is constructed of a bicontinuous nanoporous network proposed to describe the nanoscale interactions in the shell. Firstly, two nanoporous models with different geometries are generated by Voronoi tessellation, then the scaling laws of the mechanical properties are determined as a function of relative density by finite volume simulation. Furthermore, the scaling laws are applied to identify the uniaxial compression behavior of metal foams. It is shown that the thickness and relative density highly influence the Young’s modulus and yield strength, and vacancy defect determines the foams being self-supported. The present study provides not only new insights into the mechanical behaviors of both nanoporous metals and metal foams, but also a practical guide for their fabrication and application.

  9. Effect of Sphere Properties on Microstructure and Mechanical Performance of Cast Composite Metal Foams

    Directory of Open Access Journals (Sweden)

    Matias Garcia-Avila

    2015-05-01

    Full Text Available Aluminum-steel composite metal foams (Al-S CMF are manufactured using steel hollow spheres, with a variety of sphere carbon content, surface roughness, and wall porosity, embedded in an Aluminum matrix through gravity casting technique. The microstructural and mechanical properties of the material were studied using scanning electron microscopy, energy dispersive spectroscopy, and quasi-static compressive testing. Higher carbon content and surface roughness in the sphere wall were responsible for an increase in formation of intermetallic phases which had a strengthening effect at lower strain levels, increasing the yield strength of the material by a factor of 2, while higher sphere wall porosity resulted in a decrease on the density of the material and improving its cushioning and ductility maintaining its energy absorption capabilities.

  10. Effects of Sb2O3 on the Mechanical Properties of the Borosilicate Foam Glasses Sintered at Low Temperature

    Directory of Open Access Journals (Sweden)

    Chenxi Zhai

    2014-01-01

    Full Text Available The physical properties and microstructure of a new kind of borosilicate foam glasses with different Sb2O3 doping content are comprehensively investigated. The experimental results show that appropriate addition of Sb2O3 has positive impact on the bulk porosity and compressive strength of the foam glass. It is more suitable in this work to introduce 0.9 wt.% Sb2O3 into the Na2O-K2O-B2O3-Al2O3-SiO2 basic foam glass component and sinter at 775°C. And the obtained foam glasses present much more uniform microstructure, large pore size, and smooth cell walls, which bring them with better performance including a lower bulk density, low water absorption, and an appreciable compressive strength. The microstructure analysis indicates that, with the increase of the content of Sb2O3 additives, the cell size tends to increase at first and then decreases. Larger amounts of Sb2O3 do not change the crystalline phase of foam glass but increase its vitrification. It is meaningful to prepare the foam glass at a relatively low temperature for reducing the heat energy consumption.

  11. Beer foam physics

    NARCIS (Netherlands)

    Ronteltap, A.D.

    1989-01-01

    The physical aspects of beer foam behavior were studied in terms of the four physical processes, mainly involved in the formation and breakdown of foam. These processes are, bubble formation, drainage, disproportionation and coalescence. In detail, the processes disproportionation and

  12. Three dimensional graphene synthesis on nickel foam by chemical vapor deposition from ethylene

    International Nuclear Information System (INIS)

    Trinsoutrot, Pierre; Vergnes, Hugues; Caussat, Brigitte

    2014-01-01

    Highlights: • 3D multi-layers graphene networks were synthesized from ethylene on nickel foam. • The weight of graphene increased with run duration and when decreasing temperature. • Weight percentages of graphene as high as 15% were obtained. • A continuous mechanism of graphene formation probably exists in presence of ethylene. -- Abstract: 3D multi-layers graphene networks were synthesized on nickel foam from ethylene between 700 and 1000 °C by chemical vapor deposition. Large nickel foam substrates were used allowing the accurate measurement of graphene masses. The weight of graphene increased with run duration and when decreasing temperature. Graphene was also present inside the hollow branches of the foam. We demonstrated that the weights of graphene formed largely exceed the masses corresponding to carbon solubility into nickel. Indeed weight percentages of graphene as high as 15% were obtained, corresponding to graphene layers of 500 nm to 1 μm thick. This means that graphene formation could not be due only to carbon dissolution into nickel and then precipitation during the cooling step. Another mechanism probably co-exists, involving continuous graphene formation in presence of ethylene either by segregation from the dissolved carbon into nickel or by surface CVD growth

  13. Antibacterial potency of V.A.C. GranuFoam Silver(®) Dressing.

    Science.gov (United States)

    Sachsenmaier, Saskia; Peschel, Andreas; Ipach, Ingmar; Kluba, Torsten

    2013-10-01

    V.A.C.(®) GranuFoam™ therapy is regularly used in the surgical therapy of infected wounds and soft tissue injuries. Silver nanoparticles can destroy bacterial cell walls and inhibit enzymes for cell replication. Silver dressings are therefore successfully used for many indications in wound therapy. In this study, we investigated the antimicrobial potency of ionic silver released from the silver-coated V.A.C.(®) GranuFoam™ during vacuum therapy. Silver dressing was exposed to agar plates populated with bacteria to measure silver release. A total of 15 agar plates colonised with either Staphylococcus aureus populations or with Staphylococcus epidermidis, were loaded with V.A.C. GranuFoam Silver(®) Dressing polyurethane foam (KCI, San Antonio, Texas). Each of 13 pieces of silver-coated foam was applied to an agar plate. Two plates were loaded with conventional black foam without any coating. After connecting to a vacuum pump, the vacuum therapy of the 15 plates lasted 5 days. The zone of inhibition of bacterial growth around the foam was measured daily. Silver release was also determined as a function of time. At each time point, there was evidence of silver in the agar independent of bacterial colonisation. The S. aureus agar showed a consecutive increase in silver concentration from baseline upon 48 h after exposure to the negative pressure of V.A.C. therapy. An increasing mean silver level after 48, 72 and 96 h was measured under V.A.C. therapy with a peak value after 120 h. In contrast, the results from the S. epidermidis plates did not follow a linear pattern. At the beginning of vacuum therapy, we documented a rise in silver concentration. After 48-96h, the silver levels fluctuated. A maximum zone of inhibition in both bacterial colonised plates (S. aureus and S. epidermidis) was found 39 h after the start of the V.A.C. GranuFoam Silver(®) therapy. From our results, we confirmed the antimicrobial effect of the silver ions against S. aureus and S

  14. FOAM3D: A numerical simulator for mechanistic prediciton of foam displacement in multidimensions

    Energy Technology Data Exchange (ETDEWEB)

    Kovscek, A.R.; Patzek, T.W. [Lawrence Berkeley Laboratory, Berkeley, CA (United States); Radke, C.J. [Univ. of California, Berkeley, CA (United States)

    1995-03-01

    Field application of foam is a technically viable enhanced oil recovery process (EOR) as demonstrated by recent steam-foam field studies. Traditional gas-displacement processes, such as steam drive, are improved substantially by controlling gas mobility and thereby improving volumetric displacement efficiency. For instance, Patzek and Koinis showed major oil-recovery response after about two years of foam injection in two different pilot studies at the Kern River field. They report increased production of 5.5 to 14% of the original oil in place over a five year period. Because reservoir-scale simulation is a vital component of the engineering and economic evaluation of any EOR project, efficient application of foam as a displacement fluid requires a predictive numerical model of foam displacement. A mechanistic model would also expedite scale-up of the process from the laboratory to the field scale. No general, mechanistic, field-scale model for foam displacement is currently in use.

  15. Anti-foam System design description

    International Nuclear Information System (INIS)

    White, M.A.

    1994-01-01

    The Anti-foam System is a sub-system of the 242-A Evaporator facility. The Anti-foam is used within the C-A-1 Vapor-Liquid Separator, to reduce the effect of foaming and reduce fluid bumping while the vapor and liquid are separated within the C-A-1 Vapor-Liquid Separator. Excessive foaming within the vessel may possibly cause the liquid slurry mixture in the evaporator vessel to foul the de-entrainment pads and cause plant shutdown. The Anti-foam System consists of the following primary elements: the Anti-foam Tank and the Metering Pump. The upgrades to Anti-foam System include the following: installation of a new pump, instruments, and valves; and connection of the instruments, pump and agitator associated with the Anti-foam System to the Monitoring and Control System (MCS). The 242-A Evaporator is a waste treatment facility designed to reduce liquid waste volumes currently stored in the Hanford Area double shell Waste Storage Tanks. The evaporator uses evaporative concentration to achieve this volume reduction, returning the concentrated slurry to the double-shell tanks for storage and, at the same time, releasing the process effluent to a retention facilities for eventual treatment and release to the environment

  16. Quantum confinement effect in Bi anti-dot thin films with tailored pore wall widths and thicknesses

    International Nuclear Information System (INIS)

    Park, Y.; Hirose, Y.; Fukumura, T.; Hasegawa, T.; Nakao, S.; Xu, J.

    2014-01-01

    We investigated quantum confinement effects in Bi anti-dot thin films grown on anodized aluminium oxide templates. The pore wall widths (w Bi ) and thickness (t) of the films were tailored to have values longer or shorter than Fermi wavelength of Bi (λ F  = ∼40 nm). Magnetoresistance measurements revealed a well-defined weak antilocalization effect below 10 K. Coherence lengths (L ϕ ) as functions of temperature were derived from the magnetoresistance vs field curves by assuming the Hikami-Larkin-Nagaoka model. The anti-dot thin film with w Bi and t smaller than λ F showed low dimensional electronic behavior at low temperatures where L ϕ (T) exceed w Bi or t

  17. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival.

    Science.gov (United States)

    Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas

    2018-04-23

    How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. High performance polymeric foams

    International Nuclear Information System (INIS)

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-01-01

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy

  19. Stability of metallic foams studied under microgravity

    CERN Document Server

    Wuebben, T; Banhart, J; Odenbach, S

    2003-01-01

    Metal foams are prepared by mixing a metal powder and a gas-releasing blowing agent, by densifying the mix to a dense precursor and finally foaming by melting the powder compact. The foaming process of aluminium foams is monitored in situ by x-ray radioscopy. One observes that foam evolution is accompanied by film rupture processes which lead to foam coalescence. In order to elucidate the importance of oxides for foam stability, lead foams were manufactured from lead powders having two different oxide contents. The two foam types were generated on Earth and under weightlessness during parabolic flights. The measurements show that the main function of oxide particles is to prevent coalescence, while their influence on bulk viscosity of the melt is of secondary importance.

  20. Efficient removal of perfluorooctane sulfonate from aqueous film-forming foam solution by aeration-foam collection.

    Science.gov (United States)

    Meng, Pingping; Deng, Shubo; Maimaiti, Ayiguli; Wang, Bin; Huang, Jun; Wang, Yujue; Cousins, Ian T; Yu, Gang

    2018-07-01

    Aqueous film-forming foams (AFFFs) used in fire-fighting are one of the main contamination sources of perfluorooctane sulfonate (PFOS) to the subterranean environment, requiring high costs for remediation. In this study, a method that combined aeration and foam collection was presented to remove PFOS from a commercially available AFFF solution. The method utilized the strong surfactant properties of PFOS that cause it to be highly enriched at air-water interfaces. With an aeration flow rate of 75 mL/min, PFOS removal percent reached 96% after 2 h, and the PFOS concentration in the collected foam was up to 6.5 mmol/L, beneficial for PFOS recovery and reuse. Increasing the aeration flow rate, ionic strength and concentration of co-existing surfactant, as well as decreasing the initial PFOS concentration, increased the removal percents of PFOS by increasing the foam volume, but reduced the enrichment of PFOS in the foams. With the assistance of a co-existing hydrocarbon surfactant, PFOS removal percent was above 99.9% after aeration-foam collection for 2 h and the enrichment factor exceeded 8400. Aeration-foam collection was less effective for short-chain perfluoroalkyl substances due to their relatively lower surface activity. Aeration-foam collection was found to be effective for the removal of high concentrations of PFOS from AFFF-contaminated wastewater, and the concentrated PFOS in the collected foam can be reused. Copyright © 2018 Elsevier Ltd. All rights reserved.