WorldWideScience

Sample records for thick isotope separator

  1. Isotope separation

    International Nuclear Information System (INIS)

    Ravoire, Jean

    1978-11-01

    Separation of isotopes is treated in a general way, with special reference to the production of enriched uranium. Uses of separated isotopes are presented quickly. Then basic definitions and theoretical concepts are explained: isotopic effects, non statistical and statistical processes, reversible and irreversible processes, separation factor, enrichment, cascades, isotopic separative work, thermodynamics. Afterwards the main processes and productions are reviewed. Finally the economical and industrial aspects of uranium enrichment are resumed [fr

  2. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.

    1981-01-01

    Method and apparatus for separating isotopes in an isotopic mixture of atoms or molecules by increasing the mass differential among isotopic species. The mixture containing a particular isotope is selectively irradiated so as to selectively excite the isotope. This preferentially excited species is then reacted rapidly with an additional preselected radiation, an electron or another chemical species so as to form a product containing the specific isotope, but having a mass different than the original species initially containing the particular isotope. The product and the remaining balance of the mixture is then caused to flow through a device which separates the product from the mixture based upon the increased mass differential

  3. Isotope separation

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  4. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1979-01-01

    Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)

  5. Isotopic separation

    International Nuclear Information System (INIS)

    Castle, P.M.

    1979-01-01

    This invention relates to molecular and atomic isotope separation and is particularly applicable to the separation of 235 U from other uranium isotopes including 238 U. In the method described a desired isotope is separated mechanically from an atomic or molecular beam formed from an isotope mixture utilising the isotropic recoil momenta resulting from selective excitation of the desired isotope species by radiation, followed by ionization or dissociation by radiation or electron attachment. By forming a matrix of UF 6 molecules in HBr molecules so as to collapse the V 3 vibrational mode of the UF 6 molecule the 235 UF 6 molecules are selectively excited to promote reduction of UF 6 molecules containing 235 U and facilitate separation. (UK)

  6. Isotope separation

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Morrey, J.R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated

  7. Isotope separation

    International Nuclear Information System (INIS)

    Coleman, J.H.; Marks, T.J.

    1981-01-01

    A process for separating uranium isotopes is described which includes: preparing a volatile compound U-T, in which U is a mixture of uranium isotopes and T is a chemical moiety containing at least one organic or deuterated borohydride group, and which exhibits for at least one isotopic species thereof a fundamental, overtone or combination vibrational absorption excitation energy level at a frequency between 900 and 1100 cm -1 ; and irradiating the compound in the vapour phase with energy emitted by a radiation source at a frequency between 900 and 1100 cm -1 (e.g. a CO 2 laser). (author)

  8. Isotope separation

    International Nuclear Information System (INIS)

    Coleman, G.H.; Bett, R.; Cuninghame, J.G.; Sims, H.

    1982-01-01

    In the separation of short-lived isotopes for medical usage, a solution containing sup(195m)Hg is contacted with vicinal dithiol cellulose which adsorbs and retains the sup(195m)Hg. sup(195m)Au is eluted from the vicinal dithiol cellulose by using a suitable elutant. The sup(195m)Au arises from the radioactive decay of the sup(195m)Hg. The preferred elutant is a solution containing CN - ion. (author)

  9. Isotope separation

    International Nuclear Information System (INIS)

    Bett, R.; Sims, H.E.; Cuninghame, J.G.

    1983-01-01

    sup(195m)Au is separated from sup(195m)Hg in a solution containing ions of sup(195m)Hg, wherein sup(195m)Au is generated by radioactive decay of the sup(195m)Hg, by contacting the solution with an adsorbing agent to adsorb the sup(195m)Hg as Hg ++ ions followed by elution of sup(195m)Au arising from said radioactive decay. The adsorbing agent is 3-thio-2-hydroxypropyl-ether-Sepharose (R.T.M.); sup(195m)Au may be prepared in this way in a medical isotope generator and is suitable for use in gamma-scan studies of heart action. (author)

  10. Isotope separation

    International Nuclear Information System (INIS)

    Rosevear, A.; Sims, H.E.

    1985-01-01

    sup(195m)Au for medical usage is separated from sup(195m)Hg in a solution containing ions of sup(195m)Hg by contacting the solution with an adsorbing agent to adsorb 195 Hgsup(H) thereon, followed by selective elution of sup(195m)Au generated by radioactive decay of the sup(195m)Hg. The adsorbing agent comprises a composite material in the form of an inert porous inorganic substrate (e.g. Kieselguhr),the pores of which are occupied by a hydrogel of a polysaccharide (e.g. agarose) carrying terminal thiol groups for binding Hgsup(H) ions. (author)

  11. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.

    1979-01-01

    A method is described for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption after which more of the excited molecules than nonexcited molecules are converted to a chemically different form which may be separated by means known in the art. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium

  12. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.

    1976-01-01

    The instant invention relates to a process for separating a material into two or more parts in each of which the abundances of the isotopes of a given element differ from the abundances of the isotopes of the same material in said material. In one embodiment, the invention relates to a method for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption followed by selective dissociation of said excited molecules by the absorption of a single photon of visible or ultraviolet light. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium. 11 Claims, 2 Drawing Figures

  13. Process for isotope separation

    International Nuclear Information System (INIS)

    Emile, B.F.M.

    1983-11-01

    A process is claimed for isotopic separation applied to isotopes of elements that can be placed in at least a physicochemical form in which the isotopic atoms or the molecules containing these atoms can be easily displaced and for which there are selective radiations preferentially absorbed by the isotopes of a certain type or by the molecules containing them, said absorption substantially increasing the probability of ionization of said atoms or molecules relative to the atoms or molecules that did not absorb the radiation. The process consists of placing the isotopic mixture in such a form, subjecting it in a separation zone to selective radiations and to an electrical field that produces migration of positive ions toward the negative electrodes and negative ions toward the positive electrodes, and withdrawing from certain such zones the fractions thus enriched in certain isotopes

  14. UWIS isotope separator

    International Nuclear Information System (INIS)

    Wojtasiewicz, A.

    1997-01-01

    Since 1995 the University of Warsaw Isotope Separator group has participated in the ISOL/IGISOL project at the Heavy Ion Cyclotron. This project consists in installation of an isotope separator (on line with cyclotron heavy ion beam) with a hot plasma ion source (ISOL system) and/or with an ion guide source (IGISOL system). In the report the short description of the present status of the project is presented

  15. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.

    1977-01-01

    The instant invention relates to a process for separating a material into two or more parts in each of which the abundances of the isotopes of a given element differ from the abundances of the isotopes of the same material in said material. More particularly, the invention relates to a method for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption followed by a step wherein more of the excited molecules than nonexcited molecules are converted to a chemically different form which may be separated by means known in the art. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium. 15 claims, 1 figure

  16. Isotope separation process

    International Nuclear Information System (INIS)

    Thomas, W.R.L.

    1979-01-01

    The instant invention relates to an improved process for separating a material into two or more parts in each of which the abundances of the isotopes of a given element differ from the abundances of the isotopes of the same element in said material. More particularly, the invention relates to a method for the isotopically selective excitation of gas phase molecules by multiple infrared photon absorption followed by a step wherein more of the excited molecules than non-excited molecules are converted to a chemically different form which may be separated by means known in the art. This invention is useful for, but not limited to, the separation of the principal isotopes of uranium

  17. Isotope separation using lasers

    International Nuclear Information System (INIS)

    Guers, K.

    1976-01-01

    In laser isotope separation atoms or molecules of a specific isotopic species are selectively excited in a gaseous mixture by means of laser light and then separated from the mixture by physical or chemical methods. The methods of excitation and separation are described and compared in terms of their effectiveness. The use of molecules is investigated by analysing the possibility of the selective excitation of UF 6 . Finally, developments in this field are discussed together with the cost of research incurred in the United States and the economic benefit expected from this research. (author)

  18. Isotope separation process

    International Nuclear Information System (INIS)

    Cox, D.M.; Maas, E.T.

    1982-01-01

    Processes are disclosed for the separation of isotopes of an element comprising vaporizing uranyl compounds having the formula (UO2a2)n, where a is a monovalent anion and n in an integer from 2 to 4, the compounds having an isotopically shifted infrared absorption spectrum associated with uranyl ions containing said element which is to be separated, and then irradiating the uranyl compound with infrared radiation which is preferentially absorbed by a molecular vibration of uranyl ions of the compound containing a predetermined isotope of that element so that excited molecules of the compound are provided which are enriched in the molecules of the compound containing that predetermined isotope, thus enabling separation of these excited molecules. The processes disclosed include separation of the excited molecules by irradiating under conditions such that the excited molecules dissociate, and also separating the excited molecules by a discrete separation step. The latter includes irradiating the excited molecules by a second infrared laser in order to convert the excited molecules into a separable product, or also by chemically converting the excited molecules, preferably by reaction with a gaseous reactant

  19. Laser isotope separation process

    International Nuclear Information System (INIS)

    Kaldor, A.

    1976-01-01

    The claimed invention is a method of isotope separation based on the unimolecular decomposition of vibrationally excited negative ions which are produced in the reaction of thermal electrons and molecules which have been vibrationally excited in an isotope selective manner. This method is especially applicable to molecules represented by the formula MF 6 wherein M is selected from the group consisting of U, S, W, Se, Te, Mo, Re, and Tc. 9 claims, 1 drawing figure

  20. High mass isotope separation arrangement

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1980-01-01

    This invention relates to the isotope separation art and, more particularly, to a selectively photon-induced energy level transition of an isotopic molecule containing the isotope to be separated and a chemical reaction with a chemically reactive agent to provide a chemical compound containing atoms of the isotope desired. In particular a description is given of a method of laser isotope separation applied to the separation of 235 UF 6 from 238 UF 6 . (U.K.)

  1. The isotopic contamination in electromagnetic isotope separators

    International Nuclear Information System (INIS)

    Cassignol, Ch.

    1959-01-01

    In the early years of isotope separation, and in particular electromagnetic isotope separation, needs for rapid results have conducted to empiric research. This paper describes fundamental research on the electromagnetic isotope separation to a better understanding of isotope separators as well as improving the performances. Focus has been made on the study of the principle of isotope contamination and the remedial action on the separator to improve the isotope separation ratio. In a first part, the author come back to the functioning of an electromagnetic separator and generalities on isotope contamination. Secondly, it describes the two stages separation method with two dispersive apparatus, an electromagnetic separation stage followed by an electrostatic separation stage, both separated by a diaphragm. The specifications of the electrostatic stage are given and its different settings and their consequences on isotope separation are investigated. In a third part, mechanisms and contamination factors in the isotope separation are discussed: natural isotope contamination, contamination by rebounding on the collector, contamination because of a low resolution, contamination by chromatism and diffusion effect, breakdown of condenser voltage. Analysis of experimental results shows the diffusion as the most important contamination factor in electromagnetic isotope separation. As contamination factors are dependent on geometric parameters, sector angle, radius of curvature in the magnetic field and clearance height are discussed in a fourth part. The better understanding of the mechanism of the different contamination factors and the study of influential parameters as pressure and geometric parameters lead to define a global scheme of isotope contamination and determinate optima separator design and experimental parameters. Finally, the global scheme of isotope contamination and hypothesis on optima specifications and experimental parameters has been checked during a

  2. Isotope separation process

    International Nuclear Information System (INIS)

    Wexler, Sol; Young, C.E.

    1976-01-01

    Description is given of method for separating a specific isotope from a mixture of isotopes of an actinide element present as MF 6 , wherein M is the actinide element. It comprises: preparing a feed gas mixture of MF 6 in a propellant gas; passing the feed gas mixture under pressure through an expansion nozzle while heating the mixture to about 600 0 C; releasing the heated gas mixture from the nozzle into an exhaust chamber having a reduced pressure, whereby a gas jet of MF 6 molecules, MF 6 molecular clusters and propellant gas molecules is formed, the MF 6 molecules having a translational energy of about 3 eV; converting the MF 6 molecules to MF 6 ions by passing the jet through a cross jet of electron donor atoms so that an electron transfer takes place between the MF 6 - molecules and the electron donor atoms whereby the jet is now quasi-neutral, containing negative MF 6 - ions and positive donor ions; passing the quasi-neutral jet through a radiofrequency mass filter tuned to separate the MF 6 ions containing the specific isotope from the MF 6 - ions of the other isotopes and neutralizing and collecting the MF 6 molecules of the specific isotope [fr

  3. Isotope separation apparatus

    International Nuclear Information System (INIS)

    Lyon, R.K.; Eisner, P.N.; Thomas, W.R.I.

    1983-01-01

    This application discloses a method for and an apparatus in which isotopes of an element in a compared are separated from each other while that compound, i.e., including a mixture of such isotopes, flows along a predetermined path. The apparatus includes a flow tube having a beginning and an end. The mixture of isotopes is introduced into the flow tube at a first introduction point between the beginning and the end thereof to flow the mixture toward the end thereof. A laser irradiates the flow tube dissociating compounds of a preselected one of said isotopes thereby converting the mixture in an isotopically selective manner. The dissociation products are removed from the tube at a first removal point between the first introduction point and the end. The dissociation product removed at the the first removal point are reconverted back into the comound thereby providing a first stage enriched compound. This first stage enriched compound is reintroduced into the flow tube at a second introduction point between the beginning thereof and the first introduction point. Further product is removed from the flow tube at a second removal point between the second introduction point and the first introduction point. The second introduction point is chosen so that the isotope composition of the first stage enriched compound is approximately the same as that of the compound in the flow tube

  4. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1983-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure, particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  5. Chromatographic hydrogen isotope separation

    Science.gov (United States)

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  6. Stable isotope separation

    International Nuclear Information System (INIS)

    Botter, F.; Molinari, Ph.; Dirian, G.

    1964-01-01

    Pure deuterium has been separated from gaseous mixtures of hydrogen and deuterium by band displacement chromatography, using columns of palladium on a support. The best results were obtained with columns of Pd on sintered α alumina. With a column of this type, of total capacity about 2 liters, a preparative apparatus of low dead volume has been built which produces 1 liter of pure D 2 from a 50 p. 100 D 2 , 50 p. 100 100 H 2 mixture in about 12 minutes. As a first approximation chromatography is likened theoretically to counter current fractionation, neglecting superficial resistance to the exchange. and also longitudinal diffusions. The number of theoretical plates required necessary for a certain enrichment of the gas phase is determined graphically or by calculation, enabling comparisons to be made between the efficiencies of columns containing different amounts of palladium. Thermal Diffusion: For the separation of hydrogen isotopes a thermal diffusion installation, made of stainless steel and entirely tele-commanded has been constructed. The separation cascade is made up of two identical pairs of hot wire columns. Each pair can work separately or they may be connected by a thermosyphon. The temperature of the hot wire is kept at around 1000 deg C by direct current. With this installation, hydrogen samples with a deuterium content lower than o,5 ppm were obtained from a gas originally containing 32 ppm. It was thus possible to prepare tritium of 99,3 p. 100 concentration from gas with an initial content of 6 p. 100. For quantitative separation of xenon enriched five time in 124 Xe by thermal diffusion, two identical cascades were constructed, each consisting of 5 columns, working in parallel and the two being connected by thermosyphon or by a capillary tube linked to a thermal gas oscillation. The central tungsten wire is heated to 1200 deg C. The columns are grouped like cluster of a heat exchanger, in shell of 30 cm diameter through which cooling water

  7. Isotope separation process

    International Nuclear Information System (INIS)

    Kaldor, A.; Rabinowitz, P.

    1979-01-01

    A method of separating the isotopes of an element is described, which comprises the steps of (i) subjecting molecules of a gaseous compound of the element simultaneously to two infrared radiations of different wavelengths, the first radiation having a wavelength which corresponds to an absorption band of the compound, which in turn corresponds to a mode of molecular motion in which there is participation by atoms of the element, and the second radiation having a power density greater than 10 6 watts per cm 2 , thereby exciting molecules of the compound in an isotopically selective manner, this step being conducted in such manner that the excited molecules either receive a level of energy sufficient to cause them to undergo conversion by unimolecular decomposition or receive a level of energy sufficient to cause them to undergo conversion by reaction with molecules of another gas present for that purpose; and (ii) separating and recovering converted molecules from unconverted molecules. (author)

  8. Infrared laser isotope separation

    International Nuclear Information System (INIS)

    Lyman, J.L.; Rockwood, S.D.

    1976-01-01

    An evaluation of isotope separation by selective molecular dissociation using CO 2 laser radiation is presented. Results of gaseous SF 6 irradiation in cylindrical cells are tabulated. The experiments were conducted using 25 percent SF 6 in H 2 irradiated by CO 2 laser pulses at 10.6 μm. Results show enhancements in reaction yield as high as 50, corresponding to a photon utilization efficiency of 0.5 percent

  9. Isotope separation process

    International Nuclear Information System (INIS)

    Lyon, R.K.; Kaldor, A.

    1977-01-01

    In a method for the separation of isotopes of uranium in UF 6 , the UF 6 is subjected to ir radiation at a predetermined wavelength or set of wavelengths for less than 10 -3 sec in such a manner that at least 0.1% of the 235 UF 6 molecules absorb an energy of more than 2000 cm -1 . The excited UF 6 is then reacted with a gaseous reagent, F 2 , Cl 2 , or Br 2 , to produce a product which is then recovered by means known in the art

  10. Laser assisted aerodynamic isotope separation

    International Nuclear Information System (INIS)

    Berg, H. van den

    1985-01-01

    It is shown that the efficiency of conventional aerodynamic isotope seperation can be improved by two orders of magnitude with the aid of a relatively weak cw infrared laser which is used to induce isotopically selective condensation. Overall isotope enrichment factors in excess of 2 are obtained as compared to about 1.02 in the conventional seperation. Sulphur isotopes in SF 6 as well as Silicon isotopes in SiF 4 and Bromine isotopes in CF 3 Br are seperated on a laboratory scale. Infrared vibrational predissociation by itself and in combination with isotopically selective condensation are also shown to be effective new ways of isotope separation. (orig.) [de

  11. Isotope separation using tunable lasers

    International Nuclear Information System (INIS)

    Snavely, B.B.

    1975-01-01

    Various processes for laser isotope separation based upon the use of the spectroscopic isotope effect in atomic and molecular vapors are discussed. Emphasis is placed upon processes which are suitable for uranium enrichment. A demonstration process for the separation of uranium isotopes using selective photoionization is described. (U.S.)

  12. Advanced isotope separation

    International Nuclear Information System (INIS)

    1982-01-01

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems

  13. Isotopic separation by ion chromatography

    International Nuclear Information System (INIS)

    Albert, M.G.; Barre, Y.; Neige, R.

    1994-01-01

    The isotopic exchange reaction and the isotopic separation factor are first recalled; the principles of ion chromatography applied to lithium isotope separation are then reviewed (displacement chromatography) and the process is modelled in the view of dimensioning and optimizing the industrial process; the various dimensioning parameters are the isotopic separation factor, the isotopic exchange kinetics and the material flow rate. Effects of the resin type and structure are presented. Dimensioning is also affected by physico-chemical and hydraulic parameters. Industrial implementation features are also discussed. 1 fig., 1 tab., 5 refs

  14. Isotope separation method and apparatus

    International Nuclear Information System (INIS)

    Lyon, R.K.; Eisner, P.N.; Thomas, W.R.L.

    1980-01-01

    A method and apparatus are specified for separating a mixture of isotopes present in a compound, preferably a gaseous compound, into two or more parts in each of which the abundances of the isotopes differ from the natural abundances of the isotopes in the compound. The invention particularly relates to carrying out a laser induced, isotopically selective conversion of gaseous molecules in such a manner as to achieve more than one stage of isotope separation along the length of the laser beam. As an example, the invention is applied to the separation of the isotopes of uranium in UF 6 , in which either the U-235 or U-238 isotope is selectively excited by means of irradiation from an infrared laser, and the selectively excited isotope converted into a product that can be recovered from UF 6 by one of a variety of methods that are described. (U.K.)

  15. ITER isotope separation system

    International Nuclear Information System (INIS)

    Busigin, A.; Sood, S.K.; Kveton, O.K.; Sherman, R.H.; Anderson, J.L.

    1990-09-01

    This document presents the results of a study that examined the technical operating and economic viability of an alternative Isotope Separation System (ISS) design based on the distributed design concept. In the distributed design, the ISS is broken up into local independently operable subsystems matched to local processing requirements. The distributed design accepts the same feeds and produces essentially the same products as the reference design. The distributed design consists of two separate, independent subsystems. The first, called ISS-H, receives only protium-dominated streams and waste water from tritium extraction. It has two cryogenic distillation columns and can produce a 50 percent D, 50 percent T product since it lacks D/T separation capability. A final 80 percent T 2 concentration product can be obtained by blending the 50 percent T 2 stream from ISS-H with the more than 99 percent T 2 stream from the second subsystem, ISS-D. The second subsystem receives only deuterium-dominated feeds, which also contain some protium. ISS-D is as complex as the reference design, but smaller. Although each subsystem has some advantages, such as only two cryogenic distillation columns in ISS-H and better than 99 percent steady state T 2 product in ISS-D, the combined subsystems do not offer any real advantage compared to the reference IISS. The entire distributed ISS design has been simulated using Ontario Hydro's FLOSHEET steady state process simulator. Dynamic analysis has not been done for the distributed design. (10 refs., 3 figs., 8 tabs.)

  16. Chemical separation of boron isotopes

    International Nuclear Information System (INIS)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF 3 gas and the liquid molecular addition compounds of BF 3 . Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF 3 solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references

  17. Chemical separation of boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF/sub 3/ gas and the liquid molecular addition compounds of BF/sub 3/. Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF/sub 3/ solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references.

  18. Deuterium isotope separation

    International Nuclear Information System (INIS)

    Benson, S.W.

    1979-01-01

    Deuterium-containing molecules are separated and enriched by exposing commercially available ethylene, vinyl chloride, 1,2-dichloroethane or propylene to the radiation of tuned infrared lasers to selectively decompose these compounds into enriched molecular products containing deuterium atoms. The deuterium containing molecules can be easily separated from the starting material by absorption, distillation or other simple chemical separation techniques and methods. After evaporation such deuterium containing molecules can be burned to form water with an enriched deuterium content or pyrolyzed to form hydrogen gas with an enriched deuterium content. (author)

  19. Isotope separation by standing waves

    International Nuclear Information System (INIS)

    Altshuler, S.

    1984-01-01

    The separation of isotopes is accomplished by scattering a beam of particles from a standing electromagnetic wave. The particles may consist of either atoms or molecules, the beam having in either case a desired isotope and at least one other. The particle beam is directed so as to impinge on the standing electromagnetic wave, which may be a light wave. The particles, that is, the atomic or molecular quantum-mechanical waves, see basically a diffraction grating corresponding to the troughs and peaks of the electromagnetic wave. The frequency of the standing electromagnetic wave substantially corresponds to an internal energy level-transition of the desired isotope. Accordingly, the desired isotope is spatially separated by being scattered or diffracted. (author)

  20. Hydrogen isotope separation

    Science.gov (United States)

    Bartlit, John R.; Denton, William H.; Sherman, Robert H.

    1982-01-01

    A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

  1. Lithium isotopic separation: preliminary studies

    International Nuclear Information System (INIS)

    Macedo, Sandra Helena Goulart de

    1998-01-01

    In order to get the separation of natural isotopes of lithium by electrolytic amalgamation, an electrolytic cell with a confined mercury cathode was used to obtain data for the design of a separation stage. The initial work was followed by the design of a moving mercury cathode electrolytic cell and three experiments with six batches stages were performed for the determination of the elementary separation factor. The value obtained, 1.053, was ill agreement: with the specialized literature. It was verified in all experiments that the lithium - 6 isotope concentrated in the amalgam phase and that the lithium - 7 isotope concentrated in the aqueous phase. A stainless-steel cathode for the decomposition of the lithium amalgam and the selective desamalgamation were also studied. In view of the results obtained, a five stages continuous scheme was proposed. (author)

  2. Isotope separation apparatus and method

    International Nuclear Information System (INIS)

    Cotter, T.P.

    1982-01-01

    The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises pi-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction pi-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning pi-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of pi-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam

  3. Atomic vapor laser isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Stern, R.C.; Paisner, J.A.

    1985-11-08

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

  4. Atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Stern, R.C.; Paisner, J.A.

    1985-01-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements

  5. High mass isotope separation process and arrangement

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1978-01-01

    An isotope separation arrangement for separating a preselected isotope from a mixture of chemically identical but isotopically different molecules by either photon-induced pure rovibrational or vibronic selective excitation of the molecules containing the atoms of the isotope to be separated from a lower to a higher energy state, and a chemical reaction of the higher energy state molecules with a chemically reactive agent to form a chemical compound containing primarily the atoms of isotope to be separated in a physicochemical state different from the physicochemical state of the mixture of chemically identical but isotopically different molecules. The chemical compound containing the atoms of the isotope to be separated may be subsequently processed to obtain the isotope

  6. Separation of uranium isotopes by accelerated isotope exchange reactions

    International Nuclear Information System (INIS)

    Seko, M.; Miyake, T.; Inada, K.; Ochi, K.; Sakamoto, T.

    1977-01-01

    A novel catalyst for isotope exchange reaction between uranium(IV) and uranium(VI) compounds enables acceleration of the reaction rate as much as 3000 times to make industrial separation of uranium isotopes economically possible

  7. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    1979-01-01

    This invention relates to isotope separation employing isotopically selective vibrational excitation and vibration-translation reactions of the excited particles. Uranium enrichment, using uranium hexafluoride, is a particular embodiment. (U.K.)

  8. Isotope separation by rotating plasmas

    International Nuclear Information System (INIS)

    Nicoli, C.

    1982-02-01

    A steady-state model of a fully ionized plasma column in a concentric cylindrical electrodes structures is proposed to study the plasma separation properties of its singly ionized ionic species, composed of two isotopes of the element. In this model (a one-fluid model) rotation is imparted to the plasma column through the J (vector) x B (vector) interaction. Radial pressure balance is mainly between the radial component of the J (vector) x B (vector) force and the pressure gradient plus centrifugal force and the azimutal component of the J (vector) x B (vector) force is balanced purely by viscous force. A pressure tensor 31 describes the viscoys effect and the heat balance provides an equation for temperature. A uranium gas with is two main isotopes (U 235 and U 238 ) was used for the ionic component of the plasma. The computing code to solve the resulting, system of equations in tems of density, temperature, and velocity as functions of the radial independent variable was set up to yield solutions satisfying null velocity conditions on both boundaries (inner and outer electrodes). (M.A.F.) [pt

  9. Atomic lithium vapor laser isotope separation

    CERN Document Server

    Olivares, I E

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the sup 6 LiD sub 2 and the sup 7 LiD sub 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  10. Atomic lithium vapor laser isotope separation

    International Nuclear Information System (INIS)

    Olivares, I.E.; Rojas, C.

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the 6 LiD 2 and the 7 LiD 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  11. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1979-01-01

    Vibrational excitation of molecules having components of a selected isotope type is used to produce a conversion from vibrational to translational excitation of the molecules by collision with the molecules of a heavy carrier gas. The resulting difference in translaton between the molecules of the selected isotope type and all other molecules of the same compound permits their separate collection. When applied to uranium enrichment, a subsonic cryogenic flow of molecules of uranium hexafluoride in combination with an argon carrier gas is directed through a cooled chamber that is illuminated by laser radiaton tuned to vibrationally excite the uranium hexafluoride molecules of a specific uranium isotope. The excited molecules collide with carrier gas molecules, causing a conversion of the excitation energy into a translation of the excited molecule, which results in a higher thermal energy or diffusivity than that of the other uranium hexafluoride molecules. The flowing molecules including the excited molecules directly enter a set of cryogenically cooled channels. The higher thermal velocity of the excited molecules increases the probability of their striking a collector surface. The molecules which strike this surface immediately condense. After a predetermined thickness of molecules is collected on the surface, the flow of uranium hexafluoride is interrupted and the chamber heated to the point of vaporization of the collected hexafluoride, permitting its removal. (LL)

  12. Development of Separation Materials Containing Palladium for Hydrogen Isotopes Separation

    International Nuclear Information System (INIS)

    Deng Xiaojun; Luo Deli; Qian Xiaojing

    2010-01-01

    Displacement chromatography (DC) is a ascendant technique for hydrogen isotopes separation. The performance of separation materials is a key factor to determine the separation effect of DC. At present,kinds of materials are researched, including palladium materials and non-palladium materials. It is hardly replaceable because of its excellent separation performance, although palladium is expensive. The theory of hydrogen isotopes separation using DC was introduced at a brief manner, while several palladium separation materials were expatiated in detail(Pd/K, Pd-Al 2 O 3 , Pd-Pt alloy). Development direction of separation materials for DC was forecasted elementarily. (authors)

  13. Safeguards implications of laser isotope separation

    International Nuclear Information System (INIS)

    Moriarty, T.F.; Taylor, K.

    1993-10-01

    The purpose of this report is to describe and emphasise the safeguards and relevant features of atomic vapour laser isotope separation (AVLIS) and molecular laser isotope separation (MLIS), and to consider the issues that must be addressed before a safeguards approach at a commercial AVLIS or MLIS facility can be implemented. (Author)

  14. Laser photochemical separation of hydrogen isotopes

    International Nuclear Information System (INIS)

    Fowler, M.C.

    1979-01-01

    A method of separating isotopes of hydrogen utilizing isotopically selective photodissociation of organic acid is disclosed. Specifically acetic or formic acid containing compounds of deuterated nd hydrogenated acid is irradiated by radiation having a wavelength in the infrared spectrum between 9.2 to 10.8 microns to produce deuterium hydroxide and deuterium hydride respectively. Maintaining the acid at an elevated temperature significantly improves the yield of isotope separation

  15. Method of separating boron isotopes

    Science.gov (United States)

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  16. Amalgam-chromatographic separation of magnesium isotopes

    International Nuclear Information System (INIS)

    Klinskij, G.D.; Levkin, A.V.; Ivanov, S.A.

    1990-01-01

    Separation of magnesium isotopes within Mg(Hg)-MgI 2 system (in dimethylformamide) is conducted under amalgam-chromatographic conditions. Separation maximal degree, that is (1.09), for 24 Mg and 26 Mg and separation coefficient (α = 1.0089±0.006) are determined. Light isotopes are found to concentrate in the amalgam. Technique of thermal conversion of flows within amalgam-dimethylformamide system is suggested on the basis of reversible reaction of Ca-Mg element exchange

  17. Method and apparatus for separating isotopes

    International Nuclear Information System (INIS)

    Harris, S.E.

    1976-01-01

    Isotope separation is achieved between species A and B having an absorption resonance separated by an isotopic shift by selectively exciting a portion of species A using a tunable photon source of narrow emission line with and subsequently causing collisions with an optically excited third species to selectively ionize the excited portion of species A. When ionized, species A is easily separated by any technique, using its ionized condition to distinguish it from species B. 18 claims, 3 drawing figures

  18. Isotope separation by ionic cyclotron resonance

    International Nuclear Information System (INIS)

    Compant La Fontaine, A.; Gil, C.; Louvet, P.

    1986-10-01

    The principle of the process of isotopic separation by ionic cyclotron resonance is explained succinctly. The theoretical calculation of the isotopic effect is given as functions of the electric and magnetic fields in the frame of single particle approximation and of plasma collective theory. Then, the main parts of the demonstration device which is in operation at the CEA, are described here: the supraconducting magnetic field, the used diagnostics, the principle of the source and the collecting apparatus. Some experimental results are given for chromium. The application of the process to ponderal separation of metal isotopes, as chromium, nickel and molybdenum is discussed in view of production of medical, structural and irradiation isotopes

  19. Isotope effect and isotope separation. A chemist's view

    International Nuclear Information System (INIS)

    Ishida, Takanobu

    2002-01-01

    What causes the isotope effects (IE)? This presentation will be centered around the equilibrium isotope effects due to the differences in the nuclear masses. The occurrence of the equilibrium constant, K, of isotope exchange reactions which differ from the values predicted by the classical theory of statistical mechanics, K cl , is explored. The non-classical K corresponds to the unit-stage separation factor, α, that is different from unity and forms a basis of an isotope separation process involving the chemical exchange reaction. Here, the word 'chemical exchange' includes not only the isotope exchange chemical reactions between two or more chemical species but also the isotope exchanges involving the equilibria between liquid and vapor phases and liquid-gas, liquid solution-gas, liquid-liquid, and solid-liquid phases. In Section I, origins of the isotope effect phenomena will be explored and, in the process, various quantities used in discussions of isotope effect that have often caused confusions will be unambiguously defined. This Section will also correlate equilibrium constant with separation factor. In Section II, various forms of temperature-dependence of IE and separation factor will be discussed. (author)

  20. The isotopic separation processes for uranium

    International Nuclear Information System (INIS)

    Mezin, M.

    1979-01-01

    The different processes of isotopic separation of uranium are described. Their possible contribution to fulfilling the requirements with respect to the economics, the reliability of the supplies they represent and the risks of proliferation they might entail are studied [fr

  1. Uranium isotope separation using IR-lasers

    International Nuclear Information System (INIS)

    Jetter, H.; Guers, K.; Dibbert, H.J.

    1976-01-01

    A method of uranium isotope separation based on selective excitation of UF 6 is described. By optically exciting certain molecular vibrations, the activation energy for the rate of a chemical reaction is reduced, resulting in an increase in reaction rate. Isotope separation can therefore be reduced to a simple chemical process. Experiments and results are described for selective excitation of UF 6 gas using a tunable C0 laser. It is shown that isotopically selective excitation of UF 6 combination bands is not feasible in a simple manner, but the excitation of UF 6 in the ν 3 fundamental is much more promising. (U.K.)

  2. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1977-01-01

    A system for isotope separation or enrichment wherein molecules of a selected isotope type in a flow of molecules of plural isotope types are vibrationally excited and collided with a background gas to provide enhanced diffusivity for the molecules of the selected isotope type permitting their separate collection. The system typically is for the enrichment of uranium using a uranium hexafluoride gas in combination with a noble gas such as argon. The uranium hexafluoride molecules having a specific isotope of uranium are vibrationally excited by laser radiation. The vibrational energy is converted to a translation energy upon collision with a particle of the background gas and the added translation energy enhances the diffusivity of the selected hexafluoride molecules facilitating its condensation on collection surfaces provided for that purpose. This process is periodically interrupted and the cryogenic flow halted to permit evaporation of the collected molecules to provide a distinct, enriched flow

  3. Hydrogen isotope separation by cryogenic distillation method

    International Nuclear Information System (INIS)

    Hayakawa, Nobuo; Mitsui, Jin

    1987-01-01

    Hydrogen isotope separation in fusion fuel cycle and tritium recovery from heavy water reactor are very important, and therefore the early establishment of these separation techniques are desired. The cryogenic distillation method in particular is promising for the separation of hydrogen isotope and the recovery of high concentrated tritium. The studies of hydrogen isotope separation by cryogenic distillation method have been carried out by using the experimental apparatus made for the first time in Japan. The separation of three components (H 2 -HD-D 2 ) under total reflux conditions was got by using the packing tower of 500 mm height. It was confirmed that the Height Equivalent Theoretical Plate (HETP) was 20 - 30 mm for the vapor's line velocity of 20 - 80 mm/s. (author)

  4. Isotope separation by photoselective dissociative electron

    International Nuclear Information System (INIS)

    Stevens, C.G.

    1978-01-01

    A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule is described. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, 235 UF 6 is separated from a UF 6 mixture by selective excitation followed by dissociative electron capture into 235 UF 5 - and F

  5. Laser separation of isotopes of hydrogen

    International Nuclear Information System (INIS)

    Dave, S.M.; Ghosh, S.K.; Sadhukhan, H.K.

    1980-01-01

    Laser isotope separation technique is explained and various methods based on the technique are discussed in detail. Requirements of any laser isotope separation method to be acceptable for the production of heavy water are mentioned and economic viability of this process for heavy water production is examined. Investigations carried out to use this technique for deuterium separation using methanol, formaldehyde, propynal, 2,2,-dichloro-1-1-1,-trifluoroethane (Freon 123), polyvinyl chloride and fluoroform-d are reviewed. (M.G.B.)

  6. Laser Isotope Separation Employing Condensation Repression

    Energy Technology Data Exchange (ETDEWEB)

    Eerkens, Jeff W.; Miller, William H.

    2004-09-15

    Molecular laser isotope separation (MLIS) techniques using condensation repression (CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.

  7. Isotope separation by ionic cyclotron resonance

    International Nuclear Information System (INIS)

    Louvet, P.

    1987-01-01

    The principle of the process of isotopic separation by ionic cyclotron resonance is reviewed succinctly. Afterwards, the main parts of the demonstration device which is in operation at the CEA, are described here: the superconducting magnetic field, the used diagnostics, the principle of the source and the collecting apparatus. The theoretical calculations presented here included a multi-fluid flow model of the plasma source ionic components and the theoretical calculation of the isotopic effect. This effect is given as functions of the electric and magnetic fields in the frame of single particle approximation and of plasma collective theory. Some experimental results for chromium are compared to the computations. The application of the process to ponderal separation of metal isotopes, as Chromium, Nickel, Molybdenum... is discussed in view of production of medical, structural and irradiation isotopes

  8. Method and apparatus for separating uranium isotopes

    International Nuclear Information System (INIS)

    Bernstein, E.R.

    1977-01-01

    A uranium compound in the solid phase (uranium borohydride four) is subjected to radiation of a first predetermined frequency that excites the uranium-235 isotope-bearing molecules but not the uranium-238 isotope-bearing molecules. The compound is simultaneously subjected to radiation of a second predetermined frequency which causes the excited uranium-235 isotope-bearing molecules to chemically decompose but which does not affect the uranium-238 isotope-bearing molecules. Sufficient heat is then applied to the irradiated compound in the solid phase to vaporize the non-decomposed uranium-238 isotope-bearing molecules but not the decomposed uranium-235 isotope-bearing molecules, thereby physically separating the uranium-235 isotope-bearing molecules from the uranium-238 isotope-bearing molecules. The uranium compound sample in the solid phase is deposited or grown in an elongated tube supported within a dewar vessel having a clear optical path tail section surrounded by a coolant. Two sources of radiation are focused on the uranium compound sample. A heating element is attached to the elongated tube to vaporize the irradiated compound

  9. New processes for uranium isotope separation

    International Nuclear Information System (INIS)

    Vanstrum, P.R.; Levin, S.A.

    1977-01-01

    An overview of the status and prospects for processes other than gaseous diffusion, gas centrifuge, and separation nozzle for uranium isotope separation is presented. The incentive for the development of these processes is the increasing requirements for enriched uranium as fuel for nuclear power plants and the potential for reducing the high costs of enrichment. The latest nuclear power projections are converted to uranium enrichment requirements. The size and timing of the market for new enrichment processes are then determined by subtracting the existing and planned uranium enrichment capacities. It is estimated that to supply this market would require the construction of a large new enrichment plant of 9,000,000 SWU per year capacity, costing about $3 billion each (in 1976 dollars) about every year till the year 2000. A very comprehensive review of uranium isotope separation processes was made in 1971 by the Uranium Isotope Separation Review Ad Hoc Committee of the USAEC. Many of the processes discussed in that review are of little current interest. However, because of new approaches or remaining uncertainties about potential, there is considerable effort or continuing interest in a number of alternative processes. The status and prospects for attaining the requirements for competitive economics are presented for these processes, which include laser, chemical exchange, aerodynamic other than separation nozzle, and plasma processes. A qualitative summary comparison of these processes is made with the gaseous diffusion, gas centrifuge, and separation nozzle processes. In order to complete the overview of new processes for uranium isotope separation, a generic program schedule of typical steps beyond the basic process determination which are required, such as subsystem, module, pilot plant, and finally plant construction, before large-scale production can be attained is presented. Also the present value savings through the year 2000 is shown for various

  10. Novel PEFC Application for Deuterium Isotope Separation

    Directory of Open Access Journals (Sweden)

    Hisayoshi Matsushima

    2017-03-01

    Full Text Available The use of a polymer electrolyte fuel cell (PEFC with a Nafion membrane for isotopic separation of deuterium (D was investigated. Mass analysis at the cathode side indicated that D diffused through the membrane and participated in an isotope exchange reaction. The exchange of D with protium (H in H2O was facilitated by a Pt catalyst. The anodic data showed that the separation efficiency was dependent on the D concentration in the source gas, whereby the water produced during the operation of the PEFC was more enriched in D as the D concentration of the source gas was increased.

  11. Sulfur isotope separation by dissociative electron attachment

    International Nuclear Information System (INIS)

    Allen, J.E. Jr.

    1976-01-01

    A new method is proposed for isotope separation in polyatomic molecules. In this method a laser is tuned to selectively excite a vibration mode of the molecules which contain the isotope to be removed. Before deactivation can occur, an electron is attached, resulting in an excited negative ion. Under the proper conditions this ion may dissociate, producing fragments which can be removed chemically. This technique is particularly suited to isotope separation in SF 6 . Potential energy curves are developed for this molecule to aid in explaining the mechanism of dissociative electron attachment. These curves incorporate much of the information known about attachment of electrons to SF 6 and represent an improvement over previously published curves. A rough estimate of the effectiveness of this method is made, based upon the temperature-dependent branching ratio for SF 5 - and SF 6 - . The calculations indicate that the fractional 34 S content in a sample of processed SF 6 may increase 4760 times the content in a natural sample. A kinetics model is presented to describe the attachment of electrons to SF 6 . Numerical solutions of the appropriate rate equations indicate that application of the proposed technique to SF 6 will require a low pressure environment and a large number of zero energy electrons. A simple theory is developed to determine threshold intensities for laser-induced dissociation on the basis of experimentally measurable quantities, the total laser power and the reaction volume. Using the focused beam method, a series of experiments performed to separate isotopes in SF 6 establishes a value of 6.0 MW/cm 2 for the threshold intensity. This eliminates dissociative electron attachment as an explanation of isotope separation by the focused beam method, but does not exclude it as a viable technique for separating isotopes

  12. Laser isotope separation of rare earth elements.

    Science.gov (United States)

    Karlov, N V; Krynetskii, B B; Mishin, V A; Prokhorov, A M

    1978-03-15

    The experimental results on the laser isotope separation of the neodimium, samarium, europium, gadolinium, dysprosium, and erbium by the selective two-step photoionization are given. The rare earth elements have been chosen for the investigation because they constitute a good series of the very similar but different atoms that are heavy enough and allow experiments to be carried out that are representative enough. The experimental technique developed for the laser isotope separation experiments has been applied to measure the excitation energy transfer cross sections at the collisions in the gas of the same atoms ((153)Eu ? (151)Eu, sigma = 1.4 x 10(-13) cm(2)). The combination of the selective two-step photoionization and ion mass filtration allowed us to develop a very convenient technique for the precise measurement of hyperfine structure in the spectrum of odd isotopes. The examples of dysprosium and erbium are given. The technique is good for the rare and unstable isotopes as well. The ionization cross sections for the transition starting off the excited level have been estimated ( approximately 10(-17) cm(2)). For the example of gadolinium the possibility of creating neutral atomic vapor dense enough for laser isotope separation by the electron-beam evaporation technique has been demonstrated.

  13. Development of proliferation resistant isotope separation technology

    International Nuclear Information System (INIS)

    Jeong, Doyoung; Ko, Kwanghoon; Kim, Taeksoo; Park, Hyunmin; Lim, Gwon; Cha, Yongho; Han, Jaemin; Baik, Sunghoon; Cha, Hyungki

    2012-02-01

    This project was accomplished with an aim of establishing the industrial facilities for isotope separation in Korea. The experiment for the measurement of neutrino mass that has been an issue in physics, needs very much of enriched calcium-48 isotope. However, calcium-48 isotope can be produced only by the electro-magnetic method and, thus, its price is very expensive. Therefore, we expect that ALSIS can replace the electro-magnetic method for calcium-48 isotope production. In this research stage, the research was advanced systematically with core technologies, such as atomic vapor production, the measurement of vapor characteristics and stable and powerful laser development. These researches will be the basis of the next research stages. In addition, the international research trends and cooperation results are reported in this report

  14. Separation of compounds differing in isotopic composition

    International Nuclear Information System (INIS)

    Sievers, R.E.; Brooks, J.J.

    1976-01-01

    Compounds differing in isotopic composition are separated by introducing a mixture of the compounds into a chromatographic column containing a lanthanide chelate as a stationary phase and eluting from the column a fraction which is at least enriched with one of the compounds of the mixture. 17 claims, no drawings

  15. Controlled power supply for isotopes separator

    International Nuclear Information System (INIS)

    Lavaitte, A.; Pottier, J.

    1953-01-01

    This equipment is destined to equip the separator of isotopes who is the subject of the CEA report n 138. It includes: - a controlled power supply in voltage. - a controlled power supply in current. The spectra of fluctuations of these assembly is different in the two cases. (authors) [fr

  16. Atomic-vapor-laser isotope separation

    International Nuclear Information System (INIS)

    Davis, J.I.

    1982-10-01

    This paper gives a brief history of the scientific considerations leading to the development of laser isotope separation (LIS) processes. The close relationship of LIS to the broader field of laser-induced chemical processes is evaluated in terms of physical criteria to achieve an efficient production process. Atomic-vapor LIS processes under development at Livermore are reviwed. 8 figures

  17. Environmental Development Plan for advanced isotope separation

    International Nuclear Information System (INIS)

    1979-05-01

    This EDP identifies the planning and management requirements and schedules needed to evaluate and assess the environmental, health, and safety aspects of the Advanced Isotope Separation (AIS) program. Current AIS processes include the molecular and atomic vapor laser processes and the plasma process. This document covers the technology program, environmental concerns and requirements, and environmental strategy

  18. Separation of compounds differing in isotopic composition

    International Nuclear Information System (INIS)

    Sievers, R.E.; Brooks, J.J.

    1975-01-01

    Compounds differing in isotopic composition are separated by introducing a mixture of the compounds into a chromatographic column containing a lanthanide chelate as a stationary phase and eluting from the column a fraction that is at least enriched with one of the compounds of the mixture. (U.S.)

  19. Molecular laser isotope separation programme at BARC

    International Nuclear Information System (INIS)

    Sarkar, Sisir K.; Parthasarathy, Venkatachari

    2007-09-01

    Little over thirty years ago, BARC ventured into a new frontier of scientific research: Molecular Laser Isotope Separation (MLIS) programme based on the interaction of lasers with molecules. The initial project was a scheme to produce enriched uranium. The idea was to use the intense, monochromatic light of lasers to break the chemical bonds of only those molecules containing the fissionable isotope uranium-235. At present the programme is evolving around separation of low and middle mass isotopes, namely sulphur 34/33/32, oxygen 17/18, carbon 13/12, hydrogen T/D/H to be followed by an advanced engineering programme designed to lead to a demonstration plant. The latest results have come very close to the design parameters specified for a full-scale separation of carbon isotopes. All these expertise provide an infra structure for future front line R and D activities in the general area of Laser Photochemical Technology which would include i) LIS of other useful elements ii) Material processing and iii) Fuel reprocessing/ waste management (author)

  20. Laser isotope separation by multiple photon absorption

    Science.gov (United States)

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  1. Separation of Hydrogen Isotopes by Palladium Alloy Membranes Separator

    International Nuclear Information System (INIS)

    Jiangfeng, S.; Deli, L.; Yifu, X.; Congxian, L.; Zhiyong, H.

    2007-01-01

    Full text of publication follows: Separation of hydrogen isotope with palladium alloy membranes is one of the promising methods for hydrogen isotope separation. It has several advantages, such as high separation efficiency, smaller tritium inventory, simple separation device, ect. Limited by the manufacture of membrane and cost of gas transportation pump, this method is still at the stage of conceptual study. The relationship between separation factors and temperatures, feed gas components, split ratios have not been researched in detail, and the calculated results of cascade separation have not been validated with experimental data. In this thesis, a palladium alloy membrane separator was designed to further study its separation performance between H 2 and D 2 . The separation factor of the single stage was affected by the temperature, the feed gas component, the split ratio and the gas flow rate, etc. The experimental results showed that the H 2 -D 2 separation factor decreased with the increasing of temperature. On the temperature from 573 K to 773 K, when the feed rate was 5 L/min, the separation factor of 66.2%H 2 - 33.8%D 2 decreased from 2.09 to 1.85 when the split ratio was 0.1 and from 1.74 to 1.52 when the split ratio was 0.2.The separation factor also decreased with the increasing of split ratio. At 573 K and the feed rate of 5 L/min, the separation factor of 15.0%H 2 and 85.0%D 2 decreased from 2.43 to 1.35 with the increasing of split ratio from 0.050 to 0.534,and for 66.2%H 2 -33.8%D 2 , the separation factor decreased from 2.87 to 1.30 with the increasing of split ratio from 0.050 to 0.688. When the separation factor was the biggest, the flow rate of feed gas was in a perfect value. To gain a best separation performance, perfect flow rate, lower temperature and reflux ratio should be chosen. (authors)

  2. Separation of uranium isotopes by gas centrifugation

    International Nuclear Information System (INIS)

    Jordan, I.

    1980-05-01

    The uranium isotope enrichment is studied by means of the countercurrent gas centrifuge driven by thermal convection. A description is given of (a) the transfer and purification of the uranium hexafluoride used as process gas in the present investigation; (b) the countercurrent centrifuge ZG3; (c) the system designed for the introduction and extraction of the process gas from the centrifuge; (d) the measurement of the process gas flow rate through the centrifuge; (e) the determination of the uranium isotopic abundance by mass spectrometry; (f) the operation and mechanical behavior of the centrifuge and (g) the isotope separation experiments, performed, respectively, at total reflux and with production of enriched material. The results from the separation experiments at total reflux are discussed in terms of the enrichment factor variation with the magnitude and flow profile of the countercurrent given by the temperature difference between the rotor covers. As far as the separation experiments with production are concerned, the discussion of their results is presented through the variation of the enrichment factor as a function of the flow rate, the observed asymmetry of the process and the calculated separative power of the centrifuge. (Author) [pt

  3. Isotopic separation by centrifugation. Rotating plasma

    International Nuclear Information System (INIS)

    Perello, M.; Vigon, M. A.

    1972-01-01

    The motion of a gas simultaneously submitted to an electric discharge and magnetic field has been studied in order to analyze the possibility of producing isotopes separation by rotation of a plasma. Some experimental results obtained under different discharge conditions are also given. Differences of pressure up to 15 mm oil between both electrodes has been attained. No definite conclusion on separation factors could be reached because of the low reproducibility of results, probably due to the short duration of the discharge with a new chamber designed to support stronger thermal shocks more reliable data can be expected. (Author) 16 refs

  4. Isotope separation in crossed-jet systems

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, R.J.; Anderson, J.B.

    1978-11-01

    The separation of isotopes in crossed-jet systems was investigated with Monte Carlo calculations of the separation effects for jets of Ne/Ar and /sup 235/UF/sub 6///sup 238/UF/sub 6/ mixtures entering a hydrogen stream. For the ideal condition of uniform stream velocities at zero temperature, the separation factor ..cap alpha.. was found to be 16.0 for Ne/Ar and 1.17 for /sup 235/UF/sub 6///sup 238/UF/sub 6/. For less ideal but more practical conditions, Monte Carlo calculations of the complete crossed-jet systems gave separation factors as high as 3.3 for Ne/Ar and ..cap alpha.. = 1.046 - 1.078 for /sup 235/UF/sub 6///sup 238/UF/sub 6/.

  5. Application of gas chromatography in hydrogen isotope separation

    International Nuclear Information System (INIS)

    Ye Xiaoqiu; Sang Ge; Peng Lixia; Xue Yan; Cao Wei

    2008-01-01

    The principle of gas chromatographic separation of hydrogen isotopes was briefly introduced. The main technology and their development of separating hydrogen isotopes, including elution chromatography, hydrogen-displacement chromatography, self-displacement chromatography and frontal chromatography were discussed in detail. The prospect of hydrogen isotope separation by gas chromatography was presented. (authors)

  6. Memories of Professor Sugimoto and isotope separator

    International Nuclear Information System (INIS)

    Tanaka, Kazuhiro

    2013-01-01

    Usual magnetic isotope-separators select the particles with the same Z/A value which may include different nuclides. Identification of the isotope with the same Z/A value but different Z or A value is an universal requirement for nuclear physics experiments. If one knows, together with the A/Z value, the dE/dx or the range of the isotope in some energy absorber, which are the function of Z 2 /A, its nuclide can be specified. This idea can be realized by arranging proper energy-absorber at the focal point of magnetic analyzer. The author proposes another novel method in which two dipole-magnets are excited with some difference, and an energy absorber corresponding to that energy difference is situated between two magnets. It can also be devised so that the dispersion at the final focal-point depends only on the emission angle of the isotope at production. Professor Sugimoto recognized the significance of this scheme and proposed to employ it in the experiment at BEVATRON. The unbalanced two dipole-magnets method is employed at RIKEN and RCNP, Osaka University. The author's creative idea originated in Sugimoto Laboratory at Osaka University. (author)

  7. The isotope separation by ion exchange chromatography. Application to the lithium isotopes separation

    International Nuclear Information System (INIS)

    Albert, M.G.; Barre, Y.; Neige, R.

    1993-01-01

    In this work is described the used study step to demonstrate the industrial feasibility of a lithium isotopes separation process by ion exchange chromatography. After having recalled how is carried out the exchange reaction between the lithium isotopes bound on the cations exchanger resin and those which are in solution and gave the ion exchange chromatography principle, the authors establish a model which takes into account the cascade theory already used for enriched uranium production. The size parameters of this model are: the isotopic separation factor (which depends for lithium of the ligands nature and of the coordination factor), the isotopic exchange kinetics and the mass flow (which depends of the temperature, the lithium concentration, the resins diameter and the front advance). The way they have to be optimized and the implementation of the industrial process are given. (O.M.)

  8. Electrical circuits of an electromagnetic isotope separator

    International Nuclear Information System (INIS)

    Neyron, A.

    1959-01-01

    After an outline of the general principles governing the operation of an electromagnetic isotope separator, the electrical characteristics necessary to this operation are given. First the electrical characteristics of the ion source are briefly presented. The author then gives a detailed account of the construction of the H.T. acceleration supply of which the maxima characteristics are 80 kV and 150 mA with stabilisation of the order of 4.10 -4 . Reprint of a paper published in 'Industries Atomiques' - n. 3-4, 1959

  9. Production of exotic beams by separation of online isotope

    International Nuclear Information System (INIS)

    Hosni, Faouzi; Farah, K.

    2013-01-01

    The studies in physics, concerned until now, approximately two thousand five hundred radioactive nuclide. These nuclides with 263 stable nucleus constitute the current nuclear field. This field is far from being complete because there are more than three thousand radioactive isotopes to be discovered. Materials and Methods: To reach these radio-isotopes there are two complementary methods which are the on-line separation (ISOL) and the fragmentation in times of flight. The latter has the advantage to allow the study of the elements of very short period (lower than 10-3 s). It supplies beams having a big dispersal in energy and in angle. In the case of the separation of on-line isotope, a target is run to produce the radioactive atoms. This allows producing beams much more intense than the fragmentation in times of flight. To obtain radioactive beams in the required intensities or for the research or medical applications, it is essential to end in thick targets or the products of reaction can go out as fast as possible. That is to realize targets which can maintain a porous and sluggish structure counterpart in the produced elements. This is one of the main technological challenges to be solved. The works concerning this domain will be presented as well as the got advantage if the nuclear reactions are led by protons reaching 30 MeV of energy. (Author)

  10. Studies on Separation Process and Production Technology of Boron Isotope

    OpenAIRE

    LI Jian-ping

    2014-01-01

    The boron isotopes separation test was performed by chemical exchange reaction in the benzene ether -three boron fluoride system, which resulted to the boron isotopic enrichment of -10 in the liquid phase, the boron isotopic enrichment of -11 in the gas phase. After then, boron isotope separation trial production has been finished. In this process, the exchange column and complex tower normal operating parameters and the complex tower technology have been obtained, the problems of material di...

  11. Cascade theory in isotopic separation processes

    International Nuclear Information System (INIS)

    Agostini, J.P.

    1994-06-01

    Three main areas are developed within the scope of this work: - the first one is devoted to fundamentals: separative power, value function, ideal cascade and square cascade. Applications to two main cases are carried out, namely: Study of binary isotopic mix, Study of processes with a small enrichment coefficient. - The second one is devoted to cascade coupling -high-flux coupling (more widely used and better known) as well as low-flux coupling are presented and compared to one another. - The third one is an outlook on problems linked to cascade transients. Those problem are somewhat intricate and their interest lies mainly into two areas: economics where the start-up time may have a large influence on the interests paid during the construction and start-up period, military productions where the start-up time has a direct bearing on the production schedule. (author). 50 figs. 3 annexes. 12 refs. 6 tabs

  12. Photolytic separation of isotopes in cryogenic solution

    Science.gov (United States)

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Battie, W.H.

    Separation of carbon isotopes by photolysis of CS/sub 2/ in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distributionn of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of /sup 13/CS/sub 2/ is greater than that of /sup 12/CS/sub 2/ (because the absorption of 206 nm radiation is greater for /sup 13/CS/sub 2/), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  13. Method of deuterium isotope separation and enrichment

    International Nuclear Information System (INIS)

    Benson, S.W.

    1980-01-01

    A method of deuterium isotope separation and enrichment using infrared laser technology in combination with chemical processes for treating and recycling the unreacted and deuterium-depleted starting materials is described. Organic molecules of the formula RX (where R is an ethyl, isopropyl, t-butyl, or cyclopentenyl group and X is F, Cl, Br or OH) containing a normal abundance of hydrogen and deuterium are exposed to intense laser infrared radiation. An olefin containing deuterium (olefin D) will be formed, along with HX. The enriched olefin D can be stripped from the depleted stream of RX and HX, and can be burned to form enriched water or pyrolyzed to produce hydrogen gas with elevated deuterium content. The depleted RX is decomposed to olefins and RX, catalytically exchanged with normal water to restore the deuterium content to natural levels, and recombined to form RX which can be recycled. (LL)

  14. Atomic vapor laser isotope separation in France

    International Nuclear Information System (INIS)

    Camarcat, N.; Lafon, A.; Perves, J.P.; Rosengard, A.

    1992-01-01

    The main effort in the field of Isotopic Separation Research and Development in France is devoted since 1985 to the 'SILVA' process. A structured organization has been set up, including the following elements: Specific Research and Development for all the functions and components of the process: this work is supported by numerous benches located in Saclay and Pierrelatte. Each bench is mainly devoted to one process function; regarding process and operating performances are optimized. Integrated Experiences in a Pilot facility. Qualified components are integrated in a pilot facility located in Saclay, the capacity of which is steadily increased. At each stage, complete separative experiments demonstrate the improvements attained. Focused Basic Research for each field, often linked with various and relatively original phenomenas. Models have been built up, supported by specific experiments and values attained for intrinsical parameters. An aggregated process performance computing code integrates all the models, possibly under simplified form. Technical, operating and economical data are gradually added. A general assessment will take place in the middle of the nineties with several technical demonstrations and a complete evaluation of the French AVLIS process

  15. Thermally-controlled centrifuge for isotopic separation

    International Nuclear Information System (INIS)

    Cenedese, A.; Cunsolo, D.

    1976-01-01

    Among the various methods proposed to obtain lighter component enrichment in the isotopic separation of uranium, ultracentrifugation is becoming more and more interesting today, as this process becomes a useful alternate method to gaseous diffusion. The ultracentrifuge main gas-dynamic features are investigated in the present study. In particular, the field inside the centrifuge has been subdivided into three axial zones: an internal central zone, characterized by an essentially axial flow; two external zones, near the two caps of the centrifuge; two intermediate zones, of a length of the order of the radius. For the analytical solution the linearized Navier-Stokes equations have been considered. The central zone flow is solved by separating the independent variables; the corresponding eigenvalue problem has been solved numerically. A series of eigensolutions which satisfy boundary conditions at the walls of the cylinder has been calculated. An integral method for the superimposition of the above mentioned eigensolutions is proposed in order to satisfy the conditions at the tops for thermally-controlled centrifuges. (author)

  16. The isotopic contamination in electromagnetic isotope separators; La contagion isotopique dans les separateurs electromagnetiques d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Cassignol, Ch. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the early years of isotope separation, and in particular electromagnetic isotope separation, needs for rapid results have conducted to empiric research. This paper describes fundamental research on the electromagnetic isotope separation to a better understanding of isotope separators as well as improving the performances. Focus has been made on the study of the principle of isotope contamination and the remedial action on the separator to improve the isotope separation ratio. In a first part, the author come back to the functioning of an electromagnetic separator and generalities on isotope contamination. Secondly, it describes the two stages separation method with two dispersive apparatus, an electromagnetic separation stage followed by an electrostatic separation stage, both separated by a diaphragm. The specifications of the electrostatic stage are given and its different settings and their consequences on isotope separation are investigated. In a third part, mechanisms and contamination factors in the isotope separation are discussed: natural isotope contamination, contamination by rebounding on the collector, contamination because of a low resolution, contamination by chromatism and diffusion effect, breakdown of condenser voltage. Analysis of experimental results shows the diffusion as the most important contamination factor in electromagnetic isotope separation. As contamination factors are dependent on geometric parameters, sector angle, radius of curvature in the magnetic field and clearance height are discussed in a fourth part. The better understanding of the mechanism of the different contamination factors and the study of influential parameters as pressure and geometric parameters lead to define a global scheme of isotope contamination and determinate optima separator design and experimental parameters. Finally, the global scheme of isotope contamination and hypothesis on optima specifications and experimental parameters has been checked during a

  17. Measurement of the through thickness compression of a battery separator

    Science.gov (United States)

    Yan, Shutian; Huang, Xiaosong; Xiao, Xinran

    2018-04-01

    The mechanical integrity of the separator is critical to the reliable operation of a battery. Due to its minimal thickness, compression experiments with a single/a few layers of separator are difficult to perform. In this work, a capacitance based displacement set-up has been developed for the measurement of the through thickness direction (TTD) compression stress-strain behavior of the separator and the investigation of its interaction with the electrode. The experiments were performed for a stack of two layers of Celgard 2400 separator, NMC cathode, and separator/NMC cathode/separator stack in both dry and wet (i.e. submersed in dimethyl carbonate DMC) conditions. The experimental results reveal that the separator compression modulus can be significantly affected by the presence of DMC. The iso-stress based rule of mixtures was used to compute the compressive stress-strain curve for the stack from that of the separator and NMC layer. The computed curve agreed with the experimental curve reasonably well up to about 0.16 strain but deviated significantly to a softer response at higher strains. The results suggest that, in the stack, the TTD compressive deformation of the separator is influenced by the NMC cathode.

  18. Separation of hydrogen isotopes via single column pressure swing adsorption

    International Nuclear Information System (INIS)

    Wong, Y.W.; Hill, F.B.

    1981-01-01

    Separation of hydrogen isotopes based on kinetic isotope effects was studied. The mixture separated was hydrogen containing a trace of tritium as HT and the hydride was vanadium monohydride. The separation was achieved using the single-column pressure swing process. Stage separation factors are larger and product cuts smaller than for a two-column pressure swing process operated in the same monohydride phase

  19. Laser alteration of accommodation coefficient for isotope separation

    International Nuclear Information System (INIS)

    Keck, J.C.

    1976-01-01

    This patent describes a method and an apparatus for separating isotope types by inducing an isotopically selective vibrational excitation of molecules containing at least one atom of the element type whose isotopes are to be separated. Vibrational excitation is induced in the molecules by finely tuned, narrow bandwidth laser radiation applied to a gaseous flow of the molecules. Isotopic separation of the molecules is achieved from the enhanced difference in diffusion rates for the molecules due to an alteration of the accommodation coefficients in the excited molecules. 40 claims, 4 figures

  20. Extraction separation of lithium isotopes with crown-ethers

    International Nuclear Information System (INIS)

    Tsivadze, A.Yu.; Demin, S.V.; Levkin, A.V.; Zhilov, V.I.; Nikol'skij, S.F.; Knyazev, D.A.

    1990-01-01

    By the method of extraction chromatography lithium isotope separation coefficients are measured during chemical isotope exchange between lithium aquocomplex and its complex in chloroform with crown-ethers: benzo-15-crown-5, 15crown-5, dicyclohexano-18-crown-6 and dibenzo-18-crown-6. Lithium perchlorate and trichloroacetate are the salts extracted. Values of 6 Li/ 7 Li isotope separation are 1.0032-1.020

  1. ITER isotope separation system conceptual design description

    International Nuclear Information System (INIS)

    Busigin, A.; Sood, S.K.; Kveton, O.K.; Dinner, P.J.; Murdoch, D.K.; Leger, D.

    1989-05-01

    This paper presents integrated Isotope Separation System (ISS) designs for ITER based on requirements for plasma exhaust processing, neutral beam injection deuterium cleanup, pellet injector propellant detritiation, waste water detritiation, and breeding blanket detritiation. Specific ISS designs are developed for a machine with an aqueous lithium salt blanket (ALSB) and a machine with a solid ceramic breeding blanket (SBB). The differences in the ISS designs arising from the different blanket concepts are highlighted. It is found that the ISS designs for the two blanket concepts considered are very similar, with the only major difference being the requirements for an additional large water distillation column for ALSB water detritiation. The fact that the cryogenic distillation portions of the two ISS designs are almost identical, indicates that the cryogenic distillation cascade design is very flexible and can readily accommodate significant changes in processing requirements without requiring significant redesign. The front-end process for extraction of tritium from the ALSB is based on flash evaporation to separate the blanket water from the dissolved Li salt, with the tritiated water then being fed to the ISS for detritiation. This technology is considered to be relatively well understood in comparison to front-end processes for SBB detritiation. In the design of the cryogenic distillation portion of the ISS, it was found that the tritium inventory could be very large (> 600g) unless specific design measures were taken to reduce it. In the designs which are presented, the tritium inventory has been reduced to about 180g, which is less than the ITER single-failure release limit of 200g. Further design optimization and isolation of components is expected to reduce the inventory further

  2. Separation of uranium isotopes by selective photoionization

    International Nuclear Information System (INIS)

    Snavely, B.B.; Solarz, R.W.; Tuccio, S.A.

    1975-01-01

    Recent results of experiments on the laser photoseparation of U isotopes are reported. In the first series of experiments a two-step ionization process using a Xe laser to excite the atoms below the ionization level and then a Kr laser to ionize the atoms was described. Under the geometric conditions of the experiment and power of the Kr laser, enrichments between 2.5 and 3 percent were obtained in runs lasting 2 hrs. Calculations to describe the ion trajectories in the collector system reflected the two-band pattern observed on the Be collector plate. A system to study the photoionization process was assembled in which the U beam is excited to a desired energy level with a CW dye laser and an ultraviolet beam intercepts the excited U beam. An analysis of a photoionization spectrum obtained at a resolution of 8 A indicates that the peak cross section for transitions to autoionization states from the 7 M 7 level is large enough to be used in large-scale U separation systems. An ionization value of 6.15 +- 0.2 eV was deduced for the ionization potential of the U atom. (U.S.)

  3. The Atomic Vapor Laser Isotope Separation Program

    International Nuclear Information System (INIS)

    1992-01-01

    This report provides the finding and recommendations on the audit of the Atomic Vapor Laser Isotope Separation (AVLIS) program. The status of the program was assessed to determine whether the Department was achieving objectives stated in its January 1990 Plan for the Demonstration, Transition and Deployment of AVLIS Technology. Through Fiscal Year 1991, the Department had spent about $1.1 billion to develop AVLIS technology. The January 1990 plan provided for AVLIS to be far enough along by September to enable the Department to make a determination of the technical and economic feasibility of deployment. However, the milestones needed to support that determination were not met. An estimated $550 million would be needed to complete AVLIS engineering development and related testing prior to deployment. The earliest possible deployment date has slipped to beyond the year 2000. It is recommended that the Department reassess the requirement for AVLIS in light of program delays and changes that have taken place in the enrichment market since January 1990. Following the reassessment, a decision should be made to either fully support and promote the actions needed to complete AVLIS development or discontinue support for the program entirely. Management's position is that the Department will successfully complete the AVLIS technology demonstration and that the program should continue until it can be transferred to a Government corporation. Although the auditors recognize that AVLIS may be transferred, there are enough technical and financial uncertainties that a thorough assessment is warranted

  4. Aerodynamic isotope separation processes for uranium enrichment: process requirements

    International Nuclear Information System (INIS)

    Malling, G.F.; Von Halle, E.

    1976-01-01

    The pressing need for enriched uranium to fuel nuclear power reactors, requiring that as many as ten large uranium isotope separation plants be built during the next twenty years, has inspired an increase of interest in isotope separation processes for uranium enrichment. Aerodynamic isotope separation processes have been prominently mentioned along with the gas centrifuge process and the laser isotope separation methods as alternatives to the gaseous diffusion process, currently in use, for these future plants. Commonly included in the category of aerodynamic isotope separation processes are: (a) the separation nozzle process; (b) opposed gas jets; (c) the gas vortex; (d) the separation probes; (e) interacting molecular beams; (f) jet penetration processes; and (g) time of flight separation processes. A number of these aerodynamic isotope separation processes depend, as does the gas centrifuge process, on pressure diffusion associated with curved streamlines for the basic separation effect. Much can be deduced about the process characteristics and the economic potential of such processes from a simple and elementary process model. In particular, the benefit to be gained from a light carrier gas added to the uranium feed is clearly demonstrated. The model also illustrates the importance of transient effects in this class of processes

  5. Environmental readiness document advanced isotope separation program

    International Nuclear Information System (INIS)

    1981-08-01

    Advanced Isotope Separation (AIS) techniques hold the promise of significantly reducing the cost of enriching uranium for use in commercial nuclear power reactors. By reducing uranium enrichment costs, the tails assay of an enrichment plant can be lowered resulting in a decrease in the requirements for natural uranium feed material and a small decrease in the cost of the electricity produced by nuclear power plants. With this increased efficiency of uranium enrichment, there will be an overall reduction in the environmental impacts associated with uranium processing in the front end of the fuel cycle. AIS is characterized by much lower energy requirements compared to diffusion; comparable energy requirements to centrifuge; generally similar offsite environmental and socioeconomic impacts to centrifuge; and substantially fewer secondary impacts than diffusion because of reduced need for power. In the broadest definitions of environmental concerns, the socio-political and security aspects of proliferation and safeguards are the most significant in reducing AIS to practice. The potential exists for exposure of plant workers or offsite personnel to radioactive material or process chemical during normal or accident conditions. Some AIS processes make use of strong magnetic or electromagnetic fields and lasers, and methods are required to monitor the levels of these radiations. The AIS processes will routinely generate chemical and radioactive wastes. Additional wastes may be generated during plant decontamination and decommissioning. All of these wastes must be managed to meet Federal and state requirements. Finally, based on preliminary designs, some of the AIS processes may require significant, relative to US and world supply, quantities of a coating material

  6. Laser spectroscopy and laser isotope separation of atomic gadolinium

    International Nuclear Information System (INIS)

    Chen, Y. W.; Yamanaka, C.; Nomaru, K.; Kou, K.; Niki, H.; Izawa, Y.; Nakai, S.

    1994-01-01

    Atomic vapor laser isotope separation (AVLIS) is a process which uses intense pulsed lasers to selectively photoionize one isotopic species of a chemical element, after which these ions are extracted electromagnetically. The AVLIS has several advantages over the traditional methods based on the mass difference, such as high selectivity, low energy consumption, short starting time and versatility to any atoms. The efforts for atomic vapor laser isotope separation at ILT and ILE, Osaka University have been concentrated into the following items: 1) studies on laser spectroscopy and laser isotope separation of atomic gadolinium, 2) studies on interaction processes including coherent dynamics, propagation effects and atom-ion collision in AVLIS system, 3) development of laser systems for AVLIS. In this paper, we present experimental results on the laser spectroscopy and laser isotope separation of atomic gadolinium.

  7. Process for separating U isotopes by infrared excitation

    International Nuclear Information System (INIS)

    Lyon, R.K.; Kaldor, Andrew.

    1976-01-01

    This invention concerns a process for separating a substance into at least two parts in which the isotopic abundances of a given element differ from those of the isotopes of the substance prior to separation. Specifically, the invention concerns a process for the selective excitation of the isotopes of a gaseous phase UF 6 by absorption of infra-red photons, then by selective reaction of UF 6 excited with atomics chlorine, bromine or iodine, forming a product that may be separated by a standard method. The preference criteria of the atomic chlorine, bromine and iodine are related to the thermal dilution problem [fr

  8. Efficient tunable infrared lasers for isotope separation

    International Nuclear Information System (INIS)

    Tashiro, Hideo; Suda, Akira

    1996-01-01

    The cost of photons is a major determinant for the economical success of laser enrichment processes. The molecular laser isotope separation (MLIS) using infrared lasers is advantageous in this aspect, because infrared lasers with potentiality for high efficiency and high-power operation is usable. The present efficiency of the MLIS laser system is, however, still unsatisfactory from the economical viewpoint. The aim of current research of laser development at RIKEN is to increase laser efficiency by introducing new technologies for MLIS lasers. Under a name of Breakthrough Studies project, efforts are concentrated on the development of p-H 2 Raman lasers, which can overcome the efficiency barrier imposed under the conventional concept of the MLIS laser. For the laser breakthrough studies, two new types of the 16mm Raman laser are now under study. One is the intracavity Raman laser that requires no longer lenghthy oscillator-amplifier chains of TEA-CO 2 lasers and large multiple pass Raman cells. A coupled cavity for TEA-CO 2 laser and Raman laser is constructed withy a dichroic mirror, and is designed to oscillate in circulary polarization. The laser beam is focused in the Raman cell, while it is expanded in the TEA-CO 2 discharge section. In order to design such a pump-Stokes combined cavity, growth of Stokes pulses was analyzed with simulation regarding the threshold powers and pulse durations inside the cavity. The oscillation of CO 2 pulses with circular polarization was rea;lized by combination with circularly polarized external CO 2 seeder and the careful isotropic arrangement of optics around the optical axis. The success of oscillation recently achieved suggests effectiveness of the intracavity infrared Raman conversion and the possibility of high-efficiency energy extraction. The other is the automatically tuned 16mn laser to the absorption band of UF6. This makes it possible to eliminate the use of highly-pressurized TE-CO 2 lasers. We have demonstrated

  9. Laser isotope separation - a new class of chemical process

    International Nuclear Information System (INIS)

    Woodall, K.B.; Mannik, L.; O'Neill, J.A.; Mader, D.L.; Nickerson, S.B.; Robins, J.R.; Bartoszek, F.E.; Gratton, D.

    1983-01-01

    Lasers may soon find several applications in chemical processing. The applications that have attracted the most research funding to date involve isotope separation for the nuclear industry. These isotopes have an unusually high value (≥$1000/kg) compared to bulk chemicals (∼$1/kg) and are generally required in very large quantities. In a laser isotope separation process, light is used to convert a separation that is very difficult or even impossible by conventional chemical engineering techniques to one that is readily handled by conventional separation technology. For some isotopes this can result in substantial capital and energy savings. A uranium enrichment process developed at the Lawrence Livermore National Laboratory is the closest to commercialization of the large scale laser isotope separation processes. Of particular interest to the Canadian nuclear industry are the laser separation of deuterium, tritium, zirconium-90 and carbon-14. In this paper, the basic principles behind laser isotope separation are reviewed and brief dscriptions of the more developed processes are given

  10. Process and device for U isotope separation

    International Nuclear Information System (INIS)

    Aubert, Jacques; Carles, Maurice; Neige, Roger.

    1976-01-01

    The description is given of a process for enriching uranium with one of its isotopes by isotopic exchange in sub-cascades assembled to form a cascade, each sub-cascade having facilities for bringing into contact an aqueous phase charged with uranium of a lower valency with an organic phase charged with uranium of a higher valency, in conditions that restrict the transfer of upper valency uranium into the aqueous phase. Each sub-cascade has the following stages at least: isotopic exchange in a set of contact systems between the aqueous phase and the organic phase where the aqueous phase depletes and the organic phase becomes enriched with isotope 235; uranium extraction until depletion of the organic phase in a first extractor; reduction of the liquid phase uranium and acidification before this reduced aqueous phase passes into the isotopic exchange system then oxidation of the uranium of this aqueous phase coming from the system; extraction of the aqueous phase uranium until depletion in the second extractor by the organic phase [fr

  11. Measurement of thick film adhesion by an impact separation technique

    International Nuclear Information System (INIS)

    Snowden, W.E.; Aksay, I.A.

    1981-01-01

    The purpose of this study was to utilize a dynamic loading (impact separation) technique to determine absolute values for the force of adhesion required to separate a substrate/film interface into its two joining components. A principal advantage of the technique is that the force required for adhesive failure is applied directly at the interface by stress waves of relatively low amplitude, not by application of a force to the free surface of the film. Critical impact velocities required for separation of thick films from two types of substrates were measured. Values for force of adhesion were then calculated using a complex finite-difference computer code developed for analysis of a variety of dynamic problems

  12. Energetic requirements for isotope separation by plasma methods

    International Nuclear Information System (INIS)

    Karchevskii, A.I.; Potanin, E.P.

    1986-01-01

    The specific energy consumption is estimated for the separation of binary isotopic mixtures in various plasma systems with a weekly ionized medium (a plasma centrifuge, a gas-discharge system with a traveling magnetic field, and a dc discharge). The plasma centrifuge potentially has advantages over other gas-discharge devices. The specific amounts of energy consumed in plasma methods and conventional methods of isotope separation are compared

  13. Laser isotope and isomer separations: History and trends

    International Nuclear Information System (INIS)

    Paper will review history and principles of laser isotope and nuclear isomer separation: laser multistep photoionization of isotopic and isomeric atoms, laser IR-UV two-step photodissociation of molecules, laser IR multiphoton photodissociation of polyatomic molecules. The comparison and areas of applications of these methods will be considered. Paper will discuss a present state of art of technology of these methods in practical scale in various countries. In conclusion the trends of research in this field including applications of laser-separated isotopes and isomers will be considered

  14. Development of O-18 stable isotope separation technology using membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Woo; Kim, Taek Soo; Choi, Hwa Rim; Park, Sung Hee; Lee, Ki Tae; Chang, Dae Shik

    2006-06-15

    The ultimate goal of this investigation is to develop the separation technology for O-18 oxygen stable isotope used in a cyclotron as a target for production of radioisotope F-18. F-18 is a base material for synthesis of [F-18]FDG radio-pharmaceutical, which is one of the most important tumor diagnostic agent used in PET (Positron Emission Tomography). More specifically, this investigation is focused on three categories as follow, 1) development of the membrane distillation isotope separation process to re-enrich O-18 stable isotope whose isotopic concentration is reduced after used in a cyclotron, 2) development of organic impurity purification technology to remove acetone, methanol, ethanol, and acetonitrile contained in a used cyclotron O-18 enriched target water, and 3) development of a laser absorption spectroscopic system for analyzing oxygen isotopic concentration in water.

  15. Selective heating and separation of isotopes in a metallic plasma

    International Nuclear Information System (INIS)

    Moffa, P.; Cheshire, D.; Flanders, B.; Myer, R.; Robinette, W.; Thompson, J.; Young, S.

    1983-01-01

    Several types of metallic plasmas have been produced at the Plasma Separation Process facility of TRW. Selective heating and separation of specific isotopes in these plasmas have been achieved. In this presentation the authors concentrate on the modeling of the selective heating and separation of the isotope Ni 58 . Two models are currently used to describe the excitation process. In both, the electromagnetic fields in the plasma produced by the ICRH antenna are calculated self-consistently using a kinetic description of the warm plasma dielectric. In the Process Model Code, both the production of the plasma and the heating are calculated using a Monte Carlo approach. Only the excitation process is treated in the second simplified model. Test particles that sample an initial parallel velocity distribution are launched into the heating region and the equations of motion including collisional damping are calculated. For both models, the perpendicular energy for a number of particles with different initial conditions and representing the different isotopes is calculated. This information is then input into a code that models the performance of our isotope separation collector. The motion of the ions of each isotope through the electrically biased collector is followed. An accounting of where each particle is deposited is kept and hence the isotope separation performance of the collector is predicted

  16. Basic separative power of multi-component isotopes separation in a gas centrifuge

    International Nuclear Information System (INIS)

    Jiang, Hongmin; Lei, Zengguang; Zhuge, Fu

    2008-01-01

    On condition that the overall separation factor per unit exists in centrifuge for multi-component isotopes separation, the relations between separative power of each component and molecular weight have been investigated in the paper while the value function and the separative power of binary-component separation are adopted. The separative power of each component is proportional to the square of the molecular weight difference between its molecular weight and the average molecular weight of other remnant components. In addition, these relations are independent on the number of the components and feed concentrations. The basic separative power and related expressions, suggested in the paper, can be used for estimating the separative power of each component and analyzing the separation characteristics. The most valuable application of the basic separative power is to evaluate the separative capacity of centrifuge for multi-component isotopes. (author)

  17. LASER ISOTOPE SEPARATION: Laser separation of nitrogen isotopes by the IR+UV dissociation of ammonia molecules

    Science.gov (United States)

    Apatin, V. M.; Klimin, S. A.; Laptev, V. B.; Lokhman, V. N.; Ogurok, D. D.; Pigul'skii, S. V.; Ryabov, E. A.

    2008-08-01

    The separation of nitrogen isotopes is studied upon successive single-photon IR excitation and UV dissociation of ammonia molecules. The excitation selectivity was provided by tuning a CO2 laser to resonance with 14NH3 molecules [the 9R(30) laser line] or with 15NH3 molecules [the 9R(10) laser line]. Isotopic mixtures containing 4.8% and 0.37% (natural content) of the 15NH isotope were investigated. The dependences of the selectivity and the dissociation yield for each isotopic component on the buffer gas pressure (N2, O2, Ar) and the ammonia pressure were obtained. In the limit of low NH3 pressures (0.5—2 Torr), the dissociation selectivity α(15/14) for 15N was 17. The selectivity mechanism of the IR+UV dissociation is discussed and the outlook is considered for the development of the nitrogen isotope separation process based on this approach.

  18. Isotope separation using tuned laser and electron beam

    International Nuclear Information System (INIS)

    Trajmar, S.

    1987-01-01

    The method for producing and separating a stream of a selected isotope from an atomic beam containing a mixture of isotopes is described comprising the steps of: (a) producing an atomic beam containing the isotope of interest and other isotopes; (b) producing a magnetic field to broaden the energy domain of the individual magnetic sublevels of the isotope of interest and having the atomic beam passing therethrough; (c) producing a laser beam; (d) adjusting the polarization of the laser beam to further maximize the activation of only individual magnetic sublevels of the isotope of interest; (e) aiming the laser beam to strike the atomic beam within the magnetic field and traverse the path of the atomic beam; (f) producing a collimated and high intensity beam of electrons within the magnetic field aimed to strike the atomic beam; and, (g) disposing deflection means to have the atomic beam pass therethrough after being struck by the electron beam and deflect the ionized isotope from the remainder of the beam to form a separate stream composed only of the isotope of interest

  19. Germanium-76 Isotope Separation by Cryogenic Distillation. Final Report

    International Nuclear Information System (INIS)

    Stohler, Eric

    2007-01-01

    The current separation method for Germanium isotopes is electromagnetic separation using Calutrons. The Calutrons have the disadvantage of having a low separation capacity and a high energy cost to achieve the separation. Our proposed new distillation method has the advantage that larger quantities of Germanium isotopes can be separated at a significantly lower cost and in a much shorter time. After nine months of operating the column that is 1.5 meter in length, no significant separation of the isotopes has been measured. We conclude that the length of the column we have been using is too short. In addition, other packing material than the 0.16 inch Propak, 316 ss Protruded metal packing that we used in the column, should be evaluated which may have a better separation factor than the 0.16 inch Propak, 316 ss Protruded metal packing that has been used. We conclude that a much longer column - a minimum of 50 feet length - should be built and additional column packing should be tested to verify that isotopic separation can be achieved by cryogenic distillation. Even a longer column than 50 feet would be desirable.

  20. Hydrogen isotope separation by permeation through palladium membranes

    International Nuclear Information System (INIS)

    Glugla, M.; Cristescu, I.-R.; Cristescu, I.; Demange, D.

    2005-01-01

    Full text: The different aspects of hydrogen isotope effects in palladium and in technically employed palladium-silver alloys have been studied abundantly in the past, and ample experimental and theoretical data are available in the literature. It is a well known fact that for both the solubility and the diffusivity of hydrogen in palladium an inverse isotope effect is observed: the lightest isotope has the highest solubility and lowest diffusivity. For permeation of hydrogen isotopes through palladium-silver membranes at upstream gas pressures leading to diffusion in the solid as the rate determining step the total permeation flux is governed by solubility and hence tritium in this regime is the least permeating isotope. Since the absolute values for the permeabilities of hydrogen, deuterium and tritium in palladium differ considerably - more than a factor of two for hydrogen in comparison with tritium at around 400 deg. C - the effect could be employed as a basis for technical isotope separation. However, the requirements on compressors, vacuum pumping and process control are significant and have not been quantified yet in detail. In this paper an experimentally verified mathematical model is employed to analyse the net isotope effects in permeate and in retentate flows when feeding a technical permeator with various hydrogen isotope mixtures under different feed and permeate pressures. The technical feasibility of hydrogen isotope permeation as a method for separation is considered in detail and the necessary process control for a single permeator or a permeator cascade is discussed. The method is also compared with other processes for hydrogen isotope separation such as displacement chromatography or cryogenic distillation. (authors)

  1. Low energy methods of molecular laser isotope separation

    International Nuclear Information System (INIS)

    Makarov, G N

    2015-01-01

    Of the many proposals to date for laser-assisted isotope separation methods, isotope-selective infrared (IR) multiphoton dissociation (MPD) of molecules has been the most fully developed. This concept served as the basis for the development and operation of the carbon isotope separation facility in Kaliningrad, Russia. The extension of this method to heavy elements, including uranium, is hindered by, among other factors, the high power consumption and the lack of high-efficiency high-power laser systems. In this connection, research and development covering low energy methods for the laser separation of isotopes (including those of heavy atoms) is currently in high demand. This paper reviews approaches to the realization of IR-laser-induced isotope-selective processes, some of which are potentially the basis on which low-energy methods for molecular laser isotope separation can be developed. The basic physics and chemistry, application potential, and strengths and weaknesses of these approaches are discussed. Potentially promising alternatives to the title methods are examined. (reviews of topical problems)

  2. Production of stable isotopes utilizing the plasma separation process

    Science.gov (United States)

    Bigelow, T. S.; Tarallo, F. J.; Stevenson, N. R.

    2005-12-01

    A plasma separation process (PSP) is being operated at Theragenics Corporation's®, Oak Ridge, TN, facility for the enrichment of stable isotopes. The PSP utilizes ion cyclotron mass discrimination to separate isotopes on a relatively large scale. With a few exceptions, nearly any metallic element could be processed with PSP. Output isotope enrichment factor depends on natural abundance and mass separation and can be fairly high in some cases. The Theragenics™ PSP facility is believed to be the only such process currently in operation. This system was developed and formerly operated under the US Department of Energy Advanced Isotope Separation program. Theragenics™ also has a laboratory at the PSP site capable of harvesting the isotopes from the process and a mass spectrometer system for analyzing enrichment and product purity. Since becoming operational in 2002, Theragenics™ has utilized the PSP to separate isotopes of several elements including: dysprosium, erbium, gadolinium, molybdenum and nickel. Currently, Theragenics™ is using the PSP for the separation of 102Pd, which is used as precursor for the production of 103Pd. The 103Pd radioisotope is the active ingredient in TheraSeed®, which is used in the treatment of early stage prostate cancer and being investigated for other medical applications. New industrial, medical and research applications are being investigated for isotopes that can be enriched on the PSP. Pre-enrichment of accelerator or reactor targets offers improved radioisotope production. Theragenics operates 14 cyclotrons for proton activation and has access to HFIR at ORNL for neutron activation of radioisotopes.

  3. Proposal for implanting a magnetic stable isotope separator

    International Nuclear Information System (INIS)

    Lemos, O.F.

    1988-07-01

    The implantation of an electromagnetic isotope separator able to separate elements of mass from 20 to 250 a.m.u., with an enrichment factor from 10 to 200 times the initial concentration, depending on the elements, is proposed. The most suitable separator type for Brazilian CNEN, considering building installations and minimum conditions for the equipment facilities, the retinue chronogram, the infrastructure, and the personnel training for operation is defined. (M.C.K.) [pt

  4. Gas-centrifuge unit and centrifugal process for isotope separation

    International Nuclear Information System (INIS)

    Stark, T.M.

    1979-01-01

    An invention involving a process and apparatus for isotope-separation applications such as uranium-isotope enrichment is disclosed which employs cascades of gas centrifuges. A preferred apparatus relates to an isotope-enrichment unit which includes a first group of cascades of gas centrifuges and an auxiliary cascade. Each cascade has an input, a light-fraction output, and a heavy-fraction output for separating a gaseous-mixture feed including a compound of a light nuclear isotope and a compound of a heavy nuclear isotope into light and heavy fractions respectively enriched and depleted in the light isotope. The cascades of the first group have at least one enriching stage and at least one stripping stage. The unit further includes means for introducing a gaseous-mixture feedstock into each input of the first group of cascades, means for withdrawing at least a portion of a product fraction from the light-fraction outputs of the first group of cascades, and means for withdrawing at least a portion of a waste fraction from the heavy-fraction outputs of the first group of cascades. The isotope-enrichment unit also includes a means for conveying a gaseous-mixture from a light-fraction output of a first cascade included in the first group to the input of the auxiliary cascade so that at least a portion of a light gaseous-mixture fraction produced by the first group of cascades is further separated into a light and a heavy fraction by the auxiliary cascade. At least a portion of a product fraction is withdrawn from the light fraction output of the auxiliary cascade. If the light-fraction output of the first cascade and the heavy-fraction output of the auxiliary cascade are reciprocal outputs, the concentraton of the light isotope in the heavy fraction produced by the auxiliary cascade essentially equals the concentration of the light isotope in the gaseous-mixture feedstock

  5. Method of deuterium isotope separation and enrichment

    International Nuclear Information System (INIS)

    Benson, S.W.

    1978-01-01

    A method of separating deuterium, i.e., heavy hydrogen, from certain naturally occurring sources using tuned infrared lasers to selectively decompose specified classes of organic molecules (i.e., RX) into enriched molecular products containing deuterium atoms is described. The deuterium containing molecules are easily separated from the starting material by absorption, distillation or other simple chemical separation techniques and methods. After evaporation such deuterium containing molecules can be burned to form water with an enriched deuterium content or pyrolyzed to form hydrogen gas with an enriched deuterium content. The undecomposed molecules and the other reaction products which are depleted of their deuterium containing species can be catalytically treated, preferably using normal water, to restore the natural abundance of deuterium and such restored molecules can then be recycled

  6. Separation of the isotopes of boron by chemical exchange reactions

    Science.gov (United States)

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  7. Separation of the isotopes of boron by chemical exchange reactions

    Science.gov (United States)

    McCandless, Frank P.; Herbst, Ronald S.

    1995-01-01

    The isotopes of boron, .sup.10 B and .sup.11 B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF.sub.3 and a liquid BF.sub.3 . donor molecular addition complex formed between BF.sub.3 gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone.

  8. Isotope separation by laser deflection of an atomic beam

    International Nuclear Information System (INIS)

    Bernhardt, A.F.

    1975-02-01

    Separation of isotopes of barium was accomplished by laser deflection of a single isotopic component of an atomic beam. With a tunable narrow linewidth dye laser, small differences in absorption frequency of different barium isotopes on the 6s 2 1 S 0 --6s6p 1 P 1 5536A resonance were exploited to deflect atoms of a single isotopic component of an atomic beam through an angle large enough to physically separate them from the atomic beam. It is shown that the principal limitation on separation efficiency, the fraction of the desired isotopic component which can be separated, is determined by the branching ratio from the excited state into metastable states. The isotopic purity of the separated atoms was measured to be in excess of 0.9, limited only by instrumental uncertainty. To improve the efficiency of separation, a second dye laser was employed to excite atoms which had decayed to the 6s5d metastable state into the 6p5d 1 P 1 state from which they could decay to the ground state and continue to be deflected on the 5535A transition. With the addition of the second laser, separation efficiency of greater than 83 percent was achieved, limited by metastable state accumulation in the 5d 2 1 D 2 state which is accessible from the 6p5d 1 P 1 level. It was found that the decay rate from the 6p5d state into the 5d 2 metastable state was fully 2/3 the decay rate to the ground state, corresponding to an oscillator strength of 0.58. (U.S.)

  9. An isotope-enrichment unit and a process for isotope separation

    International Nuclear Information System (INIS)

    1981-01-01

    A process and equipment for isotope enrichment using gas-centrifuge cascades are described. The method is described as applied to the separation of uranium isotopes, using natural-abundance uranium hexafluoride as the gaseous-mixture feedstock. (U.K.)

  10. Study on the Effect of the Separating Unit Optimization on the Economy of Stable Isotope Separation

    Directory of Open Access Journals (Sweden)

    YANG Kun

    2015-01-01

    Full Text Available An economic criterion called as yearly net profit of single separating unit (YNPSSU was presented to evaluate the influence of structure optimization on the economy. Using YNPSSU as a criterion, economic analysis was carried out for the structure optimization of separating unit in the case of separating SiF4 to obtain the 28Si and 29Si isotope. YNPSSU was calculated and compared with that before optimization. The results showed that YNPSSU was increased by 12.3% by the structure optimization. Therefore, the structure optimization could increase the economy of the stable isotope separation effectively.

  11. Method of deuterium isotope separation and enrichment

    International Nuclear Information System (INIS)

    Benson, S.W.

    1979-01-01

    A method is described for separating and enriching deuterium containing molecules comprising the steps of: providing a source of organic molecules containing a normal abundance of deuterium atoms, the organic molecules having a structural formula RX, in which R is an organic radical selected from ethyl, isopropyl, t-butyl and 3-cyclopentenyl, and in which X is selected from F, Cl, Br and OH, and wherein R represents 3-cyclopentenyl, X may additionally represent H; exposing the molecules to the radiation of at least one pulsed infrared laser source which has been specifically tuned and focussed to selectively decompose RX molecules containing deuterium to form an enriched olefin specie containing deuterium, and HX; and separating the deuterium enriched olefin specie from the undecomposed deuterium depleted RX molecules and HX. (author)

  12. Use of an isotope separator at the INEL

    International Nuclear Information System (INIS)

    Anderl, R.A.

    1977-01-01

    An electromagnetic isotope separator with a retardation lens as a collector was used to prepare highly enriched samples of Nd-143, -144, -145, -146, -148, -150, Sm-147, -149; Eu-151, -152, -153, -154. The 50 μg to 75 μg samples, deposited on 1 mil nickel foil or 0.5 mil vanadium foil, are part of a sample set to be irradiated in EBR-II as part of an integral-capture cross-section measurement program at the INEL. The isotope separator and the apparatus used for the sample preparation are described

  13. Isotopic exchange reactions. Kinetics and efficiency of the reactors using them in isotopic separation

    International Nuclear Information System (INIS)

    Ravoire, Jean

    1979-11-01

    In the first part, some definitions and the thermodynamic and kinetic isotopic effect concepts are recalled. In the second part the kinetic laws are established, in homogeneous and heterogeneous medium (one component being on occasions present in both phases), without and with isotopic effects. Emphasis is put on application to separation of isotopes, the separation factor α being close to 1, one isotope being in large excess with respect to the other one. Isotopic transfer is then given by: J = Ka (x - y/α) where x and y are the (isotopic) mole fractions in both phases, Ka may be either the rate of exchange or a transfer coefficient which can be considered as the 'same in both ways' if α-1 is small compared to the relative error on the measure of Ka. The third part is devoted to isotopic exchange reactors. Relationships between their efficiency and kinetics are established in some simple cases: plug cocurrent flow reactors, perfectly mixed reactors, countercurrent reactors without axial mixing. We treat only cases where α and the up flow to down flow ratio is close to 1 so that Murphee efficiency approximately overall efficiency (discrete stage contactors). HTU (phase 1) approximately HTU (phase 2) approximately HETP (columns). In a fourth part, an expression of the isotopic separative power of reactors is proposed and discussed [fr

  14. High-efficiency technology for lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi; Terai, Takayuki

    2011-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. New lithium isotope separation technique using ionic-liquid impregnated organic membranes (Ionic-Liquid-i-OMs) have been developed. Lithium ions are able to move by electrodialysis through certain Ionic-Liquid-i-OMs between the cathode and the anode in lithium solutions. In this report, the effects of protection cover and membrane thickness on the durability of membrane and the efficiency of isotope separation were evaluated. In order to improve the durability of the Ionic-Liquid-i-OM, we developed highly-durable Ionic-Liquid-i-OM. Both surfaces of the Ionic-Liquid-i-OM were covered by a nafion 324 overcoat or a cation exchange membrane (SELEMION TM CMD) to prevent the outflow of the ionic liquid. It was observed that the durability of the Ionic-Liquid-i-OM was improved by a nafion 324 overcoat. On the other hand, the organic membrane selected was 1, 2 or 3 mm highly-porous Teflon film, in order to efficiently impregnate the ionic liquid. The 6 Li isotope separation factor by electrodialysis using highly-porous Teflon film of 3 mm thickness was larger than using that of 1 or 2 mm thickness.

  15. A chemical exchange system for isotopic feed to a nitrogen and oxygen isotope separation plant

    International Nuclear Information System (INIS)

    Mills, T.R.; Garcia, M.G.; Vandervoort, R.C.; McInteer, B.B.

    1989-01-01

    A process has been developed to provide isotopic feed to a nitric oxide isotope distillation plant. Central to the process is the isotopic chemical exchange of NO and nitric acid in countercurrent flows in a 3-in. diameter packed column. An isotopically depleted stream of NO is reenriched to natural isotopic abundances by the exchange and is recycled as feed back to the distillation columns. Makeup NO is generated in another column from sulfur dioxide and nitric acid. Multistage gas purifiers reduce condensible impurities in the nitric oxide below 10 ppm. The process operates unattended at flow rates of 0.5 to 2 mol/min. The new NO recycle-enrichment and generation processes have successfully provided the feedstock for the NO isotope separation columns for over 6 years. 19 refs., 2 figs

  16. Simulation of startup period of hydrogen isotope separation distillation column

    International Nuclear Information System (INIS)

    Sazonov, A.B.; Kagramanov, Z.G.; Magomedbekov, Eh.P.

    2003-01-01

    Kinetic procedure for the mathematical simulation of start-up regime of rectification columns for molecular hydrogen isotope separation was developed. Nonstationary state (start-up period) of separating column for rectification of multi-component mixture was calculated. Full information on equilibrium and kinetic physicochemical properties of components in separating mixtures was used for the calculations. Profile of concentration of components by height of column in task moment of time was calculated by means of differential equilibriums of nonstationary mass transfer. Calculated results of nonstationary state of column by the 2 m height, 30 mm diameter during separation of the mixture: 5 % protium, 70 % deuterium, 25 % tritium were illustrated [ru

  17. Laser isotope separation and proliferation risks

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, Werner

    2015-02-15

    There is an ongoing discussion on the proliferation danger of laser enrichment of uranium by the Silex process. Here this risk is compared to that of other processes, in particular centrifuges. The two methods need a similar size of the plant for a comparable production rate (in separative work units per year) and the time and costs for their construction do not differ much. This conclusion from published material does not depend on technical details of Silex. But enough details are known to allow for additional conclusions: Whereas the selectivity (enrichment factor) in the Silex process seems higher, the energy consumption is probably larger. Due to the laser's repetition rate being insufficient for the molecular beam, the method has probably a low depletion factor; this is a serious disadvantage for cascading for high enrichment such as for bomb uranium, although it may be acceptable for low enrichment without cascading for reactor purposes.

  18. Bibliographical study on photochemical separation of uranium isotopes

    International Nuclear Information System (INIS)

    Bougon, Roland

    1975-01-01

    The objective of this report is to propose an overview of knowledge and current works on isotopic separation of uranium by means of selective excitation where this excitation is obtained by a light source with a wave length corresponding to a selective or preferential absorption by a molecule or by the atom itself of one of the isotopes. After a brief overview of principles and requirements of isotopic separation by selective excitation, the author reviews compounds which can be used for this process. These compounds are mainly considered in terms of spectroscopy, and the study focuses on the most volatile among them, the uranium hexafluoride, its spectra, and possible processes for extraction. Some much less volatile uranium compounds are also mentioned with, when available, their spectroscopic properties. The uranium vapour excitation process is described, and some orientations for further researches are proposed [fr

  19. Separation of hydrogen isotopes for tritium waste removal

    International Nuclear Information System (INIS)

    Wilkes, W.R.

    1975-01-01

    A distillation cascade for separating hydrogen isotopes was simulated by means of a multicomponent, multistage computer code. A hypothetical test mixture containing equal atomic fractions of protium, deuterium and tritium, equilibrated to high temperature molecular concentrations was used as feed. The results show that a two-column cascade can be used to separate the protium from the tritium. Deuterium appears both in the protium and the tritium product streams. (auth)

  20. Control strategies for laser separation of carbon isotopes

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 114; Issue 6. Control strategies for laser separation of carbon isotopes. V Parthasarathy A K Nayak S K Sarkar ... The last decade has seen considerable efforts in scaling up of the process for light elements like carbon, oxygen and silicon. These efforts aim at ways to ...

  1. RECTIFIED ABSORPTION METHOD FOR THE SEPARATION OF HYDROGEN ISOTOPES

    Science.gov (United States)

    Hunt, C.D.; Hanson, D.N.

    1961-10-17

    A method is described for separating and recovering heavy hydrogen isotopes from gaseous mixtures by multiple stage cyclic absorption and rectification from an approximate solvent. In particular, it is useful for recovering such isoteoes from ammonia feedstock streams containing nitrogen solvent. Modifications of the process ranging from isobaric to isothermal are provided. Certain impurities are tolerated, giving advantages over conventional fractional distillation processes. (AEC)

  2. Control strategies for laser separation of carbon isotopes

    Indian Academy of Sciences (India)

    Laser isotope separation (LIS) by infrared laser chemistry of polyatomic molecules has come a long way since its discovery. The last decade has seen considerable efforts in scaling up of the process for light elements like carbon, oxygen and silicon. These efforts aim at ways to improve both the enrichment factor and the ...

  3. Modelling of multifrequency IRMPD for laser isotope separation

    Indian Academy of Sciences (India)

    Unknown

    dissociation probability is expressed by a functional form based on the product of power law terms for individual fluences of irradiation frequencies. Then this model is applied to our experimental results on multifrequency laser isotope separation of tritium. 2. Experimental. We present briefly the experimental arrangement as ...

  4. Modelling of multifrequency IRMPD for laser isotope separation

    Indian Academy of Sciences (India)

    Unknown

    This model was exploited in analysing our MPD results ... separation method for 235U, the fissile isotope of uranium needed to fuel light water ... for analysis. The radio-GC consisted of a commercial GC (Shimadzu GC-R1A) equipped with thermal conductivity detector (TCD) and an indigenously built proportional counter.

  5. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    International Nuclear Information System (INIS)

    Sugiyama, T.; Sugura, K.; Enokida, Y.; Yamamoto, I.

    2015-01-01

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one and established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)

  6. Enrichment and separation of isotopes utilizing a novel magnetic isotope effect. Final report

    International Nuclear Information System (INIS)

    Chung, C.J.; Turro, N.J.; Ruderman, W.

    1983-04-01

    Results are presented of a study undertaken to find a suitable isotope separation process for the 13 C- 12 C system that could be adapted to a multi-stage process for the commercial enrichment and separation of isotopes. Experiments reveal that solid porous silica provides an appropriate medium for the efficient enrichment of 13 C via the photolysis of dibenzyl ketones (and related ketones). It is concluded that a system can be designed for the practical separation of 13 C from 12 C based on the photolysis in a magnetic field of ketones absorbed on solid porous silica

  7. Separation of boron isotopes by aminated polystyrene-divinylbenzene resins

    International Nuclear Information System (INIS)

    Choi, Sei Young; Baek, Joong Hyun; Kim, Hee Lake

    1991-01-01

    Separation of boron isotopes was carried out by using nonporous aminated polystyrene-divinylbenzene as ion exchangers. After 0.1 M boric acid containing 10% sucrose solution was passed through the column, the boric acid band formed on the column was eluted with pure water of 50% methyl alchol water solution. The contents of boric acid of the fraction were determined with neutralization titrations. The relative mass of boron isotopes of the fractions was analyzed on a mass spectrometer. From these results, we found that separation factors for porous aminated polystyrene-divinylbenzene ion exchanger is larger than value of non porous ion exchanger, and then separation factors for 50%-methanol as eluting agent is larger than the value of pure water. (Author)

  8. Multicomponent isotope separation in matched abundance ratio cascades composed of stages with large separation factors

    International Nuclear Information System (INIS)

    Von Halle, E.

    1987-06-01

    The concept of the matched abundance ratio cascade and the system of equations for performing multicomponent productivity calculations upon them has proven extremely useful for analyzing the behavior of gaseous diffusion plants in which the stage separation factors are very nearly equal to unity. Recent interest in the gas centrifuge process, in which the separation factor of a single centrifuge can be relatively large, makes desirable the extension of the theory of the matched abundance ratio cascade to cascades composed of stages with large separation factors. Equations permit the calculation of the productivity for simple cascades composed of stages with large separation factors. The concentration gradient of each of the isotopic species present can be calculated and the cascade description can be determined. An illustrative example dealing with the separation of the isotopes of tungsten in a cascade composed of gas centrifuges is included

  9. Isotope separation factor and isotopic exchange rate between hydrogen and deuterium of palladium

    International Nuclear Information System (INIS)

    Fukada, S.; Fuchinoue, K.; Nishikawa, M.

    1995-01-01

    An isotopic exchange experiment was performed using a Pd particle bed for a fundamental study of hydrogen isotope separation. The isotope separation factor and the rate constant of the isotopic exchange reaction between gaseous deuterium and hydride were determined from fitting numerical calculations to experimental effluent curves of the Pd bed. The separation factors under the condition of a dilute deuterium concentration were correlated with the relation of α H-D = exp(-0.121 + 228/T) and were independent of the total hydrogen pressure. The rate-determining step of the overall isotopic exchange reaction at T > 300 K was diffusion in the pore of Pd particles. The step at T < 300 K was estimated to be diffusion in the β-phase Pd, although there is a little possibility of isotopic exchange reaction based on Bonhoeffer-Farcus mechanism. The height equivalent to a theoretical plate, HETP, was correlated as a function of the interstitial fluid velocity in the bed. (orig.)

  10. Demonstration of magnetically activated and guided isotope separation

    Science.gov (United States)

    Mazur, Thomas R.; Klappauf, Bruce; Raizen, Mark G.

    2014-08-01

    Enriched isotopes are widely used in medicine, basic science and energy production, and the need will only grow in the future. The main method for enriching stable isotopes today, the calutron, dates back over eighty years and has an uncertain future, creating an urgent need, especially in nuclear medicine. We report here the experimental realization of a general and efficient method for isotope separation that presents a viable alternative to the calutron. Combining optical pumping and a unique magnet geometry, we observe substantial depletion of Li-6 throughput in a lithium atomic beam produced by an evaporation source over a range of flux. These results demonstrate the viability of our method to yield large degrees of enrichment in a manner that is amenable to industrial scale-up and the production of commercially relevant quantities.

  11. The separation nozzle process for uranium isotope enrichment

    International Nuclear Information System (INIS)

    Becker, E.W.

    1977-01-01

    The paper covers the most important steps in the technological development and the future prospects of the separation nozzle process. In this process uranium isotope separation is brought about by the mass dependence of the centrifugal forces in a curved flow of a UF 6 /H 2 mixture. Due to the large excess in hydrogen, the high ratio of UF 6 flow velocity to thermal velocity required for an effective isotope separation is obtained at relatively low expansion ratios and, accordingly, with relatively low gas-dynamic losses. As the optimum Reynolds number of the curved jet is comparatively low, and as a high absolute pressure is essential for economic reasons, the characteristic dimensions of the nozzle systems are made as small as possible. For commercial application in the near future, systems involving mechanical jet deflection have been developed. Promising results were, however, also obtained with separation nozzle systems generating a streamline curvature by the interaction of opposed jets. Most of the development work has been done at the Nuclear Research Centre, Karlsruhe. Since 1970 the STEAG company (FRG) has been involved in the commercial implementation of the process. Two industrial-scale separative stages were tested successfully. This work constitutes the basis of planning of a separation nozzle demonstration plant to be built in Brazil. (author)

  12. Alternative applications of atomic vapor laser isotope separation technology

    International Nuclear Information System (INIS)

    1991-01-01

    This report was commissioned by the Secretary of Energy. It summarizes the main features of atomic vapor laser isotope separation (AVLIS) technology and subsystems; evaluates applications, beyond those of uranium enrichment, suggested by Lawrence Livermore National Laboratory (LLNL) and a wide range of US industries and individuals; recommends further work on several applications; recommends the provision of facilities for evaluating potential new applications; and recommends the full involvement of end users from the very beginning in the development of any application. Specifically excluded from this report is an evaluation of the main AVLIS missions, uranium enrichment and purification of plutonium for weapons. In evaluating many of the alternative applications, it became clear that industry should play a greater and earlier role in the definition and development of technologies with the Department of Energy (DOE) if the nation is to derive significant commercial benefit. Applications of AVLIS to the separation of alternate (nonuranium) isotopes were considered. The use of 157 Gd as burnable poison in the nuclear fuel cycle, the use 12 C for isotopically pure diamond, and the use of plutonium isotopes for several nonweapons applications are examples of commercially useful products that might be produced at a cost less than the product value. Separations of other isotopes such as the elemental constituents of semiconductors were suggested; it is recommended that proposed applications be tested by using existing supplies to establish their value before more efficient enrichment processes are developed. Some applications are clear, but their production costs are too high, the window of opportunity in the market has passed, or societal constraints (e.g., on reprocessing of reactor fuel) discourage implementation

  13. Development of Halide and Oxy-Halides for Isotopic Separations

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Leigh R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johnson, Aaron T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pfeiffer, Jana [Idaho National Lab. (INL), Idaho Falls, ID (United States); Finck, Martha R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  14. Aerodynamic effects in isotope separation by gaseous diffusion

    International Nuclear Information System (INIS)

    Bert, L.A.; Prosperetti, A.; Fiocchi, R.

    1978-01-01

    The turbulent flow of an isotopic mixture in a porous-walled pipe is considered in the presence of suction through the wall. A simple model is formulated for the evaluation of aerodynamic effects on the separation efficiency. The predictions of the model are found to compare very favourably with experiment. In the limit of small suction velocities, results obtained by other investigators for diffusion in a turbulent steam are recovered. (author)

  15. Seismic design criteria for special isotope separation plant structures

    International Nuclear Information System (INIS)

    Wrona, M.W.; Wuthrich, S.J.; Rose, D.L.; Starkey, J.

    1989-01-01

    This paper describes the seismic criteria for the design of the Special Isotope Separation (SIS) production plant. These criteria are derived from the applicable Department of Energy (DOE) orders, references and proposed standards. The SIS processing plant consistent of Load Center Building (LCB), Dye Pump Building (DPB), Laser Support Building (LSB) and Plutonium Processing Building (PPB). The facility-use category for each of the SIS building structures is identified and the applicable seismic design criteria and parameters are selected

  16. An overview of copper-laser development for isotope separation

    International Nuclear Information System (INIS)

    Warner, B.E.

    1987-01-01

    We have developed a copper-laser pumped dye-laser system that addresses all of the requirements for atomic vapor laser isotope separation. The requirement for high average power for the laser system has led to the development of copper-laser chains with injection-locked oscillators and multihundred-watt amplifiers. By continuously operating the Laser Demonstration Facility, we gain valuable data for further upgrade and optimization

  17. Uranium isotope separation from 1941 to the present

    Energy Technology Data Exchange (ETDEWEB)

    Maier-Komor, Peter, E-mail: Peter@Maier-Komor.d [Retired from Physik-Department E12, Technische Universitaet Muenchen, D-85747 Garching (Germany)

    2010-02-11

    Uranium isotope separation was the key development for the preparation of highly enriched isotopes in general and thus became the seed for target development and preparation for nuclear and applied physics. In 1941 (year of birth of the author) large-scale development for uranium isotope separation was started after the US authorities were warned that NAZI Germany had started its program for enrichment of uranium and might have confiscated all uranium and uranium mines in their sphere of influence. Within the framework of the Manhattan Projects the first electromagnetic mass separators (Calutrons) were installed and further developed for high throughput. The military aim of the Navy Department was to develop nuclear propulsion for submarines with practically unlimited range. Parallel to this the army worked on the development of the atomic bomb. Also in 1941 plutonium was discovered and the production of {sup 239}Pu was included into the atomic bomb program. {sup 235}U enrichment starting with natural uranium was performed in two steps with different techniques of mass separation in Oak Ridge. The first step was gas diffusion which was limited to low enrichment. The second step for high enrichment was performed with electromagnetic mass spectrometers (Calutrons). The theory for the much more effective enrichment with centrifugal separation was developed also during the Second World War, but technical problems e.g. development of high speed ball and needle bearings could not be solved before the end of the war. Spying accelerated the development of uranium separation in the Soviet Union, but also later in China, India, Pakistan, Iran and Iraq. In this paper, the physical and chemical procedures are outlined which lead to the success of the project. Some security aspects and Non-Proliferation measures are discussed.

  18. Uranium isotope separation from 1941 to the present

    International Nuclear Information System (INIS)

    Maier-Komor, Peter

    2010-01-01

    Uranium isotope separation was the key development for the preparation of highly enriched isotopes in general and thus became the seed for target development and preparation for nuclear and applied physics. In 1941 (year of birth of the author) large-scale development for uranium isotope separation was started after the US authorities were warned that NAZI Germany had started its program for enrichment of uranium and might have confiscated all uranium and uranium mines in their sphere of influence. Within the framework of the Manhattan Projects the first electromagnetic mass separators (Calutrons) were installed and further developed for high throughput. The military aim of the Navy Department was to develop nuclear propulsion for submarines with practically unlimited range. Parallel to this the army worked on the development of the atomic bomb. Also in 1941 plutonium was discovered and the production of 239 Pu was included into the atomic bomb program. 235 U enrichment starting with natural uranium was performed in two steps with different techniques of mass separation in Oak Ridge. The first step was gas diffusion which was limited to low enrichment. The second step for high enrichment was performed with electromagnetic mass spectrometers (Calutrons). The theory for the much more effective enrichment with centrifugal separation was developed also during the Second World War, but technical problems e.g. development of high speed ball and needle bearings could not be solved before the end of the war. Spying accelerated the development of uranium separation in the Soviet Union, but also later in China, India, Pakistan, Iran and Iraq. In this paper, the physical and chemical procedures are outlined which lead to the success of the project. Some security aspects and Non-Proliferation measures are discussed.

  19. Uranium isotope separation from 1941 to the present

    Science.gov (United States)

    Maier-Komor, Peter

    2010-02-01

    Uranium isotope separation was the key development for the preparation of highly enriched isotopes in general and thus became the seed for target development and preparation for nuclear and applied physics. In 1941 (year of birth of the author) large-scale development for uranium isotope separation was started after the US authorities were warned that NAZI Germany had started its program for enrichment of uranium and might have confiscated all uranium and uranium mines in their sphere of influence. Within the framework of the Manhattan Projects the first electromagnetic mass separators (Calutrons) were installed and further developed for high throughput. The military aim of the Navy Department was to develop nuclear propulsion for submarines with practically unlimited range. Parallel to this the army worked on the development of the atomic bomb. Also in 1941 plutonium was discovered and the production of 239Pu was included into the atomic bomb program. 235U enrichment starting with natural uranium was performed in two steps with different techniques of mass separation in Oak Ridge. The first step was gas diffusion which was limited to low enrichment. The second step for high enrichment was performed with electromagnetic mass spectrometers (Calutrons). The theory for the much more effective enrichment with centrifugal separation was developed also during the Second World War, but technical problems e.g. development of high speed ball and needle bearings could not be solved before the end of the war. Spying accelerated the development of uranium separation in the Soviet Union, but also later in China, India, Pakistan, Iran and Iraq. In this paper, the physical and chemical procedures are outlined which lead to the success of the project. Some security aspects and Non-Proliferation measures are discussed.

  20. Method of deuterium isotope separation using ethylene and ethylene dichloride

    International Nuclear Information System (INIS)

    Benson, S.W.

    1982-01-01

    Compounds enriched in deuterium may be obtained from ethylene, vinyl chloride, 1,2-dichloroethane, or propylene by laser isotope separation. Normal molecules of these organic compounds are exposed to infrared laser radiation of a suitable wavelength. Substantially all of the deuterium-containing molecules exposed to the laser can be selectively dissociated and the deuterium-containing products separated from the starting material and other reaction products. The deuterium-containing molecules can be burned to form water with an enriched deuterium content, or pyrolized to form hydrogen gas enriched in deuterium

  1. Lacan - a global simulation code for laser isotope separation

    International Nuclear Information System (INIS)

    Goldstein, S.; Quaegebeur, J.P.

    1990-01-01

    Dimensioning a Laser Isotope Separation (LIS) plant means calculating the values of a large number of parameters in order to optimize some objective function. In such algorithms the calculation of the objective function must be repeated thousands of times, therefore each elementary calculation must consume little time. LACAN uses simple models to describe the elementary physical processes: evaporation, vapour expansion, interaction between photons and atoms, ion extraction etc ... These simple models are derived from refined modeling codes or are empirical. As an example the optimization of the separative work of an uranium facility is discussed

  2. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    OpenAIRE

    Yuanyuan Qu; Feng Li; Hongcai Zhou; Mingwen Zhao

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculati...

  3. Isotope separation of 22Na and 24Na with using light induced drift effect

    International Nuclear Information System (INIS)

    Hradecny, C.; Tethal, T.; Ermolaev, I.M.; Zemlyanoj, S.G.; Zuzaan, P.

    1993-01-01

    The LIDIS (Light Drift Isotope Separation) separator without a gas flow is discussed. It is shown, that atomization degree of the separated isotopes limited real separation coefficient. The better buffer gas purification allowed to increase the experimental separation factor of 22 Na and 24 Na isotopes up to 25. The new experimental set up allow to increase the separation efficiency up to 50%. 12 refs.; 5 figs

  4. Hydrogen isotope separation experience at the Savannah River Site

    International Nuclear Information System (INIS)

    Lee, M.W.

    1993-01-01

    Savannah River Site (SRS) is a sole producer of tritium for US Weapons Program. SRS has built Facilities, developed the tritium handling processes, and operated safely for the last forty years. Tritium is extracted from the irradiated reactor target, purified, mixed with deuterium, and loaded to the booster gas bottle in the weapon system for limited lifetime. Tritium is recovered from the retired bottle and recycled. Newly produced tritium is branded into the recycled tritium. One of the key process is the hydrogen isotope separation that tritium is separated from deuterium and protium. Several processes have been used for the hydrogen isotope separation at SRS: Thermal Diffusion Column (TD), Batch Cryogenic Still (CS), and Batch Chromatography called Fractional Sorption (FS). TD and CS requires straight vertical columns. The overall system separation factor depends on the length of the column. These are three story building high and difficult to put in glove box. FS is a batch process and slow operation. An improved continuous chromatographic process called Thermal Cycling Absorption Process (TCAP) has been developed. It is small enough to be about to put in a glove box yet high capacity comparable to CS. The SRS tritium purification processes can be directly applicable to the Fusion Fuel Cycle System of the fusion reactor

  5. Over all separation factors for stable isotopes by gas centrifuge

    International Nuclear Information System (INIS)

    Chuntong Ying; Nie Yuguang; Zeng Shi; Shang Xiuyong; Wood, Houston G.

    1999-01-01

    The separation factor for the elements with molar wight differences, γ 0 , is an important characteristic parameter for separation of varied isotopes. Besides the dependence on construction parameters of the gas centrifuge it depends on many variables. Some of them are operation conditions, such as feeding flow rate F, pressure at wall p w , temperature T 0 and distribution temperature on the wall and others. Separation factor γ 0 depends on physical properties, such as molar weight M, viscosity μ, product of ρD, where ρ is density of working media and D is its diffusion coefficient. It was taken four examples: UF 6 , WF 6 , OsO 4 and Xe [ru

  6. Atomic collisions related to atomic laser isotope separation

    International Nuclear Information System (INIS)

    Shibata, Takemasa

    1995-01-01

    Atomic collisions are important in various places in atomic vapor laser isotope separation (AVLIS). At a vaporization zone, many atomic collisions due to high density have influence on the atomic beam characteristics such as velocity distribution and metastable states' populations at a separation zone. In the separation zone, a symmetric charge transfer between the produced ions and the neutral atoms may degrade selectivity. We have measured atomic excitation temperatures of atomic beams and symmetric charge transfer cross sections for gadolinium and neodymium. Gadolinium and neodymium are both lanthanides. Nevertheless, results for gadolinium and neodymium are very different. The gadolinium atom has one 5d electron and neodymium atom has no 5d electron. It is considered that the differences are due to existence of 5d electron. (author)

  7. Mound Laboratory activities in chemical and physical research: July--December 1976. [Isotope separation; metal hydride research, separation chemistry and separation research

    Energy Technology Data Exchange (ETDEWEB)

    1977-05-04

    The status of the following programs is reported: isotope separation of carbon, argon, helium, krypton, neon, xenon, oxygen, and sulfur; metal hydride research; separation chemistry; and separation research. (LK)

  8. Isotope separation factor and kinetic isotope effect of the hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Krishtalik, L.I.

    2001-01-01

    In the framework of junified approach the experimentally observed dependences of kinetic isotopic effects (KIE) of the reaction of hydrogen electrolytic evolution on the value of potential on electrode were explained. It is shown that hydrogen isotope separation factor depends on KIE for two stages of the reaction, i.e. discharge on the electrode and electrochemical desorption, moreover, decrease in KIE with potential for the desorption stage overbalances its growth for the discharge stage. The reason for KIE decrease is non-activation character of the process, therefore, there is no dependence on potential of relative contribution of the product vibration-excited states [ru

  9. The Laboratory for Laser Energetics’ Hydrogen Isotope Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Shmayda, W.T., E-mail: wshm@lle.rochester.edu; Wittman, M.D.; Earley, R.F.; Reid, J.L.; Redden, N.P.

    2016-11-01

    The University of Rochester’s Laboratory for Laser Energetics has commissioned a hydrogen Isotope Separation System (ISS). The ISS uses two columns—palladium on kieselguhr and molecular sieve—that act in a complementary manner to separate the hydrogen species by mass. The 4-sL per day throughput system is compact and has no moving parts. The columns and the attendant gas storage and handling subsystems are housed in a 0.8 -m{sup 3} glovebox. The glovebox uses a helium cover gas that is continuously processed to extract oxygen and water vapor that permeates through the glovebox gloves and any tritium that is released while attaching or detaching vessels to add feedstock to or drawing product from the system. The isotopic separation process is automated and does not require manual intervention. A total of 315 TBq of tritium was extracted from 23.6 sL of hydrogen with tritium purities reaching 99.5%. Deuterium was the sole residual component in the processed gas. Raffinate contained 0.2 TBq of activity was captured for reprocessing. The total emission from the system to the environment was 0.4 GBq over three weeks.

  10. High-Voltage Power Supply System for Laser Isotope Separation

    Energy Technology Data Exchange (ETDEWEB)

    Ketaily, E.C.; Buckner, R.P.; Uhrik, R.L.

    1979-06-26

    This report presents several concepts for Laser High-Voltage Power Supply (HVPS) Systems for a Laser Isotope Separation facility. Selection of equipments and their arrangement into operational systems is based on proven designs and on application concepts now being developed. This report has identified a number of alternative system arrangements and has provided preliminary cost estimates for each. The report includes a recommendation for follow-on studies that will further define the optimum Laser HVPS Systems. Brief descriptions are given of Modulator/Regulator circuit trade-offs, system control interfaces, and their impact on costs.

  11. Separation of argon isotopes by porous membrane method, (1)

    International Nuclear Information System (INIS)

    Naruse, Yuji; Yoshida, Hiroshi; Fujine, Sachio; Matsuda, Yuji; Maruyama, Yoichiro

    1978-09-01

    In the research program of uranium enrichment by gaseous diffusion process at JAERI, an engineering-scale cascade in argon isotopes separation experiment has been constructed to study the cascade performance under different conditions assuming the practical plant. This report describes design phylosophy and specifications of the facility. Results of test operation of the whole system revealed the following: (1) Cascade components, vacuum systems, sampling system and auxiliary systems are operable under experimental conditions. (2) The cascade system is excellent in ease of operation and controllability. (3) Leakage of the cascade is below the level of 5 x 10 -5 atm-cm 3 (He)/sec. (author)

  12. Method for enriching and separating heavy hydrogen isotopes from substance streams containing such isotopes by means of isotope exchange

    International Nuclear Information System (INIS)

    Knochel, A.; Eggers, I.; Klatte, B.; Wilken, R. D.

    1985-01-01

    A process for enriching and separating heavy hydrogen isotopes having a heavy hydrogen cation (deuterium and/or tritium) from substance streams containing them, wherein the respectively present hydrogen isotopes are exchanged in chemical equilibria. A protic, acid solution containing deuterium and/or tritium is brought into contact with a value material from the group of open-chained polyethers or aminopolyethers, macro-monocyclic or macro-polycyclic polyethers, macro-monocyclic or macro-polycyclic amino polyethers, and mixtures of these values, in their free or proton salt form to form a reaction product of the heavy hydrogen cation with the value or value salt and bring about enrichment of deuterium and/or tritium in the reaction product. The reaction product containing the value or value salt is separated from the solution. The separated reaction product is treated to release the hydrogen isotope(s) to be enriched in the form of deuterium oxide (HDO) and/or tritium oxide (HTO) by regenerating the value or its salt, respectively. The regenerated value is returned for reuse

  13. Biomedical research applications of electromagnetically separated enriched stable isotopes

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1982-01-01

    The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosotope production, labeled compounds, and potential radiopharmaceuticals; (2) nutrition, food science, and pharmacology; (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and Moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and non-radioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Priorities and summaries are based on statements in the references and from answers to a survey conducted in the fall of 1981. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for 26 Mg, 43 Ca, 70 Zn, 76 Se, 78 Se, 102 Pd, 111 Cd, 113 Cd, and 190 Os. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments

  14. The Separation and Isotopic Analysis Seawater Cu and Zn

    Science.gov (United States)

    Bermin, J.; Vance, D.; Archer, C.; Statham, P. J.

    2004-12-01

    Many transition metals are key micronutrients and their concentration profiles in the oceans often show nutrient-like patterns, with strong surface depletions and deep enrichments1. In addition, their biological usage has been shown to induce isotopic fractionations2 so that the precise and accurate analysis of their isotope systems in seawater has potential applications in tracing metal micronutrient usage in the past ocean. The analytical challenges involved in realising this goal are, however, considerable, given the low concentrations of transition metals in seawater and the requirement to extract small amounts from large samples at low blank and with no artificial isotopic fractionation. Here we present a method for the separation an analysis of Cu and Zn isotopes that is applicable to 0.1-5 L samples of seawater. Trace metals were concentrated from seawater using a Chelex-100 ion-exchange column3 and further purified and separated from each other using a small anion column4,5. All isotopic analyses were performed on a ThermoFinnigan Neptune instrument at the University of Bristol. The main requirements for precise and accurate isotopic analyses are a low contribution from analytical blank and the robust correction for analytical mass discrimination. Our blanks allow the analysis of seawater samples of 50-250 mL for Cu, samples of about 100 mL for Zn in the deep oceans and for Zn-depleted open ocean surface water samples of around 5L. The correction for mass discrimination is most readily considered as two components - that occurring during the chemical separation procedure in response to non-100% yields and that occurring in the mass spectrometer. Correction of all mass discrimination throughout the procedure is most robustly done for Zn and Fe using a double-spike that is added prior to any chemical treatment. This approach has been tested using standard-doped seawater samples that had previously been stripped of their metal contents using the Chelex column

  15. Next-generation TCAP hydrogen isotope separation process

    International Nuclear Information System (INIS)

    Heung, L. K.; Sessions, H. T.; Poore, A. S.; Jacobs, W. D.; Williams, C. S.

    2008-01-01

    A thermal cycling absorption process (TCAP) for hydrogen isotope separation has been in operation at Savannah River Site since 1994. The process uses a hot/cold nitrogen system to cycle the temperature of the separation column. The hot/cold nitrogen system requires the use of large compressors, heat exchanges, valves and piping that is bulky and maintenance intensive. A new compact thermal cycling (CTC) design has recently been developed. This new design uses liquid nitrogen tubes and electric heaters to heat and cool the column directly so that the bulky hot/cold nitrogen system can be eliminated. This CTC design is simple and is easy to implement, and will be the next generation TCAP system at SRS. A twelve-meter column has been fabricated and installed in the laboratory to demonstrate its performance. The design of the system and its test results to date is discussed. (authors)

  16. Charge exchange effect on laser isotope separation of atomic uranium

    International Nuclear Information System (INIS)

    Niki, Hideaki; Izawa, Yasukazu; Otani, Hiroyasu; Yamanaka, Chiyoe

    1982-01-01

    Uranium isotope separating experiment was performed using the two-step photoionization technique with dye laser and nitrogen laser by heating uranium metal with electron beam and producing atomic beam using generated vapour. The experimental results are described after explaining the two-step photoionization by laser, experimental apparatus, the selection of exciting wavelength and others. Enrichment factor depends largely on the spectrum purity of dye laser which is the exciting source. A large enrichment factor of 48.3 times was obtained for spectrum width 0.03A. To put the uranium isotope separation with laser into practice, the increase of uranium atomic density is considered to be necessary for improving the yield. Experimental investigation was first carried out on the charge exchange effect that seems most likely to affect the decrease of enrichment factor, and the charge exchange cross-section was determined. The charge exchange cross-section depends on the relative kinetic energy between ions and atoms. The experimental result showed that the cross-section was about 5 x 10 -13 cm 2 at 1 eV and 10 -13 cm 2 at 90 eV. These values are roughly ten times as great as those calculated in Lawrence Livermore Laboratory, and it is expected that they become the greatest factor for giving the upper limit of uranium atomic density in a process of practical application. (Wakatsuki, Y.)

  17. Isotopic separation by centrifugation. Rotating plasma; Separacion Isotopic por Centrifugacion Plasma Rotante

    Energy Technology Data Exchange (ETDEWEB)

    Perello, M.; Vigon, M. A.

    1972-07-01

    The motion of a gas simultaneously submitted to an electric discharge and magnetic field has been studied in order to analyze the possibility of producing isotopes separation by rotation of a plasma. Some experimental results obtained under different discharge conditions are also given. Differences of pressure up to 15 mm oil between both electrodes has been attained. No definite conclusion on separation factors could be reached because of the low reproducibility of results, probably due to the short duration of the discharge with a new chamber designed to support stronger thermal shocks more reliable data can be expected. (Author) 16 refs.

  18. INSTRUMENTS AND METHODS OF INVESTIGATION: Plasma isotope separation based on ion cyclotron resonance

    Science.gov (United States)

    Dolgolenko, Dmitrii A.; Muromkin, Yurii A.

    2009-04-01

    Experiments that have been conducted in the USA, France, and Russia to investigate isotopically selective ion cyclotron resonance (ICR) as a tool for plasma isotope separation are analyzed. Because this method runs into difficulties at low values of the relative isotope mass difference ΔM/M, for some elements (for gadolinium, as an example) isotope separation still remains a problem. There are ways to solve it, however, as experimental results and theoretical calculations suggest.

  19. Electromagnetic Isotope Separator: Magnetic Measurement: Results; Le separateur electromagnetique d'isotopes: mesures magnetiques: resultats

    Energy Technology Data Exchange (ETDEWEB)

    Boge, M.; Baud, A. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    The electromagnetic isotope separator of the University of Grenoble can produce isotope with a great purity. It has two magnets with non homogeneous field. The magnetic fields have been corrected with shims in order to obtain an accuracy of {+-}10{sup -4} in the useful region. These shims have been determined experimentally by measurements. The great enrichment factors obtained, prove the quality of this apparatus. (author) [French] Le separateur electromagnetique d'isotopes de la Faculte des Sciences de Grenoble a prouve qu'il etait capable de produire des isotopes de grande purete. Ceci a ete rendu possible en grande partie grace a la qualite des deux electro-aimants identiques a champ inhomogene places en cascade. Les champs magnetiques ont ete corriges par des shims afin d'obtenir dans la zone utile de l'entrefer une precision de champ de l'ordre de {+-}10{sup -4}. Ces shims ont ete determines experimentalement par des mesures magnetiques tres precises. Les coefficients d'enrichissement eleves obtenus font de cet appareil un precieux outil de travail. (auteur)

  20. Nuclear proliferation using laser isotope separation - Verification options

    International Nuclear Information System (INIS)

    Erickson, Stanley A.

    2001-01-01

    Full text: This paper discusses the use of laser isotope separation techniques for the purpose of nuclear proliferation by a Non-Nuclear Weapons State (NNWS) that is a signatory of the Non- Proliferation Treaty (NPT) and is subject to inspections by the IAEA. It includes an analysis of the feasibility of the technique by a NNWS, what conditions are necessary for success, what would be required for either the use of the technique as a covert enrichment method or its use as a non-declared adjunct to a declared enrichment facility, and what signs might be available for the detection of such activity. The Atomic Vapor Laser Isotope Separation (AVLIS) technology, developed by LLNL from 1973 through 1999, is used as a concrete example to allow more determination of the questions of feasibility, requirements, and signatures, as this technology has been further developed than others, and has been documented extensively. The question of feasibility of the technique for the enrichment of significant quantities of uranium or plutonium to produce weapons-grade materials is investigated by decomposing the development necessary for the technique into steps that can be analyzed for requirements, both in expertise, equipment, and scientific knowledge. The paper concludes that the technique is usable for proliferation, although with difficulty, by some nations during the next two decades. The technique may be developed in a completely covert method, with no declarations and no public indication that it is under research and development, or alternatively, some admissions may be made to allow or promote exchange of information. The technique can be disclosed as a research and development technology for the separation of non-radioactive isotopes, for the separation of radioactive isotopes including those in commercial use for medical or industrial purposes, or as part of a nuclear fuel cycle. The ability to translate development work from the first two of these to a system usable for

  1. Design study of fuel circulating system using Pd-alloy membrane isotope separation method

    International Nuclear Information System (INIS)

    Naito, T.; Yamada, T.; Yamanaka, T.; Aizawa, T.; Kasahara, T.; Nishikawa, M.; Asami, N.

    1980-01-01

    Design study on the fuel circulating system (FCS) for a tokamak experimental fusion reactor (JXFR) has been carried out to establish the system concept, to plan the development program, and to evaluate the feasibility of diffusion system. The FCS consists of main vacuum system, fuel gas refiners, isotope separators, fuel feeders, and auxiliary systems. In the system design, Pd-alloy membrane permeation method is adopted for fuel refining and isotope separating. All impurities are effectively removed and hydrogen isotopes are sufficiently separated by Pd-alloy membrane. The isotope separation system consists of 1st (47 separators) and 2nd (46 separators) cascades for removing protium and separating deuterium, respectively. In the FCS, while cryogenic distillation method appears to be practicable, Pd-alloy membrane diffusion method is attractive for isotope separation and refining of fuel gas. The choice will have to be based on reliability, economic, and safety analyses

  2. Separated isotopes: vital tools for science and medicine

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Deliberations and conclusions of a Workshop on Stable Isotopes and Derived Radioisotopes organized by the Subcommittee on Nuclear and Radiochemistry of the National Research Council's Committee on Chemical Sciences at the request of the Department of Energy (DOE) are summarized. The workshop was jointly supported by the National Institutes of Health and DOE's Office of Basic Energy Sciences. An overview with three recommendations resulting from the Workshop is followed by reports of the four Workshop panels. Background papers were prepared by individuals on the Steering Committee and made available to all participants prior to the Workshop. They are reproduced as Appendixes 3 to 8. Short reports on alternate separation techniques were presented at the Workshop and are reproduced in Appendixes 9 to 11.

  3. Separated isotopes: vital tools for science and medicine

    International Nuclear Information System (INIS)

    1982-01-01

    Deliberations and conclusions of a Workshop on Stable Isotopes and Derived Radioisotopes organized by the Subcommittee on Nuclear and Radiochemistry of the National Research Council's Committee on Chemical Sciences at the request of the Department of Energy (DOE) are summarized. The workshop was jointly supported by the National Institutes of Health and DOE's Office of Basic Energy Sciences. An overview with three recommendations resulting from the Workshop is followed by reports of the four Workshop panels. Background papers were prepared by individuals on the Steering Committee and made available to all participants prior to the Workshop. They are reproduced as Appendixes 3 to 8. Short reports on alternate separation techniques were presented at the Workshop and are reproduced in Appendixes 9 to 11

  4. Uranium isotope separation by gaseous diffusion and plant safety

    International Nuclear Information System (INIS)

    Simeon, Claude; Dumas, Maurice.

    1980-07-01

    This report constitutes a safety guide for operators of uranium isotope separation plants, and includes both aspects of safety and protection. Taking into account the complexity of safety problems raised at design and during operation of plants which require specialized guides, this report mainly considers both the protection of man, the environment and goods, and the principles of occupational safety. It does not claim to be comprehensive, but intends to state the general principles, the particular points related to the characteristics of the basic materials and processes, and to set forth a number of typical solutions suitable for various human and technical environments. It is based on the French experience gained during the last fifteen years [fr

  5. Study on silicon isotope separation at FEL-SUT

    International Nuclear Information System (INIS)

    Nomaru, Keiji; Chernyshev, A.V; Nakajima, Noriaki; Kuroda, Haruo

    2002-01-01

    Aiming for the study of the isotope separation of silicon by the FEL, multi-photon dissociation of SiF 3 I by the irradiation with the light of TEA-CO 2 laser and by the co-irradiation with the lights from IR-FEL and TEA-CO 2 laser was investigated. By the irradiation of the FEL, the vibrational bands of SiF 3 I were red-shifted and the dissociation cross-section for the TEA-CO 2 laser increased. By the co-irradiation with FEL light at the frequency of 975 cm -1 , the maximum dissociation rate was enhanced up to three times. (author)

  6. Managing a major R et D program: isotope separation

    International Nuclear Information System (INIS)

    Ferrari, A.

    1988-01-01

    After the choice (in 1969) of the pressurized water type reactors which use enriched uranium, it became imperative for France to have facilities to enrich the uranium. The choice of the industrial process, the correlative decisions related to research and development and the search for alliances with partners abroad in a disturbed and changing energy context are retraced in this article. The choice of the Eurodif plant was the gaseous diffusion process. It still remains necessary to maintain research efforts concerning competitive technologies, i.e. ultracentrifuging and chemical process. The oil crisis augured well for massive recourse to nuclear energy. Then there was a cut-back in nuclear programs and enrichment capacities became lastingly higher than needs. So it became necessary to optimally pilot a selection of research paths, with long term orientation. The techniques, based on the use of the laser, provide an advance glimpse of major, even spectacular prospects of lowering the costs of isotope separation [fr

  7. Modeling of hydrogen isotopes separation in a metal hydride bed

    International Nuclear Information System (INIS)

    Charton, S.; Corriou, J.P.; Schweich, D.

    1999-01-01

    A predictive model for hydrogen isotopes separation in a non-isothermal bed of unsupported palladium hydride particles is derived. It accounts for the non-linear adsorption-dissociation equilibrium, hydrodynamic dispersion, pressure drop, mass transfer kinetics, heat of sorption and heat losses at the bed wall. Using parameters from the literature or estimated with classical correlations, the model gives simulated curves in agreement with previously published experiments without any parameter fit. The non-isothermal behavior is shown to be responsible for drastic changes of the mass transfer rate which is controlled by diffusion in the solid-phase lattice. For a feed at 300 K and atmospheric pressure, the endothermic hydride-to-deuteride exchange is kinetically controlled, whereas the reverse exothermic exchange is nearly at equilibrium. Finally, a simple and efficient thermodynamic model for the dissociative equilibrium between a metal and a diatomic gas is proposed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Innovative lasers for uranium isotope separation. [Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Brake, M.L.; Gilgenbach, R.M.

    1991-06-01

    Copper vapor lasers have important applications to uranium atomic vapor laser isotope separation (AVLIS). The authors have spent the first two years of their project investigating two innovative methods of exciting/pumping copper vapor lasers which have the potential to improve the efficiency and scaling of large laser systems used in uranium isotope separation. Experimental research has focused on the laser discharge kinetics of (1) microwave, and (2) electron beam excitation/pumping of large-volume copper vapor lasers. During the first year, the experiments have been designed and constructed and initial data has been taken. During the second year these experiments have been diagnosed. Highlights of some of the second year results as well as plans for the future include the following: Microwave resonant cavity produced copper vapor plasmas at 2.45 GHz, have been investigated. A CW (0--500 W) signal heats and vaporizes the copper chloride to provide the atomic copper vapor. A pulsed (5 kW, 0.5--5kHz) signal is added to the incoming CW signal via a hybrid mixer to excite the copper states to the laser levels. An enhancement of the visible radiation has been observed during the pulsed pardon of the signal. Electrical probe measurements have been implemented on the system to verify the results of the electromagnetic model formulated last year. Laser gain measurements have been initiated with the use of a commercial copper vapor laser. Measurements of the spatial profile of the emission are also currently being made. The authors plan to increase the amount of pulsed microwave power to the system by implementing a high power magnetron. A laser cavity will be designed and added to this system.

  9. Isotopic separation through ion cyclotron-resonance: results from the ERIC experiment

    International Nuclear Information System (INIS)

    Compant la Fontaine, A.; Louvet, P.

    1994-01-01

    Stable isotope separation by the means of ion cyclotron-resonance is studied at CEA since 1981. Results from the ERIC experiments are of two types: parameter measurements which help characterizing the plasma and optimizing the process, and isotopic separation results. For example, the selective feature of isotope heating was verified in the cases of zinc and calcium using an electrostatic analyzer. The separation factors of various elements (calcium, zinc, barium, chromium...) are depending on the mass relative difference of the isotopes to be separated, difference which must be large compared to the magnetic field inhomogeneities and the Doppler broadening. 2 figs., 1 tab., 3 refs

  10. Characteristics of isotope-selective chemical reactor with gas-separating device

    International Nuclear Information System (INIS)

    Gorshunov, N.M.; Kalitin, S.A.; Laguntsov, N.I.; Neshchimenko, Yu.P.; Sulaberidze, G.A.

    1988-01-01

    A study was made on characteristics of separating stage, composed of isotope-selective chemical (or photochemical) reactor and membrane separating cascade (MSC), designated for separation of isotope-enriched products from lean reagents. MSC represents the counterflow cascade for separation of two-component mixtures. Calculations show that for the process of carton isotope separation the electric power expences for MSC operation are equal to 20 kWxh/g of CO 2 final product at 13 C isotope content in it equal to 75%. Application of the membrane gas-separating cascade at rather small electric power expenses enables to perform cascading of isotope separation in the course of nonequilibrium chemical reactions

  11. ITER hydrogen isotope separation system conceptual design description

    International Nuclear Information System (INIS)

    Busigin, A.; Sood, S.K.; Kveton, O.K.; Dinner, P.J.; Murdoch, D.K.; Leger, D.

    1990-01-01

    This paper presents integrated hydrogen Isotope Separation System (ISS) designs for ITER based on requirements for plasma exhaust processing, neutral beam injection deuterium cleanup, pellet injector propellant detritiation, waste water detritiation, and breeding blanket detritiation. Specific ISS designs are developed for a machine with an aqueous lithium salt blanket (ALSB) and a machine with a solid ceramic breeding blanket (SBB). The differences in the ISS designs arising from the different blanket concepts are highlighted. It is found that the ISS designs for the two blanket concepts considered are very similar with the only major difference being the requirement for an additional large water distillation column for ALSB water detritiation. The extraction of tritium from the ALSB is based on flash evaporation to separate the blanket water from the dissolved Li salt, with the tritiated water then being fed to the ISS for detritiation. This technology is considered to be relatively well understood in comparison to front-end processes for SBB detritiation. In the design of the cryogenic distillation portion of the ISS, it was found that the tritium inventory could be very large (> 600 g) unless specific design measures were taken to reduce it. In the designs which are presented, the tritium inventory has been reduced to about 180 g, which is less than the ITER single-failure release limit of 200 g. Further design optimization and isolation of components is expected to reduce the inventory further. (orig.)

  12. Radioactive isotope and isomer separation with using light induced drift effect

    International Nuclear Information System (INIS)

    Hradecny, C.; Slovak, J.; Tethal, T.; Ermolaev, I.M.; Shalagin, A.M.

    1991-01-01

    The isotope separation with using light induced drift (LID) is discussed. The basic theoretical characteristics of the method are deduced: separation simultaneously with an arbitrary high enrichment and without significant losses; separation productivity up to 100 μg/h. These characteristics are sufficient and very convenient for separation of expensive radioactive isotopes and isomers which are applied in medicine and science. The first experimental separation of the radioactive isotopes ( 22,24 Na) by using the LID effect is reported. 13 refs.; 5 figs

  13. Study on atmospheric hydrogen enrichment by cryopump method and isotope separation by gas chromatography

    International Nuclear Information System (INIS)

    Taniyama, Yuki; Momoshima, Noriyuki

    2001-01-01

    To obtain the information of source of atmospheric hydrogen tritium an analysis of tritium isotopes is thought to be effective. So an atmospheric hydrogen enrichment apparatus and a cryogenic gas chromatographic column were made. Experiments were carried out to study the performance of cryopump to enrich atmospheric hydrogen and the column to separate hydrogen isotopes that obtained by cryopump method. The cryopump was able to process about 1000 1 atmosphere and the column was able to separate hydrogen isotopes with good resolution. (author)

  14. Separated isotopes: vital tools for science and medicine

    International Nuclear Information System (INIS)

    1982-01-01

    This report summarizes the deliberations and conclusions of a Workshop on Stable Isotopes and Derived Radioisotopes organized by the Subcommittee on Nuclear and Radiochemistry of the National Research Council's Committee on Chemical Sciences at the request of the Department of Energy (DOE). The workshop was jointly supported by the National Institutes of Health and DOE's Office of Basic Energy Sciences. An Overview with three recommendations resulting from the Workshop, prepared by the Steering Committee, is followed by Chapters 1 to 4, reports of the following four Workshop panels: (1) panel on research applications in physics, chemistry and geoscience; (2) panel on commercial applications; (3) panel on biomedical research applications; (4) panel on clinical applications. Background papers were prepared by individuals on the Steering Committee and made available to all participants prior to the Workshop. They proved of great value and are reproduced as Appendixes 3 to 8. Short reports on alternate separation techniques were presented at the Workshop and are reproduced in Appendixes 9 to 11. Selected papers have been abstracted and indexed

  15. Cascade theory in isotopic separation processes; Theorie des cascades en separation isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, J.P.

    1994-06-01

    Three main areas are developed within the scope of this work: - the first one is devoted to fundamentals: separative power, value function, ideal cascade and square cascade. Applications to two main cases are carried out, namely: Study of binary isotopic mix, Study of processes with a small enrichment coefficient. - The second one is devoted to cascade coupling -high-flux coupling (more widely used and better known) as well as low-flux coupling are presented and compared to one another. - The third one is an outlook on problems linked to cascade transients. Those problem are somewhat intricate and their interest lies mainly into two areas: economics where the start-up time may have a large influence on the interests paid during the construction and start-up period, military productions where the start-up time has a direct bearing on the production schedule. (author). 50 figs. 3 annexes. 12 refs. 6 tabs.

  16. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation.

    Science.gov (United States)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-27

    Light isotopes separation, such as (3)He/(4)He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as (3)He/(4)He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high (3)He/(4)He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  17. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    Science.gov (United States)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  18. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    Science.gov (United States)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application. PMID:26813491

  19. Determination of abdominal fat thickness using dual electrode separation in the focused impedance method (FIM)

    International Nuclear Information System (INIS)

    Surovy, Nusrat Jahan; Billah, Md Masum; Haowlader, Salahuddin; Al-Quaderi, Golam Dastegir; Rabbani, K Siddique-e

    2012-01-01

    Subcutaneous fat layer thickness in the abdomen is a risk indicator of several diseases and disorders like diabetes and heart problems and could be used as a measure of fitness. Skinfold measurement using mechanical calipers is simple but prone to error. Ultrasound scanning techniques are yet to be established as accurate methods for this purpose. magnetic resonance imaging (MRI) and computed tomography (CT) scans can provide the answer but are expensive and not available widely. Some initiatives were made earlier to use electrical impedance to this end, but had inadequacies. In the first part of this paper, a 4-electrode focused impedance method (FIM) with different electrode separations has been studied for its possible use in the determination of abdominal fat thickness in a localized region. For this, a saline phantom was designed to provide different electrode separations and different layers of resistive materials adjacent to the electrodes. The background saline simulated the internal organs having low impedance while the resistive layers simulated the subcutaneous fat. The plot of the measured impedance with electrode separation had different ‘slopes’ for different thicknesses of resistive layers, which offered a method to obtain an unknown thickness of subcutaneous fat layer. In the second part, measurements were performed on seven human subjects using two electrode separations. Fat layer thickness was measured using mechanical calipers. A plot of the above ‘slope’ against fat thickness could be fitted using a straight line with an R 2 of 0.93. Then this could be used as a calibration curve for the determination of unknown fat thickness. Further work using more accurate CT and MRI measurements would give a better calibration curve for practical use of this non-invasive and low-cost technique in abdominal fat thickness measurement. (paper)

  20. Isotope separation process by transfer of vibrational energy

    International Nuclear Information System (INIS)

    Angelie, C.; Cauchetier, M.; Paris, J.

    1983-01-01

    This process consists in exciting A molecules by absorption of a pulsed light beam, then in exciting until their dissociation X molecules, present in several isotopic forms, by a vibrational transfer between the A molecules and the X molecules, the A molecules having a dissociation energy greater than that of the X molecules, the duration and energy of the light pulses being such that the absorption time by the A molecules is less than the excitation time of the X molecules and the temperature conditions such that the thermal width of the vibration rays is at the most near the isotopic difference between the resonance rays of the two isotopic varieties [fr

  1. Element for separating gaseous isotopes into at least two fractions and with a separating basket consisting of several separating elements

    International Nuclear Information System (INIS)

    Grossstuck, W.; Schafer, R.

    1985-01-01

    A separating element for gaseous isotopes into two fractions, and consisting of several elongated separating chips with a row of entry openings for the process gas at one side of the chips and a row of exit openings for the heavy fraction at the other side of the chips, with exit openings for the light fraction at the edges of the chips, and of two tubes holding the chips and having at least one chamber, with said tubes being connected by means of connecting elements, and equipped with entry and exit openings on their contact surfaces, with said entry and exit openings arranged in rows in a longitudinal direction of the chips, and for simplifying of installation and construction, this invention provides that the chips are arranged in a longitudinal direction to the tubes, with their sides abutting directly against the smooth contact surfaces of the tubes, and whereby the connecting elements are positioned in one row in the center of the two tubes

  2. Parameter study on Japanese proposal of ITER hydrogen isotope separation system

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Enoeda, Mikio; Tanaka, Shigeru; Ohokawa, Yoshinao; Ohara, Atsushi; Nagakura, Masaaki; Naito, Taisei; Nagashima, Kazuhiro.

    1991-01-01

    As part of Japanese design contribution in the ITER activity, conceptual design of an entire ITER tritium system and their safety analysis have been carried out through the three-year period since 1988. The tritium system includes the following subsystems; - Fuelling (gas puffing and pellet injection) subsystem, - Torus vacuum pumping subsystem, - Plasma exhaust gas purification subsystem, - Hydrogen isotope separation subsystem, - NBI gas processing subsystem, - Blanket tritium recovery subsystem, - Tritiated water processing subsystem, - Tritium safety subsystem. Hydrogen isotope separation system is a key subsystem in the ITER tritium system because it is connected to all above subsystems. This report describes an analytical study on the Japanese concept of hydrogen isotope separation system. (author)

  3. Chromatographic separation process with pellicular ion exchange resins that can be used for ion or isotope separation and resins used in this process

    International Nuclear Information System (INIS)

    Carles, M.; Neige, R.; Niemann, C.; Michel, A.; Bert, M.; Bodrero, S.; Guyot, A.

    1989-01-01

    For separation of uranium, boron or nitrogen isotopes, an isotopic exchange is carried out betwen an isotope fixed on an ion exchange resin and another isotope of the same element in the liquid phase contacting the resin. Pellicular resins are used comprising composite particulates with an inert polymeric core and a surface layer with ion exchange groups [fr

  4. A non-conventional isotope separation cascade without any mixing: net cascade

    International Nuclear Information System (INIS)

    Zeng Shi; Jiang Dongjun; Ying Zhengen

    2012-01-01

    A component has different concentrations in the incoming flows at a confluent point in all existing isotope separations cascades for multi-component isotope separation and mixing is inevitable, which results in deterioration of separation performance of the separation cascade. However, realization of no-mixing at a confluent point is impossible with a conventional cascade. A non-conventional isotope separation cascade, net cascade, is found to be able to realize no mixings for all components at confluent points, and its concept is further developed here. No-mixing is fulfilled by requiring symmetrical separation of two specified key components at every stage, and the procedure of realizing no-mixing is presented in detail. Some properties of net cascade are investigated preliminarily, and the results demonstrated the no-mixing property is indeed realized. Net cascade is the only separation cascade that so far possesses the no-mixing property. (authors)

  5. The designing principle and implementation of multi-channel intelligence isotope thickness gauge based on multifunction card PCI-1710

    International Nuclear Information System (INIS)

    Zhang Bin; Zhao Shujun; Guo Maotian; He Jintian

    2006-01-01

    The designing principle, the constitution of system and the implementation of multi-channel intelligence isotope thickness gauge are introduced in the paper in detail, which are based on multifunction card PCI-1710. The paper also discusses the primaryprinciple of isotope thickness gauge, correct factor in measurement and complication of calibration. In the following, the whole frame of multi-channel intelligence isotope thickness gauge is given. The functions, the characteristics and the usage of multifunction card PCI-1710 are described. Furthermore, the developing process and the function modules of software are presented. Finally, the real prototype of multi-channel intelligence isotope thickness gauge is introduced, using 241 Am as a radioactive element. (authors)

  6. Separation and sampling technique of light element isotopes by chemical exchange process

    International Nuclear Information System (INIS)

    Kato, Shunsaku; Oi, Kenta; Takagi, Norio; Hirotsu, Takafumi; Kano, Hirofumi; Sonoda, Akinari; Makita, Yoji

    2000-01-01

    Lithium and boron isotope separation technique were studied. Granulation of lithium isotope separation agent was carried out by cure covering in solution. Separation of lithium isotope was stepped up by ammonium carbonate used as elusion agent. Styrene and ester resin derived three kinds of agents such as 2-amino-1, 3-propanediol (1, 3-PD), 2-amino-2-methyl-1, 3-propanediol (Me-1,3-PD) and tris(2-hydroxyethyl)amine (Tris) were used as absorbent.The ester resin with Tris showed larger amount of adsorption (1.4 mmol/g) than other resins. However, all resins with agent indicated more large adsorption volume of boron than the objective value (0.5 mmol/g). Large isotope shift was shown by the unsymmetrical vibration mode of lithium ion on the basis of quantum chemical calculation of isotope effect on dehydration of hydrated lithium ion. (S.Y.)

  7. Bicarbonate adsorption band of the chromatography for carbon isotope separation using anion exchangers

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Obanawa, Heiichiro; Hata, Masahisa; Sato, Katsuya

    1985-01-01

    The equilibria of bicarbonate ion between two phases were studied for the carbon isotope separation using anion exchangers. The condition of the formation of a bicarbonate adsorption band was quantitatively discussed. The formation of the adsorption band depends on the difference of S-potential which is the sum of the standard redection chemical potentials and L-potential which is the sum of the reduction chemical potential. The isotopic separation factor observed was about 1.012, independent of the concentrations of acid and alkali in the solutions. The isotopic separation factor was considered to be determined by the reaction of bicarbonate ion on anion exchangers and carbon dioxide dissolved in solutions. The enriched carbon isotope whose isotopic abundance ratio ( 13 C/ 12 C) was 1.258 was obtained with the column packed with anion exchangers. (author)

  8. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    OpenAIRE

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass ...

  9. Status report of the Jyvaskyla ion guide isotope separator on-line facility

    NARCIS (Netherlands)

    Penttila, H; Dendooven, P; Honkanen, A; Huhta, M; Jauho, PP; Jokinen, A; Lhersonneau, G; Oinonen, M; Parmonen, JM; Perajarvi, K; Aysto, J

    The ion guide isotope separator facility IGISOL of the University of Jyvaskyla has been moved to the new K-130 heavy ion cyclotron laboratory. The totally reconstructed facility is described in detail. The primary beams and targets, helium pumping, separator beam line construction and separator beam

  10. The ISOLDE experimental hall, wth the isotope separator in the upper left corner.

    CERN Multimedia

    CERN PhotoLab

    1969-01-01

    Beam tubes branch out from a switchyard, which by electrostatic deflectors direct beams of short-lived isotopes to various spectroscopic equipment. From left to right, Rudi Stoeckli at the separator control panel, Gilbert Droz and Henri Bersinger.

  11. Ion optical system of a 255 deg double-focusing electromagnetic isotope separator at IAE

    International Nuclear Information System (INIS)

    Mao Naifeng; Lu Hongyou; Cai Rentai

    1987-01-01

    The ion optical system of a 255 deg double-focusing electro-magnetic isotope separator at the Institute of Atomic Energy (IAE), Beijing, is described, including the analysis of ion beam focusing and the calculation of magnetic field shaping

  12. Studies on separation of lithium isotopes by solvent extraction: Pt.1

    International Nuclear Information System (INIS)

    Chen Yaohuan; Yan Jinying; Wu Fubing

    1987-01-01

    The separation effects of lithium isotopes on the extraction with Sudan I(1-phenylazo-2-naphthol)-neutral ligand synergetic extraction systems are reported in this paper. Different separation effects are observed when different kinds of neutral ligands are used. Among them, the separation coefficient (α) of Sudan I-TOPO-xylene/LiCl-LiOH is found to be 1.009 ± 0.001. The heavy isotope 7 Li is enriched in the organic phase. The contributions of different structural chelating agents, synergetic agents and diluents to the separation effect are discussed. It is shown that the chelating agent played an important role in the separation effect, and the synergetic agent also exhibited obvious effect, while the shift of diluent didn't affect the separation coefficient significantly. The rates of extraction and isotope exchange equilibrium are high and these systems are shown to be diffusion-controlled ones

  13. Separation and enrichment of isotopes using laser photochemistry - fundamentals and prospectives

    International Nuclear Information System (INIS)

    Guesten, H.

    1978-01-01

    Basic knowledge is summed up on isotope separation by laser photochemistry. The principal prerequisites are explained of the application of atomic and molecular spectroscopy for this purpose. Practical examples are given of isotope separation of uranium, nitrogen, chlorine, carbon, sulfur, and molybdenum showing the application of two basic techniques, i.e., of gradual atom photoionization or gradual molecule photodissociation and of selective photochemical reactions. (L.K.)

  14. Separation of 13C/12C isotopes during photolysis of cyclic ketones

    International Nuclear Information System (INIS)

    Klimenok, B.B.; Tarasov, V.F.; Buchachenko, A.L.

    1984-01-01

    Results of investigation into separation of 13 C and 12 C isotopes in cyclic ketones are presented. The photolysis has been conducted in benzene in the Ar current. The carbon isotope separation during the photolysis of C 12 cyclic ketones is shown to proceed with low efficiency. It is caused by weak reversibility of biradical disintegration with regeneration of the initial ketone. Besides, conditions for the inner recombination corresponding to the conditions of a ''microreactor'' are not met

  15. LLNL medical and industrial laser isotope separation: large volume, low cost production through advanced laser technologies

    International Nuclear Information System (INIS)

    Comaskey, B.; Scheibner, K. F.; Shaw, M.; Wilder, J.

    1998-01-01

    The goal of this LDRD project was to demonstrate the technical and economical feasibility of applying laser isotope separation technology to the commercial enrichment (>lkg/y) of stable isotopes. A successful demonstration would well position the laboratory to make a credible case for the creation of an ongoing medical and industrial isotope production and development program at LLNL. Such a program would establish LLNL as a center for advanced medical isotope production, successfully leveraging previous LLNL Research and Development hardware, facilities, and knowledge

  16. Vacuum-arc plasma centrifuge applied to stable isotope separation

    International Nuclear Information System (INIS)

    Del Bosco, E.

    1989-09-01

    This work describes the results of a vacuum-arc plasma centrifuge experiment. A plasma centrifuge is an apparatus where a plasma column is produced due to the interaction of an electric current with an externally applied magnetic field, sup(→)J x sup(→)B. Among the applications of a rotating plasma, this work deals particularly with its utilization in an isotope enrichment device. The main characteristics of the plasma produced in this experiment are presented, with special attention to the plasma column rotation and the isotope enrichment. The analysis of the results is performed using a fluid model for a completely ionized rigid body rotating plasma column in steady state equilibrium. The main results are: a) rotation frequency of the plasma column in the range 2 x 10 sup(4) to 3 x 10 sup(5) rad/s; b) enrichment of 10 to 30% for the magnesium isotopes, and of 290 to 490% for the carbon 13 isotope; c) rigid body rotation of the plasma column only for radii smaller than the characteristic radius of the plasma column. re; d) linear dependence of the rotation frequency upon the magnetic field strength only for r < re; e) existence of an optimum value of the magnetic field for maximum enrichment; and f) dependence of the rotation frequency upon the inverse of the atomic mass. (author)

  17. Apparatus for isotopic separation using a high-frequency wave and coherent radiation

    International Nuclear Information System (INIS)

    Mourier, G.

    1983-11-01

    The purpose of the present invention is an apparatus for industrial separation of isotopes, using a high-frequency electromagnetic field and coherent radiation such as that from a laser. Separation of isotopes by isotopically selective ionization, followed by entrainment of the ions by means of a magnetic field, is known. The selective ionization operation can be carried out in two consecutive stages: excitation of the chosen isotope, from the ground energy state to a specified excited level, near ionization; the energy required for this first stage can be supplied by means of a laser, the laser radiation being characterized for high power and well-defined frequency; this stage offers the advantage of being easily made isotopically selective; then ionization of the excited atoms by means of supplying relatively weak energy which should be insufficient to ionize the nonexcited ions; this second stage can also be carried out by means of a laser

  18. Two approaches to hydrograph separation of the glacial river runoff using isotopic methods

    Directory of Open Access Journals (Sweden)

    Yu. N. Chizhova

    2016-01-01

    Full Text Available Application of the stable isotope method in the balance equations used to calculate separation of the runoff hydrograph from the Djankuat Glacier basin is demonstrated. Simultaneous solution of equations of water, isotope and ion balances is applied to estimate contributions of different components and processes to formation of the Djankuat River runoff regime. For June 2014, we made calculations for the purpose to separate contributions of the spring (isotopically weighted snow and winter (isotopically depleted snow. Field works in the glacial basin Djankuat were performed during two ablation seasons, i.e. from June to September of 2013 and 2014. Two approaches were used when calculating separation of the runoff hydrograph by means of solution of systems of equations for isotopic and ion balances: 1 taking account of the isotope fractionation during snow melting, and 2 with no account for the fractionation. Separation of the hydrograph for June 2014 have shown that about 15–20% of the Djankuat River runoff is formed by spring snow melting, sometimes increasing up to 36%. Contribution of spring meltwater to the total runoff increases when the isotope fractionation during the snow melting is taken into account for the calculations. In this case, the contribution of spring snow changes from 30 to 50%.

  19. Development of stable isotope separation technology for radioisotope production

    International Nuclear Information System (INIS)

    Jeong, Do Young; Kim, Cheol Jung; Park, Kyung Bae

    2003-05-01

    The ultimate goal of this project is to construct the domestic production system of stable isotopes O-18 and Tl-203 used as target materials in accelerator for the production of medical radioisotopes F-18 and Tl-201, respectively. In order to achieve this goal, diode laser spectroscopic analytical system was constructed and automatic measurement computer software for the direct analysis of H 2 16 O/H 2 18 O ratio were developed. Distillation process, laser process, and membrane diffusion process were analyzed for the evaluation of O-18 production. And electromagnetic process, plasma process, and laser process were analyzed for the evaluation of Tl-203 production. UV laser system, IR laser system, and detailed system Tl-203 production were designed. Finally, current and future worldwide demand/supply of stable isotopes O-18 and Tl-203 were estimated

  20. Pooled versus separate measurements of tree-ring stable isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Dorado Linan, Isabel, E-mail: isabel@gfz-potsdam.de [Universitat de Barcelona, Departament d' Ecologia, Diagonal 645, 08028, Barcelona (Spain); German Centre for Geosciences, Climate Dynamics and Landscape Evolution, Dendro Laboratory, Telegrafenberg, 14473, Potsdam (Germany); Gutierrez, Emilia, E-mail: emgutierrez@ub.edu [Universitat de Barcelona, Departament d' Ecologia, Diagonal 645, 08028, Barcelona (Spain); Helle, Gerhard, E-mail: ghelle@gfz-potsdam.de [German Centre for Geosciences, Climate Dynamics and Landscape Evolution, Dendro Laboratory, Telegrafenberg, 14473, Potsdam (Germany); Heinrich, Ingo, E-mail: heinrich@gfz-potsdam.de [German Centre for Geosciences, Climate Dynamics and Landscape Evolution, Dendro Laboratory, Telegrafenberg, 14473, Potsdam (Germany); Andreu-Hayles, Laia, E-mail: laiandreu@ub.edu [Universitat de Barcelona, Departament d' Ecologia, Diagonal 645, 08028, Barcelona (Spain); Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades NY (United States); Planells, Octavi, E-mail: leocarpus@hotmail.com [Universitat de Barcelona, Departament d' Ecologia, Diagonal 645, 08028, Barcelona (Spain); Leuenberger, Markus, E-mail: leuenberger@climate.unibe.ch [Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern (Switzerland); Oeschger Centre of Climate Change Research, University of Bern, Zaehringerstrasse 25, 3012 Bern (Switzerland); Buerger, Carmen, E-mail: buerger@gfz-potsdam.de [German Centre for Geosciences, Climate Dynamics and Landscape Evolution, Dendro Laboratory, Telegrafenberg, 14473, Potsdam (Germany); Schleser, Gerhard, E-mail: schleser@gfz-potsdam.de [German Centre for Geosciences, Climate Dynamics and Landscape Evolution, Dendro Laboratory, Telegrafenberg, 14473, Potsdam (Germany)

    2011-05-01

    {delta}{sup 13}C and {delta}{sup 18}O of tree rings contain time integrated information about the environmental conditions weighted by seasonal growth dynamics and are well established as sources of palaeoclimatic and ecophysiological data. Annually resolved isotope chronologies are frequently produced by pooling dated growth rings from several trees prior to the isotopic analyses. This procedure has the advantage of saving time and resources, but precludes from defining the isotopic error or statistical uncertainty related to the inter-tree variability. Up to now only a few studies have compared isotope series from pooled tree rings with isotopic measurements from individual trees. We tested whether or not the {delta}{sup 13}C and the {delta}{sup 18}O chronologies derived from pooled and from individual tree rings display significant differences at two locations from the Iberian Peninsula to assess advantages and constraints of both methodologies. The comparisons along the period 1900-2003 reveal a good agreement between pooled chronologies and the two mean master series which were created by averaging raw individual values (Mean) or by generating a mass calibrated mean (MassC). In most of the cases, pooled chronologies show high synchronicity with averaged individual samples at interannual scale but some differences also show up especially when comparing {delta}{sup 18}O decadal to multi-decadal variations. Moreover, differences in the first order autocorrelation among individuals may be obscured by pooling strategies. The lack of replication of pooled chronologies prevents detection of a bias due to a higher mass contribution of one sample but uncertainties associated with the analytical process itself, as sample inhomogeneity, seems to account for the observed differences. - Research Highlights: {yields} Pooled {delta}{sup 13}C and {delta}{sup 18}O chronologies are expected to be similar to the mean. {yields} Empirical pooled chronologies {delta}{sup 13}C and

  1. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1982-01-01

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes

  2. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, M.S.

    1982-01-01

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes.

  3. Light induced drift: a possible mechanism of separation of isotopes by laser excitation

    International Nuclear Information System (INIS)

    Biswas, D.J.; Nilaya, J.P.; Venkatramani, N.

    2003-02-01

    A comprehensive review of the literature on the effect of light induced drift and its exploitation in the separation of isotopes, both in atomic and molecular forms, is presented. An experimental scheme based on this effect to separate S 33 , with a natural abundance of ∼0.76%, from SF 6 has also been worked out. (author)

  4. Electromagnetic separation of stable isotopes at the Institute of Atomic Energy, Academia Sinica

    International Nuclear Information System (INIS)

    Hua, M.; Li, G.; Su, S.; Mao, N.; Lu, H.

    1981-01-01

    For almost 20 years the Institute of Atomic Energy, Academia Sinica has been separating stable isotopes of the elements by electromagnetic separators and supplying these materials to research work in many fields of our country. In this article we shall attempt to outline the growth of the effort and describe the present situation. (orig.)

  5. The instability of molecules in laser field and isotope separation

    International Nuclear Information System (INIS)

    Li, K.

    1981-01-01

    In the present paper the nonlinear differential equation describing the selective decomposition of a molecule as an unimolecular reaction has be deduced from the usual time dependent semi-classical Schroedinger equation. The selective conditions for the instability of a molecule are discussed. The thresholds of the required laser intensities for ICl and HCl diatomic molecules are estimated respectively, where on type of isotope molecules ought to be decomposed for hundred per cent in a laser pulse for different pulse widths. And possibly selective decomposition of the molecule without permanent dipole moment by Raman process is also discussed briefly. (orig.)

  6. Molecular modeling study of lithium isotopic separation by crown-ethers in ethanol

    International Nuclear Information System (INIS)

    Dehez, F.

    2002-01-01

    The isotopic separation of lithium ion isotopes is studied at the CEA in Pierrelatte using a liquid chromatography technique. Exchange systems are composed by crown-ethers grafted on silica (12C4, 15C5, B15C5, DB15C5, 18C6, B18C6). Lithium is introduced as a salt melted in ethanol. This work concerns the theoretical study of lithium isotopic exchange reactions with those systems. After a brief presentation of isotope separation techniques and isotopic effects (Chap.I), we describe the methods of theoretical chemistry used in this work (Chap. II). In chapter III, we test AM1 and PM3 semi-empirical methods for the treatment of Li + /crown-ether species. Then, we calculate isotopic separation factors via ab initio and semi-empirical calculations for the exchange reactions in vacuum. The different crown-ethers are considered with and without graftings arms. Studies of exchange reactions in ethanol are presented in chapter IV. First, each species of the reaction are solvated by a few ethanol molecules. Isotopic separation factors calculated show a large effect of the solvent on the exchange reaction. The effect of the grafting arm has been investigated using hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics for species with the 12C4. Trajectories have been generated successively with 7 Li and 6 Li. Atomic velocity autocorrelation functions have allowed the access to vibrational frequencies necessary to calculate isotopic separation factors. The last chapter is devoted to methodological developments made during this Ph.D. We propose an approach to treat long range electrostatic interactions in hybrid QM/MM method, relying on a lattice summation technique. (author) [fr

  7. Proceedings of the isotope separator on-line workshop

    Energy Technology Data Exchange (ETDEWEB)

    Chrien, R E [ed.

    1978-07-01

    Separate abstracts were prepared for thirteen of the papers in this volume. The remaining three have already been cited in ERA, and can be located by reference to the entry CONF-771078-- in the Report Number Index. (RWR)

  8. Design study of fuel circulating system using Pd alloy membrane isotope separation method

    International Nuclear Information System (INIS)

    Naito, T.; Yamada, T.; Aizawa, T.; Kasahara, T.; Yamanaka, T.

    1981-01-01

    It is expected that the method of permeating through Pd-alloy membrances is effective for isotope separation and the refining of fuel gas. In this paper, the design study of the Fuel Circulating System (FCS) using Pb-alloy membranes is described. The study is mainly focused on the main vacuum, fuel gas refining, isotope separating, and tritium containment systems. In the fuel gas refining system, impurities are effectively removed by using Pd-alloy membranes. For the isotope separation system, the diffusion method through Pd-alloy membranes was adopted. From the standpoint of the safety and economy, a three-stage tritium containment system was adopted to control tritium release to the environment as low as possible. The principal conclusion drawn from the design study was as follows. In the FCS, while cryogenic distillation method appears to be practicable, Pd-alloy membrane method is attractive for isotope separation and the refining of fuel gas. For a large amount of tritium inventory, handling and control technologies should be completed by the experimental evaluation and development of the components and materials used for the FCS. A three-stage containment system was adopted to control tritium release to environment as low as possible. Consideration to prevent tritium escape will be necessary for fuel gas refiners and isotope separators. (Kato, T.)

  9. Lithium isotope separation on an ion exchange resin having azacrown ether as an anchor group

    International Nuclear Information System (INIS)

    Kim, D.W.; Jeong, Y.K.; Lee, J.K.; Hong, Ch.P.; Kim, Ch.S.; Jeon, Y.Sh.

    1997-01-01

    As study on the separation of lithium isotopes was carried out with an ion exchange resin having 1,7,13-trioxa-4,10,16-triazacyclooctadecane (N 3 O 3 ) as an anchor group. The lighter isotope, 6 Li concentrated in the resin phase, while the heavier isotope, 7 Li is enriched in the fluid phase. Upon column chromatography [0.6 cm (I. D.) x 20 cm (height) using 1.0M ammonium chloride solution as an eluent, single separation factor, α, 1.068 ( 6 Li/ 7 Li) r esin/( 6 Li/ 7 Li) s olution was obtained by the GLUECKAUF method from the elution curve and isotope ratios. (author)

  10. Boron isotope separation by ion exchange chromatography using weakly basic anion exchange resin

    International Nuclear Information System (INIS)

    Sakuma, Yoichi; Aida, Masao; Okamoto, Makoto; Kakihana, Hidetake

    1980-01-01

    Isotopic plateau displacement chromatography, a useful method for isotope separation is presented. The boric acid band formed in a column of weakly basic anion exchange resin Diaion WA21 can be eluted with pure water. In order to obtain good accumulation of the isotope effect, a series of experiments with different migration length were carried out. The boron-10 enriched part of the boric acid absorbed band was always preceded by the isotopic plateau part, in which the atomic fraction of boron-10 was maintained at its original value. The atomic fraction of boron-10 at the end of the chromatogram increased with migration length, and in the case of 256-m migration, boron-10 was enriched from its original atomic fraction of 19.84 to 91.00%, the separation factor S being constant irrespective of migration length: S = 1.0100 +- 0.0005. (author)

  11. Chemical methods for Sm-Nd separation and its application in isotopic geological dating

    International Nuclear Information System (INIS)

    Guo Qifeng.

    1990-01-01

    Three chemical methods for Sm-Nd separation are mainly desribed: low chromatography of butamone-ammonium thiocyanate for hight concentration Sm and Nd separation, P 240 column chromatography for medium concentration Sm-Nd separation, and pressure ion exchange for low concentration Sm-Nd. The first Sm-Nd synchrone obtained in China with Sm-Nd methods is introduced and Sm-Nd isotopic geological dating in Early Archaean rocks in eastern Hebei has been determined

  12. Method and equipment of separation of gaseous and vaporous materials, particularly isotopes, with separation nozzles

    International Nuclear Information System (INIS)

    Becker, E.W.; Eisenbeiss, G.; Ehrfeld, W.

    1975-01-01

    The invention improves on the already known separation nozzle method by the two following steps: 1) The partial flows produced within the cascade with various shares of additional gas are introduced into the separating nozzle systems in such a manner that with regard to the additional gas, a molar fraction gradient is created which is in the opposite direction to the gradient created by the separation process. 2) The partial flows produced within the cascade with various compositions of the mixture of substances to be separated are introduced into the separating nozzle systems in such a manner that regarding the substances to be separated, a molar fraction gradient is created which is in the same direction as the molar fraction gradient formed by the separation process. Both measures can be separately applied or in combination with one another; flowsheets of the invented cascade circuits and separating nozzle systems are given. (GG/LH) [de

  13. Procedure for 40K isotope separation from beam of potassium atoms using optical orientation of atoms and radio-frequency excitation of target isotope

    International Nuclear Information System (INIS)

    Nikitin, A.I.; Velichko, A.M.; Vnukov, A.V.; Mal'tsev, K.K.; Nabiev, Sh.Sh.

    1999-01-01

    The procedure for potassium isotope separation, which is liable to reduce of the prise of the product as compared with the up-to-date prise of the 40 K isotope obtained by means of electromagnetic procedure for isotope separation, is proposed. The scheme assumes the increasing flow of the wanted isotope at the sacrifice of the increasing intensity of atomic beam and the increase of the selectivity of need isotope atoms at the sacrifice of the the reduction in the square of collector profile. The objective is achieved that provide of polarized state of the potassium atoms is produced by optic orientation with circular-polarized light [ru

  14. New Experimental Setup for Boron Isotopes Separation by the Laser Assisted Retardation of Condensation Method.

    Science.gov (United States)

    Lyakhov, Konstantin; Lee, Heon-Ju

    2015-11-01

    Demand in isotopically pure boron is steadily growing in industry and medicine. It makes necessary to search for cheaper ways of isotopes production. We propose a new experimental setup design for boron isotope separation by laser assisted retardation of condensation (SILARC) method based on an energy efficiency use relevant optimization method. This optimization method is based on the transport model for rarefied gas flow dynamics in laser field with frequency tuned for excitation of specific isotopomer. Because product cut and enrichment factor corresponding to the optimal conditions are rather small, target isotopomers should be recovered iteratively.

  15. Laser isotope separation using selective inhibition and encouragement of dimer formation

    International Nuclear Information System (INIS)

    Kivel, B.

    1979-01-01

    Method and apparatus for inhibiting dimer formation of molecules of a selected isotope type in a cooled flow of gas to enhance the effectiveness of mass difference isotope separation techniques are described. Molecules in the flow containing atoms of the selected isotope type are selectively excited by infrared radiation in order to inhibit the formation of dimers and larger clusters of such molecules, while the molecules not containing atoms of the selected, excited type are encouraged to form dimers and higher order aggregates by the cooling of the gaseous flow. The molecules with the excited isotope will predominate in monomers and will constitute the enriched product stream, while the aggregated group comprising molecules having the unexcited isotope will predominate in dimers and larger clusters of molecules, forming the tails stream. The difference in diffusion coefficientts between particles of the excited and unexcited isotopes is enhanced by the greater mass differences resulting from aggregation of unexcited particles into dimers and larger clusters. Prior art separation techniques which exploit differences in isotopic diffusion rates will consequently exhibit enhanced enrichment per stage by the utilization of the present invention

  16. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Qingcai Xu

    2015-01-01

    Full Text Available Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from -19.45‰ to +28.13‰ (total range: 47.58‰ with a mean value of 2.61±11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems.

  17. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry.

    Science.gov (United States)

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from -19.45‰ to +28.13‰ (total range: 47.58‰) with a mean value of 2.61 ± 11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems.

  18. Experimental results to determine the separation performance of the packages used in cryogenic distillation isotopes

    International Nuclear Information System (INIS)

    Bornea, A.M.; Stefanescu, I.; Zamfirache, M.; Balteanu, O.; Preda, A.

    2007-01-01

    The cryogenic distillation of the hydrogen isotopes represents the back-end separation process most efficient and usually used in detritiation technologies. In our institute there were made many researches in the field of hydrogen isotopes separation. The first results were obtained based on an experimental installation - Pilot Plant for heavy water production - and in present days using a Detritiation Pilot Plant. In our Institute, was manufactured and patented a lot of hydrophilic package for isotopic distillation of water and hydrogen and also catalysts used for isotopic exchange waterhydrogen. This items was continuously developed in order to increase the isotopic separation efficiency. The goal of this paper is to determine by experimental work the performance of the package manufactured in our institute used in the cryogenic distillation process. To describe the separation performances was developed a mathematical model for the cryogenic distillation of the hydrogen isotopes. In order to determine the characteristics of the package, the installation was operated in the total reflux mode, for different flow rate for the liquid. There were made several experiments considering different operating conditions corresponding to various values for the refrigeration power in the column condenser. From the bottom and the top of the distillation column there were extracted samples in order to determine the isotopic composition. Processing the experimental data obtained from these tests using the Fenske relation, we obtained the separation efficiency function of the power inside the column boiler, operating pressure and also pressure drop along the package. This efficiency is describe by the number of theoretical plates per meter (NTT/m) or by equivalent height of one theoretical plate (IETT). (orig.)

  19. STATUS-REPORT OF THE LEUVEN ISOTOPE SEPARATOR ONLINE (LISOL)

    NARCIS (Netherlands)

    HUYSE, M; DECROCK, P; DENDOOVEN, P; GENTENS, J; VANCRAEYNEST, G; VANDENBERGHE, P; VANDUPPEN, P

    The mass separator LISOL, on-line to the CYCLONE cyclotron, is described as it is presently configured. The main development has been in the ion-guide operation in conjunction with light-ion induced fusion and fission. The plans to obtain intense (nA) beams of light (A less-than-or-equal-to 30),

  20. Control strategies for laser separation of carbon isotopes

    Indian Academy of Sciences (India)

    Unknown

    Herriott multipass refocusing (MPRF) optics in flow configuration with internal gas blowers for gas circulation during the laser irradiation, control valves, pressure and vacuum transducers etc. Product separator includes a home-made cryogenic distillation set up and a commercial preparative gas chromatograph (Toshniwal ...

  1. Doppler and time-travel broadening in ICR plasma isotope separation

    International Nuclear Information System (INIS)

    Karchevskii, A.I.; Potanin, E.P.

    1994-01-01

    Isotopically-selective ion-cyclotron resonance (ICR) heating is one of the most promising plasma isotope separation methods. The separation degree of ICR separation in a plasma depends on the resonance heating selectivity. The selectivity is due to the isotopically-adjacent accelerated ions resonance curve overlapping and therefore, is determined by the width of the resonance curves. In the case of a collisionless plasma in an ideal homogeneous longitudinal magnetic field, the line broadening is mainly determined by Doppler and time-travel effects. These effects differ in nature, and one has some difficulties in distinguishing them when interpreting the resonance curves because both broadenings depend on ion axial velocities. We consider the simplest case: the extrenal heating alternating electric field does not depend on the axial coordinate (the wave number γ = 0). Hence, in this case the Doppler effect does not occur

  2. Lithium isotopic separation: preliminary studies; Separacao isotopica de litio: estudos preliminares

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Sandra Helena Goulart de

    1998-07-01

    In order to get the separation of natural isotopes of lithium by electrolytic amalgamation, an electrolytic cell with a confined mercury cathode was used to obtain data for the design of a separation stage. The initial work was followed by the design of a moving mercury cathode electrolytic cell and three experiments with six batches stages were performed for the determination of the elementary separation factor. The value obtained, 1.053, was ill agreement: with the specialized literature. It was verified in all experiments that the lithium - 6 isotope concentrated in the amalgam phase and that the lithium - 7 isotope concentrated in the aqueous phase. A stainless-steel cathode for the decomposition of the lithium amalgam and the selective desamalgamation were also studied. In view of the results obtained, a five stages continuous scheme was proposed. (author)

  3. Studies on separation of lithium isotopes by solvent extraction: Pt. 2

    International Nuclear Information System (INIS)

    Chen Yaohuan; Yan Jinying; Li Yongkun

    1987-01-01

    The effect of the struture of chelating agent and synergetic agent on the extraction separation of lithium isotopes by Sudan I-neutral ligand synergetic extraction systems were discussed in this paper. In order to obtain higher isotopic effect, the chelating agent must possess weaker acidity (pK a > 11), stronger intramolecular hydrogen bonding and a greater tendency to form a six-membered chelating ring. In the synergetic agent, there must be a functional group possessing strong coordination ability without steric hindrance. The separation effect (α) increased with the increase in the basicity of the coordinating group. The increase of the number of chelating rings in the extractable complex was of benefit to the enhancement of α. Further discussions are also made on the enrichment direction of extraction systems and the prospects of different systems to be used for isotope separation

  4. Modelling carbon membranes for gas and isotope separation.

    Science.gov (United States)

    Jiao, Yan; Du, Aijun; Hankel, Marlies; Smith, Sean C

    2013-04-14

    Molecular modelling has become a useful and widely applied tool to investigate separation and diffusion behavior of gas molecules through nano-porous low dimensional carbon materials, including quasi-1D carbon nanotubes and 2D graphene-like carbon allotropes. These simulations provide detailed, molecular level information about the carbon framework structure as well as dynamics and mechanistic insights, i.e. size sieving, quantum sieving, and chemical affinity sieving. In this perspective, we revisit recent advances in this field and summarize separation mechanisms for multicomponent systems from kinetic and equilibrium molecular simulations, elucidating also anomalous diffusion effects induced by the confining pore structure and outlining perspectives for future directions in this field.

  5. Uranium isotopic separation by aerodynamic methods. Final report

    International Nuclear Information System (INIS)

    Davidovitz, P.; Anderson, J.B.; Brook, J.W.; Calia, V.S.; Greene, G.T.

    1979-06-01

    Two aerodynamic separation techniques for uranium enrichment were investigated for technical feasibility and economic viability. These techniques are known as the Jet Membrane and Velocity Slip Processes. Both analytical and laboratory studies were conducted to explore the technical feasibility of the subject processes. The Jet Membrane Process Studies demonstrated that the process was feasible and that a condensable gas carrier is available. The Velocity Slip Studies demonstrated the predicted effects and did not identify a suitable condensable gas carrier. Hence the Velocity Slip Process exhibited a larger power consumption than did the Jet Membrane Process. An independent contractor prepared detailed cost estimates of the process. The independent results indicated that, based on the same costing ground rules, the Velocity Slip process would require 16 times the fixed capital costs and 12 times the cost per separative work unit as compared to the Jet Membrane Process. The same cost structure indicated that the cost per separative work unit for the Jet Membrane process would be two to three times that for the Gas Centrifuge process. There are a number of uncertainties associated with these cost estimates, such that, in the extreme, the costs might be the same. Further, more detailed cost analysis would be required to resolve the uncertainties associated with the initial cost estimates. The conduct of new studies was not considered to be appropriate for EPRI because of the changes in enrichment program management and security philosophy discussed in the text

  6. High efficiency noble gas electron impact ion source for isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, A. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Olson, J. E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dahl, D. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ward, M. B. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-01

    An electron impact ion source has been designed for generation of noble gas ions in a compact isotope separator. The source utilizes a circular filament that surrounds an ionization chamber, enabling multiple passes of electrons through the ionization chamber. This report presents ion optical design and the results of efficiency and sensitivity measurements performed in an ion source test chamber and in the compact isotope separator. The cylindrical design produced xenon ions at an efficiency of 0.37% with a sensitivity of ~24 µA /Pa at 300 µA of electron current.

  7. A new type separation column for the water-hydrogen isotope catalytic exchange process

    International Nuclear Information System (INIS)

    Fedorchenko, O.A.; Alekseev, I.A.; Trenin, V.D.

    2001-01-01

    The catalytic water/hydrogen isotope exchange process is by right considered the most attractive for the solution a number of urgent problems of hydrogen isotope separation. A new type exchange reaction column is described and studied in details by computer simulation and with the help of McCabe-Thiele diagrams. It is shown that the new column in comparison with a traditional one needs less catalyst quantity and a smaller diameter for the solving of the same separation tasks. Generalized calculation data are presented in graphical form

  8. Study of the isotope separation of uranium by extraction method with crown ether

    International Nuclear Information System (INIS)

    Han Yande; Luo Wenzong; Gao Shuqin

    1993-01-01

    This paper presents two-phase isotope chemical exchange systems for isotope separation of uranium. The equilibrated phases consisted of an aqueous solution of a uranium salt and a 1.2-dichloroethane solution of uranium-crown ether complex. Significant uranium isotope effect can be obtained without a valence change of uranium in isotope exchanging between the aqua and crown ether complexes in these systems, and uranium-235 was concentrated in the organic phase in all cases, and the uranium isotope exchange rate with crown ether was rapid. By means of a stepwise enriching and depleting cascade process, the equilibrium single-stage separation factors α were determined in several liquid-liquid extraction systems, in which uranyl chloride is extracted by DCH18C6(Dicyclohexyl-18-Crown-6), the values α were found to be 1.0010 ± 0.0002 and 1.0012 ± 0.0004 for initial U(VI) concentrations of 5 mg u/ml and 100 mg u/ml in the aqueous phase, respectively, for an enriching cascade process. The average values of α were found to be 1.0014 ± 0.0007 for initial U(VI) concentration of 75 mg u/ml in aqueous phase for a stepwise depleting cascade process. The mean single-stage separation factors were determined as α = 1.00061 ± 0.00009 and α = 1.00066± 0.00019 for four independent cascade processes of the stepwise enriching and stepwise depleting, respectively, for the isotope chemical exchange systems in which uranyl chloride is extracted by DCH24C8 (Dicyclohexy 1-24-Crown-8). The value of separation factor was found to be α = 1.0007 ± 0.0001 in the isotope chemical exchange system in which UCI 4 is extracted by DCH18C6, for initial 0.1012 mol u/l in the aqueous phase

  9. Mass and heat transfer on B7 ordered packing in hydrogen isotope separation by distillation

    International Nuclear Information System (INIS)

    Croitoru, Cornelia; Pop, Floarea; Titescu, Gheorghe; Stefanescu, Ioan; Trancota, Dan; Peculea, Marius

    2002-01-01

    This work presents theoretical and experimental data referring to mass and heat transfer on B7 ordered packing in deuterium isotope separation by distillation. The first part is devoted to the study of mass transfer in hydrogen isotopic distillation while the second one treats the mass and heat transfer in water isotopic distillation. A stationary mathematical model for the mass and heat transfer was developed based on multitubular column model with wet wall. This model allowed the calculation starting from theoretical data of the ordered packing efficiency, expressed by the transfer unit height, TUH. Also, from theoretical data the mass and heat transfer coefficients were determined. A test of the mathematical model was performed with the experimental data obtained from two laboratory installations for hydrogen isotope separation by distillation. From the first installation, experimental data concerning the B7 ordered packing efficiency were obtained for the deuterium separation by cryogenic distillation at the - 250 deg C level. With the second one data referring to the mass and heat transfer on the same packing were obtained for the deuterium separation by water distillation under vacuum at the 60 deg C level. The values of TUH, mass and heat transfer coefficients as theoretically evaluate and experimentally checked are in agreement with the respective values obtained in separation processes in chemical industry. This is the fact which endorses utilization of the model of multitubular column with wet wall for describing the transfer processes in distillation columns equipped with B7 ordered packing

  10. Present and prospective situation in laser isotope separation: will the free electron laser be needed

    International Nuclear Information System (INIS)

    Rigny, P.

    1984-09-01

    The need for enriched isotopes, as it appears to day will be recalled for the foreseeable future, this need, in quantitative terms, will be confined to isotopes for nuclear energy. The interest of laser isotope separation will finally depend on our ability to fulfil a number of requirements as to the laser output light characteristics. These will be recalled for the most common laser processes (molecular photodissociation and atomic photoionisation). At this point a comparison with expectations from the FEL can already be attempted. Less common laser isotope separation schemes can gain interest from the possibilities opened by the FEL, especially by access to new wavelengths ranges. Some schemes implying UV or VUV photons will be discussed, as well as some possibilities involving IR photons. Attention will be paid to the problems that arise when considering scaled-up isotope separation installations. A large scale process results in more constraints on the laser parameters. Estimation of FEL capacity in this respect will be attempted

  11. Studies on cryogenic distillation columns for hydrogen isotope separation

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro

    1984-08-01

    Cryogenic distillation is applicable to a number of situations. The feed condition, column cascade configuration, input and output specifications vary greatly from situation to situation. In the mainstream fuel circulation system for a fusion reactor, the feed composition may fluctuate greatly during the operation. The radiological standards for tritium lost to the environment are increasingly becoming stricter. Systematic studies are needed to achieve the goal of long-term operation meeting the strict requirements for products even under great fluctuation of the feed condition in all the situations. The present report gives a critical, brief review of the studies which have been made by the author. The subjects treated are development of computer simulation procedures, analysis on an H-T separation column with a feedback stream, dynamics and control, proposal of a new cascade, analysis on helium effects on column behavior, start-up analysis for a cascade, and preliminary experimental study on dependence of HETP on operational conditions. (author)

  12. Experimental determination of one- and two-neutron separation energies for neutron-rich copper isotopes

    Science.gov (United States)

    Yu, Mian; Wei, Hui-Ling; Song, Yi-Dan; Ma, Chun-Wang

    2017-09-01

    A method is proposed to determine the one-neutron S n or two-neutron S 2n separation energy of neutron-rich isotopes. Relationships between S n (S 2n) and isotopic cross sections have been deduced from an empirical formula, i.e., the cross section of an isotope exponentially depends on the average binding energy per nucleon B/A. The proposed relationships have been verified using the neutron-rich copper isotopes measured in the 64A MeV 86Kr + 9Be reaction. S n, S 2n, and B/A for the very neutron-rich 77,78,79Cu isotopes are determined from the proposed correlations. It is also proposed that the correlations between S n, S 2n and isotopic cross sections can be used to find the location of neutron drip line isotopes. Supported by Program for Science and Technology Innovation Talents at Universities of Henan Province (13HASTIT046), Natural and Science Foundation in Henan Province (162300410179), Program for the Excellent Youth at Henan Normal University (154100510007) and Y-D Song thanks the support from the Creative Experimental Project of National Undergraduate Students (CEPNU 201510476017)

  13. Cost analysis of lasers for a laser isotope separation system. Final report

    International Nuclear Information System (INIS)

    Mail, R.A.; Markovich, F.J.; Carr, R.H.

    1977-01-01

    To be of practical significance, laser isotope separation (LIS) for separation of 235 U from 238 U must exhibit attributes which make it preferable to expansion of the present facilities. Clearly the most attractive such attribute is the prospect of significant cost reductions, which preliminary studies at LLL suggest will amount to a factor of three and perhaps as much as ten. From these preliminary studies, it appears that the lasers themselves account for a very substantial portion of the capital cost of a LIS system, and a significant portion of the equipment replacement costs. Since the laser costs are so pivotal to the system cost, and the system cost is so pivotal to the choice of separation techniques, it is clear that a more detailed investigation of laser costs is required. Results are presented of a study performed by General Research Corporation (GRC) to assess the cost of lasers in a production laser isotope separation (LIS) plant

  14. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, J.M.; DePaolo, D.J.; Ryerson, F.J.; Peterson, B.

    2011-03-01

    Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl{sub 2}Si{sub 2}O{sub 8}; denoted AN), albite (NaAlSi{sub 3}O{sub 8}; denoted AB), and diopside (CaMgSi{sub 2}O{sub 6}; denoted DI) were held at 1450°C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB–AN experiment, D{sub Ca}/D{sub Si} ~ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D{sub Ca}/D{sub Si} ~ 1. In the AB–DI experiment, D{sub Ca}/D{sub Si} ~ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB–AN experiment. In the AB–DI experiment, D{sub Mg}/D{sub Si} ~ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity—the ratio of the diffusivity of the cation (D{sub Ca}) to the diffusivity of silicon (D{sub Si}). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D{sub cation

  15. Effect of nonequilibrium degree on separation factor in carbon isotope separation by CO2 microwave discharge

    International Nuclear Information System (INIS)

    Masaaki Suzuki; Shinsuke Mori; Noritaka Matsumoto; Hiroshi Akatsuka

    1999-01-01

    The local separation factor and the local nonequilibrium degree just behind the plasma region were obtained. The plasma gas compositions measured by the enthalpy probe system were substantially thermodynamic nonequilibrium conditions, when the input energy was 4 J/cm 3 . The measured maximum value of the separation factor was 1.01, although it changed locally. The measured separation factor and its nonequilibrium condition were discussed. Anyway, the only small value obtained in this experiments is similar to the recent data obtained by Kurchatov group and is less than published data, which is measured spectroscopically [ru

  16. Deuterium separation factors for isotopic exchange between hydrogen sulphide and water

    International Nuclear Information System (INIS)

    Dave, S.M.; Ghosh, S.K.; Sadhukhan, H.K.

    1981-01-01

    The overall deuterium separation factors for the hydrogen sulphide-water exchange where all the isotopic species of these molecules are in equilibrium have been calculated both for liquid-gas and gas-gas exchange as functions of temperature and deuterium concentration. (author)

  17. A system for control and test of the ISOLDE isotope separator

    CERN Document Server

    Broman, Petter

    1989-01-01

    During three months of the summer 1989 I worked as a "summer student" at the researche laboratory CERN in Geneva. The ISOLDE isotope separator is the facility were I made my contribution. This report is the account for what I did. The work is intended for my diploma thesis.

  18. High repetition rate pulsed gas lasers and their applications in chemistry and isotope separation

    International Nuclear Information System (INIS)

    Barahov, V.Y.

    1983-01-01

    Presented in this paper are the results of experimental studies of pulsed high repetition rate XeCl, CO 2 , NH 3 , and CF 4 lasers with a closed gas cycle. Some applications of these lasers in chemistry and isotope separation are discussed

  19. Method of separation of fission and corrosion products and of corresponding isotopes from liquid waste

    International Nuclear Information System (INIS)

    Prochazka, H.; Stamberg, K.; Jilek, R.; Hulak, P.; Katzer, J.

    1976-01-01

    A method of separating fission and corrosion products and corresponding stable isotopes from liquid waste is described. Mycelia of fungi are used as sorbents for retaining these products on their surface and within their pores. Methods of activation or regeneration of the sorbent are outlined. 11 claims

  20. The isotope separator on-line at the INS-SF cyclotron

    International Nuclear Information System (INIS)

    Yonehara, H.; Kawakami, H.; Tanaka, J.; Omata, K.; Shida, Y.

    1981-02-01

    The Isotope Separator On-Line at the SF Cyclotron has been improved. Some details of improvements are described on the target-ion source, rapid extraction with aluminized tape, tape transport system and data aquisition. The performance of the improved SF-ISOL is discussed. (author)

  1. Exploiting Diffusion Barrier and Chemical Affinity of Metal-Organic Frameworks for Efficient Hydrogen Isotope Separation.

    Science.gov (United States)

    Kim, Jin Yeong; Balderas-Xicohténcatl, Rafael; Zhang, Linda; Kang, Sung Gu; Hirscher, Michael; Oh, Hyunchul; Moon, Hoi Ri

    2017-10-25

    Deuterium plays a pivotal role in industrial and scientific research, and is irreplaceable for various applications such as isotope tracing, neutron moderation, and neutron scattering. In addition, deuterium is a key energy source for fusion reactions. Thus, the isolation of deuterium from a physico-chemically almost identical isotopic mixture is a seminal challenge in modern separation technology. However, current commercial approaches suffer from extremely low separation efficiency (i.e., cryogenic distillation, selectivity of 1.5 at 24 K), requiring a cost-effective and large-scale separation technique. Herein, we report a highly effective hydrogen isotope separation system based on metal-organic frameworks (MOFs) having the highest reported separation factor as high as ∼26 at 77 K by maximizing synergistic effects of the chemical affinity quantum sieving (CAQS) and kinetic quantum sieving (KQS). For this purpose, the MOF-74 system having high hydrogen adsorption enthalpies due to strong open metal sites is chosen for CAQS functionality, and imidazole molecules (IM) are employed to the system for enhancing the KQS effect. To the best of our knowledge, this work is not only the first attempt to implement two quantum sieving effects, KQS and CAQS, in one system, but also provides experimental validation of the utility of this system for practical industrial usage by isolating high-purity D 2 through direct selective separation studies using 1:1 D 2 /H 2 mixtures.

  2. On-line separation of refractory hafnium and tantalum isotopes at the ISOCELE separator

    CERN Document Server

    Liang, C F; Obert, J; Paris, P; Putaux, J C

    1981-01-01

    By chemical evaporation technique, neutron deficient hafnium nuclei have been on-line separated at the ISOCELE facility, from the isobar rare-earth elements, in the metal-fluoride HfF/sub 3//sup +/ ion form. Half-lives of /sup 162-165/Hf have been measured. Similarly, tantalum has been selectively separated on the TaF/sub 4//sup +/ form. (4 refs) .

  3. Separation of 15N by isotopic exchange in NO, NO2-HNO3 system under pressure

    International Nuclear Information System (INIS)

    Axente, D.; Baldea, A.; Teaca, C.; Horga, R.; Abrudean, M.

    1998-01-01

    One of the most used method for production of 15 N with 99% at. concentration is the isotopic exchange between gaseous nitrogen oxides and HNO 3 solution 10M: ( 15 NO, 15 NO 2 ) g + H 14 NO 3,l = ( 14 NO, 14 NO 2 ) g + H 15 NO 3,l . The isotopic exchange is characterized by an elemental separation factor α=1.055 at 25 deg. C and atmospheric pressure. Recently, kinetics data pointed to the linear dependence of the exchange rate 15 N/ 14 N(R) on the nitrogen oxide pressure with a rate law R = k[HNO 3 ] 2 · [N 2 O 3 ]. In this work, the influence of the nitrogen oxide pressure on the 15 N separation efficiency was determined by the use of a laboratory equipment with a separation column pack of Helipack type, with dimensions 1.8 mm x 1.8 mm x 0.2 mm. The increase of nitrogen oxide pressure led to a better isotopic transfer between the two counter-flow phases in the column pack. The HETP (Height Equivalent to a Theoretical Plate) determined for a 3.14 ml ·cm -2 · min -1 load is equal to that obtained at atmospheric pressure for a two times lower load. The operation of the equipment for isotopic separation of 15 N at 1.8 atm instead of atmospheric pressure allows doubling the HNO 3 10 M load of the column and consequently, doubling the production rate. A better performance of the separation process at higher pressure is essential for the industrial production of 15 N isotope which is used for the production of uranium nitride in FBR type reactors. (authors)

  4. Oxygen isotope separation by isotopically selective infrared multiphoton dissociation of 2,3-dihydropyran

    International Nuclear Information System (INIS)

    Yokoyama, Atsushi; Ohba, Hironori; Akagi, Hiroshi; Yokoyama, Keiichi; Saeki, Morihisa; Katsumata, Keiichi

    2008-01-01

    Oxygen isotopic selectivity on infrared multiphoton dissociation of 2,3-dihydropyran has been studied by the examination of the effects of excitation frequency, laser fluence, and gas pressure on the dissociation probability of 2,3-dihydropyran and isotopic composition of products. Oxygen-18 was enriched in a dissociation product: 2-propenal. The enrichment factor of 18 O and the dissociation probability were measured at laser frequency between 1033.5 and 1057.3 cm -1 ; the laser fluence of 2.2 - 2.3 J/cm 2 ; and the 2,3-dihydropyran pressure of 0.27 kPa. The dissociation probability decreases as the laser frequency being detuned from the absorption peak of 2,3-dihydropyran around 1081 cm -1 . On the other hand, the enrichment factor increases with detuning the frequency. The enrichment factor of 18 O increases with increasing the 2,3-dihydropyran pressure at the laser fluence below 3 J/cm 2 and the laser frequency of 1033.5 cm -1 , whereas the yield of 2-propenal decreases with increasing the pressure. Very high enrichment factor of 751 was obtained by the irradiation of 0.53 kPa of 2,3-dihydropyran at 2.1 J/cm 2 . (author)

  5. Characteristic analysis of laser isotope separation process by two-step photodissociation method

    International Nuclear Information System (INIS)

    Okamoto, Tsuyoshi; Suzuki, Atsuyuki; Kiyose, Ryohei

    1981-01-01

    A large number of laser isotope separation experiments have been performed actively in many countries. In this paper, the selective two-step photodissociation method is chosen and simultaneous nonlinear differential equations that express the separation process are solved directly by using computer. Predicted separation factors are investigated in relation to the incident pulse energy and the concentration of desired molecules. Furthermore, the concept of separative work is used to evaluate the results of separation for this method. It is shown from an example of numerical calculation that a very large separation factor can be obtained if the concentration of desired molecules is lowered and two laser pulses to be closely synchronized are not always required in operation for the photodissociation of molecules. (author)

  6. Uranium isotope separation in the solid state. Progress report, December 1, 1976--June 1, 1977

    International Nuclear Information System (INIS)

    Bernstein, E.R.

    1977-06-01

    Since we were actively able to work on this project, we have been engaged in three separate lines of research. Each of these has been related to laser-induced isotope separation of uranium in the solid state. The three areas are: (a) improved reaction chemistry for both host materials Zr(BH 4 ) 4 and Hf(BH 4 ) 4 and U(BH 4 ) 4 itself; (b) improved spectroscopic techniques in order to obtain sharper spectra; and (c) solid state photochemical investigations to study U(BH 4 ) 4 photodecomposition mechanism and yield as a function of wave length. These are all integral parts of the solid state isotope separation procedure and are discussed in terms of the overall process proposed

  7. Rule of thumb for binary isotope separations in a gas centrifuge

    International Nuclear Information System (INIS)

    Berger, M.H.

    1985-12-01

    A very simple hypothetical model of the binary isotope separation process in a countercurrent Gas Centrifuge is proposed. Like the usual Cohen-Onsager separation theory it involves the internal fluid dynamics, but unlike the usual isotopic separation theory it completely obviates the usual flow integrals for Cohen's E. Thereby allowing an immediate estimate of the flow efficiency of a given design, which can and sometimes should be checked later by the usual analyses. To shed some light on our idea, two simple derivations for assumed idealized hydrodynamics are given, but a rigorous proof remains an open question. Then our hypothesis is tested against a battery of about 10 new ''exact'' formulas for E based upon analytical solutions to several variants of Onsager's pancake equation and found to be ''reasonably'' accurate and surprisingly robust. Finally, some limitations of our rule are explored

  8. Tritium isotope separation from light and heavy water by bipolar electrolysis

    International Nuclear Information System (INIS)

    Petek, M.; Ramey, D.W.; Taylor, R.D.; Kobisk, E.H.

    1980-01-01

    A process for separating tritium from light and heavy water is described. Hydrogen is transferred at and through bipolar electrodes at rates H > D > T. In a cell containing several bipolar electrodes placed in series between two terminal electrodes, a flow of hydrogen is established from the terminal anode compartment toward the terminal cathode. An electrolyte feed containing tritium is continuously added to the system and is subsequently transported countercurrent to the hydrogen mass transfer. A cascaded system is established, in which effluent streams enriched and depleted in tritium can be withdrawn. The voltage drop is smaller at any bipolar electrode as compared to the voltage for normal electrolysis. Cell design is compact because isotope separation occurs at bipolar electrodes without evolution of gas. Isotope separation was demonstrated in laboratory cells where a steady-state tritium concentration gradient was attained. This gradient was in agreement with concentrations calculated from a derived mathematical model

  9. Basic study on isotope separation using light induced drift effects (Progress report)

    Energy Technology Data Exchange (ETDEWEB)

    Suto, Osamu; Yamaguchi, Hiromi; Suzuki, M. [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works; Ishii, K.

    1999-03-01

    As a preliminary research on {sup 15}N-isotope separation on the basis of light induced drift (LID) effects in NH{sub 3}, the authors have confirmed the feasibility on {sup 13}C-isotope separation using LID effects in CH{sub 3}F for which all the necessary spectroscopic data are available and found that: (1) Concentration difference at the entrance and at the exit end of the drift tube {delta}n{sub a} (number/cm{sup 3}) was proportional to the energy density absorbed ({delta}W/cm{sup 2}), indicating the validity of theoretical LID equation. (2) Pressure dependence of {delta}n{sub a}/{delta}S was maximum at ca. 0.5 Torr. Lower {delta}n{sub a}/{delta}S values are due to power saturation effects at low pressures and due to absorption line broadening at high pressures. (3) Maximum isotopic selectivity was obtained at 0.5 Torr and to be 1.18. (4) Time needed for {delta}n{sub a} to attain the equilibrium increased with increasing pressure. They concluded that the possibility of {sup 15}N isotope separation using NH{sub 3}-LID effect was in principle confirmed. (S. Ohno)

  10. Realization of an electromagnetic isotope separator. Application to the isotopes of the mass 93 from the molybdenum and the technetium

    International Nuclear Information System (INIS)

    Bernas, R.

    1954-07-01

    Analysis of focusing properties of a homogeneous magnetic field leads the author to use a magnetic sector of 60 deg, for the realization of an electromagnetic separator. The sources of realized ions provide ionic debits of 10 mA. The currents ionic detached isotopes to the collector vary from 1 to 5 mA. The separation efficiency is of 125 for a current collected of 1 mA. A survey of the neutralization of the space charge permitted to specify the role of the negative ions in this phenomenon. A method of neutralization of the space charge is proposed and gave excellent results. A report will be given of the separations of some elements: mercury, bromine, thorium, etc... The application of the separator to the study of the isomeric transfers in the molybdenum and the technetium permitted to assign definitely for 93 Mo and 93 Tc two radiances γ of respective energies 260 and 390 keV. A new process of fast chemical separation Mo/Tc is described. (author) [fr

  11. Simulation and modeling of the processes in the isotopic exchange column of a cryogenic pilot plant for tritium separation

    International Nuclear Information System (INIS)

    Retevoi, Carmen Maria; Stefan, Liviu; Balteanu, Ovidiu; Stefan, Iulia; Bornea, Anisia; Salamon, Peter

    2002-01-01

    The technology developed at the Institute of Cryogenics and Isotope Separations is based on catalytic isotope exchange between water and hydrogen gas both carrying various isotopes of hydrogen: normal hydrogen, deuterium, and tritium. This isotope exchange is followed by cryogenic distillation separating the various isotopes of hydrogen gas. The detritiation process was simulated using as working fluids water with a small content of deuterium and a gaseous mixture of hydrogen and deuterium. The mathematical model and the measured parameters permitted to compute the speed constants of the isotopic exchange by distillation and catalytic action, respectively, for deuterium and tritium. Also for monitoring the isotopic exchange column careful control of the temperature is necessary. To ensure that we made an automation system with data acquisition and control which provides all the data for analysis. (authors)

  12. Progress in 15N and 13C separation by isotopic exchange

    International Nuclear Information System (INIS)

    Axente, D.

    2004-01-01

    An experimental study of 15 N separation by isotopic exchange in NO, NO 2 - HNO 3 system under pressure is presented. The pressure increase in 15 N separation plant improved the isotopic transport between the two phases circulated in counter-current in the packed column according to a better kinetics of isotopic exchange at higher pressures. The operation of 15 N separation plant at a pressure of 1.8 atm (absolute) will permit doubling of 10 M nitric acid flow rate and of 15 N production of a given column. The improved performance at a higher pressure is significant for large scale 15 N production, which would be utilized for uranium nitride fuels for FBRs. Enrichment of 13 C by chemical exchange between CO 2 and amine carbamate in nonaqueous solvent has been modelled. For process optimization the steady state separation and the height equivalent to a theoretical plate (HETP) have been determined for different experimental conditions and simulated for higher pressures than atmospheric one. At lower temperature (5 deg C) as the pressure increases the quantity of CO 2 dissolved in amine solution increases. For process analysis at higher pressures and lower temperatures, the two steps model has been considered. At 0.9 MPa pressure and 5 deg C the reaction rate is higher than at 25 deg C and atmospheric pressure, the value of HETP being lower with more than 100% than at 25 deg C. (author)

  13. Process and system for isotope separation using the selective vibrational excitation of molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1976-01-01

    This invention concerns the separation of isotopes by using the isotopically selective vibrational excitation and the vibration-translation reactions of the excited particles. UF 6 molecular mixed with a carrier gas, such as argon, are directed through a refrigerated chamber lighted by a laser radiation tuned to excite vibrationally the uranium hexafluoride molecules of a particular uranium isotope. The density of the carrier gas is preferably maintained above the density of the uranium hexafluoride to allow a greater collision probability of the vibrationally excited molecules with a carried molecule. In such a case, the vibrationally excited uranium hexafluoride will collide with a carrier gas molecule provoking the conversion of the excitation energy into a translation of the excited molecule, resulting in thermal energy or greater diffusibility than that of the other uranium hexafluoride molecules [fr

  14. Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping

    Science.gov (United States)

    Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Esfandiar, A.; Grigorieva, I. V.; Geim, A. K.

    2017-05-01

    Thousands of tons of isotopic mixtures are processed annually for heavy-water production and tritium decontamination. The existing technologies remain extremely energy intensive and require large capital investments. New approaches are needed to reduce the industry's footprint. Recently, micrometre-size crystals of graphene are shown to act as efficient sieves for hydrogen isotopes pumped through graphene electrochemically. Here we report a fully-scalable approach, using graphene obtained by chemical vapour deposition, which allows a proton-deuteron separation factor of around 8, despite cracks and imperfections. The energy consumption is projected to be orders of magnitude smaller with respect to existing technologies. A membrane based on 30 m2 of graphene, a readily accessible amount, could provide a heavy-water output comparable to that of modern plants. Even higher efficiency is expected for tritium separation. With no fundamental obstacles for scaling up, the technology's simplicity, efficiency and green credentials call for consideration by the nuclear and related industries.

  15. Separation of rate processes for isotopic exchange between hydrogen and liquid water in packed columns 10

    International Nuclear Information System (INIS)

    Butler, J.P.; Hartog, J. den; Goodale, J.W.; Rolston, J.H.

    1977-01-01

    Wetproofed platinum catalysts in packed columns promote isotopic exchange between counter-current streams of hydrogen saturated with water vapour and liquid water. The net rate of deuterium transfer from isotopically enriched hydrogen has been measured and separated into two rate processes involving the transfer of deuterium from hydrogen to water vapour and from water vapour to liquid. These are compared with independent measurements of the two rate processes to test the two-step successive exchange model for trickle bed reactors. The separated transfer rates are independent of bed height and characterize the deuterium concentrations of each stream along the length of the bed. The dependences of the transfer rates upon hydrogen and liquid flow, hydrogen pressure, platinum loading and the effect of dilution of the hydrophobic catalyst with inert hydrophilic packing are reported. The results indicate a third process may be important in the transfer of deuterium between hydrogen and liquid water. (author)

  16. Proceedings of the 2nd specialist research meeting on the electromagnetic isotope separators and their applications

    International Nuclear Information System (INIS)

    Fujioka, Manabu; Kawase, Yoichi; Okano, Kotoyuki

    1992-07-01

    The EMIS-12 International Conference was held at Sendai in September, 1991 for the first time in Japan. It offered a nice opportunity to appeal a great progress in our country on the related fields and many interesting subjects were discussed. The second research meeting on Electromagnetic Isotope Separators and Their Applications was held at Kumatori on March 18 and 19, 1992, six months after the EMIS-12 Conference. Many interesting results obtained by using ISOLs were reported as in the previous meeting. In the present meeting, the measuring methods and the improved instruments were reported and discussed, which are fundamental for application of isotope separation methods to the interdisciplinary research fields. These valuable contributions to the meeting are involved in this Proceedings. (J.P.N.)

  17. Aspects regarding at 13C isotope separation column control using Petri nets system

    Science.gov (United States)

    Boca, M. L.; Ciortea, M. E.

    2015-11-01

    This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13C Isotope Separation column using Petri nets. The major problem with 13C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times.

  18. Analysis and optimization of gas-centrifugal separation of uranium isotopes by neural networks

    Directory of Open Access Journals (Sweden)

    Migliavacca S.C.P.

    2002-01-01

    Full Text Available Neural networks are an attractive alternative for modeling complex problems with too many difficulties to be solved by a phenomenological model. A feed-forward neural network was used to model a gas-centrifugal separation of uranium isotopes. The prediction showed good agreement with the experimental data. An optimization study was carried out. The optimal operational condition was tested by a new experiment and a difference of less than 1% was found.

  19. Tunable lasers in isotope separation, a colorful view of a dye chemist

    International Nuclear Information System (INIS)

    Hammond, P.R.

    1976-01-01

    Some of the problems to be encountered in the large-scale use of dye lasers in an isotope separation plant are discussed. Why should dye lasers be employed. How can dye conversion efficiency be optimized. How can dye photochemical decomposition and hence running costs be minimized and how serious is this effect anyway. What are toxicity problems with the dye. These and similar issues are examined

  20. Separation of calcium-48 isotope by crown ether chromatography using ethanol/hydrochloric acid mixed solvent.

    Science.gov (United States)

    Okumura, Shin; Umehara, Saori; Fujii, Yasuhiko; Nomura, Masao; Kaneshiki, Toshitaka; Ozawa, Masaki; Kishimoto, Tadafumi

    2015-10-09

    Benzo-18-crown-6 ether resin embedded in porous silica beads was synthesized and used as the packing material for chromatographic separation of (48)Ca isotope. The aim of the present work is to develop efficient isotope enrichment process for double β decay nuclide (48)Ca. To this end, ethanol/HCl mixed solvent was selected as the medium for the chromatographic separation. Adsorption of calcium on the resin was studied at different HCl concentrations and different ethanol mixing ratios in batch-wise experiments. A very interesting phenomenon was observed; Ca adsorption is controlled not by the overall HCl concentration of the mixed solvent, but by the initial concentration of added HCl solution. Calcium break-through chromatography experiments were conducted by using 75v/v% ethanol/25v/v% 8M HCl mixed solvent at different flow rates. The isotope separation coefficient between (48)Ca and (40)Ca was determined as 3.8×10(-3), which is larger than that of pure HCl solution system. Discussion is extended to the chromatographic HETP, height equivalent to a theoretical plate. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A Mass Spectrometry Study of Isotope Separation in the Laser Plume

    Science.gov (United States)

    Suen, Timothy Wu

    Accurate quantification of isotope ratios is critical for both preventing the development of illicit weapons programs in nuclear safeguards and identifying the source of smuggled material in nuclear forensics. While isotope analysis has traditionally been performed by mass spectrometry, the need for in situ measurements has prompted the development of optical techniques, such as laser-induced breakdown spectroscopy (LIBS) and laser ablation molecular isotopic spectrometry (LAMIS). These optical measurements rely on laser ablation for direct solid sampling, but several past studies have suggested that the distribution of isotopes in the ablation plume is not uniform. This study seeks to characterize isotope separation in the laser plume through the use of orthogonal-acceleration time-of-flight mass spectrometry. A silver foil was ablated with a Nd:YAG at 355 nm at an energy of 50 muJ with a spot size of 71 mum, for a fluence of 1.3 J/cm2 and an irradiance of 250 MW/cm2. Flat-plate repellers were used to sample the plume, and a temporal profile of the ions was obtained by varying the time delay on the high-voltage pulse. A spatial profile along the axis of the plume was generated by changing the position of the sample, which yielded snapshots of the isotopic composition with time. In addition, the reflectron time-of-flight system was used as an energy filter in conjunction with the repellers to sample slices of the laser plasma orthogonal to the plume axis. Mass spectrometry of the plume revealed a fast ion distribution and a slow ion distribution. Measurements taken across the entire plume showed the fast 109Ag ions slightly ahead in both space and time, causing the 107Ag fraction to drop to 0.34 at 3 mus, 4 mm from the sample surface. Although measurements centered on the near side of the plume did not show isotope separation, the slow ions on the far side of the plume included much more 109Ag than 107Ag. In addition to examining the isotope content of the ablation

  2. Early evaluation of hydrogen isotopes separation by V4Cr4Ti-based sorbents at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kulsartov, Timur, E-mail: tima@physics.kz [Institute of Experimental and Theoretical Physics of Kazakh National University, 050038 Almaty (Kazakhstan); Institute of Atomic Energy of National Nuclear Center, 071100 Kurchatov (Kazakhstan); Shestakov, Vladimir; Chikhray, Yevgen; Kenzhina, Inesh; Askerbekov, Saulet [Institute of Experimental and Theoretical Physics of Kazakh National University, 050038 Almaty (Kazakhstan); Gordienko, Yuriy; Ponkratov, Yuriy; Zaurbekova, Zhanna [Institute of Atomic Energy of National Nuclear Center, 071100 Kurchatov (Kazakhstan)

    2016-12-15

    This paper presents the results of experiments on hydrogen isotopes sorption with V4Cr4Ti vanadium alloys from a mixture of hydrogen isotopes. The studies were carried out at temperatures of 353 K, 393 K, 423 K; and pressures of 10{sup 3}–10{sup 4} Pa in gas mixture of hydrogen isotopes. The α-phase domain of V-H (D) system was studied, where the concentration of hydrogen isotopes atoms should not exceed 0.015H (D) atoms per metal atom. The separation parameters were derived for several saturation conditions accordingly to registered time dependences of hydrogen isotopes partial pressure drop. The conclusion was made about the prospects of using vanadium alloys in hydrogen isotopes separation and purification systems.

  3. Electrochemical separation and isotopic determination of thallium at the nanogram level by surface ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Arden, J.W.

    1983-01-01

    A rapid low-blank procedure is described for the co-separation of thallium and lead by sequential cathodic and anodic electrodeposition from natural samples, especially complex natural silicates, for subsequent mass spectrometry. A micro anion-exchange procedure is also described for the separation of thallium and lead. Ion currents of 10 - 10 A can be obtained from 1 ng of thallium. The isotopic composition of 1 ng of thallium can be measured on a Faraday detector with a precision of 0.05-0.1%. The total procedural blank is 3 pg. By using stable isotope dilution, 0.2 ng of thallium can be measured with a precision of 0.6% with only a 2% blank correction. This allows the accurate determination of thallium in natural samples down to concentration levels of about 50 pg g - 1 . The detection limit is 50 fg. This procedure has been applied to meteorites and terrestrial rocks. The stable isotope dilution technique is suitable for geochemical, environmental and toxicological studies requiring a highly sensitive, accurate and precise method for the determination of thallium. (Auth.)

  4. Study of the photochemical oxidation of mercury: application to the separation of mercury isotopes

    International Nuclear Information System (INIS)

    Morand, J.P.

    Investigation of the mechanism of the isotopic photo-oxidation of mercury has enabled the existence of an unstable excited complex (HgO 2 *) to be demonstrated. In the presence of butadiene, this complex gives stable mercuric oxide. Butadiene does not act purely as an interceptor for oxidizing species. By theoretical investigation of the complex HgO 2 *, its electronic structure ( 3 PI) could be determined and its energy of formation (4.6 eV) predicted. The phenomenon of photodecomposition of mercuric oxide was demonstrated and its importance evaluated. The results obtained made it possible to develop an apparatus for the photochemical separation of the isotopes of mercury, whose efficiency is acceptable despite the low quantum yield. Since the method for the photochemical separation of the isotopes has only been studied for mercury, an identical study for other elements, and particularly for elements of the same group as mercury (zinc, cadmium), could lead in the future to new aspects in the study of photochemical mechanisms

  5. Study of the isotopic exchange associated with ionic exchange for the radiochemical separation of 233-Th

    International Nuclear Information System (INIS)

    Sepulveda Munita, C.J.A.

    1983-01-01

    The isotopic ion exchange procedure is applied in order to establish an analytical method for the determination of thorium by means of the 233 Th activity, when the presence of interfering elements does not allow a direct non-destructive activation analysis. The separation is based on the retention of 233 Th by a thorium saturated resin, due to the isotopic exchange effect, and subsequent elution of the interfering radioisotopes with a solution of thorium in diluted hydrochloric acid. The interfering elements were those which either present a great affinity for the resin or emit gamma rays with energies close to that of 233 Th (86.6 KeV), when a NaI(Tl) detector is used to obtain the gama-ray spectra of the irradiated samples. The equilibrium time for the thorium isotopic ion exchange and the distribution coefficients for the interfering elements were determined by using Bio-Rad AG 50W resins (100-200 mesh), with 4% to 8% of divinylbenzene. The best separation conditions were established in terms of the thorium and hydrochloric acid concentrations in the solution, the resin cross-linking degree, and the solution flow through the resin. The analytical method was applied to the determination of thorium in samples of ammonium diuranate as well in standard rock samples from the United States Geological Survey. The sensitivity, precision and accuracy of the method are also discussed. (Author) [pt

  6. Study of the coefficient of separation for some processes which are applied to lithium isotopes; Etude du coefficient de separation de quelques processus concernant les isotopes du lithium

    Energy Technology Data Exchange (ETDEWEB)

    Perret, L.; Rozand, L.; Saito, E. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The fundamental separation factors of some processes are investigated: the distillation of metallic lithium, counter current electromigration in fused salts (particularly in lithium nitrate) electrolysis in aqueous solution and ion exchange. The chemical transfer between a lithium amalgam and lithium salts in a dimethylformamide solution (a solvent which is not attacked by the amalgam) is also studied. Finally a description is given of isotopic analyses carried out either by scintillation counting or by mass spectrography using apparatus specially designed for this particular task. (author) [French] Les facteurs de separation elementaires de quelques processus connus sont etudies: distillation du lithium metallique, electromigration a contre-courant en sels fondus (en particulier le nitrate), electrolyse en solution aqueuse et echange d'ions. L'echange chimique entre l'amalgame de lithium et les sels de lithium en solution dans la dimethylformamide - solvant non attaque par l'amalgame - est egalement etudie. Enfin, on decrit les methodes d 'analyse isotopique, soit par comptage par scintillation, soit par spectrometrie de masse au moyen d'un appareil specialement concu pour cet usage particulier. (auteur)

  7. The momentum-loss achromat - a new method for the isotopical separation of relativistic heavy ions

    International Nuclear Information System (INIS)

    Schmidt, K.H.; Geissel, H.; Muenzenberg, G.; Dufour, J.P.; Hanelt, E.

    1987-03-01

    The application of the slowing-down process of relativistic heavy ions in a layer of matter in ion-optical devices is theoretically investigated. The modifications of the phase space of the ion beam due to the dissipative forces and the straggling phenomena are discussed. Methods are developed to study the properties of the momentum-loss achromat, an isotope separator consisting of an achromatic magnetic system with an energy degrader located in the intermediate dispersive focal plane. This device separates projectile fragments with respect to A and Z up to uranium over a wide energy range with an efficiency in the order of 50% and with separation times of several hundred nanoseconds. (orig.)

  8. Improvements on heavy water separation technology by isotopic water-hydrogen sulfide exchange

    International Nuclear Information System (INIS)

    Peculea, M.

    1987-01-01

    A series of possible variance is presented for the heavy water separation technology by isotopic H 2 O-H 2 S exchange at dual temperatures. The critical study of these variants, which are considered as characteristic quantities for the isotopes transport (production) and the extraction level is related to a dual temperature plant fed by liquid and cold column, which is the up-to-date technology employed in all heavy water production plants as variants of following plants are studied: dual temperature plant with double feeding; dual-temperature plant with equilibrium column (booster); dual-temperature-dual-pressure plant. Attention is paid to the variant with equilibration column (booster), executed and tested at the State Committee for Nuclear Energy and to the dual-temperature-dual pressure plant which presents the highest efficiency. (author)

  9. Chemical investigations of isotope separation on line target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive ion beams (RIBs) are of significant interest in a number of applications. Isotope separation on line (ISOL) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to CO/sub x/ and NOmaterials are potential construction materials for the above-mentioned areas. Off-line and on-line tests have been performed using a gas thermochromatography setup with radioactive tracers. The experiments were performed at the production of tracers for atmospheric chemistry (PROTRAC) facility at the Paul Schener Institute in Villigen...

  10. The role of sidestream recycle in hydrogen isotope separation and column cascade design

    International Nuclear Information System (INIS)

    Sherman, R.H.; Taylor, D.J.; Yamanishi, T.; Enoeda, M.; Konishi, S.; Okuno, K.

    1994-01-01

    Sidestream recycle combined with sidestream equilibration is important in hydrogen isotopic distillation processes because it offers a means to reduce the number of columns required for the extraction of pure homonuclear species. This directly implies simpler systems, reduced control problems, and reduce material inventories. Measurements were recently completed for a single distillation column using feed compositions (∼50--50 D-T) and product flows similar to those expected in an ITER type device wit recycle of an equilibrated sidestream withdrawn from the column. Dynamic studies were conducted with flowrates changing as might be expected for typical Tokamak operations. These experimental results are compared with computer simulations of the dynamic process. The impact of these sidestream recycle studies on the design of isotope separation systems is discussed, especially with respect to column design, tritium inventory, dynamic performance, stability, and system control

  11. The role of sidestream recycle in hydrogen isotope separation and column cascade design

    International Nuclear Information System (INIS)

    Sherman, R.H.; Enoeda, M.; Konishi, S.; Okuno, K.

    1995-01-01

    Sidestream recycle combined with sidestream equilibration is important in hydrogen isotopic distillation processes because it offers a means to reduce the number of columns required for the extraction of pure homonuclear species. This directly implies simpler systems, reduced control problems, and reduced material inventories. Measurements were recently completed for a single distillation column using feed compositions (about 50:50 D:T) and product flows similar to those expected in an ITER-type device with recycle of an equilibrated sidestream withdrawn from the column. Dynamic studies were conducted with flowrates changing as might be expected for typical Tokamak operations. These experimental results are compared with computer simulations of the dynamic process. The impact of these sidestream recycle studies on the design of isotope separation systems is discussed, especially with respect to column design, tritium inventory, dynamic performance, stability, and system control. (orig.)

  12. The influence of column temperature on the hydrogen isotopes separation performance of FDC

    International Nuclear Information System (INIS)

    Deng Xiaojun; Luo Deli; Qin Cheng; Yang Wan; Huang Guoqiang; Huang Zhiyong

    2014-01-01

    Frontal displacement chromatography (FDC) is a promising method for hydrogen isotopes separation with obvious advantages such as simple operation process, low tritium retention in system and easy to scale up, etc. We designed and constructed a FDC device using Pd-Al 2 O 3 as separation material in previous study, and the feasibility of FDC for hydrogen isotopes separation was confirmed. On the basis of the results, a series of experiments at different column temperatures were carried out to investigate the temperature influence to the separation performance, with the composition of (5 ± 0.1)% H 2 -(5 ± 0.1)% D 2 -(90 ± 0.1)% Ar of feed gas. Experiments were carried out at the temperature of 303K, 273K, 263K, 253K, 213K, at the gas flow rate of 15 mL (NTP)/min. The results indicated that lower temperature, higher enrichment factor while the feed gas composition and the gas flow rate are definite; lower temperature, shorter 'separation transition state', and then better separation efficiency. The deuterium enrichment factor became 65 from l.5 while the temperature decreased to 273K from 303K. It also showed that the deuterium recovery ratio and the deuterium abundance of product gas increases with the temperature decrease except for the case of 303K. At the temperature of 273K and below, the deuterium recovery ratio were all higher than 42%, deuterium abundance of product were all larger than 98%, and the maximum of deuterium abundance at 213K was 99.8%. (authors)

  13. Comparison of methods for separating small quantities of hydrogen isotopes from an inert gas

    International Nuclear Information System (INIS)

    Willms, R.S.; Tuggle, D.; Birdsell, S.; Parkinson, J.; Price, B.; Lohmeir, D.

    1998-03-01

    It is frequent within tritium processing systems that a small amount of hydrogen isotopes (Q 2 ) must be separated from an inert gas such as He, Ar and N 2 . Thus, a study of presently available technologies for effecting such a separation was performed. A base case and seven technology alternatives were identified and a simple design of each was prepared. These technologies included oxidation-adsorption-metal bed reduction, oxidation-adsorption-palladium membrane reactor, cryogenic adsorption, cryogenic trapping, cryogenic distillation, hollow fiber membranes, gettering and permeators. It was found that all but the last two methods were unattractive for recovering Q 2 from N 2 . Reasons for technology rejection included (1) the method unnecessarily turns the hydrogen isotopes into water, resulting in a cumbersome and more hazardous operation, (2) the method would not work without further processing, and (3) while the method would work, it would only do so in an impractical way. On the other hand, getters and permeators were found to be attractive methods for this application. Both of these methods would perform the separation in a straightforward, essentially zero-waste, single step operation. The only drawback for permeators was that limited low-partial Q 2 pressure data is available. The drawbacks for getters are their susceptibility to irreversible and exothermic reaction with common species such as oxygen and water, and the lack of long-term operation of such beds. More research is envisioned for both of these methods to mature these attractive technologies

  14. Nanoporous materials for hydrogen storage and H2/D2 isotope separation

    International Nuclear Information System (INIS)

    Oh, Hyunchul

    2014-01-01

    This thesis presents a study of hydrogen adsorption properties at RT with noble metal doped porous materials and an efficient separation of hydrogen isotopes with nanoporous materials. Most analysis is performed via thermal desorption spectra (TDS) and Sieverts-type apparatus. The result and discussion is presented in two parts; Chapter 4 focuses on metal doped nanoporous materials for hydrogen storage. Cryogenic hydrogen storage by physisorption on porous materials has the advantage of high reversibility and fast refuelling times with low heat evolution at modest pressures. At room temperature, however, the physisorption mechanism is not abEle to achieve enough capacity for practical application due to the weak van der Waals interaction, i.e., low isosteric heats for hydrogen sorption. Recently, the ''spillover'' effect has been proposed by R. Yang et al. to enhance the room temperature hydrogen storage capacity. However, the mechanism of this storage enhancement by decoration of noble metal particles inside high surface area supports is not yet fully understood and still under debate. In this chapter, noble metal (Pt / Pd) doped nanoporous materials (i.e. porous carbon, COFs) have been investigated for room temperature hydrogen storage. Their textural properties and hydrogen storage capacity are characterized by various analytic techniques (e.g. SEM, HRTEM, XRD, BET, ICP-OES, Thermal desorption spectra, Sievert's apparatus and Raman spectroscopy). Firstly, Pt-doped and un-doped templated carbons possessing almost identical textural properties were successfully synthesized via a single step wet impregnation method. This enables the study of Pt catalytic activities and hydrogen adsorption kinetics on porous carbons at ambient temperature by TDS after H 2 /D 2 gas exposure and PCT measurement, respectively. While the H 2 adsorption kinetics in the microporous structure is enhanced by Pt catalytic activities (spillover), only a small enhancement of the hydrogen

  15. Nanoporous materials for hydrogen storage and H{sub 2}/D{sub 2} isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hyunchul

    2014-05-05

    This thesis presents a study of hydrogen adsorption properties at RT with noble metal doped porous materials and an efficient separation of hydrogen isotopes with nanoporous materials. Most analysis is performed via thermal desorption spectra (TDS) and Sieverts-type apparatus. The result and discussion is presented in two parts; Chapter 4 focuses on metal doped nanoporous materials for hydrogen storage. Cryogenic hydrogen storage by physisorption on porous materials has the advantage of high reversibility and fast refuelling times with low heat evolution at modest pressures. At room temperature, however, the physisorption mechanism is not abEle to achieve enough capacity for practical application due to the weak van der Waals interaction, i.e., low isosteric heats for hydrogen sorption. Recently, the ''spillover'' effect has been proposed by R. Yang et al. to enhance the room temperature hydrogen storage capacity. However, the mechanism of this storage enhancement by decoration of noble metal particles inside high surface area supports is not yet fully understood and still under debate. In this chapter, noble metal (Pt / Pd) doped nanoporous materials (i.e. porous carbon, COFs) have been investigated for room temperature hydrogen storage. Their textural properties and hydrogen storage capacity are characterized by various analytic techniques (e.g. SEM, HRTEM, XRD, BET, ICP-OES, Thermal desorption spectra, Sievert's apparatus and Raman spectroscopy). Firstly, Pt-doped and un-doped templated carbons possessing almost identical textural properties were successfully synthesized via a single step wet impregnation method. This enables the study of Pt catalytic activities and hydrogen adsorption kinetics on porous carbons at ambient temperature by TDS after H{sub 2}/D{sub 2} gas exposure and PCT measurement, respectively. While the H{sub 2} adsorption kinetics in the microporous structure is enhanced by Pt catalytic activities (spillover), only a

  16. Report of the Energy Research Advisory Board study group on advanced isotope separation

    International Nuclear Information System (INIS)

    1980-11-01

    The Panel reviewed Advanced Isotope Separation (AIS) technology and Advanced Gas Centrifuge (AGC) programs in the context of potential needs and costs for uranium enrichment. The benefit of a successful AIS or AGC program would be a substantial reduction in enrichment costs below those of current centrifuge plants or below the power cost alone for gaseous diffusion plants. This report attempts to provide firm guidance for the next 2 to 3 years, at which time a further evaluation should guide decisions in regard to enrichment supply and development choices. On the basis of our perception of the long-term economic benefits of a successful AIS development, we support the continued pursuit of this option. In the interim, major requirements for enrichment must be satisfied. We assume that DOE will develop a firm funding plan for gaseous diffusion operations and power contracting to assure that the necessary supply of power will be available to meet the separative work commitments of the US enrichment enterprise. We recommend that the AIS program office further identify the key technical uncertainties of the various programs, thereby establishing the basis for near-term R and D leading to a decision whether and when to proceed with full-scale development. We believe that a stronger atomic vapor laser isotope separation (AVLIS) program would result from a consolidation of the Lawrence Livermore National Laboratory (LLNL) and Jersey Nuclear Avco Isotopes (JNAI) teams, leading to a more competitive AVLIS process. Hence, we recommend that DOE attempt to negotiate with JNAI to form a single, integrated, government-funded AVLIS program with appropriate elements of LLNL, JNAI and UCC-ND. We further recommend that JNAI be designated as lead laboratory in this program. We recommend that the DOE: continue with the first 2.2 million SWU increment of the gas centrifuge program, and continue the Advanced Gas Centrifuge development program, with high priority

  17. Physical aspects of the isotope separation by laser induced selective ionization, with emphasis on model analysis

    International Nuclear Information System (INIS)

    Soubbaramayer.

    1987-01-01

    Basic studies on the process of isotope separation by laser-induced selective ionization have started about fifteen years ago. In the present time, the interest in this process is considerably increased since some countries' decision of funding a substantial R and D program with the ultimate goal of a possible industrial production of reactor grade uranium in the late nineties'. Several hundreds of professionals in the world are now exploring the science of the process, the components technology and the optimal way of industrialization. This review paper is restricted to the physical aspects of the process as they can be understood from the published literature. 55 refs

  18. Production and separation of neutron-rich rare isotopes around and below the Fermi energy

    CERN Document Server

    Souliotis, G A; Chubarian, G; Yennello, S J

    2003-01-01

    The production of n-rich rare isotopes around and below the Fermi energy is investigated using beams from the K500 Superconducting Cyclotron and the MARS recoil separator at the Cyclotron Institute of Texas A and M University. The experimental results from the reactions of 25 MeV/nucleon sup 8 sup 6 Kr + sup 6 sup 4 Ni and 21 MeV/nucleon sup 1 sup 2 sup 4 Sn + sup 1 sup 2 sup 4 Sn are presented and compared with simulations. The calculations involve a deep inelastic transfer (DIT) code for the primary interaction stage followed by the code GEMINI for the de-excitation stage. The results are also compared with the EPAX parametrization. The data on the 25 MeV/nucleon sup 8 sup 6 Kr + sup 6 sup 4 Ni reaction show that both proton-removal and several-neutron pick-up isotopes are produced. An enhancement is observed in the production of n-rich isotopes close to the projectile relative to the predictions of DIT/GEMINI and the expectations of EPAX. The data of 21 MeV/nucleon sup 1 sup 2 sup 4 Sn + sup 1 sup 2 sup 4 ...

  19. Rapid U separation and its precise isotopic measurements using ICP-QMS

    Science.gov (United States)

    Douville, E.; Salle, E.; Gourgiotis, A.; Ayrault, S.; Frank, N.

    2007-12-01

    Here we present a largely simplified analytical separation technique for U from marin carbonates and sediments and U isotopic measurements obtained by inductively coupled plasma-source quadrupole mass spectrometer (ICP-QMS) Xseries II - Thermo Scientific. The separation of U is done from dissolved carbonates and sediments using a single ion exchange column packed with ~500 μg of UTEVA resin from EICHROM industries. The column is pre-cleaned and loaded by several rinses of MilliQ water and 3N HNO3. Then earth alkali, transition metals and lanthanides are eluted quantitatively using 3N HNO3. Pure Th and U solutions are then successively extracted from the column using 3N HCl and 1N HCl at ~100% yield. U solutions at ~25-50 ppb were injected into the ICP-QMS at conventional sample flow rates of approximately 1ml/minute, without particular injection systems such as a desolvator or μ - nebuliser. 30 scans with 180 sweeps and a dwell time of 50 ms per isotope were used to collect 233U, 234U, 235U and 236U on an electron multiplier. Baseline sensitivity was followed on mass 228 with <1cps at ~ 1000cps on mass 234. Then, mass discrimination was corrected using the 233U/236U spike of known isotopic ratio and HU1 reference solutions were used to test the reproducibility and to correct drifts using standard - sample bracketing. Overall ICPMS analyses yield a stunning reproducibility of <0.4 % at 2 σ, which is close to the one obtained by conventional TIMS instruments ~0.2-0.4 %. We have applied this technique to organic rich sediments and marine carbonate samples previously measured by TIMS and found a perfect agreement for both U concentration and its isotopic composition. This rapid and effective chemical purification and isotopic measurement of U allows to process more than 20 samples a day allowing to investigate large numbers of natural samples for weathering, tracer and geochronological studies.

  20. Total cholesterol in serum determined by isotope dilution/mass spectrometry, with liquid-chromatographic separation

    International Nuclear Information System (INIS)

    Takatsu, Akiko; Nishi, Sueo

    1988-01-01

    We describe an accurate, precise method for determination of total serum cholesterol by isotope dilution/mass spectrometry (IDMS) with liquid chromatographic separation. After adding [3,4- 13 C] cholesterol to serum and hydrolyzing the cholesterol esters, we extract the total cholesterol. High-performance liquid chromatography (HPLC) is used to separate the extracted cholesterol for measurement by electron-impact mass spectrometry with use of a direct-insertion device. To evaluate the specificity and the accuracy of this method, we also studied the conventional IDMS method, which involves converting cholesterol to the trimethylsilyl ether and assay by gas chromatography-mass spectrometry with use of a capillary column. The coefficient of variation for the HPLC method was a little larger than for the conventional method, but mean values by each method agreed within 1% for all sera tested. (author)

  1. Time-of-flight isotope separator for a second-generation ISOL facility

    CERN Document Server

    Jacquot, B

    2003-01-01

    We focus on the study of a low energy and a high resolving power separator dedicated for an exotic isotope accelerator facility. The approach is based on the use of a time-of-flight technique in a long isochronous section. Different ion species are bunched and then separated in time, in an energy-isochronous section. We then transform the time shift in a transverse shift by a chopper in order to eliminate the unwanted ions using slits. A mass-resolving power of R sub M =10,000 seems feasible for low energy, multi-charged or mono-charged beams with a transverse acceptance up to 50 pi mm mrad.

  2. Recent great impact by an Isotope Separator On-Line (ISOL) in nuclear and radiochemistry.

    Science.gov (United States)

    Sakama, Minoru

    2016-01-01

    On April 9 2015, the Letter article titled "Measurement of the first ionization potential of lawrencium, element 103" is now published at News and Views on Nature (2015) which has been performed by our remarkably Japanese colleagues of nuclear and radiochemistry at JAEA (Japan Atomic Energy Agency). In this review, the author will state that the isotope separator on-line (ISOL) our regularly used, one of mass separation techniques, with a thermal surface ionization makes possible for determining the ionization potential of lawrencium based on the fruitful fundations of developing the ISOL system until now and also ever studying searches for unknown nuclei and these nuclear decay properties around actinide region in the past 20 years.

  3. Studies on the separation of hydrogen isotopes and spin isomers by gas chromatography

    International Nuclear Information System (INIS)

    Pushpa, K.K.; Annaji Rao, K.

    2000-08-01

    Separation and analysis of mixture of hydrogen isotopes has gained considerable importance because of various applications needing different isotopes in lasers, nuclear reactions and tracer or labelled compounds. In the literature gas chromatographic methods are reported using columns packed with partly dehydrated or thoroughly dehydrated alumina/molecular sieve stationary phase at 77 deg K with helium, neon and even hydrogen or deuterium as carrier gas. In the present study an attempt is made to compare the chromatographic behaviour of these two stationary phases using virgin and Fe doped form in partly dehydrated and thoroughly dehydrated state, using helium, neon, hydrogen and deuterium as carrier gas. The results of this study show that helium or neon carrier gas behave similarly broad peaks with some tailing. Sharp symmetric peaks are obtained with hydrogen or deuterium carrier gas. This is attributed to large hold up capacity for H 2 or D 2 at 77 deg K in these materials as compared to helium or neon. Spin isomers of H 2 or D 2 are separated on Fe free stationary phases, though ortho H 2 and HD are not resolved. Using a combination of Fe doped short column and plain alumina column, both maintained in dehydrated form, the effect of Fe doping on thermal equilibrium of ortho/para forms at 77 deg K is clearly demonstrated. (author)

  4. Design and construction of a thermal evaporation unit for laser isotope separation chamber

    International Nuclear Information System (INIS)

    Jazmati, A. K.; Al-Khawwam, A.

    2008-01-01

    A thermal evaporation unit has been ,especially, designed and constructed to fit in the laboratory chamber, which is already constructed for laser isotope separation project. The evaporation unit consists of three parts: an evaporator, a thermal isolation unit and a cooling jacket. The evaporator designed so that it produces the Yb metal vapour through a thin slit. The sheet of the vapour that comes out of the slit diverts and crosses the three laser beams that are needed for the isotope separation process. The diversion of the metal vapour sheet helps in optimizing the interaction volume between the metal vapour and the laser beams. The temperature of the evaporator can reach up to 800 Centigrade homogeneously along the slit. Less than 800 Centigrade temperature is needed to sublimate the Yb metal (powder form) in the vacuum chamber at about 10-6 mbar as has been tested. The temperature of the evaporator is controlled by the current , which passes through the heating wires. (author)

  5. Resonance ionization laser ion sources for on-line isotope separators (invited)

    International Nuclear Information System (INIS)

    Marsh, B. A.

    2014-01-01

    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented

  6. Dependence of chlorine isotope separation in ion exchange chromatography on the nature and concentration of the eluent

    International Nuclear Information System (INIS)

    Heumann, K.G.; Baier, K.

    1980-01-01

    In a heterogeneous electrolyte system of a strongly basic anion exchanger and solutions of NaBF 4 or NaClO 4 we established the influence of the nature and concentration of the eluent in chromatographic experiments on chlorine isotope separation. Results show that when the elctrolyte concentration is increased the degree of isotope separation decreases. With NaBF 4 the separation factor is greater than with NaClO 4 under conditions which are otherwise the same. For electrolyte solutions containing ClO 4 -, NO 3 - and BF 4 - there is a linear relation between the separation factor of the chlorine isotopes and the logarithm of the heat of anion hydration of the elution electrolyte. (orig.)

  7. When other separation techniques fail: compound-specific carbon isotope ratio analysis of sulfonamide containing pharmaceuticals by high-temperature-liquid chromatography-isotope ratio mass spectrometry.

    Science.gov (United States)

    Kujawinski, Dorothea M; Zhang, Lijun; Schmidt, Torsten C; Jochmann, Maik A

    2012-09-18

    Compound-specific isotope analysis (CISA) of nonvolatile analytes has been enabled by the introduction of the first commercial interface to hyphenate liquid chromatography with an isotope ratio mass spectrometer (LC-IRMS) in 2004, yet carbon isotope analysis of unpolar and moderately polar compounds is still a challenging task since only water as the eluent and no organic modifiers can be used to drive the separation in LC. The only way to increase the elution strength of aqueous eluents in reversed phase LC is the application of high temperatures to the mobile and stationary phases (HT-LC-IRMS). In this context we present the first method to determine carbon isotope ratios of pharmaceuticals that cannot be separated by already existing separation techniques for LC-IRMS, such as reversed phase chromatography at normal temperatures, ion-chromatography, and mixed mode chomatography. The pharmaceutical group of sulfonamides, which is generally mixed with trimethoprim in pharmaceutical products, has been chosen as probe compounds. Substance amounts as low as 0.3 μg are sufficient to perform a precise analysis. The successful applicability and reproducibility of this method is shown by the analysis of real pharmaceutical samples. The method provides the first tool to study the pharmaceutical authenticity as well as degradation and mobility of such substances in the environment by using the stable isotopic signature of these compounds.

  8. Water isotope partitioning and ecohydrologic separation in mixed conifer forest explored with a centrifugation water extraction method

    Science.gov (United States)

    Bowers, W.; Mercer, J.; Pleasants, M.; Williams, D. G.

    2017-12-01

    Isotopic partitioning of water within soil into tightly and loosely bound fractions has been proposed to explain differences between isotopic water sources used by plants and those that contribute to streams and ground water, the basis for the "two water worlds" hypothesis. We examined the isotope ratio values of water in trees, bulk soil, mobile water collected from soil lysimeters, stream water, and GW at three different hillslopes in a mixed conifer forest in southeastern Wyoming, USA. Hillslopes differed in aspect and topographic position with corresponding differences in surface energy balance, snowmelt timing, and duration of soil moisture during the dry summer. The isotopic results support the partitioning of water within the soil; trees apparently used a different pool of water for transpiration than that recovered from soil lysimeters and the source was not resolved with the isotopic signature of the water that was extracted from bulk soil via cryogenic vacuum distillation. Separating and measuring the isotope ratios values in these pools would test the assumption that the tightly bound water within the soil has the same isotopic signature as the water transpired by the trees. We employed a centrifugation approach to separate water within the soil held at different tensions by applying stepwise increases in rotational velocity and pressures to the bulk soil samples. Effluent and the remaining water (cryogenically extracted) at each step were compared. We first applied the centrifugation method in a simple lab experiment using sandy loam soil and separate introductions of two isotopically distinct waters. We then applied the method to soil collected from the montane hillslopes. For the lab experiment, we predicted that effluents would have distinct isotopic signatures, with the last effluent and extracted water more closely representing the isotopic signature of the first water applied. For our field samples, we predicted that the isotopic signature of the

  9. Electromigration in molten salts and application to isotopic separation of alkaline and alkaline-earth elements

    International Nuclear Information System (INIS)

    Menes, F.

    1969-01-01

    The separation of the isotopes of the alkaline-earth elements has been studied using counter-current electromigration in molten bromides. The conditions under which the cathode operates as a bromine electrode for the highest possible currents have been examined. For the separation of calcium, it has been necessary to use a stable CaBr 2 - (CaBr 2 + KBr) 'chain'. In the case of barium and strontium, it was possible to employ the pure bromides. Enrichment factors of the order of 10 for 48 Ca and of the order of 1.5 for the rare isotopes of barium and strontium have been obtained. In the case of magnesium the method is slightly more difficult to apply because of material loss due to the relatively high vapour pressure of the salt requiring the use of electrolyte chains, MgBr 2 - CeBr 3 . A study has been made that has led to a larger-scale application of the method. These are essentially the inhibition of reversible operation of the cathode by traces of water, limiting the intensity which can be tolerated; evacuation of the heat produced by the Joule effect, in the absence of which the separation efficiency is reduced by thermal gradients; corrosion of the materials by molten salts at high temperature. Several cells capable of treating a few kilograms of substance have been put into operation; none of these has lasted long enough to produce a satisfactory enrichment. The method is thus limited actually to yields of the order of a few grams. (author) [fr

  10. Experimental investigation of H2/D2 isotope separation by cryo-adsorption in metal-organic frameworks

    International Nuclear Information System (INIS)

    Teufel, Julia Sonja

    2012-01-01

    Light-gas isotopes differ in their adsorption behavior under cryogenic conditions in nanoporous materials due to their difference in zero-point energy. However, the applicability of these cryo-effects for the separation of isotope mixtures is still lacking an experimental proof. The current work describes the first experimentally obtained H 2 /D 2 selectivity values of nanoporous materials measured by applying isotope mixtures in low-temperature thermal desorption spectroscopy (TDS). The dissertation contains the following key points: 1) A proof of the experimental method, i.e. it is shown that TDS leads to reasonable selectivity values. 2) A series of small-pore MFU-4 derivatives (MOFs) is shown to separate isotope mixtures by quantum sieving, i.e. by the difference in the adsorption kinetics. The influence of the pore size on the selectivity is studied systematically for this series. 3) Two MOFs with pores much larger than the kinetic diameter of H 2 do not exhibit kinetic quantum sieving. However, if the MOFs are exposed to an isotope mixture, deuterium adsorbs preferentially at the adsorption sites with high heats of adsorption. According to the experimental results, these strong adsorption sites can be every selective for deuterium. On the basis of the experimentally obtained selectivity values, technical implementations for H 2 /D 2 light-gas isotope separation by cryo-adsorption are described.

  11. Reference mean temperature for evaluation of performance of thermal diffusion column for isotope separation

    International Nuclear Information System (INIS)

    Yamamoto, Ichiro; Kanagawa, Akira

    1987-01-01

    In order to evaluate separative performance of a thermal diffusion column, a simplification is usually made in which the temperature dependence of the relevant properties such as thermal diffusion constant is ignored and some proper mean values evaluated at a specific ''mean'' temperature are used. Adoption of weighted average of temperature distribution is common for the ''mean'' temperature, but there exists no definite way of determining mean temperature. The present paper proposes a new reference mean temperature determined by the equation governing the free convection. It is based on the fact that the multiplication effect of free convection is essential to separation by thermal diffusion column. The reference mean temperature is related to pressure difference between top and bottom of column and is higher than a mass-averaged temperature (due to gravitational force) by a contribution of viscous force. The reference mean temperature was calculated, as a reference, for an Ar isotope separating column with an inner hot radius of 0.2 mm and an outer cold radius of 5 mm. The results confirmed the validity of an approximate formula expressing effects of temperature difference and ratio of inner and outer radii of column explicitly for the temperature. The reference mean temperature calculated from pressure difference given by axisymmetric solution of equations of change was in good agreement with the analytical solution. (author)

  12. Research and development prospects for the atomic uranium laser isotope separation process. Research report 442

    International Nuclear Information System (INIS)

    Janes, G.S.; Forsen, H.K.; Levy, R.H.

    1977-06-01

    Research and development activities are being conducted on many aspects of the atomic uranium laser isotope separation process. Extensive laser spectroscopy studies have been made in order to identify attractive multi-step selective ionization schemes. Using low density (10 10 atoms/cm 3 ) apparatus, the excited state spectra of atomic uranium have been investigated via multiple step laser excitation and photoionization studies using two, three and four pulsed lasers. Observation of the spectra was accomplished by observing the yield of 235 U and 238 U ions as a function of the wavelength, intensities and delays of the various lasers. These data yielded information on the photoexcitation and photoionizatin cross sections, and on the location, J values, lifetimes, isotope shifts and hyperfine structure of the various atomic levels of uranium. Experiments on selective ionization of uranium vapor by multiple step laser excitation followed by ion extraction at 10 13 atoms/cm 3 density have produced 6% enriched 235 U. These indicate that this process is well adapted to produce light water reactor fuel but less suitable for highly enriched material. Application has been made for license for a 1979 experimental facility to provide data for a mid-1980 commercial plant

  13. Radiotoxicological monitoring of the personnel in the Pierrelatte uranium isotope separation plant: methods and results

    International Nuclear Information System (INIS)

    Chalabreysse, J.

    1977-01-01

    In a uranium isotope gaseous diffusion separation plant, such as the one at Pierrelatte, there are very different compounds of a chemical nature and isotopic composition, which notably complicates the personnel monitoring; those most liable to be inhaled or ingested are indicated. Their difference forms of toxicity are studied. The radiotoxicological surveillance techniques developed and employed at Pierrelatte in the past 14 years, are described. A coherent attitude of surveillance and interpretation of results, is proposed: principles enabling the origin and significance of the uranium found in a biological sampling to be assessed; mathematical formula to reply to the first questions that may be put when faced with contamination due to uranium; maximum allowable values for urinary excretion or faecal elimination for each type of internal contamination and according to the different forms of uranium compounds absorbed. The main results of surveillance and the different radiotoxicological controls obtained over more than 10 years practice in the Pierrelatte industrial complex are presented: systematic surveillance of chronic contamination; accidental contamination episode by inhalation of UF 6 having concerned more than 100 people. In an industrial complex such as that at Pierrelatte, and soon at Tricastin, this radiotoxicological surveillance is one of the most fundamental elements useful in prevention [fr

  14. A virtual component method in numerical computation of cascades for isotope separation

    International Nuclear Information System (INIS)

    Zeng Shi; Cheng Lu

    2014-01-01

    The analysis, optimization, design and operation of cascades for isotope separation involve computations of cascades. In analytical analysis of cascades, using virtual components is a very useful analysis method. For complicated cases of cascades, numerical analysis has to be employed. However, bound up to the conventional idea that the concentration of a virtual component should be vanishingly small, virtual component is not yet applied to numerical computations. Here a method of introducing the method of using virtual components to numerical computations is elucidated, and its application to a few types of cascades is explained and tested by means of numerical experiments. The results show that the concentration of a virtual component is not restrained at all by the 'vanishingly small' idea. For the same requirements on cascades, the cascades obtained do not depend on the concentrations of virtual components. (authors)

  15. Detection of outliers by neural network on the gas centrifuge experimental data of isotopic separation process

    International Nuclear Information System (INIS)

    Andrade, Monica de Carvalho Vasconcelos

    2004-01-01

    This work presents and discusses the neural network technique aiming at the detection of outliers on a set of gas centrifuge isotope separation experimental data. In order to evaluate the application of this new technique, the result obtained of the detection is compared to the result of the statistical analysis combined with the cluster analysis. This method for the detection of outliers presents a considerable potential in the field of data analysis and it is at the same time easier and faster to use and requests very less knowledge of the physics involved in the process. This work established a procedure for detecting experiments which are suspect to contain gross errors inside a data set where the usual techniques for identification of these errors cannot be applied or its use/demands an excessively long work. (author)

  16. Hydrogen isotope separation in hydrophobic catalysts between hydrogen and liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Linsen, E-mail: yls2005@mail.ustc.edu.cn [China Academy of Engineering Physics, Mianyang 621900 (China); Luo, Deli [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621907 (China); Tang, Tao; Yang, Wan; Yang, Yong [China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-11-15

    Hydrogen isotope catalytic exchange between hydrogen and liquid water is a very effective process for deuterium-depleted potable water production and heavy water detritiation. To improve the characteristics of hydrophobic catalysts for this type of reaction, foamed and cellular structures of hydrophobic carbon-supported platinum catalysts were successfully prepared. Separation of deuterium or tritium from liquid water was carried out by liquid-phase catalytic exchange. At a gas–liquid ratio of 1.53 and exchange temperature of 70 °C, the theoretical plate height of the hydrophobic catalyst (HETP = 34.2 cm) was slightly lower than previously reported values. Changing the concentration of the exchange column outlet water yielded nonlinear changes in the height of the packing layer. Configurations of deuterium-depleted potable water and detritiation of heavy water provide references for practical applications.

  17. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    International Nuclear Information System (INIS)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.

    1979-09-01

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research

  18. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.

    1979-09-01

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research.

  19. Hydrogen isotope separation in hydrophobic catalysts between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Ye, Linsen; Luo, Deli; Tang, Tao; Yang, Wan; Yang, Yong

    2015-01-01

    Hydrogen isotope catalytic exchange between hydrogen and liquid water is a very effective process for deuterium-depleted potable water production and heavy water detritiation. To improve the characteristics of hydrophobic catalysts for this type of reaction, foamed and cellular structures of hydrophobic carbon-supported platinum catalysts were successfully prepared. Separation of deuterium or tritium from liquid water was carried out by liquid-phase catalytic exchange. At a gas–liquid ratio of 1.53 and exchange temperature of 70 °C, the theoretical plate height of the hydrophobic catalyst (HETP = 34.2 cm) was slightly lower than previously reported values. Changing the concentration of the exchange column outlet water yielded nonlinear changes in the height of the packing layer. Configurations of deuterium-depleted potable water and detritiation of heavy water provide references for practical applications.

  20. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y., E-mail: yjma@ciae.ac.cn; Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W. [China Institute of Atomic Energy, Beijing 102413 (China)

    2014-02-15

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.

  1. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    Science.gov (United States)

    Ma, Y.; Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W.

    2014-02-01

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org, p. 267]. For low intensity ion beam [30-300 keV/1 pA-10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.

  2. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    International Nuclear Information System (INIS)

    Fox, E.

    2009-01-01

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals

  3. Production of intense metallic ion beams in order of isotopic separations

    International Nuclear Information System (INIS)

    Sarrouy, J.L.

    1955-01-01

    We describe an isotope separator with magnetic sector of 60 deg that permits, with a process of neutralization of the space charge, to use efficiently intense ion beams. The sources of realized ions provide ionic debits of 10 mA. This present work deals who to obtain intense ion beams (10 to 15 mA), different processes of ion currents measurement, as well as the study of the phenomenon of space charge neutralization. The second part of this memory will be on the survey and the adaptation on the source of various type of oven permitting to spray and to ionize metals directly. By order of increasing difficulty of vaporization, we reached the chromium. (M.B.) [fr

  4. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  5. A NEW METHOD FOR MEASURING NEUTRON-SKIN THICKNESS IN RARE ISOTOPE BEAMS

    NARCIS (Netherlands)

    Krasznahorkay, A.; Csatlos, M.; Stuhl, L.; Algora, A.; Gulyas, J.; Timar, J.; Paar, N.; Vretenar, D.; Harakeh, M. N.

    A new method, based on the excitation of the anti-analog giant dipole resonance (AGDR) in (p, n) reaction, for measuring the neutron-skin thickness has been tested. The gamma-decay of the AGDR to the isobaric analog state (IAS) has been measured. The difference in excitation energy of the AGDR and

  6. Ultrathin Composite Polymeric Membranes for CO2 /N2 Separation with Minimum Thickness and High CO2 Permeance.

    Science.gov (United States)

    Benito, Javier; Sánchez-Laínez, Javier; Zornoza, Beatriz; Martín, Santiago; Carta, Mariolino; Malpass-Evans, Richard; Téllez, Carlos; McKeown, Neil B; Coronas, Joaquín; Gascón, Ignacio

    2017-10-23

    The use of ultrathin films as selective layers in composite membranes offers significant advantages in gas separation for increasing productivity while reducing the membrane size and energy costs. In this contribution, composite membranes have been obtained by the successive deposition of approximately 1 nm thick monolayers of a polymer of intrinsic microporosity (PIM) on top of dense membranes of the ultra-permeable poly[1-(trimethylsilyl)-1-propyne] (PTMSP). The ultrathin PIM films (30 nm in thickness) demonstrate CO 2 permeance up to seven times higher than dense PIM membranes using only 0.04 % of the mass of PIM without a significant decrease in CO 2 /N 2 selectivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Extended methods using thick-targets for nuclear reaction data of radioactive isotopes

    Science.gov (United States)

    Ebata, Shuichiro; Aikawa, Masayuki; Imai, Shotaro

    2017-09-01

    The nuclear transmutation is a technology to dispose of radioactive wastes. However, we do not have enough basic data for its developments, such as thick-target yields (TTY) and the interaction cross sections for radioactive material. We suggest two methods to estimate the TTY using inverse kinematics and to obtain the excitation function of the interaction cross sections which is named the thick-target transmission (T3) method. We deduce the energy-dependent conversion relation between the TTYs of the original system and its inverse kinematics, which can be replaced to a constant coefficient in the high energy region. Furthermore we show the usefulness of the T3 method to investigate the excitation function of the 12C + 27Al reaction in the simulation.

  8. Experimental study of neutron-skin thicknesses in neutron-rich isotopes

    CERN Document Server

    Krasznahorkay, A; Gulyás, J; Adrich, P; Aumann, T; Datta-Pramanik, U; Emling, H; Nociforo, C; Rudrajyoti, P; Simon, H

    2003-01-01

    The difference between the neutron and proton radii of a heavy stable nucleus is of the order of a few percent. The precise knowledge of the symmetry energy is essential not only for describing the structure of neutron-rich nuclei, but also for describing the properties of the neutron-rich matter in nuclear astrophysics. A new tool was introduced for studying the neutron-skin thickness, by exciting the spin-dipole resonance (SDR). (R.P.)

  9. Process for the enrichment and separation of heavy isotopes from flows of material containing these by isotope exchange

    International Nuclear Information System (INIS)

    Knoechel, A.; Eggers, I.; Klatte, B.; Wilken, R.D.

    1987-01-01

    Using chemical exchange processes, heavy hydrogen isotopes are preferably bound in the omnium or ammonium salt of a material, due to the isotope effects. A species or a mixture of open chain, macro-mono or macro-polycyclic polyethers or amino polyethers are used in the free or protonized form as the materials. To achieve this system, in the case of counterflow extraction for liquid/liquid distribution (reprocessing), mixer settler or extraction columns can be considered. (DG) [de

  10. A start-up analysis of four interlinked distillation columns for hydrogen isotope separation

    International Nuclear Information System (INIS)

    Kinoshita, M.; Bartlit, J.R.; Sherman, R.M.

    1985-01-01

    Useful information is provided for determining the best startup sequence for multiple interlinked distillation columns for hydrogen isotope separation whose required output specifications are very strict. The column cascade developed for the Tritium Systems Test Assembly is chosen as an example. It is shown that the compositions of the gas mixtures charged into the columns have remarkable effects on the startup characteristics and should be carefully prepared. The compositions are determined by considering the inventories of hydrogen, deuterium, and tritium within the columns under full-normal (normal operating) conditions. Two strategies that are expected to present successful startup are found and discussed. One of the strategies is composed of only two operational modes, but has the complexity of charging four separate mixtures of different compositions into the columns. The other strategy avoids such complexity, but comprises seven modes and requires a roughly two times longer startup time. The control of the atomic fraction of tritium in the H 2 -HD stream conflicts with the purity control for the D 2 stream. To assure the high purity of the D 2 stream, the atomic fraction of tritium in the H 2 -HD stream must be decreased to an adequately low value before switching the operation to the full-normal mode

  11. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Science.gov (United States)

    2010-01-01

    ..., Plants and Equipment Under NRC's Export Licensing Authority N Appendix N to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. N Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment...

  12. Cryogenic separation of an oxygen-argon mixture in natural air samples for the determination of isotope and molecular ratios.

    Science.gov (United States)

    Keedakkadan, Habeeb Rahman; Abe, Osamu

    2015-04-30

    The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic

  13. The plasma centrifuge: A compact, low cost, stable isotope separator. Phase 2 final technical report, September 15, 1991 - September 14, 1995

    International Nuclear Information System (INIS)

    Guss, W.

    1996-01-01

    Enriched stable isotopes are required for production of radionuclides as well as for research and diagnostic uses. Science Research Laboratory (SRL) has developed a plasma centrifuge for moderate throughput of enriched stable isotopes, such as 13 C, 17 O, 18 O, and 203 Tl, for medical as well as other applications. Dwindling isotope stocks have restricted the use of enriched isotopes and their associated labeled organic molecules in medical imaging to very few research facilities because of high costs of isotope separation. With the introduction of the plasma centrifuge separator, the cost per separated gram of even rarely occurring isotopes (≤ 1% natural abundance) is potentially many times lower than with other separation technologies (cryogenic distillation and calutrons). The centrifuge is a simple, robust, pulsed electrical discharge device that has successfully demonstrated isotope separation of small (mg) quantities of 26 Mg. Based on the results of the Phase 2 program, modest enhancements to the power supplies and cooling systems, a centrifuge separator will have high repetition rate (60 pps) and high duty cycle (60%) to produce in one month kilogram quantities of highly enriched stable isotopes. The centrifuge may be used in stand-alone operation or could be used as a high-throughput pre-separation stage with calutrons providing the final separation

  14. Investigation into periodic process of hydrogen isotope separation by counterflow method in the hydrogen-palladium system

    International Nuclear Information System (INIS)

    Andreev, B.M.; Selivanenko, I.L.; Vedeneev, A.I.; Golubkov, A.N.; Tenyaev, B.N.

    1999-01-01

    The key diagram and results of the investigation into working conditions of the pilot plant for hydrogen isotope separation embodying the concept of continuous counterflow separation in the hydrogen-palladium system are shown. The counterflow of phases in the plant is attained under the motion of palladium solid hydride phase relative to stationary blocks of flow rotation. The column separator is defined as section type one. The plant performs in periodic regime with accumulating vessels for light and heavy components of the separated mixture. Maximum concentration of the separated tritium ranged up to ∼ 96 % in the experiments of the deuterium-tritium separation. Minimum concentration of the residual tritium in the mixture ranged up to ∼ 0.1 %. The plant provides to reprocessing 4.5 moles of the gas a day [ru

  15. High resolution neutron total and capture cross-sections in separated isotopes of copper (6365Cu)

    International Nuclear Information System (INIS)

    Pandey, M.S.

    1975-01-01

    High resolution neutron total and capture cross section measurements have been performed on separated isotopes of copper ( 63 65 Cu). Measurements for capture cross section were made from about 1 keV to a few hundreds of keV. The total cross section measurements were made in the energy interval of approximately 10 keV to 150 keV. The resulting capture data have been analyzed by a generalized least square peak fitting computer code in the energy interval of 2.5 keV to 50 keV. Photon strengths are determined using the data up to approximately 250 keV. The resulting total cross section data have been analyzed by area-analysis on the transmission values and by R-matrix multilevel code on cross section values. Average s- and p-wave level spacing and s- and p-wave strength function values are determined. From the resonance parameters thus obtained, by the analysis, statistical distribution is studied for s- and p-wave level spacings and reduced neutron widths. A comparison has been made for adjacent level spacings with the theoretical predictions of level repulsion (of same J/sup π/) by Wigner considering levels with various spin states separately for s-wave resonances where confident spin assignment has been possible. Reduced neutron widths are compared with the Porter-Thomas distribution. Optical model formulated by Feshbach, Porter and Weiskopf describes the neutron-nucleus interaction. A comparison has been made between experimentally determined values of the s- and p-wave strength functions and that obtainable from optical model calculations, thereby determining the appropriate optical model parameters. The experimental arrangement, pertinent theoretical discussion, and the processes of data reduction and the analyses along with the comparison of the previously reported results with the present work are presented in detail

  16. Optimum pressure for total-reflux operated thermal diffusion column for isotope separation

    International Nuclear Information System (INIS)

    Yamamoto, Ichiro; Makino, Hitoshi; Kanagawa, Akira

    1990-01-01

    A formula for prediction of the optimum operating pressure P opt of the thermal diffusion columns at total reflux is derived based on the approximate formulae for the column constants which can be evaluated analytically. The formula is expressed explicitly in terms of (1) physical properties of gases to be separated, (2) ratio of radii between hot wire and cold wall of the column, and (3) the ratio of the temperature difference to the cold wall temperature. The result is compared with experimental data; (1) binary monatomic gas systems, (2) multicomponent monatomic gas systems, (3) isotopically substituted polyatomic systems, (4) systems of low atomic or molecular weight, and (5) mixtures of unlike gases; mainly obtained by Rutherford and coworkers. Although the formula is based on the rather rough approximation for the column constants, the optimum pressures predicted by the present formula are in successfully good agreement with the experimental data even for the systems of low atomic or molecular weight and that of mixtures of unlike gases. (author)

  17. A design study of hydrogen isotope separation system for ITER-FEAT

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Yamanishi, Toshihiko; Nishi, Masataka

    2001-03-01

    Preliminary design study of the hydrogen isotope separation system (ISS) for the fuel cycle of the ITER-FEAT, a fusion experimental reactor, was carried out based on the substantial reduction of hydrogen flow to the ISS resulting from the design study for scale reduction of the formerly-designed ITER. Three feed streams (plasma exhaust gas stream, streams from the water detritiation system and that from the neutral beam injectors) are fed to the ISS, and three product streams (high purity tritium gas, high purity deuterium gas and hydrogen gas) are made in it by the method of cryogenic distillation. In this study, an original four-column cascade was proposed to the ISS cryogenic distillation column system considering simplification and the operation scenario of the ITER-FEAT. Substantial reduction of tritium inventory in the ISS was found to be possible in the progress of investigation concerning of the corresponding flow rate of tritium product stream (T>90 %) for pellet injector which depends upon the operation condition. And it was found that tritium concentration in the released hydrogen stream into environment from the ISS could easily fluctuate with current design of column arrangement due to the small disturbance in mass flow balance in the ISS. To solve this problem, two-column system for treatment of this flow was proposed. (author)

  18. Study on improvement of laser system performance for uranium isotope separation

    International Nuclear Information System (INIS)

    Fujii, Takashi

    1998-01-01

    For the purpose of reducing the cost of Atomic Vapor Laser Isotope Separation (AVLIS), I developed the following laser technologies. (1) I developed a solid-state pulse power supply, of which output power was the almost highest value achieved for a copper vapor laser in 1989, using a GTO as a switching device and a magnetic pulse compression circuit. (2) I developed a new technique of tuning the laser wavelength to an atomic absorption band using high-speed wavelength shift of a laser diode by direct modulation. (3) I developed a new technique of stabilizing the laser wavelength at an absorption band of a target atom, by locking the sideband generated by phase modulation of a laser beam to a Fabry-Perot interferometer. (4) I proposed the Cr 4+ -doped forsterite laser system as an all solid-state laser system for the AVLIS. I obtained the slope efficiency of 25%, which was the highest value achieved in the case of pulse operation of the Cr 4+ -doped forsterite laser in 1995, using the forsterite with high Cr 4+ -ion concentration. (author)

  19. Tunable lasers in isotope separation: a colorful view of a dye chemist

    International Nuclear Information System (INIS)

    Hammond, P.R.

    1977-01-01

    Some of the problems to be encountered in the possible large scale use of dye lasers in an isotope separation plant are discussed.The effect of laser dye deterioration on performance is examined algebraically in terms of disappearance of dye molecules and the appearance of a new, single chemical product having absorption in the fluorescence band for a single pass through a transversely pumped amplifier. Loss of output, defined as ''quantum yield of laser deterioration'', Q/sub L/, is related to the true quantum yield of molecular destruction of the dye Q/sub M/, and other known parameters. 6-Diethylamino 3-keto fluoran, an example of an oxygen tricyclic merocyanine, is described. It was first reported in the pre-1900 German literature under the name of Chromogen Red B and it is an ineffective lasing dye on account of low fluorescence quantum yield. The techniques for measurement and the excited state absorption cross-sections are reported for the dyes rhodamine 6G fluoroborate in alcohol, rhodamine B basic solution in trifluoroethanol and kiton red S in trifluoroethanol

  20. Tritium isotope separation by water distillation column packed with silica-gel beads

    International Nuclear Information System (INIS)

    Fukada, Satoshi

    2004-01-01

    Tritium enrichment or depletion by water distillation was investigated using a glass column of 32cm in height packed with silica-gel beads of 3.4mm in average diameter. The total separation factor of the silica-gel distillation column, α H-T , was compared with those of an open column distillation tower and of a column packed with stainless-steel Dixon rings. Depletion of the tritium activity in the distillate was enhanced by isotopic exchange with water absorbed on silica-gel beads that have a higher affinity for HTO than for H 2 O. The value of α H-T -1 of the silica-gel distillation column was about four times larger than that of a column without any packing and about two times larger than that of the Dixon-ring column. The improvement of α H-T by the silica-gel adsorbent indicated that the height of the distillation-adsorption column becomes shorter than that of the height of conventional distillation columns. (author)

  1. Boron isotope separation by ion exchange chromatography using weakly basic anion exchange resin

    International Nuclear Information System (INIS)

    Itoh, S.; Aida, M.; Okamoto, M.; Nomura, M.; Fujii, Y.

    1985-01-01

    Influences of operating temperatures and concentrations of feed boric acid solutions were examined on the above titled process over the ranges of 25 - 70 0 C and 0.1 - 1.6 mol/dm 3 (M), respectively. The ideal displacement chromatography with a very sharp-cut boundary of the boric acid adsorption band was realized at higher temperatures and lower boric acid concentrations within the experimental conditions. The isotope separation coefficient epsilon was found to decrease with increases in either temperature or the boric acid concentration. The observed values of epsilon at 25 0 C were 0.013, 0.012 and 0.011 corresponding to feed boric acid concentrations of 0.1 M, 0.4 M and 0.8 M, respectively. The epsilon's at 70 0 C were 0.0097 (0.1 M), 0.0086 (0.4 M), 0.0083 (0.8 M) and 0.0073 (1.6 M). A temperature of 40 0 C and 0.4 M of boric acid concentration was considered the optimum operating condition for the production of enriched 10 B. (author)

  2. Enrichment and isotope separation of tritium between hydrogen and liquid water in trikle bed reactor

    International Nuclear Information System (INIS)

    Boumahraz, L.

    1986-09-01

    The tritium produced by ternary fission within pent fuel will be in most part as HTO form in aqueous effluents of the reprocessing plant. Its decharge to the environment will prove detrimental and studies have been undertaken to develop techniques to confine it and process it. For confining tritium in small volumes of aqueous effluents, a special study has been achieved using the ELEX process which should be adapted for use in the design of reprocessing plant. This process is a combination of water electrolysis and tritium exchange between hydrogen and liquid water in contre - courant trikle bed reactor in presence of platined hydrophobic catalyst. Experiments carried out have enabled : demonstration of the effectiveness of platined hydrophobic catalyst in isotope exchange and separation reaction of tritium between hydrogen and liquid water. Development of a pretreatment method of aqueous effluents that have to be detriliated to eliminate impurities which would be detrimental to the ELEX process system by accumulating in the electrolyser and being absorbed in the exchange column. To check hydrodynamical functionment for contre-courant flow system water-hydrogen in trikle bed reactor

  3. Separation of carrier free dysprosium and terbium isotopes from 12C6+ irradiated Nd2O3

    International Nuclear Information System (INIS)

    Lahiri, Susanta; Das, N.R.; Nayak, Dalia; Das, S.K.; Ramaswami, A.; Manohor, S.B.

    1999-01-01

    Charged particle activation of natural Nd 2 O 3 with ∼80 MeV 12 C 6+ results in the formation of the carrier free isotopes 150-153 Dy and their daughter products 150-153 Tb in the matrix. The liquid cation exchanger, HDEHP, diluted in cyclohexane and HCl were used in liquid-liquid ion exchange (LLX) as organic and aqueous phase respectively for quantitative separation of 150-153 Dy and 150-153 Tb isotopes from the bulk target matrix of neodymium oxide

  4. Green and efficient extraction strategy to lithium isotope separation with double ionic liquids as the medium and ionic associated agent

    International Nuclear Information System (INIS)

    Xu Jingjing; Li Zaijun; Gu Zhiguo; Wang Guangli; Liu Junkang

    2013-01-01

    The paper reported a green and efficient extraction strategy to lithium isotope separation. A 4-methyl-10-hydroxybenzoquinoline (ROH), hydrophobic ionic liquid-1,3-di(isooctyl)imidazolium hexafluorophosphate ([D(i-C 8 )IM][PF 6 ]), and hydrophilic ionic liquid-1-butyl-3-methylimidazolium chloride (ILCl) were used as the chelating agent, extraction medium and ionic associated agent. Lithium ion (Li + ) first reacted with ROH in strong alkali solution to produce a lithium complex anion. It then associated with IL + to form the Li(RO) 2 IL complex, which was rapidly extracted into the organic phase. Factors for effect on the lithium isotope separation were examined. To obtain high extraction efficiency, a saturated ROH in the [D(i-C 8 )IM][PF 6 ] (0.3 mol l -1 ), mixed aqueous solution containing 0.3 mol l -1 lithium chloride, 1.6 mol l -1 sodium hydroxide and 0.8 mol l -1 ILCl and 3:1 were selected as the organic phase, aqueous phase and phase ratio (o/a). Under optimized conditions, the single-stage extraction efficiency was found to be 52 %. The saturated lithium concentration in the organic phase was up to 0.15 mol l -1 . The free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) of the extraction process were -0.097 J mol -1 , -14.70 J mol K -1 and -48.17 J mol -1 K -1 , indicating a exothermic process. The partition coefficients of lithium will enhance with decrease of the temperature. Thus, a 25 deg C of operating temperature was employed for total lithium isotope separation process. Lithium in Li(RO) 2 IL was stripped by the sodium chloride of 5 mol l -1 with a phase ratio (o/a) of 4. The lithium isotope exchange reaction in the interface between organic phase and aqueous phase reached the equilibrium within 1 min. The single-stage isotope separation factor of 7 Li- 6 Li was up to 1.023 ± 0.002, indicating that 7 Li was concentrated in organic phase and 6 Li was concentrated in aqueous phase. All chemical reagents used can be well recycled

  5. The determination of nuclear reaction yields by means of an isotope-separator-on-line (ISOL) system

    International Nuclear Information System (INIS)

    Rudstam, G.

    1987-01-01

    The present paper describes a method to extract nuclear reaction yield data from activities measured in a sample after isotope separation. The contribution from the formation of a reaction product, i.e. corresponding to the independent yield of this product, is evaluated as are the contributions from parents and grandparents. The analysis takes into account the delay between production and sample collection of the three elements involved. (orig.)

  6. The Vlasov equation with strong magnetic field and oscillating electric field as a model for isotop resonant separation

    Directory of Open Access Journals (Sweden)

    Emmanuel Frenod

    2002-01-01

    Full Text Available We study the qualitative behavior of solutions to the Vlasov equation with strong external magnetic field and oscillating electric field. This model is relevant to the understanding of isotop resonant separation. We show that the effective equation is a kinetic equation with a memory term. This memory term involves a pseudo-differential operator whose kernel is characterized by an integral equation involving Bessel functions. The kernel is explicitly given in some particular cases.

  7. Basic features of boron isotope separation by SILARC method in the two-step iterative static model

    Science.gov (United States)

    Lyakhov, K. A.; Lee, H. J.

    2013-05-01

    In this paper we develop a new static model for boron isotope separation by the laser assisted retardation of condensation method (SILARC) on the basis of model proposed by Jeff Eerkens. Our model is thought to be adequate to so-called two-step iterative scheme for isotope separation. This rather simple model helps to understand combined action on boron separation by SILARC method of all important parameters and relations between them. These parameters include carrier gas, molar fraction of BCl3 molecules in carrier gas, laser pulse intensity, gas pulse duration, gas pressure and temperature in reservoir and irradiation cells, optimal irradiation cell and skimmer chamber volumes, and optimal nozzle throughput. A method for finding optimal values of these parameters based on some objective function global minimum search was suggested. It turns out that minimum of this objective function is directly related to the minimum of total energy consumed, and total setup volume. Relations between nozzle throat area, IC volume, laser intensity, number of nozzles, number of vacuum pumps, and required isotope production rate were derived. Two types of industrial scale irradiation cells are compared. The first one has one large throughput slit nozzle, while the second one has numerous small nozzles arranged in parallel arrays for better overlap with laser beam. It is shown that the last one outperforms the former one significantly. It is argued that NO2 is the best carrier gas for boron isotope separation from the point of view of energy efficiency and Ar from the point of view of setup compactness.

  8. Very low-energy conversion electron detection (VLECED) system at the isocele on-line isotope separator, Orsay

    International Nuclear Information System (INIS)

    Kilcher, P.; Sauvage, J.; Munsch, J.; Obert, J.; Caruette, A.; Ferro, A.; Boissier, G.; Fournet-Fayas, J.; Ducourtieux, M.; Landois, G.

    1988-01-01

    A system designed and installed at the on-line isotope separator ISOCELE II allows the high resolution detection of low-energy conversion electrons (down to 1 keV) emitted by mass separated radioactive sources: the use of a special tape transport permits both the slowing down of the incoming beam of radioactive ions up to a collection point and the acceleration of the electrons emitted by the collected sources brought to a flat magnetic spectrograph. Typical spectra so obtained are presented

  9. Distribution of B, Cl and Their Isotopes in Pore Waters Separated from Gas Hydrate Potential Areas, Offshore Southwestern Taiwan

    Directory of Open Access Journals (Sweden)

    Hung-Chun Chao Chen-Feng You

    2006-01-01

    Full Text Available Boron (B and chlorine (Cl are widely distributed on the Earth’s surface and show distinctive geochemical behaviors. Cl behaves rather conservatively in oceanic environments while B is an excess-volatile and its distribution is sensitive to sediment absorption and organic matter degradation. The distribution of B, Cl and their isotopes in pore waters provide useful information for distinguishing between shallow circulation and deep origin fluid sources. Thirty-six sediment cores 0 - 5 m in length were sampled from a foreland accretionary prism offshore Southwestern Taiwan where strong bottom simulating reflectors (BSRs and an abundance of mud diapirs were discovered. More than 350 pore water samples were separated and analyzed for B, Cl and other major ions. Four long cores were selected for B and Cl isotopic analysis. We found that the Cl in all cores varied less than 10%, suggesting no major hydrate dissolution or formation involvement at shallow depths in the study area. However, the B concentration changed greatly, ranging between 360 and 650 μM, indicating a possible sedimentary contribution during the early diagenesis stage. The B isotopic compositions were relatively depleted (~25 to 37‰ in these pore waters, implying the addition of sedimentary exchangeable B with low δ11B. The Cl isotopes showed rather large variations, more than 8‰, possibly related to the addition of deep situated fluids. In summary, the chemical and isotopic characteristics of pore waters separated from piston cores off Southwestern Taiwan suggest strong influence from organic matter degradation during diagenesis at shallow depths and the possible addition of deep fluids advecting through mud diapir channels at greater depths, causing a minor degree of hydrate dissolution / formation to occur at shallow depths. Further systematic investigation of pore waters δ18O and δD are needed in a future study.

  10. Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping

    OpenAIRE

    Lozada Hidalgo, Marcelo; Zhang, Sheng; Hu, Sheng; Esfandiar, Ali; Grigorieva, Irina; Geim, Andre

    2017-01-01

    Thousands of tons of isotopic mixtures are processed annually for heavy-water production and tritium decontamination. The existing technologies remain extremely energy intensive and require large capital investments. New approaches are needed to reduce the industry's footprint. Recently, micrometre-size crystals of graphene are shown to act as efficient sieves for hydrogen isotopes pumped through graphene electrochemically. Here we report a fully-scalable approach, using graphene obtained by ...

  11. Separating Real and Apparent Effects of Cloud, Humidity, and Dynamics on Aerosol Optical Thickness near Cloud Edges

    Science.gov (United States)

    Jeong, Myeong-Jae; Li, Zhanqing

    2010-01-01

    Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.

  12. Simulation and optimization of stable isotope 18O separation by cascade distillation

    International Nuclear Information System (INIS)

    Jiang Yongyue; Chen Yuyan; Qin Chuanjiang; Liu Yan; Gu Hongsen

    2011-01-01

    The research about started from the plan of four cascade towers design was carried. Firstly, the method of experiment design was using uniform design. Then the incidence formula with the method of binomial stepwise regression was gotten. Last, the optimal operation conditions were gotten by using the method of genetic algorithm. Considering comprehensive factors of drawn from feed rate and from flow rates between cascade column, conclusions were reached on the study of the impact on the abundance of the isotope 18 O. Finally, the incidence formula between the abundance of the isotope 18 O and four operating variables were gotten. Also the incidence formula between heat consumption of the isotope 18 O and four operating variables were gotten. Besides, single factor response diagram of four factors were shown at last. The results showed that the method of simulation and optimization could be applied to 18 O industrial design and would be popular in traditional distillation process to realize optimization design. (authors)

  13. Improvement of Pt/C/PTFE catalyst type used for hydrogen isotope separation

    International Nuclear Information System (INIS)

    Vasut, F.; Preda, A.; Zamfirache, M.; Bornea, A. M.; Stefanescu, I.; Pearsica, C.

    2008-01-01

    The CANDU reactor from the Nuclear Power plant Cernavoda (Romania)) is the most powerful tritium source from Europe. This reactor is moderated and cooled by heavy water that becomes continuously contaminated with tritium. Because of this reason, the National R and amp;D Inst. for Cryogenic and Isotopic Technologies developed a detritiation technology based on catalytic isotopic exchange and cryogenic distillation. The main effort of our Inst. was focused on finding more efficient catalysts with a longer operational life. Some of the tritium removal processes involved in Fusion Science and Technology use this type of catalyst 1. Several Pt/C/PTFE hydrophobic catalysts that could be used in isotopic exchange process 2,3,4 were produced. The present paper presents a comparative study between the physical and morphological properties of different catalysts manufactured by impregnation at our institute. The comparison consists of a survey of specific surface, pores volume and pores distribution. (authors)

  14. Current experimental work related to a system alternative to that using the cryogenic separation of hydrogen isotopes

    International Nuclear Information System (INIS)

    Pierini, G.; Spelta, B.; Rizzello, C.

    1985-01-01

    The feasibility study of an alternative exhaust plasma process based mainly on the handling of tritiated waters had shown that it could be competitive as some units used in the isotopic separation system (ISS) could attain the performance required in the conceptual design. In particular, the two cells operating in the ISS should have confirmed, first the high separation factor between protium and tritium found in the literature, second the possibility of working at very low liquid (electrolyte) inventory or, in other words, tritium inventory. Moreover, research has been undertaken in order to investigate the preparation and charcterization of some types of separators which should be resistent to the beta radiation of tritiated water

  15. Physico-Chemical Study of the Separation of Calcium Isotopes by Chemical Exchange Between Amalgam and Salt Solutions

    International Nuclear Information System (INIS)

    Duie, P.; Dirian, G.

    1962-01-01

    In a preliminary study of the isotopic exchange between Ca amalgam and aqueous or organic solutions of Ca salts, the main parameters governing the feasibility of a separation process based on these systems such as separation factor, exchange kinetics, rate of decomposition of the amalgam were investigated. The separation factor between 40 Ca and 46 Ca was found to be of the order of 1.02. The rate of the exchange reaction is rather low for aqueous solutions, extremely low for organic solutions. The amalgam seems not to be attacked by dimethyl-formamide solutions; but it is rapidly decomposed by aqueous solutions of Ca halides. This decomposition is slow in the case of aqueous solutions of calcium formate and still slower for Ca(OH) 2 ; however, except in particular conditions, the observed rate is often much higher, owing to interfering reactions between amalgam and water vapor contained in H 2 bubbles. (authors) [fr

  16. Gas chromatographic separation of hydrogen isotopes on columns packed with alumina, modified alumina and sol-gel alumina.

    Science.gov (United States)

    Naik, Y P; Gupta, N K; Pillai, K T; Rao, G A Rama; Venugopal, V

    2012-01-06

    The stationary phase of alumina adsorbents, prepared by different chemical processes, was used to study the separation behaviour of hydrogen isotopes. Three types of alumina, obtained by conventional hydroxide route alumina coated with silicon oxide and alumina prepared by internal gelation process (IGP), were used as packing material to study the separation of HT and T(2) in a mixture at various temperatures. The conventional alumina and silicon oxide coated alumina resolved HT and T(2) at 77K temperature with different retention times. The retention times on SiO(2) coated columns were found to be higher than those of other adsorbents. However, the column filled with IGP alumina was found to be ideal for the separation of HT and T(2) at 240 K. The peaks were well resolved in less than 5 min on this column. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Formation cross-sections and chromatographic separation of protactinium isotopes formed in proton-irradiated thorium metal

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, Valery; Engle, Jonathan W.; Wilson, Justin J.; Maassen, Joel R.; Nortier, Meiring F.; Birnbaum, Eva R.; John, Kevin D.; Fassbender, Michael E. [Los Alamos National Laboratory, NM (United States)

    2016-08-01

    Targeted alpha therapy (TAT) is a treatment method of increasing interest to the clinical oncology community that utilizes α-emitting radionuclides conjugated to biomolecules for the selective killing of tumor cells. Proton irradiation of thorium generates a number of α-emitting radionuclides with therapeutic potential for application via TAT. In particular, the radionuclide {sup 230}Pa is formed via the {sup 232}Th(p, 3n) nuclear reaction and partially decays to {sup 230}U, an α emitter which has recently received attention as a possible therapy nuclide. In this study, we estimate production yields for {sup 230}Pa and other Pa isotopes from proton-irradiated thorium based on cross section measurements. We adopt existing methods for the chromatographic separation of protactinium isotopes from proton irradiated thorium matrices to combine and optimize them for effective fission product decontamination.

  18. Matrix separation by chelation to prepare biological materials for isotopic zinc analysis by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Durrant, S.F.; Krushevska, A.; Amarasiriwardena, D.; Argentine, M.D.; Romon-Guesnier, S.; Barnes, R.M.

    1994-01-01

    Following an evaluation of three chelating resins [Chelex-100, poly(dithiocarbamate) (PDTC) and carboxymethylated poly(ethyleneimine)-poly(methylenepolyphenylene) isocyanate (CPPI)], a procedure was established with the last of these for the separation of Zn from biological matrix elements prior to 70 Zn: 68 Zn isotopic analysis by inductively coupled plasma mass spectrometry (ICP-MS). The method was verified by establishing Zn recoveries and by determining its effectiveness in removing Cl and Na from buffered test solutions. Calcium, Na, and Zn concentration data were determined by inductively coupled plasma atomic emission spectrometry. Chlorine was measured by electrothermal vaporization ICP-MS. The efficacy of the technique was demonstrated by the determination of zinc isotope ratios in bovine milk and human urine. (Author)

  19. Application of atomic vapor laser isotope separation to the enrichment of mercury

    International Nuclear Information System (INIS)

    Crane, J.; Erbert, G.; Paisner, J.; Chen, H.; Chiba, Z.; Beeler, R.; Combs, R.; Mostek, S.

    1986-09-01

    Workers at GTE/Sylvania have shown that the efficiency of fluorescent lighting may be markedly improved using mercury that has been enriched in the 196 Hg isotope. A 5% improvement in the efficiency of fluorescent lighting in the United States could provide a savings of $450 million dollars in the corresponding reduction of electrical power consumption. We discuss the results of recent work done at our laboratory to develop a process for enriching mercury. The discussion centers around the results of spectroscopic measurements of excited-state lifetimes, photoionization cross sections, and isotope shifts

  20. Authenticity of aroma components Enantiomeric separation and compound specific stable isotope analysis

    DEFF Research Database (Denmark)

    Hansen, Anne-Mette Sølvbjerg

    using solid phase micro extraction with a polyacrylate fiber coating. The isotopic composition of the aroma extracted from vanilla custard powder, vanilla sugar, and cookies were determined and their authenticity evaluated accordingly. Extraction of vanilla aroma from ice cream was more complicated...... and a preliminary extraction was investigated. A liquid-liquid extraction was chosen in combination with solid phase micro extraction. With this method it was possible to analyze vanillin from 7 different ice creams and to evaluate their authenticity based on the measured carbon isotopic composition....

  1. Investigating the Relationship Between Soil Water Mobility and Stable Isotope Composition with Implications for the Ecohydrologic Separation Hypothesis

    Science.gov (United States)

    Shuler, J.; McNamara, J. P.; Benner, S. G.; Kohn, M. J.; Evans, S.

    2017-12-01

    The ecohydrologic separation (ES) hypothesis states that streams and plants return different soil water compartments to the atmosphere and that these compartments bear distinct isotopic compositions that can be used to infer soil water mobility. Recent studies have found isotopic evidence for ES in a variety of ecosystems, though interpretations of these data vary. ES investigations frequently suffer from low sampling frequencies as well as incomplete or missing soil moisture and matric potential data to support assumptions of soil water mobility. We sampled bulk soil water every 2-3 weeks in the upper 1 m of a hillslope profile from May 2016 to July 2017 in a semi-arid watershed outside Boise, ID. Twig samples of three plant species were also collected concurrently. Plant and soil water samples extracted via cryogenic vacuum distillation were analyzed for δ2H and δ18O composition. Soil moisture and soil matric potential sensors were installed at five and four depths in the profile, respectively. Shallow bulk soil water was progressively enriched in both isotopes over the growing season and plotted along a soil evaporation line in a plot of δ2H versus δ18O. Plant water during the growing season plotted below both the Local Meteoric Water Line and soil evaporation line. Plant water isotopic composition could not be traced to any source sampled in this study. Additionally, soil moisture and matric potential data revealed that soils were well-drained and that mobile soil water was unavailable throughout most of the growing season at the depths sampled. Soil water isotopic composition alone failed to predict mobility as observed in soil moisture and matric potential data. These results underscore the need for standard hydrologic definitions for the mobile and immobile compartments of soil water in future studies of the ES hypothesis and ecohydrologic processes in general.

  2. Interim report on modeling studies of two-photon isotope separation

    International Nuclear Information System (INIS)

    Hwang, W.C.; Badcock, C.C.; Kamada, R.F.

    1975-01-01

    The two-photon or two-step dissociation method of laser induced isotope enrichment is being modeled for the HBrNO photochemical system. In the model, H 79 Br is selectively excited by resonance IR laser radiation and then dissociated by uv radiation. Selectively dissociated Br atoms are scavenged to form isotopically enriched BrNO and Br 2 . This model includes all kinetic and absorption processes found to be significant and the time-varying concentrations of any species involved in a significant process. Among these processes are vibrational energy transfer reactions (including isotopic exchange) involving HBr v = 0 - 3, rotational and translational (velocity) relaxation processes, dissociation of HBr in the v = 0 - 3 levels, and secondary chemical reactions of the dissociation products. The absorption and kinetic processes that are most important to 79 Br enrichment have been identified and the study of the effects on enrichment upon variation of external parameters (such as reactant pressure, ir or uv source intensity, and temperature) is in progress. Some preliminary results are: (1) intensity of the ir source is usually more important than the uv intensity; (2) chemical reactions are the dominant kinetic processes at lower pressures while energy transfer reactions dominate at higher pressures; (3) kinetic processes usually have greater effect on the absolute amount of enriched products; (4) isotopic abundance of 79 Br in the products can range from 0.55 to 0.80 for the conditions used in the model

  3. Kinetics measurements in liquid-liquid exchange applied to isotopic separation

    International Nuclear Information System (INIS)

    Chalabreysse, M.C.; Neige, R.; Aubert, J.; Folcher, G.

    1979-01-01

    On laboratory scale, a method using calibrated drops, freely falling through a stationary continuous phase, was carried out to study the uranium isotope transfer between free ions dissolved in an aqueous phase and the corresponding complexes of an organic phase. We used an aqueous hydrochloric solution of U 4+ at an initial 235 U atom concentration of 0.72% and an organophosphorous extractant containing a U 4+ complex at an initial 235 U atom concentration of 0.5%. The isotopic mixing kinetics were measured. The aqueous phase was fed, as calibrated drops, through the stationary organic phase. 235 U concentration of the effluent stream was determined as a function of the drop residence time. An isotopic transfer coefficient ksub(A) (cm.s -1 ) was calculated. Its variations were investigated as a function of drop size. In the region of small drops the activation energy for ksub(A) was measured. The low value of 6 Kcalorie-mole allows interpretation in terms of diffusional more than chemical transfer resistance. The isotopic exchange has to be analysed by means of mathematic model based on physical characteristics of phases

  4. Centrifugal separation of carbon isotopes using n-octane as processing gas

    International Nuclear Information System (INIS)

    Zhou Mingsheng; Li Liang; Xu Yanbo; Cheng Wei'na

    2012-01-01

    Using n-octane as processing gas and single centrifuge as separator, a series of experiments were conducted to study the separation performance. Samples of each experiment were sent to mass spectrometer for analysis, and the overall separation factor and flow cut at different feed flow and holdup were obtained. The overall separation factor were all close to or more than 1.10, and the maximum valum can reach to 1.13. Based on the experimental data, parameters of cascade for separating 13 C were estimated using the MARC model. The calculation results indicated that 13 C can be enriched to about 11% by centrifuge cascade. (authors)

  5. Liquid-liquid extraction to lithium isotope separation based on room-temperature ionic liquids containing 2,2'-binaphthyldiyl-17-crown-5

    International Nuclear Information System (INIS)

    Sun Xiaoli; Zhou Wen; Gu Lin; Qiu Dan; Ren Donghong; Gu Zhiguo; Li Zaijun

    2015-01-01

    A novel liquid-liquid extraction system was investigated for the selective separation of lithium isotopes using ionic liquids (ILs = C 8 mim + PF 6 - , C 8 mim + BF 4 - , and C 8 mim + NTf 2 - ) as extraction solvent and 2,2'-binaphthyldiyl-17-crown-5 (BN-17-5) as extractant. The effects of the concentration of lithium salt, counter anion of lithium salt, initial pH of aqueous phase, extraction temperature, and time on the lithium isotopes separation were discussed. Under optimized conditions, the maximum single-stage separation factor α of 6 Li/ 7 Li obtained in the present study was 1.046 ± 0.002, indicating the lighter isotope 6 Li was enriched in IL phase while the heavier isotope 7 Li was concentrated in the solution phase. The formation of 1:1 complex Li(BN-17-5) + in the IL phase was determined on the basis of slope analysis method. The large value of the free energy change (-ΔG° = 92.89 J mol -1 ) indicated the high separation capability of the Li isotopes by BN-17-5/IL system. Lithium in Li(BN-17-5) + complex was stripped by 1 mol L -1 HCl solution. The extraction system offers high efficiency, simplicity, and green application prospect to lithium isotope separation. (author)

  6. Golan Heights Groundwater Systems: Separation By REE+Y And Stable Isotopes

    Science.gov (United States)

    Siebert, C.; Geyer, S.; Knoeller, K.; Roediger, T.; Weise, S.; Dulski, P.; Moeller, P.; Guttman, J.

    2008-12-01

    In a semi-arid to arid country like Israel, all freshwater resources are under (over-) utilization. Particularly, the Golan Heights rank as one of the most important extraction areas of groundwater of good quality and quantity. Additionally the mountain range feed to a high degree the most important freshwater reservoir of Israel, the Sea of Galilee. Hence, knowing the sources and characters of the Golan Heights groundwater systems is an instantaneous demand regarding sustainable management and protection. Within the "German-Israeli-Jordanian-Palestinian Joint Research Program for the Sustainable Utilisation of Aquifer Systems", hundreds of water samples were taken from all over the Jordan-Dead Sea rift-system to understand groundwater flow-systems and salinisation. For that purpose, each sample was analysed for major and minor ions, rare earth elements including yttrium (REY) and stable isotopes of water (d18O, d2H). The REY distribution in groundwater is established during infiltration by the first water-rock interaction and consequently reflects the leachable components of sediments and rocks of the recharge area. In well- developed flow-systems, REY are adsorbed onto pore surfaces are in equilibrium with the percolating groundwater, even if the lithology changes (e.g. inter-aquifer flow). Thus, groundwater sampled from wells and springs still show the REY distribution pattern established in the recharge area. Since high temperatures do not occur in Golan Heights, d2H and d18O are less controlled by water-rock interaction than by climatic and geomorphological factors at the time of replenishment. Applying the REY signature as a grouping criterion of groundwaters, d18O vs. d2H plots yield a new dimension in interpreting isotope data. The combined use of hydrochemical and isotopic methods enabled us to contain the areas of replenishment and the flow-paths of all investigated groundwater in the Golan Heights. Despite location, salinity or temperature of spring or

  7. Verification of hydrogen isotope separation by pressure swing adsorption process: Successive volume reduction of isotopic gas mixture using SZ-5A column

    Energy Technology Data Exchange (ETDEWEB)

    Kotoh, K., E-mail: kotoh@nucl.kyushu-u.ac.jp [Dept. of Applied Quantum Phys. and Nucl. Eng., Faculty of Eng., Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Tanaka, M. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takashima, S.; Tsuge, T. [Dept. of Applied Quantum Phys. and Nucl. Eng., Faculty of Eng., Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Asakura, Y.; Uda, T. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Sugiyama, T. [Faculty of Eng., Nagoya University, Furo-cho, Chigusa-ku, Nagoya 464-8601 (Japan)

    2011-12-15

    For the purpose of verifying the applicability of pressure swing adsorption (PSA) process to such as volume reduction of tritiated waste storage, an experimental series was carried out by a PSA apparatus having a zeolite packed column operated at the liquefied nitrogen temperature, where synthetic zeolite 5A was used as a candidate of adsorbents. Experimental results are shown here which were obtained from cyclic operation of isolating a volume of hydrogen decontaminated with its heaver isotope from a mixture of H{sub 2} and D{sub 2} while reducing a volume of this mixture storage. Successive reduction during six cycles is observed in the inventory of this hydrogen mixture in a gas holder. Experimental data are analyzed in order to evaluate the performance of this PSA process operating the hydrogen isotope separation, where several factors are introduced defining efficiencies of decontamination, volumetric reduction, and so on. These factors suggest that the PSA process is available for successive reduction of a tritiated hydrogen storage inventory. A tritium waste management system of PSA process combined with electrolysis is considerable which is aiming at reducing the inventory of tritiated water in storage.

  8. Column chromatographic boron isotope separation at 5 and 17 MPa with diluted boric acid solution.

    Science.gov (United States)

    Musashi, Masaaki; Oi, Takao; Matsuo, Motoyuki; Nomura, Masao

    2008-08-01

    Boron isotopic fractionation factor (S) between boron taken up in strongly basic anion exchange resin and boron in aqueous solution was determined by breakthrough column chromatography at 5 and 17 MPa at 25 degrees C, using 0.1 mM boric acid solution as feed solution. The S values obtained were 1.018 and 1.012, respectively, which were smaller than the value reported by using the same chromatographic method at the atmospheric pressure at 25 degrees C with the boron concentration of 10mM, but were larger than the values under the same condition with much higher concentration of 100 and 501 mM. Calculations based on the theory of isotope distribution between two phases estimated that 21% (5 MPa) and 47% (17 MPa) of boron taken up in the resin phase was in the three-coordinated B(OH)(3)-form, instead of in the four-coordinated B(OH)(4)-form, at high pressures even with a very diluted boric acid solution. We discussed the present results by introducing (1) hydration and (2) a partial molar volume difference between isotopic molecules. Borate may have been partially dehydrated upon transfer from the solution phase to the resin phase at high pressures, which resulted in smaller S values compared with those at the atmospheric pressure. Instead, it may be possible that the difference in the isotopic partial molar volume difference between B(OH)(3) and B(OH)(4)(-) caused the S value to decrease with increasing pressure.

  9. One-dimensional model for coaxial flowing streams with condensation. [Developed for application to laser isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Andes, S.

    1976-03-01

    An analytical model was developed to identify the basic phenomena present in the high temperature flow (2700/sup 0/K) of two gaseous coaxial streams. The one-dimensional model potentially has application for design of hardware and test conditions for conducting a laser isotope separation feasibility experiment. The processes of interest are those of coupled flow dynamics, liquid condensation of metal vapors, and gaseous diffusion. The stream tubes may initially consist of pure or combinations of an inert carrier--nitrogen, or metal vapor--uranium. A computer code, LISP (Laser Isotope Separation Program), follows from the model. Output from the LISP code is presented in three test cases. They involved stream differences in velocity up to 90,000 mm/sec and in temperatures of 1100/sup 0/K. The rate controlling process for the cases cited was found to be diffusion. However, condensation was present. Further use of the LISP code should continue to give a better understanding into the coupled processes of diffusion, condensation, and flow dynamics.

  10. Cross section of α-induced reactions on iridium isotopes obtained from thick target yield measurement for the astrophysical γ process

    Science.gov (United States)

    Szücs, T.; Kiss, G. G.; Gyürky, Gy.; Halász, Z.; Fülöp, Zs.; Rauscher, T.

    2018-01-01

    The stellar reaction rates of radiative α-capture reactions on heavy isotopes are of crucial importance for the γ process network calculations. These rates are usually derived from statistical model calculations, which need to be validated, but the experimental database is very scarce. This paper presents the results of α-induced reaction cross section measurements on iridium isotopes carried out at first close to the astrophysically relevant energy region. Thick target yields of 191Ir(α,γ)195Au, 191Ir(α,n)194Au, 193Ir(α,n)196mAu, 193Ir(α,n)196Au reactions have been measured with the activation technique between Eα = 13.4 MeV and 17 MeV. For the first time the thick target yield was determined with X-ray counting. This led to a previously unprecedented sensitivity. From the measured thick target yields, reaction cross sections are derived and compared with statistical model calculations. The recently suggested energy-dependent modification of the α + nucleus optical potential gives a good description of the experimental data.

  11. Cross section of α-induced reactions on iridium isotopes obtained from thick target yield measurement for the astrophysical γ process

    Directory of Open Access Journals (Sweden)

    T. Szücs

    2018-01-01

    Full Text Available The stellar reaction rates of radiative α-capture reactions on heavy isotopes are of crucial importance for the γ process network calculations. These rates are usually derived from statistical model calculations, which need to be validated, but the experimental database is very scarce. This paper presents the results of α-induced reaction cross section measurements on iridium isotopes carried out at first close to the astrophysically relevant energy region. Thick target yields of 191Ir(α,γ195Au, 191Ir(α,n194Au, 193Ir(α,n196mAu, 193Ir(α,n196Au reactions have been measured with the activation technique between Eα=13.4 MeV and 17 MeV. For the first time the thick target yield was determined with X-ray counting. This led to a previously unprecedented sensitivity. From the measured thick target yields, reaction cross sections are derived and compared with statistical model calculations. The recently suggested energy-dependent modification of the α+nucleus optical potential gives a good description of the experimental data.

  12. Macrocyclic ligand decorated ordered mesoporous silica with large-pore and short-channel characteristics for effective separation of lithium isotopes: synthesis, adsorptive behavior study and DFT modeling.

    Science.gov (United States)

    Liu, Yuekun; Liu, Fei; Ye, Gang; Pu, Ning; Wu, Fengcheng; Wang, Zhe; Huo, Xiaomei; Xu, Jian; Chen, Jing

    2016-10-18

    Effective separation of lithium isotopes is of strategic value which attracts growing attention worldwide. This study reports a new class of macrocyclic ligand decorated ordered mesoporous silica (OMS) with large-pore and short-channel characteristics, which holds the potential to effectively separate lithium isotopes in aqueous solutions. Initially, a series of benzo-15-crown-5 (B15C5) derivatives containing different electron-donating or -withdrawing substituents were synthesized. Extractive separation of lithium isotopes in a liquid-liquid system was comparatively studied, highlighting the effect of the substituent, solvent, counter anion and temperature. The optimal NH 2 -B15C5 ligands were then covalently anchored to a short-channel SBA-15 OMS precursor bearing alkyl halides via a post-modification protocol. Adsorptive separation of the lithium isotopes was fully investigated, combined with kinetics and thermodynamics analysis, and simulation by using classic adsorption isotherm models. The NH 2 -B15C5 ligand functionalized OMSs exhibited selectivity to lithium ions against other alkali metal ions including K(i). Additionally, a more efficient separation of lithium isotopes could be obtained at a lower temperature in systems with softer counter anions and solvents with a lower dielectric constant. The highest value separation factor (α = 1.049 ± 0.002) was obtained in CF 3 COOLi aqueous solution at 288.15 K. Moreover, theoretical computation based on the density functional theory (DFT) was performed to elucidate the complexation interactions between the macrocyclic ligands and lithium ions. A suggested mechanism involving an isotopic exchange equilibrium was proposed to describe the lithium isotope separation by the functionalized OMSs.

  13. The application of a high pulse repetition rate CO2 laser with high average power for isotope separation by molecular dissociation in a strong IR field

    International Nuclear Information System (INIS)

    Bagratashvili, V.N.; Kolomisky, Y.R.; Letokhov, V.S.; Ryabov, E.A.; Baranov, V.Y.; Kazakov, S.A.; Nizjev, V.G.; Pismenny, V.D.; Starodubtsev, A.I.; Velikhov, E.P.

    1977-01-01

    Considering a SF 6 molecule we demonstrate feasibility of using high pulse repetition rate CO 2 laser for isotope separation by selective molecular dissociation in a strong IR field. Dependences of dissociation efficiency as well as separation selectivity on pulse repetition rate up to 150 Hz are investigated. The inherent thermal effects are discussed. (orig.) [de

  14. Sieving hydrogen isotopes through two dimensional crystals

    OpenAIRE

    Lozada-Hidalgo, M.; Hu, S.; Marshall, O.; Mishchenko, A.; Grigorenko, A. N.; Dryfe, R. A. W.; Radha, B.; Grigorieva, I. V.; Geim, A. K.

    2015-01-01

    One-atom-thick crystals are impermeable to atoms and molecules, but hydrogen ions (thermal protons) penetrate through them. We show that monolayers of graphene and boron nitride can be used to separate hydrogen ion isotopes. Employing electrical measurements and mass spectrometry, we find that deuterons permeate through these crystals much slower than protons, resulting in a separation factor of ~10 at room temperature. The isotope effect is attributed to a difference of about 60 meV between ...

  15. Hydrogen isotopes separation using twin combined columns packed with Pd and LaNi4.7Al0.3

    International Nuclear Information System (INIS)

    Zhu Xinliang; Zhu Hongzhi; Li Jie; Zhao Ping

    2007-01-01

    A series of hydrogen isotope separation experiment by the twin-bed periodically counter-current flow were carried out using twin combined columns separately packed with Pd and LaNi 4.7 Al 0.3 , which shows inverse isotope effect. Two kinds of feed gases, the deuterium atomic molar fraction 0.5 and 0.1, were supplied during the effluent curve test and hydrogen isotope separation experiment. The results show that this hydrogen isotope separation by periodically counter-current flow has a quite high separate efficiency. Deuterium atom mole fraction in the product is normally greater than 0.995. For the separation of feed gas that deuterium atomic mole fraction was 0.1 by our improved operation manner, the maximum deuterium atomic mole fraction in product, the maximum enrichment, the deuterium recovery ratio are 0.998, 9.98 and 92.5% respectively, hydrogen atomic mole fraction in exhaust is greater than 0.996, and the full separation coefficient is over 120000. (authors)

  16. Separation of the intramolecular isotope effect for the cytochrome P-450 catalyzed hydroxylation of n-octane into its primary and secondary components

    International Nuclear Information System (INIS)

    Jones, J.P.; Trager, W.F.

    1987-01-01

    The intramolecular isotope effect for the cytochrome P-450b omega-hydroxylation of [1,1,1- 2 H 3 ]-n-octane was separated into its primary and secondary components by the method of Hanzlik. The primary isotope effect was found to lie between 7.3 and 7.9 while the secondary isotope effect was found to lie between 1.09 and 1.14. These data are consistent with a highly symmetrical transition state with 15% of the observed isotope effect being due to secondary isotope effects. Although the system was found to depart from the rule of the geometric mean, the phenomenon could not be attributed to tunneling

  17. Membrane pumping technology, helium and hydrogen isotopes separation in the fusion hydrogen

    International Nuclear Information System (INIS)

    Pigarov, A.Yu.; Pistunovich, V.I.; Busnyuk, A.O.

    1994-01-01

    A gas pumping system for the ITER, improved by implementation of superpermeable membranes for selective hydrogen isotope exhaust, is considered. The study of the pumping capability of a niobium membrane for a hydrogen-helium mixture has been fulfilled. The membrane superpermeability can be only realized for atomic hydrogen. Helium does not pass through the membrane, and its presence does not affect the hydrogen pumping. A detailed Monte Carlo simulation of gas behavior for the experimental facility has been done. The probability of permeation for a hydrogen atom for one collision with the membrane is ∼0.1; the same probability of molecule permeation is ∼10 -5 . The probability for atomization, i.e. re-emission of an atomizer is ∼0.2; the probability of recombination of an atom is ∼0.2

  18. Mathematical modeling of the static and dynamic behavior of the operational parameters of isotopic separation cascades composed of ultracentrifuges

    International Nuclear Information System (INIS)

    Portoghese, Celia Christiani Paschoa

    2002-01-01

    Several different mathematical models that make it possible to plan, design and follow the operation of uranium isotopic separation cascades using the gaseous ultracentrifugation process are presented, discussed and tested. Models to be used in the planning and conception phases use theoretical hypothesis, making it possible to calculate approximate values for the flow rate and isotopic composition of the cascade internal streams. Twelve theoretical models developed to perform this task are discussed and compared. The theoretical models that have greater applicability are identified. Models to be used for the complete dimensioning of a cascade, before its construction, called semi-empirical models, use experimental results obtained in ultracentrifuges individual testes combined with theoretical equations, allowing to calculate accurate values for the flow rate, pressure and isotopic composition of the cascade internal streams. Thirteen semi-empirical models developed to perform this task are presented, five of them are widely discussed and one of them is validated through comparison with experimental results. In order to follow the operation of a cascade, it is necessary to develop models to simulate its behavior in operational conditions other than the nominal, defined in the project. Three semi-empirical models to make this kind of simulation are presented and one of them is validated through comparison with experimental results. Finally, it is necessary to have tools that simulate the cascade behavior during transients. Two dynamic models developed to perform this task are presented and compared. The dynamic model capable to simulate results closer ti the real behaviour of a cascade during three different kinds of transient is identified, through comparison between simulated and experimental results. (author)

  19. Improved performance of a thermal diffusion column for the separation of hydrogen isotopes

    International Nuclear Information System (INIS)

    Neubert, A.; Heimbach, H.; Ihle, H.R.

    1984-01-01

    By addition of spacers to fix the central wire of a thermal diffusion column the separation factor was found to be markedly improved. Its dependence on pressure and on the product streams was determined. Further, the purification of deuterium from tritium was studied. (author)

  20. Determination of Nd isotopes in water: a chemical separation technique for extracting Nd from seawater using a chelating resin.

    Science.gov (United States)

    Persson, Per-Olov; Andersson, Per S; Zhang, Jing; Porcelli, Don

    2011-02-15

    A new preconcentration technique for the determination of the concentration and isotopic composition of neodymium in aqueous samples is presented. The method uses a resin, Nobias PA1 from Hitachi High-Technologies, which has a hydrophilic methacrylate polymer backbone where the functional groups ethylenediaminetriacetic and iminodiacetic acids are immobilized. The function of the resin has been tested by preconcentrating 110-350 pmol of Nd from test solutions as well as from natural brackish water and seawater samples with different salinities and Nd concentrations. Samples were loaded onto the resin after the pH was adjusted, and the Nd fraction was eluted using 3 M HNO(3). The method shows yields of about 90% or higher at pH 6 when the samples were buffered using ammonium acetate. Without the addition of buffer the yield decreased to below 80%. The isotopic composition of Nd in samples preconcentrated using Nobias PA1 agree within error with published data or data obtained by other methods. The total blank, including contributions from preconcentration, separation, and mass spectrometry, is estimated to be 0.2-0.4 pmol (30-60 pg) of Nd. The described preconcentration method, which can be used in the field, is easy, fast (about 8 h for a 3.6 kg sample), and reliable for preconcentration of Nd from a seawater matrix.

  1. Process control of a gaseous diffusion cascade for isotopic separation of uranium

    International Nuclear Information System (INIS)

    Bilous, Olegh; Doneddu, F.

    1986-01-01

    Various aspects of dynamics and process control of a gaseous diffusion cascade are described. The cascade enriches uranium hexafluoride gas (HEX) in the light isotope of uranium in a countercurrent flow. The linearized equations describing the equipment models are derived. One can then write the mass balances on the high and low pressure sides of a stage and the overall heat balance of a stage. These heat and mass balances are linear difference equations on the stage number with time derivatives which are then replaced by jω factors to examine the effects of cyclic perturbations. The mass balances are first treated for a cascade section of 12 stages with temperatures assumed constant. The effect of a perturbation of pressure on one of the stages is described first for ω=0 (that is for steady state). Then Nyquist diagrams are obtained. The effect of transport change is also studied. Then temperature is introduced, assuming pressures to be constant. The cases of a section of 12 stages and a cascade of 120 stages are examined. Again Nyquist diagrams of temperature frequency response to a perturbation on one stage are calculated. Process control of the heat exchangers is introduced. The method used to solve the difference equations may be applied to other types of perturbations and to the complete scheme of process control. (author)

  2. An efficient method for extracting plasma ions in laser isotope separation systems

    International Nuclear Information System (INIS)

    Demidova, N.S.; Mishin, V.A.

    2000-01-01

    The possibility of using a Hall-current accelerator to extract ions from a partially ionized plasma produced by selective laser isotope photoionization of atomic vapor is examined. A mechanism for ion acceleration is investigated using one-dimensional time-dependent equations of two-fluid magnetohydrodynamics. The current cutoff due to the ion space charge is prevented by electron emission. It is shown that, at an accelerating voltage of 25-50 V and emission current density of several mA/cm 2 , the ion component is accelerated throughout the entire plasma volume up to a velocity of ∼10 5 cm/s in a few microseconds. The influence of resonant charge exchange and secondary ionization by electrons on both the acceleration dynamics and selectivity degradation is taken into account. It is shown that the Hall-current extractor allows one to avoid selectivity degradation even when the plasma size exceeds the charge-exchange mean free path by one order of magnitude

  3. Isotope separation of 17O by photodissociation of ozone with near-infrared laser irradiation

    Science.gov (United States)

    Hayashida, Shigeru; Kambe, Takashi; Sato, Tetsuya; Igarashi, Takehiro; Kuze, Hiroaki

    2012-04-01

    Oxygen-17 is a stable oxygen isotope useful for various diagnostics in both engineering and medical applications. Enrichment of 17O, however, has been very costly due to the lack of appropriate methods that enable efficient production of 17O on an industrial level. In this paper, we report the first 17O-selective photodissociation of ozone at a relatively high pressure, which has been achieved by irradiating a gas mixture of 10 vol% O3-90 vol% CF4 with narrowband laser. The experiment was conducted on a pilot-plant scale. A total laser power of 1.6 W was generated by external-cavity diode lasers with all the laser wavelengths fixed at the peak of an absorption line of 16O16O17O around 1 μm. The beams were introduced into a 25 -m long photoreaction cell under the sealed-off condition with a total pressure of 20 kPa. Lower cell temperature reduced the background decomposition of ozone, and at the temperature of 158 K, an 17O enrichment factor of 2.2 was attained.

  4. Distrinution and properties of nuclides in fission by means of on-line isotope separation

    International Nuclear Information System (INIS)

    Nir-El, Y.

    1977-07-01

    This work determines the independent yield distribution fo the alkali elements' fission products. The results were analyzed by especially developed equations and half-lives were calculated using a computer program which fits a series of exponentials to the activity decay curve by the least squares method. Independent yields were determined by use of calculated correction factors and by normalization against a known independent yield. The three nuclides 147 Ba, 148 Ba, and 149 La were indentified fot the first time in this work and their half-lives were determined Comparison with calculated values, within the framework of beta decay theory, gave in all cases agreement better than an order of magnitude. Extrapolation of the experimental curve and prediction of values which have not yet been measured are now possible. Independent yield distributions of rubidium and cesium include values for 99 Rb, 147 Cs and 148 Cs determined for the first time. The last two isotopes were identified fot the first time in the present work. A model was developed to interpretthe heavy wing phenomenon based on statistical considerations and onbasic properties of prompt neutron emission in fission. The width parameter of the independent yield distribution calculated according to the propsed model is in very good agreement with the width parameter of a Gaussian fitted to the measured distribution. (B.G.)

  5. Production of krypton and xenon isotopes in thick stony and iron targets isotropically irradiated with 1600 MeV protons

    CERN Document Server

    Gilabert, E; Lavielle, B; Leya, I; Michel, R; Neumann, S

    2002-01-01

    Two spherical targets made of gabbro with a radius of 25 cm and of steel with a radius of 10 cm were irradiated isotropically with 1600 MeV protons at the SATURNE synchrotron at Laboratoire National Saturne (LNS)/CEN Saclay, in order to simulate the production of nuclides in meteorites induced by galactic cosmic-ray protons in space. These experiments supply depth-dependent production rate data for a wide range of radioactive and stable isotopes in up to 28 target elements. In this paper, we report results for /sup 78/Kr, /sup 80-86/Kr isotopes in Rb, Sr, Y and Zr and for /sup 124/Xe, /sup 126/Xe, /sup 128-132/Xe, /sup 134/Xe, /sup 136/Xe isotopes in Ba and La. Krypton and xenon concentrations have been measured at different depths in the spheres by using conventional mass spectrometry. Based on Monte-Carlo techniques, theoretical production rates are calculated by folding depth-dependent spectra of primary and secondary protons and secondary neutrons with the excitation functions of the relevant nuclear reac...

  6. National Beef Market Basket Survey - 2006: External fat thickness measurements and separable component determinations for beef from US retail establishments.

    Science.gov (United States)

    Mason, C L; Nicholson, K L; Brooks, J C; Delmore, R J; Henning, W R; Johnson, D D; Lorenzen, C L; Maddock, R J; Miller, R K; Morgan, J B; Wasser, B E; Gwartney, B L; Harris, K B; Griffin, D B; Hale, D S; Savell, J W

    2009-02-01

    A market basket survey for beef retail cut composition at the retail level (four stores each from two chains in each city) was conducted in 11 US cities from January to March 2006. Beef cuts (n=17,495) were measured for external fat thickness with cuts from the chuck (0.05cm), round (0.05cm), and miscellaneous (0.04cm) having less (Pmarketing purposes.

  7. The investigation of properties of short-lived SF isotopes (Z > 100 at the focal plane of VASSILISSA separator

    Directory of Open Access Journals (Sweden)

    Svirikhin Alexandr

    2013-12-01

    Full Text Available For experiments aimed at the study of spontaneous fission of transfermium nuclei improvements in the focal plane detector system of recoil separator VASSILISSA have been made. A neutron detector consisting of 54 3He-filled counters has been mounted around the focal-plane detector chamber. The reaction 48Ca + 206Pb = 2n + 252No is used for tuning the separator settings and calibrating the detector system with the spontaneous fission of the 252No. The average neutron number per 252No spontaneous fission event is as large as ν̅ = 4.06 ± 0.12. The short-lived heavy isotopes 244,246Fm, produced in the complete fusion reactions 40Ar + 206,208Pb, are investigated. The average number of neutrons per spontaneous fission of 244,246Fm from the experimental data were (ν̅ = 3.3 ± 0.3 and (ν̅ = 3.55 ± 0.50, respectively. Both values are determined for the first time.

  8. Hydrograph separation in headwater catchments of the Andes using water isotope composition

    Science.gov (United States)

    Roa Garcia, C.; Weiler, M.

    2009-04-01

    Water isotopes have been used in hydrology for two purposes: 1) identify the age of water when it leaves a catchment, both for baseflow and for individual storms; and 2) identify the source of water that leaves the catchment during and after a precipitation event, (e.g. whether it comes from rain or from particular water reservoirs within the catchment). This knowledge has been used to understand the interactions between precipitation and catchments and as a proxy for the capacity of a catchment to store water and regulate its flow, which is particularly relevant for water managers. This study has taken three small neighboring catchments and one sub-catchment in each of them containing a wetland, to analyze their baseflow and discharge response to rain events using TRANSEP. The objectives of this study are: 1) to compare the hydrological response of the six units to test the hypothesis that connected units of the landscape e.g. wetlands have a large influence on catchment yield; 2) to analyze the effect of land use on water yield during rain events; and 3) to analyze the effects of land use on baseflow. Results indicate that for B1, the catchment with 68% of area in forest, discharge is predominantly quickflow (70%), whereas for the other two catchments, it comes from around 50% of both the quickflow reservoir and the persistent reservoir. The big influence from wetlands is seen in two results: 1) the higher proportion of baseflow discharge for BB, the catchment with a 6% of total area in wetlands, since wetlands could be contributing to groundwater recharge; 2) the mean transit time of water in BB, 172 days compared with 97 days for B1 (the forested catchment) and 28 days for B2 (the catchment with 69% in grasslands) influenced by the longer transit time for BBW and B2W. The larger proportion of discharge coming from the slow quickflow in wetlands B2 and BB, and their mean transit times, indicate that the water stored in wetlands, despite constituting surface

  9. Physically Gelled Room-Temperature Ionic Liquid-Based Composite Membranes for CO2/N-2 Separation: Effect of Composition and Thickness on Membrane Properties and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, PT; Voss, BA; Wiesenauer, EF; Gin, DL; Nobe, RD

    2013-07-03

    An aspartame-based, low molecular-weight organic gelator (LMOG) was used to form melt-infused and composite membranes with two different imidazolium-based room-temperature ionic liquids (RTILs) for CO2 separation from N-2. Previous work demonstrated that LMOGs can gel RTILs at low, loading levels, and this aspartame-based LMOG was selected because it has been reported to gel a large number of RTILs. The imidazolium-based RTILs were used because of their inherent good properties for CO2/light gas separations. Analysis of the resulting bulk RTIL/LMOG physical gels showed that these materials have high sol-gel transition temperatures (ca. 135 degrees C) suitable for flue gas applications. Gas permeabilities and burst pressure measurements of thick, melt infused membranes revealed a trade-off between high CO2 permeabilities and good mechanical stability as a function of the LMOG loading. Defect-free, composite membranes of the gelled RTILs were successfully fabricated by choosing an appropriate porous membrane support (hydrophobic PTFE) using a suitable coating technique (roller coating). The thicknesses of the applied composite gel layers ranged from 10.3 to 20.7 mu m, which represents an order of magnitude decrease in active layer thickness, compared to the original melt-infused gel RTIL membranes.

  10. Performance of the multiple target He/PbI sub 2 aerosol jet system for mass separation of neutron-deficient actinide isotopes

    CERN Document Server

    Ichikawa, S; Asai, M; Haba, H; Sakama, M; Kojima, Y; Shibata, M; Nagame, Y; Oura, Y; Kawade, K

    2002-01-01

    A multiple target He/PbI sub 2 aerosol jet system coupled with a thermal ion source was installed in the isotope separator on line (JAERI-ISOL) at the JAERI tandem accelerator facility. The neutron-deficient americium and curium isotopes produced in the sup 2 sup 3 sup 3 sup , sup 2 sup 3 sup 5 U( sup 6 Li, xn) and sup 2 sup 3 sup 7 Np( sup 6 Li, xn) reactions were successfully mass-separated and the overall efficiency including the ionization of Am atoms was evaluated to be 0.3-0.4%. The identification of a new isotope sup 2 sup 3 sup 7 Cm with the present system is reported.

  11. The application of the signal flow graph method to charged-particle optics - the formula derivation of a three-sector isotope separator

    International Nuclear Information System (INIS)

    Lu Hongyou; Zhao Zhiyong; Sun Quinren

    1987-01-01

    A brief introduction of the Signal Flow Graph (SFG) method is given. The application of it to charged-particle optics (CPO) is described. The method has the advantages of simplicity, visualisation and computerisation. An example of the application of SFG is given for the design of a three-sector electromagnetic isotope separator. (orig.)

  12. The application of the signal flow graph method to charged-particle optics: The formula derivation of a three-sector isotope separator

    International Nuclear Information System (INIS)

    Lu, H.; Zhao, Z.; Sun, Q.

    1987-01-01

    A brief introduction of the Signal Flow Graph (SFG) Method is given. The application of it to charged-particle optics (CPO) is described. The method has the advantages of simplicity, visualisation and computerisation. An example of the application of SFG is given for the design of a three-sector electromagnetic isotope separator

  13. A green strategy for lithium isotopes separation by using mesoporous silica materials doped with ionic liquids and benzo-15-crown-5

    International Nuclear Information System (INIS)

    Wen Zhou; Xiao-Li Sun; Lin Gu; Fei-Fei Bao; Xin-Xin Xu; Chun-Yan Pang; Zaijun Li; Zhi-Guo Gu; Jiangnan University, Wuxi

    2014-01-01

    Three new mesoporous silica materials IL15SGs (HF15SG, TF15SG and DF15SG) doped with benzo-15-crown-5 and imidazolium based ionic liquids (C 8 mim + PF 6 - , C 8 mim + BF 4 - or C 8 mim + NTf 2 - ) have been prepared by a simple approach to separating lithium isotopes. The formed mesoporous structures of silica gels have been confirmed by transmission electron microscopy image and N 2 gas adsorption-desorption isotherm. Imidazolium ionic liquids acted as templates to prepare mesoporous materials, additives to stabilize extractant within silica gel, and synergetic agents to separate the lithium isotopes. Factors such as lithium salt concentration, initial pH, counter anion of lithium salt, extraction time, and temperature on the lithium isotopes separation were examined. Under optimized conditions, the extraction efficiency of HF15SG, TF15SG and DF15SG were found to be 11.43, 10.59 and 13.07 %, respectively. The heavier isotope 7 Li was concentrated in the solution phase while the lighter isotope 6 Li was enriched in the gel phase. The solid-liquid extraction maximum single-stage isotopes separation factor of 6 Li- 7 Li in the solid-liquid extraction was up to 1.046 ± 0.002. X-ray crystal structure analysis indicated that the lithium salt was extracted into the solid phase with crown ether forming [(Li 0.5 ) 2 (B 15 ) 2 (H 2 O)] + complexes. IL15SGs were also easily regenerated by stripping with 20 mmol L -1 HCl and reused in the consecutive removal of lithium ion in five cycles. (author)

  14. Influence of thickness of alkyl-silane coupling agent coating on separation of small DNA fragments in capillary gel electrophoresis

    Science.gov (United States)

    Nakazumi, T.; Hara, Y.

    2017-09-01

    To simplify the process of coating capillaries with fused silica, we herein set out to develop a one-step procedure for coating capillaries to prevent electro-osmotic flow (EOF) during the separation of small DNA fragments. We selected a short capillary (total length = 15 cm; effective length = 7.5 cm) for use in a compact capillary gel electrophoresis (CGE) system. To develop a one-step coating procedure, we employed alkyltrimethoxysilane agents because they are cheap and can be easily acquired, in contrast to polyethylene glycol (PEG) silane coupling agents. We examined a 100-bp DNA Ladder sample using fused silica capillaries, which were coated with alkyltrimethoxysilane agents of five different molecular lengths (C4, C6, C8, C12, and C16). We found that a fused-silica capillary with C8 alkyltrimethoxysilane is optimal for separating small DNA samples.

  15. Main results obtained in France in the development of the gaseous diffusion process for uranium isotope separation

    International Nuclear Information System (INIS)

    Frejacques, C.; Bilous, O.; Dixmier, J.; Massignon, D.; Plurien, P.

    1958-01-01

    The main problems which occur in the study of uranium isotope separation by the gaseous diffusion process, concern the development of the porous barrier, the corrosive nature of uranium hexafluoride and also the chemical engineering problems related to process design and the choice of best plant and stage characteristics. Porous barriers may be obtained by chemical attack of non porous media or by agglomeration of very fine powders. Examples of these two types of barriers are given. A whole set of measurement techniques were developed for barrier structure studies, to provide control and guidance of barrier production methods. Uranium hexafluoride reactivity and corrosive properties are the source of many difficult technological problems. A high degree of plant leak tightness must be achieved. This necessity creates a special problem in compressor bearing design. Barrier lifetime is affected by the corrosive properties of the gas, which may lead to a change of barrier structure with time. Barrier hexafluoride permeability measurements have helped to make a systematic study of this point. Finally an example of a plant flowsheet, showing stage types and arrangements and based on a minimisation of enriched product costs is also given as an illustration of some of the chemical engineering problems present. (author) [fr

  16. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements

    DEFF Research Database (Denmark)

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin

    2014-01-01

    This paper reports an analytical method for the determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation......, this is critical for the measurement of plutonium isotopes using mass spectrometric technique. Although the chemical yield of Pu in the entire procedure is about 55%, the analytical results of IAEA soil 6 and IAEA-367 in this work are in a good agreement with the values reported in the literature or reference...... counting and alpha spectrometry) and inductively coupled plasma mass spectrometry (ICP-MS) were applied for the measurement of plutonium isotopes. The decontamination factors for uranium were significantly improved up to 7.5×105 for 20 g soil compared to the level reported in the literature...

  17. Tunable thick porous silica coating fabricated by multilayer-by-multilayer bonding of silica nanoparticles for open-tubular capillary chromatographic separation.

    Science.gov (United States)

    Qu, Qishu; Liu, Yuanyuan; Shi, Wenjun; Yan, Chao; Tang, Xiaoqing

    2015-06-19

    A simple coating procedure employing a multilayer-by-multilayer process to modify the inner surface of bare fused-silica capillaries with silica nanoparticles was established. The silica nanoparticles were adsorbed onto the capillary wall via a strong electrostatic interaction between amino functional groups and silica particles. The thickness of the coating could be tuned from 130 to 600 nm by increasing the coating cycles from one to three. Both the retention factor and the resolution were greatly increased with increasing coating cycles. The loading capacity determined by naphthalene in the column with three coating cycles is 152.1 pmol. The effects of buffer concentration and pH value on the stability of the coating were evaluated. The retention reproducibility of the separation of toluene was 0.8, 1.2, 2.3, and 4.5%, respectively, for run-to-run, day-to-day, column-to-column, and batch-to-batch, respectively. The chromatographic performance of these columns was evaluated by both capillary liquid chromatography and open-tubular capillary electrochromatography (OT-CEC). Separation of aromatic hydrocarbons in the column with three coating cycles provided high theoretical plate numbers (up to 269,280 plates m(-1) for toluene) and short separation time (<15 min) by using OT-CEC mode. The method was also used to separate egg white proteins. Both acidic and basic proteins as well as four glycoisoforms were separated in a single run. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. High mass isotope separation

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1976-01-01

    The method consists of selectively reacting the gaseous uranium hexafluoride molecules in a first physiochemical state and at a higher rovibrational energy state with gaseous hydrogen to provide a chemical compound at a second physicochemical state different from the first state and containing atoms of uranium 235. (J.R.)

  19. Isotope-separation ultracentrifuge

    International Nuclear Information System (INIS)

    Girodin, M.G.H.

    1974-01-01

    Description is given of a centrifuge with a vertical bowl suspended from a rotating socket acting in the manner of a bearing and guided, in the lower portion thereof, by a low-inertia moderate stiffness bearing, each of the bowl end portions being peripherally rounded and tapered so as to be tangentially flush with the bowl body, the latter being transversely corrugated [fr

  20. The Eurisol report. A feasibility study for a European isotope-separation-on-line radioactive ion beam facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-01

    The Eurisol project aims at a preliminary design study of the next-generation European isotope separation on-line (ISOL) radioactive ion beam (RIB) facility. In this document, the scientific case of high-intensity RIBs using the ISOL method is first summarised, more details being given in appendix A. It includes: 1) the study of atomic nuclei under extreme and so-far unexplored conditions of composition (i.e. as a function of the numbers of protons and neutrons, or the so-called isospin), rotational angular velocity (or spin), density and temperature, 2) the investigation of the nucleosynthesis of heavy elements in the Universe, an important part of nuclear astrophysics, 3) a study of the properties of the fundamental interactions which govern the properties of the universe, and in particular of the violation of some of their symmetries, 4) potential applications of RIBs in solid-state physics and in nuclear medicine, for example, where completely new fields could be opened up by the availability of high-intensity RIBs produced by the ISOL method. The proposed Eurisol facility is then presented, with particular emphasis on its main components: the driver accelerator, the target/ion-source assembly, the mass-selection system and post-accelerator, and the required scientific instrumentation. Special details of these components are given in appendices B to E, respectively. The estimates of the costs of the Eurisol, construction and running costs, have been performed in as much details as is presently possible. The total capital cost (installation manpower cost included) of the project is estimated to be of the order of 630 million Euros within 20%. In general, experience has shown that operational costs per annum for large accelerator facilities are about 10% of the capital cost. (A.C.)

  1. This picture was taken in 1967 during the first test of the Isotope On-Line Separator (ISOLDE) installation at the 600 MeV CERN Synchro Cyclotron.

    CERN Multimedia

    CERN PhotoLab

    1967-01-01

    When ISOLDE began operation, it was unique in the world. It used a new technique to overcome the problem of rapidly separating interesting atoms from the rest of the nuclear target. Through a combination of chemical and electromagnetic methods the different isotopes were separated and converted into an ion beam made of just one isotope. On-line production of radioactive nuclei, in this way, offered many new opportunities for physicists as it allowed them to perform previously impossible experiments on short-lived nuclei. ISOLDE has become one of CERN's major installations and it supports a broad scientific programme by providing beams to different experiments. The techniques developed at ISOLDE have opened up a new field of radioactive ion-beam accelerators, both at CERN and worldwide.

  2. Development of an Ionization Scheme for Gold using the Selective Laser Ion Source at the On-Line Isotope Separator ISOLDE

    CERN Document Server

    Fedosseev, V; Marsh, B A; CERN. Geneva. AB Department

    2006-01-01

    At the ISOLDE on-line isotope separation facility, the resonance ionization laser ion source (RILIS) can be used to ionize reaction products as they effuse from the target. The RILIS process of laser step-wise resonance ionization of atoms in a hot metal cavity provides a highly element selective stage in the preparation of the radioactive ion beam. As a result, the ISOLDE mass separators can provide beams of a chosen isotope with greatly reduced isobaric contamination. The number of elements available at RILIS has been extended to 26, with the addition of a new three-step ionization scheme for gold. The optimal ionization scheme was determined during an extensive study of the atomic energy levels and auto-ionizing states of gold, carried out by means of in-source resonance ionization spectroscopy. Details of the ionization scheme and a summary of the spectroscopy study are presented.

  3. ITER task D316 (1996): design review of isotope separation system (WBS 3.2 B) and water detritiation system (WBS 3.2 E)

    International Nuclear Information System (INIS)

    Sood, S.K.; Fong, C.

    1997-05-01

    The design review performed on the ITER Isotope Separation System and the Water Detritiation System are summarized. The objectives of the task are: to produce a Design Description Document for the Feed Treatment and Vacuum system for the Water Detritiation system; to review the process system operation and control philosophy for the Water Detritiation System; to review the equipment arrangement drawings where available. 1 fig., 3 refs

  4. A cylindrical multiwire high-pressure gas proportional chamber surrounding a gaseous $_{2} target with a mylar separation foil $6 \\mu m thick

    CERN Document Server

    Gastaldi, Ugo; Averdung, H; Bailey, J; Beer, G A; Dreher, B; Erdman, K L; Klempt, E; Merle, K; Neubecker, K; Sabev, C; Schwenk, H; Wendling, R D; White, B L; Wodrich, R

    1978-01-01

    The characteristics and performances of a cylindrical multiwire proportional chamber built and used at CERN in experiment S142 for the study of the pp atom spectroscopy are presented. The chamber surrounds a high-pressure gaseous H/sub 2/ target, from which it is separated by a very thin window (6 mu m mylar foil). The active volume (90 cm long; 2 cm thick, internal diameter=30 cm) is divided into 36 equal and independent cells each covering 10 degrees in azimuth. At 4 abs. atm the detection efficiency for X-rays is higher than 20% in the whole energy range 1.5-15 keV. Typical resolutions are 35% fwhm for the 3 ke V Ar fluorescence line and 25% fwhm for the 5.5 keV /sup 54/Mn line. Working pressures from 0.5 to 16 abs. atm have been used. (8 refs).

  5. The high-spin 178m2Hf isomer: production, chemical and isotopic separations, gamma spectrometry and internal conversion electrons spectrometry

    International Nuclear Information System (INIS)

    Kim, J.B.

    1993-01-01

    The high-spin isometric state of the nucleus 178Hf is a challenge for new and exotic nuclear physics studies. With its long half-life of 31 years, the production of a reasonable micro-weight quantity, with an isometric to ground state ratio as high as 5 per cent, is now regularly performed by intensive irradiations of ytterbium targets with helium ions of 36 MeV. Using sur-enriched, at 99,998 per cent, ytterbium 176 that we have prepared at the PARIS mass separator, the isomer purity has been improved. Targets of such material but also of enriched stable isotopes of hafnium have been prepared by electro-spraying of methanolic and acetic solutions. By inelastic diffusion of protons and deuton on these targets, the energy of the first state of the rotation band built on the isomer has been measured. Isotopic separations of the isomer have been performed, with a yield greater than 20 per cent, by the use of isotopically pure hafnium 176 as carrier. The separated beam of the mass 178 allowed to record the complete hyperfine spectrum of the isomer and to measure, for the first time, the magnetic dipole moment and the electric quadrupole moment. Isomer targets, implanted in various materials like copper, iron and hafnium monocrystal, provide the opportunity to accurately measure gamma and internal conversion decay of this nuclei and so to precise the multipolarity mixing of all transitions from K=16 + to K=8 - . (author). 49 refs., 47 figs., 11 tabs

  6. An isotope approach based on C-13 pulse-chase labelling vs. the root trenching method to separate heterotrophic and autotrophic respiration in cultivated peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Biasi, C.; Pitkamaki, A. S.; Tavi, N. M.; Koponen, H. T.; Martikainen, P. J. [Univ.of Eastern Finland, Kuopio (Finland). Dept. of Environmental Science], e-mail: christina.biasi@uef.fi

    2012-11-01

    We tested an isotope method based on C-13 pulse-chase labelling for determining the fractional contribution of soil microbial respiration to overall soil respiration in an organic soil (cutaway peatland, eastern Finland), cultivated with the bioenergy crop, reed canary grass. The plants were exposed to CO{sub 2}-13 for five hours and the label was thereafter determined in CO{sub 2} derived from the soil-root system. A two-pool isotope mixing model was used to separate sources of respiration. The isotopic approach showed that a minimum of 50% of the total CO{sub 2} originated from soil-microbial respiration. Even though the method uses undisturbed soil-plant systems, it has limitations concerning the experimental determination of the true isotopic signal of all components contributing to autotrophic respiration. A trenching experiment which was comparatively conducted resulted in a 71% fractional contribution of soil-microbial respiration. This value was likely overestimated. Further studies are needed to evaluate critically the output from these two partitioning approaches. (orig.)

  7. Elaboration of a model of the nuclear fragmentation and application to the method of isotopic separation of projectile fragments

    International Nuclear Information System (INIS)

    Gaimard, J.J.

    1990-10-01

    In this thesis the experimental results on the cross sections for the production of 36 P in the fragmentation of 403 MeV/u 40 Ar on a carbon target are presented. Furthermore some models of the nuclear fragmentation are elaborated and compared by means of experimental data for the production of gold and cerium isotopes in the reaction 12 C+ 209 Bi at 400 MeV/u, of chlorine, sulfur, aluminium, magnesium, and oxygen isotopes in the reactions 40 Ar+ 12 C at 600 MeV/u and 48 Ca+ 9 Be at 212 MeV/u, and of cobalt, manganese, vanadium, and scandium isotopes together with the charge distributions for A=43 and A=44 in the reactions 40 Ar+ 64 Cu at 2 GeV/u and 56 Fe+ 12 C at 600 MeV/u. (HSI)

  8. SEPARATION OF LITHIUM ISOTOPES BY COUNTER-CURRENT FLOW OF THE COEXISTING PHASES OF A LITHIUM-AMMONIA SOLUTION

    OpenAIRE

    Schindewolf, U.; Reheis, Th.

    1991-01-01

    A weak shift of the isotope concentration ratio Li6/Li7 was measured in the coexisting phases of the miscibility gap of lithium-ammonia solutions. Li6 is slightly enriched in the concentrated metallic phase (enrichment factor α = 1.009 ± 0.002). This effect can be enhanced in a counter-current column to yield any desired enrichment of the two isotopes. The counter current system and its operation were tested successfully with a sodium-potassium-ammonia solution.

  9. Preliminary results from a microvolume, dynamically heated analytical column for preconcentration and separation of simple gases prior to stable isotopic analysis

    Science.gov (United States)

    Panetta, Robert James; Seed, Mike

    2016-04-01

    Stable isotope applications that call for preconcentration (i.e., greenhouse gas measurements, small carbonate samples, etc.) universally call for cryogenic fluids such as liquid nitrogen, dry ice slurries, or expensive external recirculation chillers. This adds significant complexity, first and foremost in the requirements to store and handle such dangerous materials. A second layer of complexity is the instrument itself - with mechanisms to physically move either coolant around the trap, or move a trap in or out of the coolant. Not to mention design requirements for hardware that can safely isolate the fluid from other sensitive areas. In an effort to simplify the isotopic analysis of gases requiring preconcentration, we have developed a new separation technology, UltiTrapTM (patent pending), which leverage's the proprietary Advanced Purge & Trap (APT) Technology employed in elemental analysers from Elementar Analysensysteme GmbH products. UltiTrapTM has been specially developed as a micro volume, dynamically heated GC separation column. The introduction of solid-state cooling technology enables sub-zero temperatures without cryogenics or refrigerants, eliminates all moving parts, and increases analytical longevity due to no boiling losses of coolant . This new technology makes it possible for the system to be deployed as both a focussing device and as a gas separation device. Initial data on synthetic gas mixtures (CO2/CH4/N2O in air), and real-world applications including long-term room air and a comparison between carbonated waters of different origins show excellent agreement with previous technologies.

  10. Environmental impact statements: Nuclear-industry waste-disposal and isotope-separation projects. (Latest citations from the NTIS data base). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The bibliography contains citations concerning draft and final impact statements relating to environmental radiation hazards. Prepared by the Department of Energy (DOE), Nuclear Regulatory Commission, Oak Ridge National Laboratory, and others, these reports examine environmental data affecting DOE decisions on proposed construction and decommissioning of nuclear power plants, radioactive waste disposal facilities and sites, and isotope separation projects. The effects of Federal guidelines and atomic facility location on community awareness is briefly mentioned. (Contains a minimum of 120 citations and includes a subject term index and title list.)

  11. Environmental considerations associated with siting, constructing, and operating a special isotope separation plant at INEL: Volume 1, Proceedings: Report of public hearings

    International Nuclear Information System (INIS)

    1987-03-01

    This report documents the two public hearings conducted for the purpose of determining the scope of issues to be addressed in relation to the siting, constructing, and operating of a special isotope separation plant at INEL. The report includes transcripts of the public hearings held in Idaho Falls, Idaho, February 24, 1987, and in Boise, Idaho, February 26, 1987, and includes the exhibits of records relating to those hearings. The review and hearing process meets pertinent National Environmental Policy Act (NEPA) requirements, Council on Environmental Quality (CEQ) regulations, and DOE guidelines

  12. Environmental considerations associated with siting, constructing, and operating a special isotope separation plant at INEL: Volume 2, Proceedings: Report of public hearings

    International Nuclear Information System (INIS)

    1987-03-01

    This report documents the two public hearings conducted for the purpose of determining the scope of issues to be addressed in relation to the siting, constructing, and operating of a special isotope separation plant at INEL. The report includes transcripts of the public hearings held in Idaho Falls, Idaho, February 24, 1987, and in Boise, Idaho, February 26, 1987, and includes the exhibits of record relating to those hearings. The review and hearing process meets pertinent National Environmental Policy Act (NEPA) requirements, Council on Environmental Quality (CEQ) regulations, and DOE guidelines

  13. A preliminary study for the production of high specific activity radionuclides for nuclear medicine obtained with the isotope separation on line technique.

    Science.gov (United States)

    Borgna, F; Ballan, M; Corradetti, S; Vettorato, E; Monetti, A; Rossignoli, M; Manzolaro, M; Scarpa, D; Mazzi, U; Realdon, N; Andrighetto, A

    2017-09-01

    Radiopharmaceuticals represent a fundamental tool for nuclear medicine procedures, both for diagnostic and therapeutic purposes. The present work aims to explore the Isotope Separation On-Line (ISOL) technique for the production of carrier-free radionuclides for nuclear medicine at SPES, a nuclear physics facility under construction at INFN-LNL. Stable ion beams of strontium, yttrium and iodine were produced using the SPES test bench (Front-End) to simulate the production of 89 Sr, 90 Y, 125 I and 131 I and collected with good efficiency on suitable targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Signal or noise? Separating grain size-dependent Nd isotope variability from provenance shifts in Indus delta sediments, Pakistan

    Science.gov (United States)

    Jonell, T. N.; Li, Y.; Blusztajn, J.; Giosan, L.; Clift, P. D.

    2017-12-01

    Rare earth element (REE) radioisotope systems, such as neodymium (Nd), have been traditionally used as powerful tracers of source provenance, chemical weathering intensity, and sedimentary processes over geologic timescales. More recently, the effects of physical fractionation (hydraulic sorting) of sediments during transport have called into question the utility of Nd isotopes as a provenance tool. Is source terrane Nd provenance resolvable if sediment transport strongly induces noise? Can grain-size sorting effects be quantified? This study works to address such questions by utilizing grain size analysis, trace element geochemistry, and Nd isotope geochemistry of bulk and grain-size fractions (Standard deviations (2σ) indicate that bulk sediment uncertainties are no more than ±1.0 ɛNd points. This argues that excursions of ≥1.0 ɛNd points in any bulk Indus delta sediments must in part reflect an external shift in provenance irrespective of sample composition, grain size, and grain size distribution. Sample standard deviations (2s) estimate that any terrigenous bulk sediment composition should vary no greater than ±1.1 ɛNd points if provenance remains constant. Findings from this study indicate that although there are grain-size dependent Nd isotope effects, they are minimal in the Indus delta such that resolvable provenance-driven trends can be identified in bulk sediment ɛNd compositions over the last 20 k.y., and that overall provenance trends remain consistent with previous findings.

  15. Solid-state Marx based two-switch voltage modulator for the On-Line Isotope Mass Separator accelerator at the European Organization for Nuclear Research.

    Science.gov (United States)

    Redondo, L M; Silva, J Fernando; Canacsinh, H; Ferrão, N; Mendes, C; Soares, R; Schipper, J; Fowler, A

    2010-07-01

    A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.

  16. Identification of new proton-rich rare earth nuclei by means of the coupled system helium jet-isotope separator of SARA

    International Nuclear Information System (INIS)

    Ollivier, T.

    1986-01-01

    In order to study new exotic nuclei far from stability we built a fast separation system by coupling a helium jet with the medium-current source of the mass separator. First the tests were made in Lyon and then the system used on line with the heavy ion accelerator SARA, in Grenoble. We obtained efficiency greater than 1% for each element and a better chemical independence. This allowed us to perform experiments on rare-earth region near N=82, with fusion-evaporation reactions after an investigation of various ranges of beam energies. The first results allow to identify two new isotopes, 143 Tb (12s) and 138 Eu (12s). The decay schemes obtained are analysed in the frame of existing models [fr

  17. The solid-liquid extraction separation of lithium isotopes by porous composite materials doped with ionic liquids and 2,2'-binaphthyldiyl-17-crown-5

    International Nuclear Information System (INIS)

    Xiao-Li Sun; Ling Gu; Dan Qiu; Dong-Hong Ren; Zaijun Li; Zhi-Guo Gu; Jiangnan University, Wuxi

    2015-01-01

    A green and efficient solid-liquid extraction method of lithium isotopes separation by porous composite materials doped with imidazolium ionic liquids and 2,2'-binaphthyldiyl-17-crown-5 has been reported in this paper. The composite materials of mesoporous silica and impregnated resin were synthesized by sol-gel and direct impregnation process, respectively. Various extraction parameters such as the concentration of lithium salt, anion of lithium salt, initial pH, time and temperature were investigated. Under optimized conditions, the maximum single-stage separation factor of 6 Li/ 7 Li was 1.048 ± 0.002, the maximum extraction efficiency was 15.86 %. The sorbents can be regenerated easily with HCl solution and reused repeatedly. (author)

  18. Improvements in Cd stable isotope analysis achieved through use of liquid-liquid extraction to remove organic residues from Cd separates obtained by extraction chromatography.

    Science.gov (United States)

    Murphy, Katy; Rehkämper, Mark; Kreissig, Katharina; Coles, Barry; van de Flierdt, Tina

    2016-01-23

    Organic compounds released from resins that are commonly employed for trace element separations are known to have a detrimental impact on the quality of isotopic analyses by MC-ICP-MS. A recent study highlighted that such effects can be particularly problematic for Cd stable isotope measurements (M. Gault-Ringold and C. H. Stirling, J. Anal. At. Spectrom. , 2012, 27 , 449-459). In this case, the final stage of sample purification commonly applies extraction chromatography with Eichrom TRU resin, which employs particles coated with octylphenyl- N , N -di-isobutyl carbamoylphosphine oxide (CMPO) dissolved in tri- n -butyl phosphate (TBP). During chromatography, it appears that some of these compounds are eluted alongside Cd and cannot be removed by evaporation due to their high boiling points. When aliquots of the zero-ε reference material were processed through the purification procedure, refluxed in concentrated HNO 3 and analyzed at minimum dilution (in 1 ml 0.1 M HNO 3 ), they yielded Cd isotopic compositions (ε 114/110 Cd = 4.6 ± 3.4, 2SD, n = 4) that differed significantly from the expected value, despite the use of a double spike technique to correct for instrumental mass fractionation. This result was accompanied by a 35% reduction in instrumental sensitivity for Cd. With increasing dilution of the organic resin residue, both of these effects are reduced and they are insignificant when the eluted Cd is dissolved in ≥3 ml 0.1 M HNO 3 . Our results, furthermore, indicate that the isotopic artefacts are most likely related to anomalous mass bias behavior. Previous studies have shown that perchloric acid can be effective at avoiding such effects (Gault-Ringold and Stirling, 2012; K. C. Crocket, M. Lambelet, T. van de Flierdt, M. Rehkämper and L. F. Robinson, Chem. Geol. , 2014, 374-375 , 128-140), presumably by oxidizing the resin-derived organics, but there are numerous disadvantages to its use. Here we show that liquid-liquid extraction with n -heptane

  19. Using isotopes of dissolved inorganic carbon species and water to separate sources of recharge in a cave spring, northwestern Arkansas, USA Blowing Spring Cave

    Science.gov (United States)

    Knierim, Katherine J.; Pollock, Erik; Hays, Phillip D.

    2013-01-01

    Blowing Spring Cave in northwestern Arkansas is representative of cave systems in the karst of the Ozark Plateaus, and stable isotopes of water (δ18O and δ2H) and inorganic carbon (δ13C) were used to quantify soil-water, bedrock-matrix water, and precipitation contributions to cave-spring flow during storm events to understand controls on cave water quality. Water samples from recharge-zone soils and the cave were collected from March to May 2012 to implement a multicomponent hydrograph separation approach using δ18O and δ2H of water and dissolved inorganic carbon (δ13C–DIC). During baseflow, median δ2H and δ18O compositions were –41.6‰ and –6.2‰ for soil water and were –37.2‰ and –5.9‰ for cave water, respectively. Median DIC concentrations for soil and cave waters were 1.8 mg/L and 25.0 mg/L, respectively, and median δ13C–DIC compositions were –19.9‰ and –14.3‰, respectively. During a March storm event, 12.2 cm of precipitation fell over 82 h and discharge increased from 0.01 to 0.59 m3/s. The isotopic composition of precipitation varied throughout the storm event because of rainout, a change of 50‰ and 10‰ for δ2H and δ18O was observed, respectively. Although, at the spring, δ2H and δ18O only changed by approximately 3‰ and 1‰, respectively. The isotopic compositions of precipitation and pre-event (i.e., soil and bedrock matrix) water were isotopically similar and the two-component hydrograph separation was inaccurate, either overestimating (>100%) or underestimating (<0%) the precipitation contribution to the spring. During the storm event, spring DIC and δ13C–DIC decreased to a minimum of 8.6 mg/L and –16.2‰, respectively. If the contribution from precipitation was assumed to be zero, soil water was found to contribute between 23 to 72% of the total volume of discharge. Although the assumption of negligible contributions from precipitation is unrealistic, especially in karst systems where rapid flow

  20. First calibration measurements of an FTIR absorption spectroscopy system for liquid hydrogen isotopologues for the isotope separation system of fusion power plants

    International Nuclear Information System (INIS)

    Groessle, R.; Beck, A.; Bornschein, B.; Fischer, S.; Kraus, A.; Mirz, S.; Rupp, S.

    2015-01-01

    Fusion facilities like ITER and DEMO will circulate huge amounts of deuterium and tritium in their fuel cycle with an estimated throughput of kg per hour. One important capability of these fuel cycles is to separate the hydrogen isotopologues (H 2 , D 2 , T 2 , HD, HT, DT). For this purpose the Isotope Separation System (ISS), using cryogenic distillation, as part of the Tritium Enrichment Test Assembly (TRENTA) is under development at Tritium Laboratory Karlsruhe. Fourier transform infrared absorption spectroscopy (FTIR) has been selected to prove its capability for online monitoring of the tritium concentration in the liquid phase at the bottom of the distillation column of the ISS. The actual research-development work is focusing on the calibration of such a system. Two major issues are the identification of appropriate absorption lines and their dependence on the isotopic concentrations and composition. For this purpose the Tritium Absorption IR spectroscopy experiment has been set up as an extension of TRENTA. For calibration a Raman spectroscopy system is used. First measurements, with equilibrated mixtures of H 2 , D 2 and HD demonstrate that FTIR can be used for quantitative analysis of liquid hydro-gen isotopologues and reveal a nonlinear dependence of the integrated absorbance from the D 2 concentration in the second vibrational branch of D 2 FTIR spectra. (authors)

  1. Kinetic-fluid coupling in the field of the atomic vapor laser isotopic separation: Numerical results in the case of a monospecies perfect gas

    International Nuclear Information System (INIS)

    Dellacherie, Stephane

    2003-01-01

    To describe the uranium gas expansion in the field of the Atomic Vapor Laser Isotopic Separation (AVLIS; SILVA in french) with a reasonable CPU time, we have to couple the resolution of the Boltzmann equation with the resolution of the Euler system. The resolution of the Euler system uses a kinetic scheme and the boundary condition at the kinetic-fluid interface - which defines the boundary between the Boltzmann area and the Euler area - is defined with the positive and negative half fluxes of the kinetic scheme. Moreover, in order to take into account the effect of the Knudsen layer through the resolution of the Euler system, we propose to use a Marshak condition to asymptoticaly match the Euler area with the uranium source. Numerical results show an excellent agreement between the results obtained with and without kinetic-fluid coupling

  2. Production and separation of no-carrier-added thallium isotopes from proton irradiated (nat)Hg₂Cl₂ matrix.

    Science.gov (United States)

    Dutta, Binita; Maiti, Moumita; Lahiri, Susanta

    2011-10-01

    For the first time, (nat)Hg₂Cl₂ target has been used to produce no-carrier-added-NCA (197,198,198m,199,200,201)Tl radionuclides using (nat)Hg(p,xn) reaction. Liquid-liquid extraction technique was employed in order to separate radiothallium from the bulk mercury matrix using liquid anion exchanger trioctylamine (TOA) dissolved in cyclohexane. In order to verify the presence of stable Hg in Tl fraction, the entire process was repeated with stable salts of Hg and Tl and the extent of separation was examined by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). High separation factors were observed both by radiometric and ICP-OES technique when 0.1 M HNO³ and 0.1M TOA were used as aqueous and organic phase, respectively. The Hg contamination was less than 0.3 ppm in the aqueous phase containing Tl after three times of extraction at the optimal condition. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Search for the gamma-branch of the shape isomers of separated U isotopes using muon for nuclide excitation

    International Nuclear Information System (INIS)

    Mireshghi, A.

    1982-12-01

    We have searched for back-decay gamma rays from the shape isomeric states in 235 U, 236 U, and 238 U possibly excited in muon radiationless transition. The energies and intensities of gamma rays following muon atomic capture were measured as a function of time after muon stopping. Background was suppressed by requiring that the candidate gamma ray be followed by another gamma ray (μ-capture gamma ray). The prompt gamma-ray spectra included the U-muonic x rays. The measured 235 U and 238 U x-ray energies were in good agreement with previously reported results. The x-ray spectrum from 236 U has not been previously reported. The 236 U spectrum is very similar to that of 238 U, except that the K x-rays exhibit an isotope shift of approximately 20 keV, the 236 U energies being higher. In the analysis of the delayed spectra of 236 U and 238 U using the GAMANL peak searching program, and with an effective lower-limit detection efficiency of .15% per stopping muon, no candidate gamma rays for the back decay transitions from the shape isomeric state were observed

  4. Heated uranium tetrafluoride target system to release non-rare gas fission products for the TRISTAN isotope separator

    International Nuclear Information System (INIS)

    Gill, R.L.

    1977-10-01

    Off-line experiments indicated that fluorides of As, Se, Br, Kr, Zr, Nb, Mo, Tc, Ru, Sb, Te, I and Xe could be volatilized, but except for Br, Kr, I and Xe, none of these elements were observed after mass separation in the on-line experiments. The results of the on-line experiments indicated a very low level of hydride contamination at ambient temperature and consequently, uranium tetrafluoride replaced uranyl stearate as the primary gaseous fission product target. Possible reasons for the failure of the heated target system to yield non-rare gas activities are discussed and suggestions for designing a new heated target system are presented

  5. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    International Nuclear Information System (INIS)

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3

  6. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.

  7. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.4--isotope separation sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 37 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the fourth one, the content is about isotope separation sub-volume

  8. Effect of separated layer thickness on magnetoresistance and magnetic properties of Co/Dy/Co and Ni/Dy/Ni film systems

    Science.gov (United States)

    Shabelnyk, T. M.; Shutylieva, O. V.; Vorobiov, S. I.; Pazukha, I. M.; Chornous, A. M.

    2018-01-01

    Co(5 nm)/Dy(tDy)/Co(20 nm)/S and Ni(5 nm)/Dy(tDy)/Ni(20 nm)/S trilayer films are prepared by electron-beam sputtering to investigate the influence of dysprosium layer thickness (tDy) and thermal annealing on the crystal structure, magnetoresistance (MR) and magnetic properties of thin films. The thickness of Dy layer changed in the range from 1 nm to 20 nm. The samples annealed for 20 min at 700 K. Electron diffraction patterns reveal that the as-deposited and annealed systems Co/Dy/Co and Ni/Dy/Ni had fcc-Co + hcp-Dy and fcc-Ni + hcp-Dy phase state, respectively. It is also shown that at the tDy = 15 nm the transition from amorphous to crystalline structures of Dy layer is observed. An increase in the Dy layer thickness results in changes in the MR and magnetic properties of the trilayer systems. It is shown that MR is most thermally stable against annealing to 700 K at tDy = 15 nm for Co/Dy/Co as well as for Ni/Dy/Ni. For tDy = 15 nm the, value of MR for both system increases by two times compared to those of pure ferromagnetic (FM) samples. The coercivity (Bc), remanent (Mr) and saturation (Ms) magnetization of the in-plain magnetization hysteresis loops are related to the Dy layer thickness too. The coercivity depends on the FM materials type and diffusion processes at the layer boundary. Accordingly, Mr and Ms are reduced with tDy increasing before and after annealing for both trilayer systems.

  9. Numerical solution of the Maxwell-Vlasov equations in the periodic regime. Application to the study of isotope separation by ion cyclotron resonance

    International Nuclear Information System (INIS)

    Omnes, P.

    1999-01-01

    This work is dedicated to the study of the behaviour of a magnetic confined plasma that is excited by a purely sinusoidal electric current delivered by an antenna. The response of the electrons to the electromagnetic field is considered as linear, whereas the ions of the plasma are represented by a non-relativistic Vlasov equation. In order to avoid transients, the coupled Maxwell-Vlasov equations are solved in a periodic mode and in a bounded domain. An equivalent electric conductivity tensor has been defined, this tensor is a linear operator that links the electric current generated by the movement of the particles to the electromagnetic field. Theoretical considerations can assure the existence and uniqueness of a periodical solution to Vlasov equations and of a solution to Maxwell equations in harmonic mode. The system of equations is periodical and has been solved by using an iterative method. The application of this method to the simulation of a isotopic separation device based on ionic cyclotron resonance has shown that the convergence is reached in a few iterations and that the solution is valid. Furthermore a method based on a finite-volume formulation of Maxwell equations in the time domain is presented. 2 new variables are defined in order to better take into account the Gauss' law and the conservation of the magnetic flux, the new system is still hyperbolic. The parallelization of the process has been successfully realized. (A.C.)

  10. Laser and uranium isotope separation

    International Nuclear Information System (INIS)

    Gilles, L.

    1987-07-01

    Industrial processes for uranium enrichment, economical context and market are briefly reviewed. Then physical principles of the two lasers processes: SILMO (molecular process) and SILVA (atomic process) are presented insisting on criteria for choosing lasers used in the SILVA process which will be developed in France [fr

  11. Selenium speciation and isotope composition in 77Se-enriched yeast using gradient elution HPLC separation and ICP-dynamic reaction cell-MS

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Sloth, Jens Jørgen; Hansen, M.

    2003-01-01

    A batch of Se-77-labelled and enriched yeast was characterised with regard to isotopic composition and content of selenium species for later use in a human absorption study based on the method of enriched stable isotopes. The abundance of the six stable selenium isotopes was determined by ICP- MS...... equipped with a dynamic reaction cell (DRC). The results showed that the Se-77 isotope was enriched to 98.5 atom-%, whereas the remaining selenium was present as the other five isotopes at low abundance. The low-molecular Se-77 containing species, which were biosynthesised by the yeast during fermentation...... using the enriched Se-77-selenite as substrate, were released by enzymatic hydrolysis using (I), a beta-glucosidase followed by a protease mixture, and (II), a commercial protease preparation. For selenium speciation the chromatographic selectivity of the cation exchange HPLC system was adjusted...

  12. Cs-Ba separation using N 2O as a reactant gas in a Multiple Collector-Inductively Coupled Plasma Mass Spectrometer collision-reaction cell: Application to the measurements of Cs isotopes in spent nuclear fuel samples

    Science.gov (United States)

    Granet, M.; Nonell, A.; Favre, G.; Chartier, F.; Isnard, H.; Moureau, J.; Caussignac, C.; Tran, B.

    2008-11-01

    In the general frameworks of the nuclear fuel cycle and environmental research field, the Cs isotopic composition must be known with high precision and accuracy. The direct determination of Cs isotopes by mass spectrometry techniques is generally hampered by the presence of Ba isobaric interferences however. Here we present a new method which takes advantage of the collision-reaction cell based Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) and allows to analyse Cs isotopes in the presence of Ba without prior separation step. The addition of N 2O gas in the cell leads to an antagonistic behavior of Cs + and Ba + as the latter reacts with the gas to form BaO + and BaOH + products whereas Cs + remains unreactive. The efficiency of the method was demonstrated for an UOx sample by comparing the results obtained (1) from the measurements of pure Cs fractions and (2) from Fission Products fractions containing more than 30 ionisable elements in addition to Cs, Ba, and where U and Pu were previously removed by using ion exchange resin. An excellent agreement is achieved between each set of experiments with an external reproducibility always better than 0.5% (RSD, k = 2). This study confirms the strong potential of collision-reaction cell to measure Cs isotopes in presence of interfering Ba, precluding therefore former systematic chemical separations.

  13. Cs-Ba separation using N{sub 2}O as a reactant gas in a Multiple Collector-Inductively Coupled Plasma Mass Spectrometer collision-reaction cell: Application to the measurements of Cs isotopes in spent nuclear fuel samples

    Energy Technology Data Exchange (ETDEWEB)

    Granet, M. [Commissariat a l' Energie Atomique, DEN/DPC/SECR/LANIE, 91191 Gif-sur-Yvette Cedex (France)], E-mail: mathieu.granet@cea.fr; Nonell, A.; Favre, G. [Commissariat a l' Energie Atomique, DEN/DPC/SECR/LANIE, 91191 Gif-sur-Yvette Cedex (France); Chartier, F. [Commissariat a l' Energie Atomique, DEN/DPC, 91191 Gif-sur-Yvette Cedex (France); Isnard, H.; Moureau, J.; Caussignac, C.; Tran, B. [Commissariat a l' Energie Atomique, DEN/DPC/SECR/LANIE, 91191 Gif-sur-Yvette Cedex (France)

    2008-11-15

    In the general frameworks of the nuclear fuel cycle and environmental research field, the Cs isotopic composition must be known with high precision and accuracy. The direct determination of Cs isotopes by mass spectrometry techniques is generally hampered by the presence of Ba isobaric interferences however. Here we present a new method which takes advantage of the collision-reaction cell based Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) and allows to analyse Cs isotopes in the presence of Ba without prior separation step. The addition of N{sub 2}O gas in the cell leads to an antagonistic behavior of Cs{sup +} and Ba{sup +} as the latter reacts with the gas to form BaO{sup +} and BaOH{sup +} products whereas Cs{sup +} remains unreactive. The efficiency of the method was demonstrated for an UOx sample by comparing the results obtained (1) from the measurements of pure Cs fractions and (2) from Fission Products fractions containing more than 30 ionisable elements in addition to Cs, Ba, and where U and Pu were previously removed by using ion exchange resin. An excellent agreement is achieved between each set of experiments with an external reproducibility always better than 0.5% (RSD, k = 2). This study confirms the strong potential of collision-reaction cell to measure Cs isotopes in presence of interfering Ba, precluding therefore former systematic chemical separations.

  14. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

  15. Isotope-based hydrograph separation in large rivers: assessing flow sources and water quality controls in the oil sands region, Canada

    Science.gov (United States)

    Gibson, John; Yi, Yi; Birks, Jean

    2016-04-01

    Hydrograph separation using stable isotopes of water is used to partition streamflow sources in the Athabasca River and its tributaries in the oil sands region of northern Alberta, Canada. Snow, rain, groundwater and surface water contributions to total streamflow are estimated for multi-year records and provide considerable insight into runoff generation mechanisms operating in six tributaries and at four stations along the Athabasca River. Groundwater, found to be an important flow source at all stations, is the dominant component of the hydrograph in three tributaries (Steepbank R., Muskeg R., Firebag R.), accounting for 39 to 50% of annual streamflow. Surface water, mainly drainage from peatlands, is also found to be widely important, and dominant in three tributaries (Clearwater R., Mackay R., Ells R.), accounting for 45 to 81% of annual streamflow. Direct runoff of precipitation sources including rain (7-19%) and snowmelt (3-7%) account for the remainder of sources. Fairly limited contributions from direct precipitation illustrate that most snow and rain events result in indirect displacement of pre-event water (surface water and groundwater), due in part to the prevalence of fill and spill mechanisms and limited overland flow. Systematic shifts in the groundwater:surface-water ratios, noted for the main stem of the Athabasca River and in its tributaries, is an important control on the spatial and temporal distribution of major and minor ions, trace elements, dissolved organics and contaminants, as well as for evaluating the susceptibility of the rivers to climate and development-related impacts. Runoff partitioning is likely to be a useful monitoring tool for better understanding of flow drivers and water quality controls, and for determining the underlying causes of climate or industrial impacts.

  16. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site

    International Nuclear Information System (INIS)

    1991-09-01

    In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs

  17. Theoretical investigation of the possibility of isotope separation during motion of charged particles in the electromagnetic field of a cylindrical capacitor and a linear current flowing along its axis

    Science.gov (United States)

    Kirochkin, Yu. A.; Kirochkin, A. Yu.

    2007-10-01

    A characteristic feature of the trajectories of charges moving in constant axisymmetric radial electric and azimuthal magnetic fields, whose strengths are inversely proportional to the center from the symmetry axis is the exponential dependence of the turning points on the parameters of motion. This leads to a noticeable difference in the trajectories for isotope ions, which makes it possible to obtain a new method for their electromagnetic separation. The trajectories of isotopes being separated are studied theoretically. The conditions under which the trajectories are closed and form toroidal surfaces (storage vortex rings) have been determined earlier. These results are given for convenience in analyzing another problem, associated with the formation of such ionic toroidal vortex surfaces (stable in Wood’s sense) during a streak lightning discharge in the atmosphere (ball lightning model).

  18. Hot exciton relaxation in multiple layers CdSe/ZnSe self-assembled quantum dots separated by thick ZnSe barriers

    International Nuclear Information System (INIS)

    Eremenko, M; Budkin, G; Reznitsky, A

    2015-01-01

    We have studied PL and PLE spectra of two samples (A and B) of MBE grown CdSe/ZnSe asymmetric double quantum wells with different amount of deposited CdSe layers separated by 14 nm ZnSe barrier. It has been found that PLE spectra of the states forming short wavelength side of the PL spectra of both deep and shallow QWs of the sample A as well as that of deep QW of the sample B demonstrate oscillating structure in the spectral ranges corresponding to exciton states of self-assembled quantum dots only. Meanwhile PLE spectra of the short wavelength states of shallow QW the sample B revealed pronounced oscillating structure with energy period of ZnSe LO phonon under excitation with photons in a wide energy range both in the regions of quantum-dot states and in that of free states in the ZnSe barrier. In these spectra creating of excitons with kinetic energies more than 0.3 eV was observed which considerably exceed the exciton binding energy as well as LO phonon energy (both appr. 0.03 eV). It has been concluded that oscillating structure of the PLE spectra arises due to cascade relaxation of hot excitons. We discuss the model which explains these experimental findings. (paper)

  19. Hot exciton relaxation in multiple layers CdSe/ZnSe self-assembled quantum dots separated by thick ZnSe barriers

    Science.gov (United States)

    Eremenko, M.; Budkin, G.; Reznitsky, A.

    2015-11-01

    We have studied PL and PLE spectra of two samples (A and B) of MBE grown CdSe/ZnSe asymmetric double quantum wells with different amount of deposited CdSe layers separated by 14 nm ZnSe barrier. It has been found that PLE spectra of the states forming short wavelength side of the PL spectra of both deep and shallow QWs of the sample A as well as that of deep QW of the sample B demonstrate oscillating structure in the spectral ranges corresponding to exciton states of self-assembled quantum dots only. Meanwhile PLE spectra of the short wavelength states of shallow QW the sample B revealed pronounced oscillating structure with energy period of ZnSe LO phonon under excitation with photons in a wide energy range both in the regions of quantum-dot states and in that of free states in the ZnSe barrier. In these spectra creating of excitons with kinetic energies more than 0.3 eV was observed which considerably exceed the exciton binding energy as well as LO phonon energy (both appr. 0.03 eV). It has been concluded that oscillating structure of the PLE spectra arises due to cascade relaxation of hot excitons. We discuss the model which explains these experimental findings.

  20. Numerical investigations of the fuel cycle for a 10 GW(TH)-OTTO-pebble-bed reactor with regard to high conversion ratio under special consideration of U-236 disconnexion through isotope-separation

    International Nuclear Information System (INIS)

    Werner, H.

    1976-12-01

    A conversion ratio of near 1.0 can be achieved in a pebble-bed reactor using the OTTO (once through then out) loading scheme, having an economic burn-up of the fuel, an economic power density and a moderation ratio, which is considered realistically for the future. The flexibility of the reactor concept and of the fuel element design allows to recycle the fuel during full-power operation. In the present report first the criteria are shown, which are necessary to reach a high conversion ratio. Further it is presented that the conversion ratio increases considerably by closing the fuel cycle in consequence of the building-up of U-233. In this way the fuel inventory and the fuel consumption can considerably be diminished. It is demonstrated that the building-up and the accumulation of U-236 effects an important deterioration of the neutron economy. By taking the reprocessed uranium through an isotope separation (for example: ultra-gas-centrifugation) and by separation of U-236 from the other uranium isotopes it is possible to reduce the fuel consumption considerably. The expenditure and the cost which are necessary for the isotope separation are presented. (orig.) [de

  1. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  2. Sieving hydrogen isotopes through two-dimensional crystals.

    Science.gov (United States)

    Lozada-Hidalgo, M; Hu, S; Marshall, O; Mishchenko, A; Grigorenko, A N; Dryfe, R A W; Radha, B; Grigorieva, I V; Geim, A K

    2016-01-01

    One-atom-thick crystals are impermeable to atoms and molecules, but hydrogen ions (thermal protons) penetrate through them. We show that monolayers of graphene and boron nitride can be used to separate hydrogen ion isotopes. Using electrical measurements and mass spectrometry, we found that deuterons permeate through these crystals much slower than protons, resulting in a separation factor of ≈10 at room temperature. The isotope effect is attributed to a difference of ≈60 milli-electron volts between zero-point energies of incident protons and deuterons, which translates into the equivalent difference in the activation barriers posed by two-dimensional crystals. In addition to providing insight into the proton transport mechanism, the demonstrated approach offers a competitive and scalable way for hydrogen isotope enrichment. Copyright © 2016, American Association for the Advancement of Science.

  3. Card controlled beta backscatter thickness measuring instrument

    International Nuclear Information System (INIS)

    Schlesinger, J.

    1978-01-01

    An improved beta backscatter instrument for the nondestructive measurement of the thickness of thin coatings on a substrate is described. Included therein is the utilization of a bank of memory stored data representative of isotope, substrate, coating material and thickness range characteristics in association with a control card having predetermined indicia thereon selectively representative of a particular isotope, substrate material, coating material and thickness range for conditioning electronic circuit means by memory stored data selected in accord with the predetermined indicia on a control card for converting backscattered beta particle counts into indicia of coating thickness

  4. Isotope research materials

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Preparation of research isotope materials is described. Topics covered include: separation of tritium from aqueous effluents by bipolar electrolysis; stable isotope targets and research materials; radioisotope targets and research materials; preparation of an 241 Am metallurgical specimen; reactor dosimeters; ceramic and cermet development; fission-fragment-generating targets of 235 UO 2 ; and wire dosimeters for Westinghouse--Bettis

  5. New insight from noble gas and stable isotopes of geothermal/hydrothermal fluids at Caviahue-Copahue Volcanic Complex: Boiling steam separation and water-rock interaction at shallow depth

    Science.gov (United States)

    Roulleau, Emilie; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; Vinet, Nicolas; Bravo, Francisco; Muñoz, Carlos; Sanchez, Juan

    2016-12-01

    We measured noble gas and stable isotopes of the geothermal and hydrothermal fluids of the Caviahue-Copahue Volcanic Complex (CCVC), one of the most important geothermal systems in Argentina/Chile, in order to provide new insights into fluid circulation and origin. With the exception of Anfiteatro and Chancho-co geothermal systems, mantle-derived helium dominates in the CCVC fluids, with measured 3He/4He ratios up to 7.86Ra in 2015. Their positive δ15N is an evidence for subducted sediment-derived nitrogen, which is commonly observed in subduction settings. Both He-N2-Ar composition and positive correlation between δD-H2O and δ18O-H2O suggest that the fluids from Anfiteatro and Chancho-co (and partly from Pucon-Mahuida as well, on the southern flank of Copahue volcano) represent a meteoric water composition with a minor magmatic contribution. The Ne, Kr and Xe isotopic compositions are entirely of atmospheric origin, but processes of boiling and steam separation have led to fractionation of their elemental abundances. We modeled the CCVC fluid evolution using Rayleigh distillation curves, considering an initial air saturated geothermal water (ASGW) end-member at 250 and 300 °C, followed by boiling and steam separation at lower temperatures (from 200 °C to 150 °C). Between 2014 and 2015, the CCVC hydrogen and oxygen isotopes shifted from local meteoric water-dominated to andesitic water-dominated signature. This shift is associated with an increase of δ13C values and Stotal, HCl and He contents. These characteristics are consistent with a change in the gas ascent pathway between 2014 and 2015, which in turn induced higher magmatic-hydrothermal contribution in the fluid signature. The composition of the magmatic source of the CCVC fluids is: 3He/4He = 7.7Ra, δ15N = + 6‰, and δ13C = - 6.5‰. Mixing models between air-corrected He and N suggest the involvement of 0.5% to 5% of subducted sediments in the magmatic source. The magmatic sulfur isotopic

  6. Use of water as displacing agent in ion exchange chromatographic separation of isotope of boron using weak base ion exchange resin

    International Nuclear Information System (INIS)

    Sharma, B.K.; Mohanakrishnan, G.; Anand Babu, C.; Krishna Prabhu, R.

    2008-01-01

    Experiments were undertaken to study the feasibility of using weakly basic anion exchange resin for enrichment of isotopes of boron by ion exchange chromatography and water as eluent. The results of experiments carried out to determine total chloride capacity (TCC), strong base capacity (SBC) of the resin at different concentrations of boric acid and enrichment profiles are reported in this paper. (author)

  7. Environmental impact statements: Nuclear generation, radioactive waste disposal, and isotope-separation projects. June 1973-September 1989 (Citations from the NTIS data base). Report for June 1973-September 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    This bibliography contains citations concerning draft and final impact statements for environmental radiation hazards. Prepared by the Department of Energy, Nuclear Regulatory Commission, Oak Ridge National Laboratory, and others, these reports provide environmental input into the U.S. Department of Energy (DOE) decisions on proposed construction and decommissioning of nuclear power plants, radioactive-waste-disposal facilities and sites, and isotope-separation projects. Minor emphasis is placed upon community awareness and public concern where it applies to Federal guidelines and atomic facility location. (Contains 175 citations fully indexed and including a title list.)

  8. An improved procedure for separation/purification of boron from complex matrices and high-precision measurement of boron isotopes by positive thermal ionization and multicollector inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Wei, Hai-Zhen; Jiang, Shao-Yong; Hemming, N Gary; Yang, Jing-Hong; Yang, Tao; Wu, He-Pin; Yang, Tang-Li; Yan, Xiong; Pu, Wei

    2014-06-01

    In order to eliminate boron loss and potential isotopic fractionation during chemical pretreatment of natural samples with complex matrices, a three-column ion-exchange separation/purification procedure has been modified, which ensures more than 98% recovery of boron from each step for a wide range of sample matrices, and is applicable for boron isotope analysis by both TIMS and MC-ICP-MS. The PTIMS-Cs2BO2(+)-static double collection method was developed, ensuring simultaneous collection of (133)Cs2(11)B(16)O2(+)(m/z 309) and (133)Cs2(10)B(16)O2(+) (m/z 308) ions in adjacent H3-H4 Faraday cups with typical zoom optics parameters (Focus Quad: 15 V, Dispersion Quad: -85 V). The external reproducibilities of the measured (11)B/(10)B ratios of the NIST 951 boron standard solutions of 1000 ng, 100 ng and 10 ng of boron by PTIMS method are ±0.06‰, ±0.16‰ and ±0.25‰, respectively, which indicates excellent precision can be achieved for boron isotope measurement at nanogram level boron in natural samples. An on-peak zero blank correction procedure was employed to correct the residual boron signals effect in MC-ICP-MS, which gives consistent δ(11)B values with a mean of 39.66±0.35‰ for seawater in the whole range of boron content from 5 ppb to 200 ppb, ensuring accurate boron isotope analysis in few ppb boron. With the improved protocol, consistent results between TIMS and MC-ICP-MS data were obtained in typical geological materials within a wide span of δ(11)B values ranging from -25‰ to +40‰. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A new digestion and chemical separation technique for rapid and highly reproducible determination of Lu/Hf and Hf isotope ratios in geological materials by mc-ICP-MS

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Baker, J.A.; Ulfbeck, D.

    2003-01-01

    A new digestion procedure and chemical separation technique has been developed for measurement of Lu/Hf and Hf isotope ratios that does not require high-pressure bombs or use of HF or HClO acids. Samples are digested in dilute HCl or HNO after flux-fusion at 1100 °C in the presence of lithium....... The relative simplicity of this technique, coupled with the ease of digestion (and samplespike equilibration) of large difficult-to-dissolve samples, and the speed (2 days) with which samples can be digested and processed through the chemical separation scheme makes it an attractive new method for preparing...... REE (Lu+Yb), and the middle-light REE and HFSE (Hf). The middle-light REE and individual HFSE are then separated (10.5, 9 and 6 mol l HCl) using a miniaturized column containing TEVA spec resin which provides a REE-, Ti- and Zr-free Hf cut. This chemical separation scheme can also be readily adapted...

  10. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H. (ed.)

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

  11. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    International Nuclear Information System (INIS)

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs

  12. Determination of 90Sr / 238U ratio by double isotope dilution inductively coupled plasma mass spectrometer with multiple collection in spent nuclear fuel samples with in situ 90Sr / 90Zr separation in a collision-reaction cell

    Science.gov (United States)

    Isnard, H.; Aubert, M.; Blanchet, P.; Brennetot, R.; Chartier, F.; Geertsen, V.; Manuguerra, F.

    2006-02-01

    Strontium-90 is one of the most important fission products generated in nuclear industry. In the research field concerning nuclear waste disposal in deep geological environment, it is necessary to quantify accurately and precisely its concentration (or the 90Sr / 238U atomic ratio) in irradiated fuels. To obtain accurate analysis of radioactive 90Sr, mass spectrometry associated with isotope dilution is the most appropriated method. But, in nuclear fuel samples the interference with 90Zr must be previously eliminated. An inductively coupled plasma mass spectrometer with multiple collection, equipped with an hexapole collision cell, has been used to eliminate the 90Sr / 90Zr interference by addition of oxygen in the collision cell as a reactant gas. Zr + ions are converted into ZrO +, whereas Sr + ions are not reactive. A mixed solution, prepared from a solution of enriched 84Sr and a solution of enriched 235U was then used to quantify the 90Sr / 238U ratio in spent fuel sample solutions using the double isotope dilution method. This paper shows the results, the reproducibility and the uncertainties that can be obtained with this method to quantify the 90Sr / 238U atomic ratio in an UOX (uranium oxide) and a MOX (mixed oxide) spent fuel samples using the collision cell of an inductively coupled plasma mass spectrometer with multiple collection to perform the 90Sr / 90Zr separation. A comparison with the results obtained by inductively coupled plasma mass spectrometer with multiple collection after a chemical separation of strontium from zirconium using a Sr spec resin (Eichrom) has been performed. Finally, to validate the analytical procedure developed, measurements of the same samples have been performed by thermal ionization mass spectrometry, used as an independent technique, after chemical separation of Sr.

  13. Calcium isotopes in wine

    Science.gov (United States)

    Holmden, C. E.

    2011-12-01

    The δ 44/40Ca values of bottled wine vary between -0.76% to -1.55% on the seawater scale and correlate weakly with inverse Ca concentration and Mg/Ca ratio, such that the lowest δ 44/40Ca values have the highest Ca concentrations and lowest Mg/Ca ratios. The correlation is notable in the sense that the measured wines include both whites and reds sampled from different wine growing regions of the world, and cover a wide range of quality. Trends among the data yield clues regarding the cause of the observed isotopic fractionation. White wines, and wines generally perceived to be of lower quality, have lower δ 44/40Ca values compared to red wines and wines of generally perceived higher quality. Quality was assessed qualitatively through sensory evaluation, price, and scores assigned by critics. The relationship between δ 44/40Ca and wine quality was most apparent when comparing wines of one varietal from one producer from the same growing region. In the vineyard, wine quality is related to factors such as the tonnage of the crop and the ripeness of the grapes at the time of harvesting, the thickness of the skins for reds, the age of the vines, as well as the place where the grapes were grown (terroir). Quality is also influenced by winemaking practices such as fermentation temperature, duration of skin contact, and barrel ageing. Accordingly, the relationship between δ 44/40Ca and wine quality may originate during grape ripening in the vineyard or during winemaking in the cellar. We tested the grape ripening hypothesis using Merlot grapes sampled from a vineyard in the Okanagan, British Columbia, using sugar content (degrees Brix) as an indicator of ripeness. The grapes were separated into pulp, skin, and pip fractions and were analyzed separately. Thus far, there is no clear evidence for a systematic change in δ 44/40Ca values associated with progressive ripening of grapes in the vineyard. On the day of harvesting, the δ 44/40Ca value of juice squeezed from

  14. Boron Isotopes Enrichment via Continuous Annular Chromatography

    OpenAIRE

    Sağlam, Gonca

    2016-01-01

    ABSTRACT Boron has two stable isotopes namely 10B and 11B isotopes. The large cross section of 10B isotope for thermal neutrons is used for reactor control in nuclear fission reactors. The thermal neutrons absorption cross sections of pure 10B and 11B are 3837 and 0.005 barns respectively. In the literature, amongst others, batch elution chromatography techniques are reported for 10B isotope enrichment. This work focuses on continuous chromatographic 10B isotope separation system via continuo...

  15. Three decades of research using IGISOL technique at the University of Jyväskylä a portrait of the Ion Guide Isotope Separator On-Line facility in Jyväskylä

    CERN Document Server

    Eronen, Tommi; Jokinen, Ari; Kankainen, Anu; Moore, Iain; Penttilä, Heikki

    2014-01-01

    The IGISOL group at the University of Jyväskyla studies the properties of nuclei far off the line of beta stability. These studies are performed locally at the Jyväskylä Ion Guide Isotope Separator On-Line (IGISOL) facility, as well as at a number of other laboratories such as the ISOLDE facility in CERN, at GANIL and in Helmholzzentrum GSI, the location of the future radioactive beam facility FAIR. The group is also actively involved in work to support the development of international future facilities EURISOL and aforementioned FAIR. This book presents  carefully selected papers to portrait the work at IGISOL. Previously published in the journals Hyperfine Interactions and European Physical Journal A.

  16. Detection of outliers by neural network on the gas centrifuge experimental data of isotopic separation process; Aplicacao de redes neurais para deteccao de erros grosseiros em dados de processo de separacao de isotopos de uranio por ultracentrifugacao

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Monica de Carvalho Vasconcelos

    2004-07-01

    This work presents and discusses the neural network technique aiming at the detection of outliers on a set of gas centrifuge isotope separation experimental data. In order to evaluate the application of this new technique, the result obtained of the detection is compared to the result of the statistical analysis combined with the cluster analysis. This method for the detection of outliers presents a considerable potential in the field of data analysis and it is at the same time easier and faster to use and requests very less knowledge of the physics involved in the process. This work established a procedure for detecting experiments which are suspect to contain gross errors inside a data set where the usual techniques for identification of these errors cannot be applied or its use/demands an excessively long work. (author)

  17. Unusual isotopic composition of C-CO2 from sterilized soil microcosms: a new way to separate intracellular from extracellular respiratory metabolisms.

    Science.gov (United States)

    Kéraval, Benoit; Alvarez, Gaël; Lehours, Anne Catherine; Amblard, Christian; Fontaine, Sebastien

    2015-04-01

    intact cells were observed by microscopy. These "ghost" cells were completely destroyed by the irradiation-autoclaving combination releasing large amount of soluble C. The soil respiration (O2 consumption and CO2 production) was reduced by irradiation and autoclaving but not stopped, suggesting the presence of an EXOMET. The delta 13C of CO2 released in the irradiated-autoclaved soil was strongly depleted (-70‰) indicating that this extracellular metabolism induced a substantial isotopic fractionation. Our findings suggest that two main oxidative metabolisms co-occur in soils: cell respiration and EXOMET. The isotopic fractionation induced by the EXOMET open perspectives for its quantification in non-sterilized living soils.

  18. Simultaneous solution of concentration profiles in vapor-liquid phases of wetted-wall distillation column for H2O-HTO isotope separation

    International Nuclear Information System (INIS)

    Sugiyama, Takahiko; Kato, Yoshihisa; Enokida, Youichi; Yamamoto, Ichiro

    1998-01-01

    A simulation model was proposed for prediction of H 2 O-HTO separative performances of water distillation by a wetted-wall column. A wetted-wall column was assumed to be a circular tube, and mole-fraction profiles in the tube were obtained by coupling the equations which describe diffusion processes of both vapor and liquid phases and by solving the equations simultaneously. It was found that the calculations for constant mole-fraction boundary with high mass-transfer rate resulted in overestimations of degree of separation. The relative difference of the HETP value for constant mole-fraction boundary from that for the present model was -19% when P = 101.3 kPa, T = 373 K, R = 0.8 cm, H = 100 cm, k ν,A = 1.0 x 10 4 cm/s and Re ν = 660. (author)

  19. Tritium enrichment of environmental waters by electrolysis: Development of cathodes exhibiting high isotopic separation and precise measurement of tritium enrichment factors

    International Nuclear Information System (INIS)

    Taylor, C.B.

    1976-01-01

    Equations are developed for the estimation of tritium enrichment in batch, continuous feed and periodic addition electrolysis cells. Optimum enrichment and minimum variability is obtained using developed cathode surfaces which catalyse the separation of tritium, as exhibited by the results of experiments using mild steel cathodes with NaOH electrolyte. The equations and various simple refinements of technique are applied to the determination of tritium enrichment factors by the spike cell method: for batch cells the standard errors are less than 1%. (author)

  20. New sequential separation procedure for Sr, Nd and Pb isotope ratio measurement in geological material using MC-ICP-MS and TIMS

    Digital Repository Service at National Institute of Oceanography (India)

    Makishima, A.; Nath, B.N.; Nakamura, E.

    ml –1 Rb, La, Ce, Pr and Sm standard solutions for atomic absorption spectrophotometry (Kanto Chemical Co. Inc., Japan) were used for interference tests. The silicate reference material, JB-3 (basalt from Mt. Fuji) issued by Geological Survey....6 ml of 0.25 mol l –1 HCl to remove La–Pr, Nd fraction was collected with 1.2 ml of 0.25 mol l –1 HCl. The yield of Nd in the third column was ~90% and the blank was 7 pg (3–12 pg). Although the separated Nd contains significant amounts of La, Ce...

  1. Radioactive thickness gauge (1962)

    International Nuclear Information System (INIS)

    Guizerix, J.

    1962-01-01

    The author describes a thickness gauge in which the scintillating crystal detector alternately 'sees' a radioactive source through the material which is to be measured and then a control source of the same material; the radiations are separated in time by an absorbing valve whose sections are alternately full and hollow. The currents corresponding to the two sources are separated beyond the photomultiplier tube by a detector synchronized with the rotation of the valve. The quotient of these two currents is then obtained with a standard recording potentiometer. It is found that the average value of the response which is in the form G = f(I 1 /I 2 ) is not affected by decay of the radioactive sources, and that it is little influenced by variations of high tension, temperature, or properties of the air in the source detector interval. The performance of the gauge is given. (author) [fr

  2. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1984-03-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56

  3. Time of flight assisted ΔE - E method for enhanced isotope separation capabilities in heavy ion elastic recoil detection analysis

    Science.gov (United States)

    Eschbaumer, S.; Bergmaier, A.; Seiler, D.; Dollinger, G.

    2017-09-01

    The time of flight energy (TOF-E) setup installed at the scattering chamber of the Q3D magnetic spectrograph to perform heavy ion elastic recoil detection (ERD) analysis at the 14 MV Munich Tandem Accelerator has recently been upgraded. Now, the energy detector of the TOF-E setup is additionally capable of performing ΔE - E measurements for high energy recoil ions obtained from e.g. a 170 MeV 127 I projectile beam. Time of flight information is simultaneously acquired with the ΔE - E data for each detected ion. The combination of the TOF-E and the ΔE - E data gives the opportunity to set effective filter conditions to select for both, the elemental and the mass of the detected ion. As an example a boron doped carbon layer is analyzed and 10B and 11B is separated with the help of the combination of both methods.

  4. Dry phase reactor for generating medical isotopes

    Science.gov (United States)

    Mackie, Thomas Rockwell; Heltemes, Thad Alexander

    2016-05-03

    An apparatus for generating medical isotopes provides for the irradiation of dry-phase, granular uranium compounds which are then dissolved in a solvent for separation of the medical isotope from the irradiated compound. Once the medical isotope is removed, the dissolved compound may be reconstituted in dry granular form for repeated irradiation.

  5. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  6. Incremental value of regional wall motion analysis immediately after exercise for the detection of single-vessel coronary artery disease. Study by separate acquisition, dual-isotope ECG-gated single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Yoda, Shunichi; Sato, Yuichi; Matsumoto, Naoya; Tani, Shigemasa; Takayama, Tadateru; Uchiyama, Takahisa; Saito, Satoshi

    2005-01-01

    Although the detection of wall motion abnormalities gives incremental value to myocardial perfusion single-photon emission computed tomography (SPECT) in the diagnosis of extensive coronary artery disease (CAD) and high-grade single-vessel CAD, whether or not it is useful in the diagnosis of mild, single-vessel CAD has not been studied previously. Separate acquisition, dual isotope electrocardiogram (ECG)-gated SPECT was performed in 97 patients with a low likelihood of CAD (Group 1) and 46 patients with single-vessel CAD (Group 2). Mild CAD was defined by stenosis of 50-75% (Group 2a, n=22) and moderate to severe CAD was defined by stenosis ≥76% (Group 2b, n=24). Myocardial perfusion and wall motion were graded by a 5 point-scale, 20-segment model. The sensitivity of myocardial perfusion alone was 50% for Group 2a, 83% for Group 2b and 67% for Group 2 as a whole. The overall specificity was 90%. When the wall motion analysis was combined, the sensitivity was increased to 82% in Group 2a and 92% in Group 2b. The ability to detect a wall motion abnormality immediately after exercise gives incremental diagnostic value to myocardial perfusion SPECT in the identification of mild, single-vessel CAD. (author)

  7. Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme.

    Science.gov (United States)

    Li, Chao-Feng; Li, Xian-Hua; Li, Qiu-Li; Guo, Jing-Hui; Li, Xiang-Hui; Yang, Yue-Heng

    2012-05-21

    Thermal ionization mass spectrometry (TIMS) offers the excellent precision and accuracy of the Sr and Nd isotopic ratio analysis for geological samples, but this method is labour intensive, expensive and time-consuming. In this study, a new analytical protocol by TIMS is presented that aims at improving analytical efficiency and cutting down experimental cost. Using the single-step cation exchange resin technique, mixed Sr and rare earth elements (REEs) fractions were separated from matrix and evaporated to dryness. Afterwards, mixed Sr+REEs fractions were dissolved and loaded onto the same Re filament using 1 μL of 2 M HCl. Then, Sr and Nd were sequentially measured without venting using TIMS. In contrast to conventional TIMS methods, the merits of this analytical protocol are its cost- and time-saving adaptations. The applicability of our method is evaluated by replicated measurements of (87)Sr/(86)Sr and (143)Nd/(144)Nd for nine international silicate rock reference materials, spanning a wide range of bulk compositions. The typical internal precision in this study is ca. 0.001% (RSE) for (87)Sr/(86)Sr and (143)Nd/(144)Nd; the analytical results obtained for these standard rocks show a good agreement with reported values, indicating the effectiveness of the proposed method. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Gas phase thermal diffusion of stable isotopes

    International Nuclear Information System (INIS)

    Eck, C.F.

    1979-01-01

    The separation of stable isotopes at Mound Facility is reviewed from a historical perspective. The historical development of thermal diffusion from a laboratory process to a separation facility that handles all the noble gases is described. In addition, elementary thermal diffusion theory and elementary cascade theory are presented along with a brief review of the uses of stable isotopes

  9. New Fragment Separation Technology for Superheavy Element Research

    International Nuclear Information System (INIS)

    Shaughnessy, D A; Moody, K J; Henderson, R A; Kenneally, J M; Landrum, J H; Lougheed, R W; Patin, J B; Stoyer, M A; Stoyer, N J; Wild, J F; Wilk, P A

    2008-01-01

    This project consisted of three major research areas: (1) development of a solid Pu ceramic target for the MASHA separator, (2) chemical separation of nuclear decay products, and (3) production of new isotopes and elements through nuclear reactions. There have been 16 publications as a result of this project, and this collection of papers summarizes our accomplishments in each of the three areas of research listed above. The MASHA (Mass Analyzer for Super-Heavy Atoms) separator is being constructed at the U400 Cyclotron at the Flerov Laboratory of Nuclear Reactions in Dubna, Russia. The purpose of the separator is to physically separate the products from nuclear reactions based on their isotopic masses rather than their decay characteristics. The separator was designed to have a separation between isotopic masses of ±0.25 amu, which would enable the mass of element 114 isotopes to be measured with outstanding resolution, thereby confirming their discovery. In order to increase the production rate of element 114 nuclides produced via the 244 Pu+ 48 Ca reaction, a new target technology was required. Instead of a traditional thin actinide target, the MASHA separator required a thick, ceramic-based Pu target that was thick enough to increase element 114 production while still being porous enough to allow reaction products to migrate out of the target and travel through the separator to the detector array located at the back end. In collaboration with UNLV, we began work on development of the Pu target for MASHA. Using waste-form synthesis technology, we began by creating zirconia-based matrices that would form a ceramic with plutonium oxide. We used samarium oxide as a surrogate for Pu and created ceramics that had varying amounts of the starting materials in order to establish trends in material density and porosity. The results from this work are described in more detail in Refs. [1,4,10]. Unfortunately, work on MASHA was delayed in Russia because it was found that

  10. Fatigue behavior of thick composite single lap joints

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.H.; Sridhar, I.; Srikanth, N. [Nanyang Technological Univ., Singapore (Singapore)

    2012-07-01

    In consideration of bondline thickness variability, in bonded joints where thick adherend is adopted, relative thick adhesive layer (2-5 mm) is preferable. This paper aims to give some insight in fatigue strength of adhesively bonded structures involving thick adherend coupled with thick adhesive layer. Single lap joints with nominal adherend thickness of 8 mm and two different nominal thicknesses (2.5 mm and 5.5 mm) were made and tested under fatigue loading. The failure mode exhibits always a tendency for interfacial initiation, followed by interlaminar separation. Fatigue strength for higher adhesive thickness is found to be lower. (Author)

  11. Atomic vapour laser isotope separation in France

    International Nuclear Information System (INIS)

    Camarcat, N.; Lafon, A.; Perves, J.P.; Rosengard, A.

    1993-01-01

    France has a specific position in the uranium enrichment market. It has a major nuclear park, supplying 75% of the nation's electricity. On one hand the modern multinational EURODIF gaseous diffusion plant (10.8 M.SWU/y) works smoothly, and its supply of nuclear generated electricity offers customers a good long term view on enrichment costs. A program to improve its performances and to extend its lifespan is well in progress. It will offer a fast modulation capability, with advantage of off-peak power for about 3/4 of its electrical requirements. On the other hand, today's situation of over capacity, accentuated by non-commercial practices, may lead to a brutal restructuring of the world-wide enrichment industry in the coming years. The French approach has a long term goal, with a priority for a high performance process, which will be available when world stocks of enriched uranium are exhausted, and aging enrichment plants have to be shut down. To reach this goal, French Atomic Energy Commission has focused since 1985 on the atomic laser route, SILVA, in agreement with the industrial operator, COGEMA. Fully integrated pre-industrial experience, too costly, will be delayed as long as possible, toward the end of the decade. It will benefit from the most advanced options, taking into account the difficulty of changing them once demonstration has been achieved. The SILVA program is periodically assessed from both the scientific and the industrial point of view and a general assessment is to be made between 1996 and 1997, prior to pre-industrial development

  12. Isotope enrichment

    International Nuclear Information System (INIS)

    Garbuny, M.

    1979-01-01

    The invention discloses a method for deriving, from a starting material including an element having a plurality of isotopes, derived material enriched in one isotope of the element. The starting material is deposited on a substrate at less than a critical submonatomic surface density, typically less than 10 16 atoms per square centimeter. The deposit is then selectively irradiated by a laser (maser or electronic oscillator) beam with monochromatic coherent radiation resonant with the one isotope causing the material including the one istope to escape from the substrate. The escaping enriched material is then collected. Where the element has two isotopes, one of which is to be collected, the deposit may be irradiated with radiation resonant with the other isotope and the residual material enriched in the one isotope may be evaporated from the substrate and collected

  13. Thick target for high-power ISOL facilities

    Science.gov (United States)

    Bricault, Pierre G.

    2016-06-01

    The future frontier of the Isotope Separation On-Line (ISOL) method is to increase the intensity of the Radioactive Isotope Beams (RIB) by many orders of magnitude in order to satisfy challenging experiments such as Rn-Electric Dipole Moment, Fr-Parity Non Conservation… and in general for radiative proton-capture relevant for nuclear astrophysics processes. The most direct method to obtain higher RIB intensity is to increase the driver beam intensity. New techniques were developed such as composite targets, where the target material is deposited onto a high thermal conductive substrate allowing a better heat dissipation. Combined with high-power target using radial finned for radiative cooling, these targets are capable of dissipating up to 20 kW depending on the target material operating temperature. Another method to increase RIB intensity is the use of indirect ISOL method, where secondary particle beam (n or γ) interacts with a fissile target material. By decoupling the power deposition in the system composed of a converter and ISOL target allows for much higher primary beam power. Indirect ISOL-target method permit reach several hundred of kW to MW of driver beam power, allowing the production of intense fission products beams. This paper reviews the thick ISOL target approach for producing intense radioactive ion beams.

  14. Research Directed at Developing a Classical Theory to Describe Isotope Separation of Polyatomic Molecules Illuminated by Intense Infrared Radiation. Final Report for period May 7, 1979 to September 30, 1979; Extension December 31, 1997

    Science.gov (United States)

    Lamb, W. E. Jr.

    1981-12-01

    This final report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. This process is investigated by treating the molecule, sulfur hexafluoride, as a system of seven classical particles that obey the Newtonian equations of motion. A minicomputer is used to integrate these differential equations. The particles are acted on by interatomic forces, and by the time-dependent electric field of the laser. We have a very satisfactory expression for the interaction of the laser and the molecule which is compatible with infrared absorption and spectroscopic data. The interatomic potential is capable of improvement, and progress on this problem is still being made. We have made several computer runs of the dynamical behavior of the molecule using a reasonably good model for the interatomic force law. For the laser parameters chosen, we find that typically the molecule passes quickly through the resonance region into the quasi-continuum and even well into the real continuum before dissociation actually occurs. When viewed on a display terminal, the motions are exceedingly complex. As an aid to the visualization of the process, we have made a number of 16 mm movies depicting a three-dimensional representation of the motion of the seven particles. These show even more clearly the enormous complexity of the motions, and make clear the desirability of finding ways of characterizing the motion in simple ways without giving all of the numerical detail. One of the ways to do this is to introduce statistical parameters such as a temperature associated with the distribution of kinetic energies of the single particle. We have made such an analysis of our data runs, and have found favorable indications that such methods will prove useful in keeping track of the dynamical histories.

  15. Research directed at developing a classical theory to describe isotope separation of polyatomic molecules illuminated by intense infrared radiation. Final report, May 7-September 30, 1979, extension December 31, 1979

    International Nuclear Information System (INIS)

    Lamb, W.E. Jr.

    1981-12-01

    This final report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. This process is investigated by treating the molecule, sulfur hexafluoride, as a system of seven classical particles that obey the Newtonian equations of motion. A minicomputer is used to integrate these differential equations. The particles are acted on by interatomic forces, and by the time-dependent electric field of the laser. We have a very satisfactory expression for the interaction of the laser and the molecule which is compatible with infrared absorption and spectroscopic data. The interatomic potential is capable of improvement, and progress on this problem is still being made. We have made several computer runs of the dynamical behavior of the molecule using a reasonably good model for the interatomic force law. For the laser parameters chosen, we find that typically the molecule passes quickly through the resonance region into the quasi-continuum and even well into the real continuum before dissociation actually occurs. When viewed on a display terminal, the motions are exceedingly complex. As an aid to the visualization of the process, we have made a number of 16 mm movies depicting a three-dimensional representation of the motion of the seven particles. These show even more clearly the enormous complexity of the motions, and make clear the desirability of finding ways of characterizing the motion in simple ways without giving all of the numerical detail. One of the ways to do this is to introduce statistical parameters such as a temperature associated with the distribution of kinetic energies of the single particle. We have made such an analysis of our data runs, and have found favorable indications that such methods will prove useful in keeping track of the dynamical histories

  16. Numerical solution of the Maxwell-Vlasov equations in the periodic regime. Application to the study of isotope separation by ion cyclotron resonance; Resolution numerique des equations de Maxwell-Vlasov en regime periodique. Application a l'etude de la separation isotopique par resonance cyclotron ionique

    Energy Technology Data Exchange (ETDEWEB)

    Omnes, P

    1999-01-25

    This work is dedicated to the study of the behaviour of a magnetic confined plasma that is excited by a purely sinusoidal electric current delivered by an antenna. The response of the electrons to the electromagnetic field is considered as linear,whereas the ions of the plasma are represented by a non-relativistic Vlasov equation. In order to avoid transients, the coupled Maxwell-Vlasov equations are solved in a periodic mode and in a bounded domain. An equivalent electric conductivity tensor has been defined, this tensor is a linear operator that links the electric current generated by the movement of the particles to the electromagnetic field. Theoretical considerations can assure the existence and uniqueness of a periodical solution to Vlasov equations and of a solution to Maxwell equations in harmonic mode. The system of equations is periodical and has been solved by using an iterative method. The application of this method to the simulation of a isotopic separation device based on ionic cyclotron resonance has shown that the convergence is reached in a few iterations and that the solution is valid. Furthermore a method based on a finite-volume formulation of Maxwell equations in the time domain is presented. 2 new variables are defined in order to better take into account the Gauss' law and the conservation of the magnetic flux, the new system is still hyperbolic. The parallelization of the process has been successfully realized. (A.C.)

  17. The production of stable isotopes in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Urgel, M.; Iglesias, J.; Casas, J.; Saviron, J. M.; Quintanilla, M.

    1965-07-01

    The activities developed in the field of the production of stable isotopes by means of ion-exchange chromatography and thermal diffusion techniques are reported. The first method was used to study the separation of the nitrogen and boron isotopes, whereby the separation factor was determined by the break through method. Values ranging from 1,028 to 1,022 were obtained for the separation factor of nitrogen by using ammonium hydroxide solutions while the corresponding values as obtained for boron amounted to 1,035-1,027 using boric acid solutions. Using ammonium chloride or acetate and sodium borate, respectively, resulted in the obtention of values for the separation factor approaching unity. The isotopic separation has been carried out according to the method of development by displacement. The separation of the isotopes of the noble gases, oxygen, nitrogen and carbon has been accomplished resorting to the method of thermal diffusion. (Author) 16 refs.

  18. The production of stable isotopes in Spain

    International Nuclear Information System (INIS)

    Urgel, M.; Iglesias, J.; Casas, J.; Saviron, J. M.; Quintanilla, M.

    1965-01-01

    The activities developed in the field of the production of stable isotopes by means of ion-exchange chromatography and thermal diffusion techniques are reported. The first method was used to study the separation of the nitrogen and boron isotopes, whereby the separation factor was determined by the break through method. Values ranging from 1,028 to 1,022 were obtained for the separation factor of nitrogen by using ammonium hydroxide solutions while the corresponding values as obtained for boron amounted to 1,035-1,027 using boric acid solutions. Using ammonium chloride or acetate and sodium borate, respectively, resulted in the obtention of values for the separation factor approaching unity. The isotopic separation has been carried out according to the method of development by displacement. The separation of the isotopes of the noble gases, oxygen, nitrogen and carbon has been accomplished resorting to the method of thermal diffusion. (Author) 16 refs

  19. Isotope applications in the environmental field

    International Nuclear Information System (INIS)

    DeWitt, R.

    1978-01-01

    Established uses of enriched isotopes in the environmental field were surveyed to determine future trends in isotope needs. Based on established isotope uses, on the projected increase in the pollution problem, and on the apparent social and economic pressure for pollution abatement, a significant demand for enriched isotopes appears to be developing for the assessment and control of air, water, and soil pollutants. Isotopic techniques will be used in combination with conventional methods of detection and measurement, such as gas chromatography, x-ray fluorescence, and atomic absorption. Recent advances in economical isotope separation methods, instrumentation, and methodology promise to place isotopic technology within the reach of most research and industrial institutions. Increased application of isotope techniques appears most likely to occur in areas where data are needed to characterize the movement, behavior, and fate of pollutants in the environment

  20. Isotopically labelled pyrimidines and purines

    International Nuclear Information System (INIS)

    Balaban, A.T.; Bally, I.

    1987-01-01

    Among the three diazines, pyrimidine is by far the most important one because its derivatives uracil, thymine and cytosine are constituents of the ubiquitous deoxynucleic acids (DNA) and ribonucleic acids (RNA). Other derivatives of pyrimidine without condensed rings include barbiturates, alloxan, orotic acid and thiamine or vitamin B 1 . From the polycyclic derivatives of pyrimidine such as pteridine, alloxazine, and purine, the latter, through its derivatives adenine and guanine complete the list of bases which occur in DNA and RNA: in addition, other purine derivatives such as hypoxanthine, xanthine, theobromine, theophylline, caffeine and uric acid are important natural products with biological activity. The paper presents methods for preparing isotopically labeled pyrimidines as well as purine derivatives. For convenience, the authors describe separately carbon-labeled with radioisotopes 11 C (T 1/2 = 20.3 min) and 14 C (T 1/2 = 5736 years) or the stable isotope 13 C (natural abundance 1.1%) and then hydrogen-labeled systems with the radioisotope 3 H ≡ T (T 1/2 = 12.346 years) or with the stable isotope 2 H ≡ D (natural abundance 0.015%). We do not separate stable from radioactive isotopes because the synthetic methods are identical for the same element; however, the introduction of hydrogen isotopes into organic molecules is often performed by reactions such as isotope exchange which cannot take place in the case of carbon isotopes

  1. The thickness of glaciers

    International Nuclear Information System (INIS)

    Faraoni, Valerio; Vokey, Marshall W

    2015-01-01

    Basic formulae and results of glacier physics appearing in glaciology textbooks can be derived from first principles introduced in algebra-based first year physics courses. We discuss the maximum thickness of alpine glaciers and ice sheets and the relation between maximum thickness and length of an ice sheet. Knowledge of ordinary differential equations allows one to derive also the local ice thickness. (paper)

  2. The thickness of glaciers

    Science.gov (United States)

    Faraoni, Valerio; Vokey, Marshall W.

    2015-09-01

    Basic formulae and results of glacier physics appearing in glaciology textbooks can be derived from first principles introduced in algebra-based first year physics courses. We discuss the maximum thickness of alpine glaciers and ice sheets and the relation between maximum thickness and length of an ice sheet. Knowledge of ordinary differential equations allows one to derive also the local ice thickness.

  3. Isotope diagnostics apparatus

    International Nuclear Information System (INIS)

    Herrschaft, H.

    1976-01-01

    The invention relates to a measuring probe for an isotope diagnostics apparatus to determine the distribution of radioactive substances in a body by measuring the radiation emanating from this body by means of a multiplicity of measuring probes directed simultaneously towards areas of measuring surfae and carried in guidances of a holding block. The measuring results of the individual probes are recorded separately, thus allowing the possibility of being evaluated separately, too. Measuring probes of this kind are used in multi-channel measuring objects and are useful particularly for determining the regional cerebral blood flow. (orig./ORU) [de

  4. Experiments with SIRA - the radioactive ion separator

    International Nuclear Information System (INIS)

    Angelique, J.C.; Orr, N.A.

    1998-01-01

    There are two main techniques to obtain radioactive ion beams. One, consisting in the fragmentation of projectile in a thin target followed by a separation carried out with LISE or SISSI type spectrometers or by an alpha spectrometer is used currently at GANIL. The second one, the ISOL (Isotope Separator One-Line) is presently under study on the SIRa benchmark, as part of the SPIRaL (Source de Production d'Ions Radioactifs en Ligne). A high energy light ion beam is stopped by a thick target to produce radioactive nuclei by various reactions in the target. The target, usually of carbon, is heated at around 1800 deg. C in order to accelerate the migration of the atoms produced at the target surface. These atoms are then diffused by a transfer tube up to plasma region where they are ionized and then accelerated. As projectiles the GANIL project makes use of a large variety of heavy ions. A table containing the radioactive ion beam characteristics (charge state and lifetime), the primary beams, the yields and the expected intensities to be obtained with SPIRaL is presented. Also, data concerning the production rates of rare gases obtained during 1993 to 1994 are given

  5. Leatherback Isotopes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently working on a project identifying global marine isotopes using leatherback turtles (Dermochelys coriacea) as the indicator species. We currently...

  6. Isotope laboratories

    International Nuclear Information System (INIS)

    1978-01-01

    This report from the Dutch Ministry of Health is an advisory document concerned with isotope laboratories in hospitals, in connection with the Dutch laws for hospitals. It discusses which hospitals should have isotope laboratories and concludes that as many hospitals as possible should have small laboratories so that emergency cases can be dealt with. It divides the Netherlands into regions and suggests which hospitals should have these facilities. The questions of how big each lab. is to be, what equipment each has, how each lab. is organised, what therapeutic and diagnostic work should be carried out by each, etc. are discussed. The answers are provided by reports from working groups for in vivo diagnostics, in vitro diagnostics, therapy, and safety and their results form the criteria for the licences of isotope labs. The results of a questionnaire for isotope labs. already in the Netherlands are presented, and their activities outlined. (C.F.)

  7. Isotope Identification

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-18

    The objective of this training modules is to examine the process of using gamma spectroscopy for radionuclide identification; apply pattern recognition to gamma spectra; identify methods of verifying energy calibration; and discuss potential causes of isotope misidentification.

  8. Isotope-equipped measuring instruments

    International Nuclear Information System (INIS)

    Miyagawa, Kazuo; Amano, Hiroshi

    1980-01-01

    In the steel industry, though the investment in isotope-equipped measuring instruments is small as compared with that in machinery, they play important role in the moisture measurement in sintering and blast furnaces, the thickness measurement in rolling process and others in automatic control systems. The economic aspect of the isotope-equipped measuring instruments is described on the basis of the practices in Kimitsu Works of Nippon Steel Corporation: distribution of such instruments, evaluation of economic effects, usefulness evaluation in view of raising the accuracy, and usefulness evaluation viewed from the failure of the isotope instruments. The evaluation of economic effects was made under the premise that the isotope-equipped measuring instruments are not employed. Then, the effects of raising the accuracy are evaluated for a γ-ray plate thickness gauge and a neutron moisture gauge for coke in a blast furnace. Finally, the usefulness was evaluated, assuming possible failure of the isotope-equipped measuring instruments. (J.P.N.)

  9. The isotopic enrichment of uranium in 1979

    International Nuclear Information System (INIS)

    Baron, M.

    1979-01-01

    The Eurodif uranium enrichment plant built on the Tricastin site is described. The uranium isotope separation plants in service abroad are presented. The main characteristics of the international enrichment market are defined [fr

  10. A separator

    Energy Technology Data Exchange (ETDEWEB)

    Prokopyuk, S.G.; Dyachenko, A.Ye.; Mukhametov, M.N.; Prokopov, O.I.

    1982-01-01

    A separator is proposed which contains separating slanted plates and baffle plates installed at a distance to them at an acute angle to them. To increase the effectiveness of separating a gas and liquid stream and the throughput through reducing the secondary carry away of the liquid drops and to reduce the hydraulic resistance, as well, openings are made in the plates. The horizontal projections of each opening from the lower and upper surfaces of the plate do not overlap each other.

  11. Education and "Thick" Epistemology

    Science.gov (United States)

    Kotzee, Ben

    2011-01-01

    In this essay Ben Kotzee addresses the implications of Bernard Williams's distinction between "thick" and "thin" concepts in ethics for epistemology and for education. Kotzee holds that, as in the case of ethics, one may distinguish between "thick" and "thin" concepts of epistemology and, further, that this distinction points to the importance of…

  12. Isotope enrichment systems

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1984-01-01

    This patent provides a process for concentrating the heavy isotope of at least one element of the class consisting of hydrogen and oxygen by the dual temperature exchange of the heavy and light isotopes of the element between two separable fluids containing said element. One of the fluids is in the gaseous phase and the other in the liquid phase. The liquid phase is provided as a solution consisting essentially in minor molar proportion, of water and in major molar proportion, of material selected from the class consisting of the water miscible organic hydroxy and/or carboxy compounds which have a ratio of carbon atoms to their alcoholic and acidic hydroxyl groups not greater than 2

  13. The centenary of the discovery of isotopes

    International Nuclear Information System (INIS)

    Soulie, Edgar

    2013-01-01

    This article recalls works performed by different scientists (Marckwald and Keetman, Stromholm and Svedberg, Soddy, Thompson, Aston) which resulted in the observation and identification of the existence of isotopes. The author also recalls various works related to mechanisms of production of isotopes, the discovery of uranium fission and the principle of chain reaction. The author notably evokes French scientists involved in the development of mass spectroscopy and in the research and applications on isotopes within the CEA after the Second World War. A bibliography of article and books published by one of them, Etienne Roth, is provided. References deal with nuclear applications of chemical engineering (heavy water and its production, chemical processes in fission reactors, tritium extraction and enrichment), isotopic fractioning and physical-chemical processes, mass spectrometry and isotopic analysis, isotopic geochemistry (on 07;Earth, search for deuterium in moon rocks and their consequences), first dating and the Oklo phenomenon, radioactive dating, water and climate (isotopic hydrology, isotopes and hailstone formation, the atmosphere), and miscellaneous scientific fields (nuclear measurements and radioactivity, isotopic abundances and atomic weight, isotopic separation and use of steady isotopes)

  14. Isotope production

    International Nuclear Information System (INIS)

    Lewis, Dewi M.

    1995-01-01

    Some 2 0% of patients using radiopharmaceuticals receive injections of materials produced by cyclotrons. There are over 200 cyclotrons worldwide; around 35 are operated by commercial companies solely for the production of radio-pharmaceuticals with another 25 accelerators producing medically useful isotopes. These neutron-deficient isotopes are usually produced by proton bombardment. All commonly used medical isotopes can be generated by 'compact' cyclotrons with energies up to 40 MeV and beam intensities in the range 50 to 400 microamps. Specially designed target systems contain gram-quantities of highly enriched stable isotopes as starting materials. The targets can accommodate the high power densities of the proton beams and are designed for automated remote handling. The complete manufacturing cycle includes large-scale target production, isotope generation by cyclotron beam bombardment, radio-chemical extraction, pharmaceutical dispensing, raw material recovery, and labelling/packaging prior to the rapid delivery of these short-lived products. All these manufacturing steps adhere to the pharmaceutical industry standards of Good Manufacturing Practice (GMP). Unlike research accelerators, commercial cyclotrons are customized 'compact' machines usually supplied by specialist companies such as IBA (Belgium), EBCO (Canada) or Scanditronix (Sweden). The design criteria for these commercial cyclotrons are - small magnet dimensions, power-efficient operation of magnet and radiofrequency systems, high intensity extracted proton beams, well defined beam size and automated computer control. Performance requirements include rapid startup and shutdown, high reliability to support the daily production of short-lived isotopes and low maintenance to minimize the radiation dose to personnel. In 1987 a major step forward in meeting these exacting industrial requirements came when IBA, together with the University of Louvain-La-Neuve in Belgium, developed the

  15. Laser Isotope Enrichment for Medical and Industrial Applications

    International Nuclear Information System (INIS)

    Leonard Bond

    2006-01-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: (1) Pure isotopic targets for irradiation to produce medical radioisotopes. (2) Pure isotopes for semiconductors. (3) Low neutron capture isotopes for various uses in nuclear reactors. (4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ''calutrons'' (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  16. Laser Isotope Enrichment for Medical and Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Leonard Bond

    2006-07-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  17. CENTRIFUGAL SEPARATORS

    Science.gov (United States)

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  18. Isotope generator

    International Nuclear Information System (INIS)

    1979-01-01

    The patent describes an isotope generator incorporating the possibility of stopping elution before the elution vessel is completely full. Sterile ventilation of the whole system can then occur, including of both generator reservoir and elution vessel. A sterile, and therefore pharmaceutically acceptable, elution fluid is thus obtained and the interior of the generator is not polluted with non-sterile air. (T.P.)

  19. Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores.

    Science.gov (United States)

    Kowalczyk, Piotr; Gauden, Piotr A; Terzyk, Artur P

    2008-07-17

    Quasi-one-dimensional cylindrical pores of single-walled boron nitride and carbon nanotubes efficiently differentiate adsorbed hydrogen isotopes at 33 K. Extensive path integral Monte Carlo simulations revealed that the mechanisms of quantum sieving for both types of nanotubes are quantitatively similar; however, the stronger and heterogeneous external solid-fluid potential generated from single-walled boron nitride nanotubes enhanced the selectivity of deuterium over hydrogen both at zero coverage and at finite pressures. We showed that this enhancement of the D(2)/H(2) equilibrium selectivity results from larger localization of hydrogen isotopes in the interior space of single-walled boron nitride nanotubes in comparison to that of equivalent single-walled carbon nanotubes. The operating pressures for efficient quantum sieving of hydrogen isotopes are strongly depending on both the type as well as the size of the nanotube. For all investigated nanotubes, we predicted the occurrence of the minima of the D(2)/H(2) equilibrium selectivity at finite pressure. Moreover, we showed that those well-defined minima are gradually shifted upon increasing of the nanotube pore diameter. We related the nonmonotonic shape of the D(2)/H(2) equilibrium selectivity at finite pressures to the variation of the difference between the average kinetic energy computed from single-component adsorption isotherms of H(2) and D(2). In the interior space of both kinds of nanotubes hydrogen isotopes formed solid-like structures (plastic crystals) at 33 K and 10 Pa with densities above the compressed bulk para-hydrogen at 30 K and 30 MPa.

  20. Oxygen isotope effect and phase separation in the optical conductivity of (La0.5Pr0.5)(0.7)Ca0.3MnO3 thin films

    NARCIS (Netherlands)

    Mena, FP; Kuzmenko, AB; Hadipour, A; van Mechelen, JLM; van der Marel, D; Babushkina, NA

    2005-01-01

    The optical conductivities of films of (La0.5Pr0.5)(0.7)Ca0.3MnO3 with different oxygen isotopes (O-16 and O-18) have been determined in the spectral range from 0.3 to 4.3 eV using a combination of transmission in the midinfrared and ellipsometry from the near-infrared to ultraviolet regions. We