WorldWideScience

Sample records for thesudbury neutrino observatory

  1. An array of low-background 3He proportional counters for theSudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Amsbaugh, J.F.; Anaya, J.M.; Banar, J.; Bowles, T.J.; Browne,M.C.; Bullard, T.V.; Burritt, T.H.; Cox-Mobrand, G.A.; Dai, X.; H.Deng,X.; Di Marco, M.; Doe, P.J.; Dragowsky, M.R.; Duba, C.A.; Duncan, F.A.; Earle, E.D.; Elliott, S.R.; Esch, E.-I.; Fergani, H.; Formaggio, J.A.; Fowler, M.M.; Franklin, J.E.; Geissbuehler, P.; Germani, J.V.; Goldschmidt, A.; Guillian, E.; Hallin, A.L.; Harper, G.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heise, J.; Hime, A.; Howe, M.A.; Huang, M.; Kormos, L.L.; Kraus, C.; Krauss, C.B.; Law, J.; Lawson, I.T.; Lesko,K.T.; Loach, J.C.; Majerus, S.; Manor, J.; McGee, S.; Miknaitis, K.K.S.; Miller, G.G.; Morissette, B.; Myers, A.; Oblath, N.S.; O' Kee, H.M.; Ollerhead, R.W.; Peeters, S.J.M.; Poon, A.W.P.; Prior, G.; Reitzner,S.D.; Rielage, K.; Robertson, R.G.H.; Skensved, P.; Smith, A.R.; Smith,M.W.E.; Steiger, T.D.; Stonehill,L.C.; Thornewell, P.M.; Tolich, N.; VanDevender, B.A.; VanWechel, T.D.; Wall, B.L.; Tseung, H.W.C.; Wendland,J.; West, N.; Wilhelmy, J.B.; Wilkerson, J.F.; Wouters, J.M.

    2007-02-01

    An array of Neutral-Current Detectors (NCDs) has been builtin order to make a unique measurement of the total active ux of solarneutrinos in the Sudbury Neutrino Observatory (SNO). Data in the thirdphase of the SNO experiment were collected between November 2004 andNovember 2006, after the NCD array was added to improve theneutral-current sensitivity of the SNO detector. This array consisted of36 strings of proportional counters lled with a mixture of 3He and CF4gas capable of detecting the neutrons liberated by the neutrino-deuteronneutral current reaction in the D2O, and four strings lled with a mixtureof 4He and CF4 gas for background measurements. The proportional counterdiameter is 5 cm. The total deployed array length was 398 m. The SNO NCDarray is the lowest-radioactivity large array of proportional countersever produced. This article describes the design, construction,deployment, and characterization of the NCD array, discusses theelectronics and data acquisition system, and considers event signaturesand backgrounds.

  2. Measurement of the nue and Total 8B Solar Neutrino Fluxes with theSudbury Neutrino Observatory Phase I Data Set

    Energy Technology Data Exchange (ETDEWEB)

    Aharmim, B.; Ahmad, Q.R.; Ahmed, S.N.; Allen, R.C.; Andersen,T.C.; Anglin, J.D.; Buehler, G.; Barton, J.C.; Beier, E.W.; Bercovitch,M.; Bergevin, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler, M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Burritt, T.H.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Deng, H.; DiMarco, M.; Doe, P.J.; Doucas, G.; Dragowsky, M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon,N.; Germani, J.V.; Gil, S.; Goldschmidt, A.; Goon, J.T.M.; Graham, K.; Grant, D.R.; Guillian, E.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Henning, R.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime,A.; Howard, C.; Howe, M.A.; Huang, M.; Hykawy, J.G.; Isaac, M.C.P.; Jagam, P.; Jamieson, B.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Kirch, K.; Klein, J.R.; Knox, A.B.; Komar,R.J.; Kormos, L.L.; Kos, M.; Kouzes, R.; Krueger, A.; Kraus, C.; Krauss,C.B.; Kutter, T.; Kyba, C.C.M.; Labranche, H.; Lange, R.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Locke, W.; Luoma, S.; Lyon, J.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald,A.B.; McDonald, D.S.; McFarlane, K.; McGee, S.; McGregor, G.; MeijerDrees, R.; Mes, H.; Mifflin, C.; Miknaitis, K.K.S.; Miller, M.L.; Milton,G.; Moffat, B.A.; Monreal, B.; Moorhead, M.; Morrissette, B.; Nally,C.W.; Neubauer, M.S.; et al.

    2007-02-01

    This article provides the complete description of resultsfrom the Phase I data set of the Sudbury Neutrino Observatory (SNO). ThePhase I data set is based on a 0.65 kt-year exposure of heavy water tothe solar 8B neutrino flux. Included here are details of the SNO physicsand detector model, evaluations of systematic uncertainties, andestimates of backgrounds. Also discussed are SNO's approach tostatistical extraction of the signals from the three neutrino reactions(charged current, neutral current, and elastic scattering) and theresults of a search for a day-night asymmetry in the ?e flux. Under theassumption that the 8B spectrum is undistorted, the measurements fromthis phase yield a solar ?e flux of ?(?e) =1.76+0.05?0.05(stat.)+0.09?0.09 (syst.) x 106 cm?2 s?1, and a non-?ecomponent ?(? mu) = 3.41+0.45?0.45(stat.)+0.48?0.45 (syst.) x 106 cm?2s?1. The sum of these components provides a total flux in excellentagreement with the predictions of Standard Solar Models. The day-nightasymmetry in the ?e flux is found to be Ae = 7.0 +- 4.9 (stat.)+1.3?1.2percent (sys.), when the asymmetry in the total flux is constrained to bezero.

  3. Sudbury neutrino observatory proposal

    International Nuclear Information System (INIS)

    Ewan, G.T.; Evans, H.C.; Lee, H.W.

    1987-10-01

    This report is a proposal by the Sudbury Neutrino Observatory (SNO) collaboration to develop a world class laboratory for neutrino astrophysics. This observatory would contain a large volume heavy water detector which would have the potential to measure both the electron-neutrino flux from the sun and the total solar neutrino flux independent of neutrino type. It will therefore be possible to test models of solar energy generation and, independently, to search for neutrino oscillations with a sensitivity many orders of magnitude greater than that of terrestrial experiments. It will also be possible to search for spectral distortion produced by neutrino oscillations in the dense matter of the sun. Finally the proposed detector would be sensitive to neutrinos from a stellar collapse and would detect neutrinos of all types thus providing detailed information on the masses of muon- and tau-neutrinos. The neutrino detector would contain 1000 tons of D20 and would be located more than 2000 m below ground in the Creighton mine near Sudbury. The operation and performance of the proposed detector are described and the laboratory design is presented. Construction schedules and responsibilities and the planned program of technical studies by the SNO collaboration are outlined. Finally, the total capital cost is estimated to be $35M Canadian and the annual operating cost, after construction, would be $1.8 M Canadian, including the insurance costs of the heavy water

  4. Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    Beier, E.W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in January 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical 37 Cl and 71 Ga experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun

  5. Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    Ewan, G.T.; Mak, H.B.; Robertson, B.C.

    1985-07-01

    This report discusses the proposal to construct a unique neutrino observatory. The observatory would contain a Cerenkov detector which would be located 2070 m below the earth's surface in an INCO mine at Creighton near Sudbury and would contain 1000 tons of D20 which is an excellent target material. Neutrinos carry detailed information in their spectra on the reactions taking place deep in the interstellar interior and also provide information on supernova explosions. In addition to their role as astrophysical probes a knowledge of the properties of neutrinos is crucial to theories of grand unification. There are three main objectives of the laboratory. The prime objective will be to study B electron neutrinos from the sun by a direct counting method that will measure their energy and direction. The second major objective will be to establish if electron neutrinos change into other neutrino species in transit from the sun to the earth. Finally it is hoped to be able to observe a supernova with the proposed detector. The features of the Sudbury Neutrino Observatory which make it unique are its high sensitivity to electron neutrinos and its ability to detect all other types of neutrinos of energy greater than 2.2 MeV. In section II of this proposal the major physics objectives are discussed in greater detail. A conceptual design for the detector, and measurements and calculations which establish the feasibility of the neutrino experiments are presented in section III. Section IV is comprised of a discussion on the possible location of the laboratory and Section V contains a brief indication of the main areas to be studied in Phase II of the design study

  6. Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    Ewan, G.T.; Evans, H.C.; Lee, H.W.

    1986-10-01

    This report is a supplement to a report (SNO-85-3 (Sudbury Neutrino Observatory)) which contained the results of a feasibility study on the construction of a deep underground neutrino observatory based on a 1000 ton heavy water Cerenkov detector. Neutrinos carry detailed information in their spectra on the reactions taking place deep in the interstellar interior and also provide information on supernova explosions. In addition to their role as astrophysical probes, a knowledge of the properties of neutrinos is crucial to theories of grand unification. The Sudbury Neutrino Observatory is unique in its high sensitivity to electron neutrinos and its ability to detect all other types of neutrinos of energy greater than 2.2 MeV. The results of the July 1985 study indicated that the project is technically feasible in that the proposed detector can measure the direction and energy of electron neutrinos above 7 MeV and the scientific programs will make significant contributions to physics and astrophysics. This present report contains new information obtained since the 1985 feasibility study. The enhanced conversion of neutrinos in the sun and the new physics that could be learned using the heavy water detector are discussed in the physics section. The other sections will discuss progress in the areas of practical importance in achieving the physics objectives such as new techniques to measure, monitor and remove low levels of radioactivity in detector components, ideas on calibration of the detector and so forth. The section entitled Administration contains a membership list of the working groups within the SNO collaboration

  7. The Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    McLatchie, W.; Earle, E.D.

    1987-08-01

    This report initially discusses the Homestake Mine Experiment, South Dakota, U.S.A. which has been detecting neutrinos in 38 x 10 litre vats of cleaning fluid containing chlorine since the 1960's. The interation between neutrinos and chlorine produces argon so the number of neutrinos over time can be calculated. However, the number of neutrinos which have been detected represent only one third to one quarter of the expected number i.e. 11 per month rather than 48. It is postulated that the electron-neutrinos originating in the solar core could change into muon- or tau-neutrinos during passage through the high electron densities of the sun. The 'low' results at Homestake could thus be explained by the fact that the experiment is only sensitive to electron-neutrinos. The construction of a heavy water detector is therefore proposed as it would be able to determine the energy of the neutrinos, their time of arrival at the detector and their direction. It is proposed to build the detector at Creighton mine near Sudbury at a depth of 6800 feet below ground level thus shielding the detector from cosmic rays which would completely obscure the neutrino signals from the detector. The report then discusses the facility itself, the budget estimate and the social and economic impact on the surrounding area. At the time of publication the proposal for the Sudbury Neutrino Observatory was due to be submitted for peer review by Oct. 1, 1987 and then to various granting bodies charged with the funding of scientific research in Canada, the U.S.A. and Britain

  8. The Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    Norman, E.B.; Chan, Y.D.; Garcia, A.; Lesko, K.T.; Smith, A.R.; Stokstad, R.G.; Zlimen, I.; Evans, H.C.; Ewan, G.T.; Hallin, A.; Lee, H.W.; Leslie, J.R.; MacArthur, J.D.; Mak, H.B.; McDonald, A.B.; McLatchie, W.; Robertson, B.C.; Skensved, P.; Sur, B.; Jagam, P.; Law, J.; Ollerhead, R.W.; Simpson, J.J.; Wang, J.X.; Tanner, N.W.; Jelley, N.A.; Barton, J.C.; Doucas, G.; Hooper, E.W.; Knox, A.B.; Moorhead, M.E.; Omori, M.; Trent, P.T.; Wark, D.L.

    1992-11-01

    Two experiments now in progress have reported measurements of the flux of high energy neutrinos from the Sun. Since about 1970, Davis and his co-workers have been using a 37 Cl-based detector to measure the 7 Be and 8 B solar neutrino flux and have found it to be at least a factor of three lower than that predicted by the Standard Solar Model (SSM). The Kamiokande collaborations has been taking data since 1986 using a large light-water Cerenkov detector and have confirmed that the flux is about two times lower than predicted. Recent results from the SAGE and GALLEX gallium-based detectors show that there is also a deficit of the low energy pp solar neutrinos. These discrepancies between experiment and theory could arise because of inadequacies in the theoretical models of solar energy generation or because of previously unobserved properties of neutrinos. The Sudbury Neutrino Observatory (SNO) will provide the information necessary to decide which of these solutions to the ''solar neutrino problem'' is correct

  9. Neutrino observations from the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler,M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky,M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac,M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter,T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald,D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin,C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O' Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener,M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.; et al.

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  10. Neutrino Observations from the Sudbury Neutrino Observatory

    Science.gov (United States)

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. B?hler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  11. The Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    McLatchie, W.; Earle, E.D.

    1987-04-01

    A group of Canadian scientists, in collaboration with colleagues from the United States and England, proposes to establish a world class laboratory in INCO's Creighton Mine. The laboratory would be dedicated to the study of neutrinos from the sun and other astrophysical objects to advance our understanding of the physical processes which govern the properties of stars, as well as our understanding of the fundamental properties of matter. The laboratory would capitalize on two unique Canadian resources, i.e. access to one of the deepest mines in the western hemisphere and Canada's temporary surplus of heavy water

  12. India-Based Neutrino Observatory (INO)

    Indian Academy of Sciences (India)

    India-Based Neutrino Observatory (INO) · Atmospheric neutrinos – India connection · INO Collaboration · INO Project components · ICAL: The physics goals · Slide 6 · Slide 7 · INO site : Bodi West Hills · Underground Laboratory Layout · Status of activities at INO Site · Slide 11 · Slide 12 · INO-ICAL Detector · ICAL factsheet.

  13. Technology Development for a Neutrino Astrophysical Observatory

    International Nuclear Information System (INIS)

    Chaloupka, V.; Cole, T.; Crawford, H.J.; He, Y.D.; Jackson, S.; Kleinfelder, S.; Lai, K.W.; Learned, J.; Ling, J.; Liu, D.; Lowder, D.; Moorhead, M.; Morookian, J.M.; Nygren, D.R.; Price, P.B.; Richards, A.; Shapiro, G.; Shen, B.; Smoot, George F.; Stokstad, R.G.; VanDalen, G.; Wilkes, J.; Wright, F.; Young, K.

    1996-01-01

    We propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory

  14. India-based Neutrino Observatory

    Indian Academy of Sciences (India)

    2012-11-17

    Nov 17, 2012 ... to large water Cerenkov and other detectors worldwide. ... atmospheric neutrino interaction was observed at KGF in 1965 [1] (see figure 1). ..... event generator, which was developed for Kamiokande experiment and has been ...

  15. Evidence for neutrino oscillations in the Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    Marino, Alysia Diane

    2004-01-01

    The Sudbury Neutrino Observatory (SNO) is a large-volume heavy water Cerenkov detector designed to resolve the solar neutrino problem. SNO observes charged-current interactions with electron neutrinos, neutral-current interactions with all active neutrinos, and elastic-scattering interactions primarily with electron neutrinos with some sensitivity to other flavors. This dissertation presents an analysis of the solar neutrino flux observed in SNO in the second phase of operation, while ∼2 tonnes of salt (NaCl) were dissolved in the heavy water. The dataset here represents 391 live days of data. Only the events above a visible energy threshold of 5.5 MeV and inside a fiducial volume within 550 cm of the center of the detector are studied. The neutrino flux observed via the charged-current interaction is [1.71 ± 0.065(stat.)± 0.068 0.065 (sys.)±0.02(theor.)] x 10 6 cm -2 s -1 , via the elastic-scattering interaction is [2.21±0.22(stat.)± 0.12 0.11 (sys.)±0.01(theor.)] x 10 6 cm -2 s -1 , and via the neutral-current interaction is [5.05±0.23(stat.)± 0.37 0.31 (sys.)±0.06(theor.)] x 10 6 cm -2 s -1 . The electron-only flux seen via the charged-current interaction is more than 7σ below the total active flux seen via the neutral-current interaction, providing strong evidence that neutrinos are undergoing flavor transformation as they travel from the core of the Sun to the Earth. The most likely origin of the flavor transformation is matter-induced flavor oscillation

  16. Evidence for neutrino oscillations in the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Marino, Alysia Diane [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The Sudbury Neutrino Observatory (SNO) is a large-volume heavy water Cerenkov detector designed to resolve the solar neutrino problem. SNO observes charged-current interactions with electron neutrinos, neutral-current interactions with all active neutrinos, and elastic-scattering interactions primarily with electron neutrinos with some sensitivity to other flavors. This dissertation presents an analysis of the solar neutrino flux observed in SNO in the second phase of operation, while ~2 tonnes of salt (NaCl) were dissolved in the heavy water. The dataset here represents 391 live days of data. Only the events above a visible energy threshold of 5.5 MeV and inside a fiducial volume within 550 cm of the center of the detector are studied. The neutrino flux observed via the charged-current interaction is [1.71 ± 0.065(stat.)±$0.065\\atop{0.068}$(sys.)±0.02(theor.)] x 106cm-2s-1, via the elastic-scattering interaction is [2.21±0.22(stat.)±$0.12\\atop{0.11}$(sys.)±0.01(theor.)] x 106cm-2s-1, and via the neutral-current interaction is [5.05±0.23(stat.)±$0.31\\atop{0.37}$(sys.)±0.06(theor.)] x 106cm-2s-1. The electron-only flux seen via the charged-current interaction is more than 7σ below the total active flux seen via the neutral-current interaction, providing strong evidence that neutrinos are undergoing flavor transformation as they travel from the core of the Sun to the Earth. The most likely origin of the flavor transformation is matter-induced flavor oscillation.

  17. Latest results from the IceCube neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Schukraft, Anne [RWTH Aachen Univ. (Germany). III. Physikalisches Inst.; Collaboration: IceCube-Collaboration

    2013-07-01

    The IceCube Neutrino Observatory is the world's largest neutrino detector with a broad physics program covering the neutrino spectrum from several tens of GeV up to EeV energies. With its completion in 2010 it has reached its full sensitivity and analyses with unprecedented statistics are performed. One of the major research efforts is the search for extraterrestrial neutrino sources, which have not yet been discovered but would be a smoking gun for hadronic acceleration and could allow to identify the sources of high-energy cosmic rays. Such include steady galactic and extragalactic source candidates, e.g. Supernova Remnants and Active Galactic Nuclei, as well as transient phenomena like flaring objects and Gamma Ray Bursts. With its searches for diffuse neutrino fluxes in different energy ranges, IceCube is sensitive to fluxes of prompt atmospheric neutrinos, extragalactic neutrinos and cosmogenic neutrinos. In the low-energy range below 100 GeV, IceCube supplements classical neutrino oscillation experiments with its sensitivity to the deficit of atmospheric muon neutrinos at 25 GeV and searches for neutrinos from the annihilation of dark matter. The IceCube physics program is complemented by the surface array IceTop, which together with the detector part inside the ice serves for cosmic ray anisotropy, spectrum and composition measurements around the knee. The presentation summarizes ongoing IceCube physics analyses and recent results.

  18. The Sudbury Neutrino Observatory project and the Kamiokande II project

    International Nuclear Information System (INIS)

    Beier, E.W.

    1991-01-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project and on the Kamiokande II project. The motivation for both experiments is the measurement of neutrinos emitted by the sun. The Kamiokande II experiment was an adaptation of an existing nucleon decay detector located in Japan to search for neutrinos emitted by the sun. It has been operational since 1986. Data taking was concluded in 1990 and work will terminate at the end of this grant year. The topics discussed in this report are: the Sudbury Neutrino Observatory project; photomultiplier tube measurements; photomultiplier bases; signal processing electronics; electronics system issues; software management and development; and Kamiokande II

  19. Technology development for a neutrino astrophysical observatory. Letter of intent

    International Nuclear Information System (INIS)

    Chaloupka, V.; Cole, T.; Crawford, H.J.

    1996-02-01

    The authors propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory

  20. Neutral-current detection in the Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    Bowles, T.J.; Doe, P.J.; Fowler, M.M.; Hime, A.; Robertson, R.G.H.; Thornewell, P.M.; Wilhelmy, J.B.; Wilkerson, J.F.; Wouters, J.M.

    1993-01-01

    The Sudbury Neutrino Observatory (SNO) will have the capability of detecting all active species of neutrinos with energies greater than 2.2 MeV by the neutral-current disintegration of deuterium. The comparison of this rate with the rate of inverse beta decay of the deuteron will yield a nearly model-independent answer to the question of whether electron neutrinos from the sun oscillate into mu or tau neutrinos. The signal of a neutral-current interaction is the liberation of a free neutron in the heavy-water detector, and we discuss a technique employing 3 He proportional counters for registering these neutrons, particularly from the standpoint of the ultra-low backgrounds needed

  1. The Science of the Sudbury Neutrino Observatory (SNO) and SNOLAB

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    A description of the science associated with the Sudbury Neutrino Observatory and its relation to other neutrino measurements will be given, along with a discussion of the new set of experiments that are at various stages of development or operation at SNOLAB. These experiments will perform measurements of neutrino properties and seek direct detection of Weakly-Interacting Massive Particles (WIMPS) as Dark Matter candidates. The experiments include SNO+, in which the central element of the SNO detector will be liquid scintillator with Te dissolved for neutrino-less double beta decay; DEAP, using about 3300 kg of liquid argon for single phase direct Dark Matter detection; SuperCDMS, a solid state bolometer system to start construction at SNOLAB in the near future; PICO, a direct Dark Matter experiment using bubble formation for detection and NEWS, a direct Dark Matter detector using high pressure gasses for low-mass WIMP detection.

  2. Ultrahigh Energy Neutrinos at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    P. Abreu

    2013-01-01

    Full Text Available The observation of ultrahigh energy neutrinos (UHEνs has become a priority in experimental astroparticle physics. UHEνs can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ν or in the Earth crust (Earth-skimming ν, producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere. In this work we review the procedure and criteria established to search for UHEνs in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHEνs in the EeV range and above.

  3. Measurement of the cosmic ray and neutrino-induced muon flux at the Sudbury neutrino observatory

    OpenAIRE

    Aharmim, B; Peeters, S J M; SNO Collaboration,

    2009-01-01

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between $-1 \\le \\cos{\\theta}_{\\rm zenith} \\le 0.4$ in a tota...

  4. The Baksan Neutrino Observatory Soviet-American Gallium Solar Neutrino Experiment

    International Nuclear Information System (INIS)

    Abazov, A.I.; Abdurashitov, D.N.; Anosov, O.V.

    1988-01-01

    A radiochemical 71 Ga- 71 Ge experiment to determine the integral flux of neutrinos from the sun is currently under preparation at the Baksan Neutrino Observatory in the USSR. Measurements are scheduled to commence by late 1988 with 30 tonnes of metallic gallium. A fractional statistical accuracy of 18% is expected to be obtained after one year of operation if the solar signal obtained after one year of operation if the solar signal is 70 SNU, the flux expected from p-p neutrinos alone. While initial measurements are in progress, 30 additional tonnes of gallium will be installed in order to perform the full experiment with a 60-tonne target. 28 refs

  5. The Final Results from the Sudbury Neutrino Observatory

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The Sudbury Neutrino Observatory (SNO) was a water Cherenkov detector dedicated to investigate elementary particles called neutrinos. It successfully took data between 1999 and 2006. The detector was unique in its use of heavy water as a detection medium, permitting it to make a solar model-independent test of solar neutrino mixing. In fact, SNO conclusively showed that solar neutrinos oscillate on their way from the core of the Sun to the Earth. This groundbreaking observation was made during three independent phases of the experiment. Even if data taking ended, SNO is still in a mode of precise determination of the solar neutrino oscillation parameters because all along SNO had developed several methods to tell charged-current events apart from neutral-current events. This ability is crucial for the final and ultimate data analysis of all the phases. The physics reach of a combined three-phase solar analysis will be reviewed together with results and subtleties about solar neutrino physics.

  6. Probing Dark Energy via Neutrino and Supernova Observatories

    International Nuclear Information System (INIS)

    Hall, Lawrence; Hall, Lawrence J.; Murayama, Hitoshi; Papucci, Michele; Perez, Gilad

    2006-01-01

    A novel method for extracting cosmological evolution parameters is proposed, using a probe other than light: future observations of the diffuse anti-neutrino flux emitted from core-collapse supernovae (SNe), combined with the SN rate extracted from future SN surveys. The relic SN neutrino differential flux can be extracted by using future neutrino detectors such as Gadolinium-enriched, megaton, water detectors or 100-kiloton detectors of liquid Argon or liquid scintillator. The core-collapse SN rate can be reconstructed from direct observation of SN explosions using future precision observatories. Our method, by itself, cannot compete with the accuracy of the optical-based measurements but may serve as an important consistency check as well as a source of complementary information. The proposal does not require construction of a dedicated experiment, but rather relies on future experiments proposed for other purposes

  7. Probing Dark Energy via Neutrino and Supernova Observatories

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Lawrence; Hall, Lawrence J.; Murayama, Hitoshi; Papucci, Michele; Perez, Gilad

    2006-07-10

    A novel method for extracting cosmological evolution parameters is proposed, using a probe other than light: future observations of the diffuse anti-neutrino flux emitted from core-collapse supernovae (SNe), combined with the SN rate extracted from future SN surveys. The relic SN neutrino differential flux can be extracted by using future neutrino detectors such as Gadolinium-enriched, megaton, water detectors or 100-kiloton detectors of liquid Argon or liquid scintillator. The core-collapse SN rate can be reconstructed from direct observation of SN explosions using future precision observatories. Our method, by itself, cannot compete with the accuracy of the optical-based measurements but may serve as an important consistency check as well as a source of complementary information. The proposal does not require construction of a dedicated experiment, but rather relies on future experiments proposed for other purposes.

  8. The IceCube Neutrino Observatory: instrumentation and online systems

    International Nuclear Information System (INIS)

    Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ansseau, I.; Ahlers, M.; Auer, R.; Baccus, J.; Barnet, S.; Ahrens, M.; Altmann, D.; Anton, G.; Andeen, K.; Anderson, T.; Archinger, M.; Argüelles, C.; Axani, S.; Auffenberg, J.; Bai, X.; Barwick, S.W.

    2017-01-01

    The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.

  9. Search for a diffuse flux of extragalactic neutrinos with the IceCube neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Schukraft, Anne

    2013-06-07

    Since the discovery of cosmic rays it has been one of the major research goals to identify the sources and acceleration mechanisms behind these high-energy particles observed from space, with energies up to several EeV. The study of high-energy charged particles and photons has advantages and disadvantages: the detection techniques for charged cosmic rays are very advanced though high-energy charged nuclei are not able to reveal their sources due to magnetic deflection. In the last years, there have been discoveries of many gamma-ray sources, where photon fluxes up to energies of 100 TeV have been observed. However, the universe is opaque to photons with energies larger than 100 TeV since gamma rays interact with the cosmic microwave background. Neutrinos suffer from neither of these limitations. They are ideal messenger particles in order to investigate the sources of cosmic rays since they propagate unaffected, but their detection is difficult and no extraterrestrial neutrino sources at high energies have yet been found. The IceCube experiment, located at the geographic South Pole, was built in order to detect high-energy neutrinos from the universe. It was completed in December 2010 and is the largest neutrino observatory on Earth. It detects neutrinos via their interaction with the Antarctic ice inside and around the detection volume. In these interactions, high-energy leptons are produced, which follow the direction of the initial neutrino and produce a cone of Cherenkov light along their path. This light is detected by optical sensors deployed in the instrumented volume. The search for a diffuse neutrino flux is a very promising approach to look for an extragalactic flux of astrophysical neutrinos. Its sensitivity is mainly based on neutrino energies since astrophysical neutrinos are expected to be more energetic than atmospheric neutrinos. It searches for an astrophysical flux from the sum of all sources in the universe. These sources can be individually

  10. Search for a diffuse flux of extragalactic neutrinos with the IceCube neutrino observatory

    International Nuclear Information System (INIS)

    Schukraft, Anne

    2013-01-01

    Since the discovery of cosmic rays it has been one of the major research goals to identify the sources and acceleration mechanisms behind these high-energy particles observed from space, with energies up to several EeV. The study of high-energy charged particles and photons has advantages and disadvantages: the detection techniques for charged cosmic rays are very advanced though high-energy charged nuclei are not able to reveal their sources due to magnetic deflection. In the last years, there have been discoveries of many gamma-ray sources, where photon fluxes up to energies of 100 TeV have been observed. However, the universe is opaque to photons with energies larger than 100 TeV since gamma rays interact with the cosmic microwave background. Neutrinos suffer from neither of these limitations. They are ideal messenger particles in order to investigate the sources of cosmic rays since they propagate unaffected, but their detection is difficult and no extraterrestrial neutrino sources at high energies have yet been found. The IceCube experiment, located at the geographic South Pole, was built in order to detect high-energy neutrinos from the universe. It was completed in December 2010 and is the largest neutrino observatory on Earth. It detects neutrinos via their interaction with the Antarctic ice inside and around the detection volume. In these interactions, high-energy leptons are produced, which follow the direction of the initial neutrino and produce a cone of Cherenkov light along their path. This light is detected by optical sensors deployed in the instrumented volume. The search for a diffuse neutrino flux is a very promising approach to look for an extragalactic flux of astrophysical neutrinos. Its sensitivity is mainly based on neutrino energies since astrophysical neutrinos are expected to be more energetic than atmospheric neutrinos. It searches for an astrophysical flux from the sum of all sources in the universe. These sources can be individually

  11. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    Science.gov (United States)

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  12. Supernova relic electron neutrinos and anti-neutrinos in future large-scale observatories

    International Nuclear Information System (INIS)

    Volpe, C.; Welzel, J.

    2007-01-01

    We investigate the signal from supernova relic neutrinos in future large scale observatories, such as MEMPHYS (UNO, Hyper-K), LENA and GLACIER, at present under study. We discuss that complementary information might be gained from the observation of supernova relic electron antineutrinos and neutrinos using the scattering on protons on one hand, and on nuclei such as oxygen, carbon or argon on the other hand. When determining the relic neutrino fluxes we also include, for the first time, the coupling of the neutrino magnetic moment to magnetic fields within the core collapse supernova. We present numerical results on both the relic ν e and ν-bar e fluxes and on the number of events for ν e + C 12 , ν e + O 16 , ν e + Ar 40 and ν-bar e + p for various oscillation scenarios. The observation of supernova relic neutrinos might provide us with unique information on core-collapse supernova explosions, on the star formation history and on neutrino properties, that still remain unknown. (authors)

  13. Supernova relic electron neutrinos and anti-neutrinos in future large-scale observatories

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, C.; Welzel, J. [Institut de Physique Nuclueaire, 91 - Orsay (France)

    2007-07-01

    We investigate the signal from supernova relic neutrinos in future large scale observatories, such as MEMPHYS (UNO, Hyper-K), LENA and GLACIER, at present under study. We discuss that complementary information might be gained from the observation of supernova relic electron antineutrinos and neutrinos using the scattering on protons on one hand, and on nuclei such as oxygen, carbon or argon on the other hand. When determining the relic neutrino fluxes we also include, for the first time, the coupling of the neutrino magnetic moment to magnetic fields within the core collapse supernova. We present numerical results on both the relic {nu}{sub e} and {nu}-bar{sub e} fluxes and on the number of events for {nu}{sub e} + C{sup 12}, {nu}{sub e} + O{sup 16}, {nu}{sub e} + Ar{sup 40} and {nu}-bar{sub e} + p for various oscillation scenarios. The observation of supernova relic neutrinos might provide us with unique information on core-collapse supernova explosions, on the star formation history and on neutrino properties, that still remain unknown. (authors)

  14. Searches for high frequency variations in the 8-B neutrino flux at the Sudbury neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Rielage, Keith [Los Alamos National Laboratory; Seibert, Stanley R [Los Alamos National Laboratory; Hime, Andrew [Los Alamos National Laboratory; Elliott, Steven R [Los Alamos National Laboratory; Stonehill, L C [Los Alamos National Laboratory; Wouters, J M [Los Alamos National Laboratory; Aharmim, B [LAURENTIAN UNIV; Ahmed, S N [QUEEN' S UNIV; Anthony, A E [UNIV OF TEXAS; Barros, N [PORTUGAL; Beier, E W [UNIV OF PA; Bellerive, A [CARLETON UNIV; Belttran, B [UNIV OF ALBERTA; Bergevin, M [LBNL; Biller, S D [UNIV OF OXFORD; Boudjemline, K [CARLETON UNIV; Burritt, T H [UNIV OF WASHINGTON; Cai, B [QUEEN' S UNIV; Chan, Y D [LBNL; Chauhan, D [LAURENTIAN UNIV; Chen, M [QUEEN' S UNIV; Cleveland, B T [UNIV OF OXFORD; Cox - Mobrand, G A [UNIV OF WASHINGTON; Dai, X [QUEEN' S UNIV; Deng, H [UNIV OF PA; Detwiler, J [LBNL; Dimarco, M [QUEEN' S UNIV; Doe, P J [UNIV OF WASHINGTON; Drouin, P - L [CARLTON UNIV; Duba, C A [UNIV OF WASHINGTON; Duncan, F A [SNOLAB, SUDBURY; Dunford, M [UNIV OF PA; Earle, E D [QUEEN' S UNIV; Evans, H C [QUEEN' S UNIV; Ewan, G T [QUEEN' S UNIV; Farine, J [LAURENTTIAN UNIV; Fergani, H [UNIV OF OXFORD; Fleurot, F [LAURENTIAN UNIV; Ford, R J [SNOLAB, SUDBURY; Formaggilo, J A [MASSACHUSETTS INST. OF TECH.; Gagnon, N [UNIV OF WASHINGTON; Goon, J Tm [LOUISIANA STATE UNIV; Guillian, E [QUEEN' S UNIV; Habib, S [UNIV OF ALBERTA; Hahn, R L [BNL; Hallin, A L [UNIV OF ALBERTA; Hallman, E D [LAURENTIAN UNIV; Harvey, P J [QUEEN' S UNIV; Hazama, R [UNIV OF WASHINGTON; Heintzelman, W J [UNIV OF PA; Heise, J [SNOLAB, SUDBURY; Helmer, R L [TRIUMF; Howard, C [UNIV OF ALBERTA; Howe, M A [UNIV OF WASHINGTON; Huang, M [UNIV OF TEXAS; Jamieson, B [UNIV OF BRITISH COLUMBIA; Jelley, N A [UNIV OF OXFORD; Keeter, K J [SNOLAB, SUDBURY; Klein, J R [UNIV OF TEXAS; Kos, M [QUEEN' S UNIV; Kraus, C [QUEEN' S UNIV; Krauss, C B [UNIV OF ALBERTA; Kutter, T [LOUISIANA STATE UNIV; Kyba, C C M [UNIV OF PA; Law, J [UNIV OF GUELPH; Lawson, I T [SNOLAB, SUDBURY; Lesko, K T [LBNL; Leslie, J R [QUEEN' S UNIV; Loach, J C [UNIV OF OXFORD; Maclellan, R [QUEEN' S UNIV; Majerus, S [UNIV OF OXFORD; Mak, H B [QUEEN' S UNIV; Maneira, J [PORTUGAL; Martin, R [QUEEN' S UNIV; Mccauley, N [UNIV OF PA; Mc Donald, A B [QUEEN' S UNIV; Mcgee, S [UNIV OF WASHINGTON; Miffin, C [CARLETON UNIV; Miller, M L [MASSACHUSETTS INST. OF TECH.; Monreal, B [MASSACHUSETTS INST. OF TECH.; Monroe, J [MASSACHUSETTS INST. OF TECH; Morissette, B [SNOLAB, SUDBURY; Nickel, B G [UNIV OF GUELPH; Noble, A J [QUEEN' S UNIV; O' Keeffe, H M [UNIV OF OXFORD; Oblath, N S [UNIV OF WASHINGTON; Orebi Gann, G D [UNIV OF OXFORD; Oser, S M [UNIV OF BRITISH COLUMBIA; Ott, R A [MASSACHUSETTS INST. OF TECH.; Peeters, S J M [UNIV OF OXFORD; Poon, A W P [LBNL; Prior, G [LBNL; Reitzner, S D [UNIV OF GUELPH; Robertson, B C [QUEEN' S UNIV; Robertson, R G H [UNIV OF WASHINGTON; Rollin, E [CARLETON UNIV; Schwendener, M H [LAURENTIAN UNIV; Secrest, J A [UNIV OF PA; Seibert, S R [UNIV OF TEXAS; Simard, O [CARLETON UNIV; Sinclair, D [CARLETON UNIV; Sinclair, L [CARLETON UNIV; Skensved, P [QUEEN' S UNIV; Sonley, T J [MASSACHUSETTS INST. OF TECH.; Tesic, G [CARLETON UNIV; Tolich, N [UNIV OF WASHINGTON; Tsui, T [UNIV OF BRITISH COLUMBIA; Tunnell, C D [UNIV OF TEXAS; Van Berg, R [UNIV OF PA; Van Devender, B A [UNIV OF WASHINGTON; Virtue, C J [LAURENTIAN UNIV; Wall, B L [UNIV OF WASHINGTON; Waller, D [CARLETON UNIV; Wan Chan Tseung, H [UNIV OF OXFORD; West, N [UNIV OF OXFORD; Wilkerson, J F [UNIV OF WASHINGTON; Wilson, J R [UNIV OF OXFORD; Wright, A [QUEEN' S UNIV; Yeh, M [BNL; Zhang, F [CARLETON UNIV; Zuber, K [UNIV OF OXFORD

    2009-01-01

    We have peformed three searches for high-frequency signals in the solar neutrino flux measured by the Sudbury Neutrino Observatory (SNO), motivated by the possibility that solar g-mode oscillations could affect the production or propagation of solar {sup 8}B neutrinos. The first search looked for any significant peak in the frequency range l/day to 144/day, with a sensitivity to sinusoidal signals with amplitudes of 12% or greater. The second search focused on regions in which g-mode signals have been claimed by experiments aboard the SoHO satellite, and was sensitive to signals with amplitudes of 10% or greater. The third search looked for extra power across the entire frequency band. No statistically significant signal was detected in any of the three searches.

  15. The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part VI: IceCube-Gen2, the Next Generation Neutrino Observatory

    OpenAIRE

    Collaboration, IceCube-Gen2; :; Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.

    2017-01-01

    Papers on research & development towards IceCube-Gen2, the next generation neutrino observatory at South Pole, submitted to the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the IceCube-Gen2 Collaboration.

  16. IceCube Gen2. The next-generation neutrino observatory for the South Pole

    Energy Technology Data Exchange (ETDEWEB)

    Santen, Jakob van [DESY, Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The IceCube Neutrino Observatory is a cubic-kilometer Cherenkov telescope buried in the ice sheet at the South Pole that detects neutrinos of all flavors with energies from tens of GeV to several PeV. The instrument provided the first measurement of the flux of high-energy astrophysical neutrinos, opening a new window to the TeV universe. At the other end of its sensitivity range, IceCube has provided precision measurements of neutrino oscillation parameters that are competitive with dedicated accelerator-based experiments. Here we present design studies for IceCube Gen2, the next-generation neutrino observatory for the South Pole. Instrumenting a volume of more that 5 km{sup 3} with over 100 new strings, IceCube Gen2 will have substantially greater sensitivity to high-energy neutrinos than current-generation instruments. PINGU, a dense infill array, will lower the energy threshold of the inner detector region to 4 GeV, allowing a determination of the neutrino mass hierarchy. On the surface, a large air shower detector will veto high-energy atmospheric muons and neutrinos from the southern hemisphere, enhancing the reach of astrophysical neutrino searches. With its versatile instrumentation, the IceCube Gen2 facility will allow us to explore the neutrino sky with unprecedented sensitivity, providing new constraints on the sources of the highest-energy cosmic rays, and yield precision data on the mixing and mass ordering of neutrinos.

  17. Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Buitink, S.; Docters, W.; Dorosti Hasankiadeh, Q.; Ferguson, A P.; Lu, L.; Messina, S.; Scholten, O.; van den Berg, A. M.

    2015-01-01

    Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array (SD) of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the

  18. Recent Ultra High Energy neutrino bounds and multimessenger observations with the Pierre Auger Observatory

    Science.gov (United States)

    Zas, Enrique

    2018-01-01

    The overall picture of the highest energy particles produced in the Universe is changing because of measurements made with the Pierre Auger Observatory. Composition studies of cosmic rays point towards an unexpected mixed composition of intermediate mass nuclei, more isotropic than anticipated, which is reshaping the future of the field and underlining the priority to understand composition at the highest energies. The Observatory is competitive in the search for neutrinos of all flavors above about 100 PeV by looking for very inclined showers produced deep in the atmosphere by neutrinos interacting either in the atmosphere or in the Earth's crust. It covers a large field of view between -85° and 60° declination in equatorial coordinates. Neutrinos are expected because of the existence of ultra high energy cosmic rays. They provide valuable complementary information, their fluxes being sensitive to the primary cosmic ray masses and their directions reflecting the source positions. We report the results of the neutrino search providing competitive bounds to neutrino production and strong constraints to a number of production models including cosmogenic neutrinos due to ultra high energy protons. We also report on two recent contributions of the Observatory to multimessenger studies by searching for correlations of neutrinos both with cosmic rays and with gravitational waves. The correlations of the directions of the highest energy astrophysical neutrinos discovered with IceCube with the highest energy cosmic rays detected with the Auger Observatory and the Telescope Array revealed an excess that is not statistically significant and is being monitored. The targeted search for neutrinos correlated with the discovery of the gravitational wave events GW150914 and GW151226 with advanced LIGO has led to the first bounds on the energy emitted by black hole mergers in Ultra-High Energy Neutrinos.

  19. Recent Ultra High Energy neutrino bounds and multimessenger observations with the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Zas Enrique

    2017-01-01

    Full Text Available The overall picture of the highest energy particles produced in the Universe is changing because of measurements made with the Pierre Auger Observatory. Composition studies of cosmic rays point towards an unexpected mixed composition of intermediate mass nuclei, more isotropic than anticipated, which is reshaping the future of the field and underlining the priority to understand composition at the highest energies. The Observatory is competitive in the search for neutrinos of all flavors above about 100 PeV by looking for very inclined showers produced deep in the atmosphere by neutrinos interacting either in the atmosphere or in the Earth’s crust. It covers a large field of view between −85◦ and 60◦ declination in equatorial coordinates. Neutrinos are expected because of the existence of ultra high energy cosmic rays. They provide valuable complementary information, their fluxes being sensitive to the primary cosmic ray masses and their directions reflecting the source positions. We report the results of the neutrino search providing competitive bounds to neutrino production and strong constraints to a number of production models including cosmogenic neutrinos due to ultra high energy protons. We also report on two recent contributions of the Observatory to multimessenger studies by searching for correlations of neutrinos both with cosmic rays and with gravitational waves. The correlations of the directions of the highest energy astrophysical neutrinos discovered with IceCube with the highest energy cosmic rays detected with the Auger Observatory and the Telescope Array revealed an excess that is not statistically significant and is being monitored. The targeted search for neutrinos correlated with the discovery of the gravitational wave events GW150914 and GW151226 with advanced LIGO has led to the first bounds on the energy emitted by black hole mergers in Ultra-High Energy Neutrinos.

  20. An all-sky, three-flavor search for neutrinos from gamma-ray bursts with the icecube neutrino observatory

    Science.gov (United States)

    Hellauer, Robert Eugene, III

    Ultra high energy cosmic rays (UHECRs), defined by energy greater than 10. 18 eV, have been observed for decades, but their sources remain unknown. Protons and heavy ions, which comprise cosmic rays, interact with galactic and intergalactic magnetic fields and, consequently, do not point back to their sources upon measurement. Neutrinos, which are inevitably produced in photohadronic interactions, travel unimpeded through the universe and disclose the directions of their sources. Among the most plausible candidates for the origins of UHECRs is a class of astrophysical phenomena known as gamma-ray bursts (GRBs). GRBs are the most violent and energetic events witnessed in the observable universe. The IceCube Neutrino Observatory, located in the glacial ice 1450 m to 2450 m below the South Pole surface, is the largest neutrino detector in operation. IceCube detects charged particles, such as those emitted in high energy neutrino interactions in the ice, by the Cherenkov light radiated by these particles. The measurement of neutrinos of 100 TeV energy or greater in IceCube correlated with gamma-ray photons from GRBs, measured by spacecraft detectors, would provide evidence of hadronic interaction in these powerful phenomena and confirm their role in ultra high energy cosmic ray production. This work presents the first IceCube GRB-neutrino coincidence search optimized for charged-current interactions of electron and tau neutrinos as well as neutral-current interactions of all neutrino flavors, which produce nearly spherical Cherenkov light showers in the ice. These results for three years of data are combined with the results of previous searches over four years of data optimized for charged-current muon neutrino interactions, which produce extended Cherenkov light tracks. Several low significance events correlated with GRBs were detected, but are consistent with the background expectation from atmospheric muons and neutrinos. The combined results produce limits that

  1. Physics possibilities at India-based Neutrino Observatory

    Indian Academy of Sciences (India)

    cosmic ray background environments. The ICAL consists of 140 ... neglecting ∆21 and θ13, the muon neutrino oscillation survival probability is given by. Pµµ = 1 − sin2 2θ23 ... surface of the earth at which atmospheric neutrinos are produced.

  2. Upper limit on the diffuse flux of ultrahigh energy tau neutrinos from the Pierre Auger Observatory

    NARCIS (Netherlands)

    Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anzalone, A.; Aramo, C.; Argiro, S.; Arisaka, K.; Armengaud, E.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Atulugama, B. S.; Aublin, J.; Ave, M.; Avila, G.; Baecker, T.; Badagnani, D.; Barbosa, A. F.; Barnhill, D.; Barroso, S. L. C.; Bauleo, P.; Beatty, J. J.; Beau, T.; Becker, B. R.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blasi, P.; Bleve, C.; Bluemer, H.; Bohacova, M.; Bonifazi, C.; Bonino, R.; Boratav, M.; Brack, J.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Cai, B.; Camin, D. V.; Caramete, L.; Caruso, R.; Carvalho, W.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chye, J.; Clark, P. D. J.; Clay, R. W.; Colombo, E.; Conceicao, R.; Connolly, B.; Contreras, F.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; DeMitri, I.; de Souza, V.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; Di Giulio, C.; Diaz, J. C.; Dobrigkeit, C.; D'Olivo, J. C.; Dornic, D.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; DuVernois, M. A.; Engel, R.; Epele, L.; Escobar, C. O.; Etchegoyen, A.; San Luis, P. Facal; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrer, F.; Ferry, S.; Fick, B.; Filevich, A.; Filipcic, A.; Fleck, I.; Fonte, R.; Fracchiolla, C. E.; Fulgione, W.; Garcia, B.; Gamez, D. Garcia; Garcia-Pinto, D.; Garrido, X.; Geenen, H.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Albarracin, F. Gomez; Berisso, M. Gomez; Herrero, R. Gomez; Goncalves, P.; do Amaral, M. Goncalves; Gonzalez, D.; Gonzalez, J. G.; Gonzalez, M.; Gora, D.; Gorgi, A.; Gouffon, P.; Grassi, V.; Grillo, A. F.; Grunfeld, C.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Gutierrez, J.; Hague, J. D.; Hamilton, J. C.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hauschildt, T.; Healy, M. D.; Hebbeker, T.; Hebrero, G.; Heck, D.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hoerandel, J.; Horneffer, A.; Horvat, M.; Hrabovsky, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kegl, B.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D. -H.; Krieger, A.; Kroemer, O.; Kuempel, D.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lebrun, D.; LeBrun, P.; Lee, J.; de Oliveira, M. A. Leigui; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; Lopez, R.; Agueera, A. Lopez; Bahilo, J. Lozano; Garcia, R. Luna; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mancarella, G.; Mancenido, M. E.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Falcon, H. R. Marquez; Martello, D.; Martinez, J.; Bravo, O. Martinez; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McCauley, T.; McEwen, M.; McNeil, R. R.; Medina, M. C.; Medina-Tanco, G.; Meli, A.; Melo, D.; Menichetti, E.; Menschikov, A.; Meurer, Chr.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Morris, C.; Mostafa, M.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Thi, T. Nguyen; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschlaeger, J.; Ohnuki, T.; Olinto, A.; Olmos-Gilbaja, V. M.; Ortiz, M.; Ortolani, F.; Ostapchenko, S.; Otero, L.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Pastor, S.; Patel, M.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petrera, S.; Petrinca, P.; Petrov, Y.; Ngoc, Diep Pham; Ngoc, Dong Pham; Thi, T. N. Pham; Pichel, A.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pinto, T.; Pirronello, V.; Pisanti, O.; Platino, M.; Pochon, J.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Redondo, A.; Reucroft, S.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Riviere, C.; Rizi, V.; Roberts, M.; Robledo, C.; Rodriguez, G.; Frias, D. Rodriguez; Martino, J. Rodriguez; Rojo, J. Rodriguez; Rodriguez-Cabo, I.; Ros, G.; Rosado, J.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sanchez, F.; Santander, M.; Santo, C. E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scherini, V.; Schieler, H.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schovanek, P.; Schuessler, F.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; De Grande, N. Smetniansky; Smialkowski, A.; Smida, R.; Smith, A. G. K.; Smith, B. E.; Snow, G. R.; Sokolsky, P.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Takahashi, J.; Tamashiro, A.; Tamburro, A.; Tascau, O.; Tcaciuc, R.; Thomas, D.; Ticona, R.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Peixoto, C. J. Todero; Tome, B.; Tonachini, A.; Torres, I.; Torresi, D.; Travnicek, P.; Tripathi, A.; Tristram, G.; Tscherniakhovski, D.; Tueros, M.; Tunnicliffe, V.; Ulrich, R.; Unger, M.; Urban, M.; Galicia, J. F. Valdes; Valino, I.; Valore, L.; van den Berg, A. M.; van Elewyck, V.; Vazquez, R. A.; Veberic, D.; Veiga, A.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villasenor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wainberg, O.; Walker, P.; Warner, D.; Watson, A. A.; Westerhoff, S.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Wileman, C.; Winnick, M. G.; Wu, H.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zech, A.; Zepeda, A.; Ziolkowski, M.

    2008-01-01

    The surface detector array of the Pierre Auger Observatory is sensitive to Earth-skimming tau neutrinos that interact in Earth's crust. Tau leptons from nu(tau) charged-current interactions can emerge and decay in the atmosphere to produce a nearly horizontal shower with a significant

  3. A search for matter enhanced neutrino oscillations through measurements of day and night solar neutrino fluxes at the Sudbury Neutrino Observatory

    Science.gov (United States)

    Miknaitis, Kathryn Kelly Schaffer

    The Sudbury Neutrino Observatory (SNO) is a heavy-water Cherenkov detector designed to study 8B neutrinos from the sun. Through the charged-current (CC) and neutral-current (NC) reactions of neutrinos on deuterium, SNO separately determines the flux of electron neutrinos and the flux of all active flavors of solar 8B neutrinos. SNO is also sensitive to the elastic scattering (ES) of neutrinos on electrons in the heavy water. Measurements of the CC and NC rates in SNO have conclusively demonstrated solar neutrino flavor change. This flavor change is believed to be caused by matter-enhanced oscillations in the sun, through the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Matter effects could also change the flavor composition of neutrinos that traverse the earth. A comparison of the day and night measured CC flux at SNO directly tests for the MSW effect and contributes to constraints on neutrino oscillation parameters in the MSW model. We perform measurements of the day and night neutrino fluxes using data from the second phase of SNO, in which salt (NaCl) was added to the heavy water to enhance sensitivity to the NC reaction. Better discrimination between CC and NC events in the salt phase allows the fluxes to be determined without constraining the neutrino energy spectrum. The day-night asymmetry in the CC flux measured in this model-independent analysis is ACC = [-5.6 +/- 7.4(stat.) +/- 5.3(syst.)]%, where the asymmetry is defined as the difference between the night and day values divided by their average. The asymmetries in the NC and ES fluxes are ANC = [4.2 +/- 8.6(stat.) +/- 7.2(syst.)]%, and AES = (14.6 +/- 19.8(stat.) +/- 3.3(syst.)]%. The neutral current asymmetry is expected to be zero assuming standard neutrino oscillations. When we constrain it to be zero, we obtain ACC = [-3.7 +/- 6.3(stat.) +/- 3.2(syst.)]% and AES = [15.3 +/- 19.8(stat.) +/- 3.0(syst.)]%. The day and night energy spectra from the CC reaction have been measured and show no evidence for

  4. Observation of oscillations of atmospheric neutrinos with the IceCube Neutrino Observatory

    International Nuclear Information System (INIS)

    Euler, Sebastian

    2014-01-01

    Neutrino oscillations have become one of the most important research topics in particle physics since their discovery 15 years ago. In the past, the study of neutrino oscillations has been largely the domain of dedicated experiments, but in the last year also the large-volume neutrino telescopes ANTARES and IceCube reported their results on the oscillations of atmospheric muon neutrinos and thus joined the community of experiments studying neutrino oscillations. The precision of their results is not yet competitive, but their sheer size and the consequently enormous statistics give rise to the expectation of a competitive measurement in the future. This thesis describes an analysis that was done on IceCube data taken with the nearly complete detector in the years 2010/2011. IceCube is the world's largest neutrino detector, located at the geographic South Pole, where it uses the Antarctic ice sheet as its detection medium. It detects neutrinos interacting within or close to the instrumented volume by observing the Cherenkov light which is emitted by secondary particles produced in these interactions. An array of optical sensors deployed within a cubic kilometer of ice detects the Cherenkov light and makes it possible to reconstruct the energy and direction of the initial neutrino. Unfortunately, IceCube detects not only neutrinos: the desired neutrino signal is buried in a huge background of atmospheric muons, produced in air showers induced by cosmic rays. This background has to be rejected first. The analysis presented here employs an event selection that is based on the idea of using the outer layers of IceCube as an active veto against the background of atmospheric muons and achieves the necessary background rejection of more than 6 orders of magnitude while keeping a high-statistics sample of several thousands of muon neutrinos. In contrast to the earlier IceCube analysis, which used only the zenith angle, it then performs a 2-dimensional likelihood fit on

  5. Evaluation of the WIPP site for the supernova neutrino burst observatory

    International Nuclear Information System (INIS)

    Balbes, M.J.; Boyd, R.N.; Kalen, J.D.; Mitchell, C.A.; Hencheck, M.; Sugarbaker, E.R.; Vandegriff, J.D.; Lieberwirth, S.D.

    1997-01-01

    Measurements of the neutron background in a potential underground site for the supernova neutrino burst observatory (SNBO) have been made. The SNBO will ultimately be capable of detecting μ and τ neutrinos from a supernova. Furthermore, masses of the μ and τ neutrinos might be measurable in the range of 10-50 eV. SNBO operates by detecting the neutrons caused by interaction of the supernova neutrinos with rock. It will consist of order ten thousand neutron detectors located in an underground environment having a very low intrinsic radiation level. The limit to the size, hence sensitivity, of SNBO is thus the neutron signal-to-noise ratio, which depends on the neutron background in the environment of SNBO. Thus we have made neutron background measurements at the department of energy waste isolation pilot plant (WIPP) located near Carlsbad, NM. The value of the ambient neutron flux we determined, 332±148 neutrons m -2 d -1 , shows that the background levels in this facility are sufficiently low to warrant construction of a galactic supernova neutrino detector. (orig.)

  6. Capability of the HAWC Gamma-Ray Observatory for the Indirect Detection of Ultrahigh-Energy Neutrinos

    Directory of Open Access Journals (Sweden)

    Hermes León Vargas

    2017-01-01

    Full Text Available The detection of ultrahigh-energy neutrinos, with energies in the PeV range or above, is a topic of great interest in modern astroparticle physics. The importance comes from the fact that these neutrinos point back to the most energetic particle accelerators in the Universe and provide information about their underlying acceleration mechanisms. Atmospheric neutrinos are a background for these challenging measurements, but their rate is expected to be negligible above ≈1 PeV. In this work we describe the feasibility to study ultrahigh-energy neutrinos based on the Earth-skimming technique, by detecting the charged leptons produced in neutrino-nucleon interactions in a high mass target. We propose to detect the charged leptons, or their decay products, with the High Altitude Water Cherenkov (HAWC observatory and use as a large-mass target for the neutrino interactions the Pico de Orizaba volcano, the highest mountain in Mexico. In this work we develop an estimate of the detection rate using a geometrical model to calculate the effective area of the observatory. Our results show that it may be feasible to perform measurements of the ultrahigh-energy neutrino flux from cosmic origin during the expected lifetime of the HAWC observatory.

  7. The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array : Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015)

    NARCIS (Netherlands)

    Collaboration, IceCube; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K. H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H. -P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Silva, A. H. Cruz; Daughhetee, J.; Davis, J. C.; Day, M.; André, J. P. A. M. de; Clercq, C. De; Rosendo, E. del Pino; Dembinski, H.; Ridder, S. De; Desiati, P.; Vries, K. D. de; Wasseige, G. de; With, M. de; DeYoung, T.; Díaz-Vélez, J. C.; Lorenzo, V. di; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C. -C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Ismail, A. Haj; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Paul, L.; Pepper, J. A.; Heros, C. Pérez de los; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H. -G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; Eijndhoven, N. van; Vanheule, S.; Santen, J. van; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; Collaboration, Pierre Auger; Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anastasi, G. A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Brogueira, P.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Almeida, R. M. de; Jong, S. J. de; Mauro, G. De; Neto, J. R. T. de Mello; Mitri, I. De; Oliveira, J. de; Souza, V. de; Peral, L. del; Deligny, O.; Dhital, N.; Giulio, C. Di; Matteo, A. Di; Diaz, J. C.; Castro, M. L. Díaz; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Anjos, R. C. dos; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; García, B.; García-Gámez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Berisso, M. Gómez; Vitale, P. F. Gómez; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Hervé, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Mezek, G. Kukec; Kunka, N.; Awad, A. W. Kuotb; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Coz, S. Le; Lebrun, D.; Lebrun, P.; Oliveira, M. A. Leigui de; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; Casado, A. López; Louedec, K.; Lucero, A.; Malacari, M.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Bravo, O. Martínez; Martraire, D.; Meza, J. J. Masías; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Müller, G.; Muller, M. A.; Müller, S.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Carvalho, W. Rodrigues de; Rojo, J. Rodriguez; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Gomez, J. D. Sanabria; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Durán, M. Suarez; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Tibolla, O.; Timmermans, C.; Peixoto, C. J. Todero; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Elipe, G. Torralba; Machado, D. Torres; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Galicia, J. F. Valdés; Valiño, I.; Valore, L.; Aar, G. van; Bodegom, P. van; Berg, A. M. van den; Velzen, S. van; Vliet, A. van; Varela, E.; Cárdenas, B. Vargas; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Welling, C.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.; Collaboration, Telescope Array; Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-01-01

    We have conducted three searches for correlations between ultra-high energy cosmic rays detected by the Telescope Array and the Pierre Auger Observatory, and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses with UHECRs are done: one with 39 cascades from the IceCube

  8. Upper limit on the diffuse flux of ultrahigh energy tau neutrinos from the Pierre Auger Observatory.

    Science.gov (United States)

    Abraham, J; Abreu, P; Aglietta, M; Aguirre, C; Allard, D; Allekotte, I; Allen, J; Allison, P; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anzalone, A; Aramo, C; Argirò, S; Arisaka, K; Armengaud, E; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Assis, P; Atulugama, B S; Aublin, J; Ave, M; Avila, G; Bäcker, T; Badagnani, D; Barbosa, A F; Barnhill, D; Barroso, S L C; Bauleo, P; Beatty, J J; Beau, T; Becker, B R; Becker, K H; Bellido, J A; BenZvi, S; Berat, C; Bergmann, T; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Blasi, P; Bleve, C; Blümer, H; Bohácová, M; Bonifazi, C; Bonino, R; Boratav, M; Brack, J; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Burton, R E; Busca, N G; Caballero-Mora, K S; Cai, B; Camin, D V; Caramete, L; Caruso, R; Carvalho, W; Castellina, A; Catalano, O; Cataldi, G; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chye, J; Clark, P D J; Clay, R W; Colombo, E; Conceição, R; Connolly, B; Contreras, F; Coppens, J; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Donato, C; de Jong, S J; De La Vega, G; de Mello Junior, W J M; de Mello Neto, J R T; DeMitri, I; de Souza, V; del Peral, L; Deligny, O; Della Selva, A; Delle Fratte, C; Dembinski, H; Di Giulio, C; Diaz, J C; Dobrigkeit, C; D'Olivo, J C; Dornic, D; Dorofeev, A; dos Anjos, J C; Dova, M T; D'Urso, D; Dutan, I; DuVernois, M A; Engel, R; Epele, L; Erdmann, M; Escobar, C O; Etchegoyen, A; Facal San Luis, P; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferrer, F; Ferry, S; Fick, B; Filevich, A; Filipcic, A; Fleck, I; Fonte, R; Fracchiolla, C E; Fulgione, W; García, B; García Gámez, D; Garcia-Pinto, D; Garrido, X; Geenen, H; Gelmini, G; Gemmeke, H; Ghia, P L; Giller, M; Glass, H; Gold, M S; Golup, G; Gomez Albarracin, F; Gómez Berisso, M; Gómez Herrero, R; Gonçalves, P; Gonçalves do Amaral, M; Gonzalez, D; Gonzalez, J G; González, M; Góra, D; Gorgi, A; Gouffon, P; Grassi, V; Grillo, A F; Grunfeld, C; Guardincerri, Y; Guarino, F; Guedes, G P; Gutiérrez, J; Hague, J D; Hamilton, J C; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Hauschildt, T; Healy, M D; Hebbeker, T; Hebrero, G; Heck, D; Hojvat, C; Holmes, V C; Homola, P; Hörandel, J; Horneffer, A; Horvat, M; Hrabovský, M; Huege, T; Hussain, M; Iarlori, M; Insolia, A; Ionita, F; Italiano, A; Kaducak, M; Kampert, K H; Karova, T; Kégl, B; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D-H; Krieger, A; Krömer, O; Kuempel, D; Kunka, N; Kusenko, A; La Rosa, G; Lachaud, C; Lago, B L; Lebrun, D; Lebrun, P; Lee, J; Leigui de Oliveira, M A; Letessier-Selvon, A; Leuthold, M; Lhenry-Yvon, I; López, R; Lopez Agüera, A; Lozano Bahilo, J; Luna García, R; Maccarone, M C; Macolino, C; Maldera, S; Mancarella, G; Manceñido, M E; Mandat, D; Mantsch, P; Mariazzi, A G; Maris, I C; Marquez Falcon, H R; Martello, D; Martínez, J; Martínez Bravo, O; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; McCauley, T; McEwen, M; McNeil, R R; Medina, M C; Medina-Tanco, G; Meli, A; Melo, D; Menichetti, E; Menschikov, A; Meurer, Chr; Meyhandan, R; Micheletti, M I; Miele, G; Miller, W; Mollerach, S; Monasor, M; Monnier Ragaigne, D; Montanet, F; Morales, B; Morello, C; Moreno, J C; Morris, C; Mostafá, M; Muller, M A; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Newman-Holmes, C; Newton, D; Nguyen Thi, T; Nierstenhoefer, N; Nitz, D; Nosek, D; Nozka, L; Oehlschläger, J; Ohnuki, T; Olinto, A; Olmos-Gilbaja, V M; Ortiz, M; Ortolani, F; Ostapchenko, S; Otero, L; Pacheco, N; Pakk Selmi-Dei, D; Palatka, M; Pallotta, J; Parente, G; Parizot, E; Parlati, S; Pastor, S; Patel, M; Paul, T; Pavlidou, V; Payet, K; Pech, M; Pekala, J; Pelayo, R; Pepe, I M; Perrone, L; Petrera, S; Petrinca, P; Petrov, Y; Pham Ngoc, Diep; Pham Ngoc, Dong; Pham Thi, T N; Pichel, A; Piegaia, R; Pierog, T; Pimenta, M; Pinto, T; Pirronello, V; Pisanti, O; Platino, M; Pochon, J; Privitera, P; Prouza, M; Quel, E J; Rautenberg, J; Redondo, A; Reucroft, S; Revenu, B; Rezende, F A S; Ridky, J; Riggi, S; Risse, M; Rivière, C; Rizi, V; Roberts, M; Robledo, C; Rodriguez, G; Rodríguez Frías, D; Rodriguez Martino, J; Rodriguez Rojo, J; Rodriguez-Cabo, I; Ros, G; Rosado, J; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scherini, V; Schieler, H; Schmidt, A; Schmidt, F; Schmidt, T; Scholten, O; Schovánek, P; Schüssler, F; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Settimo, M; Shellard, R C; Sidelnik, I; Siffert, B B; Sigl, G; Smetniansky De Grande, N; Smiałkowski, A; Smída, R; Smith, A G K; Smith, B E; Snow, G R; Sokolsky, P; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Strazzeri, E; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Takahashi, J; Tamashiro, A; Tamburro, A; Taşcău, O; Tcaciuc, R; Thomas, D; Ticona, R; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Todero Peixoto, C J; Tomé, B; Tonachini, A; Torres, I; Torresi, D; Travnicek, P; Tripathi, A; Tristram, G; Tscherniakhovski, D; Tueros, M; Tunnicliffe, V; Ulrich, R; Unger, M; Urban, M; Valdés Galicia, J F; Valiño, I; Valore, L; van den Berg, A M; van Elewyck, V; Vázquez, R A; Veberic, D; Veiga, A; Velarde, A; Venters, T; Verzi, V; Videla, M; Villaseñor, L; Vorobiov, S; Voyvodic, L; Wahlberg, H; Wainberg, O; Walker, P; Warner, D; Watson, A A; Westerhoff, S; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Wileman, C; Winnick, M G; Wu, H; Wundheiler, B; Yamamoto, T; Younk, P; Zas, E; Zavrtanik, D; Zavrtanik, M; Zech, A; Zepeda, A; Ziolkowski, M

    2008-05-30

    The surface detector array of the Pierre Auger Observatory is sensitive to Earth-skimming tau neutrinos that interact in Earth's crust. Tau leptons from nu(tau) charged-current interactions can emerge and decay in the atmosphere to produce a nearly horizontal shower with a significant electromagnetic component. The data collected between 1 January 2004 and 31 August 2007 are used to place an upper limit on the diffuse flux of nu(tau) at EeV energies. Assuming an E(nu)(-2) differential energy spectrum the limit set at 90% C.L. is E(nu)(2)dN(nu)(tau)/dE(nu)<1.3 x 10(-7) GeV cm(-2) s(-1) sr(-1) in the energy range 2 x 10(17) eV< E(nu)< 2 x 10(19) eV.

  9. The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array: Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015)

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; et al.

    2015-11-06

    We have conducted three searches for correlations between ultra-high energy cosmic rays detected by the Telescope Array and the Pierre Auger Observatory, and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses with UHECRs are done: one with 39 cascades from the IceCube `high-energy starting events' sample and the other with 16 high-energy `track events'. The angular separation between the arrival directions of neutrinos and UHECRs is scanned over. The same events are also used in a separate search using a maximum likelihood approach, after the neutrino arrival directions are stacked. To estimate the significance we assume UHECR magnetic deflections to be inversely proportional to their energy, with values $3^\\circ$, $6^\\circ$ and $9^\\circ$ at 100 EeV to allow for the uncertainties on the magnetic field strength and UHECR charge. A similar analysis is performed on stacked UHECR arrival directions and the IceCube sample of through-going muon track events which were optimized for neutrino point-source searches.

  10. The Pierre Auger observatory's project of detecting photons and neutrinos at very high energies

    International Nuclear Information System (INIS)

    Bertou, X.

    2001-11-01

    Cosmic radiations of ultra high energy (RCUHE, beyond 10 18 eV) are difficult to study because of their low flux on the earth surface: about 1 photon per year and per km 2 . The observatory Pierre Auger proposes to study RCUHE by designing 2 sites of 3000 km 2 (one in each hemisphere) allowing the observation of the shower initiated by cosmic radiation by using 4 fluorescence telescopes and a network of 1600 Cherenkov detectors. The identification of the primary particle is a very delicate point, the detection of neutrino or photon at these energies would bring valuable information for the understanding of potential sources of RCUHE. The first part of this work presents the project and its assets to perform its task. The second part is dedicated to the description of the Cherenkov detectors, of the trigger system, and of the centralized data acquisition system. The last part present the prototype installation that is under construction at Macargue in Argentina. (A.C.)

  11. New underground neutrino observatory-GENIUS-in the new millenium for solar neutrinos, dark matter and double beta decay

    CERN Document Server

    Klapdor-Kleingrothaus, H V

    2001-01-01

    Double beta decay is indispensable to solve the question of the neutrino mass matrix together with nu oscillation experiments. The most sensitive experiment for eight years-the HEIDELBERG-MOSCOW experiment in Gran-Sasso-already now, with the experimental limit of (m/sub nu /)<0.26 eV excludes degenerate nu mass scenarios allowing neutrinos as hot dark matter in the Universe for the small angle MSW solution of the solar neutrino problem. It probes cosmological models including hot dark matter already now on the level of future satellite experiments MAP and PLANCK. It further probes many topics of beyond standard model physics at the TeV scale. Future experiments should give access to the multiTeV range and complement on many ways the search for new physics at future colliders like LHC and NLC. For neutrino physics GENIUS will allow to test almost all neutrino mass scenarios allowed by the present neutrino oscillation experiments. At the same time GENIUS will cover a wide range of the parameter space of pred...

  12. Oscillation sensitivity with up-going muons in lCAL at India based Neutrino Observatory (INO)

    International Nuclear Information System (INIS)

    Rawat, Kanishka; Bhatnagar, Vipin; Indumathi, D.

    2013-01-01

    The proposed magnetised Iron Calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) lab is mostly sensitive to the muon neutrinos. We present preliminary results for oscillation studies with up-going muons. We have used charge-current events with Honda flux for the analysis. Honda flux is calculated for INO-Theni site where the INO-ICAl detector will be placed. For up-going muon with 2-flavour oscillation, the parameters taken are: θ 12 = 34, θ 13 = 0, θ 23 = 45, Δm 2 31 = 7.92 x 10 -5 eV 2 , Δm 2 21 = 2.4 x 10 -3 eV 2 , δ cp = 0. We generate events using the ICAL geometry in the Nuance neutrino generator and pass the produced events through the ICAl-GEANT4 simulated detector. The muon tracks are reconstructed according to this package through a Kalman filter algorithm that returns both the magnitude and direction of the muon momentum. The sensitivity of these events to oscillations in the parent neutrino flux will be studied next

  13. ANTARES: An underwater neutrino observatory for the exploration of both the deep Ocean and the deep Universe

    International Nuclear Information System (INIS)

    Escoffier, Stephanie

    2012-01-01

    Neutrino astronomy is a new and unique method to explore the Universe. It is full of promises, such as improving our knowledge on cosmic accelerators or distinguishing unambiguously between hadronic and electronic acceleration mechanisms of very high energy cosmic rays. In this document the issues of neutrino astronomy are introduced and an overview of current and former neutrino telescopes is given, with a description of the performance results expected from the ANTARES underwater detector. My research path is marked by contributions to the detector calibration and by studies of the trigger system with the development of a new data selection algorithm. The potential for discovery of the ANTARES telescope is then illustrated with two analyses, one dedicated to the research of high-energy neutrinos from gamma ray bursters and the other dedicated to the search for magnetic monopoles. Within this dissertation, I also discuss the opportunity offered by a submarine detector to understand the deep-sea environment. Indeed, ANTARES is a multidisciplinary, permanent marine observatory bringing its brick to the edifice of the global understanding of physical phenomena and biological oceanography in the context of global changes. I illustrate these remarks with studies on marine bioluminescence observed by ANTARES and its connection to the dense water formation originating from the Gulf of Lion. (author)

  14. Neutrinos

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The Standard Model predicts that the neutrinos are massless and do not mix. Generic extensions of the Standard Model predict that neutrinos are massive (but, very likely, much lighter than the charged fermions). Therefore, the search for neutrino masses and mixing tests the Standard Model and probes new phasics. Measurements of various features of the fluxes of atmospheric, solar and, more recently, reactor neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. These results have significant theoretical implications: new physics exists, and its scale can be estimated. There are interesting lessons for grand unified theories and for models of extra dimensions. The measured neutrino flavor parameters pose a challenge to flavor models.

  15. Low energy threshold analysis of the phase I and phase II data sets of the Sudbury neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, S R [Los Alamos National Laboratory; Hime, A [Los Alamos National Laboratory; Elliott, S R [Los Alamos National Laboratory; Rielage, K [Los Alamos National Laboratory

    2009-01-01

    Results are reported from a joint analysis of Phase I and Phase II data from the Sudbury Neutrino Observatory. The effective electron kinetic energy threshold used is T{sub eff} = 3.5 MeV, the lowest analysis threshold yet achieved with water Cherenkov detector data. In units of 10{sup 6} cm{sup -2} s{sup =1}, the total flux of active-flavor neutrinos from {sup 8}B decay in the Sun measured using the neutral current (NC) reaction of neutrinos on deuterons, with no constraint on the {sup 8}B neutrino energy spectrum, is found to be {Phi}{sub NC} = 5.140{sub -0.158}{sup +0.160}(stat){sub -0.117}{sup +0.132}(syst). These uncertainties are more than a factor of two smaller than previously published results. Also presented are the spectra of recoil electrons from the charged current reaction of neutrinos on deuterons and the elastic scattering of electrons. A fit to the SNO data in which the free parameters directly describe the total {sup 8}B neutrino flux and the energy-dependent Ve survival probability provides a measure of the total {sup 8}B neutrino flux {Phi}{sub 8{sub B}} = 5.046{sub -0.152}{sup +0.159}(stat){sub -0.123}{sup +0.107}(syst). Combining these new results with results of all other solar experiments and the KamLAND reactor experiment yields best-fit values of the mixing parameters of {theta}{sub 12} = 34.06{sub -0.84}{sup +1.16} degrees and {Delta}m{sub 21}{sup 2} = 7.59{sub -0.21}{sup +0.20} x 10{sup -5} eV{sup 2}. The global value of {Phi}{sub 8{sub B}} is extracted to a precision of {sub -2.95}{sup +2.38}%. In a three-flavor analysis the best fit value of sin{sup 2} {theta}{sub 13} is 2.00{sub -1.63}{sup +2.09} x 10{sup -2}. Interpreting this as a limit implies an upper bound of sin{sup 2} {theta}{sub 13} < 0.057 (95% C. L.).

  16. Publisher's Note: Search for ultrahigh energy neutrinos in highly inclined events at the Pierre Auger Observatory [Phys. Rev. D 84, 122005

    NARCIS (Netherlands)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Anticic, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Bohácová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello, W. J. M., Jr.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Del Peral, L.; Del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Micanovic, S.; Micheletti, M. I.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; Smialkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Tascau, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2012-01-01

    The Surface Detector of the Pierre Auger Observatory is sensitive to neutrinos of all flavours above 0.1 EeV. These interact through charged and neutral currents in the atmosphere giving rise to extensive air showers. When interacting deeply in the atmosphere at nearly horizontal incidence,

  17. Search for ultrahigh energy neutrinos in highly inclined events at the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Abreu, P.; Aglietta, M.; Ahlers, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Nyklíček, Michal; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Šmída, Radomír; Trávníček, Petr; Vícha, Jakub

    2011-01-01

    Roč. 84, č. 12 (2011), "122005-1"-"122005-16" ISSN 1550-7998 R&D Projects: GA MŠk LC527; GA MŠk(CZ) 1M06002; GA MŠk(CZ) MEB111003; GA AV ČR KJB100100904; GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : cosmic rays * neutrinos Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.558, year: 2011 http://prd.aps.org/abstract/PRD/v84/i12/e122005

  18. Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array

    NARCIS (Netherlands)

    Collaboration, The IceCube; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K. -H.; Beiser, E.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H. -P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Silva, A. H. Cruz; Daughhetee, J.; Davis, J. C.; Day, M.; André, J. P. A. M. de; Clercq, C. De; Rosendo, E. del Pino; Dembinski, H.; Ridder, S. De; Desiati, P.; Vries, K. D. de; Wasseige, G. de; With, M. de; DeYoung, T.; Díaz-Vélez, J. C.; Lorenzo, V. di; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C. -C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Ismail, A. Haj; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Pollmann, A. Obertacke; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Heros, C. Pérez de los; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H. -G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; Eijndhoven, N. van; Vanheule, S.; Santen, J. van; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Collaboration, M. Zoll The Pierre Auger; Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muñiz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Diaz, J. C. Chirinos; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Almeida, R. M. de; Jong, S. J. de; Mauro, G. De; Neto, J. R. T. de Mello; Mitri, I. De; Oliveira, J. de; Souza, V. de; Debatin, J.; Peral, L. del; Deligny, O.; Dhital, N.; Giulio, C. Di; Matteo, A. Di; Castro, M. L. Díaz; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Anjos, R. C. dos; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gallo, F.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Berisso, M. Gómez; Vitale, P. F. Gómez; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Mezek, G. Kukec; Kunka, N.; Awad, A. Kuotb; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Lebrun, D.; Lebrun, P.; Oliveira, M. A. Leigui de; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; Casado, A. López; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Bravo, O. Martínez; Meza, J. J. Masías; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pękala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Carvalho, W. Rodrigues de; Rojo, J. Rodriguez; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Gomez, J. D. Sanabria; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strafella, F.; Stutz, A.; Suarez, F.; Durán, M. Suarez; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Peixoto, C. J. Todero; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Elipe, G. Torralba; Machado, D. Torres; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Galicia, J. F. Valdés; Valiño, I.; Valore, L.; Aar, G. van; Bodegom, P. van; Berg, A. M. van den; Vliet, A. van; Varela, E.; Cárdenas, B. Vargas; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Collaboration, F. Zuccarello The Telescope Array; Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-01-01

    This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of

  19. Geo-neutrino Observation

    International Nuclear Information System (INIS)

    Dye, S. T.; Alderman, M.; Batygov, M.; Learned, J. G.; Matsuno, S.; Mahoney, J. M.; Pakvasa, S.; Rosen, M.; Smith, S.; Varner, G.; McDonough, W. F.

    2009-01-01

    Observations of geo-neutrinos measure radiogenic heat production within the earth, providing information on the thermal history and dynamic processes of the mantle. Two detectors currently observe geo-neutrinos from underground locations. Other detection projects in various stages of development include a deep ocean observatory. This paper presents the current status of geo-neutrino observation and describes the scientific capabilities of the deep ocean observatory, with emphasis on geology and neutrino physics.

  20. Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2013-01-01

    originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCube’s large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out...

  1. Neutrino disintegration of deuterium

    International Nuclear Information System (INIS)

    Ying, S.; Haxton, W.; Henley, E.M.

    1989-01-01

    We calculate the rate of both neutral- and charged-current neutrino and antineutrino disintegration of deuterium. These rates are of interest for solar 8 B and hep ( 3 He + p) spectra and supernovae neutrinos, and are relevant for the Sudbury Neutrino Observatory (SNO)

  2. The solar neutrinos epopee

    CERN Document Server

    Lasserre, T

    2003-01-01

    The 2002 year has been fruitful for the neutrino physics. First, the Sudbury Neutrino Observatory (SNO) experiment has shown that the electron neutrinos nu sub e emitted by the sun are converted into muon neutrinos (nu submu) and tau neutrinos (nu subtau), thus closing the 30 years old problem of solar neutrinos deficit. This discovery validates the model of nuclear energy production inside the sun but it shakes the theory describing the weak interactions between the fundamental constituents of matter. This theory considers the neutrinos (and the photons) as massless particles, while the taste conversion phenomenon necessarily implies that neutrinos have a mass. In October 2000, the Universe exploration by the cosmic neutrinos is jointly recognized by R. Davis (USA) and M. Koshiba (Japan) who received the Nobel price of physics. Finally, in December 2000, the KamLAND experiment quantitatively demonstrated the neutrinos metamorphosis by detecting a deficit in the flux of electron antineutrinos coming from the ...

  3. Neutrino sunshine

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: On 10 June 1992, at the Neutrino 92 meeting in Grenada, Spain, Till Kirsten of Heidelberg's Max Planck Institute reported that neutrinos from sunshine had been seen. Most of the energy pumped out by the Sun comes from the fusion of protons into alpha particles, a process which also liberates neutrinos. While it takes about a million years for radiant energy formed in the deep interior of the Sun to fight its way to the surface, the highly penetrating neutrinos emerge almost immediately. It was in 1970 that Ray Davis and his team began taking data with a tank containing 615 tons of perchloroethylene (dry cleaning fluid) 1500 metres underground in the Homestake gold mine, South Dakota. The observed signal is consistently smaller than what is expected. This 'solar neutrino problem' was confirmed by the Kamioka mine experiment in Japan, looking at the Cherenkov light released by neutrino interactions in some 700 tons of water. However these experiments are only sensitive to a tiny high energy tail of the solar neutrino spectrum, and to understand what is going on needs measurements of the primary neutrinos from proton fusion. To get at these neutrinos, two large new detectors, using gallium and sensitive to these lower energy particles, have been built and commissioned in the past few years. The detectors are SAGE ('Soviet' American Gallium Experiment) in the Baksan Neutrino Observatory in the Caucasus, and Gallex, a team from France, Germany, Israel, Italy and the US in the Italian Gran Sasso underground Laboratory. At Grenada, Kirsten reported unmistakable signs of solar neutrinos of proton origin recorded in Gallex. SAGE and Gallex do not yet have enough data to unambiguously fix the level of primary solar neutrinos reaching the Earth, and the interpretation of the interim results tends to be subjective. However after 23 years of conditioning through watching the solar neutrinos' high energy tail, the prospect of a neutrino

  4. An Experimentalist's Overview of Solar Neutrinos

    Science.gov (United States)

    Oser, Scott M.

    2012-02-01

    Four decades of solar neutrino research have demonstrated that solar models do a remarkable job of predicting the neutrino fluxes from the Sun, to the extent that solar neutrinos can now serve as a calibrated neutrino source for experiments to understand neutrino oscillations and mixing. In this review article I will highlight the most significant experimental results, with emphasis on the latest model-independent measurements from the Sudbury Neutrino Observatory. The solar neutrino fluxes are seen to be generally well-determined experimentally, with no indications of time variability, while future experiments will elucidate the lower energy part of the neutrino spectrum, especially pep and CNO neutrinos.

  5. An Experimentalist's Overview of Solar Neutrinos

    International Nuclear Information System (INIS)

    Oser, Scott M

    2012-01-01

    Four decades of solar neutrino research have demonstrated that solar models do a remarkable job of predicting the neutrino fluxes from the Sun, to the extent that solar neutrinos can now serve as a calibrated neutrino source for experiments to understand neutrino oscillations and mixing. In this review article I will highlight the most significant experimental results, with emphasis on the latest model-independent measurements from the Sudbury Neutrino Observatory. The solar neutrino fluxes are seen to be generally well-determined experimentally, with no indications of time variability, while future experiments will elucidate the lower energy part of the neutrino spectrum, especially pep and CNO neutrinos.

  6. The Pierre Auger observatory's project of detecting photons and neutrinos at very high energies; L'observatoire Pierre Auger vers la detection de photons et neutrinos a ultra haute energies?

    Energy Technology Data Exchange (ETDEWEB)

    Bertou, X

    2001-11-01

    Cosmic radiations of ultra high energy (RCUHE, beyond 10{sup 18} eV) are difficult to study because of their low flux on the earth surface: about 1 photon per year and per km{sup 2}. The observatory Pierre Auger proposes to study RCUHE by designing 2 sites of 3000 km{sup 2} (one in each hemisphere) allowing the observation of the shower initiated by cosmic radiation by using 4 fluorescence telescopes and a network of 1600 Cherenkov detectors. The identification of the primary particle is a very delicate point, the detection of neutrino or photon at these energies would bring valuable information for the understanding of potential sources of RCUHE. The first part of this work presents the project and its assets to perform its task. The second part is dedicated to the description of the Cherenkov detectors, of the trigger system, and of the centralized data acquisition system. The last part present the prototype installation that is under construction at Macargue in Argentina. (A.C.)

  7. Probing neutrino dark energy with extremely high-energy cosmic neutrinos

    International Nuclear Information System (INIS)

    Ringwald, A.; Schrempp, L.

    2006-06-01

    Recently, a new non-Standard Model neutrino interaction mediated by a light scalar field was proposed, which renders the big-bang relic neutrinos of the cosmic neutrino background a natural dark energy candidate, the so-called Neutrino Dark Energy. As a further consequence of this interaction, the neutrino masses become functions of the neutrino energy densities and are thus promoted to dynamical, time/redshift dependent quantities. Such a possible neutrino mass variation introduces a redshift dependence into the resonance energies associated with the annihilation of extremely high-energy cosmic neutrinos on relic anti-neutrinos and vice versa into Z-bosons. In general, this annihilation process is expected to lead to sizeable absorption dips in the spectra to be observed on earth by neutrino observatories operating in the relevant energy region above 10 13 GeV. In our analysis, we contrast the characteristic absorption features produced by constant and varying neutrino masses, including all thermal background effects caused by the relic neutrino motion. We firstly consider neutrinos from astrophysical sources and secondly neutrinos originating from the decomposition of topological defects using the appropriate fragmentation functions. On the one hand, independent of the nature of neutrino masses, our results illustrate the discovery potential for the cosmic neutrino background by means of relic neutrino absorption spectroscopy. On the other hand, they allow to estimate the prospects for testing its possible interpretation as source of Neutrino Dark Energy within the next decade by the neutrino observatories ANITA and LOFAR. (Orig.)

  8. A compact sup 3 H(p,gamma) sup 4 He 19.8 MeV gamma-ray source for energy calibration at the Sudbury Neutrino Observatory

    CERN Document Server

    Poon, A W P; Waltham, C E; Browne, M C; Robertson, R G H; Kherani, N P; Mak, H B

    2000-01-01

    The Sudbury Neutrino Observatory (SNO) is a new 1000-t D sub 2 O Cherenkov solar neutrino detector. A high-energy gamma-ray source is needed to calibrate SNO beyond the sup 8 B solar neutrino endpoint of 15 MeV. This paper describes the design and construction of a source that generates 19.8 MeV gamma rays using the sup 3 H(p,gamma) sup 4 He reaction (''pT''), and demonstrates that the source meets all the physical, operational and lifetime requirements for calibrating SNO. An ion source was built into this unit to generate and to accelerate protons up to 30 keV, and a high-purity scandium tritide target with a scandium-tritium atomic ratio of 1 : 2.0+-0.2 was included. This pT source is the first self-contained, compact, and portable high-energy gamma-ray source (E subgamma>10 MeV). (authors)

  9. India-based Neutrino Observatory

    Indian Academy of Sciences (India)

    2012-11-17

    Nov 17, 2012 ... The charge identification capability of ICAL would make it complementary to large water Cerenkov and other detectors worldwide. The status of the design of the 50 kt magnet, the construction of a prototype ICAL detector, the experience with resistive plate chambers which will be the active elements in ICAL ...

  10. Producing a background free data set for measurement of the charge current flux and day-night asymmetry at the Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    McCauley, Neil K.

    2001-01-01

    The SNO detector is a 1 kilo-tonne heavy water Cerenkov detector designed to solve the solar neutrino problem. The detector is situated 2km underground in the INCO Ltd. Creighton mine near Sudbury, Ontario. The heavy water is observed by approximately 9500 photo-multiplier tubes (PMTs) to detect Cerenkov light generated by solar neutrino interactions. Using heavy water SNO can detect neutrinos in three different ways. In this thesis aspects of the charge current (a reaction sensitive to electron neutrinos only) and elastic scattering flux analysis are presented. Some models predict a difference in the detected neutrino rate between day and night. Measurement of this via the day-night asymmetry can help solve the solar neutrino problem. One of the principal problems for the solar neutrino analysis are the instrumental backgrounds; events caused by processes other than Cerenkov light. This thesis contains the descriptions of the backgrounds, the data selection cuts that have been designed to remove them and the effect of these cuts on SNO data. To demonstrate the effectiveness of the cuts, the fraction of good events removed and the residual background content of the data set after application of the cuts are measured. Once the cuts have been applied to the data the charge current flux and day-night asymmetry can be measured. In this thesis data taken between the 2nd of November 1999 and the 1st July 2000, providing a total of 64.6 days of data during the day and 93.1 days of night data, are used to measure the day-night asymmetry. The results of this analysis for the asymmetry in the detected solar neutrino rate from the charge current and elastic scattering reactions are presented. (author)

  11. Neutrinos: Heavy water detector

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The proponents of the Sudbury Neutrino Observatory (SNO) received a welcome Christmas present when William Winegard, Canadian Minister for Science and Technology announced the final details of the funding for this project, totalling 48 million Canadian dollars and including contributions from the US and the UK. The SNO experiment will extend significantly the study of solar neutrinos, using some 1,000 tonnes of heavy water to be installed more than two kilometres below ground in a nickel mine at Sudbury, Ontario

  12. Neutrino physics with JUNO

    Science.gov (United States)

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2016-03-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3-4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters {{sin}}2{θ }12, {{Δ }}{m}212, and | {{Δ }}{m}{ee}2| to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ˜5000 inverse-beta-decay events and ˜2000 all-flavor neutrino-proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations

  13. Studying neutrino properties in the future LENA experiment

    International Nuclear Information System (INIS)

    Wurm, Michael

    2013-01-01

    LENA (Low Energy Neutrino Astronomy) is a next-generation neutrino detector based on 50 kt of liquid scintillator. The low detection threshold, the good energy resolution and the potent background discrimination inherent to liquid scintillator make LENA a versatile observatory for astrophysical and terrestrial neutrinos. The present contribution highlights LENA's capabilities for studying neutrino properties based on both natural and artificial sources

  14. Neutrino Physics

    CERN Multimedia

    CERN. Geneva; Dydak, Friedrich

    2001-01-01

    Starting from a review of theoretical concepts and experimental results in the early years of neutrino physics after Pauli's 1930 letter, today's double role of the neutrino as a cornerstone of the Standard Model and as a promising probe of physics beyond the Standard Model will be discussed. Topics comprise: - Conventional neutrino beams - Neutrinos as probes of the nucleon structure - Neutrinos from the universe - Dirac or Majorana neutrinos - Neutrino oscillations - MNS matrix - CP violation in the lepton sector - Neutrino factory.

  15. Neutrino Physics

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Starting from a review of theoretical concepts and experimental results in the early years of neutrino physics after Pauli's 1930 letter, today's double role of the neutrino as a cornerstone of the Standard Model and as a promising probe of physics beyond the Standard Model will be discussed. Topics comprise: - Conventional neutrino beams - Neutrinos as probes of the nucleon structure - Neutrinos from the universe - Dirac or Majorana neutrinos - Neutrino oscillations - MNS matrix - CP violation in the lepton sector - Neutrino factory.

  16. Status of solar neutrino experiments

    International Nuclear Information System (INIS)

    Beier, E.W.; Davis, R. Jr.; Kim, S.B.; Jelley, N.

    1990-01-01

    A summary of the status of four solar neutrino experiments is presented. The Homestake 37 Cl data are presented and the possible time dependence of the data is addressed. Data from 1040 days of operation of the Kamiokande II detector are presented next. The status of the 71 Ga experiment in the Baksan Neutrino Observatory, which has operated for a short time, is discussed. The summary concludes with a discussion of the status of the Sudbury Neutrino Observatory, which has been under construction since the beginning of 1990. 7 refs., 6 figs

  17. Experimental Neutrino Physics

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, Richard Jeffrey [Univ. of Washington, Seattle, WA (United States)

    2017-11-15

    The University of Washington (UW) HEP neutrino group performed experimental research on the physics of neutrinos, using the capabilities offered by the T2K Experiment and the Super-Kamiokande Neutrino Observatory. The UW group included senior investigator R. J. Wilkes, two PhD students, four MS degree students, and a research engineer, all of whom are members of the international scientific collaborations for T2K and Super-Kamiokande. During the period of support, within T2K we pursued new precision studies sensitive to new physics, going beyond the limits of current measurements of the fundamental neutrino oscillation parameters (mass differences and mixing angles). We began efforts to measure (or significantly determine the absence of) 1 the CP-violating phase parameter δCP and determine the neutrino mass hierarchy. Using the Super-Kamiokande (SK) detector we pursued newly increased precision in measurement of neutrino oscillation parameters with atmospheric neutrinos, and extended the current reach in searches for proton decay, in addition to running the most sensitive supernova watch instrument [Scholberg 2012], performing other astrophysical neutrino studies, and analyzing beam-induced events from T2K. Overall, the research addressed central questions in the field of particle physics. It included the training of graduate students (both PhD and professional MS degree students), and postdoctoral researchers. Undergraduate students also participated as laboratory assistants.

  18. The methodology of the search for a correlated signal from a supernova explosion using the data of gravitational wave detectors and neutrino observatories

    Science.gov (United States)

    Gromov, M. B.

    2017-11-01

    The proposed methodology developed in cooperation of the LIGO, VIRGO, Borexino, LVD, and IceCube collaborations is based on a joint analysis of data from neutrino and gravitational wave detectors which record corresponding radiations, almost undistorted by the interstellar medium and propagating with similar speeds. This approach allows to increase the reliability of observations, detect the so-called Silent supernovae and explore the properties and generation mechanisms of gravitational waves.

  19. Neutrino Oscillations Physics

    Science.gov (United States)

    Fogli, Gianluigi

    2005-06-01

    We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.

  20. Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory

    NARCIS (Netherlands)

    Albert, A.; Andre, M.; Anghinolfi, M.; Ardid, M.; Aubert, J. -J.; Aublin, J.; Avgitas, T.; Baret, B.; Barrios-Marti, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Branzas, H.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; El Moursli, R. Cherkaoui; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Diaz, A. F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsaesser, D.; Enzenhofer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L. A.; Gay, P.; Giordano, V.; Glotin, H.; Gregoire, T.; Ruiz, R. Gracia; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Hoessl, J.; Hofestaedt, J.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kiessling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefevre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martinez-Mora, J. A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pavalas, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sanchez-Losa, A.; Saldana, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schussler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tonnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zuniga, J.; Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Arguelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K. H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Boerner, M.; Bos, F.; Bose, D.; Boeser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H. -P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de Andre, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Diaz-Velez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazel, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Huennefeld, M.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Kopke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Kruckl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lunemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momente, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Pollmann, A. Obertacke; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; de Los Heros, C. Perez; Pieloth, D.; Pinat, E.; Plum, M.; Pranav, D.; Price, P. B.; Przybylski, G. T.; Raab, C.; Raedel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Saelzer, T.; Herrera, S. E. Sanchez; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schoeneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stossl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tesic, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; Aab, A.; Abreu, P.; Aglietta, M.; Albuquerque, I. F. M.; Albury, J. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arsene, N.; Asorey, H.; Assis, P.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Bohacova, M.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caruso, R.; Castellina, A.; Catalani, F.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Cobos Cerutti, A. C.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Consolati, G.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Day, J. A.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farmer, J.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Feldbusch, F.; Fenu, F.; Fick, B.; Figueira, J. M.; Filipcic, A.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; Garcia, B.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glas, D.; Glaser, C.; Golup, G.; Gomez Berisso, M.; Gomez Vitale, P. F.; Gonzalez, N.; Gorgi, A.; Gottowik, M.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Halliday, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harvey, V. M.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Horandel, J. R.; Horvath, P.; Hrabovsky, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Johnsen, J. A.; Josebachuili, M.; Jurysek, J.; Kaeaepae, A.; Kampert, K. H.; Keilhauer, B.; Kemmerich, N.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Mezek, G. Kukec; Kunka, N.; Awad, A. Kuotb; Lago, B. L.; LaHurd, D.; Lang, R. G.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti, D.; Lopes, L.; Lopez, R.; Lopez Casado, A.; Lorek, R.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K. -D.; Michal, S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Morlino, G.; Mostafa, M.; Mueller, A. L.; Mueller, G.; Muller, M. A.; Mueller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Nunez, L. A.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pekala, J.; Pelayo, R.; Pena-Rodriguez, J.; Pereira, L. A. S.; Perlin, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Poh, J.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Fernandez, G. Rodriguez; Rodriguez Rojo, J.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovanek, P.; Schroeder, F. G.; Schroeder, S.; Schulz, A.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Smida, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Soriano, J. F.; Squartini, R.; Stanca, D.; Stanic, S.; Stasielak, J.; Stassi, P.; Stolpovskiy, M.; Strafella, F.; Streich, A.; Suarez, F.; Suarez Duran, M.; Sudholz, T.; Suomijarvi, T.; Supanitsky, A. D.; Supik, J.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tome, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Vazquez, R. A.; Veberic, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villasenor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiedenski, M.; Wiencke, L.; Wilczynski, H.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Becsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerda-Duran, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrion, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dalya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Costa, C. F. Da Silva; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Alvarez, M. Dovale; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; Gonzalez, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kefelian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kramer, C.; Kringel, V.; Krishnan, B.; Krolak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lueck, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Hernandez, I. Magana; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosinska, D.; Ross, M. P.; Rowan, S.; Ruediger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, R. J. E.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tapai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forne, A.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasuth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Vicere, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Wessels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrozny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.

    2017-01-01

    The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield

  1. IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica

    OpenAIRE

    Collaboration, IceCube-Gen2; :; Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Anton, G.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Axani, S.

    2014-01-01

    The recent observation by the IceCube neutrino observatory of an astrophysical flux of neutrinos represents the "first light" in the nascent field of neutrino astronomy. The observed diffuse neutrino flux seems to suggest a much larger level of hadronic activity in the non-thermal universe than previously thought and suggests a rich discovery potential for a larger neutrino observatory. This document presents a vision for an substantial expansion of the current IceCube detector, IceCube-Gen2,...

  2. IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica

    OpenAIRE

    Aartsen, M. G.; Ackermann, M.; Arlen, T. C.; Gretskov, P.; Groh, J. C.; Gross, A.; Ha, C.; Haack, C.; Ismail, A. Haj; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Auffenberg, J.; Haugen, J.

    2014-01-01

    The recent observation by the IceCube neutrino observatory of an astrophysical flux of neutrinos represents the 'first light' in the nascent field of neutrino astronomy. The observed diffuse neutrino flux seems to suggest a much larger level of hadronic activity in the non-thermal universe than previously thought and suggests a rich discovery potential for a larger neutrino observatory. This document presents a vision for an substantial expansion of the current IceCube detector, IceCube-Gen2,...

  3. Search for High-energy neutrinos from binary neutron star merger GW170817 with ANTARES, iceCube, and the Pierre Auger observatory

    Czech Academy of Sciences Publication Activity Database

    Albert, A.; André, M.; Anghinolfi, M.; Blažek, Jiří; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Juryšek, Jakub; Mandát, Dušan; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Martins dos Santos, Eva M.; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub; Yushkov, Alexey

    2017-01-01

    Roč. 850, č. 2 (2017), s. 1-18, č. článku L35. ISSN 2041-8205 R&D Projects: GA MŠk LM2015038; GA MŠk LG15014; GA MŠk EF16_013/0001402 Grant - others:OP VVV - AUGER-CZ(XE) CZ.02.1.01/0.0/0.0/16_013/0001402 Institutional support: RVO:68378271 Keywords : gamma-ray burst * general * gravitational waves * neutrinos Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 5.522, year: 2016

  4. Neutrino physics

    International Nuclear Information System (INIS)

    Gil-Botella, I.

    2011-01-01

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac), of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end. (author)

  5. Ultrahigh-energy neutrino follow-up of gravitational wave events GW150914 and GW151226 with the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Blažek, Jiří; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2016-01-01

    Roč. 94, č. 12 (2016), 1-10, č. článku 122007. ISSN 2470-0010 R&D Projects: GA MŠk LM2015038; GA MŠk LG15014; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * ultrahigh- energy * detectors Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.568, year: 2016

  6. Neutrino cosmology

    International Nuclear Information System (INIS)

    Berstein, J.

    1984-01-01

    These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)

  7. Science Potential of a Deep Ocean Antineutrino Observatory

    International Nuclear Information System (INIS)

    Dye, S.T.

    2007-01-01

    This paper presents science potential of a deep ocean antineutrino observatory being developed at Hawaii. The observatory design allows for relocation from one site to another. Positioning the observatory some 60 km distant from a nuclear reactor complex enables precision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy and θ 13 . At a mid-Pacific location the observatory measures the flux and ratio of uranium and thorium decay neutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subsequent deployment at another mid-ocean location would test lateral heterogeneity of uranium and thorium in earth's mantle

  8. Neutrino mass?

    International Nuclear Information System (INIS)

    Kayser, B.

    1992-01-01

    After arguing that we should be looking for evidence of neutrino mass, we illustrate the possible consequences of neutrino mass and mixing. We then turn to the question of whether neutrinos are their own antiparticles, and to the process which may answer this question: neutrinoless double beta decay. Next, we review the proposed Mikheyev-Smirnov-Wolfenstein solution to the solar neutrino problem, and discuss models which can generate neutrino electromagnetic moments large enough to play a role in the sun. Finally, we consider how the possible 17 keV neutrino, if real, would fit in with everything we know about neutrinos. (orig.)

  9. Neutrino masses and neutrino oscillations

    CERN Document Server

    Di Lella, L

    2000-01-01

    These lectures review direct measurements of neutrino masses and the status of neutrino oscillation searches using both natural neutrino sources (the Sun and cosmic rays interacting in the Earth atmosphere) and artificial neutrinos (produced by nuclear reactors and accelerators). Finally, future experiments and plans are presented. (68 refs).

  10. Monochromatic neutrinos from massive fourth generation neutrino annihilation in the Sun and Earth

    International Nuclear Information System (INIS)

    Belotskij, K.M.; Khlopov, M.Yu.; Shibaev, K.I.

    2001-01-01

    Accumulation inside the Earth and Sun of heavy (with the mass of 50 GeV) primordial neutrinos and antineutrinos of the fourth generation and their successive annihilation is considered. The minimal estimations of annihilational fluxes of monochromatic e, μ, τ neutrinos (neutrinos and antineutrinos) with the energy of 50 GeV are 4.1·10 -6 cm -2 ·s -1 from the Earth core and 1.1·10 -7 cm -2 ·s -1 from the Sun core. That makes the analysis of underground neutrino observatory data the additional source of information on the existence of massive stable 4th generation neutrino. It is shown that due to the kinetic equilibrium between the influx of the neutrinos and their annihilation the existence of new U(1)-gauge interaction of the 4th generation neutrino does not virtually influence the estimations of annihilational e-, μ-, τ-neutrino fluxes

  11. Neutrino physics

    CERN Document Server

    Hernandez, P.

    2016-01-01

    This is the writeup of the lectures on neutrino physics delivered at various schools: TASI and Trieste in 2013 and the CERN-Latin American School in 2015. The topics discussed in this lecture include: general properties of neutrinos in the SM, the theory of neutrino masses and mixings (Dirac and Majorana), neutrino oscillations both in vacuum and in matter, as well as an overview of the experimental evidence for neutrino masses and of the prospects in neutrino oscillation physics. We also briefly review the relevance of neutri- nos in leptogenesis and in beyond-the-Standard-Model physics.

  12. Neutrino astrophysics

    International Nuclear Information System (INIS)

    Roulet, E.

    2001-01-01

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric and solar neutrinos. The major role that neutrinos play in astrophysics and cosmology is illustrated. (author)

  13. Neutrinos, dark matter and the universe

    International Nuclear Information System (INIS)

    Stolarcyk, T.; Tran Thanh Van, J.; Vannucci, F.; Paris-7 Univ., 75

    1996-01-01

    The meeting was articulated around the general topic 'neutrinos, dark matter and the universe'. We have not yet succeeded in penetrating all of the neutrino's mysteries and in particular we still do not know its mass. Laboratory measurements involving beta disintegrations of Ni 63 , Re 187 , Xe 136 and tritium are being actively pursued by many teams. Astrophysical analyses have been led at neutrino observatories of Kamiokande, Baksan, IMB and the Mont-Blanc. But at the moment we can only give an upper limit of the neutrino mass. The problem of the 'missing' solar neutrinos cannot be dissociate from that of the neutrino mass and of the possible oscillation of one variety of neutrino into another. Dark matter shows up only through the effect of its gravitational field and at present we have no idea of its nature

  14. JUNO. Determination of the neutrino mass hierarchy using reactor neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Wonsak, Bjoern [Hamburg University, Inst. Exp. Phys., Hamburg (Germany)

    2015-07-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a medium-baseline reactor neutrino experiment located in China. Its aim is to determine the neutrino mass hierarchy at more than 3 sigma significance after six years of data taking by using a 20kt liquid scintillator detector. To achieve this goal, an energy resolution of less than 3%/√(E) is necessary, creating strict requirements on the detector design and the liquid scintillator. Moreover, JUNO will be the only experiment in the near future able to measure the solar mixing parameters with a precision of better than 1%. This is at the same level as our current knowledge on flavour mixing in the quark sector, marking an important milestone of neutrino physics. In addition, supernova neutrinos, geo-neutrinos, sterile neutrinos as well as solar and atmospheric neutrinos can be studied. JUNO was approved in 2013 and the construction of the underground facility started early this year. In this talk the status of the experiment and its prospects is discussed.

  15. Neutrino Physics

    CERN Document Server

    Barenboim, G.

    2014-12-10

    The Standard Model has been incredibly successful in predicting the outcome of almost all the experiments done up so far. In it, neutrinos are mass-less. However, in recent years we have accumulated evidence pointing to tiny masses for the neutrinos (as compared to the charged leptons). These masses allow neutrinos to change their flavour and oscillate. In these lectures I review the properties of neutrinos in and beyond the Standard Model.

  16. Los Neutrinos Los Neutrinos

    Directory of Open Access Journals (Sweden)

    Julián Félix

    2012-02-01

    Full Text Available From all the proposals to understand the structure of matter, and the way the natural world is conformed, the one about neutrinos is the most enigmatic, abstract, and foreign to immediate experience; however, this is the one that has delved more deeply over the nearly eighty years since it was formulated by Wolfgang Pauli –in 1930- as a radical proposition to understand nucleon decay, and the decay of other particles, without the violation of the principle of conservation of energy and momentum at subatomic level. This proposition has evolved through the years, and from Pauli’s original idea only the basic elements remain.This article contains the tale of the hypothesis of neutrinos, its early history, its evolution up to present day, and the efforts done nowadays to study them. In summary, this is the physics of neutrinos. De todas las propuestas para entender la estructura de la materia, y la conformación del mundo natural, los neutrinos es la más enigmática, abstracta, y ajena a la experiencia inmediata; sin embargo, es la que más hondo ha ido calando a lo largo de los ya casi ochenta años de haber sido formulada por Wolfgang Pauli –en el año 1930- como una medida radical para entender el decaimiento de los nucleones, y otras partículas, sin que se violara el principio de la conservación de la energía y del momento a nivel subatómico. La propuesta ha evolucionado a lo largo de los años, y de la idea original de Pauli ya sólo lo básico permanece. En este artículo está el relato de la hipótesis de los neutrinos, su historia primera, su evolución hasta el presente, los esfuerzos que en la actualidad se realizan para estudiarlos. En breve, ésta es la física de los neutrinos.

  17. Solar neutrinos

    International Nuclear Information System (INIS)

    Phillips, R.J.N.

    1987-09-01

    The problem with solar neutrinos is that there seem to be too few of them, at least near the top end of the spectrum, since the 37 Cl detector finds only about 35% of the standard predicted flux. Various kinds of explanation have been offered: (a) the standard solar model is wrong, (b) neutrinos decay, (c) neutrinos have magnetic moments, (d) neutrinos oscillate. The paper surveys developments in each of these areas, especially the possible enhancement of neutrino oscillations by matter effects and adiabatic level crossing. The prospects for further independent experiments are also discussed. (author)

  18. Sterile neutrino

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    Paper deals with the information on the occurrence of the fields of the sterile neutrinos (the righthanded ones) mixed with the normal neutrinos (the lefthanded ones). Both the Max Plank Radioastronomy Institute and the Los Angeles University assumes that the occurrence of the keV mass sterile neutrinos may explain the dark matter nature, the fast rotation of the observed pulsars and the reionization processes. The issues associated with the possibility to record the sterile neutrinos were analyzed in the course of the Sterile Neutrinos in Astrophysics and Cosmology Workshop (Crans Montana, March 2006 [ru

  19. Neutrino factories

    International Nuclear Information System (INIS)

    Dydak, F.

    2002-01-01

    The discovery of neutrino oscillations marks a major milestone in the history of neutrino physics, and opens a window to what lies beyond the Standard Model. Many current and forthcoming experiments will answer open questions; however, a major step forward, up to and possibly including CP violation in the neutrino mixing matrix, will be offered by the neutrino beams from a neutrino factory. The neutrino factory is a new concept for producing neutrino beams of unprecedented quality in terms of intensity, flavour composition, and precision of the beam parameters. These beams enable the exploration of otherwise inaccessible domains in neutrino oscillation physics by exploiting baselines of planetary dimensions. Suitable detectors pose formidable challenges but seem within reach with only moderate extrapolations from existing technologies. Although the main physics attraction of the neutrino factory is in the area of neutrino oscillations, an interesting spectrum of further opportunities ranging from high-precision, high-rate neutrino scattering to physics with high-intensity stopped muons comes with it

  20. Neutrinos today

    International Nuclear Information System (INIS)

    Pontecorvo, B.; Bilen'kij, S.

    1987-01-01

    After the famous 1983 discovery of intermediate W, Z 0 bosons it may be stated with certainty that W, Z 0 are entirely responsible for the production of neutrinos and for their interactions. Neutrino physics notions are presented from this point of view in the first four introductory, quite elementary, paragraphs of the paper. The following seven paragraphs are more sophisticated. They are devoted to the neutrino mass and neutrino mixing question, which is the most actual problem in today neutrino physics. Vacuum neutrino oscillations, matter neutrino oscillations and netrinoless double-decay are considered. Solar neutrino physics is discussed in some detail from the point of view of vacuum and matter neutrino oscillations. The role played by neutrinos in the Universe is briefly considered. In the last paragraph there discussed the probable observation by different groups of neutrinos connected with the Supernova 1987 A: the first observation of gravitational star collapse (at least the general rehearsal of such observation) opens up a new era in astronomy of today exerimental physics and astrophysics is presented at the end of the paper in the form of a Table

  1. Neutrino Factory

    CERN Document Server

    Bogomilov, M; Tsenov, R; Dracos, M; Bonesini, M; Palladino, V; Tortora, L; Mori, Y; Planche, T; Lagrange, J  B; Kuno, Y; Benedetto, E; Efthymiopoulos, I; Garoby, R; Gilardoini, S; Martini, M; Wildner, E; Prior, G; Blondel, A; Karadzhow, Y; Ellis, M; Kyberd, P; Bayes, R; Laing, A; Soler, F  J  P; Alekou, A; Apollonio, M; Aslaninejad, M; Bontoiu, C; Jenner, L  J; Kurup, A; Long, K; Pasternak, J; Zarrebini, A; Poslimski, J; Blackmore, V; Cobb, J; Tunnell, C; Andreopoulos, C; Bennett, J  R  J; Brooks, S; Caretta, O; Davenne, T; Densham, C; Edgecock, T  R; Fitton, M; Kelliher, D; Loveridge, P; McFarland, A; Machida, S; Prior, C; Rees, G; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Booth, C; Skoro, G; Back, J  J; Harrison, P; Berg, J  S; Fernow, R; Gallardo, J  C; Gupta, R; Kirk, H; Simos, N; Stratakis, D; Souchlas, N; Witte, H; Bross, A; Geer, S; Johnstone, C; Mokhov, N; Neuffer, D; Popovic, M; Strait, J; Striganov, S; Morfín, J  G; Wands, R; Snopok, P; Bogacz, S  A; Morozov, V; Roblin, Y; Cline, D; Ding, X; Bromberg, C; Hart, T; Abrams, R  J; Ankenbrandt, C  M; Beard, K  B; Cummings, M  A  C; Flanagan, G; Johnson, R  P; Roberts, T  J; Yoshikawa, C  Y; Graves, V  B; McDonald, K  T; Coney, L; Hanson, G

    2014-01-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that $\\theta_{13} > 0$. The measured value of $\\theta_{13}$ is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO$\

  2. Neutrino Oscillations:. a Phenomenological Approach

    Science.gov (United States)

    Fogli, G. L.; Lisi, E.; Marrone, A.; Palazzo, A.; Rotunno, A. M.; Montanino, D.

    We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.

  3. NEUTRINO MASS

    OpenAIRE

    Kayser, Boris

    1988-01-01

    This is a review article about the most recent developments on the field of neutrino mass. The first part of the review introduces the idea of neutrino masses and mixing angles, summarizes the most recent experimental data then discusses the experimental prospects and challenges in this area. The second part of the review discusses the implications of these results for particle physics and cosmology, including the origin of neutrino mass, the see-saw mechanism and sequential dominance, and la...

  4. Neutrino masses

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Postulated in the early days of quantum mechanics by Wolfgang Pauli to make energy-momentum conservation in nuclear beta decay come out right, the neutrino has never strayed far from physicists' attention. The Moriond Workshop on Massive Neutrinos in Particle Physics and Astrophysics held recently in the French Alps showed that more than half a century after Pauli's prediction, the neutrino stubbornly refuses to yield up all its secrets

  5. Neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-04-15

    Postulated in the early days of quantum mechanics by Wolfgang Pauli to make energy-momentum conservation in nuclear beta decay come out right, the neutrino has never strayed far from physicists' attention. The Moriond Workshop on Massive Neutrinos in Particle Physics and Astrophysics held recently in the French Alps showed that more than half a century after Pauli's prediction, the neutrino stubbornly refuses to yield up all its secrets.

  6. Neutrino mass

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1992-01-01

    Despite intensive experimental work since the neutrino's existence was proposed by Pauli 60 years ago, and its first observation by Reines and Cowan almost 40 years ago, the neutrino's fundamental properties remain elusive. Among those properties are the masses of the three known flavors, properties under charge conjugation, parity and time-reversal, and static and dynamic electromagnetic moments. Mass is perhaps the most fundamental, as it constrains the other properties. The present status of the search for neutrino mass is briefly reviewed

  7. Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters

    International Nuclear Information System (INIS)

    Ahmad, Q.R.; Bullard, T.V.; Cox, G.A.; Duba, C.A.; Formaggio, J.A.; Germani, J.V.; Hamian, A.A.; Hazama, R.; Heeger, K.M.; Howe, M.; Kazkaz, K.; Manor, J.; Meijer Drees, R.; Orrell, J.L.; Schaffer, K.K.; Smith, M.W.E.; Steiger, T.D.; Stonehill, L.C.; Allen, R.C.; Buehler, G.

    2002-01-01

    The Sudbury Neutrino Observatory (SNO) has measured day and night solar neutrino energy spectra and rates. For charged current events, assuming an undistorted 8 B spectrum, the night minus day rate is 14.0%±6.3% +1.5 -1.4 % of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the ν e asymmetry is found to be 7.0%±4.9% +1.3 -1.2 % . A global solar neutrino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the large mixing angle solution

  8. Probing the Absolute Mass Scale of Neutrinos

    International Nuclear Information System (INIS)

    Formaggio, Joseph A.

    2011-01-01

    The experimental efforts of the Neutrino Physics Group at MIT center primarily around the exploration of neutrino mass and its significance within the context of nuclear physics, particle physics, and cosmology. The group has played a prominent role in the Sudbury Neutrino Observatory, a neutrino experiment dedicated to measure neutrino oscillations from 8B neutrinos created in the sun. The group is now focusing its efforts in the measurement of the neutrino mass directly via the use of tritium beta decay. The MIT group has primary responsibilities in the Karlsruhe Tritium Neutrino mass experiment, expected to begin data taking by 2013. Specifically, the MIT group is responsible for the design and development of the global Monte Carlo framework to be used by the KATRIN collaboration, as well as responsibilities directly associated with the construction of the focal plane detector. In addition, the MIT group is sponsoring a new research endeavor for neutrino mass measurements, known as Project 8, to push beyond the limitations of current neutrino mass experiments.

  9. Eclipsed neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: The total solar eclipse visible in Southern Asia on 24 October provided an opportunity for an unusual physics experiment. At face value, the levels of solar neutrinos detected on the Earth's surface are difficult to understand and suggest that perhaps the composition of solar neutrinos oscillates between different neutrino types on their journey. In this way neutrinos originating in the Sun as electrontype could convert into heavy neutrinos, which could subsequently disintegrate into an electron-neutrino and a photon. In certain neutrino scenarios, such a photon would have an energy corresponding to that of visible light, and in principle should be detectable if there are enough of them. The problem is that they would normally be swamped by the copious photons of sunlight. The 24 October solar eclipse provided a chance to check this out. A team led by François Vannucci, spokesman of the Nomad neutrino experiment at CERN, en route to the 'Rencontres du Vietnam' physics meeting in Ho Chi Minh Ville, set up a CCD-equipped telescope. To insure against cloud cover, a second telescope followed the eclipse in the desert of Rajastan, India, where the eclipse was to last only half as long, but the chance of cloud was minimal. No background solar signal was seen, or, expressed in physics terms, if solar radiation has any heavy neutrino component, then less than a millionth of it disintegrates into an electron neutrino and a visible photon before it arrives at the Earth. The negative result also has implications for candidate massive, unstable neutrinos from other sources, notably a component of the missing 'dark matter' of the Universe. The next such eclipse should be visible in North Asia in 1997, when hopefully better measurements will be made

  10. The solar neutrinos epopee; L'epopee des neutrinos solaires

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, Th. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, Service de Physique des Particules, 91- Gif sur Yvette (France)

    2003-06-01

    The 2002 year has been fruitful for the neutrino physics. First, the Sudbury Neutrino Observatory (SNO) experiment has shown that the electron neutrinos {nu}{sub e} emitted by the sun are converted into muon neutrinos ({nu}{sub {mu}}) and tau neutrinos ({nu}{sub {tau}}), thus closing the 30 years old problem of solar neutrinos deficit. This discovery validates the model of nuclear energy production inside the sun but it shakes the theory describing the weak interactions between the fundamental constituents of matter. This theory considers the neutrinos (and the photons) as massless particles, while the taste conversion phenomenon necessarily implies that neutrinos have a mass. In October 2000, the Universe exploration by the cosmic neutrinos is jointly recognized by R. Davis (USA) and M. Koshiba (Japan) who received the Nobel price of physics. Finally, in December 2000, the KamLAND experiment quantitatively demonstrated the neutrinos metamorphosis by detecting a deficit in the flux of electron antineutrinos coming from the surrounding Japanese nuclear reactors. This digest article describes step by step the epopee of solar neutrinos and shows how several generations of physicists have resolved one of the mystery of modern physics. (J.S.)

  11. Neutrino Oscillations

    Indian Academy of Sciences (India)

    work of Takaaki Kajita and Arthur B McDonald clearly demon- strated the ... time belief that neutrinos are massless particles. .... SK is a second generation, 50,000 t wa- ..... values of the parameters of the PMNS matrix based on a global .... [13] Y Ashie et al., Evidence for an oscillatory signature in atmospheric neutrino.

  12. India-based Neutrino Observatory (INO)

    Indian Academy of Sciences (India)

    1. The site at Singara near the town of Masinagudi (Lat. 11.5◦N, Long. 76.6◦E) under the Nilgiri Mountains in the southern peninsular shield in South India, is adjacent to a hydel project PUSHEP (Pykara ultimate stage hydroelectric project). The vertical overburden is around 1.3 km. All-around cover of more than 1 km exists, ...

  13. New technology allows closer study of neutrinos; researchers credit specialized telescope

    CERN Multimedia

    Huang, N

    2002-01-01

    With the help of a newly designed telescope, University of California-Berkeley scientists and an international team of researchers have made a recent breakthrough in the study of neutrino emissions from the sun. The turning point is the Sudbury Neutrino Observatory in Canada. This telescope is the first of its kind to be sensitive enough to detect all types of neutrinos (1 page).

  14. Obscured flat spectrum radio active galactic nuclei as sources of high-energy neutrinos

    NARCIS (Netherlands)

    Maggi, G.; Buitink, S.; Correa, P.; de Vries, K. D.; Gentile, G.; Tavares, J. León; Scholten, O.; van Eijndhoven, N.; Vereecken, M.; Winchen, T.

    2016-01-01

    Active galactic nuclei (AGN) are believed to be one of the main source candidates for the high-energy (TeV-PeV) cosmic neutrino flux recently discovered by the IceCube neutrino observatory. Nevertheless, several correlation studies between AGN and the cosmic neutrinos detected by IceCube show no

  15. Variables for probing neutrino oscillation at super- Kamiokande and ...

    Indian Academy of Sciences (India)

    and Sudbury Neutrino Observatory experiments and can sensitively signal neutrino oscillations. One class of such variables involve moments of the distributions recorded at the two facilities while another variable, specific to SNO, utilises the integrated charged and neutral current signals. The utility of these variables in the ...

  16. Neutrino astronomy current status, future prospects

    CERN Document Server

    Karle, Albrecht

    2017-01-01

    This review volume is motivated by the recent discovery of high-energy astrophysical neutrinos by IceCube. The aim of the book is to bring together chapters on the status of current and future neutrino observatories with chapters on the implications and possible interpretations of the present observations and their upper limits. Each chapter is a mini-review of one aspect of the subject by leading experts. Taken together, the chapters constitute an up-to-date review of high-energy astrophysical neutrinos and their potential sources.

  17. Solar neutrinos

    International Nuclear Information System (INIS)

    Schatzman, E.

    1983-01-01

    The solar energy is produced by a series of nuclear reactions taking place in the deep interior of the sun. Some of these reactions produce neutrinos which may be detected, the proper detection system being available. The results of the Davis experiment (with 37 Cl) are given, showing a deficiency in the solar neutrino flux. The relevant explanation is either a property of the neutrino or an important change in the physics of the solar models. The prospect of a new experiment (with 71 Ga) is important as it will decide which of the two explanations is correct [fr

  18. Neutrino sunshine

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Gordon

    1992-09-15

    Most of the Sun's energy comes from the fusion of protons into deuterium. Sunshine is necessary for life, but the first evidence for the neutrinos which accompany and explain this basic process still makes science history.

  19. Supernova neutrinos

    International Nuclear Information System (INIS)

    John Beacom

    2003-01-01

    We propose that neutrino-proton elastic scattering, ν + p → ν + p, can be used for the detection of supernova neutrinos. Though the proton recoil kinetic energy spectrum is soft, with T p ≅ 2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from (bar ν) e + p → e + + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy release and temperature of ν μ , ν τ , (bar ν) μ , and (bar ν) τ . The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  20. Neutrino cosmology

    CERN Document Server

    Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio

    2013-01-01

    The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.

  1. Neutrino sunshine

    International Nuclear Information System (INIS)

    Fraser, Gordon

    1992-01-01

    Most of the Sun's energy comes from the fusion of protons into deuterium. Sunshine is necessary for life, but the first evidence for the neutrinos which accompany and explain this basic process still makes science history

  2. Neutrino overview

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1994-01-01

    I discuss some of the open issues in neutrino physics, emphasizing areas of intersection with astrophysics, that occupied the participants of the Snowmass Workshop on Nuclear and Particle Astrophysics and Cosmology in the Next Millenium

  3. Search for sterile neutrinos with IceCube DeepCore

    Energy Technology Data Exchange (ETDEWEB)

    Terliuk, Andrii [DESY, Platanenallee 6, 15738 Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The DeepCore detector is a sub-array of the IceCube Neutrino Observatory that lowers the energy threshold for neutrino detection down to approximately 10 GeV. DeepCore is used for a variety of studies including atmospheric neutrino oscillations. The standard three-neutrino oscillation paradigm is tested using the DeepCore detector by searching for an additional light, sterile neutrino with a mass on the order of 1 eV. Sterile neutrinos do not interact with the ordinary matter, however they can be mixed with the three active neutrino states. Such mixture changes the picture of standard neutrino oscillations for atmospheric neutrinos with energies below 100 GeV. The capabilities of DeepCore detector to measure such sterile neutrino mixing will be presented in this talk.

  4. Neutrino masses and oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A Yu

    1996-11-01

    New effects related to refraction of neutrinos in different media are reviewed and implication of the effects to neutrino mass and mixing are discussed. Patterns of neutrino masses and mixing implied by existing hints/bounds are described. Recent results on neutrino mass generation are presented. They include neutrino masses in SO(10) GUT`s and models with anomalous U(1), generation of neutrino mass via neutrino-neutralino mixing, models of sterile neutrino. (author). 95 refs, 9 figs.

  5. Supernova neutrino detection

    International Nuclear Information System (INIS)

    Selvi, M.

    2005-01-01

    Neutrinos emitted during a supernova core collapse represent a unique feature to study both stellar and neutrino properties. After discussing the details of the neutrino emission in the star and the effect of neutrino oscillations on the expected neutrino fluxes at Earth, a review of the detection techniques is presented in this paper, with particular attention to the problem of electron neutrino detection

  6. Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array

    Czech Academy of Sciences Publication Activity Database

    Aartsen, M.G.; Abraham, K.; Ackermann, M.; Blažek, Jiří; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2016-01-01

    Roč. 1, Jan (2016), 1-34, č. článku 037. ISSN 1475-7516 R&D Projects: GA MŠk(CZ) LG13007; GA MŠk(CZ) 7AMB14AR005; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : neutrino experiments * ultra high energy cosmic rays * cosmic ray experiments * neutrino astronomy Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.734, year: 2016

  7. Neutrino oscillations in dense neutrino gases

    International Nuclear Information System (INIS)

    Samuel, S.

    1993-01-01

    We consider oscillations of neutrinos under conditions in which the neutrino density is sufficiently large that neutrino-neutrino interactions cannot be neglected. A formalism is developed to treat this highly nonlinear system. Numerical analysis reveals a rich array of phenomena. In certain gases, a self-induced Mikheyev-Smirnov-Wolfenstein effect occurs in which electron neutrinos are resonantly converted into muon neutrinos. In another relatively low-density gas, an unexpected parametric resonant conversion takes place. Finally, neutrino-neutrino interactions maintain coherence in one system for which a priori one expected decoherence

  8. Neutrino astronomy with supernova neutrinos

    Science.gov (United States)

    Brdar, Vedran; Lindner, Manfred; Xu, Xun-Jie

    2018-04-01

    Modern neutrino facilities will be able to detect a large number of neutrinos from the next Galactic supernova. We investigate the viability of the triangulation method to locate a core-collapse supernova by employing the neutrino arrival time differences at various detectors. We perform detailed numerical fits in order to determine the uncertainties of these time differences for the cases when the core collapses into a neutron star or a black hole. We provide a global picture by combining all the relevant current and future neutrino detectors. Our findings indicate that in the scenario of a neutron star formation, supernova can be located with precision of 1.5 and 3.5 degrees in declination and right ascension, respectively. For the black hole scenario, sub-degree precision can be reached.

  9. Science Potential of a Deep Ocean Antineutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dye, S.T. [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu, Hawaii, 96822 (United States); College of Natural Sciences, Hawaii Pacific University, 45-045 Kamehameha Highway, Kaneohe, Hawaii 96744 (United States)

    2007-06-15

    This paper presents science potential of a deep ocean antineutrino observatory being developed at Hawaii. The observatory design allows for relocation from one site to another. Positioning the observatory some 60 km distant from a nuclear reactor complex enables precision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy and {theta}{sub 13}. At a mid-Pacific location the observatory measures the flux and ratio of uranium and thorium decay neutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subsequent deployment at another mid-ocean location would test lateral heterogeneity of uranium and thorium in earth's mantle.

  10. Black holes at neutrino telescopes

    International Nuclear Information System (INIS)

    Kowalski, M.; Ringwald, A.; Tu, H.

    2002-01-01

    In scenarios with extra dimensions and TeV-scale quantum gravity, black holes are expected to be produced in the collision of light particles at center-of-mass energies above the fundamental Planck scale with small impact parameters. Black hole production and evaporation may thus be studied in detail at the large hadron collider (LHC). But even before the LHC starts operating, neutrino telescopes such as AMANDA/IceCube, ANTARES, Baikal, and RICE have an opportunity to search for black hole signatures. Black hole production in the scattering of ultrahigh energy cosmic neutrinos on nucleons in the ice or water may initiate cascades and through-going muons with distinct characteristics above the Standard Model rate. In this Letter, we investigate the sensitivity of neutrino telescopes to black hole production and compare it to the one expected at the Pierre Auger Observatory, an air shower array currently under construction, and at the LHC. We find that, already with the currently available data, AMANDA and RICE should be able to place sensible constraints in black hole production parameter space, which are competitive with the present ones from the air shower facilities Fly's Eye and AGASA. In the optimistic case that a ultrahigh energy cosmic neutrino flux significantly higher than the one expected from cosmic ray interactions with the cosmic microwave background radiation is realized in nature, one even has discovery potential for black holes at neutrino telescopes beyond the reach of LHC. (orig.)

  11. Neutrino properties and fundamental symmetries

    International Nuclear Information System (INIS)

    Bowles, T.J.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). There are two components to this work. The first is a development of a new detection scheme for neutrinos. The observed deficit of neutrinos from the Sun may be due to either a lack of understanding of physical processes in the Sun or may be due to neutrinos oscillating from one type to another during their transit from the Sun to the Earth. The Sudbury Neutrino Observatory (SNO) is designed to use a water Cerenkov detector employing one thousand tonnes of heavy water to resolve this question. The ability to distinguish muon and tau neutrinos from electron neutrinos is crucial in order to carry out a model-independent test of neutrino oscillations. We describe a developmental exploration of a novel technique to do this using 3 He proportional counters. Such a method offers considerable advantages over the initially proposed method of using Cerenkov light from capture on NaCl in the SNO. The second component of this work is an exploration of optimal detector geometry for a time-reversal invariance experiment. The question of why time moves only in the forward direction is one of the most puzzling problems in modern physics. We know from particle physics measurements of the decay of kaons that there is a charge-parity symmetry that is violated in nature, implying time-reversal invariance violation. Yet, we do not understand the origin of the violation of this symmetry. To promote such an understanding, we are developing concepts and prototype apparatus for a new, highly sensitive technique to search for time-reversal-invariance violation in the beta decay of the free neutron. The optimized detector geometry is seven times more sensitive than that in previous experiments. 15 refs

  12. Solar neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, D [Tokyo Univ. (Japan). Coll. of General Education

    1975-01-01

    The measurement of solar neutrino was performed by using the reaction /sup 37/cl+..nu..sub(e)..-->../sup 37/Ar+e/sup -/ by Davis et al. The argon gas produced through the above mentioned reaction in a tank containing 610 ton of C/sub 2/Cl/sub 4/ was collected and measured. The rate of production of /sup 37/Ar was 0.13+-0.20/day, and the net production rate by the solar neutrino was 0.06+-0.20/day, being corrected for background. This value corresponds to 0.5+-1.0 SNU. Theoretical calculation with the model of spherically symmetric solar development gave an expected value of 5.6 SNU, which is in contradiction with the experimental value. Reason of this discrepancy was considered. The possibility of decay of neutrino to the other particles with weak interaction is very slight. Various models of the sun were investigated, but the results were still inconsistent with the experiment. The mixing of matters in the sun may cause the reduction of neutrino. If He gas comes to the center of the sun by mixing, the reaction, /sup 3/He+/sup 3/He, progresses excessively at the center, and it produces the expansion of the core of the sun. Then, the temperature drops and the neutrino is reduced. Various models which can explain the neutrino of less than ISNU have been presented. However, other theory says that the reduction of neutrino is not expected even if the mixing is considered. A problem concerning the mixing is whether the thermal instability which causes the mixing exists. (Kato, T.).

  13. Experimental neutrino physics

    CERN Document Server

    Link, Jonathan M

    2018-01-01

    Neutrinos have a smaller mass than any other known particle and are the subject of intense recent studies, as well as this book. The author provides a coherent introduction to the necessary theoretical background and experimental methods used by modern neutrino physicists. It’s designed as a one-stop reference addressing what is currently known about the neutrino hypothesis, discovery of the neutrino, theory of weak interactions, solar neutrino puzzle, and neutrino oscillation. It then gives a detailed account of practical approaches for study of precision oscillations, neutrino mass and other neutrino properties, sterile neutrinos, and neutrino messengers from space and Earth’s interior.

  14. Neutrino mass and the solar neutrino problem

    International Nuclear Information System (INIS)

    Wolfenstein, L.

    1987-01-01

    Theoretical ideas about neutrino mass based on grand-unified theories are reviewed. These give the see-saw formula in which neutrino mass is inversely proportional to a large mass scale M. For M between 10/sup 11/ and 10/sup 15/ Gev the study of solar neutrinos appears to be the best probe of neutrino masses and mixings

  15. Neutrino clouds

    International Nuclear Information System (INIS)

    Stephenson Jr, G.J.; McKellar, B.H.J.

    1997-01-01

    We consider the possibility that neutrinos are coupled very weakly to an extremely light scalar boson. We first analyze the simple problem of one generation of neutrino and show that, for ranges of parameters that are allowed by existing data, such a system can have serious consequences for the evolution of stars and could impact precision laboratory measurements. We discuss the extension to more generations and show that the general conclusion remains viable. Finally, we note that, should such a scalar field be present, experiments give information about effective masses, not the masses that arise in unified field theories. (authors). 23 refs., 9 figs

  16. Neutrino clouds

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson Jr, G.J. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Physics and Astronomy; Goldman, T. [Los Alamos National Lab., NM (United States); McKellar, B.H.J. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-06-01

    We consider the possibility that neutrinos are coupled very weakly to an extremely light scalar boson. We first analyze the simple problem of one generation of neutrino and show that, for ranges of parameters that are allowed by existing data, such a system can have serious consequences for the evolution of stars and could impact precision laboratory measurements. We discuss the extension to more generations and show that the general conclusion remains viable. Finally, we note that, should such a scalar field be present, experiments give information about effective masses, not the masses that arise in unified field theories. (authors). 23 refs., 9 figs.

  17. Neutrino Telescope

    International Nuclear Information System (INIS)

    Coelin Baldo, Milla

    2009-01-01

    The present volume contains the proceedings of the 13. International Workshop on 'Neutrino Telescope', 17. of the series 'Un altro modo di guardare il cielo', held in Venice at the 'Istituto Veneto di Scienze, Lettere ed Arti' from March 10 to March 13, 2009. This series started in Venice 21 years ago, in 1988, motivated by the growing interest in the exciting field of the neutrino physics and astrophysics, with the aim to bring together experimentalists and theorists and encourage discussion on the most recent results and to chart the direction of future researchers.

  18. A Search for Neutrinos from Fast Radio Bursts with IceCube

    International Nuclear Information System (INIS)

    Fahey, Samuel; Kheirandish, Ali; Vandenbroucke, Justin; Xu, Donglian

    2017-01-01

    We present a search for neutrinos in coincidence in time and direction with four fast radio bursts (FRBs) detected by the Parkes and Green Bank radio telescopes during the first year of operation of the complete IceCube Neutrino Observatory (2011 May through 2012 May). The neutrino sample consists of 138,322 muon neutrino candidate events, which are dominated by atmospheric neutrinos and atmospheric muons but also contain an astrophysical neutrino component. Considering only neutrinos detected on the same day as each FRB, zero IceCube events were found to be compatible with the FRB directions within the estimated 99% error radius of the neutrino directions. Based on the non-detection, we present the first upper limits on the neutrino fluence from FRBs.

  19. A Search for Neutrinos from Fast Radio Bursts with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Fahey, Samuel; Kheirandish, Ali; Vandenbroucke, Justin; Xu, Donglian, E-mail: justin.vandenbroucke@wisc.edu [Wisconsin IceCube Particle Astrophysics Center and Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2017-08-10

    We present a search for neutrinos in coincidence in time and direction with four fast radio bursts (FRBs) detected by the Parkes and Green Bank radio telescopes during the first year of operation of the complete IceCube Neutrino Observatory (2011 May through 2012 May). The neutrino sample consists of 138,322 muon neutrino candidate events, which are dominated by atmospheric neutrinos and atmospheric muons but also contain an astrophysical neutrino component. Considering only neutrinos detected on the same day as each FRB, zero IceCube events were found to be compatible with the FRB directions within the estimated 99% error radius of the neutrino directions. Based on the non-detection, we present the first upper limits on the neutrino fluence from FRBs.

  20. Neutrino mixing and future accelerator neutrino experiments

    International Nuclear Information System (INIS)

    Bilenky, S.M.

    1992-01-01

    No evidence for neutrino mixing has been obtained in experiments searching for oscillations with neutrinos from accelerators and reactors. The possible reason is that neutrino masses are too small to produce any sizable effects in the experiments with terrestrial neutrinos. We put forward here the point of view that the reason for that can be traced to the presence of a hierarchy of neutrino masses as well as strength of couplings between lepton families. (orig.)

  1. Neutrino horn

    CERN Multimedia

    1967-01-01

    View of the new neutrino horn installed in its blockhouse from the target end. Protons pass through the 2mm hole in the centre of the small fluorescent screen, hitting the target immediately behind it. The circular tubes carry pressurized cooling water.

  2. Neutrino Oscillations

    Indian Academy of Sciences (India)

    The 2015 Nobel Prize in Physics was awarded to two physicists-Takaaki Kajita and Arthur B McDonald, whose teams discoveredthat neutrinos, which come in three flavours, changefrom one flavour to another. This discovery is a major milestonein particle physics as it gives a clear evidence of physicsbeyond the Standard ...

  3. Solar Neutrinos

    Indian Academy of Sciences (India)

    7,81. The Chlorine experiment, located in the Homestake Gold Mine in Lead, South Dakota, was the first solar neutrino experiment to be set up. A tank of. 105 gallons of perchloroethylene in which the electron neu- trino reacts with chlorine to ...

  4. Neutrino Interactions

    International Nuclear Information System (INIS)

    Kamyshkov, Yuri; Handler, Thomas

    2016-01-01

    The neutrino group of the University of Tennessee, Knoxville was involved from 05/01/2013 to 04/30/2015 in the neutrino physics research funded by DOE-HEP grant DE-SC0009861. Contributions were made to the Double Chooz nuclear reactor experiment in France where second detector was commissioned during this period and final series of measurements has been started. Although Double Chooz was smaller experimental effort than competitive Daya Bay and RENO experiments, its several advantages make it valuable for understanding of systematic errors in measurements of neutrino oscillations. Double Chooz was the first experiment among competing three that produced initial result for neutrino angle θ_1_3 measurement, giving other experiments the chance to improve measured value statistically. Graduate student Ben Rybolt defended his PhD thesis on the results of Double Chooz experiment in 2015. UT group has fulfilled all the construction and analysis commitments to Double Chooz experiment, and has withdrawn from the collaboration by the end of the mentioned period to start another experiment. Larger effort of UT neutrino group during this period was devoted to the participation in another DOE-HEP project - NOvA experiment. The 14,000-ton 'FAR' neutrino detector was commissioned in northern Minnesota in 2014 together with 300-ton 'NEAR' detector located at Fermilab. Following that, the physics measurement program has started when Fermilab accelerator complex produced the high-intensity neutrino beam propagating through Earth to detector in MInnessota. UT group contributed to NOvA detector construction and developments in several aspects. Our Research Associate Athanasios Hatzikoutelis was managing (Level 3 manager) the construction of the Detector Control System. This work was successfully accomplished in time with the commissioning of the detectors. Group was involved in the development of the on-line software and study of the signatures of the cosmic ray backgrounds

  5. Neutrino Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kamyshkov, Yuri [Univ. of Tennesse, Knoxville, TN (United States); Handler, Thomas [Univ. of Tennesse, Knoxville, TN (United States)

    2016-10-24

    The neutrino group of the University of Tennessee, Knoxville was involved from 05/01/2013 to 04/30/2015 in the neutrino physics research funded by DOE-HEP grant DE-SC0009861. Contributions were made to the Double Chooz nuclear reactor experiment in France where second detector was commissioned during this period and final series of measurements has been started. Although Double Chooz was smaller experimental effort than competitive Daya Bay and RENO experiments, its several advantages make it valuable for understanding of systematic errors in measurements of neutrino oscillations. Double Chooz was the first experiment among competing three that produced initial result for neutrino angle θ13 measurement, giving other experiments the chance to improve measured value statistically. Graduate student Ben Rybolt defended his PhD thesis on the results of Double Chooz experiment in 2015. UT group has fulfilled all the construction and analysis commitments to Double Chooz experiment, and has withdrawn from the collaboration by the end of the mentioned period to start another experiment. Larger effort of UT neutrino group during this period was devoted to the participation in another DOE-HEP project - NOvA experiment. The 14,000-ton "FAR" neutrino detector was commissioned in northern Minnesota in 2014 together with 300-ton "NEAR" detector located at Fermilab. Following that, the physics measurement program has started when Fermilab accelerator complex produced the high-intensity neutrino beam propagating through Earth to detector in MInnessota. UT group contributed to NOvA detector construction and developments in several aspects. Our Research Associate Athanasios Hatzikoutelis was managing (Level 3 manager) the construction of the Detector Control System. This work was successfully accomplished in time with the commissioning of the detectors. Group was involved in the development of the on-line software and study of the signatures of the cosmic ray backgrounds

  6. Future perspectives in neutrino physics: The Laguna-LBNO case

    CERN Document Server

    Buizza Avanzini, M

    2013-01-01

    LAGUNA-LBNO is a Design Study funded by the European Commission to develop the de- sign of a deep underground neutrino observatory; its physics program involves the study of neutrino oscillations at long baselines, the investigation of the Grand Unication of elemen- tary forces and the detection of neutrinos from known and unknown astrophysical sources. Building on the successful format and on the ndings of the previous LAGUNA Design Study, LAGUNA-LBNO is more focused and is specically considering Long Baseline Neutrino Oscil- lations (LBNO) with neutrino beams from CERN. Two sites, Frejus (in France at 130 km) and Pyhasalmi (in Finland at 2300 km), are being considered. Three dierent detector technolo- gies are being studied: Water Cherenkov, Liquid Scintillator and Liquid Argon. Recently the LAGUNA-LBNO consortium has submitted an Expression of Interest for a very long baseline neutrino experiment, selecting as a rst priority the option of a Liquid Argon detector at Pyhasalmi.

  7. A Nine-Year Hunt for Neutrinos

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    How do we hunt for elusive neutrinos emitted by distant astrophysical sources? Submerge a huge observatory under ice or water and then wait patiently.Sneaky MessengersNeutrinos tiny, nearly massless particles that only weakly interact with other matter are thought to be produced as a constant background originating from throughout our universe. In contrast to known point sources of neutrinos (for instance, nearby supernovae), the diffuse flux of cosmic neutrinos could be emitted from unresolved astrophysical sources too faint to be individually detected, or from the interactions of high-energy cosmic rays propagating across the universe.Observations of this diffuse flux of cosmic neutrinos would be a huge step toward understanding cosmic-ray production, acceleration, and interaction properties. Unfortunately, these observations arent easy to make!Diagram showing the path of a neutrino from a distant astrophysical source (accelerator) through the Earth. It is eventually converted into an upward-traveling muon that registers in the ANTARES detector under the sea. [ANTARES]Looking for What Doesnt Want to Be FoundBecause neutrinos so rarely interact with matter, most pass right through us, eluding detection. The most common means of spotting the rare interacting neutrino is to look for Cherenkov radiation in a medium like ice or water, produced when a neutrino has interacted with matterto produce a charged particle (for instance, a muon) moving faster than the speed of light in the medium.Muons produced in our atmosphere can also register in such detectors, however, so we need a way of filtering out these non-cosmic background events. The solution is a clever trick: search for particles traveling upward, not downward. Atmospheric muons will come only from above, whereas muons produced by neutrinos should travel through the detectors in all directions, since cosmic neutrinos arrive from all directions including from below, after passing through the Earth.Observatories

  8. Supernova neutrino detection with LVD

    International Nuclear Information System (INIS)

    Selvi, M.

    2007-01-01

    The Large Volume Detector (LVD) in the INFN Gran Sasso National Laboratory, Italy, is a ν observatory mainly designed to study low energy neutrinos from the gravitational collapse of galactic objects.We describe the characteristics of the supernova neutrino signal expected in the LVD detector and, in particular, we investigate the effect of neutrino oscillations. The MSW effect has been studied in detail for neutrinos travelling through the collapsing star and the Earth. We show that the expected number of events and their energy spectrum are sensitive to the oscillation parameters, in particular to the mass hierarchy and the value of θ 13 , presently unknown.The experiment has been monitoring the Galaxy since June 1992, under increasing larger configurations: in January 2001 it has reached its final active mass M = 1 kt. LVD is one of the largest liquid scintillator apparatus for the detection of stellar collapses and, besides SNO, SuperKamiokande and Amanda, it is a charter member of the SNEWS network, that has become fully operational since July 1st, 2005. No gravitational core-collapse has been detected by LVD during 14 years of data acquisition; this allows to put an upper limit of 0.18 events y -1 in our galaxy at the 90% C.L

  9. Future neutrino experiments

    CERN Document Server

    Di Lella, L

    2001-01-01

    Future experiments to search for neutrino oscillations using neutrinos from the Sun, from reactors and accelerators are reviewed. Possible long-term developments based on neutrino factories are also described. (29 refs).

  10. Neutrinos: Theory and Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  11. Supernova neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In the first part of his in-depth article on the 1987 supernova, David Schramm of the University of Chicago and the NASA/Fermilab Astrophysics Centre reviewed the background to supernovae, the composition of massive stars and the optical history of SN 1987A, and speculated on what the 1987 remnant might be. In such a Type II supernova, gravitational pressure crushes the atoms of the star's interior producing neutron matter, or even a black hole, and releasing an intense burst of neutrinos. 1987 was the first time that physicists were equipped (but not entirely ready!) to intercept these particles, and in the second part of his article, David Schramm covers the remarkable new insights from the science of supernova neutrino astronomy, born on 23 February 1987

  12. Future Long-Baseline Neutrino Facilities and Detectors

    Directory of Open Access Journals (Sweden)

    Milind Diwan

    2013-01-01

    Full Text Available We review the ongoing effort in the US, Japan, and Europe of the scientific community to study the location and the detector performance of the next-generation long-baseline neutrino facility. For many decades, research on the properties of neutrinos and the use of neutrinos to study the fundamental building blocks of matter has unveiled new, unexpected laws of nature. Results of neutrino experiments have triggered a tremendous amount of development in theory: theories beyond the standard model or at least extensions of it and development of the standard solar model and modeling of supernova explosions as well as the development of theories to explain the matter-antimatter asymmetry in the universe. Neutrino physics is one of the most dynamic and exciting fields of research in fundamental particle physics and astrophysics. The next-generation neutrino detector will address two aspects: fundamental properties of the neutrino like mass hierarchy, mixing angles, and the CP phase, and low-energy neutrino astronomy with solar, atmospheric, and supernova neutrinos. Such a new detector naturally allows for major improvements in the search for nucleon decay. A next-generation neutrino observatory needs a huge, megaton scale detector which in turn has to be installed in a new, international underground laboratory, capable of hosting such a huge detector.

  13. Future Long-Baseline Neutrino Facilities and Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Diwan, Milind [Brookhaven; Edgecock, Rob [Huddersfield U.; Hasegawa, Takuya [KEK, Tsukuba; Patzak, Thomas [APC, Paris; Shiozawa, Masato [Kamioka Observ.; Strait, Jim [Fermilab

    2013-01-01

    We review the ongoing effort in the US, Japan, and Europe of the scientific community to study the location and the detector performance of the next-generation long-baseline neutrino facility. For many decades, research on the properties of neutrinos and the use of neutrinos to study the fundamental building blocks of matter has unveiled new, unexpected laws of nature. Results of neutrino experiments have triggered a tremendous amount of development in theory: theories beyond the standard model or at least extensions of it and development of the standard solar model and modeling of supernova explosions as well as the development of theories to explain the matter-antimatter asymmetry in the universe. Neutrino physics is one of the most dynamic and exciting fields of research in fundamental particle physics and astrophysics. The next-generation neutrino detector will address two aspects: fundamental properties of the neutrino like mass hierarchy, mixing angles, and the CP phase, and low-energy neutrino astronomy with solar, atmospheric, and supernova neutrinos. Such a new detector naturally allows for major improvements in the search for nucleon decay. A next-generation neutrino observatory needs a huge, megaton scale detector which in turn has to be installed in a new, international underground laboratory, capable of hosting such a huge detector.

  14. The Intermediate Neutrino Program

    CERN Document Server

    Adams, C.; Ankowski, A.M.; Asaadi, J.A.; Ashenfelter, J.; Axani, S.N.; Babu, K.; Backhouse, C.; Band, H.R.; Barbeau, P.S.; Barros, N.; Bernstein, A.; Betancourt, M.; Bishai, M.; Blucher, E.; Bouffard, J.; Bowden, N.; Brice, S.; Bryan, C.; Camilleri, L.; Cao, J.; Carlson, J.; Carr, R.E.; Chatterjee, A.; Chen, M.; Chen, S.; Chiu, M.; Church, E.D.; Collar, J.I.; Collin, G.; Conrad, J.M.; Convery, M.R.; Cooper, R.L.; Cowen, D.; Davoudiasl, H.; de Gouvea, A.; Dean, D.J.; Deichert, G.; Descamps, F.; DeYoung, T.; Diwan, M.V.; Djurcic, Z.; Dolinski, M.J.; Dolph, J.; Donnelly, B.; Dwyer, D.A.; Dytman, S.; Efremenko, Y.; Everett, L.L.; Fava, A.; Figueroa-Feliciano, E.; Fleming, B.; Friedland, A.; Fujikawa, B.K.; Gaisser, T.K.; Galeazzi, M.; Galehouse, D.C.; Galindo-Uribarri, A.; Garvey, G.T.; Gautam, S.; Gilje, K.E.; Gonzalez-Garcia, M.; Goodman, M.C.; Gordon, H.; Gramellini, E.; Green, M.P.; Guglielmi, A.; Hackenburg, R.W.; Hackenburg, A.; Halzen, F.; Han, K.; Hans, S.; Harris, D.; Heeger, K.M.; Herman, M.; Hill, R.; Holin, A.; Huber, P.; Jaffe, D.E.; Johnson, R.A.; Joshi, J.; Karagiorgi, G.; Kaufman, L.J.; Kayser, B.; Kettell, S.H.; Kirby, B.J.; Klein, J.R.; Kolomensky, Yu. G.; Kriske, R.M.; Lane, C.E.; Langford, T.J.; Lankford, A.; Lau, K.; Learned, J.G.; Ling, J.; Link, J.M.; Lissauer, D.; Littenberg, L.; Littlejohn, B.R.; Lockwitz, S.; Lokajicek, M.; Louis, W.C.; Luk, K.; Lykken, J.; Marciano, W.J.; Maricic, J.; Markoff, D.M.; Martinez Caicedo, D.A.; Mauger, C.; Mavrokoridis, K.; McCluskey, E.; McKeen, D.; McKeown, R.; Mills, G.; Mocioiu, I.; Monreal, B.; Mooney, M.R.; Morfin, J.G.; Mumm, P.; Napolitano, J.; Neilson, R.; Nelson, J.K.; Nessi, M.; Norcini, D.; Nova, F.; Nygren, D.R.; Orebi Gann, G.D.; Palamara, O.; Parsa, Z.; Patterson, R.; Paul, P.; Pocar, A.; Qian, X.; Raaf, J.L.; Rameika, R.; Ranucci, G.; Ray, H.; Reyna, D.; Rich, G.C.; Rodrigues, P.; Romero, E.Romero; Rosero, R.; Rountree, S.D.; Rybolt, B.; Sanchez, M.C.; Santucci, G.; Schmitz, D.; Scholberg, K.; Seckel, D.; Shaevitz, M.; Shrock, R.; Smy, M.B.; Soderberg, M.; Sonzogni, A.; Sousa, A.B.; Spitz, J.; St. John, J.M.; Stewart, J.; Strait, J.B.; Sullivan, G.; Svoboda, R.; Szelc, A.M.; Tayloe, R.; Thomson, M.A.; Toups, M.; Vacheret, A.; Vagins, M.; Van de Water, R.G.; Vogelaar, R.B.; Weber, M.; Weng, W.; Wetstein, M.; White, C.; White, B.R.; Whitehead, L.; Whittington, D.W.; Wilking, M.J.; Wilson, R.J.; Wilson, P.; Winklehner, D.; Winn, D.R.; Worcester, E.; Yang, L.; Yeh, M.; Yokley, Z.W.; Yoo, J.; Yu, B.; Yu, J.; Zhang, C.

    2015-01-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  15. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  16. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. [Yale Univ., New Haven, CT (United States); Alonso, J. R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ankowski, A. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Asaadi, J. A. [Syracuse Univ., NY (United States); Ashenfelter, J. [Yale Univ., New Haven, CT (United States); Axani, S. N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Babu, K [Oklahoma State Univ., Stillwater, OK (United States); Backhouse, C. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Band, H. R. [Yale Univ., New Haven, CT (United States); Barbeau, P. S. [Duke Univ., Durham, NC (United States); Barros, N. [Univ. of Pennsylvania, Philadelphia, PA (United States); Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Betancourt, M. [Illinois Inst. of Technology, Chicago, IL (United States); Bishai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blucher, E. [Univ. of Chicago, IL (United States); Bouffard, J. [State Univ. of New York (SUNY), Albany, NY (United States); Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brice, S. [Illinois Inst. of Technology, Chicago, IL (United States); Bryan, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Camilleri, L. [Columbia Univ., New York, NY (United States); Cao, J. [Inst. of High Energy Physics, Beijing (China); Carlson, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carr, R. E. [Columbia Univ., New York, NY (United States); Chatterjee, A. [Univ. of Texas, Arlington, TX (United States); Chen, M. [Univ. of California, Irvine, CA (United States); Chen, S. [Tsinghua Univ., Beijing (China); Chiu, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Church, E. D. [Illinois Inst. of Technology, Chicago, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collar, J. I. [Univ. of Chicago, IL (United States); Collin, G. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Conrad, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Convery, M. R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cooper, R. L. [Indiana Univ., Bloomington, IN (United States); Cowen, D. [Pennsylvania State Univ., University Park, PA (United States); Davoudiasl, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gouvea, A. D. [Northwestern Univ., Evanston, IL (United States); Dean, D. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deichert, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Descamps, F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeYoung, T. [Michigan State Univ., East Lansing, MI (United States); Diwan, M. V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Djurcic, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Dolinski, M. J. [Drexel Univ., Philadelphia, PA (United States); Dolph, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Donnelly, B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dwyer, D. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dytman, S. [Univ. of Pittsburgh, PA (United States); Efremenko, Y. [Univ. of Tennessee, Knoxville, TN (United States); Everett, L. L. [Univ. of Wisconsin, Madison, WI (United States); Fava, A. [University of Padua, Padova (Italy); Figueroa-Feliciano, E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Fleming, B. [Yale Univ., New Haven, CT (United States); Friedland, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fujikawa, B. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gaisser, T. K. [Univ. of Delaware, Newark, DE (United States); Galeazzi, M. [Univ. of Miami, FL (United States); Galehouse, DC [Univ. of Akron, OH (United States); Galindo-Uribarri, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Garvey, G. T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautam, S. [Tribhuvan Univ., Kirtipur (Nepal); Gilje, K. E. [Illinois Inst. of Technology, Chicago, IL (United States); Gonzalez-Garcia, M. [Stony Brook Univ., NY (United States); Goodman, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Gordon, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gramellini, E. [Yale Univ., New Haven, CT (United States); Green, M. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guglielmi, A. [University of Padua, Padova (Italy); Hackenburg, R. W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hackenburg, A. [Yale Univ., New Haven, CT (United States); Halzen, F. [Univ. of Wisconsin, Madison, WI (United States); Han, K. [Yale Univ., New Haven, CT (United States); Hans, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harris, D. [Illinois Inst. of Technology, Chicago, IL (United States); Heeger, K. M. [Yale Univ., New Haven, CT (United States); Herman, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hill, R. [Univ. of Chicago, IL (United States); Holin, A. [Univ. College London, Bloomsbury (United Kingdom); Huber, P. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Jaffe, D. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Johnson, R. A. [Univ. of Cincinnati, OH (United States); Joshi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karagiorgi, G. [Univ. of Manchester (United Kingdom); Kaufman, L. J. [Indiana Univ., Bloomington, IN (United States); Kayser, B. [Illinois Inst. of Technology, Chicago, IL (United States); Kettell, S. H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirby, B. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Klein, J. R. [Univ. of Texas, Arlington, TX (United States); Kolomensky, Y. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Kriske, R. M. [Univ. of Minnesota, Minneapolis, MN (United States); Lane, C. E. [Drexel Univ., Philadelphia, PA (United States); Langford, T. J. [Yale Univ., New Haven, CT (United States); Lankford, A. [Univ. of California, Irvine, CA (United States); Lau, K. [Univ. of Houston, TX (United States); Learned, J. G. [Univ. of Hawaii, Honolulu, HI (United States); Ling, J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Link, J. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Lissauer, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littenberg, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littlejohn, B. R. [Illinois Inst. of Technology, Chicago, IL (United States); Lockwitz, S. [Illinois Inst. of Technology, Chicago, IL (United States); Lokajicek, M. [Inst. of Physics of the Academy of Sciences of Czech Republic, Prague (Czech Republic); Louis, W. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Luk, K. [Univ. of California, Berkeley, CA (United States); Lykken, J. [Illinois Inst. of Technology, Chicago, IL (United States); Marciano, W. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Maricic, J. [Univ. of Hawaii, Honolulu, HI (United States); Markoff, D. M. [North Carolina Central Univ., Durham, NC (United States); Caicedo, D. A. M. [Illinois Inst. of Technology, Chicago, IL (United States); Mauger, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mavrokoridis, K. [Univ. of Liverpool (United Kingdom); McCluskey, E. [Illinois Inst. of Technology, Chicago, IL (United States); McKeen, D. [Univ. of Washington, Seattle, WA (United States); McKeown, R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mills, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocioiu, I. [Pennsylvania State Univ., University Park, PA (United States); Monreal, B. [Univ. of California, Santa Barbara, CA (United States); Mooney, M. R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morfin, J. G. [Illinois Inst. of Technology, Chicago, IL (United States); Mumm, P. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Napolitano, J. [Temple Univ., Philadelphia, PA (United States); Neilson, R. [Drexel Univ., Philadelphia, PA (United States); Nelson, J. K. [College of William and Mary, Williamsburg, VA (United States); Nessi, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Norcini, D. [Yale Univ., New Haven, CT (United States); Nova, F. [Univ. of Texas, Austin, TX (United States); Nygren, D. R. [Univ. of Texas, Arlington, TX (United States); Gann, GDO [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Palamara, O. [Illinois Inst. of Technology, Chicago, IL (United States); Parsa, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States); Patterson, R. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Paul, P. [Stony Brook Univ., NY (United States); Pocar, A. [Univ. of Massachusetts, Amherst, MA (United States); Qian, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raaf, J. L. [Illinois Inst. of Technology, Chicago, IL (United States); Rameika, R. [Illinois Inst. of Technology, Chicago, IL (United States); Ranucci, G. [National Inst. of Nuclear Physics, Milano (Italy); Ray, H. [Univ. of Florida, Gainesville, FL (United States); Reyna, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rich, G. C. [Triangle Universities Nuclear Lab., Durham, NC (United States); Rodrigues, P. [Univ. of Rochester, NY (United States); Romero, E. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Rosero, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rountree, S. D. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Rybolt, B. [Univ. of Tennessee, Knoxville, TN (United States); Sanchez, M. C. [Iowa State Univ., Ames, IA (United States); Santucci, G. [Stony Brook Univ., NY (United States); Schmitz, D. [Univ. of Chicago, IL (United States); Scholberg, K. [Duke Univ., Durham, NC (United States); Seckel, D. [Univ. of Delaware, Newark, DE (United States); Shaevitz, M. [Columbia Univ., New York, NY (United States); Shrock, R. [Stony Brook Univ., NY (United States); Smy, M. B. [Univ. of California, Irvine, CA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Sonzogni, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sousa, A. B. [Univ. of Cincinnati, OH (United States); Spitz, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); John, J. M. S. [Univ. of Cincinnati, OH (United States); Stewart, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Strait, J. B. [Illinois Inst. of Technology, Chicago, IL (United States); Sullivan, G. [Univ. of Maryland, College Park, MD (United States); Svoboda, R. [Univ. of California, Davis, CA (United States); Szelc, A. M. [Yale Univ., New Haven, CT (United States); Tayloe, R. [Indiana Univ., Bloomington, IN (United States); Thomson, M. A. [Univ. of Cambridge (United Kingdom); Toups, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Vacheret, A. [Univ. of Oxford (United Kingdom); Vagins, M. [Univ. of California, Irvine, CA (United States); Water, R. G. V. D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogelaar, R. B. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Weber, M. [Bern (Switzerland); Weng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wetstein, M. [Univ. of Chicago, IL (United States); White, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); White, B. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitehead, L. [Univ. of Houston, TX (United States); Whittington, D. W. [Indiana Univ., Bloomington, IN (United States); Wilking, M. J. [Stony Brook Univ., NY (United States); Wilson, R. J. [Colorado State Univ., Fort Collins, CO (United States); Wilson, P. [Illinois Inst. of Technology, Chicago, IL (United States); Winklehner, D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Winn, D. R. [Fairfield Univ., CT (United States); Worcester, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, L. [Univ. of Illinois, Urbana-Champaign, IL (United States); Yeh, M [Brookhaven National Lab. (BNL), Upton, NY (United States); Yokley, Z. W. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yoo, J. [Illinois Inst. of Technology, Chicago, IL (United States); Yu, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yu, J. [Univ. of Texas, Arlington, TX (United States); Zhang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-04-03

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  17. Neutrino signals from dark matter decay

    Energy Technology Data Exchange (ETDEWEB)

    Covi, Laura; Grefe, Michael [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro; Tran, David [Technische Univ. Muenchen, Garching (Germany). Physik-Department T30d

    2009-12-15

    We investigate different neutrino signals from the decay of dark matter particles to determine the prospects for their detection, and more specifically if any spectral signature can be disentangled from the background in present and future neutrino observatories. If detected, such a signal could bring an independent confirmation of the dark matter interpretation of the dramatic rise in the positron fraction above 10 GeV recently observed by the PAMELA satellite experiment and offer the possibility of distinguishing between astrophysical sources and dark matter decay or annihilation. In combination with other signals, it may also be possible to distinguish among different dark matter decay channels. (orig.)

  18. Neutrino signals from dark matter decay

    International Nuclear Information System (INIS)

    Covi, Laura; Grefe, Michael; Ibarra, Alejandro; Tran, David

    2009-12-01

    We investigate different neutrino signals from the decay of dark matter particles to determine the prospects for their detection, and more specifically if any spectral signature can be disentangled from the background in present and future neutrino observatories. If detected, such a signal could bring an independent confirmation of the dark matter interpretation of the dramatic rise in the positron fraction above 10 GeV recently observed by the PAMELA satellite experiment and offer the possibility of distinguishing between astrophysical sources and dark matter decay or annihilation. In combination with other signals, it may also be possible to distinguish among different dark matter decay channels. (orig.)

  19. Neutrino problems proliferate (Neutrino 94 conference report)

    International Nuclear Information System (INIS)

    Gordon, Fraser

    1994-01-01

    The enigma of the neutrino continues. More than sixty years after its hesitant prediction by Pauli and forty years after its discovery by Reines and Cowan, the neutrino still refuses to give up all its secrets. The longer we travel down the neutrino road and the more we find out about these particles, the more problems we uncover en route. The present state of the neutrino mystery was highlighted at the Neutrino 94 meeting in Eilat, Israel, from 29 May to 3 June. It was a distinguished meeting, with the first morning including one session chaired by neutrino co-discoverer Fred Reines, and an introductory talk by muon-neutrino co-discoverer Leon Lederman. One figurehead neutrino personality conspicuously absent this time was Bruno Pontecorvo, who died last year and had attended the previous conference in the series, in Grenada, Spain, in 1992

  20. Neutrino problems proliferate (Neutrino 94 conference report)

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Fraser

    1994-09-15

    The enigma of the neutrino continues. More than sixty years after its hesitant prediction by Pauli and forty years after its discovery by Reines and Cowan, the neutrino still refuses to give up all its secrets. The longer we travel down the neutrino road and the more we find out about these particles, the more problems we uncover en route. The present state of the neutrino mystery was highlighted at the Neutrino 94 meeting in Eilat, Israel, from 29 May to 3 June. It was a distinguished meeting, with the first morning including one session chaired by neutrino co-discoverer Fred Reines, and an introductory talk by muon-neutrino co-discoverer Leon Lederman. One figurehead neutrino personality conspicuously absent this time was Bruno Pontecorvo, who died last year and had attended the previous conference in the series, in Grenada, Spain, in 1992.

  1. Single Ion Trapping for the Enriched Xenon Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, Samuel J.; /Stanford U., Phys. Dept. /SLAC

    2006-03-28

    In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of {approx_equal} .010 eV.

  2. Principles and applications of a neutral current detector for neutrino physics and astronomy

    International Nuclear Information System (INIS)

    Drukier, A.; Stodolsky, L.

    1982-01-01

    We study neutrino detection through the elastic scattering of neutrinos on nuclei and identification of the recoil energy. The very large value of the cross section compared to previous methods indicates a detector would be relatively light and suggests the possibility of a true 'neutrino observatory'. We examine a realization in terms of the superconducting grain idea, which appears in principle feasible through extension and extrapolation of presently known techniques. Such a detector would permit determination of the neutrino spectrum and should be intensive to neutrino oscillations. Various applications and tests are discussed, including spallation sources, reactors, supernovas, solar and terrestrial neutrinos. A supernova would permit a simple determination of the number of neutrinos and their masses, while for solar neutrinos rates of thousands of S.N.U. are theoretically attainable. A preliminary estimate of the most difficult backgrounds is attempted. (orig.)

  3. Neutrino 2004: Collection of Presentations

    International Nuclear Information System (INIS)

    2004-01-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments

  4. Neutrino 2004: Collection of Presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments.

  5. High energy neutrinos to see inside the Earth

    International Nuclear Information System (INIS)

    Borriello, E.; De Lellis, G.; Mangano, G.

    2010-01-01

    The new chances offered by elementary particles as probes of the internal structure of our planet are briefly reviewed, by paying particular attention to the case of high energy neutrinos. In particular, the new results concerning the shadow of mountains on ν τ flux at Pierre Auger Observatory is briefly discussed, and moreover the possibility to use the tail of atmospheric neutrinos to probe the core/mantle transition region is just sketched. (author)

  6. ABSOLUTE NEUTRINO MASSES

    DEFF Research Database (Denmark)

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  7. Working Group Report: Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    de Gouvea, A.; Pitts, K.; Scholberg, K.; Zeller, G. P. [et al.

    2013-10-16

    This document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos.

  8. Underground neutrino astronomy

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1983-02-01

    A review is made of possible astronomical neutrino sources detectable with underground facilities. Comments are made about solar neutrinos and gravitational-collapse neutrinos, and particular emphasis is placed on ultra-high-energy astronomical neutrino sources. An appendix mentions the exotic possibility of monopolonium

  9. Introduction to massive neutrinos

    International Nuclear Information System (INIS)

    Kayser, B.

    1984-01-01

    We discuss the theoretical ideas which make it natural to expect that neutrinos do indeed have mass. Then we focus on the physical consequences of neutrino mass, including neutrino oscillation and other phenomena whose observation would be very interesting, and would serve to demonstrate that neutrinos are indeed massive. We comment on the legitimacy of comparing results from different types of experiments. Finally, we consider the question of whether neutrinos are their own antiparticles. We explain what this question means, discuss the nature of a neutrino which is its own antiparticles, and consider how one might determine experimentally whether neutrinos are their own antiparticles or not

  10. Neutrinos in Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, Bob [bmck@jlab.org

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  11. Neutrinos and Einstein

    CERN Document Server

    Suzuki, Yoichiro

    2005-01-01

    A tiny neutrino mass is a clue to the physics beyond the standard model of elementary particle physics. The primary cosmic rays, mostly protons, are created and accelerated to the relativistic energy in supernova remnants. They traverse the universe and reach the earth. The incoming primary cosmic rays interact with the earth's atmosphere to produce secondary particles, which subsequently decay into neutrinos, called atmospheric neutrinos. The atmospheric neutrinos have shown the evidence of the finite neutrino masses through the phenomena called neutrino oscillations. Neutrinos are detected by large detectors underground like, for example, Super-Kamiokande, SNO and KamLAND. Those detectors use large photomultiplier tubes, which make use of the photo-electric effect to convert photons created by the interaction of neutrinos to electrons to form electric pulses. Neutrinos are therefore created and detected by "Einstein" and have step forward beyond the current physics. Neutrinos may also carry a hit to the ori...

  12. 50 years of neutrinos

    CERN Document Server

    Goldhaber, M

    1980-01-01

    On December 4 1930, Wolfgang Pauli addressed an "open letter" to Lise Meitner and others attending a physics meeting, suggesting the neutrino as a way out of the difficulties confronted in beta rays research, especially by the existence of a continuous beta spectrum. He proposed a new particle later called the neutrino. The prehistory leading up to Pauli's letter will be reviewed, as well as the later discovery of the electron-neutrino followed by the muon-neutrino. There are now believed to be three different types of neutrino and their anti-particles. Neutrinos have a spin 1/2; but only one spin component has been found in nature: neutrinos go forward as "left-handed" screws and anti-neutrinos as "right-handed" ones. A question still not convincingly resolved today is wether neutrinos have a mass different from zero and, if they do, what consequences this would have for the behaviour of neutrinos and for cosmology.

  13. Neutrino physics in heaven

    International Nuclear Information System (INIS)

    Raffelt, G.

    2005-01-01

    After a brief overview of the usual topics that connect astrophysics and cosmology with neutrino physics I will focus on two main themes. First, what can we learn from the neutrino signal of a future galactic supernova, in particular about the neutrino mass ordering. Second, what can we learn about neutrino properties from cosmological observables, notably about the neutrino absolute mass scale from cosmological large-scale structure observables. (author)

  14. Two lectures on neutrinos

    International Nuclear Information System (INIS)

    Ramond, P.

    1992-01-01

    These notes are based on two lectures delivered at the School. A general description of neutrinos is presented, first in purely kinematic terms, then in the context of the Standard Model, focusing on the role of the global lepton numbers. Standard Model extensions with massive neutrinos are cataloged. Several popular mass matrices for neutrinos, and their consequences are presented. They proceed to give an extended discussion of neutrino oscillations in matter, and apply the results to the solar neutrinos

  15. Workshop: Neutrino telescopes

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role

  16. Workshop: Neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-05-15

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role.

  17. Collective neutrino oscillations and neutrino wave packets

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, Evgeny; Lindner, Manfred [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Kopp, Joachim, E-mail: akhmedov@mpi-hd.mpg.de, E-mail: jkopp@uni-mainz.de, E-mail: lindner@mpi-hd.mpg.de [PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz (Germany)

    2017-09-01

    Effects of decoherence by wave packet separation on collective neutrino oscillations in dense neutrino gases are considered. We estimate the length of the wave packets of neutrinos produced in core collapse supernovae and the expected neutrino coherence length, and then proceed to consider the decoherence effects within the density matrix formalism of neutrino flavour transitions. First, we demonstrate that for neutrino oscillations in vacuum the decoherence effects are described by a damping term in the equation of motion of the density matrix of a neutrino as a whole (as contrasted to that of the fixed-momentum components of the neutrino density matrix). Next, we consider neutrino oscillations in ordinary matter and dense neutrino backgrounds, both in the adiabatic and non-adiabatic regimes. In the latter case we study two specific models of adiabaticity violation—one with short-term and another with extended non-adiabaticity. It is demonstrated that, while in the adiabatic case a damping term is present in the equation of motion of the neutrino density matrix (just like in the vacuum oscillation case), no such term in general appears in the non-adiabatic regime.

  18. Evidence for Mikheyev-Smirnov-Wolfenstein effects in solar neutrino flavor transitions

    OpenAIRE

    G. L. FogliU. of Bari and INFN, Bari; E. Lisi(U. of Bari and INFN, Bari); A. Marrone(U. of Bari and INFN, Bari); A Palazzo(U. of Bari and INFN, Bari)

    2015-01-01

    We point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. More precisely, one can safely reject the null hypothesis of no MSW interaction energy in matter, despite the fact that the interaction amplitude (formally treated as a free parameter) is still weakly constrained...

  19. Research in Neutrino Physics and Particle Astrophysics: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, Edward [Boston Univ., MA (United States)

    2016-06-30

    The Boston University Neutrino Physics and Particle Astrophysics Group investigates the fundamental laws of particle physics using natural and man-made neutrinos and rare processes such as proton decay. The primary instrument for this research is the massive Super-Kamiokande (SK) water Cherenkov detector, operating since 1996 at the Kamioka Neutrino Observatory, one kilometer underground in a mine in Japan. We study atmospheric neutrinos from cosmic rays, which were first used to discover that neutrinos have mass, as recognized by the 2015 Nobel Prize in Physics. Our latest measurements with atmospheric neutrinos are giving valuable information, complementary to longbaseline experiments, on the ordering of massive neutrino states and as to whether neutrinos violate CP symmetry. We have studied a variety of proton decay modes, including the most frequently predicted modes such as p → e+π0 and p → ν K+, as well as more exotic baryon number violating processes such as dinucleon decay and neutronantineutron oscillation. We search for neutrinos from dark matter annihilation or decay in the universe. Our group has made significant contributions to detector operation, particularly in the area of electronics. Most recently, we have contributed to planning for an upgrade to the SK detector by the addition of gadolinium to the water, which will enable efficient neutron capture detection.

  20. Solar Neutrinos

    Directory of Open Access Journals (Sweden)

    V. Antonelli

    2013-01-01

    relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in this field and on the experiments presently running or planned for the near future. The main focus at the moment is to improve the knowledge of the mass and mixing pattern and especially to study in detail the lowest energy part of the spectrum, which represents most of the solar neutrino spectrum but is still a partially unexplored realm. We discuss this research project and the way in which present and future experiments could contribute to make the theoretical framework more complete and stable, understanding the origin of some “anomalies” that seem to emerge from the data and contributing to answer some present questions, like the exact mechanism of the vacuum to matter transition and the solution of the so-called solar metallicity problem.

  1. Solar neutrino and 51Cr results from SAGE

    International Nuclear Information System (INIS)

    Gavrin, V.N.; Abdurashitov, J.N.; Girin, S.V.

    1997-01-01

    The Russian-American solar neutrino Experiment (SAGE) has carried out measurements of the capture rate of solar neutrinos on metallic gallium in a radiochemical experiment at the Baksan Neutrino Observatory during the period January 1990 to December 1994. The measured capture rate on 71 Ga is 72+12/-10 (stat) +5/-7 (syst) SNU. This represents only 53-59 % of the predicted Standard Solar Model (SSM) rates. Taken together with the measurements of the other solar neutrino experiments, this deficit would appear to be best interpreted as due to Mikheyev-Smirnov-Wolfenstein neutrino oscillations. A measurement of the production rate of 71 Ge by an intense 51 Cr source to test the overall operation of the experiment showed the extraction efficiency was 0.95 ± 0.11 (stat) +0.05/-0.08 (syst), indicating that the experiment is operating as expected. (orig.)

  2. Optical scattering lengths in large liquid-scintillator neutrino detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, M.; Feilitzsch, F. von; Goeger-Neff, M.; Hofmann, M.; Lewke, T.; Meindl, Q.; Moellenberg, R.; Oberauer, L.; Potzel, W.; Tippmann, M.; Todor, S.; Winter, J. [Physik-Department E15, Technische Universitaet Muenchen, James-Franck-Str., D-85748 Garching (Germany); Lachenmaier, T.; Traunsteiner, C. [Excellence Cluster Universe, Technische Universitaet Muenchen, Boltzmannstr. 2, D-85748 Garching (Germany); Undagoitia, T. Marrodan [Physik-Department E15, Technische Universitaet Muenchen, James-Franck-Str., D-85748 Garching (Germany); Physik-Institut, Universitaet Zuerich, Winterthurstr. 189, CH-8057 Zuerich (Switzerland)

    2010-05-15

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  3. Optical scattering lengths in large liquid-scintillator neutrino detectors.

    Science.gov (United States)

    Wurm, M; von Feilitzsch, F; Göger-Neff, M; Hofmann, M; Lachenmaier, T; Lewke, T; Marrodán Undagoitia, T; Meindl, Q; Möllenberg, R; Oberauer, L; Potzel, W; Tippmann, M; Todor, S; Traunsteiner, C; Winter, J

    2010-05-01

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  4. The physics of neutrinos

    CERN Document Server

    Barger, Vernon D; Whisnant, Kerry

    2012-01-01

    The physics of neutrinos- uncharged elementary particles that are key to helping us better understand the nature of our universe - is one of the most exciting frontiers of modern science. This book provides a comprehensive overview of neutrino physics today and explores promising new avenues of inquiry that could lead to future breakthroughs. The Physics of Neutrinos begins with a concise history of the field and a tutorial on the fundamental properties of neutrinos, and goes on to discuss how the three neutrino types interchange identities as they propagate from their sources to detectors. The book shows how studies of neutrinos produced by such phenomena as cosmic rays in the atmosphere and nuclear reactions in the solar interior provide striking evidence that neutrinos have mass, and it traces our astounding progress in deciphering the baffling experimental findings involving neutrinos. The discovery of neutrino mass offers the first indication of a new kind of physics that goes beyond the Standard Model ...

  5. Neutrino GDR meeting

    International Nuclear Information System (INIS)

    Aguilar-Saavedra, J.A.; Camilleri, L.; Mention, G.; VanElewyck, V.; Verderi, M.; Blondel, A.; Augier, C.; Bellefon, A. de; Coc, A.; Duchesneau, D.; Favier, J.; Lesgourgues, J.; Payet, J.

    2006-01-01

    The purpose of the neutrino GDR (research program coordination) is to federate the activities of French research teams devoted to studying the neutrino. The presentations have been organized on 2 days. A review of the present status of the theoretical and experimental knowledge on neutrinos on a worldwide basis has been made on the first day while the second day has been dedicated to reporting the activities of the 5 following working groups: 1) determination of neutrino parameters, 2) physics beyond the standard model, 3) neutrinos in the universe, 4) neutrino detection, and 5) common tools. During the first day the American neutrino research program has been presented through the description of the 2 neutrino detection systems: Nova and Minor. The following neutrino experiments involving nuclear reactors: Chooz (France), Daya-bay (China), Reno (Korea) and Angra (Brazil) have also been reviewed. This document is made up of the slides of the presentations

  6. Molybdenum solar neutrino experiment

    International Nuclear Information System (INIS)

    Wolfsberg, K.; Cowan, G.A.; Bryant, E.A.

    1984-01-01

    The goal of the molybdenum solar neutrino experiment is to deduce the 8 B solar neutrino flux, averaged over the past several million years, from the concentration of 98 Tc in a deeply buried molybdenum deposit. The experiment is important to an understanding of stellar processes because it will shed light on the reason for the discrepancy between theory and observation of the chlorine solar neutrino experiment. Possible reasons for the discrepancy may lie in the properties of neutrinos (neutrino oscillations or massive neutrinos) or in deficiencies of the standard solar model. The chlorine experiment only measures the 8 B neutrino flux in current times and does not address possible temporal variations in the interior of the sun, which are also not considered in the standard model. In the molybdenum experiment, we plan to measure 98 Tc (4.2 Myr), also produced by 8 B neutrinos, and possibly 97 Tc (2.6 Myr), produced by lower energy neutrinos

  7. The neutrino mirror

    International Nuclear Information System (INIS)

    Vannucci, F.

    2003-09-01

    The neutrino is not an elementary particle like others, it is the most stunning of all: the neutrino is undetectable by itself, we have only indirect evidences of its existence, but the neutrino is essential to explain the weak interaction, to understand why matter triumphed over anti-matter just after the Big-bang, or to solve the riddle of the hidden mass of the universe. This book is a popular work dedicated to the neutrino from its discovery in beta decays to the most recent theories such as neutrino oscillations, and via the worldwide experiments dedicated to the study of the neutrinos. (A.C.)

  8. Neutrino mass, a status report

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1993-01-01

    Experimental approaches to neutrino mass include kinematic mass measurements, neutrino oscillation searches at rectors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing

  9. Experimental Neutrino Physics: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  10. Data analysis for solar neutrinos observed by water Cherenkov detectors{sup *}

    Energy Technology Data Exchange (ETDEWEB)

    Koshio, Yusuke [Okayama University, Okayama (Japan)

    2016-04-15

    A method of analyzing solar neutrino measurements using water-based Cherenkov detectors is presented. The basic detection principle is that the Cherenkov photons produced by charged particles via neutrino interaction are observed by photomultiplier tubes. A large amount of light or heavy water is used as a medium. The first detector to successfully measure solar neutrinos was Kamiokande in the 1980's. The next-generation detectors, i.e., Super-Kamiokande and the Sudbury Neutrino Observatory (SNO), commenced operation from the mid-1990's. These detectors have been playing the critical role of solving the solar neutrino problem and determining the neutrino oscillation parameters over the last decades. The future prospects of solar neutrino analysis using this technique are also described. (orig.)

  11. Neutrino Physics at Drexel

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles [Drexel Univ., Philadelphia, PA (United States); Dolinski, Michelle [Drexel Univ., Philadelphia, PA (United States); Neilson, Russell [Drexel Univ., Philadelphia, PA (United States)

    2017-07-11

    Our primary goal is to improve the understanding of the properties and interactions of neutrinos. We are pursuing this by means of the DUNE long-baseline and PROSPECT short-baseline neutrino experiments. For DUNE, a neutrino beam from Fermilab will be detected at the SURF facility in South Dakota, with the aim of determining the neutrino mass hierarchy (the mass ordering of neutrino flavors), and a measurement or limit on CP-violation via neutrinos. Our near-term experimental goal is to improve the characterization of the neutrino beam by measurements of muons produced as a byproduct of neutrino beam generation, to quantify the beam composition and flux. The short-range neutrino program has the aim of using the HFIR reactor at Oak Ridge as a neutrino source, with a detector placed nearby to find if there are short-distance oscillations to sterile neutrino flavors, and to resolve the 'reactor neutrino spectral anomaly' which has shown up as an unexplained 'bump' in the neutrino energy spectrum in recent experiments.

  12. Cosmic rays at ultra high energies (Neutrinos.)

    International Nuclear Information System (INIS)

    Ahlers, M.; Ringwald, A.; Tu, H.

    2005-06-01

    Resonant photopion production with the cosmic microwave background predicts a suppression of extragalactic protons above the famous Greisen-Zatsepin-Kuzmin cutoff at about E GZK ∼ 5 x 10 10 GeV. Current cosmic ray data measured by the AGASA and HiRes Collaborations do not unambiguously confirm the GZK cutoff and leave a window for speculations about the origin and chemical composition of the highest energy cosmic rays. In this work we analyze the possibility of strongly interacting neutrino primaries and derive model-independent quantitative requirements on the neutrino-nucleon inelastic cross section for a viable explanation of the cosmic ray data. Search results on weakly interacting cosmic particles from the AGASA and RICE experiments are taken into account simultaneously. Using a flexible parameterization of the inelastic neutrino-nucleon cross section we find that a combined fit of the data does not favor the Standard Model neutrino-nucleon inelastic cross section, but requires, at 90% confidence level, a steep increase within one energy decade around E GZK by four orders of magnitude. We illustrate such an enhancement within some extensions of the Standard Model. The impact of new cosmic ray data or cosmic neutrino search results on this scenario, notably from the Pierre Auger Observatory soon, can be immediately evaluated within our approach. (orig.)

  13. High energy neutrino astronomy and its telescopes

    International Nuclear Information System (INIS)

    Halzen, F.

    1995-01-01

    Doing astronomy with photons of energies in excess of a GeV has turned out to be extremely challenging. Efforts are underway to develop instruments that may push astronomy to wavelengths smaller than 10 -14 cm by mapping the sky using high energy neutrinos instead. Neutrino astronomy, born with the identification of thermonuclear fusion in the sun and the particle processes controlling the fate of a nearby supernova, will reach outside the galaxy and make measurements relevant to cosmology. The field is immersed in technology in the domains of particle physics to which many of its research goals are intellectually connected. To mind come the search for neutrino mass, cold dark matter (supersymmetric particles?) and the monopoles of the Standard Model. While a variety of collaborations are pioneering complementary methods by building telescopes with effective area in excess of 0.01 km 2 , we show here that the natural scale of a high energy neutrino telescope is 1 km 2 . With several thousand optical modules and a price tag unlikely to exceed 100 million dollars, the scope of a kilometer-scale instrument is similar to that of experiments presently being commissioned such as the SNO neutrino observatory in Canada and the Superkamiokande experiment in Japan

  14. The Neutrinos Saga

    International Nuclear Information System (INIS)

    La Souchere, Marie-Christine de; Moran, John

    2009-04-01

    The author proposes a history of the discovery and study of neutrinos. This history starts shortly after the discovery of radioactivity in 1896 with the observation of an inhomogeneous deceleration of electrons in the radioactive source which raised an issue of shortage of energy. Pauli then introduced the idea of a ghost particle which could preserve the principle of energy conservation and also the issue of statistics related to the laws of quantum mechanics. Works by the Joliot-Curies and Chadwick resulted in the identification of a neutral particle, first called a neutron, and then neutrino. The author then reports experiments performed to highlight neutrinos, and to identify different forms of neutrinos: muon, tau, lepton. She also addresses questions raised by solar neutrinos, experiments proving the metamorphosis of electron neutrinos into muon neutrinos. She discusses the interest of neutrino as cosmic messengers as they are emitted by various cosmic events, and also as a way to study dark matter

  15. Ghost basis for neutrino

    International Nuclear Information System (INIS)

    Novello, M.

    1976-07-01

    A class of solutions of DIRAC'S equation in gravitational fields for ghost neutrinos is given. Comments are restricted to the neutrino cosmological model recently found by M. Novello e I.D. Soares [pt

  16. Capturing Neutrinos from a Star's Final Hours

    Science.gov (United States)

    Hensley, Kerry

    2018-04-01

    Patton (University of Washington) and collaborators first used a stellar evolution model to explore neutrino production in massive stars. They modeled the evolution of two massive stars 15 and 30 times the mass of our Sun from the onset of nuclear fusion to the moment of collapse.The authors found that in the last few hours before collapse, during which the material in the stars cores is rapidly upcycled into heavier elements, the flux from beta-process neutrinos rivals that of thermal neutrinos and even exceeds it at high energies. So now we know there are many beta-process neutrinos but can we spot them?Neutrino and antineutrino fluxes at Earth from the last 2 hours of a 30-solar-mass stars life compared to the flux from background sources. The rows represent calculations using two different neutrino mass hierarchies. Click to enlarge. [Patton et al. 2017]Observing Elusive NeutrinosFor an imminent supernova at a distance of 1 kiloparsec, the authors find that the presupernova electron neutrino flux rises above the background noise from the Sun, nuclear reactors, and radioactive decay within the Earth in the final two hours before collapse.Based on these calculations, current and future neutrino observatories should be able to detect tens of neutrinos from a supernova within 1 kiloparsec, about 30% of which would be beta-process neutrinos. As the distance to the star increases, the time and energy window within which neutrinos can be observed gradually narrows, until it closes for stars at a distance of about 30 kiloparsecs.Are there any nearby supergiants soon to go supernova so these predictions can be tested? At a distance of only 650 light-years, the red supergiant star Betelgeuse should produce detectable neutrinos when it explodes an exciting opportunity for astronomers in the far future!CitationKelly M. Patton et al 2017ApJ8516. doi:10.3847/1538-4357/aa95c4

  17. Again on neutrino oscillations

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1976-01-01

    The general case is treated of a weak interaction theory in which a term violating lepton charges is present. In such a scheme the particles with definite masses are Majorana neutrinos (2N if in the weak interaction participate N four-component neutrinos). Neutrino oscillations are discussed and it is shown that the minimum average intensity at the earth of solar neutrinos is 1/2N of the intensity expected when oscillations are absent

  18. Leptogenesis and neutrino masses

    International Nuclear Information System (INIS)

    Pluemacher, M.

    2004-01-01

    Thermal leptogenesis explains the baryon asymmetry of the universe by the out-of-equilibrium decays of heavy right-handed neutrinos. In the minimal seesaw model this leads to interesting implications for light neutrino properties. In particular, quasi-degenerate light neutrino masses are incompatible with leptogenesis. An upper bound on light neutrino masses of 0.1 eV can be derived, which will be tested by forthcoming laboratory experiments and cosmology. (author)

  19. Neutrino masses and mixings

    International Nuclear Information System (INIS)

    Wolfenstein, L.

    1991-01-01

    Theoretical prejudices, cosmology, and neutrino oscillation experiments all suggest neutrino mass are far below present direct experimental limits. Four interesting scenarios and their implications are discussed: (1) a 17 keV ν τ , (2) a 30 ev ν τ making up the dark matter, (3) a 10 -3 ev ν μ to solve the solar neutrino problem, and (4) a three-neutrino MSW solution

  20. Measurement of neutrino oscillations in atmospheric neutrinos with the IceCube DeepCore detector

    Energy Technology Data Exchange (ETDEWEB)

    Yanez Garza, Juan Pablo

    2014-06-02

    The study of neutrino oscillations is an active field of research. During the last couple of decades many experiments have measured the effects of oscillations, pushing the field from the discovery stage towards an era of precision and deeper understanding of the phenomenon. The IceCube Neutrino Observatory, with its low energy subarray, DeepCore, has the possibility of contributing to this field. IceCube is a 1 km{sup 3} ice Cherenkov neutrino telescope buried deep in the Antarctic glacier. DeepCore, a region of denser instrumentation in the lower center of IceCube, permits the detection of neutrinos with energies as low as 10 GeV. Every year, thousands of atmospheric neutrinos around these energies leave a strong signature in DeepCore. Due to their energy and the distance they travel before being detected, these neutrinos can be used to measure the phenomenon of oscillations. This work starts with a study of the potential of IceCube DeepCore to measure neutrino oscillations in different channels, from which the disappearance of ν{sub μ} is chosen to move forward. It continues by describing a novel method for identifying Cherenkov photons that traveled without being scattered until detected direct photons. These photons are used to reconstruct the incoming zenith angle of muon neutrinos. The total energy of the interacting neutrino is also estimated. In data taken in 343 days during 2011-2012, 1487 neutrino candidates with an energy between 7 GeV and 100 GeV are found inside the DeepCore volume. Compared to the expectation from the atmospheric neutrino flux without oscillations, this corresponds to a deficit of about 500 muon neutrino events. The oscillation parameters that describe the data best are sin{sup 2}(2θ{sub 23})=1(>0.94 at 68 % C.L.) and vertical stroke Δm{sup 2}{sub 32} vertical stroke =2.4{sub -0.4}{sup +0.6}.10{sup -3} eV{sup 2}, which are in agreement with the results reported by other experiments. The simulation follows the data closely

  1. Towards neutrino astronomy

    International Nuclear Information System (INIS)

    Lagage, P.O.; Spiro, M.

    1985-01-01

    Neutrino sources are numerous and varied; the sun, a supernova explosion, the cosmic radiation interaction with interstellar medium are neutrino or antineutrino sources. The aim of this article is to overview the international projects of neutrino detection while giving the preference to the experimental side of the detection [fr

  2. Reconstructing Neutrino Mass Spectrum

    OpenAIRE

    Smirnov, A. Yu.

    1999-01-01

    Reconstruction of the neutrino mass spectrum and lepton mixing is one of the fundamental problems of particle physics. In this connection we consider two central topics: (i) the origin of large lepton mixing, (ii) possible existence of new (sterile) neutrino states. We discuss also possible relation between large mixing and existence of sterile neutrinos.

  3. Particle Astrophysics of Neutrinos

    Indian Academy of Sciences (India)

    Amol Dighe

    Energy spectra of neutrino sources. ASPERA. Page 4. Some unique features of neutrinos. The second most abundant particles in the universe. Cosmic microwave background photons: 400 / cm3. Cosmic background neutrinos: 330 / cm3. The lightest massive particles. A million times lighter than the electron. No direct mass ...

  4. Solar neutrinos and gravity

    International Nuclear Information System (INIS)

    Kuo, T.K.

    2001-01-01

    We review the possibility that the solar neutrino problem can be explained by neutrinos violating the equivalence principle. It is found that such a scenario can be ruled out when one takes into account data from high energy accelerator neutrino experiments

  5. CERN: Neutrino facelift

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-11-15

    With the termination this summer of the CHARM II neutrino experiment at the SPS proton synchrotron, CERN's 30- year tradition of neutrino physics came to a temporary halt. However with these enigmatic particles playing a vital role in today's Standard Model but continually reluctant to give up all their secrets, neutrino physics will continue to be in the forefront of this research.

  6. On the High-Energy Neutrino Emission from Active Galactic Nuclei

    Directory of Open Access Journals (Sweden)

    Emma Kun

    2018-02-01

    Full Text Available We review observational aspects of the active galactic nuclei and their jets in connection with the detection of high-energy neutrinos by the Antarctic IceCube Neutrino Observatory. We propose that a reoriented jet generated by the spin-flipping supermassive black hole in a binary merger is likely the source of such high-energy neutrinos. Hence they encode important information on the afterlife of coalescing supermassive black hole binaries. As the gravitational radiation emanating from them will be monitored by the future LISA space mission, high-energy neutrino detections could be considered a contributor to multi-messenger astronomy.

  7. Neutrino oscillations and neutrino-electron scattering

    International Nuclear Information System (INIS)

    Kayser, B.; Rosen, S.P.

    1980-10-01

    Neutrino flavor oscillations can significantly alter the cross section for neutrino-electron scattering. As a result, such oscillations can affect the comparison between existing reactor data and theories of neutral-current processes. They may also lead to strikingly large effects in high-energy accelerator experiments

  8. Frontiers in neutrino physics - Transparencies

    International Nuclear Information System (INIS)

    Akhmedov, E.; Balantekin, B.; Conrad, J.; Engel, J.; Fogli, G.; Giunti, C.; Espinoza, C.; Lasserre, T.; Lazauskas, R.; Lhuiller, D.; Lindner, M.; Martinez-Pinedo, G.; Martini, M.; McLaughlin, G.; Mirizzi, A.; Pehlivan, Y.; Petcov, S.; Qian, Y.; Serenelli, A.; Stancu, I.; Surman, R.; Vaananen, D.; Vissani, F.; Vogel, P.

    2012-01-01

    This document gathers the slides of the presentations. The purpose of the conference was to discuss the last advances in neutrino physics. The presentations dealt with: -) the measurement of the neutrino velocity, -) neutrino oscillations, -) anomaly in solar models and neutrinos, -) double beta decay, -) self refraction of neutrinos, -) cosmic neutrinos, -) antineutrino spectra from reactors, and -) some aspects of neutrino physics with radioactive ion beams. (A.C.)

  9. The Prospect of Neutrinos with Gravitational Waves

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    as the extended emission phase, may produce high-energy neutrinos more efficiently than the other phases. But would we be able to see these neutrinos?A comparison of IceCubes detection capabilities (top) to those of the planned IceCube-Gen2 (bottom), for different models of neutrino emission during an SGRB. [Kimura et al. 2017]To answer this, the authors calculate the probability of detection for neutrinos coming from a distance of 300 Mpc the predicted sensitivity range of advanced LIGO for gravitational-wave detection from a face-on neutron-star binary. They find that the IceCube Neutrino Observatory could detect neutrinos from around 10% of average extended-emission events or perhaps up to half in the most optimistic scenario. The planned next iteration of the detector, IceCube-Gen2, should do better, however: Kimura and collaborators estimate that a quarter of the extended emission events will be detectable in the general case, and up to three quarters of them may be seen in the optimistic case.The authors calculations suggest that within several years of operation of IceCube-Gen2, there is a good chance that well be able to simultaneously detect gamma rays, neutrinos, and gravitational waves from bright SGRBs. This will provide us with powerful tools for learning about the physics of these energetic events.CitationShigeo S. Kimura et al 2017 ApJL 848 L4. doi:10.3847/2041-8213/aa8d14

  10. LSND neutrino oscillation results

    International Nuclear Information System (INIS)

    Louis, W.C.

    1996-01-01

    In the past several years, a number of experiments have searched for neutrino oscillations, where a neutrino of one type (say bar ν μ ) spontaneously transforms into a neutrino of another type (say bar ν e ). For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. In 1995 the LSND experiment published data showing candidate events that are consistent with bar ν μ oscillations. Additional data are reported here which provide stronger evidence for neutrino oscillations

  11. Neutrino book

    International Nuclear Information System (INIS)

    Spiro, Michel

    1995-01-01

    André Rousset's book (in French - Gargamelle et les Courants Neutres - Ecole des Mines de Paris) tells the story of Gargamelle and the discovery at CERN in 1973 of neutral currents, the cornerstone of the electroweak theory. This vital discovery helped to give credence to the Standard Model of particle physics. Rousset is both an observer and one of the key figures in the story. His book is lively and well documented; in it he uses archive material to ensure the accuracy of his information on dates, choices and decisions. After an introduction to particle physics which puts into perspective the electroweak theory unifying weak and electromagnetic interactions, Rousset comes straight to the point. From the late 1950s onwards he was involved in the construction of the first heavy liquid bubble chambers by the BP1, BP2 and BP3 teams at the Ecole Polytechnique in Paris. For Gargamelle a bigger laboratory was needed, and it was at the CEA (French Atomic Energy Commission) in Saclay that the chamber was designed by teams from the Saturne accelerator and the Ecole Polytechnique. However, the decision to build Gargamelle was taken in 1965 through the impetus of André Lagarrigue, in defiance of the normal CERN procedures. Gargamelle was then in competition with the other big bubble chamber project, BEBC; was it really necessary to build two big chambers? The decision by Francis Perrin and the CEA to contribute ''generously'' to the project was probably what swung the decision. Construction took five years, during which many problems were encountered, right up to the fault in the main part of the chamber which caused delays and, a few years later, was to prove fatal to the detector. As Rousset correctly states, Gargamelle was probably the first big detector designed to be built on industrial lines, in direct cooperation with industry. The reward: the first neutrino interaction was photographed on 28 January 1971

  12. Case for neutrino oscillations

    International Nuclear Information System (INIS)

    Ramond, P.

    1982-01-01

    The building of a machine capable of producing an intense, well-calibrated beam of muon neutrinos is regarded by particle physicists with keen interest because of its ability of studying neutrino oscillations. The possibility of neutrino oscillations has long been recognized, but it was not made necessary on theoretical or experimental grounds; one knew that oscillations could be avoided if neutrinos were massless, and this was easily done by the conservation of lepton number. The idea of grand unification has led physicists to question the existence (at higher energies) of global conservation laws. The prime examples are baryon-number conservation, which prevents proton decay, and lepton-number conservation, which keeps neutrinos massless, and therefore free of oscillations. The detection of proton decay and neutrino oscillations would therefore be an indirect indication of the idea of Grand Unification, and therefore of paramount importance. Neutrino oscillations occur when neutrinos acquire mass in such a way that the neutrino mass eigenstates do not match the (neutrino) eigenstates produced by the weak interactions. We shall study the ways in which neutrinos can get mass, first at the level of the standard SU 2 x U 1 model, then at the level of its Grand Unification Generalizations

  13. Minimalistic Neutrino Mass Model

    CERN Document Server

    De Gouvêa, A; Gouvea, Andre de

    2001-01-01

    We consider the simplest model which solves the solar and atmospheric neutrino puzzles, in the sense that it contains the smallest amount of beyond the Standard Model ingredients. The solar neutrino data is accounted for by Planck-mass effects while the atmospheric neutrino anomaly is due to the existence of a single right-handed neutrino at an intermediate mass scale between 10^9 GeV and 10^14 GeV. Even though the neutrino mixing angles are not exactly predicted, they can be naturally large, which agrees well with the current experimental situation. Furthermore, the amount of lepton asymmetry produced in the early universe by the decay of the right-handed neutrino is very predictive and may be enough to explain the current baryon-to-photon ratio if the right-handed neutrinos are produced out of thermal equilibrium. One definitive test for the model is the search for anomalous seasonal effects at Borexino.

  14. Neutrinos (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    The neutrino, the lightest and most weakly interacting particle of the Standard Model has revealed itself as the messenger of very exciting news in particle physics: there is Physics Beyond the Standard Model. All this thanks to the quantum-mechanical phenomenon of flavour oscillations which is intrinsically connected to the question of neutrino mass and which has been observed in neutrinos produced in natural sources, like the Sun and the Earth's atmosphere, as well as with human made neutrino beams at accelerator and reactors. The purpose of these lectures is to overview some aspects of the phenomenology of massive neutrinos. I will present the simplest extensions for adding neutrino masses to the SM, and then I will describe the phenomenology associated with neutrino oscillations in vacuum and in matter and its present signatures.

  15. Pathlength distributions of atmospheric neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, T.K.; Stanev, Todor

    1999-01-01

    We discuss the distribution of the production heights of atmospheric neutrinos as a function of zenith angle and neutrino energy. The distributions can be used as the input for evaluation of neutrino propagation under various hypotheses for neutrino flavor oscillations. Their use may alter substantially the estimates of the oscillation parameters for almost horizontal atmospheric neutrinos.

  16. Properties of neutrinos: Recent results

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1987-01-01

    Recent progress in experimental determinations of the properties of neutrinos is summarized. In particular, the extensive work on direct kinematic measurements of neutrino mass, on neutrino counting and on neutrino oscillations is highlighted. It is concluded that there may already be sufficient information to fix the masses of the neutrinos, but the evidence is still far from convincing. 63 refs., 13 figs

  17. Private Observatories in South Africa

    Science.gov (United States)

    Rijsdijk, C.

    2016-12-01

    Descriptions of private observatories in South Africa, written by their owners. Positions, equipment descriptions and observing programmes are given. Included are: Klein Karoo Observatory (B. Monard), Cederberg Observatory (various), Centurion Planetary and Lunar Observatory (C. Foster), Le Marischel Observatory (L. Ferreira), Sterkastaaing Observatory (M. Streicher), Henley on Klip (B. Fraser), Archer Observatory (B. Dumas), Overbeek Observatory (A. Overbeek), Overberg Observatory (A. van Staden), St Cyprian's School Observatory, Fisherhaven Small Telescope Observatory (J. Retief), COSPAR 0433 (G. Roberts), COSPAR 0434 (I. Roberts), Weltevreden Karoo Observatory (D. Bullis), Winobs (M. Shafer)

  18. European Southern Observatory

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    Professor A. Blaauw, Director general of the European Southern Observatory, with George Hampton on his right, signs the Agreement covering collaboration with CERN in the construction of the large telescope to be installed at the ESO Observatory in Chile.

  19. Solar neutrino observations and neutrino oscillations

    International Nuclear Information System (INIS)

    Kuo, T.K.; Pantaleone, J.

    1990-01-01

    The results of recent Kamiokande-II and 37 Cl solar-neutrino experiments are quantitatively analyzed assuming the Mikheyev-Smirnov-Wolfenstein solution to the solar-neutrino problem. It is found that the parameter region known as the ''large mass'' solution to the solar-neutrino problem is disfavored by a little more than 1 σ while the ''small mass'' and ''large angle'' solutions are in good agreement at this level. The implications on this analysis from time variations in the data are discussed

  20. Neutrinos from WIMP annihilations in the Sun including neutrino oscillations

    International Nuclear Information System (INIS)

    Blennow, Mattias; Edsjö, Joakim; Ohlsson, Tommy

    2011-01-01

    The prospects to detect neutrinos from the Sun arising from dark matter annihilations in the core of the Sun are reviewed. Emphasis is placed on new work investigating the effects of neutrino oscillations on the expected neutrino fluxes.

  1. Neutrinos from WIMP annihilations in the Sun including neutrino oscillations

    International Nuclear Information System (INIS)

    Blennow, Mattias; Edsjoe, Joakim; Ohlsson, Tommy

    2006-01-01

    The prospects for detecting neutrinos from the Sun arising from dark matter annihilations in the core of the Sun are reviewed. Emphasis is placed on new work investigating the effects of neutrino oscillations on the expected neutrino fluxes

  2. Calculation of the local density of relic neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    De Salas, P.F.; Gariazzo, S.; Pastor, S. [Instituto de Física Corpuscular (CSIC-Universitat de València), Parc Científic UV, C/ Catedrático José Beltrán, 2, E-46980 Paterna (Valencia) (Spain); Lesgourgues, J., E-mail: pabferde@ific.uv.es, E-mail: gariazzo@ific.uv.es, E-mail: Julien.Lesgourgues@physik.rwth-aachen.de, E-mail: pastor@ific.uv.es [Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056 Aachen (Germany)

    2017-09-01

    Nonzero neutrino masses are required by the existence of flavour oscillations, with values of the order of at least 50 meV . We consider the gravitational clustering of relic neutrinos within the Milky Way, and used the N -one-body simulation technique to compute their density enhancement factor in the neighbourhood of the Earth with respect to the average cosmic density. Compared to previous similar studies, we pushed the simulation down to smaller neutrino masses, and included an improved treatment of the baryonic and dark matter distributions in the Milky Way. Our results are important for future experiments aiming at detecting the cosmic neutrino background, such as the Princeton Tritium Observatory for Light, Early-universe, Massive-neutrino Yield (PTOLEMY) proposal. We calculate the impact of neutrino clustering in the Milky Way on the expected event rate for a PTOLEMY-like experiment. We find that the effect of clustering remains negligible for the minimal normal hierarchy scenario, while it enhances the event rate by 10 to 20% (resp. a factor 1.7 to 2.5) for the minimal inverted hierarchy scenario (resp. a degenerate scenario with 150 meV masses). Finally we compute the impact on the event rate of a possible fourth sterile neutrino with a mass of 1.3 eV.

  3. Core-collapse supernovae as possible counterparts of IceCube neutrino multiplets

    Energy Technology Data Exchange (ETDEWEB)

    Strotjohann, Nora Linn; Kowalski, Marek; Franckowiak, Anna [DESY, Zeuthen (Germany); Voge, Markus [Bonn Univ. (Germany). Physikalisches Institut; Collaboration: IceCube-Collaboration

    2016-07-01

    While an astrophysical neutrino flux has been detected by the IceCube Neutrino Observatory its sources remain so far unidentified. IceCube's Optical Follow-up Program is designed to search for the counterparts of neutrino multiplets using the full energy range of the IceCube detector down to 100 GeV. Two or more muon neutrinos arriving from the same direction within few seconds can trigger follow-up observations with optical and X-ray telescopes. Since 2010 the Palomar Transient Factory has followed up about 40 such neutrino alerts and detected several supernovae. Many of the detections are however likely random coincidences. In this talk I describe our search for supernovae and the prospects of identifying a supernova as a source of high-energy neutrinos.

  4. NEUTRINOS AS COSMIC MESSENGERS IN THE ERA OF ICECUBE, ANTARES AND KM3NET

    Directory of Open Access Journals (Sweden)

    Uli F. Katz

    2013-12-01

    Full Text Available Using neutrinos as cosmic messengers for observation of non-thermal processes in the Universe is a highly attractive and promising vision, which has been pursued in various neutrino telescope projects for more than two decades. Recent results from ground-based TeV gamma-ray observatories and refinements of model calculations of the expected neutrino fluxes indicate that Gigaton target volumes will be necessary to establish neutrino astronomy. A first neutrino telescope of that size, IceCube, is operational at the South Pole. Based on experience with the smaller first-generation ANTARES telescope in the Mediterranean Sea, the multi-Gigaton KM3NeT device is in preparation. These neutrino telescopes are presented, and some selected results and the expected KM3NeT performance are discussed.

  5. MINOS Sterile Neutrino Search

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, David Jason [Univ. College London, Bloomsbury (United Kingdom)

    2009-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the v μ→ Vτ transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling ~2.5 x 1020 protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  6. The ideal neutrino beams

    CERN Document Server

    Lindroos, Mats

    2009-01-01

    The advance in neutrino oscillation physics is driven by the availability of well characterized and high flux neutrino beams. The three present options for the next generation neutrino oscillation facility are super beams, neutrino factories and beta-beams. A super-beam is a very high intensity classical neutrino beam generated by protons impinging on a target where the neutrinos are generated by the secondary particles decaying in a tunnel down streams of the target. In a neutrino factory the neutrinos are generated from muons decaying in a storage ring with long straight sections pointing towards the detectors. In a beta-beam the neutrinos are also originating from decay in a storage ring but the decaying particles are radioactive ions rather than muons. I will in this presentation review the three options and discuss the pros and cons of each. The present joint design effort for a future high intensity neutrino oscillation in Europe within a common EU supported design study, EURONU, will also be presented....

  7. The ideal neutrino beams

    Science.gov (United States)

    Lindroos, Mats

    2009-06-01

    The advance in neutrino oscillation physics is driven by the availability of well characterized and high flux neutrino beams. The three present options for the next generation neutrino oscillation facility are super beams, neutrino factories and beta-beams. A super-beam is a very high intensity classical neutrino beam generated by protons impinging on a target where the neutrinos are generated by the secondary particles decaying in a tunnel down streams of the target. In a neutrino factory the neutrinos are generated from muons decaying in a storage ring with long straight sections pointing towards the detectors. In a beta-beam the neutrinos are also originating from decay in a storage ring but the decaying particles are radioactive ions rather than muons. I will in this presentation review the three options and discuss the pros and cons of each. The present joint design effort for a future high intensity neutrino oscillation in Europe within a common EU supported design study, EURONU, will also be presented. The design study will explore the physics reach, the detectors, the feasibility, the safety issues and the cost for each of the options so that the the community can take a decision on what to build when the facilities presently under exploitation and construction have to be replaced.

  8. Acquire information about neutrino parameters by detecting supernova neutrinos

    OpenAIRE

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-01-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein (MSW) effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle $\\theta_{13}$, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about $\\theta_{13}$ and neutrino masses ...

  9. A combined treatment of neutrino decay and neutrino oscillations

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ohlsson, Tommy; Winter, Walter

    2001-01-01

    Neutrino decay in vacuum has often been considered as an alternative to neutrino oscillations. Because nonzero neutrino masses imply the possibility of both neutrino decay and neutrino oscillations, we present a model-independent formal treatment of these combined scenarios. For that, we show for the example of Majoron decay that in many cases decay products are observable and may even oscillate. Furthermore, we construct a minimal scenario in which we study the physical implications of neutrino oscillations with intermediate decays

  10. Three-generation study of neutrino spin-flavor conversion in supernovae and implication for the neutrino magnetic moment

    Science.gov (United States)

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-01-01

    We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. From the formulation which includes all three-flavor neutrinos and antineutrinos, we give a new crossing diagram that includes not only ordinary Mikheyev-Smirnov-Wolfenstein (MSW) resonance but also a magnetically induced RSF effect. With the diagram, it is found that four conversions occur in supernovae: two are induced by the RSF effect and two by the pure MSW effect. We also numerically calculate neutrino conversions in supernova matter, using neutrino mixing parameters inferred from recent experimental results and a realistic supernova progenitor model. The results indicate that until 0.5 sec after the core bounce, the RSF-induced ν¯e↔ντ transition occurs efficiently (adiabatic resonance), when μν≳10- 12μB(B0/5×109 G)-1, where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of μνB0 at the super-Kamiokande detector and the Sudbury Neutrino Observatory using the calculated conversion probabilities, and find that the spectral deformation might have the possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.

  11. Detecting supernova neutrinos in Daya Bay Neutrino Laboratory

    International Nuclear Information System (INIS)

    Huang Mingyang; Guo Xinheng; Yang Binglin

    2011-01-01

    While detecting supernova neutrinos in the Daya Bay neutrino laboratory, several supernova neutrino effects need to be considered, including the supernova shock effects, the neutrino collective effects, the Mikheyev-Smirnov-Wolfenstein (MSW) effects, and the Earth matter effects. The phenomena of neutrino oscillation is affected by the above effects. Using some ratios of the event numbers of different supernova neutrinos, we propose some possible methods to identify the mass hierarchy and acquire information about the neutrino mixing angle θ13 and neutrino masses. (authors)

  12. Acquiring information about neutrino parameters by detecting supernova neutrinos

    Science.gov (United States)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-08-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle θ13, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about θ13 and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.

  13. Neutrinos and dark energy

    International Nuclear Information System (INIS)

    Schrempp, L.

    2008-02-01

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  14. Neutrinos and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Schrempp, L.

    2008-02-15

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  15. Three Dirac neutrinos

    International Nuclear Information System (INIS)

    Joshipura, A.S.; Rindani, S.D.

    1991-01-01

    The consequences of imposing an exact L e +L τ -L μ symmetry on a 6x6 matrix describing neutrino masses are discussed. The presence of right-handed neutrinos avoids the need of introducing any SU(2) Higgs triplet. Hence the conflict with the CERN LEP data on the Z width found in earlier models with L e +L τ -L μ symmetry is avoided. The L e +L τ -L μ symmetry provides an interesting realization of a recent proposal of Glashow to accommodate the 17-keV Dirac neutrino in the SU(2)xU(1) theory. All the neutrinos in this model are Dirac particles. The solar-neutrino problem can be solved in an extension of the model which generates a large (∼10 -11 μ B ) magnetic moment for the electron neutrino

  16. Neutrino mass matrix

    International Nuclear Information System (INIS)

    Strobel, E.L.

    1985-01-01

    Given the many conflicting experimental results, examination is made of the neutrino mass matrix in order to determine possible masses and mixings. It is assumed that the Dirac mass matrix for the electron, muon, and tau neutrinos is similar in form to those of the quarks and charged leptons, and that the smallness of the observed neutrino masses results from the Gell-Mann-Ramond-Slansky mechanism. Analysis of masses and mixings for the neutrinos is performed using general structures for the Majorana mass matrix. It is shown that if certain tentative experimental results concerning the neutrino masses and mixing angles are confirmed, significant limitations may be placed on the Majorana mass matrix. The most satisfactory simple assumption concerning the Majorana mass matrix is that it is approximately proportional to the Dirac mass matrix. A very recent experimental neutrino mass result and its implications are discussed. Some general properties of matrices with structure similar to the Dirac mass matrices are discussed

  17. Galactic neutrino communication

    Energy Technology Data Exchange (ETDEWEB)

    Learned, John G. [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu, HI 96822 (United States)], E-mail: jgl@phys.hawaii.edu; Pakvasa, Sandip [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu, HI 96822 (United States)], E-mail: pakvasa@phys.hawaii.edu; Zee, A. [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States)], E-mail: zee@kitp.ucsb.edu

    2009-01-12

    We examine the possibility to employ neutrinos to communicate within the galaxy. We discuss various issues associated with transmission and reception, and suggest that the resonant neutrino energy near 6.3 PeV may be most appropriate. In one scheme we propose to make Z deg. particles in an overtaking e{sup +}-e{sup -} collider such that the resulting decay neutrinos are near the W{sup -} resonance on electrons in the laboratory. Information is encoded via time structure of the beam. In another scheme we propose to use a 30 PeV pion accelerator to create neutrino or anti-neutrino beams. The latter encodes information via the beam CP state as well as timing. Moreover the latter beam requires far less power, and can be accomplished with presently foreseeable technology. Such signals from an advanced civilization, should they exist, will be eminently detectable in existing neutrino detectors.

  18. Solar neutrino detection

    International Nuclear Information System (INIS)

    Miramonti, Lino

    2009-01-01

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  19. Visible neutrino decay at DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Coloma, Pilar [Fermilab; Peres, Orlando G. [ICTP, Trieste

    2017-05-09

    If the heaviest neutrino mass eigenstate is unstable, its decay modes could include lighter neutrino eigenstates. In this case part of the decay products could be visible, as they would interact at neutrino detectors via mixing. At neutrino oscillation experiments, a characteristic signature of such \\emph{visible neutrino decay} would be an apparent excess of events at low energies. We focus on a simple phenomenological model in which the heaviest neutrino decays as $\

  20. Neutrino Physics at Fermilab

    International Nuclear Information System (INIS)

    Federspiel, F.; Garvey, G.; Louis, W.C.; Mills, G.B.; Tayloe, R.; Sandberg, V.; Sapp, B.; White, D.H.

    1999-01-01

    The Liquid Scintillator Neutrino Detector (LSND), located at the LANSCE (formerly LAMPF) linear accelerator at Los Alamos National Laboratory, has seen evidence for the oscillation of neutrinos, and hence neutrino mass. That discovery was the impetus for this LDRD project, begun in 1996. The goal of this project was to define the appropriate technologies to use in a follow up experiment and to set in place the requirements for such an experiment

  1. Neutrinos from gravitational collapse

    International Nuclear Information System (INIS)

    Mayle, R.; Wilson, J.R.; Schramm, D.N.

    1986-05-01

    Detailed calculations are made of the neutrino spectra emitted during gravitational collapse events (Type II supernovae). Those aspects of the neutrino signal which are relatively independent of the collapse model and those aspects which are sensitive to model details are discussed. The easier-to-detect high energy tail of the emitted neutrinos has been calculated using the Boltzmann equation which is compared with the result of the traditional multi-group flux limited diffusion calculations. 8 figs., 28 refs

  2. Beta rays and neutrinos

    International Nuclear Information System (INIS)

    Adams, S.F.

    1992-01-01

    It was over 30 years between the first observation of the enigmatic process of beta decay and the first postulation of the neutrino. It took a further 26 years until the first neutrino was detected and yet another 27 until the electroweak theory was confirmed by the discovery of W and Z particles. This article traces some of the puzzles and paradoxes associated with the history of the neutrino. (author)

  3. CERN: Neutrino facelift

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    With the termination this summer of the CHARM II neutrino experiment at the SPS proton synchrotron, CERN's 30- year tradition of neutrino physics came to a temporary halt. However with these enigmatic particles playing a vital role in today's Standard Model but continually reluctant to give up all their secrets, neutrino physics will continue to be in the forefront of this research

  4. Neutrinos in the Electron

    International Nuclear Information System (INIS)

    Koschmieder, E. L.

    2007-01-01

    I will show that one half of the rest mass of the electron consists of electron neutrinos and that the other half of the rest mass of the electron consists of the mass in the energy of electric oscillations. With this composition we can explain the rest mass of the electron, its charge, its spin and its magnetic moment We have also determined the rest masses of the muon neutrino and the electron neutrino

  5. Neutrino Oscillation Physics

    International Nuclear Information System (INIS)

    Kayser, Boris

    2014-01-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures

  6. Neutrino properties from cosmology

    DEFF Research Database (Denmark)

    Hannestad, S.

    2013-01-01

    In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non......-standard interactions, can also be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties....

  7. Solar neutrino experiments

    International Nuclear Information System (INIS)

    Hampel, W.

    1996-01-01

    The present status of experimental solar neutrino research is reviewed. Updated results from the Homestake, Kamiokande, GALLEX and SAGE detectors all show a deficit when compared to recent standard solar model calculations. Two of these detectors, GALLEX and SAGE, have recently been checked with artificial 51 Cr neutrino sources. It is shown that astrophysical scenarios to solve the solar neutrino problems are not favoured by the data. There is hope that the results of forthcoming solar neutrino experiments can provide the answers to the open questions. (author) 6 figs., 3 tabs., 36 refs

  8. Neutrino Oscillation Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kayser, Boris [Fermilab (United States)

    2014-07-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.

  9. Neutrinos in supernovae

    International Nuclear Information System (INIS)

    Cooperstein, J.

    1986-10-01

    The role of neutrinos in Type II supernovae is discussed. An overall view of the neutrino luminosity as expected theoretically is presented. The different weak interactions involved are assessed from the standpoint of how they exchange energy, momentum, and lepton number. Particular attention is paid to entropy generation and the path to thermal and chemical equilibration, and to the phenomenon of trapping. Various methods used to calculate the neutrino flows are considered. These include trapping and leakage schemes, distribution-averaged transfer, and multi-energy group methods. The information obtained from the neutrinos caught from Supernova 1987a is briefly evaluated. 55 refs., 7 figs

  10. Neutrinos in astrophysics

    CERN Document Server

    Rees, Martin J

    1980-01-01

    The amount of 4He synthesised in the "big bang" is sensitive to the early particle content and to the expansion rate. If there was indeed a "big bang", surprisingly strong conclusions can be drawn about the number of species of neutrinos, and about the possibility that such particles have non-zero rest mass. The dynamics of supernovae are sensitive to the det~ils of neutrino physics; such explosions would yield IO L-1053 ergs of -v IO Mev neutrinos, in a burst lasting a few milliseconds. Galactic nuclei, cosmic ray sources and other high energy cosmic phenomena could yield a low background of~ 10 Gev neutrinos.

  11. Question of neutrino mass

    International Nuclear Information System (INIS)

    Branco, G.C.; Senjanovic, G.

    1978-01-01

    We investigate the question of neutrino mass in theories in which neutrinos are four-component Dirac particles. Our analysis is done in the framework of left-right--symmetric theories. The requirement of calculability and natural smallness of neutrino mass leads to the following constraints: (i) left and right charged weak currents must be ''orthogonal'' to each other, and (ii) there should be no W/sub L/-W/sub R/ mixing at the three level. Finally, we exhibit a model in which, due to the existence of an unbroken symmetry of the total Lagrangian, the electron and muon neutrinos remain massless to all orders in perturbation theory

  12. The Baikal Neutrino Telescope

    International Nuclear Information System (INIS)

    Aynutdinov, V. M.; Balkanov, V. A.; Belolaptikov, I. A.; Bezrukov, L. B.; Borschev, D. A.; Budnev, N. M.; Burmistrov, K. V.; Danilchenko, I. A.; Davidov, Ya. I.; Domogatsky, G. V.; Doroshenko, A. A.; Dyachok, A. N.; Dzhilkibaev, Zh.-A. M.; Fialkovsky, S. V.; Gaponenko, O. N.; Golubkov, K. V.; Gress, O. A.; Gress, T. I.; Grishin, O. V.; Klabukov, A. M.

    2006-01-01

    We review the present status of the Baikal Neutrino Experiment and present results of a search for upward-going atmospheric neutrinos and magnetic monopoles obtained with the detector NT200. The results of a search for very high energy neutrinos are presented and an upper limit on the extraterrestrial diffuse neutrino flux is obtained. We describe the strategy of upgrading the NT200 to NT200+ and creating a detector on the Gigaton scale at Lake Baikal. The first results obtained with the new NT200+ detector as a basic cell of a future Gigaton detector are presented

  13. Solar neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, W [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    1996-11-01

    The present status of experimental solar neutrino research is reviewed. Updated results from the Homestake, Kamiokande, GALLEX and SAGE detectors all show a deficit when compared to recent standard solar model calculations. Two of these detectors, GALLEX and SAGE, have recently been checked with artificial {sup 51}Cr neutrino sources. It is shown that astrophysical scenarios to solve the solar neutrino problems are not favoured by the data. There is hope that the results of forthcoming solar neutrino experiments can provide the answers to the open questions. (author) 6 figs., 3 tabs., 36 refs.

  14. Decays of supernova neutrinos

    International Nuclear Information System (INIS)

    Lindner, Manfred; Ohlsson, Tommy; Winter, Walter

    2002-01-01

    Supernova neutrinos could be well-suited for probing neutrino decay, since decay may be observed even for very small decay rates or coupling constants. We will introduce an effective operator framework for the combined description of neutrino decay and neutrino oscillations for supernova neutrinos, which can especially take into account two properties: one is the radially symmetric neutrino flux, allowing a decay product to be re-directed towards the observer even if the parent neutrino had a different original direction of propagation. The other is decoherence because of the long baselines for coherently produced neutrinos. We will demonstrate how to use this effective theory to calculate the time-dependent fluxes at the detector. In addition, we will show the implications of a Majoron-like decay model. As a result, we will demonstrate that for certain parameter values one may observe some effects which could also mimic signals similar to the ones expected from supernova models, making it in general harder to separate neutrino and supernova properties

  15. Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the average depth of shower maximum and its fluctuations with the Pierre Auger Observatory; (2) Study of the nuclear mass composition of UHECR with the surface detectors of the Pierre Auger Observatory; (3) Comparison of data from the Pierre Auger Observatory with predictions from air shower simulations: testing models of hadronic interactions; (4) A Monte Carlo exploration of methods to determine the UHECR composition with the Pierre Auger Observatory; (5) The delay of the start-time measured with the Pierre Auger Observatory for inclined showers and a comparison of its variance with models; (6) UHE neutrino signatures in the surface detector of the Pierre Auger Observatory; and (7) The electromagnetic component of inclined air showers at the Pierre Auger Observatory.

  16. The KM3NeT deep-sea neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Margiotta, Annarita

    2014-12-01

    KM3NeT is a deep-sea research infrastructure being constructed in the Mediterranean Sea. It will host the next generation Cherenkov neutrino telescope and nodes for a deep sea multidisciplinary observatory, providing oceanographers, marine biologists, and geophysicists with real time measurements. The neutrino telescope will complement IceCube in its field of view and exceed it substantially in sensitivity. Its main goal is the detection of high energy neutrinos of astrophysical origin. The detector will have a modular structure with six building blocks, each consisting of about 100 Detection Units (DUs). Each DU will be equipped with 18 multi-PMT digital optical modules. The first phase of construction has started and shore and deep-sea infrastructures hosting the future KM3NeT detector are being prepared in offshore Toulon, France and offshore Capo Passero on Sicily, Italy. The technological solutions for the neutrino detector of KM3NeT and the expected performance of the neutrino telescope are presented and discussed. - Highlights: • A deep-sea research infrastructure is being built in the Mediterranean Sea. • It will host a km{sup 3}-size neutrino telescope and a deep-sea multidisciplinary observatory. • The main goal of the neutrino telescope is the search for Galactic neutrino sources. • A major innovation is adopted in the design of the optical module. • 31 3 in. photomultiplier tubes (PMTs) will be hosted in the same glass sphere.

  17. Accelerator studies of neutrino oscillations

    CERN Document Server

    Ereditato, A

    2000-01-01

    The question of whether the neutrino has a non-vanishing mass plays acrucial role in particle physics. A massive neutrino would unambiguously reveal the existence of new physics beyond the Standard Model. In addition, it could have profound implications on astrophysics and cosmology, with effects on the evolution of the Universe. Experiments aiming at direct neutrino-mass measurements based on kinematics have not been able, so far, to measure the very small neutrino mass. Indirect measurements can be performed by exploiting reactions which may only occur for massive neutrinos. Neutrino oscillation is one of those processes. The mass difference between neutrino mass-eigenstates can be inferred from a phase measurement. This feature allows for high sensitivity experiments. Neutrinos from different sources can be used to search for oscillations: solar neutrinos, neutrinos produced in the interaction of cosmic rays with the atmosphere and artificially produced neutrinos from nuclear reactors and particle accelera...

  18. Measurements of neutrino mass

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1985-01-01

    Direct experimental information of neutrino mass as derived from the study of nuclear and elementary-particle weak decays is reviewed. Topics include tritium beta decay; the 3 He-T mass difference; electron capture decay of 163 Ho and 158 Tb; and limits on massive neutrinos from cosmology. 38 references

  19. Wroclaw neutrino event generator

    International Nuclear Information System (INIS)

    Nowak, J A

    2006-01-01

    A neutrino event generator developed by the Wroclaw Neutrino Group is described. The physical models included in the generator are discussed and illustrated with the results of simulations. The considered processes are quasi-elastic scattering and pion production modelled by combining the Δ resonance excitation and deep inelastic scattering

  20. Neutrino bounds from leptogenesis

    International Nuclear Information System (INIS)

    Hambye, T.

    2005-01-01

    Through leptogenesis, baryogenesis could have the same origin as neutrino masses. Emphasis is put on the conditions which, in order that this mechanism works, need to be fulfilled by the neutrino masses as well as by the heavy state masses. The model dependence of these conditions is discussed

  1. Neutrino flavor entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo [Dipartimento di Fisica, Università degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno (Italy); Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio [Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2013-04-15

    Neutrino oscillations can be equivalently described in terms of (dynamical) entanglement of neutrino flavor modes. We review previous results derived in the context of quantum mechanics and extend them to the quantum field theory framework, were a rich structure of quantum correlations appears.

  2. Neutrino flavor entanglement

    International Nuclear Information System (INIS)

    Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2013-01-01

    Neutrino oscillations can be equivalently described in terms of (dynamical) entanglement of neutrino flavor modes. We review previous results derived in the context of quantum mechanics and extend them to the quantum field theory framework, were a rich structure of quantum correlations appears

  3. Neutrinos (3/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    In this course, the basic features of neutrino physics are reviewed, pointing to the very special characteristics of this elusive particle and to the related open questions. Emphasis is given to the neutrino oscillation mechanism and to the state of the art of the experimental studies, mostly in relation to the many interesting results obtained in the last years.

  4. Neutrinos (2/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    In this course, the basic features of neutrino physics are reviewed, pointing to the very special characteristics of this elusive particle and to the related open questions. Emphasis is given to the neutrino oscillation mechanism and to the state of the art of the experimental studies, mostly in relation to the many interesting results obtained in the last years.

  5. Neutrinos (1/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    In this course, the basic features of neutrino physics are reviewed, pointing to the very special characteristics of this elusive particle and to the related open questions. Emphasis is given to the neutrino oscillation mechanism and to the state of the art of the experimental studies, mostly in relation to the many interesting results obtained in the last years.

  6. The solar neutrino problem

    International Nuclear Information System (INIS)

    Roxburgh, I.W.

    1981-01-01

    The problems posed by the low flux of neutrinos from the sun detected by Davis and coworkers are reviewed. Several proposals have been advanced to resolve these problems and the more reasonable (in the author's opinion) are presented. Recent claims that the neutrino may have finite mass are also considered. (orig.)

  7. Atmospheric neutrino fluxes

    International Nuclear Information System (INIS)

    Perkins, D.H.

    1984-01-01

    The atmospheric neutrino fluxes, which are responsible for the main background in proton decay experiments, have been calculated by two independent methods. There are discrepancies between the two sets of results regarding latitude effects and up-down asymmetries, especially for neutrino energies Esub(ν) < 1 GeV. (author)

  8. Perturbed S3 neutrinos

    DEFF Research Database (Denmark)

    jora, Renata; Schechter, Joseph; Naeem Shahid, M.

    2009-01-01

    We study the effects of the perturbation which violates the permutation symmetry of three Majorana neutrinos but preserves the well known (23) interchange symmetry. This is done in the presenceof an arbitrary Majorana phase which serves to insure the degeneracy of the three neutrinos at the unper...... at the unperturbed level....

  9. GENIUS Project, Neutrino Oscillations and Cosmology: Neutrinos Reveal Their Nature ?

    International Nuclear Information System (INIS)

    Czakon, M.; Studnik, J.; Zralek, M.; Gluza, J.

    2000-01-01

    The neutrinoless double beta decay as well as any other laboratory experiment has not been able to answer the question of the neutrino's nature. Hints on the answer are available when neutrino oscillations and (ββ) 0ν are considered simultaneously. In this case phenomenologically interesting neutrino mass schemes can lead to non-vanishing and large values of (m ν ). As a consequence, some schemes with Majorana neutrinos can be ruled out even now. If we assume that in addition neutrinos contribute to Hot Dark Matter then the window for Majorana neutrinos is even more restricted, e.g. GENIUS experiment will be sensitive to scenarios with three Majorana neutrinos. (author)

  10. Detection of a Type IIn Supernova in Optical Follow-up Observations of IceCube Neutrino Events

    OpenAIRE

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.

    2015-01-01

    The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.degrees 2 away from the neutrino alert direction, with an error radius of 0...

  11. Cosmic Ray Physics with the IceCube Observatory

    International Nuclear Information System (INIS)

    Kolanoski, H

    2013-01-01

    The IceCube Neutrino Observatory with its 1-km 3 in-ice detector and the 1-km 2 surface detector (IceTop) constitutes a three-dimensional cosmic ray detector well suited for general cosmic ray physics. Various measurements of cosmic ray properties, such as energy spectra, mass composition and anisotropies, have been obtained from analyses of air showers at the surface and/or atmospheric muons in the ice.

  12. Physics of neutrino flavor transformation through matter-neutrino resonances

    Science.gov (United States)

    Wu, Meng-Ru; Duan, Huaiyu; Qian, Yong-Zhong

    2016-01-01

    In astrophysical environments such as core-collapse supernovae and neutron star-neutron star or neutron star-black hole mergers where dense neutrino media are present, matter-neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino-electron and neutrino-neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev-Smirnov-Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  13. Neutrino mass from Cosmology

    CERN Document Server

    Lesgourgues, Julien

    2012-01-01

    Neutrinos can play an important role in the evolution of the Universe, modifying some of the cosmological observables. In this contribution we summarize the main aspects of cosmological relic neutrinos and we describe how the precision of present cosmological data can be used to learn about neutrino properties, in particular their mass, providing complementary information to beta decay and neutrinoless double-beta decay experiments. We show how the analysis of current cosmological observations, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure, provides an upper bound on the sum of neutrino masses of order 1 eV or less, with very good perspectives from future cosmological measurements which are expected to be sensitive to neutrino masses well into the sub-eV range.

  14. The solar neutrino problem

    International Nuclear Information System (INIS)

    Zatsepin, G.

    1982-01-01

    The problem of missing solar neutrinos is reviewed and discussed. The experiments of the 70s show a solar neutrino flux to be 4 times lower than the flux predicted by the standard model of the Sun. The three possible origins of this contradiction are analysed: the cross sections of nuclear reactions going on in the internal region of the Sun must be remeasured; the unknown properties of neutrino, like neutrino oscillation or decay, must be investigated theoretically and experimentally; or the standard model of the Sun must be changed, e.g. by a periodically pulsating star model or by a model describing periodic admixtures of He-3 to the central region of the Sun. Some new models and newly proposed experiments are described. The importance of new electronic detection methods of neutrinos is underlined. (D.Gy.)

  15. Neutrino masses and mixing

    International Nuclear Information System (INIS)

    Fogli, G.

    1998-01-01

    The paper presents an analysis of the solar neutrino problem in terms of both Mikheyev-Smirnov-Wolfenstein (MSW) and vacuum neutrino oscillations, with the inclusion of the data collected by the SuperKamiokande experiment during 306.3 days of operation. In particular, the observed energy spectrum of the recoil electrons from 8 B neutrino scattering is discussed in detail and used to constrain the mass-mixing parameter space. Going to the atmospheric neutrino anomaly, the paper performs both a two- and three-flavor analysis of the most recent SuperKamiokande atmospheric neutrino data. The variations of the zenith distributions of ν events in the presence of flavor oscillations are investigated. It is seen that fits to the SK data, with and without the addition of the CHOOZ constrains, strongly limit the parameter space. Detailed bounds in triangle graphs are reported

  16. The acceptance of surface detector arrays for high energy cosmological muon neutrinos

    International Nuclear Information System (INIS)

    Vo Van Thuan; Hoang Van Khanh

    2011-01-01

    In order to search for ultra-high energy cosmological earth-skimming muon neutrinos by the surface detector array (SD) similar to one of the Pierre Auger Observatory (PAO), we propose to use the transition electromagnetic radiation at the medium interface induced by earth-skimming muons for triggering a few of aligned neighboring Cherenkov SD stations. Simulations of the acceptance of a modeling SD array have been done to estimate the detection probability of earth-skimming muon neutrinos.

  17. Hardron production and neutrino beams

    Science.gov (United States)

    Guglielmi, A.

    2006-11-01

    The precise measurements of the neutrino mixing parameters in the oscillation experiments at accelerators require new high-intensity and high-purity neutrino beams. Ancillary hadron-production measurements are then needed as inputs to precise calculation of neutrino beams and of atmospheric neutrino fluxes.

  18. Neutrino statistics: elementary problems and some applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuchowicz, B

    1973-01-01

    The treatment of neutrinos includes neutrinos in statistical equilibrium, mathematical refinements, application to stars, the relic neutrinos in cosmology, and some unsolved problems and prospects. (JFP)

  19. The physics of massive neutrinos

    CERN Document Server

    Kayser, Boris; Perrier, Frederic

    1989-01-01

    This book explains the physics and phenomenology of massive neutrinos. The authors argue that neutrino mass is not unlikely and consider briefly the search for evidence of this mass in decay processes before they examine the physics and phenomenology of neutrino oscillation. The physics of Majorana neutrinos (neutrinos which are their own antiparticles) is then discussed. This volume requires of the reader only a knowledge of quantum mechanics and of very elementary quantum field theory.

  20. Status of Heavy Neutrino Experiments

    CERN Document Server

    Wynne, Benjamin; The ATLAS collaboration

    2017-01-01

    The observation of neutrino oscillations raises the possibility that there exist additional, undiscovered high-mass neutrinos, giving mass to Standard Model neutrinos via the seesaw mechanism. By pushing the collider energy frontier at the LHC, the possibility arises that these heavy neutrinos may be produced and identified. We summarise the latest LHC results of searches for heavy neutrinos in a variety of final states.

  1. Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 40-string detector

    International Nuclear Information System (INIS)

    Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Krasberg, M.; Kurahashi, N.

    2011-01-01

    The IceCube Neutrino Observatory is a 1 km 3 detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A total of 12 877 upward-going candidate neutrino events have been selected for this analysis. No evidence for a diffuse flux of astrophysical muon neutrinos was found in the data set leading to a 90% C.L. upper limit on the normalization of an E -2 astrophysical ν μ flux of 8.9x10 -9 GeV cm -2 s -1 sr -1 . The analysis is sensitive in the energy range between 35 TeV and 7 PeV. The 12 877 candidate neutrino events are consistent with atmospheric muon neutrinos measured from 332 GeV to 84 TeV and no evidence for a prompt component to the atmospheric neutrino spectrum is found.

  2. Neutrinos at CERN

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    CERN's long and distinguished neutrino tradition began in 1958 at the then new 500 MeV synchrocyclotron (SC) with the first observation of the decay of a charged pion into an electron and a neutrino. At that time, the first ideas on the special (vector/axial vector) structure of the weak interactions had been put forward by Feynman and Gell-Mann and by Marshak and Sudarshan, but the continual non-observation of that charged pion decay was holding up progress. This decay is only one part in ten thousand, and is masked by the dominant muon-neutrino channel. A special telescope was built to pick up the high energy electrons from the pion decay. In 1962 came another SC neutrino success, with the first measurement of the decay of a charged pion into a neutral one, with emission of an electron and a neutrino. Meanwhile the main thrust of CERN's neutrino effort was taking shape at the PS. By the close of 1960, CERN had decided to attack neutrino physics using several detectors - a 1m heavy liquid bubble chamber from Andre Lagarrigue's team in Paris, a CERN 1 m heavy liquid bubble chamber, and a hybrid chamber/counter from a group led by Helmut Faissner

  3. Monochromatic neutrino beams

    International Nuclear Information System (INIS)

    Bernabeu, Jose; Burguet-Castell, Jordi; Espinoza, Catalina; Lindroos, Mats

    2005-01-01

    In the last few years spectacular results have been achieved with the demonstration of non vanishing neutrino masses and flavour mixing. The ultimate goal is the understanding of the origin of these properties from new physics. In this road, the last unknown mixing [U e3 ] must be determined. If it is proved to be non-zero, the possibility is open for Charge Conjugation-Parity (CP) violation in the lepton sector. This will require precision experiments with a very intense neutrino source. Here a novel method to create a monochromatic neutrino beam, an old dream for neutrino physics, is proposed based on the recent discovery of nuclei that decay fast through electron capture. Such nuclei will generate a monochromatic directional neutrino beam when decaying at high energy in a storage ring with long straight sections. We also show that the capacity of such a facility to discover new physics is impressive, so that fine tuning of the boosted neutrino energy allows precision measurements of the oscillation parameters even for a [U e3 ] mixing as small as 1 degree. We can thus open a window to the discovery of CP violation in neutrino oscillations

  4. Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions

    Directory of Open Access Journals (Sweden)

    Yu-Feng Li

    2014-11-01

    Full Text Available We discuss reactor antineutrino oscillations with non-standard interactions (NSIs at the neutrino production and detection processes. The neutrino oscillation probability is calculated with a parametrization of the NSI parameters by splitting them into the averages and differences of the production and detection processes respectively. The average parts induce constant shifts of the neutrino mixing angles from their true values, and the difference parts can generate the energy (and baseline dependent corrections to the initial mass-squared differences. We stress that only the shifts of mass-squared differences are measurable in reactor antineutrino experiments. Taking Jiangmen Underground Neutrino Observatory (JUNO as an example, we analyze how NSIs influence the standard neutrino measurements and to what extent we can constrain the NSI parameters.

  5. Search for neutrino point sources with an all-sky autocorrelation analysis in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Turcati, Andrea; Bernhard, Anna; Coenders, Stefan [TU, Munich (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The IceCube Neutrino Observatory is a cubic kilometre scale neutrino telescope located in the Antarctic ice. Its full-sky field of view gives unique opportunities to study the neutrino emission from the Galactic and extragalactic sky. Recently, IceCube found the first signal of astrophysical neutrinos with energies up to the PeV scale, but the origin of these particles still remains unresolved. Given the observed flux, the absence of observations of bright point-sources is explainable with the presence of numerous weak sources. This scenario can be tested using autocorrelation methods. We present here the sensitivities and discovery potentials of a two-point angular correlation analysis performed on seven years of IceCube data, taken between 2008 and 2015. The test is applied on the northern and southern skies separately, using the neutrino energy information to improve the effectiveness of the method.

  6. Probing axions with the neutrino signal from the next galactic supernova

    International Nuclear Information System (INIS)

    Fischer, Tobias; Giannotti, Maurizio; Payez, Alexandre; Ringwald, Andreas

    2016-05-01

    We study the impact of axion emission in simulations of massive star explosions, as an additional source of energy loss complementary to the standard neutrino emission. The inclusion of this channel shortens the cooling time of the nascent protoneutron star and hence the duration of the neutrino signal. We treat the axion-matter coupling strength as a free parameter to study its impact on the protoneutron star evolution as well as on the neutrino signal. We furthermore analyze the observability of the enhanced cooling in current and next-generation underground neutrino detectors, showing that values of the axion mass m a >or similar 8 x 10 -3 eV can be probed. Therefore a galactic supernova neutrino observation would provide a valuable possibility to probe axion masses in a range within reach of the planned helioscope experiment, the International Axion Observatory (IAXO).

  7. 1020 eV cosmic-ray and particle physics with kilometer-scale neutrino telescopes

    International Nuclear Information System (INIS)

    Alvarez-Muniz, J.; Halzen, F.

    2001-01-01

    We show that a kilometer-scale neutrino observatory, though optimized for TeV to PeV energy, is sensitive to the neutrinos associated with super-EeV sources. These include super-heavy relics, neutrinos associated with the Greisen cutoff, and topological defects which are remnant cosmic structures associated with phase transitions in grand unified gauge theories. It is a misconception that new instruments optimized to EeV energy are required to do this important science, although this is not their primary goal. Because kilometer-scale neutrino telescopes can reject atmospheric backgrounds by establishing the very high energy of the signal events, they have sensitivity over the full solid angle, including the horizon where most of the signal is concentrated. This is important because up-going neutrino-induced muons, routinely considered in previous calculations, are absorbed by the Earth

  8. Search for high energy skimming neutrinos at a surface detector array

    International Nuclear Information System (INIS)

    Vo Van Thuan; Hoang Van Khanh; Pham Ngoc Diep

    2010-01-01

    In the present study we propose a new method for detection of high energy cosmological muon neutrinos by transition radiations at a medium interface. The emerging electro-magnetic radiations induced by earth-skimming heavy charged leptons are able to trigger a few of aligned neighboring local water Cherenkov stations at a surface detector array similar to the Pierre Auger Observatory. The estimation applied to the model of Gamma Ray Burst induced neutrino fluxes and the spherical earth surface shows a competitive rate of muon neutrino events in the energy range below the GZK cut-off. (author)

  9. Search for small-scale angular correlations of neutrino arrival directions in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Schimp, Michael; Glagla, Martin; Haack, Christian; Leuermann, Martin; Raedel, Leif; Reimann, Rene; Schoenen, Sebastian; Wiebusch, Christopher [III. Physikalisches Institut, RWTH Aachen University, 52056 Aachen (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    Recently, the IceCube Neutrino Observatory discovered a diffuse flux of extra-terrestrial high-energy neutrinos. The identification of their astrophysical sources is one of the goals of current investigations. This analysis is based on the expansion of muon neutrino arrival directions in spherical harmonics, which is sensitive to angular correlations. A large number of point sources distributed over the sky would leave an imprint on the spectrum of observed expansion coefficients, even if the sources are too weak to be detected individually. We present the analysis method and discuss possible astrophysical interpretations for the observation or non-observation of such a correlation.

  10. CONFERENCE: Neutrino mass

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The successes in capturing neutrinos from last year's supernova underlined the usefulness of large underground detectors for this sort of physics, and ambitious new projects are now in the pipeline. Meanwhile another approach to cosmic neutrino detection, carefully prepared during the past decade, has now taken its first experimental steps. DUMAND - Deep Underwater Muon and Neutrino Detector - aims to use the ocean as the active medium, tracking particles with arrays of photomultipliers picking up the tiny nanosecond flashes of blue Cherenkov light emitted by cosmic particles as they pass through seawater

  11. CONFERENCE: Neutrino mass

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-06-15

    The successes in capturing neutrinos from last year's supernova underlined the usefulness of large underground detectors for this sort of physics, and ambitious new projects are now in the pipeline. Meanwhile another approach to cosmic neutrino detection, carefully prepared during the past decade, has now taken its first experimental steps. DUMAND - Deep Underwater Muon and Neutrino Detector - aims to use the ocean as the active medium, tracking particles with arrays of photomultipliers picking up the tiny nanosecond flashes of blue Cherenkov light emitted by cosmic particles as they pass through seawater.

  12. Results from neutrino experiments

    International Nuclear Information System (INIS)

    Smirnov, A.Yu.

    1993-11-01

    Recent (first or/and the best) results from the neutrino experiments are reviewed and their implications for the theory are discussed. The sense of the experiments is the searching for neutrino masses, mixing and interactions beyond the standard model. Present laboratory experiments give upper bounds on the masses and the mixing which are at the level of predictions of the ''electroweak see-saw''. Positive indications of nonzero lepton mixing follow from studies of the solar and atmospheric neutrinos. (author). 95 refs, 11 figs

  13. Neutrino mass experiments

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1989-01-01

    The current status of the experimental search for neutrino mass is reviewed, with emphasis on direct kinematic methods. Simpson and Hime report finding new evidence for a 17-keV neutrino in the β decay of 3 H and 35 S. The situation concerning the electron neutrino mass as measured in tritium beta decay has not changed significantly in the last two years. We discuss the ''model independent'' lower limit of 17 eV obtained by the ITEP group in light of existing data on the 3 H-- 3 He mass difference. 42 refs., 1 fig., 1 tab

  14. Neutrino physics present and future

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Our understanding of neutrinos has been revolutionized by the discovery that they have nonzero masses and very large mixing. We will explain the phenomenology of massive neutrinos, including neutrino oscillation in vacuum and in matter, and the physics of neutrinos that are their own antiparticles. We will review the evidence for neutrino masses and mixing, and summarize what has been learned about the neutrinos so far. Identifying the very interesting open questions raised by the discovery of neutrino mass, we will discuss how these questions may be answered through future experiments. Finally, we will consider the possibility that CP violation by neutrinos is the key to understanding the matter-antimatter asymmetry of the universe, and discuss the see-saw theory of why neutrino masses are so tiny.

  15. Mirror model for sterile neutrinos

    International Nuclear Information System (INIS)

    Berezinsky, Veniamin; Narayan, Mohan; Vissani, Francesco

    2003-01-01

    Sterile neutrinos are studied as subdominant contribution to solar neutrino physics. The mirror-matter neutrinos are considered as sterile neutrinos. We use the symmetric mirror model with gravitational communication between mirror and visible sectors. This communication term provides mixing between visible and mirror neutrinos with the basic scale μ=v EW 2 /M Pl =2.5x10 -6 eV, where v EW =174 GeV is the vacuum expectation value of the standard electroweak group and M Pl is the Planckian mass. It is demonstrated that each mass eigenstate of active neutrinos splits into two states separated by small Δm 2 . Unsuppressed oscillations between active and sterile neutrinos (ν a ↔ν s ) occur only in transitions between each of these close pairs ('windows'). These oscillations are characterized by very small Δm 2 and can suppress the flux and distort spectrum of pp-neutrinos in detectable way. The other observable effect is anomalous seasonal variation of neutrino flux, which appears in LMA solution. The considered subdominant neutrino oscillations ν a ↔ν s can reveal itself as big effects in observations of supernova neutrinos and high-energy (HE) neutrinos. In the case of HE neutrinos they can provide a very large diffuse flux of active neutrinos unconstrained by the e-m cascade upper limit

  16. Geo-Neutrinos

    International Nuclear Information System (INIS)

    Dye, S.T.

    2009-01-01

    This paper briefly reviews recent developments in the field of geo-neutrinos. It describes current and future detection projects, discusses modeling projects, suggests an observational program, and visits geo-reactor hypotheses.

  17. Geo-Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Dye, S.T. [Department of Physics and Astronomy, University of Hawaii at Manoa, 2505 Correa Road, Honolulu, Hawaii, 96822 (United States); College of Natural Sciences, Hawaii Pacific University, 45-045 Kamehameha Highway, Kaneohe, Hawaii, 96744 (United States)

    2009-03-15

    This paper briefly reviews recent developments in the field of geo-neutrinos. It describes current and future detection projects, discusses modeling projects, suggests an observational program, and visits geo-reactor hypotheses.

  18. The World of Neutrinos

    Indian Academy of Sciences (India)

    4. Their detection ... He + light. +2νe. Neutrinos needed to conserve energy, momentum, angular momentum .... almost massless. (at least a million times lighter than electrons) only weak .... Signals of physics beyond the Standard Model.

  19. Results from atmospheric neutrinos

    Indian Academy of Sciences (India)

    Africa and South India first detected the natural neutrinos and observed .... lucky coincidences, such as the angular diameter of the moon and sun being ... (where there is some peaking due to longer flight paths for pions in the atmosphere).

  20. Neutrinos: ghosts of matter

    CERN Multimedia

    Wark, Dave

    2005-01-01

    The discovery that neutrinos have masse and can oscillate between different flavours was one of the major breakthroughts in particle physics in the past decade, but there is much about these mysterious particles that we still do not understand

  1. Neutrino mass: Recent results

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1989-01-01

    Some recent developments in the experimental search for neutrino mass are discussed. Simpson and Hime report finding new evidence for a 17-keV neutrino in the β decay of 3 H and 35 S. New data from Los Alamos on the electron neutrino mass as measured in tritium beta decay give an upper limit of 13.5 eV at the 95% confidence level. This result is not consistent with the long-standing ITEP result of 26(5) eV within a ''model-independent'' range of 17 to 40 eV. It now appears that the electron neutrino is not sufficiently massive to close the universe by itself. 38 refs., 1 figs., 2 tabs

  2. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    positron or electron–proton plasma in the context of early universe, stars and supernova ... proper. Of course, in their later work on kinetic theory (KT) [5] of neutrino plasma inter- .... for electron also with additional electric potential term.

  3. Gravitational Waves and Neutrinos

    OpenAIRE

    Sturani, Riccardo

    2018-01-01

    We give an overview about the recent detection of gravitational waves by the Advanced LIGO first and second observing runs and by Advanced Virgo, with emphasis on the prospects for multi-messenger astronomy involving neutrinos detections.

  4. Perspectives in Neutrino Physics

    CERN Document Server

    Altarelli, Guido

    2011-01-01

    This is a Concluding Talk, not a Summary of the Conference. I will discuss some of the highlights that particularly impressed me (a subjective choice) and make some comments on the status and the prospects of neutrino mass and mixing.

  5. Neutrinos, on your marks...!

    CERN Multimedia

    2006-01-01

    As the Bulletin was about to be released, the CNGS team was ready to produce its first neutrinos. The gradual commissioning of the installation should result in the production of a nominal beam during the month of August.

  6. Introduction to neutrino physics

    International Nuclear Information System (INIS)

    Naumov, D.V.

    2011-01-01

    This is a manuscript of lectures presented by the author at the Baikal Summer School on Physics of Elementary Particles and Astrophysics 2010. The lectures are intended mainly for students and young researchers as an introductory course of neutrino physics

  7. Effective Majorana neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Lucia [Instituto de Fisica, Facultad de Ingenieria,Universidad de la Republica, Montevideo (Uruguay); Romero, Ismael; Peressutti, Javier; Sampayo, Oscar A. [Universidad Nacional de Mar del Plata, Departamento de Fisica, Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR) CONICET, UNMDP, Mar del Plata (Argentina)

    2016-08-15

    We study the decay of heavy sterile Majorana neutrinos according to the interactions obtained from an effective general theory. We describe the two- and three-body decays for a wide range of neutrino masses. The results obtained and presented in this work could be useful for the study of the production and detection of these particles in a variety of high energy physics experiments and astrophysical observations. We show in different figures the dominant branching ratios and the total decay width. (orig.)

  8. Neutrino physics and accelerators

    International Nuclear Information System (INIS)

    Kaftanov, V.

    1978-01-01

    The history is described of experiments aimed at the study of direct neutrino-matter interactions conducted in the past twenty years. Experiments are outlined carried out with the objective of proving the existence of the intermediate W meson which had been predicted by the weak interaction theory. The methods of obtaining neutrino beams using accelerators and the detectors used are briefly shown. Also described are experiments to be conducted in the near future in different laboratories. (Z.J.)

  9. Massive neutrinos in astrophysics

    International Nuclear Information System (INIS)

    Qadir, A.

    1982-08-01

    Massive neutrinos are among the big hopes of cosmologists. If they happen to have the right mass they can close the Universe, explain the motion of galaxies in clusters, provide galactic halos and even, possibly, explain galaxy formation. Tremaine and Gunn have argued that massive neutrinos cannot do all these things. I will explain, here, what some of us believe is wrong with their arguments. (author)

  10. Cosmological and supernova neutrinos

    Science.gov (United States)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  11. Mass relation for neutrinos

    Science.gov (United States)

    Babu; Barr

    2000-08-07

    A generalization of the well-known Georgi-Jarlskog relation (m(&mgr;)/m(tau)) = 3(m(s)/m(b)) to neutrinos is found in the context of SO(10). This new relation is (m(nu(&mgr;))/m(nu(tau))) = 16(m(c)/m(t)), which is consistent with present data, assuming the Mikheyev-Smirnov-Wolfenstein solution to the solar neutrino problem.

  12. Radiative Majorana Neutrino Masses

    OpenAIRE

    Hou, Wei-Shu; Wong, Gwo-Guang

    1994-01-01

    We present new radiative mechanisms for generating Majorana neutrino masses, within an extension of the standard model that successfully generates radiative charged lepton masses, order by order, from heavy sequential leptons. Only the new sequential neutral lepton has a right-handed partner, and its Majorana mass provides the seed for Majorana neutrino mass generation. Saturating the cosmological bound of $50$ eV with $m_{\

  13. Mass Relation for Neutrinos

    International Nuclear Information System (INIS)

    Babu, K. S.; Barr, S. M.

    2000-01-01

    A generalization of the well-known Georgi-Jarlskog relation (m μ /m τ ) =3(m s /m b ) to neutrinos is found in the context of SO(10) . This new relation is (m ν μ /m ν τ )=16(m c /m t ) , which is consistent with present data, assuming the Mikheyev-Smirnov-Wolfenstein solution to the solar neutrino problem. (c) 2000 The American Physical Society

  14. Cosmological and supernova neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Balantekin, A. B. [Department of Physics, University of Wisconsin - Madison, Wisconsin 53706 (United States); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Kusakabe, M. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Pehlivan, Y. [Mimar Sinan GSÜ, Department of Physics, Şişli, İstanbul 34380 (Turkey); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  15. Features of neutrino mixing

    Science.gov (United States)

    Chiu, S. H.; Kuo, T. K.

    2018-03-01

    The elements (squared) of the neutrino mixing matrix are found to satisfy, as functions of the induced mass, a set of differential equations. They show clearly the dominance of pole terms when the neutrino masses "cross." Using the known vacuum mixing parameters as initial conditions, it is found that these equations have very good approximate solutions, for all values of the induced mass. The results are applicable to long baseline experiments.

  16. The solar neutrino problem

    International Nuclear Information System (INIS)

    Bahcall, J.N.

    1986-01-01

    The observed capture rate for solar neutrinos in the /sup 37/Cl detector is lower than the predicted capture rate. This discrepancy between theory and observation is known as the 'solar neutrino problem.' The author reviews the basic elements in this problem: the detector efficiency, the theory of stellar (solar) evolution, the nuclear physics of energy generation, and the uncertainties in the predictions. He also answers the questions of: So What? and What Next?

  17. Neutrino physics with DARWIN

    Science.gov (United States)

    Benabderrahmane, M. L.

    2017-09-01

    DARWIN (DARk matter WImp search with liquid xenoN) will be a multi-ton dark matter detector with the primary goal of exploring the entire experimentally accessible parameter space for weakly interacting massive particles (WIMPs) over a wide mass-range. With its 40 tonne active liquid xenon target, low-energy threshold and ultra-low background level, DARWIN can also search for other rare interactions. Here we present its sensitivity to low-energy solar neutrinos and to neutrinoless double beta decay. In a low-energy window of 2-30 keV a rate of 105/year, from pp and 7Be neutrinos can be reached. Such a measurement, with 1% precision will allow testing neutrinos models. DARWIN could also reach a competitive half-life sensitivity of 8.5 · 1027 y to the neutrinoless double beta decay (0νββ) of 136Xe after an exposure of 140 t×y of natural xenon. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below 5 GeV/c2, and the event rate from 8B neutrinos would range from a few to a few tens of events per tonne and year, depending on the energy threshold of the detector. Deviations from the predicted but yet unmeasured neutrino flux would be an indication for physics beyond the Standard Model

  18. Neutrino confinement in collapsing stellar cores

    International Nuclear Information System (INIS)

    Chung, K.C.

    1987-01-01

    Neutrino confinement is expected to occur in the core of highly evolved stars, leading to the formation of a degenerate neutrino gas. The main neutrino sources are briefly reviewed and the neutrino processes relevant to the neutrino opacity in the stellar matter are discussed. Implications for the equation of state of neutrino-trapped matter are examined. (author) [pt

  19. Physics of neutrino flavor transformation through matter–neutrino resonances

    Directory of Open Access Journals (Sweden)

    Meng-Ru Wu

    2016-01-01

    Full Text Available In astrophysical environments such as core-collapse supernovae and neutron star–neutron star or neutron star–black hole mergers where dense neutrino media are present, matter–neutrino resonances (MNRs can occur when the neutrino propagation potentials due to neutrino–electron and neutrino–neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev–Smirnov–Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  20. Physics of neutrino flavor transformation through matter–neutrino resonances

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng-Ru, E-mail: mwu@theorie.ikp.physik.tu-darmstadt.de [Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt (Germany); Duan, Huaiyu, E-mail: duan@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Qian, Yong-Zhong, E-mail: qian@physics.umn.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2016-01-10

    In astrophysical environments such as core-collapse supernovae and neutron star–neutron star or neutron star–black hole mergers where dense neutrino media are present, matter–neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino–electron and neutrino–neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev–Smirnov–Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  1. Neutrino magnetic moment contribution to the neutrino-deuteron reaction

    International Nuclear Information System (INIS)

    Tsuji, K.; Nakamura, S.; Sato, T.; Kubodera, K.; Myhrer, F.

    2004-01-01

    We study the effect of the neutrino magnetic moment on the neutrino-deuteron breakup reaction, using a method called the standard nuclear physics approach, which has already been well tested for several electroweak processes involving the deuteron

  2. TENCompetence Competence Observatory

    NARCIS (Netherlands)

    Vervenne, Luk

    2010-01-01

    Vervenne, L. (2007) TENCompetence Competence Observatory. Sources available http://tencompetence.cvs.sourceforge.net/viewvc/tencompetence/wp8/org.tencompetence.co/. Available under the three clause BSD license, copyright TENCompetence Foundation.

  3. Long Baseline Observatory (LBO)

    Data.gov (United States)

    Federal Laboratory Consortium — The Long Baseline Observatory (LBO) comprises ten radio telescopes spanning 5,351 miles. It's the world's largest, sharpest, dedicated telescope array. With an eye...

  4. Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M. G. [Department of Physics, University of Adelaide, Adelaide, 5005 (Australia); Ackermann, M. [DESY, D-15735 Zeuthen (Germany); Adams, J. [Dept. of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J. A.; Ansseau, I. [Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Ahlers, M. [Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Ahrens, M. [Oskar Klein Centre and Dept. of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Samarai, I. Al [Département de Physique Nucléaire et Corpusculaire, Université de Genève, CH-1211 Genève (Switzerland); Altmann, D.; Anton, G. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Andeen, K. [Department of Physics, Marquette University, Milwaukee, WI 53201 (United States); Anderson, T. [Dept. of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Archinger, M.; Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Argüelles, C.; Axani, S. [Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Auffenberg, J. [III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Bai, X. [Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Barwick, S. W. [Dept. of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Collaboration: IceCube Collaboration; and others

    2017-07-10

    We present an all-sky search for muon neutrinos produced during the prompt γ -ray emission of 1172 gamma-ray bursts (GRBs) with the IceCube Neutrino Observatory. The detection of these neutrinos would constitute evidence for ultra-high-energy cosmic-ray (UHECR) production in GRBs, as interactions between accelerated protons and the prompt γ -ray field would yield charged pions, which decay to neutrinos. A previously reported search for muon neutrino tracks from northern hemisphere GRBs has been extended to include three additional years of IceCube data. A search for such tracks from southern hemisphere GRBs in five years of IceCube data has been introduced to enhance our sensitivity to the highest energy neutrinos. No significant correlation between neutrino events and observed GRBs is seen in the new data. Combining this result with previous muon neutrino track searches and a search for cascade signature events from all neutrino flavors, we obtain new constraints for single-zone fireball models of GRB neutrino and UHECR production.

  5. The Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Hojvat, C.

    1997-03-01

    The Pierre Auger Observatory is an international collaboration for the detailed study of the highest energy cosmic rays. It will operate at two similar sites, one in the northern hemisphere and one in the southern hemisphere. The Observatory is designed to collect a statistically significant data set of events with energies greater than 10 19 eV and with equal exposures for the northern and southern skies

  6. Constraining neutrino magnetic moment with solar and reactor neutrino data

    OpenAIRE

    Tortola, M. A.

    2004-01-01

    We use solar neutrino data to derive stringent bounds on Majorana neutrino transition moments (TMs). Such moments, if present, would contribute to the neutrino-electron scattering cross section and hence alter the signal observed in Super-Kamiokande. Using the latest solar neutrino data, combined with the results of the reactor experiment KamLAND, we perform a simultaneous fit of the oscillation parameters and TMs. Furthermore, we include data from the reactor experiments Rovno, TEXONO and MU...

  7. Finding Mass Constraints Through Third Neutrino Mass Eigenstate Decay

    Science.gov (United States)

    Gangolli, Nakul; de Gouvêa, André; Kelly, Kevin

    2018-01-01

    In this paper we aim to constrain the decay parameter for the third neutrino mass utilizing already accepted constraints on the other mixing parameters from the Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS). The main purpose of this project is to determine the parameters that will allow the Jiangmen Underground Neutrino Observatory (JUNO) to observe a decay parameter with some statistical significance. Another goal is to determine the parameters that JUNO could detect in the case that the third neutrino mass is lighter than the first two neutrino species. We also replicate the results that were found in the JUNO Conceptual Design Report (CDR). By utilizing Χ2-squared analysis constraints have been put on the mixing angles, mass squared differences, and the third neutrino decay parameter. These statistical tests take into account background noise and normalization corrections and thus the finalized bounds are a good approximation for the true bounds that JUNO can detect. If the decay parameter is not included in our models, the 99% confidence interval lies within The bounds 0s to 2.80x10-12s. However, if we account for a decay parameter of 3x10-5 ev2, then 99% confidence interval lies within 8.73x10-12s to 8.73x10-11s.

  8. Neutrino parameters with magical beta-beam at INO

    Energy Technology Data Exchange (ETDEWEB)

    Agarwalla, Sanjib Kumar; Choubey, Sandhya; Raychaudhuri, Amitava [Harish-Chandra Research Institute, Allahabad (India)], E-mail: sanjib@hri.res.in

    2008-11-01

    We have studied the physics reach of an experiment where neutrinos produced in a beta-beam facility at CERN are observed in a large magnetized iron calorimeter (ICAL) at the India-based Neutrino Observatory (INO). The idea of beta-beam is based on the production of a pure, intense, collimated beam of electron neutrinos or their antiparticles via the beta decay of accelerated radioactive ions circulating in a storage ring. Interestingly, the CERN-INO distance of 7152 km happens to be tantalizingly close to the so-called 'magic' baseline where the sensitivity to the neutrino mass ordering (sign of {delta}m{sup 2}{sub 31} {identical_to} m{sup 2}{sub 3} - m{sup 2}{sub 1}) and more importantly, {theta}{sub 13}, goes up significantly, while the sensitivity to the unknown CP phase is absent. This permits such an experiment involving the golden P{sub e{mu}} channel to make precise measurements of the mixing angle {theta}{sub 13} and neutrino mass hierarchy avoiding the issues of intrinsic degeneracies and correlations which plague other baselines.

  9. Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos.

    Science.gov (United States)

    Argüelles, Carlos A; Kheirandish, Ali; Vincent, Aaron C

    2017-11-17

    We show that the high-energy cosmic neutrinos seen by the IceCube Neutrino Observatory can be used to probe interactions between neutrinos and the dark sector that cannot be reached by current cosmological methods. The origin of the observed neutrinos is still unknown, and their arrival directions are compatible with an isotropic distribution. This observation, together with dedicated studies of Galactic plane correlations, suggests a predominantly extragalactic origin. Interactions between this isotropic extragalactic flux and the dense dark matter (DM) bulge of the Milky Way would thus lead to an observable imprint on the distribution, which would be seen by IceCube as (i) slightly suppressed fluxes at energies below a PeV and (ii) a deficit of events in the direction of the Galactic center. We perform an extended unbinned likelihood analysis using the four-year high-energy starting event data set to constrain the strength of DM-neutrino interactions for two model classes. We find that, in spite of low statistics, IceCube can probe regions of the parameter space inaccessible to current cosmological methods.

  10. Observatories and Telescopes of Modern Times

    Science.gov (United States)

    Leverington, David

    2016-11-01

    Preface; Part I. Optical Observatories: 1. Palomar Mountain Observatory; 2. The United States Optical Observatory; 3. From the Next Generation Telescope to Gemini and SOAR; 4. Competing primary mirror designs; 5. Active optics, adaptive optics and other technical innovations; 6. European Northern Observatory and Calar Alto; 7. European Southern Observatory; 8. Mauna Kea Observatory; 9. Australian optical observatories; 10. Mount Hopkins' Whipple Observatory and the MMT; 11. Apache Point Observatory; 12. Carnegie Southern Observatory (Las Campanas); 13. Mount Graham International Optical Observatory; 14. Modern optical interferometers; 15. Solar observatories; Part II. Radio Observatories: 16. Australian radio observatories; 17. Cambridge Mullard Radio Observatory; 18. Jodrell Bank; 19. Early radio observatories away from the Australian-British axis; 20. The American National Radio Astronomy Observatory; 21. Owens Valley and Mauna Kea; 22. Further North and Central American observatories; 23. Further European and Asian radio observatories; 24. ALMA and the South Pole; Name index; Optical observatory and telescope index; Radio observatory and telescope index; General index.

  11. Determination of the Atmospheric Neutrino Fluxes from Atmospheric Neutrino Data

    NARCIS (Netherlands)

    Gonzalez-Garcia, M. C.; Maltoni, M.; Rojo, J.

    2006-01-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard atmospheric neutrino data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based

  12. Symplectic symmetry of the neutrino mass for many neutrino flavors

    International Nuclear Information System (INIS)

    Oeztuerk, N.; Ankara Univ.

    2001-01-01

    The algebraic structure of the neutrino mass Hamiltonian is presented for two neutrino flavors considering both Dirac and Majorana mass terms. It is shown that the algebra is Sp(8) and also discussed how the algebraic structure generalizes for the case of more than two neutrino flavors. (orig.)

  13. Search for Astrophysical Sources of Neutrinos Using Cascade Events in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M. G. [Department of Physics, University of Adelaide, Adelaide, 5005 (Australia); Ackermann, M. [DESY, D-15735 Zeuthen (Germany); Adams, J.; Bagherpour, H. [Dept. of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J. A.; Ansseau, I. [Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Ahlers, M. [Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Ahrens, M. [Oskar Klein Centre and Dept. of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Al Samarai, I. [Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève (Switzerland); Altmann, D.; Anton, G. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Andeen, K. [Department of Physics, Marquette University, Milwaukee, WI, 53201 (United States); Anderson, T. [Dept. of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Argüelles, C.; Axani, S. [Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Auffenberg, J. [III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Bai, X. [Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Barwick, S. W. [Dept. of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Collaboration: IceCube Collaboration; and others

    2017-09-10

    The IceCube neutrino observatory has established the existence of a flux of high-energy astrophysical neutrinos, which is inconsistent with the expectation from atmospheric backgrounds at a significance greater than 5 σ . This flux has been observed in analyses of both track events from muon neutrino interactions and cascade events from interactions of all neutrino flavors. Searches for astrophysical neutrino sources have focused on track events due to the significantly better angular resolution of track reconstructions. To date, no such sources have been confirmed. Here we present the first search for astrophysical neutrino sources using cascades interacting in IceCube with deposited energies as small as 1 TeV. No significant clustering was observed in a selection of 263 cascades collected from 2010 May to 2012 May. We show that compared to the classic approach using tracks, this statistically independent search offers improved sensitivity to sources in the southern sky, especially if the emission is spatially extended or follows a soft energy spectrum. This enhancement is due to the low background from atmospheric neutrinos forming cascade events and the additional veto of atmospheric neutrinos at declinations ≲−30°.

  14. 182th International School of Physics "Enrico Fermi" : Neutrino Physics and Astrophysics

    CERN Document Server

    Ludhova, L

    2012-01-01

    This book contains chapters based on 9 of the lectures delivered at the Enrico Fermi School of Physics "Neutrino Physics and Astrophysics", held from 25 of July to 5 August 2011. The event was organized by the Italian Physical Society (SIF) jointly with the International School of Astro-particle Physics (ISAPP), a network whose aim is to build up an astro-particle community of both astrophysicists and particle physicists. Included are chapters on Neutrino oscillation physics (B. Kayser); Double-beta decay (E. Fiorini); Light neutrinos in cosmology (S. Pastor); Neutrinos and the stars (G.G. Raffelt); High energy neutrinos and cosmic rays (G. Sigl); Methods and problems in low-energy neutrino experiments (G. Ranucci); Methods and problems in neutrino observatories (M. Ribordy); New technologies in neutrino physics (L. Oberauer); and Perspectives of underground physics (A. Bettini). These are a followed by a section on the results presented in the form of posters by the Ph.D. students attending the school. The b...

  15. Neutrino Factory: status and prospects

    International Nuclear Information System (INIS)

    Long, K.

    2011-01-01

    The properties of the neutrino provide a unique window on physics beyond that described by the Standard Model. The study of sub-leading effects in neutrino oscillations has begun with the race to measure θ 13 consensus is emerging within the international community that a novel neutrino source is required to allow sensitive searches for leptonic CP violation to be carried out and the neutrino mass-hierarchy to be determined. The Neutrino Factory, in which intense neutrino beams are produced from the decay of muons, has been shown to out-perform the other proposed facilities. The physics case for the Neutrino Factory will be reviewed and the baseline design of the facility being developed by the International Design Study for the Neutrino Factory (the IDS-NF) collaboration will be described.

  16. Steps towards the Neutrino Factory

    International Nuclear Information System (INIS)

    Long, K.

    2012-01-01

    The properties of the neutrino provide a unique window on physics beyond that described by the Standard Model. The study of sub-leading effects in neutrino oscillations has begun with the race to measure θ 13 . A consensus is emerging within the international community that a novel neutrino source is required to allow sensitive searches for leptonic CP violation to be carried out and the neutrino mass-hierarchy to be determined. The Neutrino Factory, in which intense neutrino beams are produced from the decay of muons, has been shown to out-perform the other proposed facilities. The physics case for the Neutrino Factory will be reviewed and the baseline design of the facility being developed by the International Design Study for the Neutrino Factory (the IDS-NF) collaboration will be described.

  17. Experimental studies of neutrino oscillations

    CERN Document Server

    Kajita, Takaaki

    2016-01-01

    The 2015 Nobel Prize in physics has been awarded to Takaaki Kajita and Arthur McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass". Takaaki Kajita of Tokyo University is a Japanese physicist, known for neutrino experiments at the Kamiokande and its successor, Super-Kamiokande. This volume of collected works of Kajita on neutrino oscillations provides a good glimpse into as well as a record of the rise and the role of Asian research in the frontiers of neutrino physics. Japan is now a major force in the study of the 3 families of neutrinos. Much remains to be done to clarify the Dirac vs. Majorana nature of the neutrino, and the cosmological implications of the neutrino. The collected works of Kajita and his Super-Kamiokande group will leave an indelible foot-print in the history of big and better science.

  18. CrossRef Neutrino factories

    CERN Document Server

    Wildner, Elena

    2016-01-01

    Neutrinos are produced by many processes in our universe. These elusive particles reach the earth having a certain energy permitting them to react with nuclei in detectors that are specifically designed to probe their properties. However, to get higher intensities and higher energy neutrinos for better statistics and better physics reach, the use of accelerators is necessary to advance in the field of neutrino research. To produce neutrinos with an accelerator, one needs to send a high power beam onto a target to get particles or isotopes that produce neutrinos with the required properties, by decay. The parent particles have to be collected and prepared for injection into an accelerating structure. Accelerator-based experiments can tune the energy of the produced neutrinos by boosting and controlling the energy of the parent particle. The produced neutrinos will travel the distance between the source and the detector, generally through earth; the distance the neutrino travels through earth, the energy of the...

  19. Simulating nonlinear neutrino flavor evolution

    Science.gov (United States)

    Duan, H.; Fuller, G. M.; Carlson, J.

    2008-10-01

    We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different to that in standard Mikheyev Smirnov Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle θ13.

  20. Catching the Highest Energy Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2011-08-15

    We briefly discuss the possible sources of ultrahigh energy neutrinos and the methods for their detection. Then we present the results obtained by different experiments for detection of the highest energy neutrinos.

  1. Physics of the neutrino mass

    International Nuclear Information System (INIS)

    Mohapatra, R N

    2004-01-01

    Recent neutrino oscillation experiments have yielded valuable information on the nature of neutrino masses and mixings and qualify as the first evidence for physics beyond the standard model. Even though we are far from a complete understanding of the new physics implied by them, there are many useful hints. As the next precision era in neutrino physics is about to be launched, we review the physics of neutrino mass: what we have learned and what we are going to learn

  2. The sun and the neutrinos

    International Nuclear Information System (INIS)

    Forgacsne Dajka, E.

    2000-01-01

    A review of the solar neutrino puzzle is given. The main processes in the sun, the pp-chain and the CNO cycle are described. The solar neutrino puzzle, i.e. the fact that the detected amount of neutrinos coming from the sun is less than the amount predicted by the solar model is discussed. The first generation solar neutrino experiments are presented. (K.A.)

  3. Eighty years of neutrino physics

    International Nuclear Information System (INIS)

    Roy, D.P.

    2009-01-01

    This is a pedagogical overview of neutrino physics from the invention of neutrino by Pauli in 1930 to the precise measurement of neutrino mass and mixing parameters via neutrino oscillation experiments in recent years. I have tried to pitch it at the level of undergraduate students, occasionally cutting corners to avoid the use of advanced mathematical tools. I hope it will be useful in introducing this exciting field to a broad group of young physicists. (author)

  4. Optical and X-ray early follow-up of ANTARES neutrino alerts

    International Nuclear Information System (INIS)

    Adrián-Martínez, S.; Ardid, M.; Ageron, M.; Al Samarai, I.; Aubert, J.-J.; Albert, A.; André, M.; Anton, G.; Baret, B.; Barrios-Martí, J.

    2016-01-01

    High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. Even with the recent detection of extraterrestrial high-energy neutrinos by the IceCube experiment, no astrophysical neutrino source has yet been discovered. Transient sources, such as gamma-ray bursts, core-collapse supernovae, or active galactic nuclei are promising candidates. Multi-messenger programs offer a unique opportunity to detect these transient sources. By combining the information provided by the ANTARES neutrino telescope with information coming from other observatories, the probability of detecting a source is enhanced, allowing the possibility of identifying a neutrino progenitor from a single detected event. A method based on optical and X-ray follow-ups of high-energy neutrino alerts has been developed within the ANTARES collaboration. This method does not require any assumptions on the relation between neutrino and photon spectra other than time-correlation. This program, denoted as TAToO, triggers a network of robotic optical telescopes (TAROT and ROTSE) and the Swift-XRT with a delay of only a few seconds after a neutrino detection, and is therefore well-suited to search for fast transient sources. To identify an optical or X-ray counterpart to a neutrino signal, the images provided by the follow-up observations are analysed with dedicated pipelines. A total of 42 alerts with optical and 7 alerts with X-ray images taken with a maximum delay of 24 hours after the neutrino trigger have been analysed. No optical or X-ray counterparts associated to the neutrino triggers have been found, and upper limits on transient source magnitudes have been derived. The probability to reject the gamma-ray burst origin hypothesis has been computed for each alert

  5. Optical and X-ray early follow-up of ANTARES neutrino alerts

    Science.gov (United States)

    Adrián-Martínez, S.; Ageron, M.; Albert, A.; Samarai, I. Al; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Graf, K.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Neff, M.; Nezri, E.; Păvălaš, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vecchi, M.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Klotz, A.; Boer, M.; Le Van Suu, A.; Akerlof, C.; Zheng, W.; Evans, P.; Gehrels, N.; Kennea, J.; Osborne, J. P.; Coward, D. M.

    2016-02-01

    High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. Even with the recent detection of extraterrestrial high-energy neutrinos by the IceCube experiment, no astrophysical neutrino source has yet been discovered. Transient sources, such as gamma-ray bursts, core-collapse supernovae, or active galactic nuclei are promising candidates. Multi-messenger programs offer a unique opportunity to detect these transient sources. By combining the information provided by the ANTARES neutrino telescope with information coming from other observatories, the probability of detecting a source is enhanced, allowing the possibility of identifying a neutrino progenitor from a single detected event. A method based on optical and X-ray follow-ups of high-energy neutrino alerts has been developed within the ANTARES collaboration. This method does not require any assumptions on the relation between neutrino and photon spectra other than time-correlation. This program, denoted as TAToO, triggers a network of robotic optical telescopes (TAROT and ROTSE) and the Swift-XRT with a delay of only a few seconds after a neutrino detection, and is therefore well-suited to search for fast transient sources. To identify an optical or X-ray counterpart to a neutrino signal, the images provided by the follow-up observations are analysed with dedicated pipelines. A total of 42 alerts with optical and 7 alerts with X-ray images taken with a maximum delay of 24 hours after the neutrino trigger have been analysed. No optical or X-ray counterparts associated to the neutrino triggers have been found, and upper limits on transient source magnitudes have been derived. The probability to reject the gamma-ray burst origin hypothesis has been computed for each alert.

  6. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  7. The CERN Neutrino Platform

    CERN Document Server

    Bordoni, Stefania

    2018-01-01

    The long-baseline neutrino programme has been classified as one of the four highest-priority sci- entific objectives in 2013 by the European Strategy for Particle Physics. The Neutrino Platform is the CERN venture to foster and support the next generation of accelerator-based neutrino os- cillation experiments. Part of the present CERN Medium-Term Plan, the Neutrino Platform provide facilities to develop and prototype the next generation of neutrino detectors and contribute to unify the European neu- trino community towards the US and Japanese projects. A significative effort is made on R&D; for LAr TPC technologies: two big LAr TPC prototypes for the DUNE far detector are under con- struction at CERN. Those detectors will be exposed in 2018 to an entirely new and NP-dedicated beam-line from the SPS which will provide electron, muon and hadron beams with energies in the range of sub-GeV to a few GeV. Other projects are also presently under development: one can cite the refurbishing and shipping to the US ...

  8. Bruno Pontecorvo and solar neutrinos

    International Nuclear Information System (INIS)

    MCDONALD, A. B.

    2014-01-01

    Bruno Pontecorvo had a very substantial impact on measurements of solar neutrinos, proposing a technique in 1948 that led to measurements by Davis and proposing that neutrinos could oscillate, a process that has been found to influence observed fluxes substantially. The past history and future prospects of solar neutrino measurements are reviewed, including a discussion of the contributions by Pontecorvo.

  9. Neutrinos from the Milky Way

    NARCIS (Netherlands)

    Visser, Erwin Lourens

    2015-01-01

    A guaranteed source of neutrinos is the production in cosmic ray interactions with the interstellar matter in our Galaxy. The signal has never been detected however and only an upper limit on this flux of neutrinos has been published by the AMANDA-II detector. The ANTARES neutrino telescope, located

  10. Neutrino mass sum-rule

    Science.gov (United States)

    Damanik, Asan

    2018-03-01

    Neutrino mass sum-rele is a very important research subject from theoretical side because neutrino oscillation experiment only gave us two squared-mass differences and three mixing angles. We review neutrino mass sum-rule in literature that have been reported by many authors and discuss its phenomenological implications.

  11. Matter effects in neutrino oscillations

    International Nuclear Information System (INIS)

    Dass, G.V.

    1989-01-01

    After a review of the relevant aspects of neutrino oscillations for propagation in vacuum and in material media, this paper discuss the Mikheyev-Smirnov-Wolfenstein mechanism and its application to a solution of the solar neutrino puzzle. The elementary level of the talk is suitable to people not working in neutrino physics

  12. Systems of neutrinos with mass

    International Nuclear Information System (INIS)

    Groot, S.R. de

    1984-01-01

    From the formalism of relativistic kinetic theory and the weak interaction Lagrangian the volume viscosity of a massive neutrino system is derived. Its value is calculated as a function of the neutrino mass and the temperature. Its role in the way of expanding or contraction of neutrino clouds in the universe is discussed. (Author) [pt

  13. Majorana mass term, Dirac neutrinos and selective neutrino oscillations

    International Nuclear Information System (INIS)

    Leung, C.N.

    1987-01-01

    In a theory of neutrino mixing via a Majorana mass term involving only the left-handed neutrinos there exist selection rules for neutrino oscillations if true Dirac and/or exactly zero mass eigenstates are present. In the case of three neutrino flavours no oscillation is allowed if the mass spectrum contains one Dirac and one nondegenerate Majorana massive neutrino. The origin of these selection rules and their implications are discussed and the number of possible CP-violating phases in the lepton mixing matrix when Dirac and Majorana mass eigenstates coexist is given. (orig.)

  14. Determination of the atmospheric neutrino fluxes from atmospheric neutrino data

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, C.; Maltoni, M.; Rojo, J.

    2006-06-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based on the convolution of the primary cosmic ray spectrum with the expected yield of neutrinos per incident cosmic ray. In this work we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates. The extraction is achieved by means of a combination of artificial neural networks as interpolants and Monte Carlo methods for faithful error estimation. (author)

  15. Determination of the atmospheric neutrino fluxes from atmospheric neutrino data

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, Concepcion; Maltoni, Michele; Rojo, Joan

    2006-01-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based on the convolution of the primary cosmic ray spectrum with the expected yield of neutrinos per incident cosmic ray. In this work we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates. The extraction is achieved by means of a combination of artificial neural networks as interpolants and Monte Carlo methods for faithful error estimation

  16. Supernova Neutrino-Process and Implication in Neutrino Oscillation

    Science.gov (United States)

    Kajino, T.; Aoki, W.; Fujiya, W.; Mathews, G. J.; Yoshida, T.; Shaku, K.; Nakamura, K.; Hayakawa, T.

    2012-08-01

    We studied the supernova nucleosynthesis induced by neutrino interactions and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and many others are predominantly produced by the neutrino-process in core-collapse supernovae. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy simultaneously from the supernova neutrino-process, combined with the r-process for heavy-element synthsis and the Galactic chemical evolution on light nuclei.

  17. Geometric phase of neutrinos: Differences between Dirac and Majorana neutrinos

    Science.gov (United States)

    Capolupo, A.; Giampaolo, S. M.; Hiesmayr, B. C.; Vitiello, G.

    2018-05-01

    We analyze the non-cyclic geometric phase for neutrinos. We find that the geometric phase and the total phase associated to the mixing phenomenon provide a theoretical tool to distinguish between Dirac and Majorana neutrinos. Our results hold for neutrinos propagating in vacuum and through the matter. We feed the values of the experimental parameters in our formulas in order to make contact with experiments. Although it remains an open question how the geometric phase of neutrinos could be detected, our theoretical results may open new scenarios in the investigation of the neutrino nature.

  18. Neutrino mixing and big bang nucleosynthesis

    Science.gov (United States)

    Bell, Nicole

    2003-04-01

    We analyse active-active neutrino mixing in the early universe and show that transformation of neutrino-antineutrino asymmetries between flavours is unavoidable when neutrino mixing angles are large. This process is a standard Mikheyev-Smirnov-Wolfenstein flavour transformation, modified by the synchronisation of momentum states which results from neutrino-neutrino forward scattering. The new constraints placed on neutrino asymmetries eliminate the possibility of degenerate big bang nucleosynthesis.Implications of active-sterile neutrino mixing will also be reviewed.

  19. Workshop on low energy neutrino physics

    International Nuclear Information System (INIS)

    2009-01-01

    The main topics of the workshop are: the determination of the neutrino mixing angle theta-13, the experiments concerning the monitoring of reactors based on the measurement of neutrino spectra, solar neutrinos, supernovae neutrinos, geo-neutrinos, neutrino properties, neutrinoless double beta decay and future low energy neutrino detectors. This document gathers together the program of the workshop, the slides of the presentations, some abstracts and some posters

  20. Neutrino magnetic moments and the solar neutrino problem

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, E.Kh. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Valencia Univ. (Spain). Dept. de Fisica Teorica

    1994-08-01

    Present status of the neutrino magnetic moment solutions of the solar neutrino problem is reviewed. In particular, we discuss a possibility of reconciling different degrees of suppression and time variation of the signal (or lack of such a variation) observed in different solar neutrino experiments. It is shown that the resonant spin-flavor precession of neutrinos due to the interaction of their transitions magnetic moments with solar magnetic field can account for all the available solar neutrino data. For not too small neutrino mixing angles (sin 2{theta}{sub o} {approx_gt} 0.2 the combined effect of the resonant spin-flavor precession and neutrino oscillations can result in an observable flux of solar {bar {nu}}{sub e}`s.

  1. Neutrino magnetic moments and the solar neutrino problem

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Valencia Univ.

    1994-01-01

    Present status of the neutrino magnetic moment solutions of the solar neutrino problem is reviewed. In particular, we discuss a possibility of reconciling different degrees of suppression and time variation of the signal (or lack of such a variation) observed in different solar neutrino experiments. It is shown that the resonant spin-flavor precession of neutrinos due to the interaction of their transitions magnetic moments with solar magnetic field can account for all the available solar neutrino data. For not too small neutrino mixing angles (sin 2θ o approx-gt 0.2 the combined effect of the resonant spin-flavor precession and neutrino oscillations can result in an observable flux of solar bar ν e 's

  2. Signatures of the neutrino mass hierarchy in supernova neutrinos

    International Nuclear Information System (INIS)

    Chiu, S.H.; Huang, Chu-Ching; Lai, Kwang-Chang

    2015-01-01

    The undetermined neutrino mass hierarchy may leave an observable imprint on the neutrino fluxes from a core-collapse supernova (SN). The interpretation of the observables, however, is subject to the uncertain SN models and the flavor conversion mechanism of neutrinos in a SN. We attempt to propose a qualitative interpretation of the expected neutrino events at terrestrial detectors, focusing on the accretion phase of the neutrino burst. The flavor conversions due to neutrino self-interaction, the MSW effect, and the Earth regeneration effect are incorporated in the calculation. It leads to several distinct scenarios that are identified by the neutrino mass hierarchies and the collective flavor transitions. Consequences resulting from the variation of incident angles and SN models are also discussed

  3. Entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)

    2009-03-15

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  4. Neutrino physics: Summary talk

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1989-04-01

    This paper is organized as follows: First, I describe the state of neutrino phenomenology. Emphasis is placed on sin 2 θ W , its present status and future prospects. In addition, some signatures of ''new physics'' are described. Then, kaon physics at Fermilab is briefly discussed. I concentrate on the interesting rare decay K L → π 0 e + e - which may be a clean probe direct CP violation. Neutrino mass, mixing, and electromagnetic moments are surveyed. There, I describe the present state and future direction of accelerator based experiments. Finally, I conclude with an outlook on the future. Throughout this summary, I have drawn from and incorporated ideas discussed by other speakers at this workshop. However, I have tried to combine their ideas with my own perspective on neutrino physics and where it is headed. 49 refs., 3 figs., 4 tabs

  5. Neutrino physics after boomerang

    International Nuclear Information System (INIS)

    Hannestad, Steen

    2001-01-01

    A new generation of Cosmic Microwave Background Radiation (CMBR) experiments are currently providing the first precision measurements of fluctuations in the CMBR. These fluctuations hold information about all the fundamental cosmological parameters, and the experiments have already confirmed beyond reasonable doubt that the geometry of the universe is very close to being flat. The new CMBR experiments can also be used to probe particle physics beyond the standard model. For instance, data from the new Boomerang experiment yield an upper limit on the effective number of neutrinos present at recombination, N ν ≤ 13 (95% C.L.). This already puts significant constraints on many non-standard neutrino scenarios, such as the possible bulk neutrino modes expected in theories with large extra dimensions. The upcoming satellite experiments will improve the sensitivity of the CMBR by almost an order of magnitude and make the CMBR an excellent laboratory for precision particle physics

  6. Phenomenology of atmospheric neutrinos

    Directory of Open Access Journals (Sweden)

    Fedynitch Anatoli

    2016-01-01

    Full Text Available The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  7. Astrophysics and neutrinos

    CERN Document Server

    Harigel, G G

    1997-01-01

    This seminar is primarily intended for CERN guides. The formation of sun-like stars, their life cycle, and their final destiny will be explained in simple terms, appropriate for the majority of our visitors. An overview of the nuclear reaction chains in our sun will presented (Standard Solar Model), with special emphasis on the production of neutrinos and their measurement in underground detectors. These detectors are also able to record high-energy cosmic neutrinos. Since many properties of neutrinos are still unknown, a brief description of table-top and nuclear reactor experiments is included, as well as those using beams from particle accelerators. Measurements with a variety of space telescopes complement the knowledge of our universe, previously limited to the visible range of the electromagnetic spectrum.

  8. Entanglement in neutrino oscillations

    International Nuclear Information System (INIS)

    Blasone, M.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Blasone, M.

    2009-01-01

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  9. Toward observational neutrino astrophysics

    International Nuclear Information System (INIS)

    Koshiba, M.

    1988-01-01

    It is true that: (1) The first observation of the neutrino burst from the supernova SN1987a by Kamiokande-II which was immediately confirmed by IBM; and (2) the first real-time, directional, and spectral observation of solar 8 B neutrinos also by Kamiokande-II could perhaps be considered as signalling the birth of observational astrophysics. The field, however, is still in its infancy and is crying out for tender loving care. Namely, while the construction of astronomy requires the time and the direction of the signal and that of astrophysics requires, in addition to the spectral information, the observations of (1) could not give the directional information and the results of both (1) and (2) are still suffering from the meager statistics. How do we remedy this situation to let this new born science of observational neutrino astrophysics grow healthy. This is what the author addresses in this talk. 15 refs., 8 figs

  10. Massive neutrinos and cosmology

    International Nuclear Information System (INIS)

    Shandarin, S.F.

    1991-01-01

    This paper discussed the importance of the consequences of a nonzero neutrino rest mass on cosmology, perhaps, first recognized by Gershtein and Zeldovich, after the discover of the 3-K microwave background radiation MBR. Since the first works on the primordial synthesis of 4 He, it has been known that additional neutrino species increase the rate of expansion of the universe during the epoch of the primordial nucleosynthesis, which increases the yield of 4 He. Combining the results of the theory with astronomical measurements of the 4 He abundance and the estimate of the mass density of MBR, Shvartsman suggested the upper limit on the mass density of all relativistic matter at that epoch: ρ rel ≤ 5ρ MBR which eventually became the upper limit for the number of neutrino species: N ν ≤ 7. At that time, the constraints based on cosmological arguments were much stronger than one based on laboratory experiments

  11. Neutrinos and supernova collapse

    International Nuclear Information System (INIS)

    Colgate, S.A.; Petschek, A.G.

    1980-01-01

    The neutrino emission resulting from stellar collapse and supernova formation is reviewed. The electron capture and consequent neutronization of the collapsing stellar matter at the end of evolution determines both the initial adiabat of core collapse as well as the trapped lepton fraction. The initial lepton fraction, Y/sub l/ = .48 supplies the pressure for neutral support of the star at the Chandrasekhar limit. High trapping values, Y/sub l/ = .4, lead to soft core collapses; low values to harder collapses. The value of Y/sub l/ is presently in dispute. The neutrino emission from initial electron capture is relatively small. A strong core-bounce shock releases both electron neutrino as well as thermal muon and tau neutrinos. Subsequent neutrino emission and cooling can sometimes lead to an unstable buoyancy gradient in the core in which case unstable core overturn is expected. Calculations have already shown the importance of the largest possible eddy or equivalently the lowest mode of overturn. Present models of low lepton trapping ratio lead to high entropy creation by the reflected shock and the stabilization of the core matter against overturn. In such cases the exterior matter must cool below an entropy of approximately s/k approx. = 2 to become unstable. This may require too long a time approximately one second for neutrino cooling from a neutrinosphere at rho approx. = 2 x 10 12 g cm -3 . On the other hand, high values of Y/sub l/ such as .4 lead to softer bounces at lower density and values of the critical stabilizing entropy of 3 or higher. Under such circumstances, core overturn can still occur

  12. Neutrino oscillation: status and outlooks

    International Nuclear Information System (INIS)

    Nedelec, P.

    1994-01-01

    Whether the neutrinos are massive or not is one of the most puzzling question of physics today. If they are massive, they can contribute significantly to the Dark Matter of the Universe. An other consequence of a non-zero mass of neutrinos is that they might oscillate from one flavor to another. This oscillation process is by now the only way to detect a neutrino with a mass in the few eV range. Several neutrino experiments are currently looking for such an oscillation, in different modes, using different techniques. An overview of the experimental situation for neutrino experiments at accelerators is given. (author). 9 refs., 5 figs., 5 tabs

  13. Detection of the neutrino

    International Nuclear Information System (INIS)

    Reines, F.

    1989-01-01

    Using the nuclear bomb developed at Los Alamos as an intense source of neutrinos, the author aimed to build a detector suitable to observe this newly predicted particle for the first time during his work there in the early 1950s. He chose to work on the reaction of beta decay inversion. The discovery of organic liquid scintillation counters brought the possibility of neutrino detection one place closer. Delayed coincidence between positron and neutron capture pulses were planned as a way to eliminate background signals. Experiments finally went ahead using nuclear reactors rather than bombs and was successful although many problems with shielding, and the sheer scale of the apparatus were encountered. (UK)

  14. Baryogenesis and neutrino masses

    International Nuclear Information System (INIS)

    Peccei, R.D.

    1992-01-01

    The erasure of any preexisting B+L asymmetry in the universe in its late stages suggests that the B asymmetry observed today either originated at the electroweak scale or it arose from an original L asymmetry. For the latter case to be viable either neutrino masses are much below the eV scale or the L asymmetry itself is generated at an intermediate scale. Several features of the generation of a B asymmetry via an L asymmetry are discussed, including the interesting possibility that the present baryon asymmetry in the universe originates as a result of CP violating phases in the neutrino mass matrix

  15. Geo-neutrino review

    International Nuclear Information System (INIS)

    Tolich, N.

    2012-01-01

    The principal source of energy for dynamic processes of the earth, such as plate tectonics is thought to come from the radioactive decays of 238 U, 232 Th, and 40 K within the earth. These decays produce electron-antineutrinos, so-called geo-neutrinos, the measurement of which near the earth's surface allows for a direct measure of the total radiogenic heat production in the earth. The KamLAND and Borexino experiments have both measured a geo-neutrino flux significantly greater than zero. As shown in these proceedings, more precise future measurements will significantly constrain earth composition models.

  16. Atmospheric neutrino fluxes

    International Nuclear Information System (INIS)

    Honda, M.; Kasahara, K.; Hidaka, K.; Midorikawa, S.

    1990-02-01

    A detailed Monte Carlo simulation of neutrino fluxes of atmospheric origin is made taking into account the muon polarization effect on neutrinos from muon decay. We calculate the fluxes with energies above 3 MeV for future experiments. There still remains a significant discrepancy between the calculated (ν e +antiν e )/(ν μ +antiν μ ) ratio and that observed by the Kamiokande group. However, the ratio evaluated at the Frejus site shows a good agreement with the data. (author)

  17. Neutrino oscillations at LAMPF

    International Nuclear Information System (INIS)

    Carlini, R.; Choi, C.; Donohue, J.

    1985-01-01

    Work at Argonne continues on the construction of the neutrino oscillation experiment (E645). Construction of detector supports and active shield components were completed at the Provo plant of the principal contractor for the project (the Pittsburgh-Des Moines Corporation). Erection of the major experimental components was completed at the LAMPF experimental site in mid-March 1985. Work continues on the tunnel which will house the detector. Construction of detector components (scintillators and proportional drift tubes) is proceeding at Ohio State University and Louisiana State University. Consolidation of these components into the 20-ton neutrino detector is beginning at LAMPF

  18. Towards absolute neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Petr [Kellogg Radiation Laboratory 106-38, Caltech, Pasadena, CA 91125 (United States)

    2007-06-15

    Various ways of determining the absolute neutrino masses are briefly reviewed and their sensitivities compared. The apparent tension between the announced but unconfirmed observation of the 0{nu}{beta}{beta} decay and the neutrino mass upper limit based on observational cosmology is used as an example of what could happen eventually. The possibility of a 'nonstandard' mechanism of the 0{nu}{beta}{beta} decay is stressed and the ways of deciding which of the possible mechanisms is actually operational are described. The importance of the 0{nu}{beta}{beta} nuclear matrix elements is discussed and their uncertainty estimated.

  19. Neutrino interactions with nuclei

    CERN Document Server

    Martini, M; Ericson, M; Marteau, J

    2009-01-01

    We present a model for neutrino-nucleus scattering in the energy region relevant for present and forthcoming neutrino-oscillation experiments. The model is based on the RPA treatment of the nuclear responses in the quasi-elastic and Delta-resonance region. It includes also in a phenomenological way nucleon knock-out. It aims at the description, within a single framework, of several final state channels i.e. quasi-elastic, incoherent and coherent one-pion production and two- or several-nucleon knock-out.

  20. Neutrino properties from cosmology

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Future, massive large-scale structure survey have been presented and approved.On the theory side, a significant effort has bene devoted to achieve better modeling of small scale clustering that is of cosmological non-linearities. As a result it has become clear that forthcoming cosmological data have enough statitsical power to detect the effect of non-zero neutrino mass (even at the lower mass scale limit imposed by oscillations) and to constrain the absolute neutrino mass scale.Cosmological data can also constrain the numb...

  1. Sterile Neutrino Search with MINOS

    International Nuclear Information System (INIS)

    Devan, Alena V.

    2015-01-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm 2 . An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, Δm s 2 ~ 1 eV 2 . The results of the 2013 sterile neutrino search are presented here.

  2. Sterile Neutrino Search with MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Devan, Alena V. [College of William and Mary, Williamsburg, VA (United States)

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, ms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  3. Experimental data on solar neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ludhova, Livia [INFN, Milano (Italy)

    2016-04-15

    Neutrino physics continues to be a very active research field, full of opened fundamental questions reaching even beyond the Standard Model of elementary particles and towards a possible new physics. Solar neutrinos have played a fundamental historical role in the discovery of the phenomenon of neutrino oscillations and thus non-zero neutrino mass. Even today, the study of solar neutrinos provides an important insight both into the neutrino as well as into the stellar and solar physics. In this section we give an overview of the most important solar-neutrino measurements from the historical ones up to the most recent ones. We cover the results from the experiments using radio-chemic (Homestake, SAGE, GNO, GALLEX), water Cherenkov (Kamiokande, Super-Kamiokande, SNO), and the liquid-scintillator (Borexino, KamLAND) detection techniques. (orig.)

  4. Beam and experiments summary [neutrino studies

    CERN Document Server

    Blondel, A; Campanelli, M; Cervera-Villanueva, Anselmo; Cline, David B; Collot, J; De Jong, M; Donini, Andrea; Dydak, Friedrich; Edgecock, R; Gavela-Legazpi, Maria Belen; Gómez-Cadenas, J J; González-Garciá, M Concepción; Gruber, P; Harris, D A; Hernández, Pilar; Kuno, Y; Litchfield, P J; McFarland, K; Mena, O; Migliozzi, P; Palladino, Vittorio; Panman, J; Papadopoulos, I M; Para, A; Peña-Garay, C; Pérez, P; Rigolin, Stefano; Romanino, Andrea; Rubbia, André; Strolin, P; Wojcicki, S G

    2000-01-01

    The discovery of neutrino oscillations marks a major milestone in the history of neutrino physics, and opens a new window to the still mysterious origin of masses and flavour mixing. Many current and forthcoming experiments will. Answer open questions; however, a major step forward, up to and possibly including CP violation in the neutrino-mixing matrix, requires the neutrino beams from a neutrino factory. The neutrino factory is a new concept for producing neutrino beams of unprecedented quality in terms of intensity, flavour composition, and precision of the beam parameters. Most importantly, the neutrino factory is the only known way to generate a high- intensity beam of electron neutrinos of high energy. The neutrino beam from a neutrino factory, in particular the electron-neutrino beam, enables the exploration of otherwise inaccessible domains in neutrino oscillation physics by exploiting baselines of planetary dimensions. Suitable detectors pose formidable challenges but seem within reach with only mode...

  5. 37Ar based neutron source for calibration of the iodine solar neutrino detector

    International Nuclear Information System (INIS)

    Abdurashitov, D.N.; Gavrin, V.N.; Mirmov, I.N.; Veretenkin, E.P.; Yants, V.Eh.; Cleveland, B.T.; Davis, R. Jr.; Lande, K.; Wildenhain, P.; Khomyakov, Yu.S.

    2001-01-01

    The methodology of the creation of a compact neutrino source based on the 37 Ar isotope as well as the technique of calibration of an iodine detector of solar neutrinos is described. An important overall expected result is the creation of a prototype of the source with the intensity up to 400 kCi, delivery of this source to the Baksan neutrino observatory and the test calibration of the single module of the iodine detector. Simulation shows that at least 45-70 127 Xe atoms will be detected in the irradiation of ∼40 tons of methylene iodide by the source leading to ∼19% of the error on the measured production rate. This result should be considered as a test of the developed technology and will verify overall technical readiness for the creation of a full scale neutrino source and the full scale calibration of the iodine detector

  6. Measurement of the activity of an artificial neutrino source based on 37Ar

    International Nuclear Information System (INIS)

    Abdurashitov, D. N.; Veretenkin, E. P.; Gavrin, V. N.; Gorbachev, V. V.; Ibragimova, T. V.; Kalikhov, A. V.; Mirmov, I. N.; Shikhin, A. A.; Yants, V. E.; Barsanov, V. I.; Dzhanelidze, A. A.; Zlokazov, S. B.; Markov, S. Yu.; Shakirov, Z. N.; Cleveland, B. T.

    2007-01-01

    The activity of an artificial neutrino source based on 37 Ar was measured by a specially developed method of directly counting 37 Ar decays in a proportional counter. This source was used to irradiate the target of the SAGE radiochemical gallium-germanium neutrino telescope at the Baksan Neutrino Observatory (Institute for Nuclear Research, Russian Academy of Sciences, Moscow), whereupon the measurements were performed at the Institute of Reactor Materials (Zarechny, Sverdlovsk oblast, Russia). The method used to prepare gaseous samples for measurements in proportional counters and the counting procedure are described. The measured activity of the 37 Ar neutrino source is 405.1 ± 3.7 kCi (corrected for decays that occurred within the period between the instant of activity measurement and the commencement of the irradiation of Ga target at 04:00 Moscow time, 30.04.2004)

  7. Search for tau-neutrino induced cascades in the IceCube detector

    Energy Technology Data Exchange (ETDEWEB)

    Usner, Marcel; Kowalski, Marek [DESY, Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The IceCube Neutrino Observatory at the South Pole is a Cherenkov detector built to measure high-energy neutrinos from cosmic sources. A total volume of about one cubic kilometer of the Antarctic ice is instrumented with 5160 optical modules. A tau lepton is created in the charged current interaction of a tau neutrino with an ice nucleus. The Double Bang signature links two subsequent cascades from the hadronic interaction and the tau decay within the detection volume. It can only be resolved at the highest energies around 1 PeV where the decay length of the tau is about 50 m. The work is focused on optimizing reconstruction methods of Double Bang events incorporating the latest ice model. The goal is to measure a flavor ratio that, for the first time, is sensitive to tau neutrinos.

  8. Evidence for Mikheyev-Smirnov-Wolfenstein effects in solar neutrino flavor transitions

    International Nuclear Information System (INIS)

    Fogli, G.L.; Lisi, E.; Marrone, A.; Palazzo, A.

    2004-01-01

    We point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. More precisely, one can safely reject the null hypothesis of no MSW interaction energy in matter, despite the fact that the interaction amplitude (formally treated as a free parameter) is still weakly constrained by the current phenomenology. Such a constraint can be improved, however, by future data from the KamLAND experiment. In the standard MSW case, we also perform an updated analysis of two-family active oscillations of solar and reactor neutrinos

  9. Evidence for Mikheyev-Smirnov-Wolfenstein effects in solar neutrino flavor transitions

    Science.gov (United States)

    Fogli, G. L.; Lisi, E.; Marrone, A.; Palazzo, A.

    2004-03-01

    We point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. More precisely, one can safely reject the null hypothesis of no MSW interaction energy in matter, despite the fact that the interaction amplitude (formally treated as a free parameter) is still weakly constrained by the current phenomenology. Such a constraint can be improved, however, by future data from the KamLAND experiment. In the standard MSW case, we also perform an updated analysis of two-family active oscillations of solar and reactor neutrinos.

  10. Double Beta Decay in Xenon-136. Measuring the Neutrino-Emitting Mode and Searching for Majoron-Emitting Modes

    Energy Technology Data Exchange (ETDEWEB)

    Herrin, Steven [Stanford Univ., CA (United States)

    2013-06-01

    Observations of neutrino flavor oscillations have demonstrated that neutrinos have mass. Since the discovery of these oscillations, much progress has been made at mea- suring the neutrino mass-squared differences and lepton mixing angles that character- ize them. However, the origin and absolute scale of neutrino masses remain unknown. Unique among fermions, neutrinos can be Majorana particles, which could provide an explanation for neutrino masses. Discovery of a hypothetical process known as neutrinoless double beta decay would show that neutrinos are Majorana particles and determine the mass scale for neutrinos. The Enriched Xenon Observatory (EXO) is a series of experiments searching for the neutrinoless double beta decay of 136Xe. The first experiment, EXO-200, began operation in 2011 and makes use of 200 kg of xenon enriched to 80.6% in 136Xe. The analysis presented here makes use of data from EXO-200 to obtain a more precise measurement of the half-life for the two-neutrino-emitting mode of double beta decay than previously reported. The analysis also sets limits on the half-lives for exotic, Majoron-emitting modes of neutrinoless double beta decay. Data from EXO-200 is also used to produce a measurement of the cosmic muon flux at the WIPP under- ground site where EXO-200 is located.

  11. Detection prospects for GeV neutrinos from collisionally heated gamma-ray bursts with IceCube/DeepCore.

    Science.gov (United States)

    Bartos, I; Beloborodov, A M; Hurley, K; Márka, S

    2013-06-14

    Jet reheating via nuclear collisions has recently been proposed as the main mechanism for gamma-ray burst (GRB) emission. In addition to producing the observed gamma rays, collisional heating must generate 10-100 GeV neutrinos, implying a close relation between the neutrino and gamma-ray luminosities. We exploit this theoretical relation to make predictions for possible GRB detections by IceCube + DeepCore. To estimate the expected neutrino signal, we use the largest sample of bursts observed by the Burst and Transient Source Experiment in 1991-2000. GRB neutrinos could have been detected if IceCube + DeepCore operated at that time. Detection of 10-100 GeV neutrinos would have significant implications, shedding light on the composition of GRB jets and their Lorentz factors. This could be an important target in designing future upgrades of the IceCube + DeepCore observatory.

  12. IceVeto. An extension of IceTop to veto air showers for neutrino astronomy with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Auffenberg, Jan; Kemp, Julian; Raedel, Leif; Rongen, Martin; Schaufel, Merlin; Stahlberg, Martin; Hansmann, Bengt; Wiebusch, Christopher [RWTH Aachen University, Physikalische Institut III b (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    IceCube is the world's largest high-energy neutrino observatory, built at the geographic South Pole. For neutrino astronomy, a large background-free sample of well-reconstructed astrophysical neutrinos is essential. The main background for this signal are muons and neutrinos which are produced in cosmic-ray air showers in the Earth's atmosphere. The coincident detection of these air showers by the surface detector IceTop has been proven to be a powerful veto for atmospheric neutrinos and muons in the field of view of the southern hemisphere. This motivates a significant extension of IceTop. First estimates indicate that such a veto detector will more than double the discovery potential of current point source analyses. Here, we present the motivation and capabilities of different technologies based on simulations and measurements.

  13. Anti-neutrino imprint in solar neutrino flare

    Science.gov (United States)

    Fargion, D.

    2006-10-01

    A future neutrino detector at megaton mass might enlarge the neutrino telescope thresholds revealing cosmic supernova background and largest solar flares (SFs) neutrinos. Indeed the solar energetic (Ep>100 MeV) flare particles (protons, α), while scattering among themselves on solar corona atmosphere must produce prompt charged pions, whose chain decays are source of a solar (electron muon) neutrino 'flare' (at tens or hundreds MeV energy). These brief (minutes) neutrino 'bursts' at largest flare peak may overcome by three to five orders of magnitude the steady atmospheric neutrino noise on the Earth, possibly leading to their detection above detection thresholds (in a full mixed three flavour state). Moreover the birth of anti-neutrinos at a few tens of MeV very clearly flares above a null thermal 'hep' anti-neutrino solar background and also above a tiny supernova relic and atmospheric noise. The largest prompt solar anti-neutrino 'burst' may be well detected in future Super Kamikande (gadolinium implemented) anti-neutrino \\bar\

  14. Neutrino oscillations in the early universe

    International Nuclear Information System (INIS)

    Enqvist, K.

    1990-01-01

    The oscillations of electron neutrinos into inert neutrinos may have resonant behaviour in the heat bath of the early Universe. It is shown that any initial neutrino asymmetry will be washed away by the oscillations. Neutrino oscillations would affect also primordial helium production, which implies stringent limits on the neutrino mixing parameters. (orig.)

  15. Three flavour oscillation interpretation of neutrino data

    Indian Academy of Sciences (India)

    To explain the atmospheric neutrino problem in terms of neutrino oscillations, ЖС¾ of about 10-¿. eV. ¾. [8] is needed whereas the neutrino oscil- lation solution to the solar neutrino problem requires ЖС¾ ~10- eV. ¾ . Hence both solar and atmospheric neutrino problems cannot be explained in terms of e ° μ oscillations.

  16. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for sidereal modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.

  17. Neutrino oscillation experiments

    International Nuclear Information System (INIS)

    Camilleri, L.

    1996-01-01

    Neutrino oscillation experiments (ν μ →ν e and ν μ →ν τ ) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs

  18. Supernovae and neutrinos

    International Nuclear Information System (INIS)

    John F. Beacom

    2002-01-01

    A long-standing problem in supernova physics is how to measure the total energy and temperature of ν μ , ν τ , (bar ν) μ , and (bar ν) τ . While of the highest importance, this is very difficult because these flavors only have neutral-current detector interactions. We propose that neutrino-proton elastic scattering, ν + p → ν + p, can be used for the detection of supernova neutrinos in scintillator detectors. It should be emphasized immediately that the dominant signal is on free protons. Though the proton recoil kinetic energy spectrum is soft, with T p ≅ 2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from (bar ν) e + p → e + + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  19. Long baseline neutrino experiments

    Indian Academy of Sciences (India)

    Atmospheric neutrino experiments (IMB, Kamiokande, Super-Kamiokande (SK)) show that νµ created in cosmic ray interactions with atmospheric nuclei are being converted into ντ but νe created in such interactions are unaffected. SK measure- ment of νµ and νe event rates as functions of zenith angle is the key ...

  20. Baikal - neutrino trap

    International Nuclear Information System (INIS)

    Domogatskij, G.

    1984-01-01

    For recording cosmic neutrinos the installation is considered of a detector in the depths of the Baikal lake with a capacity of up to 10 6 m 3 in the shape of a crystalline lattice with photoelectron multipliers placed in its nodes. (J.B.)

  1. Telecommunication with neutrino beams

    International Nuclear Information System (INIS)

    Saenz, A.W.; Ueberall, H.; Kelly, F.J.; Padgett, D.W.; Seeman, N.

    1977-01-01

    Collimated neutrino beams in the energy range 1 to 100 gigaelectron volts, now available from high-energy proton accelerators, are proposed as a potential means for telecommunication over global distances. Quantitative estimates of the feasibility of this proposal based on a particular detector configuration are presented

  2. Chlorine solar neutrino experiment

    International Nuclear Information System (INIS)

    Rowley, J.K.; Cleveland, B.T.; Davis, R. Jr.

    1984-01-01

    The chlorine solar neutrino experiment in the Homestake Gold Mine is described and the results obtained with the chlorine detector over the last fourteen years are summarized and discussed. Background processes producing 37 Ar and the question of the constancy of the production rate of 37 Ar are given special emphasis

  3. NEUTRINOS: Moriond spotlight

    Energy Technology Data Exchange (ETDEWEB)

    Petcov, S. T.

    1991-05-15

    The regular 'Rencontres de Moriond' meetings in the French Alps, which celebrate their 25th anniversary this year, have a strong tradition of reflecting new trends in physics thinking and January's session on 'Tests of Fundamental Laws in Physics' was no exception. The spotlight this time fell on the neutrino sector, a branch of physics frequently in evolution, if not controversial.

  4. Atmospheric neutrino challenges

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2005-08-15

    We briefly review the improvements in the predictions of atmospheric neutrino fluxes since the NOW2000 workshop. In spite of the great progress of the calculational technique the predictions are still not exact because of the uncertainties in the two major sets of input - cosmic ray flux and hadronic interactions on light nuclei.

  5. CERN Neutrino Platform Hardware

    CERN Document Server

    Nelson, Kevin

    2017-01-01

    My summer research was broadly in CERN's neutrino platform hardware efforts. This project had two main components: detector assembly and data analysis work for ICARUS. Specifically, I worked on assembly for the ProtoDUNE project and monitored the safety of ICARUS as it was transported to Fermilab by analyzing the accelerometer data from its move.

  6. Neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, L [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-11-01

    Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.

  7. Aspects of neutrino astrophysics

    NARCIS (Netherlands)

    de Graaf, Tjeerd

    1969-01-01

    Neutrino-astrofysica lS een onderdeel van de hoge-energieastrofysica, het interdis onderzoekgebied waar de resultaten van de van elementaire deeltjes in verband worden gebracht met 1n de astrofysica. Aan de ene kant kunnen astrofysische bronnen worden voor onderzoekingen naar het van elementaire

  8. Direct neutrino mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Weinheimer, Christian, E-mail: weinheimer@uni-muenster.de [Westfaelische Wilhelms-Universitaet, Institut fuer Kernphysik (Germany)

    2013-03-15

    Direct neutrino mass experiments are complementary to searches for neutrinoless double {beta}-decay and to analyses of cosmological data. The previous tritium beta decay experiments at Mainz and at Troitsk have achieved upper limits on the neutrino mass of about 2 eV/c{sup 2} . The KATRIN experiment under construction will improve the neutrino mass sensitivity down to 200 meV/c{sup 2} by increasing strongly the statistics and-at the same time-reducing the systematic uncertainties. Huge improvements have been made to operate the system extremely stably and at very low background rate. The latter comprises new methods to reject secondary electrons from the walls as well as to avoid and to eject electrons stored in traps. As an alternative to tritium {beta}-decay experiments cryo-bolometers investigating the endpoint region of {sup 187}Re {beta}-decay or the electron capture of {sup 163}Ho are being developed. This article briefly reviews the current status of the direct neutrino mass measurements.

  9. COLA with massive neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Bill S.; Winther, Hans A.; Koyama, Kazuya, E-mail: bill.wright@port.ac.uk, E-mail: hans.winther@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, Hampshire, PO1 3FX (United Kingdom)

    2017-10-01

    The effect of massive neutrinos on the growth of cold dark matter perturbations acts as a scale-dependent Newton's constant and leads to scale-dependent growth factors just as we often find in models of gravity beyond General Relativity. We show how to compute growth factors for ΛCDM and general modified gravity cosmologies combined with massive neutrinos in Lagrangian perturbation theory for use in COLA and extensions thereof. We implement this together with the grid-based massive neutrino method of Brandbyge and Hannestad in MG-PICOLA and compare COLA simulations to full N -body simulations of ΛCDM and f ( R ) gravity with massive neutrinos. Our implementation is computationally cheap if the underlying cosmology already has scale-dependent growth factors and it is shown to be able to produce results that match N -body to percent level accuracy for both the total and CDM matter power-spectra up to k ∼< 1 h /Mpc.

  10. Neutrino Emission from Supernovae

    Science.gov (United States)

    Janka, Hans-Thomas

    Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final state. The absorption of electron neutrinos and antineutrinos in the surroundings of the newly formed neutron star can power the supernova explosion and determines the conditions in the innermost supernova ejecta, making them an interesting site for the nucleosynthesis of iron-group elements and trans-iron nuclei.

  11. Optical and X-Ray Early Follow-Up of ANTARES Neutrino Alerts

    Science.gov (United States)

    Adrian-Martinez, S.; Ageron, M.; Albert, A.; Samarai, I. Al; Andre, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Marti, J.; hide

    2016-01-01

    High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. Even with the recent detection of extraterrestrial high-energy neutrinos by the IceCube experiment, no astrophysical neutrinosource has yet been discovered. Transient sources, such as gamma-ray bursts, core-collapse supernovae, or active galactic nuclei are promising candidates. Multi-messenger programs offer a unique opportunity to detect these transient sources. By combining the information provided by the ANTARES neutrino telescope with information coming from other observatories, the probability of detecting a source is enhanced, allowing the possibility of identifyinga neutrino progenitor from a single detected event. A method based on optical and X-ray follow-ups of high-energy neutrino alerts has been developed within the ANTARES collaboration. This method does not require any assumptions on the relation between neutrino and photon spectra other than time-correlation. This program, denoted as TAToO, triggers a network of robotic optical telescopes (TAROTand ROTSE) and the Swift-XRT with a delay of only a few seconds after a neutrino detection, and is therefore well-suited to search for fast transient sources. To identify an optical or Xraycounterpart to a neutrino signal, the images provided by the follow-up observations areanalysed with dedicated pipelines. A total of 42 alerts with optical and 7 alerts with X-ray images taken with a maximum delay of 24 hours after the neutrino trigger have been analyzed. No optical or X-ray counterparts associated to the neutrino triggers have been found, and upper limits on transient source magnitudes have been derived. The probability to reject the gamma-ray burst origin hypothesis has been computed for each alert.

  12. Neutrino oscillation study in the muon neutrino → electron neutrino channel at the Brookhaven accelerator

    International Nuclear Information System (INIS)

    Astier, P.

    1987-09-01

    The E816 experiment described in this thesis is devoted to a neutrino oscillation search at the Brookhaven AGS. The method used here is to look with a fine grained calorimeter for the appearence of electron neutrino in a muon neutrino beam. After recalling the theoretical treatment of the neutrino mass problem, the experimental phenomenology of massive neutrinos and more specifically neutrino oscillations is reviewed. The experiment itself is then extensively described, both on the technical side (detector, beam, simulation) and on the analysis side. In particular the statistical separation of the electromagnetic showers from electrons - our signal - and from photons - our background - treated in detail. The present analysis is based on 2/3 of the final statistics and it leads to the - preliminary - observation of an electron excess in the neutrino interactions yielding 19 ± 15.6 (stat) ± 7 (syst) [fr

  13. Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources

    Energy Technology Data Exchange (ETDEWEB)

    Moharana, Reetanjali; Razzaque, Soebur, E-mail: reetanjalim@uj.ac.za, E-mail: srazzaque@uj.ac.za [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa)

    2015-08-01

    Cosmic neutrino events detected by the IceCube Neutrino Observatory with energy 0∼> 3 TeV have poor angular resolutions to reveal their origin. Ultrahigh-energy cosmic rays (UHECRs), with better angular resolutions at 0>6 EeV energies, can be used to check if the same astrophysical sources are responsible for producing both neutrinos and UHECRs. We test this hypothesis, with statistical methods which emphasize invariant quantities, by using data from the Pierre Auger Observatory, Telescope Array and past cosmic-ray experiments. We find that the arrival directions of the cosmic neutrinos are correlated with 0≥ 10 EeV UHECR arrival directions at confidence level ≈ 90%. The strength of the correlation decreases with decreasing UHECR energy and no correlation exists at energy 0∼ 6 EeV . A search in astrophysical databases within 3{sup o} of the arrival directions of UHECRs with energy 0≥ 10 EeV, that are correlated with the IceCube cosmic neutrinos, resulted in 18 sources from the Swift-BAT X-ray catalog with redshift z≤ 0.06. We also found 3 objects in the Kühr catalog of radio sources using the same criteria. The sources are dominantly Seyfert galaxies with Cygnus A being the most prominent member. We calculate the required neutrino and UHECR fluxes to produce the observed correlated events, and estimate the corresponding neutrino luminosity (25 TeV–2.2 PeV) and cosmic-ray luminosity (500 TeV–180 EeV), assuming the sources are the ones we found in the Swift-BAT and Kühr catalogs. We compare these luminosities with the X-ray luminosity of the corresponding sources and discuss possibilities of accelerating protons to 0∼> 10 EeV and produce neutrinos in these sources.

  14. DETECTING THE SUPERNOVA BREAKOUT BURST IN TERRESTRIAL NEUTRINO DETECTORS

    International Nuclear Information System (INIS)

    Wallace, Joshua; Burrows, Adam; Dolence, Joshua C.

    2016-01-01

    We calculate the distance-dependent performance of a few representative terrestrial neutrino detectors in detecting and measuring the properties of the ν e breakout burst light curve in a Galactic core-collapse supernova. The breakout burst is a signature phenomenon of core collapse and offers a probe into the stellar core through collapse and bounce. We examine cases of no neutrino oscillations and oscillations due to normal and inverted neutrino-mass hierarchies. For the normal hierarchy, other neutrino flavors emitted by the supernova overwhelm the ν e signal, making a detection of the breakout burst difficult. For the inverted hierarchy (IH), some detectors at some distances should be able to see the ν e breakout burst peak and measure its properties. For the IH, the maximum luminosity of the breakout burst can be measured at 10 kpc to accuracies of ∼30% for Hyper-Kamiokande (Hyper-K) and ∼60% for the Deep Underground Neutrino Experiment (DUNE). Super-Kamiokande (Super-K) and Jiangmen Underground Neutrino Observatory (JUNO) lack the mass needed to make an accurate measurement. For the IH, the time of the maximum luminosity of the breakout burst can be measured in Hyper-K to an accuracy of ∼3 ms at 7 kpc, in DUNE to ∼2 ms at 4 kpc, and JUNO and Super-K can measure the time of maximum luminosity to an accuracy of ∼2 ms at 1 kpc. Detector backgrounds in IceCube render a measurement of the ν e breakout burst unlikely. For the IH, a measurement of the maximum luminosity of the breakout burst could be used to differentiate between nuclear equations of state

  15. Search for indications of the neutrino mass hierarchy using IceCube/DeepCore

    Energy Technology Data Exchange (ETDEWEB)

    Leuermann, Martin; Vehring, Markus; Wallraff, Marius; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    In 2015, the Nobel prize in physics was awarded for ''the discovery of neutrino oscillations, which shows that neutrinos have mass'', showing the high relevance of neutrino masses for modern particle physics. However, the ordering of the three neutrino masses is still unknown and is often referred to as neutrino mass hierarchy. Its measurement is a major goal for future experiments. One strategy is to measure matter effects in the oscillation pattern of atmospheric neutrinos e.g. as proposed for the PINGU extension of the IceCube neutrino observatory. Already now, the IceCube/DeepCore detector at the Geographic South Pole can be used to search for this signature. In this talk, we present an analysis based on data taken between 2011 and 2015. Due to recent improvements in the detector's reconstruction performance and the quality of the data selection, a measurement on the significance level of 1 sigma is expected.

  16. Atmospheric and astrophysical Neutrinos above 1 TeV Interacting in IceCube

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Ackermann, M.; Adam, J.

    2015-01-01

    The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV-PeV) neutrinos produced in distant astrophysical objects. A search for ≳100  TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos...... the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far below the threshold of the previous high-energy analysis. Astrophysical neutrinos remain the dominant component in the southern sky down to a deposited energy of 10 TeV. From these data we derive new constraints...... on the diffuse astrophysical neutrino spectrum, Φ_ν=2.06_{-0.3}^{+0.4}×10-18(E_ν/10^5  GeV)^{-2.46±0.12} GeV^-1 cm^−2 sr^−1 s^-1 for 25  TeV

  17. Neutrino Oscillation Experiment at JHF

    CERN Multimedia

    2002-01-01

    T2K is a long baseline neutrino experiment designed to investigate how neutrinos change from one flavor to another as they travel (neutrino oscillations). An intense beam of muon neutrinos is generated at the J-PARC nuclear physics site on the East coast of Japan and directed across the country to the Super-Kamiokande neutrino detector in the mountains of western Japan. The beam is measured once before it leaves the J-PARC site, using the near detector ND280, and again at Super-K, 295 km away: the change in the measured intensity and composition of the beam is used to provide information on the properties of neutrinos. The high intensity neutrino beam is produced in an off-axis configuration. The peak neutrino energy is tuned to the oscillation maximum of ∼ 0.6 GeV to maximize the sensitivity to neutrino oscillations. The science goals of T2K can be summarized as follows: •\tsearch for CP violation in the neutrino sector •\tdiscovery of νμ → νe ( i.e. the confirmation that θ13 > 0 ) •\tprecision ...

  18. New phenomena in neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim

    2009-04-15

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  19. New phenomena in neutrino physics

    International Nuclear Information System (INIS)

    Kopp, Joachim

    2009-01-01

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  20. Sterile Neutrinos in Cold Climates

    International Nuclear Information System (INIS)

    Jones, Benjamin J.P.

    2015-01-01

    Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified, and non-standard coherence loss effects at longer baselines are predicted. Part II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin 2 2θ 24 ≤ 0.02 at m 2 ~ 0.3 eV 2 , and the LSND and MiniBooNE allowed regions are excluded at

  1. Identifying the neutrino mass spectrum from a supernova neutrino burst

    International Nuclear Information System (INIS)

    Dighe, A.S.; Smirnov, A.Yu.

    1999-12-01

    We study the role that the future detection of the neutrino burst from a galactic supernova can play in the reconstruction of the neutrino mass spectrum. We consider all possible 3ν mass and flavor spectra which describe the solar and atmospheric neutrino data. For each of these spectra we find the observable effects of the supernova neutrino conversions both in the matter of the star and the earth. We show that studies of the electron neutrino and antineutrino spectra as well as observations of the neutral current effects from supernova will allow us (i) to identify the solar neutrino solution, (ii) to determine the type of mass hierarchy (normal or inverted) and (iii) to probe the mixing vertical bar U e3 vertical bar 2 to values as low as 10 -4 - 10 -3 . (author)

  2. US Naval Observatory Hourly Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly observations journal from the National Observatory in Washington DC. The observatory is the first station in the United States to produce hourly observations...

  3. Probing Neutrino Properties with Long-Baseline Neutrino Beams

    International Nuclear Information System (INIS)

    Marino, Alysia

    2015-01-01

    This final report on an Early Career Award grant began in April 15, 2010 and concluded on April 14, 2015. Alysia Marino's research is focussed on making precise measurements of neutrino properties using intense accelerator-generated neutrino beams. As a part of this grant, she is collaborating on the Tokai-to-Kamioka (T2K) long-baseline neutrino experiment, currently taking data in Japan, and on the Deep Underground Neutrino Experiment (DUNE) design effort for a future Long-Baseline Neutrino Facility (LBNF) in the US. She is also a member of the NA61/SHINE particle production experiment at CERN, but as that effort is supported by other funds, it will not be discussed further here. T2K was designed to search for the disappearance of muon neutrinos (?_?) and the appearance of electron neutrinos (?_e), using a beam of muon neutrino beam that travels 295 km across Japan towards the Super-Kamiokande detector. In 2011 T2K first reported indications of ?_e appearance, a previously unobserved mode of neutrino oscillations. In the past year, T2K has published a combined analysis of ?_? disappearance and ?_e appearance, and began collecting taking data with a beam of anti-neutrinos, instead of neutrinos, to search for hints of violation of the CP symmetry of the universe. The proposed DUNE experiment has similar physics goals to T2K, but will be much more sensitive due to its more massive detectors and new higher-intensity neutrino beam. This effort will be very high-priority particle physics project in the US over the next decade.

  4. High energy neutrinos: sources and fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark DE 19716 (United States)

    2006-05-15

    We discuss briefly the potential sources of high energy astrophysical neutrinos and show estimates of the neutrino fluxes that they can produce. A special attention is paid to the connection between the highest energy cosmic rays and astrophysical neutrinos.

  5. Mixing of fourth-generation neutrinos

    International Nuclear Information System (INIS)

    Nussinov, S.

    1987-01-01

    This paper reviews some of the constraints on the mixing of massive decaying neutrinos. Some of the possible implications for neutrino physics of the recent supernova, and in particular the apparent overabundance of neutrino energy, are discussed

  6. Non-unitary neutrino propagation from neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, Jeffrey M., E-mail: jeffreyberryman2012@u.northwestern.edu [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Gouvêa, André de; Hernández, Daniel [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Oliveira, Roberto L.N. [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Instituto de Física Gleb Wataghin Universidade Estadual de Campinas, UNICAMP 13083-970, Campinas, São Paulo (Brazil)

    2015-03-06

    Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.

  7. Non-unitary neutrino propagation from neutrino decay

    International Nuclear Information System (INIS)

    Berryman, Jeffrey M.; Gouvêa, André de; Hernández, Daniel; Oliveira, Roberto L.N.

    2015-01-01

    Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature

  8. Neutrino oscillations and the seesaw origin of neutrino mass

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, O.G., E-mail: omr@fis.cinvestav.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000 Mexico, Distrito Federal (Mexico); Valle, J.W.F. [AHEP Group, Institut de Física Corpuscular – C.S.I.C./Universitat de València, Parc Cientific de Paterna, C/Catedratico José Beltrán, 2, E-46980 Paterna (València) (Spain)

    2016-07-15

    The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be difficult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.

  9. When neutrinos attack - the impact of agressive neutrinos in astrophysics.

    Science.gov (United States)

    Kneller, James

    2004-11-01

    Of all the constituents within the standard model of particle physics our understanding of the neutrino has benefited the most from the interaction of astrophysics and `terraphysics'. Much has been learned about the properties of the neutrino from each: experiments here on Earth temper our appreciation of the role that neutrinos play in the cosmos while astrophysics can provide the densities and temperatures in which the neutrinos do more than simply flee. But their reluctance to interact means that it is not until we venture into the most extreme environments of astrophysics that we observe neutrinos pushing back' as hard as they are being pushed'. We review two sites where this occurs: the early Universe and the accretion disk, engines' of gamma ray bursts. Neutrinos play an important role in the evolution of the early Universe with a particular focus upon the electron neutrino in determining the primordial elemental composition via its participation in the most important reaction at that time. Within gamma ray burst accretion disks we again see the electron neutrinos at work in the nuclear reactions and through their function as the coolant' for the disk. Removal of the disk energy, and its deposition into the remnants of the massive star surrounding the disk, may lead to the formation of highly relativistic jets that will later be observed as the burst. We show what has been learned so far about the neutrino and its properties from the study of such environments and discuss where future research is heading.

  10. Matter-neutrino resonance in a multiangle neutrino bulb model

    Science.gov (United States)

    Vlasenko, Alexey; McLaughlin, G. C.

    2018-04-01

    Simulations of neutrino flavor evolution in compact merger environments have shown that neutrino flavor, and hence nucleosynthesis, can be strongly affected by the presence of matter-neutrino resonances (MNRs), where there is a cancelation between the matter and the neutrino potential. Simulations performed thus far follow flavor evolution along a single neutrino trajectory, but self-consistency requires all trajectories to be treated simultaneously, and it has not been known whether MNR phenomena would still occur in multiangle models. In this paper, we present the first fully multi-angle calculations of MNR. We find that familiar MNR phenomena, where neutrinos transform to a greater extent than anti-neutrinos and a feedback mechanism maintains the cancellation between the matter and neutrino potential, still occurs for a subset of angular bins, although the flavor transformation is not as efficient as in the single-angle case. In addition, we find other types of flavor transformation that are not seen in single-angle simulations. These flavor transformation phenomena appear to be robust and are present for a wide range of model parameters, as long as an MNR is present. Although computational constraints currently limit us to models with spherical symmetry, our results suggest that the presence of an MNR generally leads to large-scale neutrino flavor evolution in multiangle systems.

  11. ESO's Two Observatories Merge

    Science.gov (United States)

    2005-02-01

    On February 1, 2005, the European Southern Observatory (ESO) has merged its two observatories, La Silla and Paranal, into one. This move will help Europe's prime organisation for astronomy to better manage its many and diverse projects by deploying available resources more efficiently where and when they are needed. The merged observatory will be known as the La Silla Paranal Observatory. Catherine Cesarsky, ESO's Director General, comments the new development: "The merging, which was planned during the past year with the deep involvement of all the staff, has created unified maintenance and engineering (including software, mechanics, electronics and optics) departments across the two sites, further increasing the already very high efficiency of our telescopes. It is my great pleasure to commend the excellent work of Jorge Melnick, former director of the La Silla Observatory, and of Roberto Gilmozzi, the director of Paranal." ESO's headquarters are located in Garching, in the vicinity of Munich (Bavaria, Germany), and this intergovernmental organisation has established itself as a world-leader in astronomy. Created in 1962, ESO is now supported by eleven member states (Belgium, Denmark, Finland, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland, and the United Kingdom). It operates major telescopes on two remote sites, all located in Chile: La Silla, about 600 km north of Santiago and at an altitude of 2400m; Paranal, a 2600m high mountain in the Atacama Desert 120 km south of the coastal city of Antofagasta. Most recently, ESO has started the construction of an observatory at Chajnantor, a 5000m high site, also in the Atacama Desert. La Silla, north of the town of La Serena, has been the bastion of the organization's facilities since 1964. It is the site of two of the most productive 4-m class telescopes in the world, the New Technology Telescope (NTT) - the first major telescope equipped with active optics - and the 3.6-m, which hosts HARPS

  12. Gauge Trimming of Neutrino Masses

    International Nuclear Information System (INIS)

    Chen, Mu-Chun; de Gouvea, Andre; Dobrescu, Bogdan A.

    2006-01-01

    We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses

  13. Solar neutrino experiments: An update

    International Nuclear Information System (INIS)

    Hahn, R.L.

    1993-01-01

    The situation in solar neutrino physics has changed drastically in the past few years, so that now there are four neutrino experiments in operation, using different methods to look at different regions of the solar neutrino energy spectrum. These experiments are the radiochemical 37 Cl Homestake detector, the realtime Kamiokande detector, and the different forms of radiochemical 71 Ga detectors used in the GALLEX and SAGE projects. It is noteworthy that all of these experiments report a deficit of observed neutrinos relative to the predictions of standard solar models (although in the case of the gallium detectors, the statistical errors are still relatively large). This paper reviews the basic principles of operation of these neutrino detectors, reports their latest results and discusses some theoretical interpretations. The progress of three realtime neutrino detectors that are currently under construction, SuperKamiok, SNO and Borexino, is also discussed

  14. Low Energy Neutrino Cross Sections

    International Nuclear Information System (INIS)

    Zeller, G.P.

    2004-01-01

    Present atmospheric and accelerator based neutrino oscillation experiments operate at low neutrino energies (Ev ∼ 1 GeV) to access the relevant regions of oscillation parameter space. As such, they require precise knowledge of the cross sections for neutrino-nucleon interactions in the sub-to-few GeV range. At these energies, neutrinos predominantly interact via quasi-elastic (QE) or single pion production processes, which historically have not been as well studied as the deep inelastic scattering reactions that dominate at higher energies.Data on low energy neutrino cross sections come mainly from bubble chamber, spark chamber, and emulsion experiments that collected their data decades ago. Despite relatively poor statistics and large neutrino flux uncertainties, these measurements provide an important and necessary constraint on Monte Carlo models in present use. The following sections discuss the current status of QE, resonant single pion, coherent pion, and single kaon production cross section measurements at low energy

  15. Solar neutrino experiments: An update

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R.L.

    1993-12-31

    The situation in solar neutrino physics has changed drastically in the past few years, so that now there are four neutrino experiments in operation, using different methods to look at different regions of the solar neutrino energy spectrum. These experiments are the radiochemical {sup 37}Cl Homestake detector, the realtime Kamiokande detector, and the different forms of radiochemical {sup 71}Ga detectors used in the GALLEX and SAGE projects. It is noteworthy that all of these experiments report a deficit of observed neutrinos relative to the predictions of standard solar models (although in the case of the gallium detectors, the statistical errors are still relatively large). This paper reviews the basic principles of operation of these neutrino detectors, reports their latest results and discusses some theoretical interpretations. The progress of three realtime neutrino detectors that are currently under construction, SuperKamiok, SNO and Borexino, is also discussed.

  16. Development of an electronic board for a neutrino telescope project

    International Nuclear Information System (INIS)

    Gabrielli, Alessandro; Gandolfi, Enzo; Ricci, Pier Paolo

    2006-01-01

    The NEMO (NEutrino Mediterranean Observatory) collaboration is involved in research and development for the construction of an underwater km 3 scale Cherenkov neutrino detector. The detector will consist of about four thousands of optical modules that interface with coaxial cables to electronics cards. The detector is connected to the shore by an electro-optical cable for data transmission and power supply. The board also provides signal synchronization, filtering, data compression and packing. We describe the details of this electronic control part, which has been developed using commercial components and the very high-speed, Hardware Description Language (VHDL). The design was implemented on a programmable device. A test-bench system was also designed using a PC-based acquisition board running on the National Instrument LabVIEW environment

  17. Auger North: The Pierre Auger Observatory in the Northern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Mantsch, Paul M.; /Fermilab

    2009-01-01

    Results from Auger South have settled some fundamental issues about ultra-high energy (UHE) cosmic rays and made clear what is needed now to identify the sources of these particles, to uncover the acceleration process, to establish the particle types, and to test hadronic interaction properties at extreme energies. The cosmic rays above 55 EeV are key. Auger North targets this high energy frontier by increasing the collecting power of the Auger Observatory by a factor of eight for those high energy air showers. Particles above about 40 EeV have been shown to be subject to propagation energy loss, as predicted by Greisen, Zatsepin and Kuzmin (GZK) in 1966. Moreover, it is now evident that there is a detectable flux of particles from extragalactic sources within the GZK sphere. The inhomogeneous distribution of matter in the local universe imprints its anisotropy on the arrival directions of cosmic rays above 55 EeV. The challenge is to collect enough of those arrival directions to identify the class of astrophysical accelerators and measure directly the brightest sources. Auger North will increase the event rate from 25 per year to 200 per year and give the Auger Observatory full sky exposure. The Auger Observatory also has the capability to detect UHE photons and neutrinos from discrete sources or from the decays of GZK pions. With the expanded aperture of Auger North, the detection of GZK photons and neutrinos will provide a complementary perspective of the highest energy phenomena in the contemporary universe. Besides being an observatory for UHE cosmic rays, photons, and neutrinos, the Auger Observatory will serve as a laboratory for the study of hadronic interactions with good statistics over a wide range of center-of-mass energies above what can be reached at the LHC. Auger North will provide statistical power at center-of-mass energies above 250 TeV where the alternative extrapolations of hadronic cross sections diverge. Auger North is ready to go. The

  18. Auger North: The Pierre Auger Observatory in the Northern Hemisphere

    International Nuclear Information System (INIS)

    Mantsch, Paul M.

    2009-01-01

    Results from Auger South have settled some fundamental issues about ultra-high energy (UHE) cosmic rays and made clear what is needed now to identify the sources of these particles, to uncover the acceleration process, to establish the particle types, and to test hadronic interaction properties at extreme energies. The cosmic rays above 55 EeV are key. Auger North targets this high energy frontier by increasing the collecting power of the Auger Observatory by a factor of eight for those high energy air showers. Particles above about 40 EeV have been shown to be subject to propagation energy loss, as predicted by Greisen, Zatsepin and Kuzmin (GZK) in 1966. Moreover, it is now evident that there is a detectable flux of particles from extragalactic sources within the GZK sphere. The inhomogeneous distribution of matter in the local universe imprints its anisotropy on the arrival directions of cosmic rays above 55 EeV. The challenge is to collect enough of those arrival directions to identify the class of astrophysical accelerators and measure directly the brightest sources. Auger North will increase the event rate from 25 per year to 200 per year and give the Auger Observatory full sky exposure. The Auger Observatory also has the capability to detect UHE photons and neutrinos from discrete sources or from the decays of GZK pions. With the expanded aperture of Auger North, the detection of GZK photons and neutrinos will provide a complementary perspective of the highest energy phenomena in the contemporary universe. Besides being an observatory for UHE cosmic rays, photons, and neutrinos, the Auger Observatory will serve as a laboratory for the study of hadronic interactions with good statistics over a wide range of center-of-mass energies above what can be reached at the LHC. Auger North will provide statistical power at center-of-mass energies above 250 TeV where the alternative extrapolations of hadronic cross sections diverge. Auger North is ready to go. The

  19. Neutrino oscillations. Theory and experiment

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    2001-01-01

    Theoretical schemes on neutrino oscillations are considered. The experimental data on neutrino oscillations obtained in the Super-Kamiokande (Japan) and SNO (Canada) experiments are given. Comparison of these data with the predictions obtained in the theoretical schemes is done. Conclusion is made that the experimental data confirm only the scheme with transitions (oscillations) between aromatic ν e -, ν μ -, ν τ - neutrinos with maximal angle mixings. (author)

  20. Muon colliders and neutrino factories

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  1. Expanding the HAWC Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Johanna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-17

    The High Altitude Water Cherenkov Gamma-Ray Observatory is expanding its current array of 300 water tanks to include 350 outrigger tanks to increase sensitivity to gamma rays above 10 TeV. This involves creating and testing hardware with which to build the new tanks, including photomultiplier tubes, high voltage supply units, and flash analog to digital converters. My responsibilities this summer included preparing, testing and calibrating that equipment.

  2. South African Astronomical Observatory

    International Nuclear Information System (INIS)

    1987-01-01

    Work at the South African Astronomical Observatory (SAAO) in recent years, by both staff and visitors, has made major contributions to the fields of astrophysics and astronomy. During 1986 the SAAO has been involved in studies of the following: galaxies; celestial x-ray sources; magellanic clouds; pulsating variables; galactic structure; binary star phenomena; nebulae and interstellar matter; stellar astrophysics; open clusters; globular clusters, and solar systems

  3. Sterile neutrinos in the milky way

    DEFF Research Database (Denmark)

    Riemer-Sørensen, Signe; Hansen, Steen Harle; Pedersen, K.

    2006-01-01

    Cosmology: Dark Matter, Elementary Particles, Neutrinos, X-Rays: Diffuse Background Udgivelsesdato: May 30......Cosmology: Dark Matter, Elementary Particles, Neutrinos, X-Rays: Diffuse Background Udgivelsesdato: May 30...

  4. Neutrino clouds and dark matter

    International Nuclear Information System (INIS)

    Goldman, T.; McKellar, B.H.J.; Stephenson, G.J. Jr.

    1996-01-01

    We have examined the consequences of assuming the existence of a light scalar boson, weakly coupled to neutrinos, and not coupled to any other light fermions. For a range of parameters, we find that this hypothesis leads to the development of neutrino clusters which form in the early Universe and which provide gravitational fluctuations on scales small compared to a parsec (i.e., the scale of solar systems). Under some conditions, this can produce anomalous gravitational acceleration within solar systems and lead to a vanishing of neutrino mass-squared differences, giving rise to strong neutrino oscillation effects

  5. Sterile neutrinos as dark matter

    International Nuclear Information System (INIS)

    Dodelson, S.; Widrow, L.M.

    1994-01-01

    The simplest model that can accommodate a viable nonbaryonic dark matter candidate is the standard electroweak theory with the addition of right-handed (sterile) neutrinos. We consider a single generation of neutrinos with a Dirac mass μ and a Majorana mass M for the right-handed component. If M much-gt μ (standard hot dark matter corresponds to M=0), then sterile neutrinos are produced via oscillations in the early Universe with energy density independent of M. However, M is crucial in determining the large scale structure of the Universe; for M∼100 eV, sterile neutrinos make an excellent warm dark matter candidate

  6. Double success for neutrino lab

    CERN Multimedia

    2010-01-01

    "The Gran Sasso National Laboratory in Italy is celebrating two key developments in the field of neutrino physics. Number one is the first ever detection, by the OPERA experiement, of possible tau neutrino that has switched its identity from a muon neutrino as it travelled form its origins at CERN in Switzerland to the Italian lab. Number two is the successful start-up of the ICARUS detector, which, like OPERA, is designed to study neutrinos that "oscillate" between types" (0.5 pages)

  7. Neutrino oscillation measurements with reactors

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, R.D. [W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2010-11-01

    Since the first direct observations of antineutrino events by Reines and Cowan in the 1950's, nuclear reactors have been an important tool in the study of neutrino properties. More recently, the study of neutrino oscillations has been a very active area of research. The pioneering observation of oscillations by the KamLAND experiment has provided important information on the neutrino masses and the neutrino mixing matrix. New experiments to study the remaining unknown mixing angle are currently under development. These recent studies and potential future developments will be discussed.

  8. Nonstandard neutrino interactions in supernovae

    Science.gov (United States)

    Stapleford, Charles J.; Väänänen, Daavid J.; Kneller, James P.; McLaughlin, Gail C.; Shapiro, Brandon T.

    2016-11-01

    Nonstandard interactions (NSI) of neutrinos with matter can significantly alter neutrino flavor evolution in supernovae with the potential to impact explosion dynamics, nucleosynthesis, and the neutrinos signal. In this paper, we explore, both numerically and analytically, the landscape of neutrino flavor transformation effects in supernovae due to NSI and find a new, heretofore unseen transformation processes can occur. These new transformations can take place with NSI strengths well below current experimental limits. Within a broad swath of NSI parameter space, we observe symmetric and standard matter-neutrino resonances for supernovae neutrinos, a transformation effect previously only seen in compact object merger scenarios; in another region of the parameter space we find the NSI can induce neutrino collective effects in scenarios where none would appear with only the standard case of neutrino oscillation physics; and in a third region the NSI can lead to the disappearance of the high density Mikheyev-Smirnov-Wolfenstein resonance. Using a variety of analytical tools, we are able to describe quantitatively the numerical results allowing us to partition the NSI parameter according to the transformation processes observed. Our results indicate nonstandard interactions of supernova neutrinos provide a sensitive probe of beyond the Standard Model physics complementary to present and future terrestrial experiments.

  9. Supernova neutrinos and explosive nucleosynthesis

    Science.gov (United States)

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Mathews, G. J.; Nakamura, K.; Shibagaki, S.; Suzuki, T.

    2014-05-01

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes 7Li, 11B, 92Nb, 138La and 180Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ13, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements 11B and 7Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ13, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  10. Supernova neutrinos and explosive nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  11. Neutrino geophysics - a future possibility

    International Nuclear Information System (INIS)

    Kiss, Dezsoe

    1988-01-01

    The history and basic properties of the neutrinos are reviewed. A new idea: neutrino tomography of the Earth interior is discussed in detail. The main contradiction: the high pervasivity of neutrinos, which makes possible the transillumination of the Earth, and the gigantic technical problems of detection caused by the small cross section is pointed out. The proposed possibilities of detection (radiowaves, sound, muons and Cherenkov light emitted by neutrinos) are described. Proposed futuristic technical ideas (mobile muon detectors aboard trucks, floating proton accelerators of 100 km circumference, moving in the ocean) and supposed geological aims (Earth's core, internal density anomalies, quarries of minerals and crude oil) are discussed. (D.Gy.) 5 figs

  12. Magnus approximation in neutrino oscillations

    International Nuclear Information System (INIS)

    Acero, Mario A; Aguilar-Arevalo, Alexis A; D'Olivo, J C

    2011-01-01

    Oscillations between active and sterile neutrinos remain as an open possibility to explain some anomalous experimental observations. In a four-neutrino (three active plus one sterile) mixing scheme, we use the Magnus expansion of the evolution operator to study the evolution of neutrino flavor amplitudes within the Earth. We apply this formalism to calculate the transition probabilities from active to sterile neutrinos with energies of the order of a few GeV, taking into account the matter effect for a varying terrestrial density.

  13. Supernova neutrino detection in LZ

    Science.gov (United States)

    Khaitan, D.

    2018-02-01

    In the first 10 seconds of a core-collapse supernova, almost all of its progenitor's gravitational potential, O(1053 ergs), is carried away in the form of neutrinos. These neutrinos, with O(10 MeV) kinetic energy, can interact via coherent elastic neutrino-nucleus scattering (CEνNS) depositing O(1 keV) in detectors. In this work we describe the performances of low-background dark matter detectors, such as LUX-ZEPLIN (LZ), optimized for detecting low-energy depositions, in detecting these neutrino interactions. For instance, a 27 Msolar supernova at 10 kpc is expected to produce ~350 neutrino interactions in the 7-tonne liquid xenon active volume of LZ. Based on the LS220 EoS neutrino flux model for a SN, the Noble Element Simulation Technique (NEST), and predicted CEνNS cross-sections for xenon, to study energy deposition and detection of SN neutrinos in LZ. We simulate the response of the LZ data acquisition system (DAQ) and demonstrate its capability and limitations in handling this interaction rate. We present an overview of the LZ detector, focusing on the benefits of liquid xenon for supernova neutrino detection. We discuss energy deposition and detector response simulations and their results. We present an analysis technique to reconstruct the total number of neutrinos and the time of the supernova core bounce.

  14. 50 Years of Neutrino Physics

    International Nuclear Information System (INIS)

    Zralek, M.

    2010-01-01

    Some important topics from history of neutrino physics over the last fifty years are discussed. History of neutrinos is older, at 4 th December 2010 it will be eightieth anniversary of the neutrino birth. In that day W. Pauli wrote the famous letter to participants of the physics conference at Tubingen with the suggestion that '' there could exist in the nuclei electrically neutral particle ''. We will concentrate mostly on the 50 years of neutrino history just to show the long tradition of the Zakopane Theoretical School. (author)

  15. Hunting for a massive neutrino

    CERN Document Server

    AUTHOR|(CDS)2108802

    1997-01-01

    A great effort is devoted by many groups of physicists all over the world to give an answer to the following question: Is the neutrino massive ? This question has profound implications with particle physics, astrophysics and cosmology, in relation to the so-called Dark Matter puzzle. The neutrino oscillation process, in particular, can only occur if the neutrino is massive. An overview of the neutrino mass measurements, of the oscillation formalism and experiments will be given, also in connection with the present experimental programme at CERN with the two experiments CHORUS and NOMAD.

  16. Radiochemical solar neutrino experiments

    International Nuclear Information System (INIS)

    Rich, R.; Spiro, M.

    1993-01-01

    This review covers the three presently running radiochemical solar neutrino experiments, namely the Chlorine, SAGE, and GALLEX experiments. The focus of the review is on a discussion of statistical consistency checks of the available data. The chlorine radiochemical experiment is conceptually simple and shows no strong indication of any statistical anomalies. It still forms the basis of the solar neutrino problem. Each of the two gallium experiments show internal statistical consistency. SAGE's recent preliminary results are consistent with the published GALLEX results. If this convergence is confirmed by a more definitive analysis, this would suggest that the combined result of the two gallium experiments, SAGE and GALLEX, be used for comparisons with theoretical expectations. 5 refs., 15 figs

  17. Caverns for neutrino physicists

    International Nuclear Information System (INIS)

    Duffaut, P.

    2005-01-01

    Since more than 20 years, particle physicists are using underground facilities to catch cosmic neutrinos and to get rid of other parasitic cosmic radiations. The observation of significant numbers of neutrinos requires the use of large volume caverns at important depths. This article presents such existing facilities in the US, France, Italy, UK, Spain, Japan (Kamioka), Russia and India and the different projects in competition for the setting up of a mega-ton detector with a volume of 1 million m 3 of water (DUSEL project in the US, MEMPHYS project in France, Hyperkamiokande in Japan). Several suitable underground spaces are available in these countries (abandoned mines, tunnels) but each has its advantages and drawbacks in terms of rock mechanics, access and seismicity. (J.S.)

  18. Neutrinos in cosmology

    International Nuclear Information System (INIS)

    Tayler, R.J.

    1983-01-01

    The standard model of the hot big bang cosmological theory, which appears to be in agreement, at least qualitatively, with the observed properties of the Universe, assumes that the early Universe was homogeneous and isotropic and that it has been continuously expanding from a state characterized by very high temperature and density, where matter and radiation were to a good approximation in a state of thermodynamic equilibrium. In this standard model, it is assumed that baryon number, charge number and the various lepton numbers are all conserved. Only the baryon number is non-zero and this, expressed as the ratio of the net number of baryons (baryons minus antibaryons) to the number of photons per unit volume is the undefined parameter in the model. The author discusses the importance of knowing how many types of neutrinos there are with regard to the He 4 abundance, and the implication of a small, non-zero neutrino mass. (Auth.)

  19. Electromagnetic properties of neutrinos

    International Nuclear Information System (INIS)

    Ould-Saada, F.

    1996-01-01

    Electromagnetic properties of neutrinos and their implications are discussed, and the experimental situation summarised. Spin precession in solar magnetic fields presents a solution of the solar neutrino problem. A magnetic moment, μ ν , of the order of 10 -11 μ B would be needed. In the simplest extension of the standard model, with no-vanishing neutrino masses, dipole moment interactions are allowed through higher order processes. A neutrino mass of ≅10 eV would give μ ν ≅10 -18 μ B , much smaller than the present experimental upper limit of 2x10 -10 μ B . Although model-dependent, upper bounds on dipole moments from astrophysics and cosmology are 10 to 100 times more stringent. Any values of μ ν , larger than the SM predictions, would then signal the onset of new physics. Among the processes sensitive to the magnetic moment, νe - scattering presents two advantages: it is a pure weak, theoretically well understood process, and the recoil electron can be easily measured. A hypothetical electromagnetic contribution to the cross-section would dominate at low energies. A low background detector, MUNU, being built at the Bugey nuclear reactor is presented.It is based on a gas TPC, surrounded by a scintillator. The threshold on the electron recoil energy can be set very low, around 500 keV, giving the experiment a good sensitivity to the magnetic moment of the ν e , extending down to 2x10 -11 μ B . (author) 15 figs., 5 tabs., 96 refs

  20. The challenge of neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Christine

    1995-09-15

    Neutrinos'', Maurice Goldhaber once remarked, ''are remarkable particles: they induce courage in theoreticians and perseverance in experimenters''. They are also no strangers to controversy, for they were in a sense born amidst it, and as recent work on neutrino oscillations demonstrates they continue to fuel debate. This is of course largely to do with the fact that neutrinos have no electric charge and experience only the weak nuclear force, making them supremely difficult to detect. The debates surrounding neutrinos began in the first decades of the 20th century, before the particle had even been thought of. Studies pioneered by Lise Meitner and Otto Hahn suggested that the electrons emitted in beta-decay emerged with discrete energies. In these experiments a spectrometer bent the electrons according to their energy, and a photographic plate detected the electrons emerging through a movable slit, so yielding ''lines'' at various energies. But when James Chadwick used a point counter instead of a photographic plate, he could not find ''the ghost of a line''. Instead, he convinced himself that the energy of the beta-decay electrons varies continuously up to a maximum, with peaks (''lines'') at only a few energies. And he was able to explain how the photographic technique could ''fake'' lines through its great sensitivity to small changes in intensity. The First World War interrupted these investigations, but afterwards arguments between a continuous energy spectrum and discrete lines continued until 1927, when Charles Drummond Ellis and William Wooster at Cambridge published results from a definitive experiment in which they measured the total electron energy in a single decay process. If the electrons always started out with the same energy but lost varying amounts in subsidiary processes to give many lines, as Meitner believed, then the result would equal the maximum at the end of the spectrum.

  1. NEUTRINOS: Moriond spotlight

    International Nuclear Information System (INIS)

    Petcov, S.T.

    1991-01-01

    The regular 'Rencontres de Moriond' meetings in the French Alps, which celebrate their 25th anniversary this year, have a strong tradition of reflecting new trends in physics thinking and January's session on 'Tests of Fundamental Laws in Physics' was no exception. The spotlight this time fell on the neutrino sector, a branch of physics frequently in evolution, if not controversial

  2. Electromagnetic properties of neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ould-Saada, F [Zurich Univ. (Switzerland). Inst. fuer Physik

    1996-11-01

    Electromagnetic properties of neutrinos and their implications are discussed, and the experimental situation summarised. Spin precession in solar magnetic fields presents a solution of the solar neutrino problem. A magnetic moment, {mu}{sub {nu}}, of the order of 10{sup -11} {mu}{sub B} would be needed. In the simplest extension of the standard model, with no-vanishing neutrino masses, dipole moment interactions are allowed through higher order processes. A neutrino mass of {approx_equal}10 eV would give {mu}{sub {nu}}{approx_equal}10{sup -18} {mu}{sub B}, much smaller than the present experimental upper limit of 2x10{sup -10} {mu}{sub B}. Although model-dependent, upper bounds on dipole moments from astrophysics and cosmology are 10 to 100 times more stringent. Any values of {mu}{sub {nu}}, larger than the SM predictions, would then signal the onset of new physics. Among the processes sensitive to the magnetic moment, {nu}e{sup -} scattering presents two advantages: it is a pure weak, theoretically well understood process, and the recoil electron can be easily measured. A hypothetical electromagnetic contribution to the cross-section would dominate at low energies. A low background detector, MUNU, being built at the Bugey nuclear reactor is presented.It is based on a gas TPC, surrounded by a scintillator. The threshold on the electron recoil energy can be set very low, around 500 keV, giving the experiment a good sensitivity to the magnetic moment of the {nu}{sub e}, extending down to 2x10{sup -11} {mu}{sub B}. (author) 15 figs., 5 tabs., 96 refs.

  3. Anarchy and neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, Jean-François; Giasson, Nicolas; Marleau, Luc [Département de Physique, de Génie Physique et d’Optique,Université Laval, Québec, QC G1V 0A6 (Canada)

    2017-04-21

    The neutrino sector of a seesaw-extended Standard Model is investigated under the anarchy hypothesis. The previously derived probability density functions for neutrino masses and mixings, which characterize the type I-III seesaw ensemble of N×N complex random matrices, are used to extract information on the relevant physical parameters. For N=2 and N=3, the distributions of the light neutrino masses, as well as the mixing angles and phases, are obtained using numerical integration methods. A systematic comparison with the much simpler type II seesaw ensemble is also performed to point out the fundamental differences between the two ensembles. It is found that the type I-III seesaw ensemble is better suited to accommodate experimental data. Moreover, the results indicate a strong preference for the mass splitting associated to normal hierarchy. However, since all permutations of the singular values are found to be equally probable for a particular mass splitting, predictions regarding the hierarchy of the mass spectrum remains out of reach in the framework of anarchy.

  4. Neutrino physics with SHIP

    CERN Document Server

    van Herwijnen, Eric

    2016-01-01

    SHIP is a new general purpose fixed target facility, whose Technical Proposal has been recently reviewed by the CERN SPS Committee. It recommended that the experiment proceed further to a Comprehensive Design phase. In its initial phase, the 400 GeV proton beam extracted from the SPS will be dumped on a heavy target with the aim of integrating 2×1020 POT (Protons On Target) in 5 years. A dedicated detector, based on a long vacuum tank followed by a spectrometer and particle identification detectors, will allow probing a variety of models with light long-lived exotic particles and masses below O(10) GeV/c 2 . The main focus will be the physics of the so-called Hidden Portals. The sensitivity to Heavy Neutrinos will allow to probe for the first time the mass range between the kaon and the charm meson mass, and a range of couplings for which Baryogenesis and active neutrino masses could also be explained. Another dedicated detector will allow the study of neutrino cross-sections and angular distributions. ντ ...

  5. Neutrino physics at LAMPF

    International Nuclear Information System (INIS)

    Garvey, G.T.

    1989-01-01

    There are three neutrino experiments at LAMPF in various stages of completion or development. E225, the study of electron-neutrino electron scattering, which completed data taking in December 1986 and has just about completed all its analysis. E645, a search for /bar /nu///sub μ/ → /bar /nu///sub e/ oscillation, is in its third and final year of data taking. The Large Cerenkov Detector (LCD), associated with E1015, has undergone extensive scientific and technical review and we are presently trying to obtain the necessary funds to build the detector, beam line, and target. In the following, each of these experiments will be briefly discussed. Before doing so, it is useful to show the characteristics of the neutrino spectrum resulting from the decay of π + at rest. It is also useful to realize that, on average, an 800-MeV proton from LAMPF produces about 0.1 π + decaying at rest. 16 refs., 5 figs., 4 tabs

  6. Triggers for the Pierre Auger Observatory, the current status and plans for the future

    CERN Document Server

    Szadkowski, Z

    2009-01-01

    The Pierre Auger Observatory is a multi-national organization for research on ultra-high energy cosmic rays. The Southern Auger Observatory (Auger-South) in the province of Mendoza, Argentina, has been completed in 2008. First results on the energy spectrum, mass composition and distribution of arrival directions on the southern sky are really impressive. The planned Northern Auger Observatory in Colorado, USA, (Auger-North) will open a new window into the universe and establish charged particle astronomy to determine the origin and nature of ultra-high energy cosmic rays. These cosmic particles carry information complementary to neutrinos and photons and to gravitational waves. They also provide an extremely energetic beam for the study of particle interactions at energies that thirty times higher than those reached in terrestrial accelerators. The Auger Observatory is a hybrid detector consisting of a Surface Detector (SD) and an atmospheric Fluorescence Detector (FD). The hybrid data set obtained when both...

  7. Search for the sterile neutrino mixing with the ICAL detector at INO

    Energy Technology Data Exchange (ETDEWEB)

    Behera, S.P. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India); Homi Bhabha National Institute, Mumbai (India); Ghosh, Anushree [Universidad Tecnica Federico Santa Maria, Departamento de Fisica, Valparaiso (Chile); Choubey, Sandhya [Harish-Chandra Research Institute, Allahabad (India); Datar, V.M. [INO Cell, Tata Institute of Fundamental Research, Mumbai (India); Mishra, D.K. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India); Mohanty, A.K. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India); Homi Bhabha National Institute, Mumbai (India); Saha Institute of Nuclear Physics, Kolkata (India)

    2017-05-15

    The study has been carried out on the prospects of probing the sterile neutrino mixing with the magnetized iron calorimeter (ICAL) at the India-based Neutrino Observatory (INO), using atmospheric neutrinos as a source. The so-called 3 + 1 scenario is considered for active-sterile neutrino mixing and lead to projected exclusion curves in the sterile neutrino mass and mixing angle plane. The analysis is performed using the neutrino event generator NUANCE, modified for ICAL, and folded with the detector resolutions obtained by the INO collaboration from a full GEANT4-based detector simulation. A comparison has been made between the results obtained from the analysis considering only the energy and zenith angle of the muon and combined with the hadron energy due to the neutrino induced event. A small improvement has been observed with the addition of the hadron information to the muon. In the analysis we consider neutrinos coming from all zenith angles and the Earth matter effects are also included. The inclusion of events from all zenith angles improves the sensitivity to sterile neutrino mixing by about 35% over the result obtained using only down-going events. The improvement mainly stems from the impact of Earth matter effects on active-sterile mixing. The expected precision of ICAL on the active-sterile mixing is explored and the allowed confidence level (C.L.) contours presented. At the assumed true value of 10 {sup circle} for the sterile mixing angles and marginalization over Δm{sup 2}{sub 41} and the sterile mixing angles, the upper bound at 90% C.L. (from two-parameter plots) is around 20 {sup circle} for θ{sub 14} and θ{sub 34}, and about 12 {sup circle} for θ{sub 24}. (orig.)

  8. New neutrino oscillation results from NOVA

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Neutrinos oscillate among flavors as they travel because a neutrino of a particular flavor is also a superposition of multiple neutrinos with slightly different masses.  The interferometric nature of oscillations allows these tiny mass differences to be measured, along with the parameters of the PMNS matrix which governs the mixing. However, since neutrinos only interact weakly, a powerful neutrino source and massive detectors are required to measure them. In this talk I will show recently updated results from NOvA, a long-baseline neutrino oscillation experiment at Fermilab with two functionally identical scintillator detectors. I will present measurements of muon neutrino disappearance and electron neutrino appearance, and what constraints those measurements put on the remaining open questions in neutrino oscillations: Is the neutrino mass hierarchy "normal" or "inverted?" Do neutrino oscillations violate CP symmetry? Is the mixing in the atmospheric sector maximal? The recent update includes 50%...

  9. Flipped Heavy Neutrinos from the Solar Neutrino Problem to Baryogenesis

    CERN Document Server

    Ellis, Jonathan Richard; Olive, Keith A

    1993-01-01

    We discuss baryogenesis using the flipped $SU(5)$ model for lepton mass matrices. We show that the generalized see-saw mechanism in this model can not only provide MSW neutrino mixing suitable for solving the solar neutrino problem, and supply a hot dark matter candidate ($\

  10. Homestake result, sterile neutrinos, and low energy solar neutrino experiments

    Science.gov (United States)

    de Holanda, P. C.; Smirnov, A. Yu.

    2004-06-01

    The Homestake result is about ˜2σ lower than the Ar-production rate, QAr, predicted by the large mixing angle (LMA) Mikheyev-Smirnov-Wolfenstein solution of the solar neutrino problem. Also there is no apparent upturn of the energy spectrum (R≡Nobs/NSSM) at low energies in SNO and Super-Kamiokande. Both these facts can be explained if a light, Δm201˜(0.2 2)×10-5 eV2, sterile neutrino exists which mixes very weakly with active neutrinos: sin2 2α˜(10-5 10-3). We perform both the analytical and numerical study of the conversion effects in the system of two active neutrinos with the LMA parameters and one weakly mixed sterile neutrino. The presence of sterile neutrino leads to a dip in the survival probability in the intermediate energy range E=(0.5 5) MeV thus suppressing the Be, or/and pep, CNO, as well as B electron neutrino fluxes. Apart from diminishing QAr it leads to decrease of the Ge-production rate and may lead to the decrease of the BOREXINO signal as well as the CC/NC ratio at SNO. Future studies of the solar neutrinos by SNO, SK, BOREXINO, and KamLAND as well as by the new low energy experiments will allow us to check this possibility.

  11. Looking for Cosmic Neutrino Background

    Directory of Open Access Journals (Sweden)

    Chiaki eYanagisawa

    2014-06-01

    Full Text Available Since the discovery of neutrino oscillation in atmospheric neutrinos by the Super-Kamiokande experiment in 1998, study of neutrinos has been one of exciting fields in high-energy physics. All the mixing angles were measured. Quests for 1 measurements of the remaining parameters, the lightest neutrino mass, the CP violating phase(s, and the sign of mass splitting between the mass eigenstates m3 and m1, and 2 better measurements to determine whether the mixing angle theta23 is less than pi/4, are in progress in a well-controlled manner. Determining the nature of neutrinos, whether they are Dirac or Majorana particles is also in progress with continuous improvement. On the other hand, although the ideas of detecting cosmic neutrino background have been discussed since 1960s, there has not been a serious concerted effort to achieve this goal. One of the reasons is that it is extremely difficult to detect such low energy neutrinos from the Big Bang. While there has been tremendous accumulation of information on Cosmic Microwave Background since its discovery in 1965, there is no direct evidence for Cosmic Neutrino Background. The importance of detecting Cosmic Neutrino Background is that, although detailed studies of Big Bang Nucleosynthesis and Cosmic Microwave Background give information of the early Universe at ~a few minutes old and ~300 k years old, respectively, observation of Cosmic Neutrino Background allows us to study the early Universe at $sim$ 1 sec old. This article reviews progress made in the past 50 years on detection methods of Cosmic Neutrino Background.

  12. Ultrahigh energy neutrino afterglows of nearby long duration gamma-ray bursts

    Science.gov (United States)

    Thomas, Jessymol K.; Moharana, Reetanjali; Razzaque, Soebur

    2017-11-01

    Detection of ultrahigh energy (UHE, ≳1 PeV ) neutrinos from astrophysical sources will be a major advancement in identifying and understanding the sources of UHE cosmic rays (CRs) in nature. Long duration gamma-ray burst (GRB) blast waves have been considered as potential acceleration sites of UHECRs. These CRs are expected to interact with GRB afterglow photons, which are synchrotron radiation from relativistic electrons coaccelerated with CRs in the blast wave, and naturally produce UHE neutrinos. Fluxes of these neutrinos are uncertain, however, and crucially depend on the observed afterglow modeling. We have selected a sample of 23 long duration GRBs within redshift 0.5 for which adequate electromagnetic afterglow data are available and which could produce high flux of UHE afterglow neutrinos, being nearby. We fit optical, x-ray, and γ -ray afterglow data with an adiabatic blast wave model in a constant density interstellar medium and in a wind environment where the density of the wind decreases as the inverse square of the radius from the center of the GRB. The blast wave model parameters extracted from these fits are then used for calculating UHECR acceleration and p γ interactions to produce UHE neutrino fluxes from these GRBs. We have also explored the detectability of these neutrinos by currently running and upcoming large area neutrino detectors, such as the Pierre Auger Observatory, IceCube Gen-2, and KM3NeT observatories. We find that our realistic flux models from nearby GRBs will be unconstrained in the foreseeable future.

  13. Measurement of neutrino flux from neutrino-electron elastic scattering

    Science.gov (United States)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  14. Radiative neutrino mass model with degenerate right-handed neutrinos

    International Nuclear Information System (INIS)

    Kashiwase, Shoichi; Suematsu, Daijiro

    2016-01-01

    The radiative neutrino mass model can relate neutrino masses and dark matter at a TeV scale. If we apply this model to thermal leptogenesis, we need to consider resonant leptogenesis at that scale. It requires both finely degenerate masses for the right-handed neutrinos and a tiny neutrino Yukawa coupling. We propose an extension of the model with a U(1) gauge symmetry, in which these conditions are shown to be simultaneously realized through a TeV scale symmetry breaking. Moreover, this extension can bring about a small quartic scalar coupling between the Higgs doublet scalar and an inert doublet scalar which characterizes the radiative neutrino mass generation. It also is the origin of the Z 2 symmetry which guarantees the stability of dark matter. Several assumptions which are independently supposed in the original model are closely connected through this extension. (orig.)

  15. Effects of neutrino oscillation on supernova neutrino. Inverted mass hierarchy

    International Nuclear Information System (INIS)

    Takahashi, Keitaro; Sato, Katsuhiko

    2003-01-01

    We study the effects of neutrino oscillation on supernova neutrinos in the case of the inverted mass hierarchy (m 3 1 2 ) as well as the normal mass hierarchy (m 1 2 3 ). Numerical analysis using realistic supernova and presupernova models allows us to investigate quantitatively the possibility to probe neutrino oscillation parameters. We show that information about the mass hierarchy can be obtained if θ 13 is rather large (sin 2 2θ 13 > 10 -3 ) and that θ 13 can be probed effectively by SuperKamiokande if the neutrino mass hierarchy is inverted. Errors due to the uncertainty in the original neutrino spectra and the Earth effect are also discussed. (author)

  16. Identifying the neutrino mass hierarchy with supernova neutrinos

    International Nuclear Information System (INIS)

    Tomas, Ricard

    2006-01-01

    We review how a high-statistics observation of the neutrino signal from a future galactic core-collapse supernova (SN) may be used to discriminate between different neutrino mixing scenarios. We discuss two complementary methods that allow for the positive identification of the mass hierarchy without knowledge of the emitted neutrino fluxes, provided that the 13-mixing angle is large, sin 2 θ 13 -5 . These two approaches are the observation of modulations in the neutrino spectra by Earth matter effects or by the passage of shock waves through the SN envelope. If the value of the 13-mixing angle is unknown, using additionally the information encoded in the prompt neutronization ν e burst-a robust feature found in all modern SN simulations-can be sufficient to fix both the neutrino hierarchy and to decide whether θ 13 is 'small' or 'large'

  17. Astronomical publications of Melbourne Observatory

    Science.gov (United States)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  18. The Observatory Health Report

    Directory of Open Access Journals (Sweden)

    Laura Murianni

    2008-06-01

    Full Text Available

    Background: The number of indicators aiming to provide a clear picture of healthcare needs and the quality and efficiency of healthcare systems and services has proliferated in recent years. The activity of the National Observatory on Health Status in the Italian Regions is multidisciplinary, involving around 280 public health care experts, clinicians, demographers, epidemiologists, mathematicians, statisticians and economists who with their different competencies, and scientific interests aim to improve the collective health of individuals and their conditions through the use of “core indicators”. The main outcome of the National Observatory on Health Status in the Italian Regions is the “Osservasalute Report – a report on health status and the quality of healthcare assistance in the Italian Regions”.

    Methods: The Report adopts a comparative analysis, methodology and internationally validated indicators.

    Results: The results of Observatory Report show it is necessary:

    • to improve the monitoring of primary health care services (where the chronic disease could be cared through implementation of clinical path;

     • to improve in certain areas of hospital care such as caesarean deliveries, as well as the average length of stay in the pre-intervention phase, etc.;

    • to try to be more focused on the patients/citizens in our health care services; • to practice more geographical interventions to reduce the North-South divide as well as reduce gender inequity.

    Conclusions: The health status of Italian people is good with positive results and outcomes, but in the meantime some further efforts should be done especially in the South that still has to improve the quality and the organization of health care services. There are huge differences in accuracy and therefore usefulness of the reported data, both between diseases and between

  19. Sterile neutrino constraints from cosmology

    DEFF Research Database (Denmark)

    Hamann, Jan; Hannestad, Steen; Raffelt, Georg G.

    2012-01-01

    The presence of light particles beyond the standard model's three neutrino species can profoundly impact the physics of decoupling and primordial nucleosynthesis. I review the observational signatures of extra light species, present constraints from recent data, and discuss the implications of po...... of possible sterile neutrinos with O(eV)-masses for cosmology....

  20. CERN neutrino project on target

    CERN Multimedia

    2005-01-01

    Scientists at CERN announced the completion of the target assembly for the CERN neutrinos to Gran Sasso project, CNGS. On schedule for start-up in May 2006, CNGS will send a beam of neutrinos through the Earth to the Gran Sasso laboratory 730 km away in Italy in a bid to unravel the mysteries of nature's most elusive particles (½ page)

  1. Low-energy neutrino measurements

    Indian Academy of Sciences (India)

    2012-10-05

    Oct 5, 2012 ... Abstract. Low-energy solar neutrino detection plays a fundamental role in ... the experimental point of view, there are multiple ways to shed light among the different .... compared to the two metallicity expectations [16]. ..... from the Earth; solar neutrinos; indirect dark matter searches) and GeV physics (pro-.

  2. Neutrino factory plans at CERN

    CERN Document Server

    Riche, J A

    2001-01-01

    The considerable interest raised by the discovery of neutrino oscillations and recent progress in studies of muon colliders has triggered interest in considering a neutrino factory at CERN. This paper explains the reference scenario, indicates the other possible choices and mentions the R&D that are foreseen.

  3. Neutrino 2012: Outlook – theory

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.Yu. [International Center for Theoretical Physics, Trieste (Italy)

    2013-02-15

    Ongoing developments in theory and phenomenology are related to the measured large value of 1–3 mixing and indications of significant deviation of the 2–3 mixing from maximal one. “Race” for the mass hierarchy has started and there is good chance that multi-megaton scale atmospheric neutrino detectors with low threshold (e.g. PINGU) will establish the type of hierarchy. Two IceCube candidates of the PeV cosmic neutrinos if confirmed, is the beginning of new era of high energy neutrino astronomy. Accumulation of data on solar neutrinos (energy spectrum, D-N asymmetry, value of Δm{sub 21}{sup 2}) may uncover some new physics. The Tri-bimaximal mixing is disfavored and the existing discrete symmetry paradigm may change. The confirmed QLC prediction, θ{sub 13}≈θ{sub C}/√(2), testifies for GUT, seesaw and some symmetry at very high scales. However, the same value of 1–3 mixing can be obtained in various ways which have different implications. The situation in lepton sector changes from special (with specific neutrino symmetries, etc.) to normal, closer to that in the quark sector. Sterile neutrinos are challenge for neutrino physics but also opportunity with many interesting phenomenological consequences. Further studies of possible connections between neutrinos and the dark sector of the Universe may lead to breakthrough both in particle physics and cosmology.

  4. The indium solar neutrino project

    International Nuclear Information System (INIS)

    Booth, N.E.; Salmon, G.L.; Hukin, D.A.

    1984-01-01

    The only way to resolve the solar neutrino puzzle is to perform a new experiment. It is shown that 115 In has unique possibilities as a target for solar neutrino detection. Progress in developing a detector based on 115 In is reviewed and future plans are outlined. (author)

  5. Neutrino physics and precision cosmology

    DEFF Research Database (Denmark)

    Hannestad, Steen

    2016-01-01

    I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos....

  6. Neutrino oscillations at proton accelerators

    International Nuclear Information System (INIS)

    Michael, Douglas

    2002-01-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments

  7. Neutrino Oscillations at Proton Accelerators

    Science.gov (United States)

    Michael, Douglas

    2002-12-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments.

  8. Simulating nonlinear neutrino flavor evolution

    Energy Technology Data Exchange (ETDEWEB)

    Duan, H [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195 (United States); Fuller, G M [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Carlson, J [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: hduan@phys.washington.edu, E-mail: gfuller@ucsd.edu, E-mail: carlson@lanl.gov

    2008-10-01

    We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different to that in standard Mikheyev-Smirnov-Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle {theta}{sub 13}.

  9. GZK cutoff and associated neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2004-11-15

    We discuss the cosmogenic neutrinos that are produced in interactions of ultrahigh energy cosmic rays with radiation fields. The obvious and most important target is the microwave background. It is possible that the infrared/optical background contributes to the flux of cosmogenic neutrinos, especially in the case of steep cosmic ray injection spectra and fast cosmological evolution of the cosmic ray sources.

  10. Understanding neutrino masses and mixings

    Indian Academy of Sciences (India)

    various possible oscillation solutions to the solar neutrino puzzle. It seems .... A first hint of this new ingredient came from the observation of Weinberg that if ..... Using the discussion of the above paragraph, the Dirac mass of the neutrino as .... that contributes to charged fermion masses, one can write the quark and lepton.

  11. Search for Muon neutrino → Tau neutrino oscillations motivation and feasibility

    International Nuclear Information System (INIS)

    Zacek, V.

    1988-01-01

    Theoretical prejudices derived from solar-neutrino matter oscillations and assumptions of neutrino mass hierarchies suggest, that neutrino-oscillations are observable in laboratory with mass parameters of Δm 2 = 10 -3 -10 4 eV 2 . In particular Muon neutrino → Tau neutrino appearance searches at accelerators seem strongly motivated

  12. Thermalizing Sterile Neutrino Dark Matter.

    Science.gov (United States)

    Hansen, Rasmus S L; Vogl, Stefan

    2017-12-22

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  13. Global Analysis of Neutrino Data

    CERN Document Server

    González-Garciá, M C

    2005-01-01

    In this talk I review the present status of neutrino masses and mixing and some of their implications for particle physics phenomenology. I first discuss the minimum extension of the Standard Model of particle physics required to accommodate neutrino masses and introduce the new parameters present in the model and in particular the possibility of leptonic mixing. I then describe the phenomenology of neutrino masses and mixing leading to flavour oscillations and present the existing evidence from solar, reactor, atmospheric and long-baseline neutrinos as well as the results from laboratory searches at short distances. I derive the allowed ranges for the mass and mixing parameters when the bulk of data is consistently analyzed in the framework of mixing between the three active neutrinos and obtain as a result the most up-to-date determination of the leptonic mixing matrix. Then I briefly summarize the status of some proposed phenomenological explanations to accommodate the LSND results: the role of sterile neu...

  14. The OPERA neutrino velocity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wonsak, Bjoern [Universitaet Hamburg (Germany)

    2012-07-01

    OPERA is a long-baseline neutrino oscillation experiment designed to find tau neutrinos appearing in a pure muon neutrino beam. Recently, a measurement of the flight time of the neutrinos between the CNGS at CERN and the OPERA detector at the LNGS has been performed. It was found that the neutrinos arrive at the detector significantly earlier in time than expected if travelling at the speed of light. In this talk, the main aspects of this measurement are presented, including timing and geodesy issues and the analysis procedure. An update concerning results with a fine structured time distribution of the beam is given, as well as latest information on some additional cross checks.

  15. The physics of relic neutrinos

    International Nuclear Information System (INIS)

    Dighe, A.; Pastor, S.; Smirnov, A.

    1998-12-01

    We report on the main results presented at the workshop on the Physics of Relic Neutrinos. The study of relic neutrinos involves a broad spectrum of problems in particle physics, astrophysics and cosmology. Features of baryogenesis and leptogenesis could be imprinted in the properties of the relic neutrino sea. Relic neutrinos played a crucial role in the big bang nucleosynthesis. Being the hot component of the dark matter, they have participated in the structure formation in the universe. Although the direct detection of the sea seems impossible at this stage, there could be various indirect manifestations of these neutrinos which would allow us to study the properties of the sea both in the past and at the present epoch. (author)

  16. Neutrino masses and family replication

    International Nuclear Information System (INIS)

    Hung, P.Q.

    1999-01-01

    The issue of whether or not there is any link between the smallness of the neutrino mass (if present) and the odd or even nature of the number of families is investigated. It is found that, by assuming the existence of right-handed neutrinos (which would imply that neutrinos will have a mass) and a new chiral SU(2) gauge theory, a constraint on the nature of the number of families can be obtained. In addition, a model, based on that extra SU(2), is constructed where it is plausible to have one 'very heavy' fourth neutrino and three almost degenerate light neutrinos whose masses are all of the Dirac type. copyright 1999 The American Physical Society

  17. Thermalizing Sterile Neutrino Dark Matter

    Science.gov (United States)

    Hansen, Rasmus S. L.; Vogl, Stefan

    2017-12-01

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  18. KARMEN: neutrino spectroscopy at ISIS

    Energy Technology Data Exchange (ETDEWEB)

    Drexlin, G [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Kernphysik

    1996-11-01

    The Karlsruhe-Rutherford Neutrino Experiment KARMEN at the spallation neutron facility ISIS investigates fundamental properties of neutrinos as well as their interactions with matter. Low energy neutrinos with energies up to 50 MeV emitted by the pulsed {nu}-source ISIS are detected by a 56 tonne high resolution liquid scintillation calorimeter. Clear {nu}-signatures allow a reliable search for neutrino oscillations of the type {nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub e} as well as a detailed investigation of neutrino-nucleus interactions in an energy range important for astrophysics. We present the results of the KARMEN experiment from data taking in the period from June 1990 - December 1995. (author) 9 figs., 10 refs.

  19. Testing CPT invariance with neutrinos

    International Nuclear Information System (INIS)

    Ohlsson, Tommy

    2003-01-01

    We investigate possible tests of CPT invariance on the level of event rates at neutrino factories. We do not assume any specific model, but phenomenological differences in the neutrino-antineutrino masses and mixing angles in a Lorentz invariance preserving context, which could be induced by physics beyond the Standard Model. We especially focus on the muon neutrino and antineutrino disappearance channels in order to obtain constraints on the neutrino-antineutrino mass and mixing angle differences. In a typical neutrino factory setup simulation, we find, for example, that vertical bar m 3 - m-bar 3 vertical bar $1.9 · 10 -4 eV and vertical bar ≡ 23 - ≡-bar 23 vertical bar < or approx. 2 deg

  20. Gif 2011 school: neutrinos. Slides of the presentations

    International Nuclear Information System (INIS)

    Smirnov, A.; Pascoli, S.; Piquemal, F.; Lasserre, T.; Kouchner, A.; Patzak, T.; Lavignac, S.; Volpe, C.; Katsanevas, S.; Rubbia, A.

    2012-01-01

    This document gathers the slides of the lectures given at the GIF 2011 school. These lectures were pedagogical reviews of both theoretical and experimental physics around neutrino issues. There were 9 lectures: 1) the origin of the neutrino mass, 2) theory of neutrino oscillations, 3) measuring the neutrino mass, 4) measuring the neutrino oscillation parameters, 5) astronomy with neutrinos, 6) the story of the neutrino, 7) neutrinos beyond the standard model, 8) neutrinos in cosmology, and 9) future experiments. (A.C.)