WorldWideScience

Sample records for thermosynthesis starvation survival

  1. Starvation-survival of subsurface bacteria

    International Nuclear Information System (INIS)

    Magill, N.G.

    1988-01-01

    The ability of four subsurface isolates to survive starvation was examined and the results were compared to survival curves obtained for Escherichia coli B and Serratia marcescens. To examine the starvation-survival phenomenon further, several experimental parameters including nutritional history, initial cell density, growth phase, temperature of growth and starvation, and aeration. Nutritional history, initial cell density, and growth phases of the cells had some effect on the ability of these bacteria to survive whereas temperature and limited aeration had no effect under the conditions tested. No conditions were found where E. coli B or Serratia marcescens died rapidly or where less than 10% of the original cell number of viable cells remained. Because the apparent survival of these bacteria may be due to cryptic growth, cross-feeding experiments with 14 C-labeled cells and unlabeled cells were carried out with E. coli B and Pseudomonas Lula V. Leaked extracellular 14 C-compounds were not used for growth or maintenance energy, and were not taken up by either bacterium. Cryptic growth did not occur; the cells were truly starving under the experimental conditions used

  2. Starvation-Survival in Haloarchaea.

    Science.gov (United States)

    Winters, Yaicha D; Lowenstein, Tim K; Timofeeff, Michael N

    2015-11-12

    Recent studies claiming to revive ancient microorganisms trapped in fluid inclusions in halite have warranted an investigation of long-term microbial persistence. While starvation-survival is widely reported for bacteria, it is less well known for halophilic archaea-microorganisms likely to be trapped in ancient salt crystals. To better understand microbial survival in fluid inclusions in ancient evaporites, laboratory experiments were designed to simulate growth of halophilic archaea under media-rich conditions, complete nutrient deprivation, and a controlled substrate condition (glycerol-rich) and record their responses. Haloarchaea used for this work included Hbt. salinarum and isolate DV582A-1 (genus Haloterrigena) sub-cultured from 34 kyear Death Valley salt. Hbt. salinarum and DV582A-1 reacted to nutrient limitation with morphological and population changes. Starved populations increased and most cells converted from rods to small cocci within 56 days of nutrient deprivation. The exact timing of starvation adaptations and the physical transformations differed between species, populations of the same species, and cells of the same population. This is the first study to report the timing of starvation strategies for Hbt. salinarum and DV582A-1. The morphological states in these experiments may allow differentiation between cells trapped with adequate nutrients (represented here by early stages in nutrient-rich media) from cells trapped without nutrients (represented here by experimental starvation) in ancient salt. The hypothesis that glycerol, leaked from Dunaliella, provides nutrients for the survival of haloarchaea trapped in fluid inclusions in ancient halite, is also tested. Hbt. salinarum and DV582A-1 were exposed to a mixture of lysed and intact Dunaliella for 56 days. The ability of these organisms to utilize glycerol from Dunaliella cells was assessed by documenting population growth, cell length, and cell morphology. Hbt. salinarum and DV582A-1

  3. Starvation-Survival in Haloarchaea

    Directory of Open Access Journals (Sweden)

    Yaicha D. Winters

    2015-11-01

    Full Text Available Recent studies claiming to revive ancient microorganisms trapped in fluid inclusions in halite have warranted an investigation of long-term microbial persistence. While starvation-survival is widely reported for bacteria, it is less well known for halophilic archaea—microorganisms likely to be trapped in ancient salt crystals. To better understand microbial survival in fluid inclusions in ancient evaporites, laboratory experiments were designed to simulate growth of halophilic archaea under media-rich conditions, complete nutrient deprivation, and a controlled substrate condition (glycerol-rich and record their responses. Haloarchaea used for this work included Hbt. salinarum and isolate DV582A-1 (genus Haloterrigena sub-cultured from 34 kyear Death Valley salt. Hbt. salinarum and DV582A-1 reacted to nutrient limitation with morphological and population changes. Starved populations increased and most cells converted from rods to small cocci within 56 days of nutrient deprivation. The exact timing of starvation adaptations and the physical transformations differed between species, populations of the same species, and cells of the same population. This is the first study to report the timing of starvation strategies for Hbt. salinarum and DV582A-1. The morphological states in these experiments may allow differentiation between cells trapped with adequate nutrients (represented here by early stages in nutrient-rich media from cells trapped without nutrients (represented here by experimental starvation in ancient salt. The hypothesis that glycerol, leaked from Dunaliella, provides nutrients for the survival of haloarchaea trapped in fluid inclusions in ancient halite, is also tested. Hbt. salinarum and DV582A-1 were exposed to a mixture of lysed and intact Dunaliella for 56 days. The ability of these organisms to utilize glycerol from Dunaliella cells was assessed by documenting population growth, cell length, and cell morphology. Hbt. salinarum

  4. A TRPV channel modulates C. elegans neurosecretion, larval starvation survival, and adult lifespan.

    Directory of Open Access Journals (Sweden)

    Brian H Lee

    2008-10-01

    Full Text Available For most organisms, food is only intermittently available; therefore, molecular mechanisms that couple sensation of nutrient availability to growth and development are critical for survival. These mechanisms, however, remain poorly defined. In the absence of nutrients, newly hatched first larval (L1 stage Caenorhabditis elegans halt development and survive in this state for several weeks. We isolated mutations in unc-31, encoding a calcium-activated regulator of neural dense-core vesicle release, which conferred enhanced starvation survival. This extended survival was reminiscent of that seen in daf-2 insulin-signaling deficient mutants and was ultimately dependent on daf-16, which encodes a FOXO transcription factor whose activity is inhibited by insulin signaling. While insulin signaling modulates metabolism, adult lifespan, and dauer formation, insulin-independent mechanisms that also regulate these processes did not promote starvation survival, indicating that regulation of starvation survival is a distinct program. Cell-specific rescue experiments identified a small subset of primary sensory neurons where unc-31 reconstitution modulated starvation survival, suggesting that these neurons mediate perception of food availability. We found that OCR-2, a transient receptor potential vanilloid (TRPV channel that localizes to the cilia of this subset of neurons, regulates peptide-hormone secretion and L1 starvation survival. Moreover, inactivation of ocr-2 caused a significant extension in adult lifespan. These findings indicate that TRPV channels, which mediate sensation of diverse noxious, thermal, osmotic, and mechanical stimuli, couple nutrient availability to larval starvation survival and adult lifespan through modulation of neural dense-core vesicle secretion.

  5. Origin of life: hypothesized roles of high-energy electrical discharges, infrared radiation, thermosynthesis and pre-photosynthesis.

    Science.gov (United States)

    Trevors, J T

    2012-12-01

    The hypothesis is proposed that during the organization of pre-biotic bacterial cell(s), high-energy electrical discharges, infrared radiation (IR), thermosynthesis and possibly pre-photosynthesis were central to the origin of life. High-energy electrical discharges generated some simple organic molecules available for the origin of life. Infrared radiation, both incoming to the Earth and generated on the cooling Earth with day/night and warming/cooling cycles, was a component of heat engine thermosynthesis before enzymes and the genetic code were present. Eventually, a primitive forerunner of photosynthesis and the capability to capture visible light emerged. In addition, the dual particle-wave nature of light is discussed from the perspective that life requires light acting both as a wave and particle.

  6. Surviving starvation: essential role of the ghrelin-growth hormone axis.

    Science.gov (United States)

    Goldstein, J L; Zhao, T-j; Li, R L; Sherbet, D P; Liang, G; Brown, M S

    2011-01-01

    After brief starvation, vertebrates maintain blood glucose by releasing fatty acids from adipose tissue. The fatty acids provide energy for gluconeogenesis in liver and are taken up by muscle, sparing glucose. After prolonged starvation, fat stores are depleted, yet blood glucose can be maintained at levels sufficient to preserve life. Using a new mouse model, we demonstrate that survival after prolonged starvation requires ghrelin, an octanoylated peptide hormone that stimulates growth hormone (GH) secretion. We studied wild-type mice and mice lacking ghrelin as a result of knockout of GOAT, the enzyme that attaches octanoate to ghrelin. Mice were fed 40% of their normal intake for 7 d. Fat stores in both lines of mice became depleted after 4 d. On day 7, mice were fasted for 23 h. In wild-type mice, ghrelin and GH rose massively, and blood sugar was maintained at ~60 mg/dL. In Goat(-/-) mice, ghrelin was undetectable and GH failed to rise appropriately. Blood sugar declined to ~20 mg/dL, and the animals were moribund. Infusion of ghrelin or GH prevented hypoglycemia. Our results support the following sequence: (1) Starvation lowers blood glucose; (2) glucose-sensing neurons respond by activating sympathetic neurons; (3) norepinephrine, released in the stomach, stimulates ghrelin secretion; (4) ghrelin releases GH, which maintains blood glucose. Thus, ghrelin lies at the center of a hormonal response that permits mice to survive an acute fast superimposed on chronic starvation.

  7. Impact of starvation on survival, meat condition and metabolism of Chlamys farreri

    Science.gov (United States)

    Yang, Hong-Sheng; Wang, Jian; Zhou, Yi; Wang, Ping; He, Yi-Chao; Zhang, Fu-Sui

    2001-03-01

    The effects of 60-day starvation on survival rate, condition index (CI), changes of nutrient composition of different tissues, respiration and excretion of scallop Chlamys farreri were studied in laboratory from Oct. 17 to Dec. 15, 1997. Two groups (control and starvation with 200 individuals each) were cultured in two 2 m3 tanks, with 31 to 32 salinity water at 17°C. Starvation effects were measured after 10, 20, 40 and 60 days. There was no mass mortality of scallops of the two tanks and survival rates of the control and starvation groups were 93.5% and 92.0%, respectively. Starvation had strong effect on the meat condition of the scallops, especially after 10 days; when relative lipid percentage dropped sharply while relative protein percentage increased. The impact of starvation on the oxygen consumption rate (OCR) and the ammonia-N excretion rate (AER) was obvious. The OCR increased rapidly after 10 days but decreased after 20 days. The AER increased after 10 days and 20 days, but decreased obviously from 20 to 40 days. The O∶N ratios varied to different degrees, and minimized after 20 days. The low O∶N ratios implied that the protein was the main material for the metabolism of C. farreri.

  8. The combination of energy-dependent internal adaptation mechanisms and external factors enables Listeria monocytogenes to express a strong starvation survival response during multiple-nutrient starvation.

    Science.gov (United States)

    Lungu, Bwalya; Saldivar, Joshua C; Story, Robert; Ricke, Steven C; Johnson, Michael G

    2010-05-01

    The goal of this study was to characterize the starvation survival response (SSR) of a wild-type Listeria monocytogenes 10403S and an isogenic DeltasigB mutant strain during multiple-nutrient starvation conditions over 28 days. This study examined the effects of inhibitors of protein synthesis, the proton motive force, substrate level phosphorylation, and oxidative phosphorylation on the SSR of L. monocytogenes 10403S and a DeltasigB mutant during multiple-nutrient starvation. The effects of starvation buffer changes on viability were also examined. During multiple-nutrient starvation, both strains expressed a strong SSR, suggesting that L. monocytogenes possesses SigB-independent mechanism(s) for survival during multiple-nutrient starvation. Neither strain was able to express an SSR following starvation buffer changes, indicating that the nutrients/factors present in the starvation buffer could be a source of energy for cell maintenance and survival. Neither the wild-type nor the DeltasigB mutant strain was able to elicit an SSR when exposed to the protein synthesis inhibitor chloramphenicol within the first 4 h of starvation. However, both strains expressed an SSR when exposed to chloramphenicol after 6 h or more of starvation, suggesting that the majority of proteins required to elicit an effective SSR in L. monocytogenes are likely produced somewhere between 4 and 6 h of starvation. The varying SSRs of both strains to the different metabolic inhibitors under aerobic or anaerobic conditions suggested that (1) energy derived from the proton motive force is important for an effective SSR, (2) L. monocytogenes utilizes an anaerobic electron transport during multiple-nutrient starvation conditions, and (3) the glycolytic pathway is an important energy source during multiple-nutrient starvation when oxygen is available, and less important under anaerobic conditions. Collectively, the data suggest that the combination of energy-dependent internal adaptation mechanisms

  9. Candida albicans survival and biofilm formation under starvation conditions.

    Science.gov (United States)

    Ning, Y; Hu, X; Ling, J; Du, Y; Liu, J; Liu, H; Peng, Z

    2013-01-01

    To investigate the survival and biofilm formation capacity of Candida albicans in starvation and under anaerobic conditions. Candida albicans growth and survival were monitored in vitro for up to 8 months. Fungal suspensions from late exponential, stationary and starvation phases were incubated on human dentine, polystyrene and glass slides. Scanning electron microscopy (SEM) was used to observe the process of biofilm formation. 2,3-bis(2-Methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxyanilide inner salt (XTT) reduction assay was performed to quantify the biofilm formation capability, and confocal laser scanning microscopy (CLSM) was used to study and make semi-quantitative comparisons of the ultrastructure of biofilms formed on human dentine. 'XTT bioactivity' and 'COMSTAT results' were analysed by two-way analysis of variance (ANOVA) and one-way ANOVA, respectively. Candida albicans survived for over six months. SEM demonstrated that starving C. albicans produced mature biofilms on different substrata. C. albicans of the same growth phase incubated on human dentine displayed significantly higher biofilm formation capability than on polystyrene or glass slides (P roughness coefficient and surface/volume ratio (P < 0.05). Candida albicans cells can survive and form biofilms in anaerobic and nutrient-limited conditions and may pose a treatment challenge. © 2012 International Endodontic Journal.

  10. daf-16/FoxO promotes gluconeogenesis and trehalose synthesis during starvation to support survival.

    Science.gov (United States)

    Hibshman, Jonathan D; Doan, Alexander E; Moore, Brad T; Kaplan, Rebecca Ew; Hung, Anthony; Webster, Amy K; Bhatt, Dhaval P; Chitrakar, Rojin; Hirschey, Matthew D; Baugh, L Ryan

    2017-10-24

    daf-16 /FoxO is required to survive starvation in Caenorhabditis elegans , but how daf-16I FoxO promotes starvation resistance is unclear. We show that daf-16 /FoxO restructures carbohydrate metabolism by driving carbon flux through the glyoxylate shunt and gluconeogenesis and into synthesis of trehalose, a disaccharide of glucose. Trehalose is a well-known stress protectant, capable of preserving membrane organization and protein structure during abiotic stress. Metabolomic, genetic, and pharmacological analyses confirm increased trehalose synthesis and further show that trehalose not only supports survival as a stress protectant but also serves as a glycolytic input. Furthermore, we provide evidence that metabolic cycling between trehalose and glucose is necessary for this dual function of trehalose. This work demonstrates that daf-16 /FoxO promotes starvation resistance by shifting carbon metabolism to drive trehalose synthesis, which in turn supports survival by providing an energy source and acting as a stress protectant.

  11. daf-16/FoxO promotes gluconeogenesis and trehalose synthesis during starvation to support survival

    Science.gov (United States)

    Hibshman, Jonathan D; Doan, Alexander E; Moore, Brad T; Kaplan, Rebecca EW; Hung, Anthony; Webster, Amy K; Bhatt, Dhaval P; Chitrakar, Rojin; Hirschey, Matthew D

    2017-01-01

    daf-16/FoxO is required to survive starvation in Caenorhabditis elegans, but how daf-16IFoxO promotes starvation resistance is unclear. We show that daf-16/FoxO restructures carbohydrate metabolism by driving carbon flux through the glyoxylate shunt and gluconeogenesis and into synthesis of trehalose, a disaccharide of glucose. Trehalose is a well-known stress protectant, capable of preserving membrane organization and protein structure during abiotic stress. Metabolomic, genetic, and pharmacological analyses confirm increased trehalose synthesis and further show that trehalose not only supports survival as a stress protectant but also serves as a glycolytic input. Furthermore, we provide evidence that metabolic cycling between trehalose and glucose is necessary for this dual function of trehalose. This work demonstrates that daf-16/FoxO promotes starvation resistance by shifting carbon metabolism to drive trehalose synthesis, which in turn supports survival by providing an energy source and acting as a stress protectant. PMID:29063832

  12. System-level analysis of genes and functions affecting survival during nutrient starvation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Gresham, David; Boer, Viktor M; Caudy, Amy; Ziv, Naomi; Brandt, Nathan J; Storey, John D; Botstein, David

    2011-01-01

    An essential property of all cells is the ability to exit from active cell division and persist in a quiescent state. For single-celled microbes this primarily occurs in response to nutrient deprivation. We studied the genetic requirements for survival of Saccharomyces cerevisiae when starved for either of two nutrients: phosphate or leucine. We measured the survival of nearly all nonessential haploid null yeast mutants in mixed populations using a quantitative sequencing method that estimates the abundance of each mutant on the basis of frequency of unique molecular barcodes. Starvation for phosphate results in a population half-life of 337 hr whereas starvation for leucine results in a half-life of 27.7 hr. To measure survival of individual mutants in each population we developed a statistical framework that accounts for the multiple sources of experimental variation. From the identities of the genes in which mutations strongly affect survival, we identify genetic evidence for several cellular processes affecting survival during nutrient starvation, including autophagy, chromatin remodeling, mRNA processing, and cytoskeleton function. In addition, we found evidence that mitochondrial and peroxisome function is required for survival. Our experimental and analytical methods represent an efficient and quantitative approach to characterizing genetic functions and networks with unprecedented resolution and identified genotype-by-environment interactions that have important implications for interpretation of studies of aging and quiescence in yeast.

  13. Survival of pathogenic bacteria under nutrient starvation conditions. [aboard orbiting space stations

    Science.gov (United States)

    Boyle, Michael; Ford, Tim; Mitchell, Ralph; Maki, James

    1990-01-01

    The survival of opportunistic pathogenic microorganisms in water, under nutrient-limiting conditions, has been investigated in order to ascertain whether human pathogens can survive within a water-distribution system of the kind proposed for the NASA Space Station. Cultures of a strain of pseudomonas aeruginosa and two strains of staphylococcus aureus were incubated at 10, 25, or 37 C, and samples at 1 day, 1 week, 1 month, and six weeks. While neither of the staphylococcus strains tested were detected after 1 week of starvation, the pseudomonas strain can survive in deionized water at all three temperatures.

  14. Why does starvation make bones fat?

    Science.gov (United States)

    Devlin, Maureen J

    2011-01-01

    Body fat, or adipose tissue, is a crucial energetic buffer against starvation in humans and other mammals, and reserves of white adipose tissue (WAT) rise and fall in parallel with food intake. Much less is known about the function of bone marrow adipose tissue (BMAT), which are fat cells found in bone marrow. BMAT mass actually increases during starvation, even as other fat depots are being mobilized for energy. This review considers several possible reasons for this poorly understood phenomenon. Is BMAT a passive filler that occupies spaces left by dying bone cells, a pathological consequence of suppressed bone formation, or potentially an adaptation for surviving starvation? These possibilities are evaluated in terms of the effects of starvation on the body, particularly the skeleton, and the mechanisms involved in storing and metabolizing BMAT during negative energy balance. Copyright © 2011 Wiley-Liss, Inc.

  15. The oogenic germline starvation response in C. elegans.

    Directory of Open Access Journals (Sweden)

    Hannah S Seidel

    Full Text Available Many animals alter their reproductive strategies in response to environmental stress. Here we have investigated how L4 hermaphrodites of Caenorhabditis elegans respond to starvation. To induce starvation, we removed food at 2 h intervals from very early- to very late-stage L4 animals. The starved L4s molted into adulthood, initiated oogenesis, and began producing embryos; however, all three processes were severely delayed, and embryo viability was reduced. Most animals died via 'bagging,' because egg-laying was inhibited, and embryos hatched in utero, consuming their parent hermaphrodites from within. Some animals, however, avoided bagging and survived long term. Long-term survival did not rely on embryonic arrest but instead upon the failure of some animals to produce viable progeny during starvation. Regardless of the bagging fate, starved animals showed two major changes in germline morphology: All oogenic germlines were dramatically reduced in size, and these germlines formed only a single oocyte at a time, separated from the remainder of the germline by a tight constriction. Both changes in germline morphology were reversible: Upon re-feeding, the shrunken germlines regenerated, and multiple oocytes formed concurrently. The capacity for germline regeneration upon re-feeding was not limited to the small subset of animals that normally survive starvation: When bagging was prevented ectopically by par-2 RNAi, virtually all germlines still regenerated. In addition, germline shrinkage strongly correlated with oogenesis, suggesting that during starvation, germline shrinkage may provide material for oocyte production. Finally, germline shrinkage and regeneration did not depend upon crowding. Our study confirms previous findings that starvation uncouples germ cell proliferation from germline stem cell maintenance. Our study also suggests that when nutrients are limited, hermaphrodites scavenge material from their germlines to reproduce. We discuss

  16. Oxidative Stress-Induced Dysfunction of Muller Cells During Starvation

    DEFF Research Database (Denmark)

    Toft-Kehler, Anne Katrine; Gurubaran, Iswariyaraja Sridevi; Madsen, Claus Desler

    2016-01-01

    starvation for 24 hours. Effects of starvation and H2O2 on glutamate uptake and mitochondrial function were assessed by kinetic glutamate uptake assays and Seahorse assays, respectively. Cell survival was evaluated by cell viability assays. mRNA and protein expressions were assessed by quantitative PCR...

  17. Comparative analysis of the survival and gene expression of pathogenic strains Vibrio harveyi after starvation.

    Science.gov (United States)

    Sun, Jingjing; Gao, Xiaojian; Qun, Jiang; Du, Xuedi; Bi, Keran; Zhang, Xiaojun; Lin, Li

    2016-11-01

    This study aimed to evaluate the survival and gene expression of Vibrio harveyi under starvation conditions. The microcosms V. harveyi were incubated in sterilized seawater for 4 weeks at room temperature. Overall, the cell numeration declined rapidly about 10 3 CFU/ml during starvation, with a tiny rebound at day 21. Scanning electron microscopy revealed that rod-shaped cells became sphere with a rippled cell surface. By polymerase chain reaction (PCR) assay, nine genes, named luxR, toxR, vhhB, flaA, topA, fur, rpoS, mreB and ftsZ, were detected in the non-starved cells. In the starved cells, the expression levels of the detected genes declined substantially ranging from 0.005-fold to 0.028-fold compared to the non-starved cells performed by reverse transcription quantitative real-time PCR with 16S rRNA as the internal control. In the recovering cells, the expression levels of the detected genes, except luxR and mreB, were upregulated dramatically compared to the wild, especially topA (23.720-fold), fur (39.400-fold) and toxR (9.837-fold), validating that the expressions of both the metabolism and virulence genes were important for growth and survival of V. harveyi. The results may shed a new light on understanding of stress adaptation in bacteria. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Multi-omics Analyses of Starvation Responses Reveal a Central Role for Lipoprotein Metabolism in Acute Starvation Survival in C. elegans

    DEFF Research Database (Denmark)

    Harvald, Eva Bang; Sprenger, Richard R; Dall, Kathrine Brændgaard

    2017-01-01

    Starvation causes comprehensive metabolic changes, which are still not fully understood. Here, we used quantitative proteomics and RNA sequencing to examine the temporal starvation responses in wild-type Caenorhabditis elegans and animals lacking the transcription factor HLH-30. Our findings show...

  19. Developmental acclimation to low or high humidity conditions affect starvation and heat resistance of Drosophila melanogaster.

    Science.gov (United States)

    Parkash, Ravi; Ranga, Poonam; Aggarwal, Dau Dayal

    2014-09-01

    Several Drosophila species originating from tropical humid localities are more resistant to starvation and heat stress than populations from high latitudes but mechanistic bases of such physiological changes are largely unknown. In order to test whether humidity levels affect starvation and heat resistance, we investigated developmental acclimation effects of low to high humidity conditions on the storage and utilization of energy resources, body mass, starvation survival, heat knockdown and heat survival of D. melanogaster. Isofemale lines reared under higher humidity (85% RH) stored significantly higher level of lipids and showed greater starvation survival hours but smaller in body size. In contrast, lines reared at low humidity evidenced reduced levels of body lipids and starvation resistance. Starvation resistance and lipid storage level were higher in females than males. However, the rate of utilization of lipids under starvation stress was lower for lines reared under higher humidity. Adult flies of lines reared at 65% RH and acclimated under high or low humidity condition for 200 hours also showed changes in resistance to starvation and heat but such effects were significantly lower as compared with developmental acclimation. Isofemale lines reared under higher humidity showed greater heat knockdown time and heat-shock survival. These laboratory observations on developmental and adult acclimation effects of low versus high humidity conditions have helped in explaining seasonal changes in resistance to starvation and heat of the wild-caught flies of D. melanogaster. Thus, we may suggest that wet versus drier conditions significantly affect starvation and heat resistance of D. melanogaster. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens

    Science.gov (United States)

    Pittman, Joseph R.; Kline, La’Kesha C.; Kenyon, William J.

    2015-01-01

    The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation) is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance). To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C), low pH (pH 2.8), and oxidative stress (15 mM H2O2). In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth. PMID:27682115

  1. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens

    Directory of Open Access Journals (Sweden)

    Joseph R. Pittman

    2015-10-01

    Full Text Available The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance. To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C, low pH (pH 2.8, and oxidative stress (15 mM H2O2. In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth.

  2. Dormancy in Deinococcus sp. UDEC-P1 as a survival strategy to escape from deleterious effects of carbon starvation and temperature.

    Science.gov (United States)

    Guerra, Matías; González, Karina; González, Carlos; Parra, Boris; Martínez, Miguel

    2015-09-01

    Dormancy is characterized by low metabolism and absence of protein synthesis and cellular division enabling bacterial cells to survive under stress. The aim was to determine if carbon starvation and low temperature are factors that modify the proportion of dormant/active cells in Deinococcus sp. UDEC-P1. By flow cytometry, RedoxSensor Green (RSG) was used to quantify metabolic activity and Propidium Iodide (PI) to evaluate membrane integrity in order to determine the percentage of dormant cells. Cell size and morphology were determined using scanning electronic microscopy. Under carbon starvation at 30°C, Deinococcus sp. UDEC-P1 increased its proportion of dormant cells from 0.1% to 20%, decreased the count of culturable cells and average cell volume decreased 7.1 times. At 4°C, however, the proportion of dormant cells increased only to 6%, without a change in the count of culturable cells and an average cellular volume decrease of 4.1 times and 3% of the dormant cells were able to be awakened. Results indicate a greater proportion of dormant Deinococcus sp. UDEC-P1 cells at 30ºC and it suggests that carbon starvation is more deleterious condition at 30ºC than 4ºC. For this reason Deinococcus sp. UDEC-P1 cells are more likely to enter into dormancy at higher temperature as a strategy to survive. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  3. Starvation induces phenotypic diversification and convergent evolution in Vibrio vulnificus.

    Directory of Open Access Journals (Sweden)

    Hwajiun Chen

    Full Text Available Starvation is a common stress experienced by bacteria living in natural environments and the ability to adapt to and survive intense stress is of paramount importance for any bacterial population. A series of starvation experiments were conducted using V. vulnificus 93U204 in phosphate-buffered saline and seawater. The starved population entered the death phase during the first week and approximately 1% of cells survived. After that the population entered a long-term stationary phase, and could survive for years. Starvation-induced diversification (SID of phenotypes was observed in starved populations and phenotypic variants (PVs appeared in less than 8 days. The cell density, rather than the population size, had a major effect on the extent of SID. SID was also observed in strain YJ016, where it evolved at a faster pace. PVs appeared to emerge in a fixed order: PV with reduced motility, PV with reduced proteolytic activity, and PV with reduced hemolytic activity. All of the tested PVs had growth advantages in the stationary phase phenotypes and increased fitness compared with 93U204 cells in co-culture competition experiments, which indicates that they had adapted to starvation. We also found that SID occurred in natural seawater with a salinity of 1%-3%, so this mechanism may facilitate bacterial adaptation in natural environments.

  4. Eggs and hatchlings variations in desert locusts: phase related characteristics and starvation tolerance

    Directory of Open Access Journals (Sweden)

    Koutaro Ould Maeno

    2013-12-01

    Full Text Available Locusts are grasshopper species that express phase polyphenism: modifying their behavior, morphology, coloration, life history and physiology in response to crowding. Desert locusts, Schistocerca gregaria, epigenetically modify progeny quality and quantity in response to crowding. Gregarious (crowded females produce larger but fewer progeny than do solitarious (isolated ones. The variability of progeny quality within single egg pod and the reasons why gregarious progeny have a better survival than solitarious ones remains unclear. This study investigated 1 the effects of rearing density on the variation in egg size within single egg pods 2 the starvation tolerance of hatchlings from mothers with different phases and 3 the physiological differences in hatchling energy reserve. Isolated females produced smaller but more eggs than did crowded ones. The variation in egg size within egg pods was greater in the latter than in the former. A negative relationship between egg size and number of eggs per egg pod was observed for both groups. Under starvation conditions, gregarious hatchlings survived significantly longer than solitarious ones. Among the solitarious hatchlings, the survival time was longer as hatchling body size increased. However, small individuals survived as long as large ones among the gregarious hatchlings. The percentage of water content per fresh body weight was almost equal between the two phases, before and after starvation. In contrast, the percentage of lipid content per dry body weight was significantly higher in gregarious hatchlings than in solitarious ones before starvation, but became almost equal after starvation. These results demonstrated that female locusts not only trade-off to modify their progeny size and number, but also vary progenies’ energy reserves. We hypothesized that gregarious females enhance their fitness by producing progeny differently adapted to high environmental variability and particularly to

  5. Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis.

    Directory of Open Access Journals (Sweden)

    Roberta Palorini

    2016-03-01

    Full Text Available Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment.

  6. Relative Importance of Sex, Pre-Starvation Body Mass and Structural Body Size in the Determination of Exceptional Starvation Resistance of Anchomenus dorsalis (Coleoptera: Carabidae.

    Directory of Open Access Journals (Sweden)

    Michal Knapp

    Full Text Available In nature, almost all animals have to cope with periods of food shortage during their lifetimes. Starvation risks are especially high for carnivorous predatory species, which often experience long intervals between stochastic prey capturing events. A laboratory experiment using the common predatory carabid beetle Anchomenus dorsalis revealed an exceptional level of starvation resistance in this species: males survived up to 137 days and females up to 218 days without food at 20°C. Individual starvation resistance was strongly positively affected by pre-starvation body mass but only slightly by beetle structural body size per se. Females outperformed males even when the effect of gender was corrected for the effects of structural body size and pre-starvation body mass. The better performance of females compared to males and of beetles with higher relative pre-starvation body mass could be linked to higher fat content and lean dry mass before starvation, followed by a greater decrease in both during starvation. There was also a difference between the sexes in the extent of body mass changes both during ad libitum feeding and following starvation; the body masses of females fluctuated more compared to males. This study stresses the need to distinguish between body mass and structural body size when investigating the ecological and evolutionary consequences of body size. Investigation of the net effects of body size and sex is necessary to disentangle the causes of differences in individual performances in studies of species with significant sexual size dimorphism.

  7. Light-promoted rhodopsin expression and starvation survival in the marine dinoflagellate Oxyrrhis marina.

    Directory of Open Access Journals (Sweden)

    Zhiling Guo

    Full Text Available The discovery of microbial rhodopsins in marine proteobacteria changed the dogma that photosynthesis is the only pathway to use the solar energy for biological utilization in the marine environment. Although homologs of these rhodopsins have been identified in dinoflagellates, the diversity of the encoding genes and their physiological roles remain unexplored. As an initial step toward addressing the gap, we conducted high-throughput transcriptome sequencing on Oxyrrhis marina to retrieve rhodopsin transcripts, rapid amplification of cDNA ends to isolate full-length cDNAs of dominant representatives, and quantitative reverse-transcription PCR to investigate their expression under varying conditions. Our phylogenetic analyses showed that O. marina contained both the proton-pumping type (PR and sensory type (SR rhodopsins, and the transcriptome data showed that the PR type dominated over the SR type. We compared rhodopsin gene expression for cultures kept under light: dark cycle and continuous darkness in a time course of 24 days without feeding. Although both types of rhodopsin were expressed under the two conditions, the expression levels of PR were much higher than SR, consistent with the transcriptomic data. Furthermore, relative to cultures kept in the dark, rhodopsin expression levels and cell survival rate were both higher in cultures grown in the light. This is the first report of light-dependent promotion of starvation survival and concomitant promotion of PR expression in a eukaryote. While direct evidence needs to come from functional test on rhodopsins in vitro or gene knockout/knockdown experiments, our results suggest that the proton-pumping rhodopsin might be responsible for the light-enhanced survival of O. marina, as previously demonstrated in bacteria.

  8. A novel route to nanosized molybdenum boride and carbide and/or metallic molybdenum by thermo-synthesis method from MoO3, KBH4, and CCl4

    International Nuclear Information System (INIS)

    Li Yuanzhi; Fan Yining; Chen Yi

    2003-01-01

    Nanosized molybdenum boride and carbide were synthesized from MoO 3 , KBH 4 , and CCl 4 by thermo-synthesis method at lower temperature. The relative content of Mo, Mo 2 C, and molybdenum boride in the product was decided by the molar ratio between MoO 3 , KBH 4 , and CCl 4 . Increasing the molar ratio of CCl 4 to MoO 3 was favorable to the production of Mo 2 C. Increasing the molar ratio of KBH 4 to MoO 3 was favorable to the production of molybdenum boride. By carefully adjusting the reaction conditions and annealing in Ar at 900 deg. C, a single phase of MoB could be obtained

  9. Body size mediated starvation resistance in an insect predator.

    NARCIS (Netherlands)

    Gergs, A.; Jager, T.

    2014-01-01

    Summary: Individual organisms have to endure transient periods of low-food supply with consequences for growth, reproduction and survival. To resist starvation, animals usually store resources in their bodies: the larger the animals are, the more resources they can carry, but the more energy they

  10. Functional Disruption of a Chloroplast Pseudouridine Synthase Desensitizes Arabidopsis Plants to Phosphate Starvation

    Directory of Open Access Journals (Sweden)

    Shan Lu

    2017-08-01

    Full Text Available Phosphate (Pi deficiency is a common nutritional stress of plants in both agricultural and natural ecosystems. Plants respond to Pi starvation in the environment by triggering a suite of biochemical, physiological, and developmental changes that increase survival and growth. The key factors that determine plant sensitivity to Pi starvation, however, are unclear. In this research, we identified an Arabidopsis mutant, dps1, with greatly reduced sensitivity to Pi starvation. The dps1 phenotypes are caused by a mutation in the previously characterized SVR1 (SUPPRESSION OF VARIAGATION 1 gene, which encodes a chloroplast-localized pseudouridine synthase. The mutation of SVR1 results in defects in chloroplast rRNA biogenesis, which subsequently reduces chloroplast translation. Another mutant, rps5, which contains a mutation in the chloroplast ribosomal protein RPS5 and has reduced chloroplast translation, also displayed decreased sensitivity to Pi starvation. Furthermore, wild type plants treated with lincomycin, a chemical inhibitor of chloroplast translation, showed similar growth phenotypes and Pi starvation responses as dps1 and rps5. These results suggest that impaired chloroplast translation desensitizes plants to Pi starvation. Combined with previously published results showing that enhanced leaf photosynthesis augments plant responses to Pi starvation, we propose that the decrease in responses to Pi starvation in dps1, rps5, and lincomycin-treated plants is due to their reduced demand for Pi input from the environment.

  11. The Role of Leptin in Maintaining Plasma Glucose During Starvation.

    Science.gov (United States)

    Perry, Rachel J; Shulman, Gerald I

    2018-03-01

    For 20 years it has been known that concentrations of leptin, a hormone produced by the white adipose tissue (WAT) largely in proportion to body fat, drops precipitously with starvation, particularly in lean humans and animals. The role of leptin to suppress the thyroid and reproductive axes during a prolonged fast has been well defined; however, the impact of leptin on metabolic regulation has been incompletely understood. However emerging evidence suggests that, in starvation, hypoleptinemia increases activity of the hypothalamic-pituitary-adrenal axis, promoting WAT lipolysis, increasing hepatic acetyl-CoA concentrations, and maintaining euglycemia. In addition, leptin may be largely responsible for mediating a shift from a reliance upon glucose metabolism (absorption and glycogenolysis) to fat metabolism (lipolysis increasing gluconeogenesis) which preserves substrates for the brain, heart, and other critical organs. In this way a leptin-mediated glucose-fatty acid cycle appears to maintain glycemia and permit survival in starvation.

  12. Somatic insulin signaling regulates a germline starvation response in Drosophila egg chambers

    Science.gov (United States)

    Burn, K. Mahala; Shimada, Yuko; Ayers, Kathleen; Lu, Feiyue; Hudson, Andrew M.; Cooley, Lynn

    2014-01-01

    Egg chambers from starved Drosophila females contain large aggregates of processing (P) bodies and cortically enriched microtubules. As this response to starvation is rapidly reversed upon re-feeding females or culturing egg chambers with exogenous bovine insulin, we examined the role of endogenous insulin signaling in mediating the starvation response. We found that systemic Drosophila insulin-like peptides (dILPs) activate the insulin pathway in follicle cells, which then regulate both microtubule and P body organization in the underlying germline cells. This organization is modulated by the motor proteins Dynein and Kinesin. Dynein activity is required for microtubule and P body organization during starvation, while Kinesin activity is required during nutrient-rich conditions. Blocking the ability of egg chambers to form P body aggregates in response to starvation correlated with reduced progeny survival. These data suggest a potential mechanism to maximize fecundity even during periods of poor nutrient availability, by mounting a protective response in immature egg chambers. PMID:25481758

  13. Effect of Nitrogen Starvation on Desiccation Tolerance of Arctic Microcoleus Strains (Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Daria eTashyreva

    2015-04-01

    Full Text Available Although desiccation tolerance of Microcoleus species is a well-known phenomenon, there is very little information about their limits of desiccation tolerance in terms of cellular water content, the survival rate of their cells, and the environmental factors inducing their resistance to drying. We have discovered that three Microcoleus strains, isolated from terrestrial habitats of the High Arctic, survived extensive dehydration (to 0.23 g water g-1 dry mass, but did not tolerate complete desiccation (to 0.03 g water g-1 dry mass regardless of pre-desiccation treatments. However, these treatments were critical for the survival of incomplete desiccation: cultures grown under optimal conditions failed to survive even incomplete desiccation; a low temperature enabled only 0 to 15% of cells to survive, while 39.8 to 65.9% of cells remained alive and intact after nitrogen starvation. Unlike Nostoc, which co-exists with Microcoleus in Arctic terrestrial habitats, Microcoleus strains are not truly anhydrobiotic and do not possess constitutive desiccation tolerance. Instead, it seems that the survival strategy of Microcoleus in periodically dry habitats involves avoidance of complete desiccation, but tolerance to milder desiccation stress, which is induced by suboptimal conditions (e.g. nitrogen starvation.

  14. It is not all about regeneration: Planarians striking power to stand starvation.

    Science.gov (United States)

    Felix, Daniel A; Gutiérrez-Gutiérrez, Óscar; Espada, Lilia; Thems, Anne; González-Estévez, Cristina

    2018-05-02

    All living forms, prokaryotes as eukaryotes, have some means of adaptation to food scarcity, which extends the survival chances under extreme environmental conditions. Nowadays we know that dietary interventions, including fasting, extends lifespan of many organisms and can also protect against age-related diseases including in humans. Therefore, the capacity of adapting to periods of food scarcity may have evolved billions of years ago not only to allow immediate organismal survival but also to be able to extend organismal lifespan or at least to lead to a healthier remaining lifespan. Planarians have been the center of attention since more than two centuries because of their astonishing power of full body regeneration that relies on a large amount of adult stem cells or neoblasts. However, they also present an often-overlooked characteristic. They are able to stand long time starvation. Planarians have adapted to periods of fasting by shrinking or degrowing. Here we will review the published data about starvation in planarians and conclude with the possibility of starvation being one of the processes that rejuvenate the planarian, thus explaining the historical notion of non-ageing planarians. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The Capacity of Mycobacterium tuberculosis To Survive Iron Starvation Might Enable It To Persist in Iron-Deprived Microenvironments of Human Granulomas.

    Science.gov (United States)

    Kurthkoti, Krishna; Amin, Hamel; Marakalala, Mohlopheni J; Ghanny, Saleena; Subbian, Selvakumar; Sakatos, Alexandra; Livny, Jonathan; Fortune, Sarah M; Berney, Michael; Rodriguez, G Marcela

    2017-08-15

    This study was conducted to investigate the role of iron deprivation in the persistence of Mycobacterium tuberculosis We present evidence of iron restriction in human necrotic granulomas and demonstrate that under iron starvation M. tuberculosis persists, refractive to antibiotics and capable of restarting replication when iron is made available. Transcriptomics and metabolomic analyses indicated that the persistence of M. tuberculosis under iron starvation is dependent on strict control of endogenous Fe utilization and is associated with upregulation of pathogenicity and intrinsic antibiotic resistance determinants. M. tuberculosis mutants compromised in their ability to survive Fe starvation were identified. The findings of this study advance the understanding of the physiological settings that may underpin the chronicity of human tuberculosis (TB) and are relevant to the design of effective antitubercular therapies. IMPORTANCE One-third of the world population may harbor persistent M. tuberculosis , causing an asymptomatic infection that is refractory to treatment and can reactivate to become potentially lethal tuberculosis disease. However, little is known about the factors that trigger and maintain M. tuberculosis persistence in infected individuals. Iron is an essential nutrient for M. tuberculosis growth. In this study, we show, first, that in human granulomas the immune defense creates microenvironments in which M. tuberculosis likely experiences drastic Fe deprivation and, second, that Fe-starved M. tuberculosis is capable of long-term persistence without growth. Together, these observations suggest that Fe deprivation in the lung might trigger a state of persistence in M. tuberculosis and promote chronic TB. We also identified vulnerabilities of iron-restricted persistent M. tuberculosis , which can be exploited for the design of new antitubercular therapies. Copyright © 2017 Kurthkoti et al.

  16. Larval starvation improves metabolic response to adult starvation in honey bees (Apis mellifera L.).

    Science.gov (United States)

    Wang, Ying; Campbell, Jacob B; Kaftanoglu, Osman; Page, Robert E; Amdam, Gro V; Harrison, Jon F

    2016-04-01

    Environmental changes during development have long-term effects on adult phenotypes in diverse organisms. Some of the effects play important roles in helping organisms adapt to different environments, such as insect polymorphism. Others, especially those resulting from an adverse developmental environment, have a negative effect on adult health and fitness. However, recent studies have shown that those phenotypes influenced by early environmental adversity have adaptive value under certain (anticipatory) conditions that are similar to the developmental environment, though evidence is mostly from morphological and behavioral observations and it is still rare at physiological and molecular levels. In the companion study, we applied a short-term starvation treatment to fifth instar honey bee larvae and measured changes in adult morphology, starvation resistance, hormonal and metabolic physiology and gene expression. Our results suggest that honey bees can adaptively respond to the predicted nutritional stress. In the present study, we further hypothesized that developmental starvation specifically improves the metabolic response of adult bees to starvation instead of globally affecting metabolism under well-fed conditions. Here, we produced adult honey bees that had experienced a short-term larval starvation, then we starved them for 12 h and monitored metabolic rate, blood sugar concentrations and metabolic reserves. We found that the bees that experienced larval starvation were able to shift to other fuels faster and better maintain stable blood sugar levels during starvation. However, developmental nutritional stress did not change metabolic rates or blood sugar levels in adult bees under normal conditions. Overall, our study provides further evidence that early larval starvation specifically improves the metabolic responses to adult starvation in honey bees. © 2016. Published by The Company of Biologists Ltd.

  17. The carbon starvation response of Aspergillus niger during submerged cultivation: Insights from the transcriptome and secretome

    Directory of Open Access Journals (Sweden)

    Nitsche Benjamin M

    2012-08-01

    Full Text Available Abstract Background Filamentous fungi are confronted with changes and limitations of their carbon source during growth in their natural habitats and during industrial applications. To survive life-threatening starvation conditions, carbon from endogenous resources becomes mobilized to fuel maintenance and self-propagation. Key to understand the underlying cellular processes is the system-wide analysis of fungal starvation responses in a temporal and spatial resolution. The knowledge deduced is important for the development of optimized industrial production processes. Results This study describes the physiological, morphological and genome-wide transcriptional changes caused by prolonged carbon starvation during submerged batch cultivation of the filamentous fungus Aspergillus niger. Bioreactor cultivation supported highly reproducible growth conditions and monitoring of physiological parameters. Changes in hyphal growth and morphology were analyzed at distinct cultivation phases using automated image analysis. The Affymetrix GeneChip platform was used to establish genome-wide transcriptional profiles for three selected time points during prolonged carbon starvation. Compared to the exponential growth transcriptome, about 50% (7,292 of all genes displayed differential gene expression during at least one of the starvation time points. Enrichment analysis of Gene Ontology, Pfam domain and KEGG pathway annotations uncovered autophagy and asexual reproduction as major global transcriptional trends. Induced transcription of genes encoding hydrolytic enzymes was accompanied by increased secretion of hydrolases including chitinases, glucanases, proteases and phospholipases as identified by mass spectrometry. Conclusions This study is the first system-wide analysis of the carbon starvation response in a filamentous fungus. Morphological, transcriptomic and secretomic analyses identified key events important for fungal survival and their chronology. The

  18. Adaptive response to starvation in the fish pathogen Flavobacterium columnare: cell viability and ultrastructural changes

    Directory of Open Access Journals (Sweden)

    Arias Covadonga R

    2012-11-01

    Full Text Available Abstract Background The ecology of columnaris disease, caused by Flavobacterium columnare, is poorly understood despite the economic losses that this disease inflicts on aquaculture farms worldwide. Currently, the natural reservoir for this pathogen is unknown but limited data have shown its ability to survive in water for extended periods of time. The objective of this study was to describe the ultrastructural changes that F. columnare cells undergo under starvation conditions. Four genetically distinct strains of this pathogen were monitored for 14 days in media without nutrients. Culturability and cell viability was assessed throughout the study. In addition, cell morphology and ultrastructure was analyzed using light microscopy, scanning electron microscopy, and transmission electron microscopy. Revival of starved cells under different nutrient conditions and the virulence potential of the starved cells were also investigated. Results Starvation induced unique and consistent morphological changes in all strains studied. Cells maintained their length and did not transition into a shortened, coccus shape as observed in many other Gram negative bacteria. Flavobacterium columnare cells modified their shape by morphing into coiled forms that comprised more than 80% of all the cells after 2 weeks of starvation. Coiled cells remained culturable as determined by using a dilution to extinction strategy. Statistically significant differences in cell viability were found between strains although all were able to survive in absence of nutrients for at least 14 days. In later stages of starvation, an extracellular matrix was observed covering the coiled cells. A difference in growth curves between fresh and starved cultures was evident when cultures were 3-months old but not when cultures were starved for only 1 month. Revival of starved cultures under different nutrients revealed that cells return back to their original elongated rod shape upon

  19. Starvation and Imidacloprid Exposure Influence Immune Response by Anoplophora glabripennis (Coleoptera: Cerambycidae) to a Fungal Pathogen.

    Science.gov (United States)

    Fisher, Joanna J; Castrillo, Louela A; Donzelli, Bruno G G; Hajek, Ann E

    2017-08-01

    In several insect systems, fungal entomopathogens synergize with neonicotinoid insecticides which results in accelerated host death. Using the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), an invasive woodborer inadvertently introduced into North America and Europe, we investigated potential mechanisms in the synergy between the entomopathogenic fungus Metarhizium brunneum Petch and the insecticide imidacloprid. A potential mechanism underlying this synergy could be imidacloprid's ability to prevent feeding shortly after administration. We investigated whether starvation would have an impact similar to imidacloprid exposure on the mortality of fungal-inoculated beetles. Using real-time PCR to quantify fungal load in inoculated beetles, we determined how starvation and pesticide exposure impacted beetles' ability to tolerate or resist a fungal infection. The effect of starvation and pesticide exposure on the encapsulation and melanization immune responses of the beetles was also quantified. Starvation had a similar impact on the survival of M. brunneum-inoculated beetles compared to imidacloprid exposure. The synergy, however, was not completely due to starvation, as imidacloprid reduced the beetles' melanotic encapsulation response and capsule area, while starvation did not significantly reduce these immune responses. Our results suggest that there are multiple interacting mechanisms involved in the synergy between M. brunneum and imidacloprid. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation.

    Science.gov (United States)

    Lavieu, Grégory; Scarlatti, Francesca; Sala, Giusy; Carpentier, Stéphane; Levade, Thierry; Ghidoni, Riccardo; Botti, Joëlle; Codogno, Patrice

    2006-03-31

    The sphingolipid ceramide induces macroautophagy (here called autophagy) and cell death with autophagic features in cancer cells. Here we show that overexpression of sphingosine kinase 1 (SK1), an enzyme responsible for the production of sphingosine 1-phosphate (S1P), in MCF-7 cells stimulates autophagy by increasing the formation of LC3-positive autophagosomes and the rate of proteolysis sensitive to the autophagy inhibitor 3-methyladenine. Autophagy was blocked in the presence of dimethylsphingosine, an inhibitor of SK activity, and in cells expressing a catalytically inactive form of SK1. In SK1(wt)-overexpressing cells, however, autophagy was not sensitive to fumonisin B1, an inhibitor of ceramide synthase. In contrast to ceramide-induced autophagy, SK1(S1P)-induced autophagy is characterized by (i) the inhibition of mammalian target of rapamycin signaling independently of the Akt/protein kinase B signaling arm and (ii) the lack of robust accumulation of the autophagy protein Beclin 1. In addition, nutrient starvation induced both the stimulation of autophagy and SK activity. Knocking down the expression of the autophagy protein Atg7 or that of SK1 by siRNA abolished starvation-induced autophagy and increased cell death with apoptotic hallmarks. In conclusion, these results show that SK1(S1P)-induced autophagy protects cells from death with apoptotic features during nutrient starvation.

  1. Resistance to starvation of first-stage juveniles of the Caribbean spiny lobster

    Directory of Open Access Journals (Sweden)

    Alí Espinosa-Magaña

    2017-01-01

    Full Text Available The non-feeding postlarva (puerulus of spiny lobsters actively swims from the open ocean to the coastal habitats where it settles and molts to the first-stage juvenile (JI. Because pueruli use much of their energy reserves swimming and preparing for the post-settlement molt, the survival of JIs presumably depends on resuming feeding as soon as possible. To test this hypothesis, the resistance to starvation of JIs of the Caribbean spiny lobster, Panulirus argus, was evaluated by measuring their point-of-no-return (PNR, minimum time of initial starvation preventing recovery after later feeding and point-of-reserve-saturation (PRS, minimum time of initial feeding allowing for food-independent development through the rest of the molting cycle in a warm and a cold season. Each experiment consisted of eight groups: a continuously fed control (FC group, a continuously starved control (SC group, and six groups subjected to differential periods of either initial starvation and subsequent feeding (PNR experiments or initial feeding and subsequent starvation (PSR experiments. No JIs molted under continuous absence of food (SC. In both PNR experiments (temperature in warm season: 29.79 ± 0.07°C, mean ± 95% CI; in cold season: 25.63 ± 0.12°C mortality increased sharply after 9 d of initial starvation and intermolt periods increased with period of initial starvation, but were longer in the cold season. The PNR50 was longer in the warm season (12.1 ± 1.2 d, mean ± 95% CI than in the cold season (9.5 ± 2.1 d. In PRS experiments (temperature in warm season: 29.54 ± 0.07 °C; in cold season: 26.20 ± 0.12 °C, JIs that molted did so near the end of the feeding period; all JIs initially fed for up to 6 d succumbed, and no JIs molted after 13 d of starvation despite having fed previously. The PRS50 did not differ between the cold (13.1 ± 0.7 d and warm seasons (12.1 ± 1.1 d. JIs of P. argus exhibit a remarkable resistance to

  2. Operation Starvation

    National Research Council Canada - National Science Library

    Mason, Gerald

    2002-01-01

    More than 1,250,000 tons of shipping was sunk or damaged in the last five months of World War II when Twenty-first Bomber Command executed an aerial mining campaign against Japan known as Operation STARVATION...

  3. Sex-specific starvation tolerance of copepods with different foraging strategies

    DEFF Research Database (Denmark)

    Holm, Mark Wejlemann; Torres, Rocio Rodriguez; van Someren Gréve, Hans

    2018-01-01

    in starvation tolerance are not due to dissimilarities in lipid reserves. Gender differences in starvation tolerance can be partially explained by body size differences between sexes. This indicates a minor influence of mate-seeking behaviour on male starvation tolerance, likely due to reduced mate......Planktonic copepods have sexual dimorphism that can lead to differences in starvation tolerance between genders. Additionally, mating may be energetically costly and thus reduce starvation tolerance. We investigated the influence of sexual dimorphism and mating on starvation tolerance of copepods...... with different feeding behaviours: Oithona nana (ambusher), Temora longicornis (feeding-current feeder) and Centropages typicus (cruiser). Males of C. typicus and O. nana had a starvation tolerance lower than females, whereas T. longicornis had a similar starvation tolerance between genders. Only O. nana males...

  4. Origin of microbial life hypothesis: a gel cytoplasm lacking a bilayer membrane, with infrared radiation producing exclusion zone (EZ) water, hydrogen as an energy source and thermosynthesis for bioenergetics.

    Science.gov (United States)

    Trevors, J T; Pollack, G H

    2012-01-01

    The hypothesis is proposed that pre-biotic bacterial cell(s) and the first cells capable of growth/division did not require a cytoplasmic membrane. A gel-like microscopic structure less than a cubic micrometer may have had a dual role as both an ancient pre-cytoplasm and a boundary layer to the higher-entropy external environment. The gel pre-cytoplasm exposed to radiant energy, especially in the infrared (IR) region of the EM spectrum resulted in the production of an exclusion zone (EZ) with a charge differential (-100 to -200 mV) and boundary that may have been a possible location for the latter organization of the first cytoplasmic membrane. Pre-biotic cells and then-living cells may have used hydrogen as the universal energy source, and thermosynthesis in their bioenergetic processes. These components will be discussed as to how they are interconnected, and their hypothesized roles in the origin of life. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  5. Starvation-free mutual exclusion with semaphores

    NARCIS (Netherlands)

    Hesselink, Wim H.; IJbema, Mark

    The standard implementation of mutual exclusion by means of a semaphore allows starvation of processes. Between 1979 and 1986, three algorithms were proposed that preclude starvation. These algorithms use a special kind of semaphore. We model this so-called buffered semaphore rigorously and provide

  6. Management of starvation in a Role 1 setting.

    Science.gov (United States)

    Jeffery, S M T; Freshwater, D A

    2012-01-01

    Historical reports from war and natural disasters first identified the dangers of reintroducing food after a period of starvation or malnutrition. The development of advanced nutritional support for hospitalised patients gave rise to the concept of refeeding syndrome, further highlighting the problems and leading to the development of guidelines and protocols for managing malnutrition. In this paper we present a case of starvation in the maritime setting and review the pathophysiology of starvation and refeeding. We discuss the problems associated with managing acute starvation in a Role 1 setting without access to higher medical care, and present guidance for its management.

  7. daf-16/FoxO promotes gluconeogenesis and trehalose synthesis during starvation to support survival

    OpenAIRE

    Hibshman, Jonathan D; Doan, Alexander E; Moore, Brad T; Kaplan, Rebecca EW; Hung, Anthony; Webster, Amy K; Bhatt, Dhaval P; Chitrakar, Rojin; Hirschey, Matthew D; Baugh, L Ryan

    2017-01-01

    eLife digest Most animals rarely have access to a constant supply of food, and so have evolved ways to cope with times of plenty and times of shortage. Insulin is a hormone that travels throughout the body to signal when an animal is well fed. Insulin signaling inhibits the activity of a protein called FoxO, which otherwise switches on and off hundreds of genes to control the starvation response. The roundworm, Caenorhabditis elegans, has been well studied in the laboratory, and often has to ...

  8. EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance.

    Science.gov (United States)

    Sevelda, Florian; Mayr, Lisa; Kubista, Bernd; Lötsch, Daniela; van Schoonhoven, Sushilla; Windhager, Reinhard; Pirker, Christine; Micksche, Michael; Berger, Walter

    2015-11-02

    Enhanced signalling via the epidermal growth factor receptor (EGFR) is a hallmark of multiple human carcinomas. However, in recent years data have accumulated that EGFR might also be hyperactivated in human sarcomas. Aim of this study was to investigate the influence of EGFR inhibition on cell viability and its interaction with chemotherapy response in osteosarcoma cell lines. We have investigated a panel of human osteosarcoma cell lines regarding EGFR expression and downstream signalling. To test its potential applicability as therapeutic target, inhibition of EGFR by gefitinib was combined with osteosarcoma chemotherapeutics and cell viability, migration, and cell death assays were performed. Osteosarcoma cells expressed distinctly differing levels of functional EGFR reaching in some cases high amounts. Functionality of EGFR in osteosarcoma cells was proven by EGF-mediated activation of both MAPK and PI3K/AKT pathway (determined by phosphorylation of ERK1/2, AKT, S6, and GSK3β). The EGFR-specific inhibitor gefitinib blocked EGF-mediated downstream signal activation. At standard in vitro culture conditions, clinically achievable gefitinib doses demonstrated only limited cytotoxic activity, however, significantly reduced long-term colony formation and cell migration. In contrast, under serum-starvation conditions active gefitinib doses were distinctly reduced while EGF promoted starvation survival. Importantly, gefitinib significantly supported the anti-osteosarcoma activities of doxorubicin and methotrexate regarding cell survival and migratory potential. Our data suggest that EGFR is not a major driver for osteosarcoma cell growth but contributes to starvation- and chemotherapy-induced stress survival. Consequently, combination approaches including EGFR inhibitors should be evaluated for treatment of high-grade osteosarcoma patients.

  9. Dying piece by piece: carbohydrate dynamics in aspen seedlings under severe carbon stress and starvation

    Science.gov (United States)

    Wiley, Erin; Chow, Pak; Landhäusser, Simon

    2016-04-01

    Carbon stress and starvation remain poorly understood in trees, despite their potential role in mortality from a variety of agents. To explore the effects of carbon stress on nonstructural carbohydrate (NSC) dynamics and recovery potential and to examine the process of starvation, we grew aspen seedlings under one of three levels of shade: 40% (light shade), 8% (medium shade), and 4% (dark shade) of full sunlight. We then exposed seedlings to 24 hours darkness at either 20° or 28° C until trees had died. Periodically, seedlings were harvested for NSC analysis and to measure stem and root respiration. In addition, some seedlings were moved back into the light to determine if recovery was possible at certain points during starvation. Specifically, we sought to address the following questions: 1) Do NSC concentrations or mass influence tree survival under carbon stress? 2) At what carbohydrate levels do trees fail to recover and starve? 3) Does temperature affect the NSC level at which trees starve? Increasing shade reduced growth, but surprisingly did not reduce NSC levels, except in a portion of deep shade seedlings that experienced dieback. Once in darkness, leaves died first, with final NSC levels ranging from ~4% (Medium shade, 28 degrees) to 7.5% (Light shade). Stem death generally occurred gradually down the stem. Stem tissues retained ~1-2% NSC when dead. Recovery was still possible when only the upper half of the stem had died; at this point, seedlings had relatively high root NSC levels in their remaining roots (7-10%), with 1-3% starch. No trees recovered after the whole stem had died, at which point, some trees root systems were completely dead. However, most retained substantial amounts of live roots, averaging 5-6% NSC, with 0.25-1.5% starch. Despite the initially similar NSC concentrations, light shade seedlings took longer to reach half stem and whole stem death than seedlings from medium and dark shade. Longer survival times were associated with

  10. Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state.

    Science.gov (United States)

    Babbitt, Shalon E; Altenhofen, Lindsey; Cobbold, Simon A; Istvan, Eva S; Fennell, Clare; Doerig, Christian; Llinás, Manuel; Goldberg, Daniel E

    2012-11-20

    The human malaria parasite Plasmodium falciparum is auxotrophic for most amino acids. Its amino acid needs are met largely through the degradation of host erythrocyte hemoglobin; however the parasite must acquire isoleucine exogenously, because this amino acid is not present in adult human hemoglobin. We report that when isoleucine is withdrawn from the culture medium of intraerythrocytic P. falciparum, the parasite slows its metabolism and progresses through its developmental cycle at a reduced rate. Isoleucine-starved parasites remain viable for 72 h and resume rapid growth upon resupplementation. Protein degradation during starvation is important for maintenance of this hibernatory state. Microarray analysis of starved parasites revealed a 60% decrease in the rate of progression through the normal transcriptional program but no other apparent stress response. Plasmodium parasites do not possess a TOR nutrient-sensing pathway and have only a rudimentary amino acid starvation-sensing eukaryotic initiation factor 2α (eIF2α) stress response. Isoleucine deprivation results in GCN2-mediated phosphorylation of eIF2α, but kinase-knockout clones still are able to hibernate and recover, indicating that this pathway does not directly promote survival during isoleucine starvation. We conclude that P. falciparum, in the absence of canonical eukaryotic nutrient stress-response pathways, can cope with an inconsistent bloodstream amino acid supply by hibernating and waiting for more nutrient to be provided.

  11. Regulation of phosphate starvation responses in higher plants.

    Science.gov (United States)

    Yang, Xiao Juan; Finnegan, Patrick M

    2010-04-01

    Phosphorus (P) is often a limiting mineral nutrient for plant growth. Many soils worldwide are deficient in soluble inorganic phosphate (P(i)), the form of P most readily absorbed and utilized by plants. A network of elaborate developmental and biochemical adaptations has evolved in plants to enhance P(i) acquisition and avoid starvation. Controlling the deployment of adaptations used by plants to avoid P(i) starvation requires a sophisticated sensing and regulatory system that can integrate external and internal information regarding P(i) availability. In this review, the current knowledge of the regulatory mechanisms that control P(i) starvation responses and the local and long-distance signals that may trigger P(i) starvation responses are discussed. Uncharacterized mutants that have P(i)-related phenotypes and their potential to give us additional insights into regulatory pathways and P(i) starvation-induced signalling are also highlighted and assessed. An impressive list of factors that regulate P(i) starvation responses is now available, as is a good deal of knowledge regarding the local and long-distance signals that allow a plant to sense and respond to P(i) availability. However, we are only beginning to understand how these factors and signals are integrated with one another in a regulatory web able to control the range of responses demonstrated by plants grown in low P(i) environments. Much more knowledge is needed in this agronomically important area before real gains can be made in improving P(i) acquisition in crop plants.

  12. Cooling rate and starvation affect supercooling point and cold tolerance of the Khapra beetle, Trogoderma granarium Everts fourth instar larvae (Coleoptera: Dermestidae).

    Science.gov (United States)

    Mohammadzadeh, M; Izadi, H

    2018-01-01

    Trogoderma granarium Everts (Coleoptera: Dermestidae) is an important insect pest of stored products. In this study, the survival strategies of T. granarium fourth instar larvae were investigated at different sub-zero temperatures following different cooling rates, acclimation to different relative humidity (RH) and different starvation times. Our results show that larvae of T. granarium are freeze-intolerant. There was a strong link between cooling rates and supercooling point, which means the slower the decrease in temperature, the lower the supercooling point. Trehalose content was greater in insects cooled at a rate of 0.5°C/min. According to results, the RH did not affect supercooling point. However, acclimation to an RH of 25% increased mortality following exposure to - 10°C/24h. The time necessary to reach 95% mortality was 1737h and 428h at - 5°C and - 10°C. The lowest lipid and trehalose content was detected in insects acclimated to 25% RH, although, the different RH treatments did not significantly affect glycogen content of T. granarium larvae. The supercooling point of larvae was gradually increased following starvation. By contrast, fed larvae had the greatest lipid, glycogen, and trehalose content, and insects starved for eight days had the lowest energy contents. There was a sharp decline in the survival of larvae between - 11 and - 18°C after 1h exposure. Our results indicate the effects of cooling rate and starvation on energy reserves and survival of T. granarium. We conclude that T. granarium may not survive under similar stress conditions of the stored products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation.

    Science.gov (United States)

    El-Sayed, Ashraf S A; Yassin, Marwa A; Ali, Gul Shad

    2015-01-01

    Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway.

  14. Impact of lactose starvation on the physiology of Lactobacillus casei GCRL163 in the presence or absence of tween 80.

    Science.gov (United States)

    Al-Naseri, Ali; Bowman, John P; Wilson, Richard; Nilsson, Rolf E; Britz, Margaret L

    2013-11-01

    The global proteomic response of the nonstarter lactic acid bacteria Lactobacillus casei strain GCRL163 under carbohydrate depletion was investigated to understand aspects of its survival following cessation of fermentation. The proteome of L. casei GCRL163 was analyzed quantitatively after growth in modified MRS (with and without Tween 80) with different levels of lactose (0% lactose, starvation; 0.2% lactose, growth limiting; 1% lactose, non-growth-limited control) using gel-free proteomics. Results revealed that carbohydrate starvation lead to suppression of lactose and galactose catabolic pathways as well as pathways for nucleotide and protein synthesis. Enzymes of the glycolysis/gluconeogenesis pathway, amino acid synthesis, and pyruvate and citrate metabolism become more abundant as well as other carbohydrate catabolic pathways, suggesting increased optimization of intermediary metabolism and scavenging. Tween 80 did not affect growth yield; however, proteins related to fatty acid biosynthesis were repressed in the presence of Tween 80. The data suggest that L. casei adeptly switches to a scavenging mode, using both citrate and Tween 80, and efficiently adjusts energetic requirements when carbohydrate starved and thus can sustain survival for weeks to months. Explaining the adaptation of L. casei during lactose starvation will assist efforts to maintain viability of L. casei and extend its utility as a beneficial dietary adjunct and fermentation processing aid.

  15. Why does starvation make bones fat?

    OpenAIRE

    Devlin, Maureen J.

    2011-01-01

    Body fat, or adipose tissue, is a crucial energetic buffer against starvation in humans and other mammals, and reserves of white adipose tissue (WAT) rise and fall in parallel with food intake. Much less is known about the function of bone marrow adipose tissue (BMAT), which are fat cells found in bone marrow. BMAT mass actually increases during starvation, even as other fat depots are being mobilized for energy. Here I review the possible reasons for this poorly understood phenomenon. Is BMA...

  16. Survival and Recovery of Methanotrophic Bacteria Starved Under Oxic and Anoxic Conditions

    Science.gov (United States)

    Roslev, Peter; King, Gary M.

    1994-01-01

    The effects of carbon deprivation on survival of methanotrophic bacteria were compared in cultures incubated in the presence and absence of oxygen in the starvation medium. Survival and recovery of the examined methanotrophs were generally highest for cultures starved under anoxic conditions as indicated by poststarvation measurements of methane oxidation, tetrazolium salt reduction, plate counts, and protein synthesis. Methylosinus trichosporium OB3b survived up to 6 weeks of carbon deprivation under anoxic conditions while maintaining a physiological state that allowed relatively rapid (hours) methane oxidation after substrate addition. A small fraction of cells starved under oxic and anoxic conditions (4 and 10%, respectively) survived more than 10 weeks but required several days for recovery on plates and in liquid medium. A non-spore-forming methanotroph, strain WP 12, displayed 36 to 118% of its initial methane oxidation capacity after 5 days of carbon deprivation. Oxidation rates varied with growth history prior to the experiments as well as with starvation conditions. Strain WP 12 starved under anoxic conditions showed up to 90% higher methane oxidation activity and 46% higher protein production after starvation than did cultures starved under oxic conditions. Only minor changes in biomass and niorpholow were seen for methanotrophic bacteria starved tinder anoxic conditions. In contrast, starvation under oxic conditions resulted in morphology changes and an initial 28 to 35% loss of cell protein. These data suggest that methanotrophic bacteria can survin,e carbon deprivation under anoxic conditions by using maintenance energy derived Solelyr from an anaerobic endogenous metabolism. This capability could partly explain a significant potential for methane oxidation in environments not continuously, supporting aerobic methanotrophic growth.

  17. Effects of starvation on the carbohydrate metabolism in Harmonia axyridis (Pallas

    Directory of Open Access Journals (Sweden)

    Zuo-Kun Shi

    2017-07-01

    Full Text Available Trehalose plays an important role in energy storage, metabolism, and protection from extreme environmental conditions in insects. Trehalose is the main blood sugar in insects, and it can be rapidly used as an energy source in times of need. To elucidate the mechanisms of the starvation response, we observed the effects of starvation on trehalose and glycogen, trehalase activity, and the relative gene expression of genes in the trehalose and glycogen metabolic pathways in the invasive beetle Harmonia axyridis. Our results show that trehalose levels and the activities of two types of trehalases decreased significantly in the first 8 h of starvation, while the relative expression of HaTreh1-1 increased. While trehalose remained nearly constant at a relatively high level from 8 to 24 h, glycogen levels decreased significantly from 8 h to 24 h of starvation. Likewise, glycogen phosphorylase (HaGP expression was significantly higher at 12 to 24 h starvation than the first 8 h, while the expression of glycogen synthase (HaGS was relatively stable. Furthermore, trehalose decreased significantly from 24 h starvation to 72 h starvation, while trehalase activities and the relative expression of some HaTreh genes generally increased toward the end of the starvation period. The expression of trehalose-6-phosphate synthase (HaTPS increased significantly, supporting the increase in trehalose synthesis. These results show that trehalose plays a key role in the energy provided during the starvation process through the molecular and biochemical regulation of trehalose and glycogen metabolism.

  18. CD147 is increased in HCC cells under starvation and reduces cell death through upregulating p-mTOR in vitro.

    Science.gov (United States)

    Gou, Xingchun; Tang, Xu; Kong, Derek Kai; He, Xinying; Gao, Xingchun; Guo, Na; Hu, Zhifang; Zhao, Zhaohua; Chen, Yanke

    2016-01-01

    Transarterial chemoembolization (TACE) is the standard of care for treatment of intermediate hepatocellular carcinoma (HCC), however, key molecules involved in HCC cell survival and tumor metastasis post-TACE remain unclear. CD147 is a member of the immunoglobulin superfamily that is overexpressed on the surface of HCC cells and is associated with malignant potential and poor prognosis in HCC patients. In this study, using an Earle's Balanced Salt Solution medium culture model that mimics nutrient deprivation induced by TACE, we investigated the regulation of CD147 expression on HCC cells under starvation conditions and its functional effects on HCC cell death. During early stages of starvation, the expression of CD147 was considerably upregulated in SMMC7721, HepG2 and HCC9204 hepatoma cell lines at the protein levels. Downregulation of CD147 by specific small interfering RNA (siRNA) significantly promoted starvation-induced cell death. In addition, CD147 siRNA-transfected SMMC7721 cells demonstrated significantly increased levels of both apoptosis and autophagy as compared to cells transfected with control siRNA under starvation conditions, whereas no difference was observed between the two treatment groups under normal culture conditions. Furthermore, silencing of CD147 resulted in a remarkable downregulation of phosphorylated mammalian target of rapamycin (p-mTOR) in starved SMMC7721 cells. Finally, the combined treatment of starvation and anti-CD147 monoclonal antibody exhibited a synergistic HCC cell killing effect. Our study suggests that upregulation of CD147 under starvation may reduce hepatoma cell death by modulating both apoptosis and autophagy through mTOR signaling, and that CD147 may be a novel potential molecular target to improve the efficacy of TACE.

  19. Knockdown of AMPKα decreases ATM expression and increases radiosensitivity under hypoxia and nutrient starvation in an SV40-transformed human fibroblast cell line, LM217.

    Science.gov (United States)

    Murata, Yasuhiko; Hashimoto, Takuma; Urushihara, Yusuke; Shiga, Soichiro; Takeda, Kazuya; Jingu, Keiichi; Hosoi, Yoshio

    2018-01-22

    Presence of unperfused regions containing cells under hypoxia and nutrient starvation contributes to radioresistance in solid human tumors. It is well known that hypoxia causes cellular radioresistance, but little is known about the effects of nutrient starvation on radiosensitivity. We have reported that nutrient starvation induced decrease of mTORC1 activity and decrease of radiosensitivity in an SV40-transformed human fibroblast cell line, LM217, and that nutrient starvation induced increase of mTORC1 activity and increase of radiosensitivity in human liver cancer cell lines, HepG2 and HuH6 (Murata et al., BBRC 2015). Knockdown of mTOR using small interfering RNA (siRNA) for mTOR suppressed radiosensitivity under nutrient starvation alone in HepG2 cells, which suggests that mTORC1 pathway regulates radiosensitivity under nutrient starvation alone. In the present study, effects of hypoxia and nutrient starvation on radiosensitivity were investigated using the same cell lines. LM217 and HepG2 cells were used to examine the effects of hypoxia and nutrient starvation on cellular radiosensitivity, mTORC1 pathway including AMPK, ATM, and HIF-1α, which are known as regulators of mTORC1 activity, and glycogen storage, which is induced by HIF-1 and HIF-2 under hypoxia and promotes cell survival. Under hypoxia and nutrient starvation, AMPK activity and ATM expression were increased in LM217 cells and decreased in HepG2 cells compared with AMPK activity under nutrient starvation alone or ATM expression under hypoxia alone. Under hypoxia and nutrient starvation, radiosensitivity was decreased in LM217 cells and increased in HepG2 cells compared with radiosensitivity under hypoxia alone. Under hypoxia and nutrient starvation, knockdown of AMPK decreased ATM activity and increased radiation sensitivity in LM217 cells. In both cell lines, mTORC1 activity was decreased under hypoxia and nutrient starvation. Under hypoxia alone, knockdown of mTOR slightly increased ATM

  20. Starvation stress during larval development facilitates an adaptive response in adult worker honey bees (Apis mellifera L.).

    Science.gov (United States)

    Wang, Ying; Kaftanoglu, Osman; Brent, Colin S; Page, Robert E; Amdam, Gro V

    2016-04-01

    Most organisms are constantly faced with environmental changes and stressors. In diverse organisms, there is an anticipatory mechanism during development that can program adult phenotypes. The adult phenotype would be adapted to the predicted environment that occurred during organism maturation. However, whether this anticipatory mechanism is present in eusocial species is questionable because eusocial organisms are largely shielded from exogenous conditions by their stable nest environment. In this study, we tested whether food deprivation during development of the honey bee (Apis mellifera), a eusocial insect model, can shift adult phenotypes to better cope with nutritional stress. After subjecting fifth instar worker larvae to short-term starvation, we measured nutrition-related morphology, starvation resistance, physiology, endocrinology and behavior in the adults. We found that the larval starvation caused adult honey bees to become more resilient toward starvation. Moreover, the adult bees were characterized by reduced ovary size, elevated glycogen stores and juvenile hormone (JH) titers, and decreased sugar sensitivity. These changes, in general, can help adult insects survive and reproduce in food-poor environments. Overall, we found for the first time support for an anticipatory mechanism in a eusocial species, the honey bee. Our results suggest that this mechanism may play a role in honey bee queen-worker differentiation and worker division of labor, both of which are related to the responses to nutritional stress. © 2016. Published by The Company of Biologists Ltd.

  1. Effects of algal diets and starvation on growth, survival and fatty acid composition of Solen marginatus (Bivalvia: Solenidae larvae

    Directory of Open Access Journals (Sweden)

    Fiz Da Costa

    2012-08-01

    Full Text Available The aim of this study was to investigate whether it is necessary to feed Solen marginatus (Pennánt, 1777 larvae externally and the evolution of fatty acids in the neutral and polar lipids during larval development in starved larvae and larvae fed on two different microalgal diets. Larvae were subjected to three different treatments: 1. 10 equivalent cells (Isochrysis galbana, Pavlova lutheri and Chaetoceros calcitrans plus 20 equivalent cells of Tetraselmis suecica; 2. 80 equivalent cells of I. galbana and 3. starvation during eight days, and then individuals were re-fed on diet 1. The best results for growth were observed in larvae fed on diet 1. Starved larvae reached the best survival rate at day 8 (66%. However, three days after re-feeding all larvae died, suggesting that the “point of no return” was exceeded. In spite of the large size of S. marginatus eggs and the great amount of stored reserves, the larvae need to feed on microalgae to undergo metamorphosis. Non-methyle-interrupted dienoic fatty acids and their precursors 16:1n-7 and 18:1n-9 are of great importance in starved larvae. Saturated fatty acids, especially 16:0, fuel larval development. A certain degree of bioconversion of 18:2n-6 to 20:4n-6 was observed in S. marginatus larvae.

  2. Different Metabolomic Responses to Carbon Starvation between Light and Dark Conditions in the Purple Photosynthetic Bacterium, Rhodopseudomonas palustris.

    Science.gov (United States)

    Kanno, Nanako; Matsuura, Katsumi; Haruta, Shin

    2018-03-29

    Purple photosynthetic bacteria utilize light energy for growth. We previously demonstrated that light energy contributed to prolonging the survival of multiple purple bacteria under carbon-starved conditions. In order to clarify the effects of illumination on metabolic states under carbon-starved, non-growing conditions, we herein compared the metabolic profiles of starved cells in the light and dark using the purple bacterium, Rhodopseudomonas palustris. The metabolic profiles of starved cells in the light were markedly different from those in the dark. After starvation for 5 d in the light, cells showed increases in the amount of ATP and the NAD + /NADH ratio. Decreases in the amounts of most metabolites related to glycolysis and the TCA cycle in energy-rich starved cells suggest the active utilization of these metabolites for the modification of cellular components. Starvation in the dark induced the consumption of cellular compounds such as amino acids, indicating that the degradation of these cellular components produced ATP in order to maintain viability under energy-poor conditions. The present results suggest that intracellular energy levels alter survival strategies under carbon-starved conditions through metabolism.

  3. Doxycyclin ameliorates a starvation-induced germline tumor in C. elegans daf-18/PTEN mutant background.

    Science.gov (United States)

    Wolf, Tim; Qi, Wenjing; Schindler, Verena; Runkel, Eva Diana; Baumeister, Ralf

    2014-08-01

    Managing available resources is a key necessity of each organism to cope with the environment. The nematode C. elegans responds to nutritional deprivation or harsh environmental conditions with a multitude of developmental adaptations, among them a starvation-induced quiescence at early larval development (L1). daf-18, the C. elegans homolog of the human tumor suppressor gene PTEN, is essential for the maintenance of survival and germline stem cell arrest during the L1 diapause. We show here that daf-18 mutants, independently to their failure to maintain G2 arrest of the primordial germ cells, develop a gonad phenotype after refeeding. This highly penetrant gonadal phenotype is further enhanced by a mutation in shc-1, encoding a protein homologous to the human adaptor ShcA. Features of this phenotype are a tumor-like phenotype encompassing hyper-proliferation of germ cell nuclei and disruption/invasion of the basement membrane surrounding the gonad. The penetrance of this phenotype is reduced by decreasing starvation temperature. In addition, it is also ameliorated in a dose-dependent way by exposure to the antibiotic doxycyclin either during starvation or during subsequent refeeding. Since, in eukaryotic cells, doxycyclin specifically blocks mitochondrial translation, our results suggest that daf-18 and shc-1;daf-18 mutants fail to adapt mitochondrial activity to reduced nutritional availability during early larval developing. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Adaptation of intestinal hydrolases to starvation in rats: effect of thyroid function

    DEFF Research Database (Denmark)

    Galluser, M; Belkhou, R; Freund, J N

    1991-01-01

    The effects of long-term starvation on the activities of sucrase, lactase, and aminopeptidase, and on their respective mRNA were determined in the small intestine of thyroidectomized and sham-operated adult rats. Thyroidectomy reduced the protein loss at the level of the intestinal brush border...... membranes during starvation. Prolonged fasting caused a significant decrease in sucrase activity, but thyroidectomy partly prevented this effect. However, the amount of the corresponding mRNA dropped during long term starvation without incidence of thyroidectomy. Lactase activity in the brush border...... membranes was increased by starvation, and thyroidectomy caused a further elevation of the enzyme activity. Simultaneously, lactase mRNA content rose only slightly compared to the enzyme activity. Aminopeptidase activity and mRNA content decreased during starvation and thyroidectomy did not prevent...

  5. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses

    Science.gov (United States)

    Sevanto, Sanna; Mcdowell, Nate G; Dickman, L Turin; Pangle, Robert; Pockman, William T

    2014-01-01

    Despite decades of research on plant drought tolerance, the physiological mechanisms by which trees succumb to drought are still under debate. We report results from an experiment designed to separate and test the current leading hypotheses of tree mortality. We show that piñon pine (Pinus edulis) trees can die of both hydraulic failure and carbon starvation, and that during drought, the loss of conductivity and carbohydrate reserves can also co-occur. Hydraulic constraints on plant carbohydrate use determined survival time: turgor loss in the phloem limited access to carbohydrate reserves, but hydraulic control of respiration prolonged survival. Our data also demonstrate that hydraulic failure may be associated with loss of adequate tissue carbohydrate content required for osmoregulation, which then promotes failure to maintain hydraulic integrity. PMID:23730972

  6. Biofilm extracellular polysaccharides degradation during starvation and enamel demineralization.

    Directory of Open Access Journals (Sweden)

    Bárbara Emanoele Costa Oliveira

    Full Text Available This study was conducted to evaluate if extracellular polysaccharides (EPS are used by Streptococcus mutans (Sm biofilm during night starvation, contributing to enamel demineralization increasing occurred during daily sugar exposure. Sm biofilms were formed during 5 days on bovine enamel slabs of known surface hardness (SH. The biofilms were exposed to sucrose 10% or glucose + fructose 10.5% (carbohydrates that differ on EPS formation, 8x/day but were maintained in starvation during the night. Biofilm samples were harvested during two moments, on the end of the 4th day and in the morning of the 5th day, conditions of sugar abundance and starvation, respectively. The slabs were also collected to evaluate the percentage of surface hardness loss (%SHL. The biofilms were analyzed for EPS soluble and insoluble and intracellular polysaccharides (IPS, viable bacteria (CFU, biofilm architecture and biomass. pH, calcium and acid concentration were determined in the culture medium. The data were analyzed by two-way ANOVA followed by Tukey's test or Student's t-test. The effect of the factor carbohydrate treatment for polysaccharide analysis was significant (p 0.05. Larger amounts of soluble and insoluble EPS and IPS were formed in the sucrose group when compared to glucose + fructose group (p < 0.05, but they were not metabolized during starvation time (S-EPS, p = 0.93; I-EPS, p = 0.11; and IPS = 0.96. Greater enamel %SHL was also found for the sucrose group (p < 0.05 but the demineralization did not increase during starvation (p = 0.09. In conclusion, the findings suggest that EPS metabolization by S. mutans during night starvation do not contribute to increase enamel demineralization occurred during the daily abundance of sugar.

  7. Autophagy induction under carbon starvation conditions is negatively regulated by carbon catabolite repression.

    Science.gov (United States)

    Adachi, Atsuhiro; Koizumi, Michiko; Ohsumi, Yoshinori

    2017-12-01

    Autophagy is a conserved process in which cytoplasmic components are sequestered for degradation in the vacuole/lysosomes in eukaryotic cells. Autophagy is induced under a variety of starvation conditions, such as the depletion of nitrogen, carbon, phosphorus, zinc, and others. However, apart from nitrogen starvation, it remains unclear how these stimuli induce autophagy. In yeast, for example, it remains contentious whether autophagy is induced under carbon starvation conditions, with reports variously suggesting both induction and lack of induction upon depletion of carbon. We therefore undertook an analysis to account for these inconsistencies, concluding that autophagy is induced in response to abrupt carbon starvation when cells are grown with glycerol but not glucose as the carbon source. We found that autophagy under these conditions is mediated by nonselective degradation that is highly dependent on the autophagosome-associated scaffold proteins Atg11 and Atg17. We also found that the extent of carbon starvation-induced autophagy is positively correlated with cells' oxygen consumption rate, drawing a link between autophagy induction and respiratory metabolism. Further biochemical analyses indicated that maintenance of intracellular ATP levels is also required for carbon starvation-induced autophagy and that autophagy plays an important role in cell viability during prolonged carbon starvation. Our findings suggest that carbon starvation-induced autophagy is negatively regulated by carbon catabolite repression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest.

    Directory of Open Access Journals (Sweden)

    Rebecca E W Kaplan

    2015-12-01

    Full Text Available Nutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This "L1 arrest" (or "L1 diapause" is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-β, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-β and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-β, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-β and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-β and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall

  9. dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest.

    Science.gov (United States)

    Kaplan, Rebecca E W; Chen, Yutao; Moore, Brad T; Jordan, James M; Maxwell, Colin S; Schindler, Adam J; Baugh, L Ryan

    2015-12-01

    Nutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This "L1 arrest" (or "L1 diapause") is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-β, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-β and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-β, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-β and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-β and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall, this study shows

  10. Nitrogen excretion in rats on a protein-free diet and during starvation

    DEFF Research Database (Denmark)

    Chwalibog, André; Sawosz, Ewa; Niemiec, Tomasz

    2008-01-01

    Nitrogen balances (six days) were determined in male Wistar rats during feeding a diet with sufficient protein or a nearly protein-free diet (n = 2 x 24), and then during three days of starvation (n = 2 x 12). The objective was to evaluate the effect of protein withdrawal on minimum nitrogen...... excretion in urine (UN), corresponding to endogenous UN, during feeding and subsequent starvation periods. The rats fed the protein free-diet had almost the same excretion of urinary N during feeding and starvation (165 and 157 mg/kg W(0.75)), while it was 444 mg/kg W(0.75) in rats previously fed...... with protein, demonstrating a major influence of protein content in a diet on N excretion during starvation. Consequently, the impact of former protein supply on N losses during starvation ought to be considered when evaluating minimum N requirement necessary to sustain life....

  11. A Phosphate Starvation-Inducible Ribonuclease of Bacillus licheniformis.

    Science.gov (United States)

    Nguyen, Thanh Trung; Nguyen, Minh Hung; Nguyen, Huy Thuan; Nguyen, Hoang Anh; Le, Thi Hoi; Schweder, Thomas; Jürgen, Britta

    2016-08-28

    The BLi03719 protein of Bacillus licheniformis DSM13 belongs to the most abundant extracellular proteins under phosphate starvation conditions. In this study, the function of this phosphate starvation inducible protein was determined. An amino-acid sequence analysis of the BLi03719-encoding gene showed a high similarity with genes encoding the barnase of Bacillus amyloliquefaciens FZB42 and binase-like RNase of Bacillus pumilus SARF-032. The comparison of the control strain and a BLi03719-deficient strain revealed a strongly reduced extracellular ribonuclease activity of the mutant. Furthermore, this knockout mutant exhibited delayed growth with yeast RNA as an alternative phosphate and carbon source. These results suggest that BLi03719 is an extracellular ribonuclease expressed in B. licheniformis under phosphate starvation conditions. Finally, a BLi03719 mutant showed an advantageous effect on the overexpression of the heterologous amyE gene under phosphate-limited growth conditions.

  12. Previous Repeated Exposure to Food Limitation Enables Rats to Spare Lipid Stores during Prolonged Starvation.

    Science.gov (United States)

    McCue, Marshall D; Albach, Audrey; Salazar, Giovanni

    The risk of food limitation and, ultimately, starvation dates back to the dawn of heterotrophy in animals, yet starvation remains a major factor in the regulation of modern animal populations. Researchers studying starvation more than a century ago suggested that animals subjected to sublethal periods of food limitation are somehow more tolerant of subsequent starvation events. This possibility has received little attention over the past decades, yet it is highly relevant to modern science for two reasons. First, animals in natural populations are likely to be exposed to bouts of food limitation once or more before they face prolonged starvation, during which the risk of mortality becomes imminent. Second, our current approach to studying starvation physiology in the laboratory focuses on nourished animals with no previous exposure to nutritional stress. We examined the relationship between previous exposure to food limitation and potentially adaptive physiological responses to starvation in adult rats and found several significant differences. On two occasions, rats were fasted until they lost 20% of their body mass maintained lower body temperatures, and had presumably lower energy requirements when subjected to prolonged starvation than their naive cohort that never experienced food limitation. These rats that were trained in starvation also had lower plasma glucose set -points and reduced their reliance on endogenous lipid oxidation. These findings underscore (1) the need for biologists to revisit the classic hypothesis that animals can become habituated to starvation, using a modern set of research tools; and (2) the need to design controlled experiments of starvation physiology that more closely resemble the dynamic nature of food availability.

  13. Exploring new roles for the rpoS gene in the survival and virulence of the fire blight pathogen Erwinia amylovora.

    Science.gov (United States)

    Santander, Ricardo D; Monte-Serrano, Mercedes; Rodríguez-Herva, José J; López-Solanilla, Emilia; Rodríguez-Palenzuela, Pablo; Biosca, Elena G

    2014-12-01

    Erwinia amylovora causes fire blight in economically important plants of the family Rosaceae. This bacterial pathogen spends part of its life cycle coping with starvation and other fluctuating environmental conditions. In many Gram-negative bacteria, starvation and other stress responses are regulated by the sigma factor RpoS. We obtained an E. amylovora rpoS mutant to explore the role of this gene in starvation responses and its potential implication in other processes not yet studied in this pathogen. Results showed that E. amylovora needs rpoS to develop normal starvation survival and viable but nonculturable (VBNC) responses. Furthermore, this gene contributed to stationary phase cross-protection against oxidative, osmotic, and acid stresses and was essential for cross-protection against heat shock, but nonessential against acid shock. RpoS also mediated regulation of motility, exopolysaccharide synthesis, and virulence in immature loquats, but not in pear plantlets, and contributed to E. amylovora survival in nonhost tissues during incompatible interactions. Our results reveal some unique roles for the rpoS gene in E. amylovora and provide new knowledge on the regulation of different processes related to its ecology, including survival in different environments and virulence in immature fruits. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Starvation-induced activation of ATM/Chk2/p53 signaling sensitizes cancer cells to cisplatin

    Directory of Open Access Journals (Sweden)

    Shi Yandong

    2012-12-01

    Full Text Available Abstract Background Optimizing the safety and efficacy of standard chemotherapeutic agents such as cisplatin (CDDP is of clinical relevance. Serum starvation in vitro and short-term food starvation in vivo both stress cells by the sudden depletion of paracrine growth stimulation. Methods The effects of serum starvation on CDDP toxicity were investigated in normal and cancer cells by assessing proliferation, cell cycle distribution and activation of DNA-damage response and of AMPK, and were compared to effects observed in cells grown in serum-containing medium. The effects of short-term food starvation on CDDP chemotherapy were assessed in xenografts-bearing mice and were compared to effects on tumor growth and/or regression determined in mice with no diet alteration. Results We observed that serum starvation in vitro sensitizes cancer cells to CDDP while protecting normal cells. In detail, in normal cells, serum starvation resulted in a complete arrest of cellular proliferation, i.e. depletion of BrdU-incorporation during S-phase and accumulation of the cells in the G0/G1-phase of the cell cycle. Further analysis revealed that proliferation arrest in normal cells is due to p53/p21 activation, which is AMPK-dependent and ATM-independent. In cancer cells, serum starvation also decreased the fraction of S-phase cells but to a minor extent. In contrast to normal cells, serum starvation-induced p53 activation in cancer cells is both AMPK- and ATM-dependent. Combination of CDDP with serum starvation in vitro increased the activation of ATM/Chk2/p53 signaling pathway compared to either treatment alone resulting in an enhanced sensitization of cancer cells to CDDP. Finally, short-term food starvation dramatically increased the sensitivity of human tumor xenografts to cisplatin as indicated not only by a significant growth delay, but also by the induction of complete remission in 60% of the animals bearing mesothelioma xenografts, and in 40% of the

  15. Genome-wide transcriptional responses to carbon starvation in nongrowing Lactococcus lactis

    NARCIS (Netherlands)

    Ercan, O.; Wels, M.; Smid, E.J.; Kleerebezem, M.

    2015-01-01

    This paper describes the transcriptional adaptations of nongrowing, retentostat cultures of Lactococcus lactis to starvation. Near-zero-growth cultures (µ = 0.0001 h-1) obtained by extended retentostat cultivation were exposed to starvation by termination of the medium supply for 24 h, followed by a

  16. Starvation Based Differential Chemotherapy: A Novel Approach for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Sidra Naveed

    2014-11-01

    Full Text Available Cancer patients undergoing chemotherapy treatment are advised to increase food intake to overcome the therapy-induced side effects, and weight loss. Dietary restriction is known to slow down the aging process and hence reduce age-related diseases such as cancer. Fasting or short-term starvation is more effective than dietary restriction to prevent cancer growth since starved cells switch off signals for growth and reproduction and enter a protective mode, while cancer cells, being mutated, are not sensitized by any external growth signals and are not protected against any stress. This phenomenon is known as differential stress resistance (DSR. Nutrient signaling pathways involving growth hormone/insulin-like growth factor-1 axis and its downstream effectors, play a key role in DSR in response to starvation controlling the other cell maintenance systems, such as autophagy and apoptosis, that are related to the tumorigenesis. Yeast cells lacking these effectors are better protected against oxidative stress compared to normal cells. In the same way, starvation protects many cell lines and mice against high-dose chemotherapeutic drugs. According to a series of studies, fasting results in overall reduction in chemotherapy side effects in cancer patients. Data shows that starvation-dependent differential chemotherapy is safe, feasible and effective in cancer treatment, but the possible side effects of starvation limit its efficacy. However, further studies and clinical trials may result in its implementation in cancer treatment.

  17. Osteoporosis in survivors of early life starvation.

    Science.gov (United States)

    Weisz, George M; Albury, William R

    2013-01-01

    The objective of this study was to provide evidence for the association of early life nutritional deprivation and adult osteoporosis, in order to suggest that a history of such deprivation may be an indicator of increased risk of osteoporosis in later life. The 'fetal programming' of a range of metabolic and cardiovascular disorders in adults was first proposed in the 1990s and more recently extended to disorders of bone metabolism. Localised famines during World War II left populations in whom the long-term effects of maternal, fetal and infantile nutritional deprivation were studied. These studies supported the original concept of 'fetal programming' but did not consider bone metabolism. The present paper offers clinical data from another cohort of World War II famine survivors - those from the Holocaust. The data presented here, specifically addressing the issue of osteoporosis, report on 11 Holocaust survivors in Australia (five females, six males) who were exposed to starvation in early life. The cases show, in addition to other metabolic disorders associated with early life starvation, various levels of osteoporosis, often with premature onset. The cohort studied is too small to support firm conclusions, but the evidence suggests that the risk of adult osteoporosis in both males and females is increased by severe starvation early in life - not just in the period from gestation to infancy but also in childhood and young adulthood. It is recommended that epidemiological research on this issue be undertaken, to assist planning for the future health needs of immigrants to Australia coming from famine affected backgrounds. Pending such research, it would be prudent for primary care health workers to be alert to the prima facie association between early life starvation and adult osteoporosis, and to take this factor into account along with other indicators when assessing a patient's risk of osteoporosis in later life.

  18. Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti.

    Science.gov (United States)

    Tavormina, Patricia L; Kellermann, Matthias Y; Antony, Chakkiath Paul; Tocheva, Elitza I; Dalleska, Nathan F; Jensen, Ashley J; Valentine, David L; Hinrichs, Kai-Uwe; Jensen, Grant J; Dubilier, Nicole; Orphan, Victoria J

    2017-01-01

    In the deep ocean, the conversion of methane into derived carbon and energy drives the establishment of diverse faunal communities. Yet specific biological mechanisms underlying the introduction of methane-derived carbon into the food web remain poorly described, due to a lack of cultured representative deep-sea methanotrophic prokaryotes. Here, the response of the deep-sea aerobic methanotroph Methyloprofundus sedimenti to methane starvation and recovery was characterized. By combining lipid analysis, RNA analysis, and electron cryotomography, it was shown that M. sedimenti undergoes discrete cellular shifts in response to methane starvation, including changes in headgroup-specific fatty acid saturation levels, and reductions in cytoplasmic storage granules. Methane starvation is associated with a significant increase in the abundance of gene transcripts pertinent to methane oxidation. Methane reintroduction to starved cells stimulates a rapid, transient extracellular accumulation of methanol, revealing a way in which methane-derived carbon may be routed to community members. This study provides new understanding of methanotrophic responses to methane starvation and recovery, and lays the initial groundwork to develop Methyloprofundus as a model chemosynthesizing bacterium from the deep sea. © 2016 John Wiley & Sons Ltd.

  19. [Starvation ketosis in a breastfeeding woman].

    Science.gov (United States)

    Monnier, D; Goulenok, T; Allary, J; Zarrouk, V; Fantin, B

    2015-12-01

    Bovine ketosis is a rare cause of metabolic acidosis. It is a starvation ketosis that appears in lactating woman. A 29-year-old woman had a previous gastric surgery one month ago while breastfeeding her 6-month child. She presented to emergency with dyspnea, fatigue, weight loss and anorexia. The explorations revealed a serious metabolic acidosis with a high anion gap, for which all other causes have been eliminated. A restrictive diet in lactating patients is a major risk of ketosis or bovine ketosis. Medico-surgical treatment of obesity during lactation seems unreasonable. Breastfeeding should be systematically sought before a medical and surgical management of obesity. With the spread of bariatric surgery, starvation ketosis is a cause of metabolic acidosis not to ignore. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  20. Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation.

    Science.gov (United States)

    Krapp, Anne; Berthomé, Richard; Orsel, Mathilde; Mercey-Boutet, Stéphanie; Yu, Agnes; Castaings, Loren; Elftieh, Samira; Major, Hilary; Renou, Jean-Pierre; Daniel-Vedele, Françoise

    2011-11-01

    Nitrogen (N) is an essential macronutrient for plants. N levels in soil vary widely, and plants have developed strategies to cope with N deficiency. However, the regulation of these adaptive responses and the coordinating signals that underlie them are still poorly understood. The aim of this study was to characterize N starvation in adult Arabidopsis (Arabidopsis thaliana) plants in a spatiotemporal manner by an integrative, multilevel global approach analyzing growth, metabolites, enzyme activities, and transcript levels. We determined that the remobilization of N and carbon compounds to the growing roots occurred long before the internal N stores became depleted. A global metabolite analysis by gas chromatography-mass spectrometry revealed organ-specific differences in the metabolic adaptation to complete N starvation, for example, for several tricarboxylic acid cycle intermediates, but also for carbohydrates, secondary products, and phosphate. The activities of central N metabolism enzymes and the capacity for nitrate uptake adapted to N starvation by favoring N remobilization and by increasing the high-affinity nitrate uptake capacity after long-term starvation. Changes in the transcriptome confirmed earlier studies and added a new dimension by revealing specific spatiotemporal patterns and several unknown N starvation-regulated genes, including new predicted small RNA genes. No global correlation between metabolites, enzyme activities, and transcripts was evident. However, this multilevel spatiotemporal global study revealed numerous new patterns of adaptation mechanisms to N starvation. In the context of a sustainable agriculture, this work will give new insight for the production of crops with increased N use efficiency.

  1. Sugar-starvation-induced changes of carbon metabolism in excised maize root tips

    International Nuclear Information System (INIS)

    Dieuaide-Noubhani, M.; Canioni, P.; Raymond, P.

    1997-01-01

    Excised maize (Zea mays L.) root tips were used to study the early metabolic effects of glucose (Glc) starvation. Root tips were prelabeled with [1-13C]Glc so that carbohydrates and metabolic intermediates were close to steady-state labeling, but lipids and proteins were scarcely labeled. They were then incubated in a sugar-deprived medium for carbon starvation. Changes in the level of soluble sugars, the respiratory quotient, and the 13C enrichment of intermediates, as measured by 13C and 1H nuclear magnetic resonance, were studied to detect changes in carbon fluxes through glycolysis and the tricarboxylic acid cycle. Labeling of glutamate carbons revealed two major changes in carbon input into the tricarboxylic acid cycle: (a) the phosphoenolpyruvate carboxylase flux stopped early after the start of Glc starvation, and (b) the contribution of glycolysis as the source of acetyl-coenzyme A for respiration decreased progressively, indicating an increasing contribution of the catabolism of protein amino acids, fatty acids, or both. The enrichment of glutamate carbons gave no evidence for proteolysis in the early steps of starvation, indicating that the catabolism of proteins was delayed compared with that of fatty acids. Labeling of carbohydrates showed that sucrose turnover continues during sugar starvation, but gave no indication for any significant flux through gluconeogenesis

  2. The effect of starvation on the larval behavior of two forensically important species of blow flies (Diptera: Calliphoridae).

    Science.gov (United States)

    Singh, Devinder; Bala, Madhu

    2009-12-15

    The postfeeding larval stage in blow flies is generally an irreversible condition when the fully grown third instar larvae stop feeding and give no response towards food. The larvae of most species then disperse away from their feeding medium and pupariate. There are several cases reported about the use of postfeeding larvae as forensic evidence. It is a matter of common observation that the postfeeding stage can be reached earlier than the expected time if food becomes unavailable. However, no information is available on whether postfeeding stage induced by scarcity of food is also irreversible. Similarly, the minimum period of development required by the larvae of different blow flies species to enable their survival as postfeeding larvae and pupariation in the absence of food is unknown. It was observed during the present studies that the larvae of two Chrysomya species must feed for at least 35 h at 28 degrees C in order to be capable of reaching the postfeeding stage and subsequent pupariation. Duration of the starvation period required to induce postfeeding behavior decreases with increasing age of larvae. In the case of Chrysomya megacephala, 35, 45, 55 and 65 h old larvae attained irreversible postfeeding stage after 30, 20, 12 and 2 h of starvation, respectively. Similarly, larvae of Chrysomya rufifacies that were 35, 45, 55 and 60 h old attained irreversible postfeeding stage after 25, 16, 6 and 2 h of starvation, respectively.

  3. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Regla Bustos

    2010-09-01

    Full Text Available Plants respond to different stresses by inducing or repressing transcription of partially overlapping sets of genes. In Arabidopsis, the PHR1 transcription factor (TF has an important role in the control of phosphate (Pi starvation stress responses. Using transcriptomic analysis of Pi starvation in phr1, and phr1 phr1-like (phl1 mutants and in wild type plants, we show that PHR1 in conjunction with PHL1 controls most transcriptional activation and repression responses to phosphate starvation, regardless of the Pi starvation specificity of these responses. Induced genes are enriched in PHR1 binding sequences (P1BS in their promoters, whereas repressed genes do not show such enrichment, suggesting that PHR1(-like control of transcriptional repression responses is indirect. In agreement with this, transcriptomic analysis of a transgenic plant expressing PHR1 fused to the hormone ligand domain of the glucocorticoid receptor showed that PHR1 direct targets (i.e., displaying altered expression after GR:PHR1 activation by dexamethasone in the presence of cycloheximide corresponded largely to Pi starvation-induced genes that are highly enriched in P1BS. A minimal promoter containing a multimerised P1BS recapitulates Pi starvation-specific responsiveness. Likewise, mutation of P1BS in the promoter of two Pi starvation-responsive genes impaired their responsiveness to Pi starvation, but not to other stress types. Phylogenetic footprinting confirmed the importance of P1BS and PHR1 in Pi starvation responsiveness and indicated that P1BS acts in concert with other cis motifs. All together, our data show that PHR1 and PHL1 are partially redundant TF acting as central integrators of Pi starvation responses, both specific and generic. In addition, they indicate that transcriptional repression responses are an integral part of adaptive responses to stress.

  4. Acute starvation ketoacidosis in pregnancy with severe hypertriglyceridemia: A case report.

    Science.gov (United States)

    Hui, Li; Shuying, Li

    2018-05-01

    Pregnant women are more prone to ketosis due to the relative insulin resistance, accelerated lipolysis and increased free fatty acids. We report a pregnant woman with hyperlipidemia, who experienced severe metabolic acidosis after a short period of starvation. Based on her clinical symptoms, exclusion diagnosis and therapeutic diagnosis, her condition was diagnosed as starvation ketoacidosis. An emergency caesarean section under general anesthesia was implemented 2 hours after her admission. The metabolic acidosis was treated with fluid resuscitation using compound sodium lactate, bicarbonate, and 5% dextrose together with insulin 6U. Both mother and baby were discharged clinically well. Starvation ketoacidosis may happen in special patient who was in pregnancy and with severe hypertriglyceridemia, after just one day fasting and vomiting.

  5. Evaluating death and activity decay of Anammox bacteria during anaerobic and aerobic starvation.

    Science.gov (United States)

    Wang, Qilin; Song, Kang; Hao, Xiaodi; Wei, Jing; Pijuan, Maite; van Loosdrecht, Mark C M; Zhao, Huijun

    2018-06-01

    The decreased activity (i.e. decay) of anaerobic ammonium oxidation (Anammox) bacteria during starvation can be attributed to death (i.e. decrease in the amount of viable bacteria) and activity decay (i.e. decrease in the specific activity of viable bacteria). Although they are crucial for the operation of the Anammox process, they have never been comprehensively investigated. This study for the first time experimentally assessed death and activity decay of the Anammox bacteria during 84 days' starvation stress based on ammonium removal rate, Live/Dead staining and fluorescence in-situ hybridization. The anaerobic and aerobic decay rates of Anammox bacteria were determined as 0.015 ± 0.001 d -1 and 0.028 ± 0.001 d -1 , respectively, indicating Anammox bacteria would lose their activity more quickly in the aerobic starvation than in the anaerobic starvation. The anaerobic and aerobic death rates of Anammox bacteria were measured at 0.011 ± 0.001 d -1 and 0.025 ± 0.001 d -1 , respectively, while their anaerobic and aerobic activity decay rates were determined at 0.004 ± 0.001 d -1 and 0.003 ± 0.001 d -1 , respectively. Further analysis revealed that death accounted for 73 ± 4% and 89 ± 5% of the decreased activity of Anammox bacteria during anaerobic and aerobic starvations, and activity decay was only responsible for 27 ± 4% and 11 ± 5% of the decreased Anammox activity, respectively, over the same starvation periods. These deeply shed light on the response of Anammox bacteria to the starvation stress, which would facilitate operation and optimization of the Anammox process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Effects of repeated cycles of starvation and refeeding on lungs of growing rats.

    Science.gov (United States)

    Sahebjami, H; Domino, M

    1992-12-01

    Adult male rats were subjected to four cycles of mild starvation (2 wk) and refeeding (1 wk) and were compared with a fed group. Starvation was induced by giving rats one-third of their measured daily food consumption. During each starvation cycle, rats lost approximately 20% of their body weight. Despite catch-up growth and overall weight gain, starved rats had lower final body weight than fed rats. Lung dry weight and lung volumes were also reduced in the starved group. The mechanical properties of air- and saline-filled lungs did not change significantly with repeated cycles of starvation. Mean linear intercept was similar in the two groups, but alveolar surface area was reduced in the starved rats. Total content of crude connective tissue and concentration per lung dry weight of hydroxyproline and crude connective tissue were reduced in starved rats. We conclude that lung growth is retarded in growing rats subjected to repeated cycles of mild starvation and refeeding, as manifested by smaller lung volume and reduced alveolar surface area. Because alveolar size is unchanged, a reduced number of alveoli is most likely responsible for decreased lung volumes.

  7. A mathematical model of weight loss under total starvation: evidence against the thrifty-gene hypothesis

    Directory of Open Access Journals (Sweden)

    John R. Speakman

    2013-01-01

    The thrifty-gene hypothesis (TGH posits that the modern genetic predisposition to obesity stems from a historical past where famine selected for genes that promote efficient fat deposition. It has been previously argued that such a scenario is unfeasible because under such strong selection any gene favouring fat deposition would rapidly move to fixation. Hence, we should all be predisposed to obesity: which we are not. The genetic architecture of obesity that has been revealed by genome-wide association studies (GWAS, however, calls into question such an argument. Obesity is caused by mutations in many hundreds (maybe thousands of genes, each with a very minor, independent and additive impact. Selection on such genes would probably be very weak because the individual advantages they would confer would be very small. Hence, the genetic architecture of the epidemic may indeed be compatible with, and hence support, the TGH. To evaluate whether this is correct, it is necessary to know the likely effects of the identified GWAS alleles on survival during starvation. This would allow definition of their advantage in famine conditions, and hence the likely selection pressure for such alleles to have spread over the time course of human evolution. We constructed a mathematical model of weight loss under total starvation using the established principles of energy balance. Using the model, we found that fatter individuals would indeed survive longer and, at a given body weight, females would survive longer than males, when totally starved. An allele causing deposition of an extra 80 g of fat would result in an extension of life under total starvation by about 1.1–1.6% in an individual with 10 kg of fat and by 0.25–0.27% in an individual carrying 32 kg of fat. A mutation causing a per allele effect of 0.25% would become completely fixed in a population with an effective size of 5 million individuals in 6000 selection events. Because there have probably been about 24

  8. Free Amino Acids in the Blood Plasma of Pigs during Total Starvation

    Energy Technology Data Exchange (ETDEWEB)

    Cuperlovic, M.; Jovanovic, M.; Stosic, D. [Institute for the Application of Nuclear Energy in Agriculture, Veterinary Medicine and Forestry, Belgrade, Yugoslavia (Serbia)

    1968-07-01

    From the nutritional point of view it is interesting to establish whether the level of free amino acids in the blood plasma can be used as an indicator of protein anabolism and catabolism. Investigations to date have given no answer to this question. It is known that numerous exogenous and endogenous factors affect protein metabolism. These effects also vary with the level of protein intake and make the relationship between the quantitative and qualitative composition of the free amino acids pool and the total protein metabolism even more complicated. To reduce some of these factors, these investigations were done under the conditions of complete exclusion of exogenous nutrition. Piglets, aged 8-10 weeks, were subjected to total starvation in the course of 28 d. During this period, the body weight, serum protein content, plasma amino acid concentration and plasma urea concentration were followed. During the whole experimental period the body weight decreased, rapidly at the beginning and more slowly towards the end. The mean total body weight loss was 44.6 % of the first day's weight. The serum protein content increased slightly at the beginning of starvation and then, towards the end of the experiment, decreased, reaching a value that was only a little lower than the protein content determined before the onset of starvation. Changes of the quantitative composition.of the free amino acid pool did not follow the changes of the serum protein content. At the beginning of starvation, concentrations of a great number of amino acids increased in accordance with some earlier results. After long periods of starvation, however, differences between individual amino acids become more clear. Concentrations of some amino acids, e.g. lysine, increased continually during the whole period, while concentrations of most of the other amino acids remained for some time at high levels and only in the last week of starvation decreased to the values similar to those observed at the

  9. Starvation Promotes Autophagy-Associated Maturation of the Ovary in the Giant Freshwater Prawn, Macrobrachium rosenbergii

    Directory of Open Access Journals (Sweden)

    Wilairat Kankuan

    2017-05-01

    Full Text Available Limitation of food availability (starvation is known to influence the reproductive ability of animals. Autophagy is a lysosomal driven degradation process that protects the cell under metabolic stress conditions, such as during nutrient shortage. Whether, and how starvation-induced autophagy impacts on the maturation and function of reproductive organs in animals are still open questions. In this study, we have investigated the effects of starvation on histological and cellular changes that may be associated with autophagy in the ovary of the giant freshwater prawn, Macrobachium rosenbergii. To this end, the female prawns were daily fed (controls or unfed (starvation condition for up to 12 days, and the ovary tissue was analyzed at different time-points. Starvation triggered ovarian maturation, and concomitantly increased the expression of autophagy markers in vitellogenic oocytes. The immunoreactivities for autophagy markers, including Beclin1, LC3-II, and Lamp1, were enhanced in the late oocytes within the mature ovaries, especially at the vitellogenic stages. These markers co-localized with vitellin in the yolk granules within the oocytes, suggesting that autophagy induced by starvation could drive vitellin utilization, thus promoting ovarian maturation.

  10. Adaptive Roles of SSY1 and SIR3 During Cycles of Growth and Starvation in Saccharomyces cerevisiae Populations Enriched for Quiescent or Nonquiescent Cells.

    Science.gov (United States)

    Wloch-Salamon, Dominika M; Tomala, Katarzyna; Aggeli, Dimitra; Dunn, Barbara

    2017-06-07

    Over its evolutionary history, Saccharomyces cerevisiae has evolved to be well-adapted to fluctuating nutrient availability. In the presence of sufficient nutrients, yeast cells continue to proliferate, but upon starvation haploid yeast cells enter stationary phase and differentiate into nonquiescent (NQ) and quiescent (Q) cells. Q cells survive stress better than NQ cells and show greater viability when nutrient-rich conditions are restored. To investigate the genes that may be involved in the differentiation of Q and NQ cells, we serially propagated yeast populations that were enriched for either only Q or only NQ cell types over many repeated growth-starvation cycles. After 30 cycles (equivalent to 300 generations), each enriched population produced a higher proportion of the enriched cell type compared to the starting population, suggestive of adaptive change. We also observed differences in each population's fitness suggesting possible tradeoffs: clones from NQ lines were better adapted to logarithmic growth, while clones from Q lines were better adapted to starvation. Whole-genome sequencing of clones from Q- and NQ-enriched lines revealed mutations in genes involved in the stress response and survival in limiting nutrients ( ECM21 , RSP5 , MSN1 , SIR4 , and IRA2 ) in both Q and NQ lines, but also differences between the two lines: NQ line clones had recurrent independent mutations affecting the Ssy1p-Ptr3p-Ssy5p (SPS) amino acid sensing pathway, while Q line clones had recurrent, independent mutations in SIR3 and FAS1 Our results suggest that both sets of enriched-cell type lines responded to common, as well as distinct, selective pressures. Copyright © 2017 Wloch-Salamon et al.

  11. Transcriptome response to nitrogen starvation in rice

    Indian Academy of Sciences (India)

    N starvation induced or suppressed transcription of 3518 genes, representing 10.88% of the genome. These changes, mostly transient, affected various cellular metabolic pathways, including stress response, primary and secondary metabolism, molecular transport, regulatory process and organismal development. 462 or ...

  12. Stress physiology as a predictor of survival in Galapagos marine iguanas.

    Science.gov (United States)

    Romero, L Michael; Wikelski, Martin

    2010-10-22

    Although glucocorticoid hormones are considered important physiological regulators for surviving adverse environmental stimuli (stressors), evidence for such a role is sparse and usually extrapolated from glucocorticoid effects under laboratory, short-term and/or non-emergency conditions. Galápagos marine iguanas (Amblyrhynchus cristatus) provide an excellent model for determining the ultimate function of a glucocorticoid response because susceptibility to starvation induced by El Niño conditions is essentially their only major natural stressor. In a prospective study, we captured 98 adult male marine iguanas and assessed four major components of their glucocorticoid response: baseline corticosterone titres; corticosterone responses to acute stressors (capture and handling); the maximal capacity to secrete corticosterone (via adrenocorticotropin injection); and the ability to terminate corticosterone responses (negative feedback). Several months after collecting initial measurements, weak El Niño conditions affected the Galápagos and 23 iguanas died. The dead iguanas were typified by a reduced efficacy of negative feedback (i.e. poorer post-stress suppression of corticosterone release) compared with surviving iguanas. We found no prior differences between dead and alive iguanas in baseline corticosterone concentrations, responses to acute stressors, nor in capacity to respond. These data suggest that a greater ability to terminate a stress response conferred a survival advantage during starvation.

  13. Hepatic Fatty Acid Oxidation Restrains Systemic Catabolism during Starvation

    Directory of Open Access Journals (Sweden)

    Jieun Lee

    2016-06-01

    Full Text Available The liver is critical for maintaining systemic energy balance during starvation. To understand the role of hepatic fatty acid β-oxidation on this process, we generated mice with a liver-specific knockout of carnitine palmitoyltransferase 2 (Cpt2L−/−, an obligate step in mitochondrial long-chain fatty acid β-oxidation. Fasting induced hepatic steatosis and serum dyslipidemia with an absence of circulating ketones, while blood glucose remained normal. Systemic energy homeostasis was largely maintained in fasting Cpt2L−/− mice by adaptations in hepatic and systemic oxidative gene expression mediated in part by Pparα target genes including procatabolic hepatokines Fgf21, Gdf15, and Igfbp1. Feeding a ketogenic diet to Cpt2L−/− mice resulted in severe hepatomegaly, liver damage, and death with a complete absence of adipose triglyceride stores. These data show that hepatic fatty acid oxidation is not required for survival during acute food deprivation but essential for constraining adipocyte lipolysis and regulating systemic catabolism when glucose is limiting.

  14. An optimal method of iron starvation of the obligate intracellular pathogen, Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Christopher C. Thompson

    2011-02-01

    Full Text Available Iron is an essential cofactor in a number of critical biochemical reactions, and as such, its acquisition, storage, and metabolism is highly regulated in most organisms. The obligate intracellular bacterium, Chlamydia trachomatis experiences a developmental arrest when iron within the host is depleted. The nature of the iron starvation response in Chlamydia is relatively uncharacterized because of the likely inefficient method of iron depletion, which currently relies on the compound deferoxamine mesylate (DFO. Inefficient induction of the iron starvation response precludes the identification of iron-regulated genes. This report evaluated DFO with another iron chelator, 2,2’-bipyridyl (Bpdl and presented a systematic comparison of the two across a range of criteria in a single-treatment time-of-infection regimen. We demonstrate that the membrane permeable Bpdl was superior to DFO in the inhibition of chlamydia development, the induction of aberrant morphology, and the induction of an iron starvation transcriptional response in both host and bacteria. Furthermore, iron starvation using Bpdl identified the periplasmic iron binding protein-encoding ytgA gene as iron- responsive. Overall, the data present a compelling argument for the use of Bpdl, rather than DFO, in future iron starvation studies of chlamydia and other intracellular bacteria.

  15. Starvation-associated genome restructuring can lead to reproductive isolation in yeast.

    Directory of Open Access Journals (Sweden)

    Evgueny Kroll

    Full Text Available Knowledge of the mechanisms that lead to reproductive isolation is essential for understanding population structure and speciation. While several models have been advanced to explain post-mating reproductive isolation, experimental data supporting most are indirect. Laboratory investigations of this phenomenon are typically carried out under benign conditions, which result in low rates of genetic change unlikely to initiate reproductive isolation. Previously, we described an experimental system using the yeast Saccharomyces cerevisiae where starvation served as a proxy to any stress that decreases reproduction and/or survivorship. We showed that novel lineages with restructured genomes quickly emerged in starved populations, and that these survivors were more fit than their ancestors when re-starved. Here we show that certain yeast lineages that survive starvation have become reproductively isolated from their ancestor. We further demonstrate that reproductive isolation arises from genomic rearrangements, whose frequency in starving yeast is several orders of magnitude greater than an unstarved control. By contrast, the frequency of point mutations is less than 2-fold greater. In a particular case, we observe that a starved lineage becomes reproductively isolated as a direct result of the stress-related accumulation of a single chromosome. We recapitulate this result by demonstrating that introducing an extra copy of one or several chromosomes into naïve, i.e. unstarved, yeast significantly diminishes their fertility. This type of reproductive barrier, whether arising spontaneously or via genetic manipulation, can be removed by making a lineage euploid for the altered chromosomes. Our model provides direct genetic evidence that reproductive isolation can arise frequently in stressed populations via genome restructuring without the precondition of geographic isolation.

  16. Metabolic observations during the treatment of obese patients by periods of total starvation

    NARCIS (Netherlands)

    Riet, H.G. van; Schwarz, F.; Kinderen, P.J. der; Veeman, W.

    Ten very obese female patients were treated by periods of total starvation lasting 10 days each. In the interval between these starvation periods, a diet of 600 calories was given. Twenty-one periods were completed, 6 patients went through 3 periods each. The fasting was generally well tolerated;

  17. Identification of Genes in Saccharomyces cerevisiae that Are Haploinsufficient for Overcoming Amino Acid Starvation

    Directory of Open Access Journals (Sweden)

    Nancy S. Bae

    2017-04-01

    Full Text Available The yeast Saccharomyces cerevisiae responds to amino acid deprivation by activating a pathway conserved in eukaryotes to overcome the starvation stress. We have screened the entire yeast heterozygous deletion collection to identify strains haploinsufficient for growth in the presence of sulfometuron methyl, which causes starvation for isoleucine and valine. We have discovered that cells devoid of MET15 are sensitive to sulfometuron methyl, and loss of heterozygosity at the MET15 locus can complicate screening the heterozygous deletion collection. We identified 138 cases of loss of heterozygosity in this screen. After eliminating the issues of the MET15 loss of heterozygosity, strains isolated from the collection were retested on sulfometuron methyl. To determine the general effect of the mutations for a starvation response, SMM-sensitive strains were tested for the ability to grow in the presence of canavanine, which induces arginine starvation, and strains that were MET15 were also tested for growth in the presence of ethionine, which causes methionine starvation. Many of the genes identified in our study were not previously identified as starvation-responsive genes, including a number of essential genes that are not easily screened in a systematic way. The genes identified span a broad range of biological functions, including many involved in some level of gene expression. Several unnamed proteins have also been identified, giving a clue as to possible functions of the encoded proteins.

  18. Starvation Ketoacidosis: A Cause of Severe Anion Gap Metabolic Acidosis in Pregnancy

    Directory of Open Access Journals (Sweden)

    Nupur Sinha

    2014-01-01

    Full Text Available Pregnancy is a diabetogenic state characterized by relative insulin resistance, enhanced lipolysis, elevated free fatty acids and increased ketogenesis. In this setting, short period of starvation can precipitate ketoacidosis. This sequence of events is recognized as “accelerated starvation.” Metabolic acidosis during pregnancy may have adverse impact on fetal neural development including impaired intelligence and fetal demise. Short periods of starvation during pregnancy may present as severe anion gap metabolic acidosis (AGMA. We present a 41-year-old female in her 32nd week of pregnancy, admitted with severe AGMA with pH 7.16, anion gap 31, and bicarbonate of 5 mg/dL with normal lactate levels. She was intubated and accepted to medical intensive care unit. Urine and serum acetone were positive. Evaluation for all causes of AGMA was negative. The diagnosis of starvation ketoacidosis was established in absence of other causes of AGMA. Intravenous fluids, dextrose, thiamine, and folic acid were administered with resolution of acidosis, early extubation, and subsequent normal delivery of a healthy baby at full term. Rapid reversal of acidosis and favorable outcome are achieved with early administration of dextrose containing fluids.

  19. Degradation of protein translation machinery by amino acid starvation-induced macroautophagy

    DEFF Research Database (Denmark)

    Gretzmeier, Christine; Eiselein, Sven; Johnson, Gregory R.

    2017-01-01

    , unbiased approaches relying on quantitative mass spectrometry-based proteomics. Macroautophagy is induced by rapamycin treatment, and by amino acid and glucose starvation in differentially, metabolically labeled cells. Protein dynamics are linked to image-based models of autophagosome turnover. Depending...... on the inducing stimulus, protein as well as organelle turnover differ. Amino acid starvation-induced macroautophagy leads to selective degradation of proteins important for protein translation. Thus, protein dynamics reflect cellular conditions in the respective treatment indicating stimulus-specific pathways...

  20. Starvation increases insulin sensitivity and reduces juvenile hormone synthesis in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Meritxell Perez-Hedo

    Full Text Available The interactions between the insulin signaling pathway (ISP and juvenile hormone (JH controlling reproductive trade-offs are well documented in insects. JH and insulin regulate reproductive output in mosquitoes; both hormones are involved in a complex regulatory network, in which they influence each other and in which the mosquito's nutritional status is a crucial determinant of the network's output. Previous studies reported that the insulin-TOR (target of rapamacyn signaling pathway is involved in the nutritional regulation of JH synthesis in female mosquitoes. The present studies further investigate the regulatory circuitry that controls both JH synthesis and reproductive output in response to nutrient availability.We used a combination of diet restriction, RNA interference (RNAi and insulin treatments to modify insulin signaling and study the cross-talk between insulin and JH in response to starvation. JH synthesis was analyzed using a newly developed assay utilizing fluorescent tags.Our results reveal that starvation decreased JH synthesis via a decrease in insulin signaling in the corpora allata (CA. Paradoxically, starvation-induced up regulation of insulin receptor transcripts and therefore "primed" the gland to respond rapidly to increases in insulin levels. During this response to starvation the synthetic potential of the CA remained unaffected, and the gland rapidly and efficiently responded to insulin stimulation by increasing JH synthesis to rates similar to those of CA from non-starved females.

  1. [Effects of starvation on the consumption of energy sources and swimming performance in juvenile Gambusia affinis and Tanichthys albonubes].

    Science.gov (United States)

    Li, Jiang-tao; Lin, Xiao-tao; Zhou, Chen-hui; Zeng, Peng; Xu, Zhong-neng; Sun, Jun

    2016-01-01

    To explore the consumption of energy sources and swimming performance of juvenile Gambusia affinis and Tanichthys albonubes after starvation, contents of glycogen, lipid and protein, burst swimming speeds (Uburst), and critical swimming speeds (Ucrit) at different starvation times (0, 10, 20, 30 and 40 days) were evaluated. The results showed that, at 0 day, contents of glycogen and lipid were significantly lower in G. affinis than those in T. albonubes, whereas no significant difference in content of protein between two experimental fish was found. Swimming speeds in G. affinis were significantly lower than those in T. albonubes for all swimming performances. After different starvation scenarios, content of glycogen both in G. affinis and T. albonubes decreased significantly in power function trend with starvation time and were close to zero after starvation for 10 days, whereas the contents of lipid and protein were linearly significantly decreased. The slope of line regression equation between content of lipid and starvation time in G. affinis was significantly lower than that in T. albonubes, whereas there was a significantly higher slope of line equation between content of protein and starvation time in G. affinis. 40 days later, the consumption rate of glycogen both in G. affinis and T. albonubes were significantly higher than that of lipid, while the consumption rate of protein was the least. Consumption amounts of glycogen in all experimental fish were the least, G. affinis consumed more protein than lipid, and T. albonubes consumed more lipid than protein. Uburst and Ucrit decreased significantly linearly with starvation time for all experimental fish. Slope of linear equation between Uburst and starvation time was not significantly different between G. affinis and T. albonubes. However, the straight slope between Ucrit and starvation time was significantly lower in G. affinis than that in T. albonubes. These findings indicated that there was close

  2. Fuel starvation. Irreversible degradation mechanisms in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Carmen M.; Silva, R.A.; Travassos, M.A.; Paiva, T.I.; Fernandes, V.R. [LNEG, National Laboratory for Energy and Geology, Lisboa (Portugal). UPCH Fuel Cells and Hydrogen Unit

    2010-07-01

    PEM fuel cell operates under very aggressive conditions in both anode and cathode. Failure modes and mechanism in PEM fuel cells include those related to thermal, chemical or mechanical issues that may constrain stability, power and lifetime. In this work, the case of fuel starvation is examined. The anode potential may rise to levels compatible with the oxidization of water. If water is not available, oxidation of the carbon support will accelerate catalyst sintering. Diagnostics methods used for in-situ and ex-situ analysis of PEM fuel cells are selected in order to better categorize irreversible changes of the cell. Electrochemical Impedance Spectroscopy (EIS) is found instrumental in the identification of fuel cell flooding conditions and membrane dehydration associated to mass transport limitations / reactant starvation and protonic conductivity decrease, respectively. Furthermore, it indicates that water electrolysis might happen at the anode. Cross sections of the membrane catalyst and gas diffusion layers examined by scanning electron microscopy indicate electrode thickness reduction as a result of reactions taking place during hydrogen starvation. Catalyst particles are found to migrate outwards and located on carbon backings. Membrane degradation in fuel cell environment is analyzed in terms of the mechanism for fluoride release which is considered an early predictor of membrane degradation. (orig.)

  3. The response and recovery of the Arabidopsis thaliana transcriptome to phosphate starvation

    KAUST Repository

    Woo, Jongchan

    2012-05-03

    Background: Over application of phosphate fertilizers in modern agriculture contaminates waterways and disrupts natural ecosystems. Nevertheless, this is a common practice among farmers, especially in developing countries as abundant fertilizers are believed to boost crop yields. The study of plant phosphate metabolism and its underlying genetic pathways is key to discovering methods of efficient fertilizer usage. The work presented here describes a genome-wide resource on the molecular dynamics underpinning the response and recovery in roots and shoots of Arabidopsis thaliana to phosphate-starvation.Results: Genome-wide profiling by micro- and tiling-arrays (accessible from GEO: GSE34004) revealed minimal overlap between root and shoot transcriptomes suggesting two independent phosphate-starvation regulons. Novel gene expression patterns were detected for over 1000 candidates and were classified as either initial, persistent, or latent responders. Comparative analysis to AtGenExpress identified cohorts of genes co-regulated across multiple stimuli. The hormone ABA displayed a dominant role in regulating many phosphate-responsive candidates. Analysis of co-regulation enabled the determination of specific versus generic members of closely related gene families with respect to phosphate-starvation. Thus, among others, we showed that PHR1-regulated members of closely related phosphate-responsive families (PHT1;1, PHT1;7-9, SPX1-3, and PHO1;H1) display greater specificity to phosphate-starvation than their more generic counterparts. Conclusion: Our results uncover much larger, staged responses to phosphate-starvation than previously described. To our knowledge, this work describes the most complete genome-wide data on plant nutrient stress to-date. 2012 Woo et al.; licensee BioMed Central Ltd.

  4. [Research of Embryonic Mortality Stages of Drosophila melanogaster Depending on Age and Starvation of an Imago].

    Science.gov (United States)

    Kostenko, V V; Kolot, N V; Vorobyova, L I

    2015-01-01

    Influence of age of parents and duration of starvation on egg production and demonstration of embryonic mortality at different stages of egg development has been studied. It is shown that, with increasing age of organisms, the overall egg production reduces and the percentage of embryonic mortality increases at 0-5.5 and 5.5-17 h of development. An increase in the duration of starvation also promotes a reduction in egg production in 3- and 10-day-old adult D. melanogaster compared with short-term starvation. A statistically significant effect of factors, such as the allelic state of the white locus, the genetic background, the age of the parents, and the duration of starvation, on all studied parameters was established.

  5. Evidence for the adverse effect of starvation on bone quality: a review of the literature.

    Science.gov (United States)

    Kueper, Janina; Beyth, Shaul; Liebergall, Meir; Kaplan, Leon; Schroeder, Josh E

    2015-01-01

    Malnutrition and starvation's possible adverse impacts on bone health and bone quality first came into the spotlight after the horrors of the Holocaust and the ghettos of World War II. Famine and food restrictions led to a mean caloric intake of 200-800 calories a day in the ghettos and concentration camps, resulting in catabolysis and starvation of the inhabitants and prisoners. Severely increased risks of fracture, poor bone mineral density, and decreased cortical strength were noted in several case series and descriptive reports addressing the medical issues of these individuals. A severe effect of severely diminished food intake and frequently concomitant calcium- and Vitamin D deficiencies was subsequently proven in both animal models and the most common cause of starvation in developed countries is anorexia nervosa. This review attempts to summarize the literature available on the impact of the metabolic response to Starvation on overall bone health and bone quality.

  6. Survival and Virulence of Campylobacter spp. in the Environment

    DEFF Research Database (Denmark)

    Bui, Thanh Xuan

    of environmental stress factors, namely heat shock, starvation, osmosis, and oxidation, on the expression of three virulence genes (ciaB, dnaJ, and htrA) of C. jejuni and its uptake by and intracellular survival within A. castellanii. I also investigated the mechanism(s) involved in phagocytosis and killing of C....... jejuni by A. castellanii. I observed that heat and osmotic stresses reduced the survival of C. jejuni significantly, whereas oxidative stress had no effect. The results of qRT-PCR experiments showed that the transcription of virulence genes of C. jejuni was slightly up-regulated under heat and oxidative...... soil flagellates may play a role for the survival of these food-borne pathogens on plant surfaces and in soil. It would be very interesting to further investigate the impacts of this soil flagellate on the survival of different food-borne pathogens in soil and in plant surface that may explain...

  7. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice.

    Science.gov (United States)

    Dai, Xiaoyan; Wang, Yuanyuan; Zhang, Wen-Hao

    2016-02-01

    The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance to phosphate (Pi) starvation. OsWRKY74 was localized in the nucleus and mainly expressed in roots and leaves. Overexpression of OsWRKY74 significantly enhanced tolerance to Pi starvation, whereas transgenic lines with down-regulation of OsWRKY74 were sensitive to Pi starvation. Root and shoot biomass, and phosphorus (P) concentration in rice OsWRKY74-overexpressing plants were ~16% higher than those of wild-type (WT) plants in Pi-deficient hydroponic solution. In soil pot experiments, >24% increases in tiller number, grain weight and P concentration were observed in rice OsWRKY74-overexpressing plants compared to WT plants when grown in P-deficient medium. Furthermore, Pi starvation-induced changes in root system architecture were more profound in OsWRKY74-overexpressing plants than in WT plants. Expression patterns of a number of Pi-responsive genes were altered in the OsWRKY74-overexpressing and RNA interference lines. In addition, OsWRKY74 may also be involved in the response to deficiencies in iron (Fe) and nitrogen (N) as well as cold stress in rice. In Pi-deficient conditions, OsWRKY74-overexpressing plants exhibited greater accumulation of Fe and up-regulation of the cold-responsive genes than WT plants. These findings highlight the role of OsWRKY74 in modulation of Pi homeostasis and potential crosstalk between P starvation and Fe starvation, and cold stress in rice. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Effects of absolute fasting on reproduction and survival of the invasive apple snail Pomacea canaliculata in its native range.

    Science.gov (United States)

    Tamburi, Nicolás E; Martín, Pablo R

    2016-08-01

    A South American freshwater gastropod, the apple snail Pomacea canaliculata, has become a driver of ecosystemic changes in wetlands and an important rice pest after its introduction to various parts of the world, mainly Asia. The objective of this study was to study the effect of an abrupt interruption in food availability in the short term (up to 4 weeks) and long term (up to 8 months) on survival and reproductive activity. The main results indicate that short-term fasting mainly affects the survival of males, but only when they are raised together with females, probably due to a greater mate-searching activity that increases mortality in the individuals with lower reserves. The number of copulating snails or egg-laying females shows an abrupt drop when fasting and a rapid recovery after the food supply is restored. The strategy of discontinuing reproductive activity prioritizes energy conservation for the survival of the females. Interpopulation variation in resistance to starvation was observed in adults, which can be explained to some extent by the food availability that they experienced in their natural environment. No interpopulational differences in survival were seen in hatchlings. The mean maximum values of survival under starvation were 52.6 days in hatchlings and the 3.3% of adults survive over than 200 days, which may be a relevant trait in dispersal and establishment in new habitats.

  9. The Challenge of Appropriate Identification and Treatment of Starvation, Sarcopenia, and Cachexia: A Survey of Australian Dietitians

    Directory of Open Access Journals (Sweden)

    Alison Yaxley

    2011-01-01

    Full Text Available Malnutrition is an umbrella term that includes starvation, sarcopenia, and cachexia; however, differentiating between these terms is infrequent in clinical practice. Given that the effectiveness of treatment depends on the aetiology of unintentional weight loss, it is important that clinicians are aware of the defining characteristics. The aim of this study was to determine whether Australian dietitians understand and use the terms starvation, sarcopenia, and cachexia and provide targeted treatment strategies accordingly. Members of the Dietitians Association of Australia were surveyed to gain information on practices and attitudes to diagnosis and treatment of adult malnutrition. In addition, three case studies were provided to examine understanding of starvation, sarcopenia, and cachexia. 221 dietitians accessed the survey. 81 respondents (43% indicated the use of at least one alternate term (starvation, sarcopenia, and/or cachexia. Muscle wasting was the most commonly used diagnostic criterion. High-energy high-protein diet was the most common therapy prescribed. Correct diagnoses for case studies were recorded by 6% of respondents for starvation, 46% for sarcopenia, and 21% for cachexia. There is a need for increased awareness of the existence of starvation, sarcopenia, and cachexia amongst Australian dietitians and research into appropriate methods of identification and treatment for each condition.

  10. Unsatisfactory knowledge and use of terminology regarding malnutrition, starvation, cachexia and sarcopenia among dietitians.

    Science.gov (United States)

    Ter Beek, Lies; Vanhauwaert, Erika; Slinde, Frode; Orrevall, Ylva; Henriksen, Christine; Johansson, Madelene; Vereecken, Carine; Rothenberg, Elisabet; Jager-Wittenaar, Harriët

    2016-12-01

    Clinical signs of malnutrition, starvation, cachexia and sarcopenia overlap, as they all imply muscle wasting to a various extent. However, the underlying mechanisms differ fundamentally and therefore distinction between these phenomena has therapeutic and prognostic implications. We aimed to determine whether dietitians in selected European countries have 'sufficient knowledge' regarding malnutrition, starvation, cachexia and sarcopenia, and use these terms in their daily clinical work. An anonymous online survey was performed among dietitians in Belgium, the Netherlands, Norway and Sweden. 'Sufficient knowledge' was defined as having mentioned at least two of the three common domains of malnutrition according to ESPEN definition of malnutrition (2011): 'nutritional balance', 'body composition' and 'functionality and clinical outcome', and a correct answer to three cases on starvation, cachexia and sarcopenia. Chi-square test was used to analyse differences in experience, work place and number of malnourished patients treated between dietitians with 'sufficient knowledge' vs. 'less sufficient knowledge'. 712/7186 responded to the questionnaire, of which data of 369 dietitians were included in the analysis (5%). The term 'malnutrition' is being used in clinical practice by 88% of the respondents. Starvation, cachexia and sarcopenia is being used by 3%, 30% and 12% respectively. The cases on starvation, cachexia and sarcopenia were correctly identified by 58%, 43% and 74% respectively. 13% of the respondents had 'sufficient knowledge'. 31% of the respondents identified all cases correctly. The proportion of respondents with 'sufficient knowledge' was significantly higher in those working in a hospital or in municipality (16%, P four European countries show that the percentage of dietitians with 'sufficient knowledge' regarding malnutrition, starvation, cachexia and sarcopenia is unsatisfactory (13%). The terms starvation, cachexia and sarcopenia are not often used

  11. Severe protein-calorie malnutrition in two brothers due to abuse by starvation

    Directory of Open Access Journals (Sweden)

    Marcela Montenegro Braga Barroso

    Full Text Available Abstract Objective: To describe the case of two siblings with severe protein-calorie malnutrition due to abuse by starvation. Cases description: The two patients were simultaneously referred to the Hospital Municipal, where they were admitted to the Pediatric Gastroenterology clinic of a university hospital for diagnostic investigation of the cause of severe malnutrition and screening tests for Celiac Disease, Cystic Fibrosis and Environmental enteropathy among others. The exams were all normal, and after detailed research on the interactions of this family, we reached the conclusion that the malnutrition was due to abuse by starvation. The children spent approximately two months in the hospital, receiving a high-protein and high-calorie diet, with significant nutritional recovery. Comments: Abuse by starvation, although rare, should always be considered of as one of the causes of child malnutrition and pediatrician should be aware of the child's development, as well as the family interactions, to prevent more severe nutritional and emotional consequences in the future.

  12. Severe protein-calorie malnutrition in two brothers due to abuse by starvation.

    Science.gov (United States)

    Barroso, Marcela Montenegro Braga; Salvador, Luiza Martins; Fagundes Neto, Ulysses

    2016-12-01

    To describe the case of two siblings with severe protein-calorie malnutrition due to abuse by starvation. The two patients were simultaneously referred from the Municipal Hospital, where they were admitted to the Pediatric Gastroenterology clinic of a university hospital for diagnostic investigation of the cause of severe malnutrition and screening tests for Celiac Disease, Cystic Fibrosis and Environmental enteropathy among others. The exams were all normal, and after detailed research on the interactions of this family, we reached the conclusion that the malnutrition was due to abuse by starvation. The children spent approximately two months in the hospital, receiving a high-protein and high-calorie diet, with significant nutritional recovery. Abuse by starvation, although rare, should always be considered of as one of the causes of child malnutrition and pediatrician should be aware of the child's development, as well as the family interactions, to prevent more severe nutritional and emotional consequences in the future. Copyright © 2016. Publicado por Elsevier Editora Ltda.

  13. Effect of Thymine Starvation on Messenger Ribonucleic Acid Synthesis in Escherichia coli

    Science.gov (United States)

    Luzzati, Denise

    1966-01-01

    Luzzati, Denise (Institut de Biologie Physico-Chimique, Paris, France). Effect of thymine starvation on messenger ribonucleic acid synthesis in Escherichia coli. J. Bacteriol. 92:1435–1446. 1966.—During the course of thymine starvation, the rate of synthesis of messenger ribonucleic acid (mRNA, the rapidly labeled fraction of the RNA which decays in the presence of dinitrophenol or which hybridizes with deoxyribonucleic acid) decreases exponentially, in parallel with the viability of the thymine-starved bacteria. The ability of cell-free extracts of starved bacteria to incorporate ribonucleoside triphosphates into RNA was determined; it was found to be inferior to that of extracts from control cells. The analysis of the properties of cell-free extracts of starved cells shows that their decreased RNA polymerase activity is the consequence of a modification of their deoxyribonucleic acid, the ability of which to serve as a template for RNA polymerase decreases during starvation. PMID:5332402

  14. Differential impact of amino acids on OXPHOS system activity following carbohydrate starvation in Arabidopsis cell suspensions.

    Science.gov (United States)

    Cavalcanti, João Henrique F; Quinhones, Carla G S; Schertl, Peter; Brito, Danielle S; Eubel, Holger; Hildebrandt, Tatjana; Nunes-Nesi, Adriano; Braun, Hans-Peter; Araújo, Wagner L

    2017-12-01

    Plant respiration mostly depends on the activity of glycolysis and the oxidation of organic acids in the tricarboxylic acid cycle to synthesize ATP. However, during stress situations plant cells also use amino acids as alternative substrates to donate electrons through the electron-transfer flavoprotein (ETF)/ETF:ubiquinone oxidoreductase (ETF/ETFQO) complex to the mitochondrial electron transport chain (mETC). Given this, we investigated changes of the oxidative phosphorylation (OXPHOS) system in Arabidopsis thaliana cell culture under carbohydrate starvation supplied with a range of amino acids. Induction of isovaleryl-CoA dehydrogenase (IVDH) activity was observed under carbohydrate starvation which was associated with increased amounts of IVDH protein detected by immunoblotting. Furthermore, activities of the protein complexes of the mETC were reduced under carbohydrate starvation. We also observed that OXPHOS system activity behavior is differently affected by different amino acids and that proteins associated with amino acids catabolism are upregulated in cells following carbohydrate starvation. Collectively, our results support the contention that ETF/ETFQO is an essential pathway to donate electrons to the mETC and that amino acids are alternative substrates to maintain respiration under carbohydrate starvation. © 2017 Scandinavian Plant Physiology Society.

  15. Phosphoproteome of the cyanobacterium Synechocystis sp. PCC 6803 and its dynamics during nitrogen starvation.

    Directory of Open Access Journals (Sweden)

    Philipp eSpät

    2015-03-01

    Full Text Available Cyanobacteria have shaped the earth’s biosphere as the first oxygenic photoautotrophs and still play an important role in many ecosystems. The ability to adapt to changing environmental conditions is an essential characteristic in order to ensure survival. To this end, numerous studies have shown that bacteria use protein post-translational modifications such as Ser/Thr/Tyr phosphorylation in cell signalling, adaptation and regulation. Nevertheless, our knowledge of cyanobacterial phosphoproteomes and their dynamic response to environmental stimuli is relatively limited. In this study, we applied gel-free methods and high accuracy mass spectrometry towards the unbiased detection of Ser/Thr/Tyr phosphorylation events in the model cyanobacterium Synechocystis sp. PCC 6803. We could identify over 300 phosphorylation events in cultures grown on nitrate as exclusive nitrogen source. Chemical dimethylation labelling was applied to investigate proteome and phosphoproteome dynamics during nitrogen starvation. Our dataset describes the most comprehensive (phosphoproteome of Synechocystis to date, identifying 2,382 proteins and 183 phosphorylation events and quantifying 2,111 proteins and 148 phosphorylation events during nitrogen starvation. Global protein phosphorylation levels were increased in response to nitrogen depletion after 24 hours. Among the proteins with increased phosphorylation, the PII signalling protein showed the highest fold-change, serving as positive control. Other proteins with increased phosphorylation levels comprised functions in photosynthesis and in carbon and nitrogen metabolism. This study reveals dynamics of Synechocystis phosphoproteome in response to environmental stimuli and suggests an important role of protein Ser/Thr/Tyr phosphorylation in fundamental mechanisms of homeostatic control in cyanobacteria.

  16. Starvation reveals the cause of infection-induced castration and gigantism.

    Science.gov (United States)

    Cressler, Clayton E; Nelson, William A; Day, Troy; McCauley, Edward

    2014-10-07

    Parasites often induce life-history changes in their hosts. In many cases, these infection-induced life-history changes are driven by changes in the pattern of energy allocation and utilization within the host. Because these processes will affect both host and parasite fitness, it can be challenging to determine who benefits from them. Determining the causes and consequences of infection-induced life-history changes requires the ability to experimentally manipulate life history and a framework for connecting life history to host and parasite fitness. Here, we combine a novel starvation manipulation with energy budget models to provide new insights into castration and gigantism in the Daphnia magna-Pasteuria ramosa host-parasite system. Our results show that starvation primarily affects investment in reproduction, and increasing starvation stress reduces gigantism and parasite fitness without affecting castration. These results are consistent with an energetic structure where the parasite uses growth energy as a resource. This finding gives us new understanding of the role of castration and gigantism in this system, and how life-history variation will affect infection outcome and epidemiological dynamics. The approach of combining targeted life-history manipulations with energy budget models can be adapted to understand life-history changes in other disease systems.

  17. Starvation reveals the cause of infection-induced castration and gigantism

    Science.gov (United States)

    Cressler, Clayton E.; Nelson, William A.; Day, Troy; McCauley, Edward

    2014-01-01

    Parasites often induce life-history changes in their hosts. In many cases, these infection-induced life-history changes are driven by changes in the pattern of energy allocation and utilization within the host. Because these processes will affect both host and parasite fitness, it can be challenging to determine who benefits from them. Determining the causes and consequences of infection-induced life-history changes requires the ability to experimentally manipulate life history and a framework for connecting life history to host and parasite fitness. Here, we combine a novel starvation manipulation with energy budget models to provide new insights into castration and gigantism in the Daphnia magna–Pasteuria ramosa host–parasite system. Our results show that starvation primarily affects investment in reproduction, and increasing starvation stress reduces gigantism and parasite fitness without affecting castration. These results are consistent with an energetic structure where the parasite uses growth energy as a resource. This finding gives us new understanding of the role of castration and gigantism in this system, and how life-history variation will affect infection outcome and epidemiological dynamics. The approach of combining targeted life-history manipulations with energy budget models can be adapted to understand life-history changes in other disease systems. PMID:25143034

  18. To favor survival under food shortage, the brain disables costly memory.

    Science.gov (United States)

    Plaçais, Pierre-Yves; Preat, Thomas

    2013-01-25

    The brain regulates energy homeostasis in the organism. Under resource shortage, the brain takes priority over peripheral organs for energy supply. But can the brain also down-regulate its own consumption to favor survival? We show that the brain of Drosophila specifically disables the costly formation of aversive long-term memory (LTM) upon starvation, a physiological state required for appetitive LTM formation. At the neural circuit level, the slow oscillations normally triggered in two pairs of dopaminergic neurons to enable aversive LTM formation were abolished in starved flies. Transient artificial activation of these neurons during training restored LTM formation in starved flies but at the price of a reduced survival. LTM formation is thus subject to adaptive plasticity that helps survival under food shortage.

  19. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms

    DEFF Research Database (Denmark)

    Gjermansen, Morten; Ragas, Paula Cornelia; Sternberg, Claus

    2005-01-01

    The biofilm lifestyle, where microbial cells are aggregated because of expression of cell-to-cell interconnecting compounds, is believed to be of paramount importance to microbes in the environment. Because microbes must be able to alternate between sessile and planktonic states, it is anticipated...... that they must be able to regulate their ability to form biofilm and to dissolve biofilm. We present an investigation of a biofilm dissolution process occurring in flow-chamber-grown Pseudomonas putida biofilms. Local starvation-induced biofilm dissolution appears to be an integrated part of P. putida biofilm...... development that causes characteristic structural rearrangements. Rapid global dissolution of entire P. putida biofilms was shown to occur in response to carbon starvation. Genetic analysis suggested that the adjacent P. putida genes PP0164 and PP0165 play a role in P. putida biofilm formation and dissolution...

  20. Starvation and refeeding in rats: effect on some parameters of energy metabolism and electrolytes and changes of hepatic tissue

    Directory of Open Access Journals (Sweden)

    Fatemeh Namazi

    Full Text Available Abstract: Regarding the importance of starvation and refeeding and the occurrence of refeeding syndrome in various conditions, the present study was conducted to investigate the effects of refeeding on some parameters of energy metabolism and electrolytes and changes of hepatic tissue in male Wistar rats. Fifty-seven rats were divided into six groups, having 6 to 11 rats. Food was provided ad-libitum until three months and then the first group was considered without starvation (day 0. Other rats were fasted for two weeks. Group 2 was applied to a group immediately after starvation (day 14. Groups 3 to 6 were refed in days 16 till 22, respectively. At the end of each period, blood and tissue samples were taken and histopathological and serum analysis, including serum electrolytes (calcium, phosphorus, sodium, potassium, the energy parameters (glucose, insulin, cortisol and the liver enzymes (ALT, AST, ALP were determined. Insulin decreased by starvation and then showed an increasing trend compared to starvation period, which the highest amount of this parameter was observed eight days post-refeeding. Serum glucose level showed the opposite pattern of insulin. Histopathological examination of the tissue sections revealed clear vacuoles after starvation and refeeding, in which the severity of lesions gradually decreased during refeeding. The cortisol level decreased by starvation and then increased during refeeding. Also, potassium and phosphorus concentrations declined by refeeding and the serum sodium and potassium levels were changed in the relatively opposite manner. The calcium level decreased by starvation and then increased during refeeding. These results could help recognize and remedy the refeeding syndrome.

  1. Genetic parameters of the piglet mortality traits stillborn, weak at birth, starvation, crushing, and miscellaneous in crossbred pigs

    DEFF Research Database (Denmark)

    Strange, T.; Ask, B.; Nielsen, B.

    2013-01-01

    This study aimed to estimate genetic parameters for the mortality causes stillborn, weak at birth, starvation, crushing, and miscellaneous in crossbred piglets produced by crossbred dams. Data were collected in a single Danish commercial herd from October 2006 to July 2008 and consisted of 34......,194 piglets (2,152 litters), which originated from 195 Danish Duroc sires and 955 crossbreds between Danish Landrace and Danish Yorkshire dams. Of the 34,194 piglets born, 11.5% were stillborn, 4.2% were crushed by the sow, 2.7% died due to starvation, 2.3% were weak at birth, and 2.2% died of miscellaneous...... traits based on the sire component ranged from -0.05 between stillborn and starvation to 0.35 between stillborn and weak at birth whereas genetic correlations based on the dam component ranged from -0.11 between weak at birth and starvation to 0.76 between crushing and starvation. There seemed...

  2. Combined effects of starvation and butyrate on autophagy-dependent gingival epithelial cell death.

    Science.gov (United States)

    Evans, M; Murofushi, T; Tsuda, H; Mikami, Y; Zhao, N; Ochiai, K; Kurita-Ochiai, T; Yamamoto, M; Otsuka, K; Suzuki, N

    2017-06-01

    Bacteria in the dental biofilm surrounding marginal gingival grooves cause periodontal diseases. Numerous bacteria within the biofilm consume nutrients from the gingival crevicular fluid. Furthermore, some gram-negative bacteria in mature dental biofilms produce butyrate. Thus, gingival epithelial cells in close proximity to mature dental biofilms are at risk of both starvation and exposure to butyrate. In the present study, we determined the combined effects of starvation and butyrate exposure on gingival epithelial cell death and the underlying mechanisms. The Ca9-22 cell line was used as an in vitro counterpart of gingival epithelial cells. Cell death was measured as the amount of total DNA in the dead cells using SYTOX Green dye, which penetrates through membranes of dead cells and emits fluorescence when it intercalates into double-stranded DNA. AMP-activated protein kinase (AMPK) activity, the amount of autophagy, and acetylation of histone H3 were determined using western blot. Gene expression levels of microtubule-associated protein 1 light chain 3b (lc3b) were determined using quantitative reverse transcription-polymerase chain reaction. Butyrate-induced cell death occurred in a dose-dependent manner whether cells were starved or fed. However, the induction of cell death was two to four times higher when cells were placed under starvation conditions compared to when they were fed. Moreover, both starvation and butyrate exposure induced AMPK activity and autophagy. While AMPK inactivation resulted in decreased autophagy and butyrate-induced cell death under conditions of starvation, AMPK activation resulted in butyrate-induced cell death when cells were fed. Combined with the results of our previous report, which demonstrated butyrate-induced autophagy-dependent cell death, the results of this study suggest that the combination of starvation and butyrate exposure activates AMPK inducing autophagy and subsequent cell death. Notably, this combination markedly

  3. Biochemical evaluation of aestivation and starvation in two snail ...

    African Journals Online (AJOL)

    hope&shola

    2010-11-08

    Nov 8, 2010 ... food uptake ceases, water loss occurs and the snails are not able to rid .... Fasting glucose decreased in both aestivating and starved B. rohlfsi snails ... significant muscle wastage during aestivation and starvation. It has been ...

  4. Cancer mortality in women and men who survived the siege of Leningrad (1941-1944).

    Science.gov (United States)

    Koupil, Ilona; Plavinskaja, Svetlana; Parfenova, Nina; Shestov, Dmitri B; Danziger, Phoebe Day; Vågerö, Denny

    2009-03-15

    The population of Leningrad suffered from severe starvation, cold and psychological stress during the siege in World War II in 1941-1944. We investigated the long-term effects of the siege on cancer mortality in 3,901 men and 1,429 women, born between 1910 and 1940. All study subjects were residents of St. Petersburg, formerly Leningrad, between 1975 and 1982. One third of them had experienced the siege as children, adolescents or young adults (age range, 1-31 years at the peak of starvation in 1941-1942). Associations of siege exposure with risk of death from cancer were studied using a multivariable Cox regression, stratified by gender and period of birth, adjusted for age, smoking, alcohol and social characteristics, from 1975 to 1977 (men) and 1980 to 1982, respectively (women), until the end of 2005. Women who were 10-18 years old at the peak of starvation were taller as adults (age-adjusted difference, 1.7 cm; 95% CI, 0.5-3.0) and had a higher risk of dying from breast cancer compared with unexposed women born during the same period (age-adjusted HR, 9.9; 95% CI, 1.1-86.5). Mortality from prostate cancer was nonsignificantly higher in exposed men. The experience of severe starvation and stress during childhood and adolescence may have long-term effects on cancer in surviving men and women.

  5. Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis

    KAUST Repository

    Lei, Mingguang

    2010-11-30

    With the exception of root hair development, the role of the phytohormone ethylene is not clear in other aspects of plant responses to inorganic phosphate (Pi) starvation. The induction of AtPT2 was used as a marker to find novel signalling components involved in plant responses to Pi starvation. Using genetic and chemical approaches, we examined the role of ethylene in the regulation of plant responses to Pi starvation. hps2, an Arabidopsis mutant with enhanced sensitivity to Pi starvation, was identified and found to be a new allele of CTR1 that is a key negative regulator of ethylene responses. 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene, increases plant sensitivity to Pi starvation, whereas the ethylene perception inhibitor Ag+ suppresses this response. The Pi starvation-induced gene expression and acid phosphatase activity are also enhanced in the hps2 mutant, but suppressed in the ethylene-insensitive mutant ein2-5. By contrast, we found that ethylene signalling plays a negative role in Pi starvation-induced anthocyanin production. These findings extend the roles of ethylene in the regulation of plant responses to Pi starvation and will help us to gain a better understanding of the molecular mechanism underlying these responses. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  6. The impact of food type, temperature and starvation on larval development of Balanus amphitrite Darwin (Cirripedia: Thoracica)

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, D.V.; Anil, A.C.

    The impact of diatom food species (Chaetoceros calcitrans and Skeletonema costatum), temperature and starvation on the larval development of Balanus amphitrite was evaluated. Starvation threshold levels for different ages of larvae (0- to 5-day...

  7. Self-starvation in context: towards a culturally sensitive understanding of anorexia nervosa.

    Science.gov (United States)

    Lee, S

    1995-07-01

    Extreme forms of self-starvation can be traced across time and place, and may be construed using a variety of explanatory models. Curiously, the prevailing biomedical definition of anorexia nervosa has assigned primacy to the exclusive use of 'fat phobia' by the affected subjects to justify their diminished food intake. This paper assembles evidence to show that this culturally constructed version of fat phobic anorexia nervosa has neglected the full metaphorical significance of self-starvation and, when applied in a cross-cultural context, may constitute a category fallacy. By delegitimizing other rationales for non-eating and thereby barring subjective expressions, this regnant interpretive strategy may obscure clinicians' understanding of patients' lived experience, and even jeopardize their treatment. Nonetheless, it is a relatively simple task to attune the extant diagnostic criteria to a polythetic approach which will avert cultural parochialism in psychiatric theory and practice. As a corollary of the archival and ethnocultural study of extreme self-starvation, there is, contrary to epistemological assumptions embedded in the biomedical culture of contemporary psychiatry, no 'core psychopathology' of anorexia nervosa.

  8. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis.

    Science.gov (United States)

    Li, Wei-wei; Chen, Ming; Zhong, Li; Liu, Jia-ming; Xu, Zhao-shi; Li, Lian-cheng; Zhou, Yong-Bin; Guo, Chang-Hong; Ma, You-Zhi

    2015-12-25

    Autophagy is an evolutionarily conserved biological process in all eukaryotes for the degradation of intracellular components for nutrient recycling. Autophagy is known to be involved in responses to low nitrogen stress in Arabidopsis. Foxtail millet has strong abiotic stress resistance to both low nutrient and drought stress. However, to date, there have only been a few genes reported to be related with abiotic stress resistance in foxtail millet. In this study, we identified an autophagy-related gene, SiATG8a, from foxtail millet. SiATG8a is mainly expressed in stems and its expression was dramatically induced by drought stress and nitrogen starvation treatments. SiATG8a was localized in the membrane and cytoplasm of foxtail millet. Overexpression of SiATG8a in Arabidopsis conferred tolerance to both nitrogen starvation and to drought stress. Under nitrogen starvation conditions, the SiATG8a transgenic plants had larger root and leaf areas and accumulated more total nitrogen than wild-type plants. The transgenic plants had lower total protein concentrations than did the WT plants. Under drought stress, the SiATG8a transgenic plants had higher survival rates, chlorophyll content, and proline content, but had lower MDA content than wild type plants. Taken together, our results represent the first identified case where overexpression of autophagy related gene can simultaneously improve plant resistance to low nitrogen and drought stresses. These findings implicate plant autophagy in plant stress responses to low nitrogen and drought and should be helpful in efforts to improve stresses resistance to nitrogen starvation and drought of crops by genetic transformation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Pioneer round of translation occurs during serum starvation

    International Nuclear Information System (INIS)

    Oh, Nara; Kim, Kyoung Mi; Cho, Hana; Choe, Junho; Kim, Yoon Ki

    2007-01-01

    The pioneer round of translation plays a role in translation initiation of newly spliced and exon junction complex (EJC)-bound mRNAs. Nuclear cap-binding protein complex CBP80/20 binds to those mRNAs at the 5'-end, recruiting translation initiation complex. As a consequence of the pioneer round of translation, the bound EJCs are dissociated from mRNAs and CBP80/20 is replaced by the cytoplasmic cap-binding protein eIF4E. Steady-state translation directed by eIF4E allows for an immediate and rapid response to changes in physiological conditions. Here, we show that nonsense-mediated mRNA decay (NMD), which restricts only to the pioneer round of translation but not to steady-state translation, efficiently occurs even during serum starvation, in which steady-state translation is drastically abolished. Accordingly, CBP80 remains in the nucleus and processing bodies are unaffected in their abundance and number in serum-starved conditions. These results suggest that mRNAs enter the pioneer round of translation during serum starvation and are targeted for NMD if they contain premature termination codons

  10. Effects of serum starvation on radiosensitivity, proliferation and apoptosis in four human tumor cell lines with different p53 status

    International Nuclear Information System (INIS)

    Oya, N.; Zoelzer, F.; Werner, F.; Streffer, C.

    2003-01-01

    Purpose: The effects of serum starvation on radiation sensitivity, cell proliferation and apoptosis were investigated with particular consideration of the p53 status. Material and Methods: Four human tumor cell lines, Be11 (melanoma, p53 wild-type), MeWo (melanoma, p53 mutant), 4197 (squamous cell carcinoma, p53 wild-type) and 4451 (squamous cell carcinoma, p53 mutant), were used. After the cells had been incubated in starvation medium (0.5% FCS) for 1-6 days, changes in cell cycle distribution, induction of apoptosis and necrosis, and changes in radiation sensitivity were assessed by two-parameter flow cytometric measurements of DNA content/BrdU labeling, two-parameter flow cytometric measurements of DNA-dye-exclusion/Annexin V binding, and a conventional colony assay, respectively. Results: p53 wild-type cell lines showed a decrease in the BrdU labeling index and an increase in the apoptotic cell frequency in starvation medium. p53 mutant cell lines showed a decrease in the BrdU labeling index but no evidence of apoptosis. These cells went into necrosis instead. The radiation sensitivity was increased in 4451 and slightly decreased in Be11 and 4197 in starvation medium. Conclusion: These data suggest a functional involvement of p53 in starvation-induced G1-block and apoptosis in tumor cells. Altered radiosensitivity after culture in starvation medium seemed to be explained at least in part by the starvation-induced G1-block. The frequency of starvation-induced apoptosis or necrosis was not correlated with radiation sensitivity. (orig.)

  11. Gene expression patterns of sulfur starvation in Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Pendse Ninad D

    2008-07-01

    Full Text Available Abstract Background The unicellular cyanobacterium Synechocystis sp. PCC 6803 is a model microbe for studying biochemistry, genetics and molecular biology of photobiological processes. Importance of this bacterium in basic and applied research calls for a systematic, genome-wide description of its transcriptional regulatory capacity. Characteristic transcriptional responses to changes in the growth environment are expected to provide a scaffold for describing the Synechocystis transcriptional regulatory network as well as efficient means for functional annotation of genes in the genome. Results We designed, validated and used Synechocystis genome-wide oligonucleotide (70-mer microarray (representing 96.7% of all chromosomal ORFs annotated at the time of the beginning of this project to study transcriptional activity of the cyanobacterial genome in response to sulfur (S starvation. The microarray data were verified by quantitative RT-PCR. We made five main observations: 1 Transcriptional changes upon sulfate starvation were relatively moderate, but significant and consistent with growth kinetics; 2 S acquisition genes encoding for a high-affinity sulfate transporter were significantly induced, while decreased transcription of genes for phycobilisome, photosystems I and II, cytochrome b6/f, and ATP synthase indicated reduced light-harvesting and photosynthetic activity; 3 S starvation elicited transcriptional responses associated with general growth arrest and stress; 4 A large number of genes regulated by S availability encode hypothetical proteins or proteins of unknown function; 5 Hydrogenase structural and maturation accessory genes were not identified as differentially expressed, even though increased hydrogen evolution was observed. Conclusion The expression profiles recorded by using this oligonucleotide-based microarray platform revealed that during transition from the condition of plentiful S to S starvation, Synechocystis undergoes

  12. Starvation stress affects the interplay among shrimp gut microbiota, digestion and immune activities.

    Science.gov (United States)

    Dai, Wen-Fang; Zhang, Jin-Jie; Qiu, Qiong-Fen; Chen, Jiong; Yang, Wen; Ni, Sui; Xiong, Jin-Bo

    2018-05-24

    Aquatic animals are frequently suffered from starvation due to restricted food availability or deprivation. It is currently known that gut microbiota assists host in nutrient acquisition. Thus, exploring the gut microbiota responses would improve our understanding on physiological adaptation to starvation. To achieve this, we investigated how the gut microbiota and shrimp digestion and immune activities were affected under starvation stress. The results showed that the measured digestion activities in starved shrimp were significantly lower than in normal cohorts; while the measured immune activities exhibited an opposite trend. A structural equation modeling (SEM) revealed that changes in the gut bacterial community were directly related to digestive and immune enzyme activities, which in turn markedly affected shrimp growth traits. Notably, several gut bacterial indicators that characterized the shrimp nutrient status were identified, with more abundant opportunistic pathogens in starved shrimp, although there were no statistical differences in the overall diversity and the structures of gut bacterial communities between starved and normal shrimp. Starved shrimp exhibited less connected and cooperative interspecies interaction as compared with normal cohorts. Additionally, the functional pathways involved in carbohydrate and protein digestion, glycan biosynthesis, lipid and enzyme metabolism remarkably decreased in starved shrimp. These attenuations could increase the susceptibility of starved shrimp to pathogens infection. In summary, this study provides novel insights into the interplay among shrimp digestion, immune activities and gut microbiota in response to starvation stress. Copyright © 2018. Published by Elsevier Ltd.

  13. The intestinal microbiome of fish under starvation

    OpenAIRE

    Xia, Jun Hong; Lin, Grace; Fu, Gui Hong; Wan, Zi Yi; Lee, May; Wang, Le; Liu, Xiao Jun; Yue, Gen Hua

    2014-01-01

    Background Starvation not only affects the nutritional and health status of the animals, but also the microbial composition in the host’s intestine. Next-generation sequencing provides a unique opportunity to explore gut microbial communities and their interactions with hosts. However, studies on gut microbiomes have been conducted predominantly in humans and land animals. Not much is known on gut microbiomes of aquatic animals and their changes under changing environmental conditions. To add...

  14. Overexpression of GbWRKY1 positively regulates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis.

    Science.gov (United States)

    Xu, Li; Jin, Li; Long, Lu; Liu, Linlin; He, Xin; Gao, Wei; Zhu, Longfu; Zhang, Xianlong

    2012-12-01

    Overexpression of a cotton defense-related gene GbWRKY1 in Arabidopsis resulted in modification of the root system by enhanced auxin sensitivity to positively regulate the Pi starvation response. GbWRKY1 was a cloned WRKY transcription factor from Gossypium barbadense, which was firstly identified as a defense-related gene and showed moderate similarity with AtWRKY75 from Arabidopsis thaliana. Overexpression of GbWRKY1 in Arabidopsis resulted in attenuated Pi starvation stress symptoms, including reduced accumulation of anthocyanin and impaired density of lateral roots (LR) in low Pi stress. The study also indicated that overexpression of GbWRKY1 caused plants constitutively exhibited Pi starvation response including increased development of LR, relatively high level of total P and Pi, high expression level of some high-affinity Pi transporters and phosphatases as well as enhanced accumulation of acid phosphatases activity during Pi-sufficient. It was speculated that GbWRKY1 may act as a positive regulator in the Pi starvation response as well as AtWRKY75. GbWRKY1 probably involves in the modulation of Pi homeostasis and participates in the Pi allocation and remobilization but do not accumulate more Pi in Pi-deficient condition, which was different from the fact that AtWRKY75 influenced the Pi status of the plant during Pi deprivation by increasing root surface area and accumulation of more Pi. Otherwise, further study suggested that the overexpression plants were more sensitive to auxin than wild-type and GbWRKY1 may partly influence the LPR1-dependent (low phosphate response 1) Pi starvation signaling pathway and was putatively independent of SUMO E3 ligase SIZ1 and PHR1 (phosphate starvation response 1) in response to Pi starvation.

  15. Tumor necrosis factor-α attenuates starvation-induced apoptosis through upregulation of ferritin heavy chain in hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Kou, Xingrui; Zhao, Qiudong; Zhao, Xue; Li, Rong; Wei, Lixin; Wu, Mengchao; Jing, Yingying; Deng, Weijie; Sun, Kai; Han, Zhipeng; Ye, Fei; Yu, Guofeng; Fan, Qingmin; Gao, Lu

    2013-01-01

    Tumor microenviroment is characteristic of inflammation, ischemia and starvation of nutrient. TNF-α, which is an extraordinarily pleiotropic cytokine, could be an endogenous tumor promoter in some tumor types. The basic objective of this study was to investigate the effects of TNF-α on the cell viability and apoptosis of hepatocellular carcinoma cells under serum starvation, and to identify the molecular mechanisms involved. For this purpose, five different concentrations of TNF-α and two different serum settings (serum-cultured and serum-deprived) were used to investigate the effects of TNF-α on the cell viability and apoptosis of Hep3B and SMMC-7721 cells. TNF-α (10 ng/ml) attenuated serum starvation-induced apoptosis of hepatocellular carcinoma cells, and autophagy conferred this process. BAY11-7082, a specific inhibitor of NF-κB, reversed the suppression of serum starvation-induced apoptosis by TNF-α. Moreover, TNF-α-induced NF-κB transactivation was suppressed by autophagy inhibitor 3-MA. In addition, TNF-α up-regulated Ferritin heavy chain (FHC) transiently by NF-κB activation and FHC levels were correlated with the TNF-α-induced protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells. Furthermore, FHC-mediated inhibition of apoptosis depended on suppressing ROS accumulation. Our findings suggested that autophagy conferred the TNF-α protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells, the mechanism involved with the activation of the TNF-α/ NF-κB /FHC signaling pathway

  16. Phosphate transporter mediated lipid accumulation in Saccharomyces cerevisiae under phosphate starvation conditions.

    Science.gov (United States)

    James, Antoni W; Nachiappan, Vasanthi

    2014-01-01

    In the current study, when phosphate transporters pho88 and pho86 were knocked out they resulted in significant accumulation (84% and 43%) of triacylglycerol (TAG) during phosphate starvation. However in the presence of phosphate, TAG accumulation was only around 45% in both pho88 and pho86 mutant cells. These observations were confirmed by radio-labeling, fluorescent microscope and RT-PCR studies. The TAG synthesizing genes encoding for acyltransferases namely LRO1 and DGA1 were up regulated. This is the first report for accumulation of TAG in pho88Δ and pho86Δ cells under phosphate starvation conditions. Copyright © 2013. Published by Elsevier Ltd.

  17. Self-hypnosis training and captivity survival.

    Science.gov (United States)

    Wood, D P; Sexton, J L

    1997-01-01

    In February and March, 1973, 566 U.S. military prisoners (POWs) were released from North Vietnam. These men had been POWs for a period of time between 2 months and 9 years, with a mean incarceration of 4.44 years. They had faced physical and psychological stress similar to that experienced by POWs from previous wars: starvation, disease, inadequate shelter, lack of medical care, interrogations and torture (Deaton, Burge, Richlin & Latrownik, 1977; Mitchell, 1991). By definition, such prison conditions constituted a traumatic experience (Deaton et al., 1977). However, a unique stress for our POWs in North Vietnam was the additional trauma of solitary confinement. This paper reviews the coping and "time killing" activities of U.S. Navy Vietnam POWs who experienced solitary confinement and tortuous interrogation. This paper also reports the physical and psychological adjustment of our POWs following their release from captivity. Suggestions are made regarding the revision of the curriculum for captivity survival training programs such as Survival, Evasion, Resistance, and Escape (SERE) school.

  18. Phosphate Starvation Inducible Metabolism in Lycopersicon esculentum1

    Science.gov (United States)

    Goldstein, Alan H.; Baertlein, Dawn A.; McDaniel, Robert G.

    1988-01-01

    Both tomato (Lycopersicon esculentum cv VF 36) plants and suspension cultured cells show phosphate starvation inducible (psi) excretion of acid phosphatase (Apase). Apase excretion in vitro was proportional to the level of exogenous orthophosphate (Pi). Intracellular Apase activity remained the same in both Pi-starved and sufficient cells, while Apase excreted by the starved cells increased by as much as six times over unstressed control cells on a dry weight basis. At peak induction, 50% of total Apase was excreted. Ten day old tomato seedlings grown without Pi showed slight growth reduction versus unstressed control plants. The Pi-depleted roots showed psi enhancement of Apase activity. Severely starved seedlings (17 days) reached only one-third of the biomass of unstressed control plants but, because of a combination of psi Apase excretion by roots and a shift in biomass to this organ, they excreted 5.5 times the Apase activity of the unstressed control. Observed psi Apase excretion may be part of a phosphate starvation rescue system in plants. The utility of the visible indicator dye 5-bromo-4-chloro-3-indolyl-phosphate-p-toluidine as a phenotypic marker for plant Apase excretion is demonstrated. Images Fig. 5 PMID:16666212

  19. Proteomic analysis of rainbow trout (Oncorhynchus mykiss) intestinal epithelia: physiological acclimation to short-term starvation.

    Science.gov (United States)

    Baumgarner, Bradley L; Bharadwaj, Anant S; Inerowicz, Dorota; Goodman, Angela S; Brown, Paul B

    2013-03-01

    The intestinal epithelia form the first line of defense against harmful agents in the gut lumen of most monogastric vertebrates, including teleost fishes. Previous investigations into the effect of starvation on the intestinal epithelia of teleost fishes have focused primarily on changes in morphological characteristics and targeted molecular analysis of specific enzymes. The goal of this study was to use a comprehensive approach to help reveal how the intestinal epithelia of carnivorous teleost fishes acclimate to short-term nutrient deprivation. We utilized two-dimensional gel electrophoresis (2-DE) to conduct the proteomic analysis of the mucosal and epithelial layer of the anterior gut intestinal tract (GIT) from satiation fed vs. 4 week starved rainbow trout (Oncorhynchus mykiss). A total of 40 proteins were determined to be differentially expressed and were subsequently picked for in-gel trypsin digestion. Peptide mass fingerprint analysis was conducted using matrix assisted laser desorption time-of-flight/time-of-flight. Nine of the 11 positively identified proteins were directly related to innate immunity. The expression of α-1 proteinase inhibitor decreased in starved vs. fed fish. Also, the concentration of one leukocyte elastase inhibitor (LEI) isomer decreased in starved fish, though the concentration of another LEI isomer increased in due to starvation. In addition, starvation promoted an increased concentration of the important xenobiotic-transporter p-glycoprotein. Finally, starvation resulted in a significant increase in type II keratin E2. Overall, our results indicate that starvation promoted a reduced capacity to inhibit enzymatic stress but increased xenobiotic resistance and paracellular permeability of epithelial cells in the anterior intestine of rainbow trout. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Tropical Drosophila ananassae of wet-dry seasons show cross resistance to heat, drought and starvation

    Directory of Open Access Journals (Sweden)

    Chanderkala Lambhod

    2017-11-01

    Full Text Available Plastic responses to multiple environmental stressors in wet or dry seasonal populations of tropical Drosophila species have received less attention. We tested plastic effects of heat hardening, acclimation to drought or starvation, and changes in trehalose, proline and body lipids in Drosophila ananassae flies reared under wet or dry season-specific conditions. Wet season flies revealed significant increase in heat knockdown, starvation resistance and body lipids after heat hardening. However, accumulation of proline was observed only after desiccation acclimation of dry season flies while wet season flies elicited no proline but trehalose only. Therefore, drought-induced proline can be a marker metabolite for dry-season flies. Further, partial utilization of proline and trehalose under heat hardening reflects their possible thermoprotective effects. Heat hardening elicited cross-protection to starvation stress. Stressor-specific accumulation or utilization as well as rates of metabolic change for each energy metabolite were significantly higher in wet-season flies than dry-season flies. Energy metabolite changes due to inter-related stressors (heat versus desiccation or starvation resulted in possible maintenance of energetic homeostasis in wet- or dry-season flies. Thus, low or high humidity-induced plastic changes in energy metabolites can provide cross-protection to seasonally varying climatic stressors.

  1. FGF21 and the late adaptive response to starvation in humans.

    Science.gov (United States)

    Fazeli, Pouneh K; Lun, Mingyue; Kim, Soo M; Bredella, Miriam A; Wright, Spenser; Zhang, Yang; Lee, Hang; Catana, Ciprian; Klibanski, Anne; Patwari, Parth; Steinhauser, Matthew L

    2015-11-03

    In mice, FGF21 is rapidly induced by fasting, mediates critical aspects of the adaptive starvation response, and displays a number of positive metabolic properties when administered pharmacologically. In humans, however, fasting does not consistently increase FGF21, suggesting a possible evolutionary divergence in FGF21 function. Moreover, many key aspects of FGF21 function in mice have been identified in the context of transgenic overexpression or administration of supraphysiologic doses, rather than in a physiologic setting. Here, we explored the dynamics and function of FGF21 in human volunteers during a 10-day fast. Unlike mice, which show an increase in circulating FGF21 after only 6 hours, human subjects did not have a notable surge in FGF21 until 7 to 10 days of fasting. Moreover, we determined that FGF21 induction was associated with decreased thermogenesis and adiponectin, an observation that directly contrasts with previous reports based on supraphysiologic dosing. Additionally, FGF21 levels increased after ketone induction, demonstrating that endogenous FGF21 does not drive starvation-mediated ketogenesis in humans. Instead, a longitudinal analysis of biologically relevant variables identified serum transaminases--markers of tissue breakdown--as predictors of FGF21. These data establish FGF21 as a fasting-induced hormone in humans and indicate that FGF21 contributes to the late stages of adaptive starvation, when it may regulate the utilization of fuel derived from tissue breakdown.

  2. Effect of Different Starvation Levels on Cognitive Ability in Mice

    Science.gov (United States)

    Li, Xiaobing; Zhi, Guoguo; Yu, Yi; Cai, Lingyu; Li, Peng; Zhang, Danhua; Bao, Shuting; Hu, Wenlong; Shen, Haiyan; Song, Fujuan

    2018-01-01

    Objective: To study the effect of different starvation levels on cognitive ability in mice. Method: Mice were randomly divided into four groups: normal group, dieting group A, dieting group B, dieting group C. The mice of normal group were given normal feeding amount, the rest of groups were given 3/4 of normal feeding amount, 2/4 of normal feeding amount and 1/4 of normal feeding amount. After feeding mice four days, the weight was observed and T-maze experiment, Morris water maze test, open field test and Serum Catalase activity were detected. Result: Compared with the normal group, the correct rate of the intervention group in the T-maze experiment was decreased and dieting group A> dieting group B> dieting group C. In the Morris water maze test, Compared with the normal group, the correct rate of the intervention group was increased. Among these three intervention groups, dieting group A had the highest correct rate and the difference of dieting group B and dieting group C were similar. In the open field test, Compared with the normal group, the exploration rate of the surrounding environment in the intervention group was increased. In the Serum Catalase test, Compared with the normal group, the activities of serum peroxidase in the intervention groups were decreased and dieting group A> dieting group B> dieting group C. Conclusion: A certain level of starvation could affect the cognitive ability of mice. In a certain range, the level of starvation is inversely proportional to cognitive ability in mice.

  3. Carcass glycogen repletion on carbohydrate re-feeding after starvation.

    OpenAIRE

    Cox, D J; Palmer, T N

    1987-01-01

    In mice, the response of carcass glycogen to glucose re-feeding after starvation is biphasic. The initial repletive phase is followed by partial (greater than 50%) glycogen mobilization. This turnover of carcass glycogen in response to carbohydrate re-feeding may play an important role in the provision of C3 precursors for hepatic glycogen synthesis.

  4. AMPK regulates metabolism and survival in response to ionizing radiation

    International Nuclear Information System (INIS)

    Zannella, Vanessa E.; Cojocari, Dan; Hilgendorf, Susan; Vellanki, Ravi N.; Chung, Stephen; Wouters, Bradly G.; Koritzinsky, Marianne

    2011-01-01

    Background and purpose: AMPK is a metabolic sensor and an upstream inhibitor of mTOR activity. AMPK is phosphorylated by ionizing radiation (IR) in an ATM dependent manner, but the cellular consequences of this phosphorylation event have remained unclear. The objective of this study was to assess whether AMPK plays a functional role in regulating cellular responses to IR. Methods: The importance of AMPK expression for radiation responses was investigated using both MEFs (mouse embryo fibroblasts) double knockout for AMPK α1/α2 subunits and human colorectal carcinoma cells (HCT 116) with AMPK α1/α2 shRNA mediated knockdown. Results: We demonstrate here that IR results in phosphorylation of both AMPK and its substrate, ACC. IR moderately stimulated mTOR activity, and this was substantially exacerbated in the absence of AMPK. AMPK was required for IR induced expression of the mTOR inhibitor REDD1, indicating that AMPK restrains mTOR activity through multiple mechanisms. Likewise, cellular metabolism was deregulated following irradiation in the absence of AMPK, as evidenced by a substantial increase in oxygen consumption rates and lactate production. AMPK deficient cells showed impairment of the G1/S cell cycle checkpoint, and were unable to support long-term proliferation during starvation following radiation. Lastly, we show that AMPK proficiency is important for clonogenic survival after radiation during starvation. Conclusions: These data reveal novel functional roles for AMPK in regulating mTOR signaling, cell cycle, survival and metabolic responses to IR.

  5. Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition

    DEFF Research Database (Denmark)

    Zhou, Fan; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    This paper reports an accelerated degradation test of a high temperature PEM fuel cell under repeated H2 starvation condition. The H2 stoichiometry is cycled between 3.0 and 0.8 every 2 min during the test. The experimental results show that the polarity of the fuel cell is reversed under H2......, there is only a slight decrease in open circuit voltage of the fuel cell which implies the membrane is not affected by the test. The electrochemical impedance spectrum measurement shows that the H2 starvation can cause significant increase in the ohmic resistance and charge transfer resistance. By looking...... starvation condition, and the cell performance indicated by cell voltage at H2 stoichiometry of 3.0 declines from 0.59 V to 0.41 V in 19 cycles. Since CO2 is detected in anode exhaust under H2 starvation condition, carbon corrosion is believed to be the reason for the degradation in this test. After the test...

  6. Evidence for the Adverse Effect of Starvation on Bone Quality: A Review of the Literature

    OpenAIRE

    Kueper, Janina; Beyth, Shaul; Liebergall, Meir; Kaplan, Leon; Schroeder, Josh E.

    2015-01-01

    Malnutrition and starvation's possible adverse impacts on bone health and bone quality first came into the spotlight after the horrors of the Holocaust and the ghettos of World War II. Famine and food restrictions led to a mean caloric intake of 200?800 calories a day in the ghettos and concentration camps, resulting in catabolysis and starvation of the inhabitants and prisoners. Severely increased risks of fracture, poor bone mineral density, and decreased cortical strength were noted in sev...

  7. Fed-batch cultivation of baker's yeast followed by nitrogen or carbon starvation: effects on fermentative capacity and content of trehalose and glycogen

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Olsson, Lisbeth; Rønnow, B.

    2002-01-01

    , trehalose and glycogen. Nitrogen starvation triggered the accumulation of trehalose and glycogen. After 8 h of starvation, the content of trehalose and glycogen was increased 4-fold and 2-fold, respectively. Carbon starvation resulted in a partial conversion of glycogen into trehalose. The trehalose content...... increased from 45 to 64 mg (g dry-weight)(-1), whereas the glycogen content in the same period was reduced from 55 to 5 mg (g dry-weight)(-1). Glycogen was consumed faster than trehalose during storage of the starved yeast for 1 month. Nitrogen starvation resulted in a decrease in the protein content...

  8. Influence of starvation, triton WR-1339 and [131I]-human serum albumin on rat liver lysosomes

    International Nuclear Information System (INIS)

    Harikumar, P.; Ninjoor, V.

    1986-01-01

    The response of rat liver lysosomes to starvation and administration of lysosomotropic agents viz. Triton WR-1339 and [ 131 I]-human serum albumin, was assessed in terms of their distribution pattern after isopycnic sucrose density gradient centrifugation. Starvation induced changes in lysosomes appeared to be similar to that produced by the detergent uptake. Both the treatments caused a distinct decline in the equilibration densities of the organelles. On the other hand, injected labelled protein failed to comigrate with the lysosomal markers in starved as well as Triton treated rats and conspicuously remained in a region of high specific gravity in the gradient. These findings indicate retarded fusion between secondary lysosomes and [ 131 I]-human serum albumin containing phagosomes in the livers of rats subjected to starvation or detergent treatment. (author)

  9. A phosphate-starvation-inducible outermembrane protein of Pseudomonas fluorescens Ag1 as an immunological phosphate-starvation marker

    DEFF Research Database (Denmark)

    Leopold, Kristine; Jacobsen, Susanne; Nybroe, Ole

    1997-01-01

    A phosphate-starvation-inducible outer-membrane protein of Pseudomonas fluorescens Ag1, expressed at phosphate concentrations below0.08-0.13 mM, was purified and characterized. The purification method involved separation of outer-membrane proteins by SDS-PAGE andextraction of the protein from...... nitrocellulose or PVDF membranes after electrotransfer of proteins to the membranes. The N-terminal amino acidsequence of the purified protein, called Psi1, did not show homology to any known proteins, and in contrast to the phosphate-specific porin OprP ofP. aeruginosa its mobility in SDS-PAGE was not affected...

  10. Silicon Promotes Growth of Brassica napus L. and Delays Leaf Senescence Induced by Nitrogen Starvation

    Directory of Open Access Journals (Sweden)

    Cylia Haddad

    2018-04-01

    Full Text Available Silicon (Si is the second most abundant element in soil and has several beneficial effects, especially in plants subjected to stress conditions. However, the effect of Si in preventing nitrogen (N starvation in plants is poorly documented. The aim of this work was to study the effect of a short Si supply duration (7 days on growth, N uptake, photosynthetic activity, and leaf senescence progression in rapeseed subjected (or not to N starvation. Our results showed that after 1 week of Si supply, Si improves biomass and increases N uptake and root expression of a nitrate transporter gene. After 12 days of N starvation, compared to -Si plants, mature leaf from +Si plants showed a high chlorophyll content, a maintain of net photosynthetic activity, a decrease of oxidative stress markers [hydrogen peroxide (H2O2 and malondialdehyde (MDA] and a significant delay in senescence. When N-deprived plants were resupplied with N, a greening again associated with an increase of photosynthetic activity was observed in mature leaves of plants pretreated with Si. Moreover, during the duration of N resupply, an increase of N uptake and nitrate transporter gene expression were observed in plants pretreated with Si. In conclusion, this study has shown a beneficial role of Si to alleviate damage associated with N starvation and more especially its role in delaying of leaf senescence.

  11. Effect of starvation, diabetes and insulin on the casein kinase 2 from rat liver cytosol.

    OpenAIRE

    Martos, C; Plana, M; Guasch, M D; Itarte, E

    1985-01-01

    Starvation, diabetes and insulin did not alter the concentration of casein kinases in rat liver cytosol. However, the Km for casein of casein kinase 2 from diabetic rats was about 2-fold lower than that from control animals. Administration of insulin to control rats did not alter this parameter, but increased the Km for casein of casein kinase 2 in diabetic rats. Starvation did not affect the kinetic constants of casein kinases. The effect of diabetes on casein kinase 2 persisted after partia...

  12. Influence of thymine starvation on UV mutability of Escherichia coli B/r Hcr/sup +/ thy/sup -/ trp/sup -/

    Energy Technology Data Exchange (ETDEWEB)

    Balgavy, P; Turek, R [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Vyskumny Ustav Onkologicky

    1976-01-01

    Escherichia coli B/r Hcr/sup +/ thy/sup -/ trp/sup -/ cells were cultivated in a synthetic glucose medium supplemented with 2 ..mu..g/ml thymine and 14 ..mu..g/ml tryptophan until the beginning of the exponential growth phase. After filtration and washing the cells were thymine starved for different periods of time. During short-term starvation (about 40 minutes) the cells did not die and the frequency of Trp/sup +/ revertants as determined on the synthetic glucose medium supplemented with 2 ..mu..g/ml thymine and 0.75 ..mu..g/ml tryptophan solidified with agar did not increase. From the 45th min of starvation cells died exponentially and at the same time the fraction of Trp/sup +/ revertants in the population increased. During short-term starvation the sensitivity of cells to ultraviolet radiation become enhanced, at the same time one could see an increase of frequency of ''mutation-frequency-decline''-stable ultraviolet induced Trp/sup +/ revertants. Is is supposed that short-term thymine starvation affects the coordination of the rec/sup +/ and polAl/sup +/ systems participating in the uvr/sup +/ dependent DNA repair synthesis in favour of the rec/sup +/ system, incidentally starvation may affect the error-free postreplication repair in which the products of the uvr/sup +/ and rec/sup +/ genes participate.

  13. Transforming Growth Factor β/Activin signaling in neurons increases susceptibility to starvation.

    Directory of Open Access Journals (Sweden)

    Wen-Bin Alfred Chng

    Full Text Available Animals rely on complex signaling network to mobilize its energy stores during starvation. We have previously shown that the sugar-responsive TGFβ/Activin pathway, activated through the TGFβ ligand Dawdle, plays a central role in shaping the post-prandial digestive competence in the Drosophila midgut. Nevertheless, little is known about the TGFβ/Activin signaling in sugar metabolism beyond the midgut. Here, we address the importance of Dawdle (Daw after carbohydrate ingestion. We found that Daw expression is coupled to dietary glucose through the evolutionarily conserved Mio-Mlx transcriptional complex. In addition, Daw activates the TGFβ/Activin signaling in neuronal populations to regulate triglyceride and glycogen catabolism and energy homeostasis. Loss of those neurons depleted metabolic reserves and rendered flies susceptible to starvation.

  14. Transforming Growth Factor β/Activin signaling in neurons increases susceptibility to starvation.

    Science.gov (United States)

    Chng, Wen-Bin Alfred; Koch, Rafael; Li, Xiaoxue; Kondo, Shu; Nagoshi, Emi; Lemaitre, Bruno

    2017-01-01

    Animals rely on complex signaling network to mobilize its energy stores during starvation. We have previously shown that the sugar-responsive TGFβ/Activin pathway, activated through the TGFβ ligand Dawdle, plays a central role in shaping the post-prandial digestive competence in the Drosophila midgut. Nevertheless, little is known about the TGFβ/Activin signaling in sugar metabolism beyond the midgut. Here, we address the importance of Dawdle (Daw) after carbohydrate ingestion. We found that Daw expression is coupled to dietary glucose through the evolutionarily conserved Mio-Mlx transcriptional complex. In addition, Daw activates the TGFβ/Activin signaling in neuronal populations to regulate triglyceride and glycogen catabolism and energy homeostasis. Loss of those neurons depleted metabolic reserves and rendered flies susceptible to starvation.

  15. The implications of starvation induced psychological changes for the ethical treatment of hunger strikers.

    Science.gov (United States)

    Fessler, D M T

    2003-08-01

    To evaluate existing ethical guidelines for the treatment of hunger strikers in light of findings on psychological changes that accompany the cessation of food intake. Electronic databases were searched for (a) editorials and ethical proclamations on hunger strikers and their treatment; (b) studies of voluntary and involuntary starvation, and (c) legal cases pertaining to hunger striking. Additional studies were gathered in a snowball fashion from the published material cited in these databases. Material was included if it (a) provided ethical or legal guidelines; (b) shed light on psychological changes accompanying starvation, or (c) illustrated the practice of hunger striking. Authors' observations, opinions, and conclusions were noted. Although the heterogeneous nature of the sources precluded statistical analysis, starvation appears to be accompanied by marked psychological changes. Some changes clearly impair competence, in which case physicians are advised to follow advance directives obtained early in the hunger strike. More problematic are increases in impulsivity and aggressivity, changes which, while not impairing competence, enhance the likelihood that patients will starve themselves to death.

  16. Effect of starvation and refeeding on digestive enzyme activities in sturgeon (Acipenser naccarii) and trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Furné, Miriam; García-Gallego, Manuel; Hidalgo, M Carmen; Morales, Amalia E; Domezain, Alberto; Domezain, Julio; Sanz, Ana

    2008-04-01

    The digestive enzyme activities were determined in Adriatic sturgeon and rainbow trout during starvation and refeeding period. Overall, the digestive enzyme activities are affected in the same sense in both species. The protease and lipase activities were decreased later than amylase activity. Even after 1 month of starvation, both species would be prepared to digest protein and lipids in an effective way. After 72 days of starvation, the digestive machinery of the sturgeon and of the trout shows an altered capacity to digest macronutrients. The capacity to digest proteins and lipids, after 60 days of refeeding, begins to become re-established in sturgeon and trout. In contrast, in this period, the capacity to digest carbohydrates remains depressed in both species.

  17. Effects of starvation on intermolt development in Calanus finmarchicus copepodites: a comparison between theoretical models and field studies1

    Science.gov (United States)

    Crain, Jennifer A.; Miller, Charles B.

    Campbell et al . (Deep Sea Research II, 48 (2001) 531) have shown that there was a localized starvation event affecting Calanus finmarchicus on the southern flank of Georges Bank in April 1997. Growth and molting rates of this dominant copepod were reduced. We have used the morphology of tooth development in field-collected samples to show that this starvation affected animals living continuously in the field, as well as those in Campbell et al .'s experimental tanks. Assuming a point of reserve saturation (PRS) response of Calanus to food limitation, and correspondence between PRS and advance from the postmolt jaw facies, the proportion of individuals with postmolt jaws should increase in all copepodite stages under starvation. Individuals that have developed past PRS should molt to the next stage, acquiring postmolt facies. Thus, the fraction of postmolt jaws should increase, while the fraction of jaws in later phases should decrease. This was observed for a drifter-marked station over five days. Numerical simulations of jaw phase distributions expected under full nutrition, and both total and patchy starvation were generated from individual-based models of development. Proportions of copepodites in postmolt phase do not increase with full nutrition. A simulation of a total starvation event showed a marked increase in postmolts during food limitation, but the increase was more extreme than the field data. A modification of the starvation simulation, representing patchy feeding conditions, matched the level of increase of postmolt individuals in all stages that was observed in the field samples.

  18. Evidence for the Adverse Effect of Starvation on Bone Quality: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Janina Kueper

    2015-01-01

    Full Text Available Malnutrition and starvation’s possible adverse impacts on bone health and bone quality first came into the spotlight after the horrors of the Holocaust and the ghettos of World War II. Famine and food restrictions led to a mean caloric intake of 200–800 calories a day in the ghettos and concentration camps, resulting in catabolysis and starvation of the inhabitants and prisoners. Severely increased risks of fracture, poor bone mineral density, and decreased cortical strength were noted in several case series and descriptive reports addressing the medical issues of these individuals. A severe effect of severely diminished food intake and frequently concomitant calcium- and Vitamin D deficiencies was subsequently proven in both animal models and the most common cause of starvation in developed countries is anorexia nervosa. This review attempts to summarize the literature available on the impact of the metabolic response to Starvation on overall bone health and bone quality.

  19. NblA1/A2-Dependent Homeostasis of Amino Acid Pools during Nitrogen Starvation in Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Kiyota, Hiroshi; Hirai, Masami Yokota; Ikeuchi, Masahiko

    2014-06-30

    Nutrient balance is important for photosynthetic growth and biomass production in microalgae. Here, we investigated and compared metabolic responses of amino acid pools to nitrogen and sulfur starvation in a unicellular model cyanobacterium, Synechocystis sp. PCC 6803, and its mutant nblA1/A2. It is known that NblA1/A2-dependent and -independent breakdown of abundant photosynthetic phycobiliproteins and other cellular proteins supply nutrients to the organism. However, the contribution of the NblA1/A2-dependent nutrient supply to amino acid pool homeostasis has not been studied. Our study demonstrates that changes in the pool size of many amino acids during nitrogen starvation can be categorized as NblA1/A2-dependent (Gln, Glu, glutathione, Gly, Ile, Leu, Met, Phe, Pro, Ser, Thr, Tyr and Val) and NblA1/A2-independent (Ala, Asn, Lys, and Trp). We also report unique changes in amino acid pool sizes during sulfur starvation in wild type and the mutant and found a generally marked increase in the Lys pool in cyanobacteria during nutrient starvation. In conclusion, the NblA1/A2-dependent protein turnover contributes to the maintenance of many amino acid pools during nitrogen starvation.

  20. NblA1/A2-Dependent Homeostasis of Amino Acid Pools during Nitrogen Starvation in Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Hiroshi Kiyota

    2014-06-01

    Full Text Available Nutrient balance is important for photosynthetic growth and biomass production in microalgae. Here, we investigated and compared metabolic responses of amino acid pools to nitrogen and sulfur starvation in a unicellular model cyanobacterium, Synechocystis sp. PCC 6803, and its mutant nblA1/A2. It is known that NblA1/A2-dependent and -independent breakdown of abundant photosynthetic phycobiliproteins and other cellular proteins supply nutrients to the organism. However, the contribution of the NblA1/A2-dependent nutrient supply to amino acid pool homeostasis has not been studied. Our study demonstrates that changes in the pool size of many amino acids during nitrogen starvation can be categorized as NblA1/A2-dependent (Gln, Glu, glutathione, Gly, Ile, Leu, Met, Phe, Pro, Ser, Thr, Tyr and Val and NblA1/A2-independent (Ala, Asn, Lys, and Trp. We also report unique changes in amino acid pool sizes during sulfur starvation in wild type and the mutant and found a generally marked increase in the Lys pool in cyanobacteria during nutrient starvation. In conclusion, the NblA1/A2-dependent protein turnover contributes to the maintenance of many amino acid pools during nitrogen starvation.

  1. Seedling Establishment of Tall Fescue Exposed to Long-Term Starvation Stress

    Czech Academy of Sciences Publication Activity Database

    Pompeiano, Antonio; Damiani, C. R.; Stefanini, S.; Vernieri, S.; Reyes, T. H.; Volterrani, M.; Guglielminetti, L.

    2016-01-01

    Roč. 11, č. 11 (2016), č. článku e0166131. E-ISSN 1932-6203 Institutional support: RVO:67179843 Keywords : seedling * Tall fescue * Tall fescue exposed * starvation Subject RIV: EH - Ecology, Behaviour Impact factor: 2.806, year: 2016

  2. Nitrogen Starvation Acclimation in Synechococcus elongatus: Redox-Control and the Role of Nitrate Reduction as an Electron Sink

    Directory of Open Access Journals (Sweden)

    Alexander Klotz

    2015-03-01

    Full Text Available Nitrogen starvation acclimation in non-diazotrophic cyanobacteria is characterized by a process termed chlorosis, where the light harvesting pigments are degraded and the cells gradually tune down photosynthetic and metabolic activities. The chlorosis response is governed by a complex and poorly understood regulatory network, which converges at the expression of the nblA gene, the triggering factor for phycobiliprotein degradation. This study established a method that allows uncoupling metabolic and redox-signals involved in nitrogen-starvation acclimation. Inhibition of glutamine synthetase (GS by a precise dosage of l-methionine-sulfoximine (MSX mimics the metabolic situation of nitrogen starvation. Addition of nitrate to such MSX-inhibited cells eliminates the associated redox-stress by enabling electron flow towards nitrate/nitrite reduction and thereby, prevents the induction of nblA expression and the associated chlorosis response. This study demonstrates that nitrogen starvation is perceived not only through metabolic signals, but requires a redox signal indicating over-reduction of PSI-reduced electron acceptors. It further establishes a cryptic role of nitrate/nitrite reductases as electron sinks to balance conditions of over-reduction.

  3. Nitrogen Starvation Acclimation in Synechococcus elongatus: Redox-Control and the Role of Nitrate Reduction as an Electron Sink

    Science.gov (United States)

    Klotz, Alexander; Reinhold, Edgar; Doello, Sofía; Forchhammer, Karl

    2015-01-01

    Nitrogen starvation acclimation in non-diazotrophic cyanobacteria is characterized by a process termed chlorosis, where the light harvesting pigments are degraded and the cells gradually tune down photosynthetic and metabolic activities. The chlorosis response is governed by a complex and poorly understood regulatory network, which converges at the expression of the nblA gene, the triggering factor for phycobiliprotein degradation. This study established a method that allows uncoupling metabolic and redox-signals involved in nitrogen-starvation acclimation. Inhibition of glutamine synthetase (GS) by a precise dosage of l-methionine-sulfoximine (MSX) mimics the metabolic situation of nitrogen starvation. Addition of nitrate to such MSX-inhibited cells eliminates the associated redox-stress by enabling electron flow towards nitrate/nitrite reduction and thereby, prevents the induction of nblA expression and the associated chlorosis response. This study demonstrates that nitrogen starvation is perceived not only through metabolic signals, but requires a redox signal indicating over-reduction of PSI-reduced electron acceptors. It further establishes a cryptic role of nitrate/nitrite reductases as electron sinks to balance conditions of over-reduction. PMID:25780959

  4. Growth and survival of larval and early juvenile lesser sandeel in patchy prey field in the North Sea: An examination using individual-based modelling

    DEFF Research Database (Denmark)

    Gürkan, Zeren; Christensen, Asbjørn; Deurs, Mikael van

    2012-01-01

    -stages in the North Sea. Simulations of patchiness related starvation mortality are able to explain observed patterns of variation in sandeel growth. Reduced prey densities within patches decrease growth and survival rate of larvae and match–mismatch affect growth and survival of larvae with different hatch time due...... by modeling copepod size spectra dynamics and patchiness based on particle count transects and Continuous Plankton Recorder time series data. The study analyzes the effects of larval hatching time, presence of zooplankton patchiness and within patch abundance on growth and survival of sandeel early life...

  5. Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Agner, Jeppe; Piersma, Sander R

    2013-01-01

    In order to successfully enter the latent stage, Mycobacterium tuberculosis must adapt to conditions such as nutrient limitation and hypoxia. In vitro models that mimic latent infection are valuable tools for describing the changes in metabolism that occur when the bacterium exists in a non......-growing form. We used two complementary proteomic approaches, label-free LC-MS/MS analysis and two-dimensional difference gel electrophoresis, to determine the proteome profile of extracellular proteins from M. tuberculosis cultured under nutrient starvation. Through the label-free LC-MS/MS analysis......, significant differences in the overall metabolism during nutrient starvation were detected. Notably, members of the toxin-antitoxin systems were present in larger quantities in nutrient-starved cultures, supporting a role for these global modules as M. tuberculosis switches its metabolism into dormancy...

  6. The Pkn22 Ser/Thr kinase in Nostoc PCC 7120: role of FurA and NtcA regulators and transcript profiling under nitrogen starvation and oxidative stress.

    Science.gov (United States)

    Yingping, Fan; Lemeille, Sylvain; González, Andrés; Risoul, Véronique; Denis, Yann; Richaud, Pierre; Lamrabet, Otmane; Fillat, Maria F; Zhang, Cheng-Cai; Latifi, Amel

    2015-07-29

    The filamentous cyanobacterium Nostoc sp. strain PCC 7120 can fix N2 when combined nitrogen is not available. Furthermore, it has to cope with reactive oxygen species generated as byproducts of photosynthesis and respiration. We have previously demonstrated the synthesis of Ser/Thr kinase Pkn22 as an important survival response of Nostoc to oxidative damage. In this study we wished to investigate the possible involvement of this kinase in signalling peroxide stress and nitrogen deprivation. Quantitative RT-PCR experiments revealed that the pkn22 gene is induced in response to peroxide stress and to combined nitrogen starvation. Electrophoretic motility assays indicated that the pkn22 promoter is recognized by the global transcriptional regulators FurA and NtcA. Transcriptomic analysis comparing a pkn22-insertion mutant and the wild type strain indicated that this kinase regulates genes involved in important cellular functions such as photosynthesis, carbon metabolism and iron acquisition. Since metabolic changes may lead to oxidative stress, we investigated whether this is the case with nitrogen starvation. Our results rather invalidate this hypothesis thereby suggesting that the function of Pkn22 under nitrogen starvation is independent of its role in response to peroxide stress. Our analyses have permitted a more complete functional description of Ser/Thr kinase in Nostoc. We have decrypted the transcriptional regulation of the pkn22 gene, and analysed the whole set of genes under the control of this kinase in response to the two environmental changes often encountered by cyanobacteria in their natural habitat: oxidative stress and nitrogen deprivation.

  7. The Challenge of Appropriate Identification and Treatment of Starvation, Sarcopenia, and Cachexia: A Survey of Australian Dietitians

    OpenAIRE

    Yaxley, Alison; Miller, Michelle D.

    2011-01-01

    Malnutrition is an umbrella term that includes starvation, sarcopenia, and cachexia; however, differentiating between these terms is infrequent in clinical practice. Given that the effectiveness of treatment depends on the aetiology of unintentional weight loss, it is important that clinicians are aware of the defining characteristics. The aim of this study was to determine whether Australian dietitians understand and use the terms starvation, sarcopenia, and cachexia and provide targeted tre...

  8. Effects of starvation on moult cycle and hepatopancreas of Stage I lobster (Homarus americanus) larvae

    Science.gov (United States)

    Anger, K.; Storch, V.; Anger, V.; Capuzzo, J. M.

    1985-06-01

    Effects of feeding and starvation on the moult cycle and on the ultrastructure of hepatopancreas cells were studied in Stage I lobster larvae ( Homarus americanus Milne-Edwards). The relative significance of yolk and first food was quite different in larvae originating from two females. This difference was evident also in the amounts of stored lipid in the R-cells of the larval hepatopancreas. Most larvae from one hatch were, in principle, able to develop exclusively with yolk reserves (without food) to the second instar. The larvae from the second hatch showed lecithotrophic development only to the transition between late intermoult and early premoult (Stages C/D0 of Drachs's moult cycle) of the first larval instar. When initial starvation in this group lasted for 3 days or more, the point of no return (PNR) was exceeded. After the PNR, consumption of food was still possible, but development ceased in the transition C/D0 or in late premoult (D3 4). It is suggested that these stages of the moult cycle are critical points were cessation of development and increased mortality are particularly likely in early larval lobsters under nutritional stress. Examination of hepatopancreas R-cells suggested that the PNR is caused by an irreversible loss of the ability to restore lipid reserves depleted during initial starvation. Initial periods of starvation ending before the PNR prolonged mainly Stage D0 of the same instar (I). During this delay, structural changes in the R-cells caused by the preceding period of starvation were reversed: reduced lipid inclusions, swollen mitochondria, an increased number of residual bodies indicating autolysis, and a reduction of the microvillous processes. Continually starved larvae which showed lecithotrophic development throughout the first instar and were then re-fed after moulting successfully, had later a prolonged intermoult (Stage C) period in the second instar. This shows that, despite occasional lecithotrophy, food is an important

  9. Experimental Comparison of the Behavior between Base Oil and Grease Starvation Based on Inlet Film Thickness

    Directory of Open Access Journals (Sweden)

    D. Kostal

    2017-03-01

    Full Text Available This paper deals with the experimental study of an elastohydrodynamic contact under conditions of insufficient lubricant supply. Starvation level of this type of the contact may be experimentally determined based on the position of the meniscus, but this way can't determine all levels of starvation. Consequent development in the field of tribology achieved theoretical model that can determine all levels of starvation by dependency on the thickness of the lubricant film entering the contact, but it is difficult for experimental verification. The main goal of this work is an experimental study and description of the behavior of the elastohydrodynamic contact with controlled thickness of the lubricant film at the contact input. Contact was lubricated by the base oil and the grease and compared. Results were surprising because the only differences between oil and grease were observed for more viscous lubricants at thicker film layer entering to the contact.

  10. The Hunger Games: p53 regulates metabolism upon serine starvation.

    Science.gov (United States)

    Tavana, Omid; Gu, Wei

    2013-02-05

    Cancer cells reprogram their metabolism to support a high proliferative rate. A new study shows that, upon serine starvation, the tumor suppressor p53 activates p21 to shift metabolic flux from purine biosynthesis to glutathione production, which enhances cellular proliferation and viability by combating ROS (Maddocks et al., 2013). Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Transcriptome analysis of the Populus trichocarpa-Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation.

    Science.gov (United States)

    Calabrese, Silvia; Kohler, Annegret; Niehl, Annette; Veneault-Fourrey, Claire; Boller, Thomas; Courty, Pierre-Emmanuel

    2017-06-01

    Nutrient transfer is a key feature of the arbuscular mycorrhizal (AM) symbiosis. Valuable mineral nutrients are transferred from the AM fungus to the plant, increasing its fitness and productivity, and, in exchange, the AM fungus receives carbohydrates as an energy source from the plant. Here, we analyzed the transcriptome of the Populus trichocarpa-Rhizophagus irregularis symbiosis using RNA-sequencing of non-mycorrhizal or mycorrhizal fine roots, with a focus on the effect of nitrogen (N) starvation. In R. irregularis, we identified 1,015 differentially expressed genes, whereby N starvation led to a general induction of gene expression. Genes of the functional classes of cell growth, membrane biogenesis and cell structural components were highly abundant. Interestingly, N starvation also led to a general induction of fungal transporters, indicating increased nutrient demand upon N starvation. In non-mycorrhizal P. trichocarpa roots, 1,341 genes were differentially expressed under N starvation. Among the 953 down-regulated genes in N starvation, most were involved in metabolic processes including amino acids, carbohydrate and inorganic ion transport, while the 342 up-regulated genes included many defense-related genes. Mycorrhization led to the up-regulation of 549 genes mainly involved in secondary metabolite biosynthesis and transport; only 24 genes were down-regulated. Mycorrhization specifically induced expression of three ammonium transporters and one phosphate transporter, independently of the N conditions, corroborating the hypothesis that these transporters are important for symbiotic nutrient exchange. In conclusion, our data establish a framework of gene expression in the two symbiotic partners under high-N and low-N conditions. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Biochemical Mechanisms and Energy Strategies of Geobacter sulfurreducens for Long- Term Survival

    Science.gov (United States)

    Helmus, R. A.; Liermann, L. J.; Brantley, S. L.; Tien, M.

    2008-12-01

    Numerous species of bacteria have been observed to exhibit a growth advantage in stationary phase (GASP) phenotype, indicating that microorganisms starved of an energy source may adapt to allow for long-term survival. Understanding how Geobacter sulfurreducens persists using various metal forms as energy sources and whether a GASP phenotype develops during long-term growth are important for efficient application of this bacterium to sites requiring engineered bioremediation of soluble metals. Thus, we investigated the growth kinetics and survival of G. sulfurreducens. The growth rate of G. sulfurreducens was highest when cultured with soluble iron and generally higher on iron oxide than manganese oxide, suggesting that soluble metal forms are more readily utilized as energy sources by G. sulfurreducens. By monitoring the abundance of G. sulfurreducens in batch cultures for >6 months, distinct growth, stationary, and prolonged starvation phases were observed and a cell density of 105- 106 cells/mL persisted under long-term starvation conditions. The outgrowth of an aged G. sulfurreducens strain co-cultured with a young strain was monitored as a measure of the existence of the GASP phenotype. As the strains aged, the rpoS gene was cloned and sequenced at different stages of growth to identify mutations corresponding to a growth advantage. The results of these studies provide insight into the use of various metal forms for growth by G. sulfurreducens and its ability to persist when starved of energy sources.

  13. Usage of energy reserves in crustaceans during starvation: status and future directions.

    Science.gov (United States)

    Sánchez-Paz, Arturo; García-Carreño, Fernando; Muhlia-Almazán, Adriana; Peregrino-Uriarte, Alma B; Hernández-López, Jorge; Yepiz-Plascencia, Gloria

    2006-04-01

    In this paper, we review the current knowledge about the usage of carbohydrates, lipids and proteins as energy source by marine crustaceans during starvation. Crustaceans are a large and diverse group including some economically important species. The efforts to culture them for human consumption has prompted the interest to understand the preferences of energy sources to be applied for feed formulation and cost reduction. Important differences have been found among species and appear to be related not only to the biochemistry and physiology of nutrition, but also to the living environment of the crustaceans. Furthermore, crustaceans undergo morphological, physiological and behavioral changes due to their natural growing process that affect their feeding habits, an aspect that should be carefully considered. We discuss the current information on marine crustaceans about energy usage and describe areas of future research, where starvation studies render important insights.

  14. Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC.

    Science.gov (United States)

    Jung, Juhae; Park, Byungil; Kim, Junbom

    2012-01-05

    In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells.

  15. Global gene expression under nitrogen starvation in Xylella fastidiosa: contribution of the σ54 regulon

    Directory of Open Access Journals (Sweden)

    da Silva Neto José F

    2010-08-01

    Full Text Available Abstract Background Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat. Results In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation response. A time course experiment (2, 8 and 12 hours of cultures grown in defined medium under nitrogen starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation, amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant allowed the identification of genes directly or indirectly induced by nitrogen starvation in a σ54-dependent manner. A more complete picture of the σ54 regulon was achieved by combining the transcriptome data with an in silico search for potential σ54-dependent promoters, using a position weight matrix approach. One of these σ54-predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase, was validated by primer extension assays, confirming that this gene has a σ54-dependent promoter. Conclusions Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa transcriptome and some of these differentially expressed genes belong to the σ54 regulon.

  16. Metabolism of Seriola lalandi during Starvation as Revealed by Fatty Acid Analysis and Compound-Specific Analysis of Stable Isotopes within Amino Acids.

    Directory of Open Access Journals (Sweden)

    Fernando Barreto-Curiel

    Full Text Available Fish starvation is defined as food deprivation for a long period of time, such that physiological processes become confined to basal metabolism. Starvation provides insights in physiological processes without interference from unknown factors in digestion and nutrient absorption occurring in fed state. Juveniles of amberjack Seriola lalandi were isotopically equilibrated to a formulated diet for 60 days. One treatment consisted of fish that continued to be fed and fish in the other treatment were not fed for 35 days. The isotopic signatures prior to the beginning of and after the starvation period, for fish in the starvation and control treatments, were analysed for lipid content, fatty acid composition and isotopic analysis of bulk (EA-IRMS and of amino acids (compound specific isotope analysis, CSIA. There were three replicates for the starvation group. Fatty acid content in muscle and liver tissue before and after starvation was determined to calculate percent change. Results showed that crude lipid was the most used source of energy in most cases; the PUFAs and LC-PUFAs were highly conserved. According to the protein signature in bulk (δ15N and per amino acid (δ13C and δ15N, in muscle tissue, protein synthesis did not appear to occur substantially during starvation, whereas in liver, increases in δ13C and δ15N indicate that protein turnover occurred, probably for metabolic routing to energy-yielding processes. As a result, isotopic values of δ15N in muscle tissue do not change, whereas CSIA net change occurred in the liver tissue. During the study period of 35 days, muscle protein was largely conserved, being neither replenished from amino acid pools in the plasma and liver nor catabolized.

  17. BAG3 promoted starvation-induced apoptosis of thyroid cancer cells via attenuation of autophagy.

    Science.gov (United States)

    Li, Si; Zhang, Hai-Yan; Wang, Tian; Meng, Xin; Zong, Zhi-Hong; Kong, De-Hui; Wang, Hua-Qin; Du, Zhen-Xian

    2014-11-01

    BAG3 plays a regulatory role in a number of cellular processes. Recent studies have attracted much attention on its role in activation of selective autophagy. In addition, we have very recently reported that BAG3 is implicated in a BECN1-independent autophagy, namely noncanonical autophagy. The current study aimed to investigate the potential involvement of BAG3 in canonical autophagy triggered by Earle's Balanced Salt Solution (EBSS) starvation. Replacement of complete medium with EBSS was used to trigger canonical autophagy. BAG3 expression was measured using real-time RT-PCR and Western blot. Autophagy was monitored using LC3-II transition and p62/SQSTM1 accumulation by Western blot, as well as punctate distribution of LC3 by immunofluorescence staining. Cell growth and apoptotic cell death was investigated using real-time cell analyzer and flowcytometry, respectively. BAG3 expression was potently reduced by EBSS starvation. Forced expression of BAG3 suppressed autophagy and promoted apoptotic cell death of thyroid cancer cells elicited by starvation. In addition, in the presence of autophagy inhibitor, the enhancing effect of BAG3 on apoptotic cell death was attenuated. These results suggest that BAG3 promotes apoptotic cell death in starved thyroid cancer cells, at least in part by autophagy attenuation.

  18. Pheromonal regulation of starvation resistance in honey bee workers ( Apis mellifera)

    Science.gov (United States)

    Fischer, Patrick; Grozinger, Christina M.

    2008-08-01

    Most animals can modulate nutrient storage pathways according to changing environmental conditions, but in honey bees nutrient storage is also modulated according to changing behavioral tasks within a colony. Specifically, bees involved in brood care (nurses) have higher lipid stores in their abdominal fat bodies than forager bees. Pheromone communication plays an important role in regulating honey bee behavior and physiology. In particular, queen mandibular pheromone (QMP) slows the transition from nursing to foraging. We tested the effects of QMP exposure on starvation resistance, lipid storage, and gene expression in the fat bodies of worker bees. We found that indeed QMP-treated bees survived much longer compared to control bees when starved and also had higher lipid levels. Expression of vitellogenin RNA, which encodes a yolk protein that is found at higher levels in nurses than foragers, was also higher in the fat bodies of QMP-treated bees. No differences were observed in expression of genes involved in insulin signaling pathways, which are associated with nutrient storage and metabolism in a variety of species; thus, other mechanisms may be involved in increasing the lipid stores. These studies demonstrate that pheromone exposure can modify nutrient storage pathways and fat body gene expression in honey bees and suggest that chemical communication and social interactions play an important role in altering metabolic pathways.

  19. Antioxidative and immunological responses in the haemolymph of wolf spider Xerolycosa nemoralis (Lycosidae) exposed to starvation and dimethoate

    International Nuclear Information System (INIS)

    Stalmach, Monika; Wilczek, Grażyna; Homa, Joanna; Szulinska, Elżbieta

    2015-01-01

    The aim of this study was to assess the intensity of enzymatic antioxidative parameters [catalase (CAT), glutathione peroxidase (GSTPx), glutathione reductase (GR), total antioxidant capacity (TAC)] and percentage of high granularity cells as well as low to medium granularity cells in haemolymph of wolf spiders Xerolycosa nemoralis exposed to starvation and dimethoate under laboratory conditions. Only in starved males, haemolymph included a lower percentage of high granularity cells, accompanied by high activity of CAT and GSTPx, than in the control. Exposure of males to dimethoate increased CAT activity, after single application, and significantly enhanced GR activity, after five-time application. In females, five-time contact with dimethoate elevated the percentage of high granularity cells. As in comparison to females, male X. nemoralis were more sensitive to the applied stressing factors, it may be concluded that in natural conditions both food deficiency and chemical stress may diminish the immune response of their organisms. - Highlights: • Starvation of males diminishes their immunological potential. • Females, compared with males, are less sensitive to starvation and dimethoate. • Antioxidative responses are stronger in starvation than after dimethoate intoxication. - The level of antioxidative response and quantitative changes of haemocytes in the haemolymph of wolf spider Xerolycosa nemoralis (Lycosidae) depend on the stressor and gender.

  20. The Politics of Starvation Deaths in West Bengal

    DEFF Research Database (Denmark)

    Rubin, Olivier

    2011-01-01

    This article examines the local socio-political causes behind a sudden wave of starvation deaths that swept across the West Bengali village of Amlashol during the summer of 2004. Following the new paradigm of famine analysis where focus is placed on political failures, the article addresses three...... of chronic food insecurity into an acute hunger crisis, which was not mitigated by effective public policies at the local level due to extensive political patronage and a politicisation of the bureaucracy. Amlashol suffered disproportionally from this due to the village’s affiliation with a weak...

  1. Tolerance Induction of Temperature and Starvation with Tricalcium Phosphate on Preservation and Sporulation in Bacillus amyloliquefaciens Detected by Flow Cytometry.

    Science.gov (United States)

    Shahrokh Esfahani, Samaneh; Emtiazi, Giti; Shafiei, Rasoul; Ghorbani, Najmeh; Zarkesh Esfahani, Seyed Hamid

    2016-09-01

    The Bacillus species have many applications in the preparation of various enzymes, probiotic, biofertilizer, and biomarkers for which the survival of resting cells and spore formation under different conditions are important. In this study, water and saline along with different mineral substances such as calcium carbonate, calcium phosphate, and silica were used for the detection of survival and preservation of Bacillus amyloliquefaciens. The results showed intensive death of resting cells at 8 °C, but significant survival at 28 °C after one month. However, preservation by minerals significantly decreased the rate of death and induced sporulation at both the temperatures. The resting cells were maintained at room temperature (about 60 % of the initial population survived after a month) in the presence of tricalcium phosphate. The results showed that temperature has more effect on sporulation compare with starvation. The sporulation in normal saline at 28 °C was 70 times more than that at 8 °C; meanwhile, addition of tricalcium phosphate increases sporulation by 90 times. Also, the FTIR data showed the interaction of tricalcium phosphate with spores and resting cells. The discrimination of sporulation from non-sporulation state was performed by nucleic acid staining with thiazole orange and detected by flow cytometry. The flow cytometric studies confirmed that the rates of sporulation in pure water were significantly more at 28 °C. This is the first report on the detection of bacterial spore with thiazole orange by flow cytometry and also on the interaction of tricalcium phosphate with spores by FTIR analyses.

  2. Monitoring protein turnover during phosphate starvation-dependent autophagic degradation using a photoconvertible fluorescent protein aggregate in tobacco BY-2 cells.

    Science.gov (United States)

    Tasaki, Maiko; Asatsuma, Satoru; Matsuoka, Ken

    2014-01-01

    We have developed a system for quantitative monitoring of autophagic degradation in transformed tobacco BY-2 cells using an aggregate-prone protein comprised of cytochrome b5 (Cyt b5) and a tetrameric red fluorescent protein (RFP). Unfortunately, this system is of limited use for monitoring the kinetics of autophagic degradation because the proteins synthesized before and after induction of autophagy cannot be distinguished. To overcome this problem, we developed a system using kikume green-red (KikGR), a photoconvertible and tetrameric fluorescent protein that changes its fluorescence from green to red upon irradiation with purple light. Using the fusion protein of Cyt b5 and KikGR together with a method for the bulk conversion of KikGR, which we had previously used to convert the Golgi-localized monomeric KikGR fusion protein, we were able to monitor both the growth and de novo formation of aggregates. Using this system, we found that tobacco cells do not cease protein synthesis under conditions of phosphate (Pi)-starvation. Induction of autophagy under Pi-starvation, but not under sugar- or nitrogen-starvation, was specifically inhibited by phosphite, which is an analog of Pi with a different oxidation number. Therefore, the mechanism by which BY-2 cells can sense Pi-starvation and induce autophagy does not involve sensing a general decrease in energy supply and a specific Pi sensor might be involved in the induction of autophagy under Pi-starvation.

  3. The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster.

    Science.gov (United States)

    Cannell, Elizabeth; Dornan, Anthony J; Halberg, Kenneth A; Terhzaz, Selim; Dow, Julian A T; Davies, Shireen-A

    2016-06-01

    Malpighian tubules are critical organs for epithelial fluid transport and stress tolerance in insects, and are under neuroendocrine control by multiple neuropeptides secreted by identified neurons. Here, we demonstrate roles for CRF-like diuretic hormone 44 (DH44) and Drosophila melanogaster kinin (Drome-kinin, DK) in desiccation and starvation tolerance. Gene expression and labelled DH44 ligand binding data, as well as highly selective knockdowns and/or neuronal ablations of DH44 in neurons of the pars intercerebralis and DH44 receptor (DH44-R2) in Malpighian tubule principal cells, indicate that suppression of DH44 signalling improves desiccation tolerance of the intact fly. Drome-kinin receptor, encoded by the leucokinin receptor gene, LKR, is expressed in DH44 neurons as well as in stellate cells of the Malpighian tubules. LKR knockdown in DH44-expressing neurons reduces Malpighian tubule-specific LKR, suggesting interactions between DH44 and LK signalling pathways. Finally, although a role for DK in desiccation tolerance was not defined, we demonstrate a novel role for Malpighian tubule cell-specific LKR in starvation tolerance. Starvation increases gene expression of epithelial LKR. Also, Malpighian tubule stellate cell-specific knockdown of LKR significantly reduced starvation tolerance, demonstrating a role for neuropeptide signalling during starvation stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Inhibition of CLIC4 enhances autophagy and triggers mitochondrial and ER stress-induced apoptosis in human glioma U251 cells under starvation.

    Directory of Open Access Journals (Sweden)

    Jiateng Zhong

    Full Text Available CLIC4/mtCLIC, a chloride intracellular channel protein, localizes to mitochondria, endoplasmic reticulum (ER, nucleus and cytoplasm, and participates in the apoptotic response to stress. Apoptosis and autophagy, the main types of the programmed cell death, seem interconnected under certain stress conditions. However, the role of CLIC4 in autophagy regulation has yet to be determined. In this study, we demonstrate upregulation and nuclear translocation of the CLIC4 protein following starvation in U251 cells. CLIC4 siRNA transfection enhanced autophagy with increased LC3-II protein and puncta accumulation in U251 cells under starvation conditions. In that condition, the interaction of the 14-3-3 epsilon isoform with CLIC4 was abolished and resulted in Beclin 1 overactivation, which further activated autophagy. Moreover, inhibiting the expression of CLIC4 triggered both mitochondrial apoptosis involved in Bax/Bcl-2 and cytochrome c release under starvation and endoplasmic reticulum stress-induced apoptosis with CHOP and caspase-4 upregulation. These results demonstrate that CLIC4 nuclear translocation is an integral part of the cellular response to starvation. Inhibiting the expression of CLIC4 enhances autophagy and contributes to mitochondrial and ER stress-induced apoptosis under starvation.

  5. A comparison of the transcriptome of Drosophila melanogaster in response to entomopathogenic fungus, ionizing radiation, starvation and cold shock.

    Science.gov (United States)

    Moskalev, Alexey; Zhikrivetskaya, Svetlana; Krasnov, George; Shaposhnikov, Mikhail; Proshkina, Ekaterina; Borisoglebsky, Dmitry; Danilov, Anton; Peregudova, Darya; Sharapova, Irina; Dobrovolskaya, Eugenia; Solovev, Ilya; Zemskaya, Nadezhda; Shilova, Lyubov; Snezhkina, Anastasia; Kudryavtseva, Anna

    2015-01-01

    The molecular mechanisms that determine the organism's response to a variety of doses and modalities of stress factors are not well understood. We studied effects of ionizing radiation (144, 360 and 864 Gy), entomopathogenic fungus (10 and 100 CFU), starvation (16 h), and cold shock (+4, 0 and -4°C) on an organism's viability indicators (survival and locomotor activity) and transcriptome changes in the Drosophila melanogaster model. All stress factors but cold shock resulted in a decrease of lifespan proportional to the dose of treatment. However, stress-factors affected locomotor activity without correlation with lifespan. Our data revealed both significant similarities and differences in differential gene expression and the activity of biological processes under the influence of stress factors. Studied doses of stress treatments deleteriously affect the organism's viability and lead to different changes of both general and specific cellular stress response mechanisms.

  6. Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti

    OpenAIRE

    Tavormina, Patricia L.; Kellermann, Matthias Y.; Antony, Chakkiath Paul; Tocheva, Elitza I.; Dalleska, Nathan F.; Jensen, Ashley J.; Valentine, David L.; Hinrichs, Kai-Uwe; Jensen, Grant J.; Dubilier, Nicole; Orphan, Victoria J.

    2017-01-01

    In the deep ocean, the conversion of methane into derived carbon and energy drives the establishment of diverse faunal communities. Yet specific biological mechanisms underlying the introduction of methane-derived carbon into the food web remain poorly described, due to a lack of cultured representative deep-sea methanotrophic prokaryotes. Here, the response of the deep-sea aerobic methanotroph Methyloprofundus sedimenti to methane starvation and recovery was characterized. By combining lipid...

  7. Nondiabetic ketoacidosis in a pregnant woman due to acute starvation with concomitant influenza A (H1N1) and respiratory failure.

    Science.gov (United States)

    Skalley, G; Rodríguez-Villar, S

    2018-02-28

    Threatening refractory metabolic acidosis due to short-term starvation nondiabetic ketoacidosis is rarely reported. Severe ketoacidosis due to starvation itself is a rare occurrence, and more so in pregnancy with a concomitant stressful clinical situation. This case report presents a nondiabetic woman admitted in intensive care for respiratory failure type 1 during the third trimester of pregnancy with a severe metabolic acidosis refractory to medical treatment. We diagnosed the patient with acute starvation ketoacidosis based on her history and the absence of other causes of high anion gap metabolic acidosis after doing a rigorous analysis of her acid-base disorder. Crown Copyright © 2018. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Everyday life in wartime Arkhangelsk: The problem of starvation and death during the Second World War (1939–1945)

    OpenAIRE

    Khatanzeiskaya, Elizaveta

    2015-01-01

    The article «Everyday Life in Wartime Arkhangelsk: The Problem of Starvation and Death during the Second World War (1939–1945)» is based on primary sources: interviews with eyewitnesses, memoirs, materials of press, diaries and archival documents. During the Second World War more than 40 thousand civilians died in Arkhangelsk (one fourth of its prewar population) because of starvation. This paper is an attempt to explain this phenomenon. 

  9. Phosphorus starvation induces membrane remodeling and recycling in Emiliania huxleyi.

    Science.gov (United States)

    Shemi, Adva; Schatz, Daniella; Fredricks, Helen F; Van Mooy, Benjamin A S; Porat, Ziv; Vardi, Assaf

    2016-08-01

    Nutrient availability is an important factor controlling phytoplankton productivity. Phytoplankton contribute c. 50% of the global photosynthesis and possess efficient acclimation mechanisms to cope with nutrient stress. We investigate the cellular response of the bloom-forming coccolithophore Emiliania huxleyi to phosphorus (P) scarcity, which is often a limiting factor in marine ecosystems. We combined mass spectrometry, fluorescence microscopy, transmission electron microscopy (TEM) and gene expression analyses in order to assess diverse cellular features in cells exposed to P limitation and recovery. Early starvation-induced substitution of phospholipids in the cells' membranes with galacto- and betaine lipids. Lipid remodeling was rapid and reversible upon P resupply. The PI3K inhibitor wortmannin reduced phospholipid substitution, suggesting a possible involvement of PI3K- signaling in this process. In addition, P limitation enhanced the formation and acidification of membrane vesicles in the cytoplasm. Intracellular vesicles may facilitate the recycling of cytoplasmic content, which is engulfed in the vesicles and delivered to the main vacuole. Long-term starvation was characterized by a profound increase in cell size and morphological alterations in cellular ultrastructure. This study provides cellular and molecular basis for future ecophysiological assessment of natural E. huxleyi populations in oligotrophic regions. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Metabolic rate regulates L1 longevity in C. elegans.

    Directory of Open Access Journals (Sweden)

    Inhwan Lee

    Full Text Available Animals have to cope with starvation. The molecular mechanisms by which animals survive long-term starvation, however, are not clearly understood. When they hatch without food, C. elegans arrests development at the first larval stage (L1 and survives more than two weeks. Here we show that the survival span of arrested L1s, which we call L1 longevity, is a starvation response regulated by metabolic rate during starvation. A high rate of metabolism shortens the L1 survival span, whereas a low rate of metabolism lengthens it. The longer worms are starved, the slower they grow once they are fed, suggesting that L1 arrest has metabolic costs. Furthermore, mutants of genes that regulate metabolism show altered L1 longevity. Among them, we found that AMP-dependent protein kinase (AMPK, as a key energy sensor, regulates L1 longevity by regulating this metabolic arrest. Our results suggest that L1 longevity is determined by metabolic rate and that AMPK as a master regulator of metabolism controls this arrest so that the animals survive long-term starvation.

  11. Neomercazole protection against radiation-induced changes in bioamines and testicular metabolism of rats during starvation stress

    International Nuclear Information System (INIS)

    Hasan, S.S.; Kushwaha, A.K.S.

    1987-01-01

    Effect of X rays was studied on normally fed and starved rats vis-a-vis neomercazole, a sulfur containing carbimazone as a chemical radioprotector. Levels of 5-hydroxyindoleacetic acid and vinylmandelic acid which were found rising following exposure to X-rays, were significantly curtailed by the treatment with radioprotector in the protected-cum-irradiated rats. Administration of neomercazole offered protection to the testes against radiation injury by increasing alkaline phophatase and cholesterol contents in the testes of drug-treated-cum-irradiated animals. Pretreatment of neomercazole reduced the rate of mortality in the starvation-cum-irradiated animals as compared to the nontreated starvation-cum-irradiated animals. (author)

  12. A multi-pronged investigation into the effect of glucose starvation and culture duration on fed-batch CHO cell culture

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian

    2015-01-01

    to the interplay between the dilution effect associated with change in specific productivity of mAbs and the changed nucleotide sugar metabolism. Herein, we also show and discuss that increased cell culture duration negatively affect the maturation of glycans. In addition, comparative proteomics analysis of cells......In this study, omics-based analysis tools were used to explore the effect of glucose starvation and culture duration on monoclonal antibody (mAb) production in fed-batch CHO cell culture to gain better insight into how these parameters can be controlled to ensure optimal mAb productivity...... and quality. Titer and N-glycosylation of mAbs, as well as proteomic signature and metabolic status of the production cells in the culture were assessed. We found that the impact of glucose starvation on the titer and N-glycosylation of mAbs was dependent on the degree of starvation during early stationary...

  13. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation

    NARCIS (Netherlands)

    Lopez Raez, J.A.; Charnikhova, T.; Gomez-Roldan, M.V.; Matusova, R.; Kohlen, W.; Vos, de C.H.; Verstappen, F.W.A.; Puech-Pages, V.; Becard, G.; Mulder, P.P.J.; Bouwmeester, H.J.

    2008-01-01

    Strigolactones are rhizosphere signalling compounds that mediate host location in arbuscular mycorrhizal (AM) fungi and parasitic plants. Here, the regulation of the biosynthesis of strigolactones is studied in tomato (Solanum lycopersicum). Strigolactone production under phosphate starvation, in

  14. Perception of Arabidopsis AtPep peptides, but not bacterial elicitors, accelerates starvation-induced senescence

    Directory of Open Access Journals (Sweden)

    Kay eGully

    2015-01-01

    Full Text Available Members of the AtPep group of Arabidopsis endogenous peptides have frequently been reported to induce pattern-triggered immunity and to increase resistance to diverse pathogens by amplifying the innate immune response. Here, we made the surprising observation that dark-induced leaf senescence was accelerated by the presence of Peps. Adult leaves as well as leaf discs of Col-0 wild type plants showed a Pep-triggered early onset of chlorophyll breakdown and leaf yellowing whereas pepr1 pepr2 double mutant plants were insensitive. In addition, this response was dependent on ethylene signaling and inhibited by the addition of cytokinins. Notably, addition of the bacterial elicitors flg22 or elf18, both potent inducers of pattern-triggered immunity, did not provoke an early onset of leaf senescence.Continuous darkness leads to energy deprivation and starvation and therewith promotes leaf senescence. We found that continuous darkness also strongly induced PROPEP3 transcription. Moreover, Pep-perception led to a rapid induction of PAO, APG7 and APG8a, genes indispensable for chlorophyll degradation as well as autophagy, respectively, and all three hallmarks of starvation and senescence. Notably, addition of sucrose as a source of energy inhibited the Pep-triggered early onset of senescence. In conclusion, we report that Pep-perception accelerates dark/starvation-induced senescence via an early induction of chlorophyll degradation and autophagy. This represents a novel and unique characteristic of PEPR signaling, unrelated to pattern-triggered immunity.

  15. Regional brain glucose use in unstressed rats after two days of starvation

    International Nuclear Information System (INIS)

    Mans, A.M.; Davis, D.W.; Hawkins, R.A.

    1987-01-01

    Regional brain glucose use was measured in conscious, unrestrained, fed rats and after 2 days of starvation, using quantitative autoradiography and [6- 14 C]glucose. Plasma glucose, lactate, and ketone body concentrations and brain glucose and lactate content were measured in separate groups of rats. Glucose concentrations were lower in starved rats in both plasma and brain; plasma ketone body concentrations were elevated. Glucose use was found to be lower throughout the brain by about 12%. While some areas seemed to be affected more than others, statistical analysis showed that none were exceptionally different. The results could not be explained by increased loss of 14 C as lactate or pyruvate during the experimental period, because the arteriovenous differences of these species were insignificant. The calculated contribution by ketone bodies to the total energy consumption was between 3 and 9% for the brain as a whole in the starved rats and could, therefore, partially account for the depression seen in glucose use. It was concluded that glucose oxidation is slightly depressed throughout the brain after 2 days of starvation

  16. Charging Levels of Four tRNA Species in Escherichia coli Rel+ and REL- Strains during Amino Acid Starvation: A Simple Model for the Effect of ppGpp on Translational Accuracy

    DEFF Research Database (Denmark)

    Sørensen, M.A.

    2001-01-01

    Escherichia coli strains mutated in the relA gene lack the ability to produce ppGpp during amino acid starvation. One consequence of this deficiency is a tenfold increase in misincorporation at starved codons compared to the wild-type. Previous work had shown that the charging levels of tRNAs were...... the same in Rel+ and Rel- strains and reduced, at most, two- to fivefold in both strains during starvation. The present reinvestigation of the charging levels of tRNA2Arg, tRNA1Thr, tRNA1Leu and tRNAHis during starvation of isogenic Rel+ and Rel- strains showed that starvation reduced charging levels...... tenfold to 40-fold. This reduction corresponds much better with the decreased rate of protein synthesis during starvation than that reported earlier. The determination of the charging levels of tRNA2Arg and tRNA1Thr during starvation were accurate enough to demonstrate that charging levels were at least...

  17. Unsatisfactory knowledge and use of terminology regarding malnutrition, starvation, cachexia and sarcopenia among dietitians

    NARCIS (Netherlands)

    ter Beek, Lies; Vanhauwaert, Erika; Slinde, Frode; Orrevall, Ylva; Henriksen, Christine; Johansson, Madelene; Vereecken, Carine; Rothenberg, Elisabet; Jager-Wittenaar, Harriët

    2016-01-01

    Clinical signs of malnutrition, starvation, cachexia and sarcopenia overlap, as they all imply muscle wasting to a various extent. However, the underlying mechanisms differ fundamentally and therefore distinction between these phenomena has therapeutic and prognostic implications. We aimed to

  18. Excess Vitamin Intake before Starvation does not Affect Body Mass, Organ Mass, or Blood Variables but Affects Urinary Excretion of Riboflavin in Starving Rats.

    Science.gov (United States)

    Moriya, Aya; Fukuwatari, Tsutomu; Shibata, Katsumi

    2013-01-01

    B-vitamins are important for producing energy from amino acids, fatty acids, and glucose. The aim of this study was to elucidate the effects of excess vitamin intake before starvation on body mass, organ mass, blood, and biological variables as well as on urinary excretion of riboflavin in rats. Adult rats were fed two types of diets, one with a low vitamin content (minimum vitamin diet for optimum growth) and one with a sufficient amount of vitamins (excess vitamin diet). Body mass, organ mass, and blood variables were not affected by excess vitamin intake before starvation. Interestingly, urinary riboflavin excretion showed a different pattern. Urine riboflavin in the excess vitamin intake group declined gradually during starvation, whereas it increased in the low vitamin intake group. Excess vitamin intake before starvation does not affect body mass, organ mass, or blood variables but does affect the urinary excretion of riboflavin in starving rats.

  19. Species-specific roles of sulfolipid metabolism in acclimation of photosynthetic microbes to sulfur-starvation stress.

    Directory of Open Access Journals (Sweden)

    Norihiro Sato

    Full Text Available Photosynthetic organisms utilize sulfate for the synthesis of sulfur-compounds including proteins and a sulfolipid, sulfoquinovosyl diacylglycerol. Upon ambient deficiency in sulfate, cells of a green alga, Chlamydomonas reinhardtii, degrade the chloroplast membrane sulfolipid to ensure an intracellular-sulfur source for necessary protein synthesis. Here, the effects of sulfate-starvation on the sulfolipid stability were investigated in another green alga, Chlorella kessleri, and two cyanobacteria, Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. The results showed that sulfolipid degradation was induced only in C. kessleri, raising the possibility that this degradation ability was obtained not by cyanobacteria, but by eukaryotic algae during the evolution of photosynthetic organisms. Meanwhile, Synechococcus disruptants concerning sqdB and sqdX genes, which are involved in successive reactions in the sulfolipid synthesis pathway, were respectively characterized in cellular response to sulfate-starvation. Phycobilisome degradation intrinsic to Synechococcus, but not to Synechocystis, and cell growth under sulfate-starved conditions were repressed in the sqdB and sqdX disruptants, respectively, relative to in the wild type. Their distinct phenotypes, despite the common loss of the sulfolipid, inferred specific roles of sqdB and sqdX. This study demonstrated that sulfolipid metabolism might have been developed to enable species- or cyanobacterial-strain dependent processes for acclimation to sulfate-starvation.

  20. Streptococcus phocae infections associated with starvation in Cape fur seals : case report

    Directory of Open Access Journals (Sweden)

    M.M. Henton

    1999-07-01

    Full Text Available Mortalities and abortions associated with starvation occurred at Cape Cross, Namibia, in Cape fur seals (Arctocephalus pusillus pusillus. Affected seals showed lethargy and emaciation, and the most common pathological signs were those of a respiratory infection, both in adults and offspring. Streptococcus phocae was isolated from adult seals, a cub and aborted foetuses.

  1. Survival strategies in arctic ungulates

    Directory of Open Access Journals (Sweden)

    N. J. C. Tyler

    1990-09-01

    Full Text Available Arctic ungulates usually neither freeze nor starve to death despite the rigours of winter. Physiological adaptations enable them to survive and reproduce despite long periods of intense cold and potential undernutrition. Heat conservation is achieved by excellent insulation combined with nasal heat exchange. Seasonal variation in fasting metabolic rate has been reported in several temperate and sub-arctic species of ungulates and seems to occur in muskoxen. Surprisingly, there is no evidence for this in reindeer. Both reindeer and caribou normally maintain low levels of locomotor activity in winter. Light foot loads are important for reducing energy expenditure while walking over snow. The significance and control of selective cooling of the brain during hard exercise (e.g. escape from predators is discussed. Like other cervids, reindeer and caribou display a pronounced seasonal cycle of appetite and growth which seems to have an intrinsic basis. This has two consequences. First, the animals evidently survive perfectly well despite enduring negative energy balance for long periods. Second, loss of weight in winter is not necessarily evidence of undernutrition. The main role of fat reserves, especially in males, may be to enhance reproductive success. The principal role of fat reserves in winter appears to be to provide a supplement to, rather than a substitute for, poor quality winter forage. Fat also provides an insurance against death during periods of acute starvation.

  2. Excess Vitamin Intake before Starvation does not Affect Body Mass, Organ Mass, or Blood Variables but Affects Urinary Excretion of Riboflavin in Starving Rats

    Directory of Open Access Journals (Sweden)

    Aya Moriya

    2013-01-01

    Full Text Available B-vitamins are important for producing energy from amino acids, fatty acids, and glucose. The aim of this study was to elucidate the effects of excess vitamin intake before starvation on body mass, organ mass, blood, and biological variables as well as on urinary excretion of riboflavin in rats. Adult rats were fed two types of diets, one with a low vitamin content (minimum vitamin diet for optimum growth and one with a sufficient amount of vitamins (excess vitamin diet. Body mass, organ mass, and blood variables were not affected by excess vitamin intake before starvation. Interestingly, urinary riboflavin excretion showed a different pattern. Urine riboflavin in the excess vitamin intake group declined gradually during starvation, whereas it increased in the low vitamin intake group. Excess vitamin intake before starvation does not affect body mass, organ mass, or blood variables but does affect the urinary excretion of riboflavin in starving rats.

  3. Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p

    DEFF Research Database (Denmark)

    Madsen, Christian Toft; Sylvestersen, Kathrine Beck; Young, Clifford

    2015-01-01

    deficiency. Upregulated mitochondrial acetylation sites correlate with the cellular deficiency of the Hst4p deacetylase, and a biotin-starvation-induced accumulation of Hst4p in mitochondria supports a role for Hst4p in lowering mitochondrial acetylation. We show that biotin starvation and knockout of Hst4p...... cause alterations in cellular respiration and an increase in reactive oxygen species (ROS). These results suggest that Hst4p plays a pivotal role in biotin metabolism and cellular energy homeostasis, and supports that Hst4p is a functional yeast homologue of the sirtuin deacetylase SIRT3. With biotin...

  4. Effect of acute maternal starvation on tyrosine metabolism and protein synthesis in fetal sheep

    International Nuclear Information System (INIS)

    Krishnamurti, C.R.; Schaefer, A.L.

    1984-01-01

    To determine the effects of acute maternal starvation on intrauterine growth, tyrosine concentration and specific activity values in plasma, intracellular free and protein bound pools were determined in catheterized ovine fetuses following an 8 h continuous infusion of L-[2,3,5,6 3 H] or L-[U- 14 C] tyrosine into the ewe and fetus respectively at 115-125 days of gestation. From the kinetic data the rates of whole body and tissue fractional protein synthesis were calculated. Although placental protein synthesis was not significantly changed as a result of acute maternal starvation, fetal whole body protein synthesis was reduced from 63 g/d/kg in the fed to 25 g/d/kg in the starved condition. There was also a 10 fold reduction in the net placental transfer of tyrosine to the fetus in the starved ewes. In addition, a three fold increase was observed in the quantity of tyrosine used for oxidation by the fetuses of starved ewes, changing from 5.2% of tyrosine net utilization in the fed to 13.7% in the starved condition. Significant reductions in tissue fractional protein synthesis rates were also seen in the liver, brain, lung kidney and GIT tissues from 78, 37, 65, 45 and 71%/d respectively in the fed to 12, 10, 23, 22 and 35%/d in the fetuses of starved ewes. The data indicate that during acute maternal starvation the sheep fetus utilizes more tyrosine for oxidation and less for anabolic purposes which is reflected in a decrease both in whole body and tissue fractional rates of protein synthesis

  5. Antimicrobial efficacy of chlorine dioxide against Candida albicans in stationary and starvation phases in human root canal: An in-vitro study

    Directory of Open Access Journals (Sweden)

    Shirur Krishnaraj Somayaji

    2014-01-01

    Full Text Available Introduction: Candida albicans (C. albicans is the most commonly isolated fungal pathogen from dental root canal. C. albicans forms biofilm and develops resistance against root canal irrigants . This study determines the fungicidal efficacy of 13.8% chlorine dioxide in extracted human teeth at stationary and starvation phases of C. albicans. Materials and Methods: Teeth were decoronated and coronal portion of the roots were prepared into blocks, which were incubated at 37°C with C. albicans for five days. The samples were treated with chlorine dioxide for 12 and 20 minutes. Total of fifty blocks were taken in the study. Colony-forming units were counted in Sabourauds dextrose agar and scanning electron microscopic observation was done. Data were analyzed by one-way ANOVA and Bonferoni′s post hoc test. Results: Teeth at stationary phase (12 min showed mean colony count of 28,000 ± 1814 which is significantly (P < 0.001 less than control group. Teeth at starvation phase (12 min showed colony count of 65,600 ± 1912 which is also significantly (P < 0.001 less than control group. Teeth irrigated at stationary phase (20 min showed mean colony count of 23,400 ± 1776 (P < 0.001. Teeth irrigated at starvation phase (20 min showed mean colony count of 48,100 ± 1663 which is also significantly (P < 0.001 less than that of control group. Conclusion: Treatment of chlorine dioxide reduces the C. albicans count in root canals of extracted human teeth at stationary and starvation phases. Efficacy of chlorine dioxide against C. albicans is relatively higher in stationary phase than that of starvation phase.

  6. Insertion-Sequence-Mediated Mutations Isolated During Adaptation to Growth and Starvation in Lactococcus lactis.

    NARCIS (Netherlands)

    Visser, de J.A.G.M.; Akkermans, A.D.L.; Hoekstra, R.F.; Vos, de W.M.

    2004-01-01

    We studied the activity of three multicopy insertion sequence (IS) elements in 12 populations of Lactococcus lactis IL1403 that evolved in the laboratory for 1000 generations under various environmental conditions (growth or starvation and shaken or stationary). Using RFLP analysis of single-clone

  7. An evolutionarily significant unicellular strategy in response to starvation stress in Dictyostelium social amoebae [v1; ref status: indexed, http://f1000r.es/3hg

    Directory of Open Access Journals (Sweden)

    Darja Dubravcic

    2014-06-01

    Full Text Available The social amoeba Dictyostelium discoideum is widely studied for its multicellular development program as a response to starvation and constitutes a model of choice in microbial cooperation studies. Aggregates of up to 106 cells form fruiting bodies containing two cell types: (i dormant spores (~80% that can persist for months in the absence of nutrients, and (ii dead stalk cells (~20% that promote the dispersion of the spores towards nutrient-rich areas. It is often overlooked that not all cells aggregate upon starvation. Using a new quantitative approach based on time-lapse fluorescence microscopy and a low ratio of reporting cells, we have quantified this fraction of non-aggregating cells. In realistic starvation conditions, up to 15% of cells do not aggregate, which makes this third cell fate a significant component of the population-level response of social amoebae to starvation. Non-aggregating cells have an advantage over cells in aggregates since they resume growth earlier upon arrival of new nutrients, but have a shorter lifespan under prolonged starvation. We find that phenotypic heterogeneities linked to cell nutritional state bias the representation of cells in the aggregating vs. non-aggregating fractions, and thus regulate population partitioning. Next, we report that the fraction of non-aggregating cells depends on genetic factors that regulate the timing of starvation, signal sensing efficiency and aggregation efficiency. In addition, interactions between clones in mixtures of non-isogenic cells affect the partitioning of each clone into both fractions. We further test the evolutionary significance of the non-aggregating cell fraction. The partitioning of cells into aggregating and non-aggregating fractions is optimal in fluctuating environments with an unpredictable duration of starvation periods. D. discoideum thus constitutes a model system lying at the intersection of microbial cooperation and bet hedging, defining a new

  8. Life explained by heat engines

    NARCIS (Netherlands)

    Muller, A.W.J.; Seckbach, J.

    2012-01-01

    Mitochondria are in essence fuel cells that use organics as reductant and oxygen as oxidant. In engineering, increasing attention is being given to the replacement of the internal combustion engine by the fuel cell. According to the Thermosynthesis theory, a similar replacement of heat engines by

  9. Leptin suppresses semi-starvation induced hyperactivity in rats: implications for anorexia nervosa.

    Science.gov (United States)

    Exner, C; Hebebrand, J; Remschmidt, H; Wewetzer, C; Ziegler, A; Herpertz, S; Schweiger, U; Blum, W F; Preibisch, G; Heldmaier, G; Klingenspor, M

    2000-09-01

    Semi-starvation induced hyperactivity (SIH) occurs in rodents upon caloric restriction. We hypothesized that SIH is triggered by the decline in leptin secretion associated with food restriction. To test this hypothesis, rats, which had established a stable level of activity, were treated with leptin or vehicle via implanted minipumps concomitantly to initiation of food restriction for 7 days. In a second experiment treatment was initiated after SIH had already set in. In contrast to the vehicle-treated rats, which increased their baseline activity level by 300%, the development of SIH was suppressed by leptin. Furthermore, leptin was able to stop SIH, after it had set in. These results underscore the assumed major role of leptin in the adaptation to semi-starvation. Because SIH has been viewed as a model for anorexia nervosa, we also assessed subjective ratings of motor restlessness in 30 patients with this eating disorder in the emaciated state associated with hypoleptinemia and after increments in leptin secretion brought upon by therapeutically induced weight gain. Hypoleptinemic patients ranked their motor restlessness higher than upon attainment of their maximal leptin level during inpatient treatment. Thus, hypoleptinemia might also contribute to the hyperactivity frequently associated with anorexia nervosa.

  10. Starvation and diet according to the Vinzenz Priessnitz family water book of 1847.

    Science.gov (United States)

    Rohde, Jürgen

    2007-02-01

    Vinzenz Priessnitz (1799-1851) did not only carry out water treatments within the scope of his cure, but also movement therapy, aerial and solar baths, natural lifestyle and, above all, diet therapy. According to the literature Priessnitz only seldom allowed starvation within his cure because this would break his preferred principle of restoration. Nevertheless, the widely unknown 'Vinzenz Priessnitz family water book' which he dictated to his daughter Sophie in 1847, includes 13 orders of starvation for a series of indications (breast inflammations, pneumonia, pulmonary embolism, cholera, intestines inflammation, tapeworm) and symptoms (diarrhoea and vomiting, heart cramp, head woe, faint, stone pains, feeling of sickness). Furthermore, it comprises diet recommendations on cold water drinking, milk and cold confection of pastry, compote and buttermilk, vegetables, fruit and strawberries, fruit and frozen food, no meat, little meat and cold food. In the view of the literature, these diet principles and means as well as their applications then and now are discussed. As for those days the Priessnitz diet was quite modern, manifold, logic and 'natural'.

  11. [Effect of starvation on blood protein levels in the population of Dobrinja (1992-1995)].

    Science.gov (United States)

    Hasković, E

    2000-01-01

    In nutritional protein deficiency, numerous studies verified utilization of amino acids generated from tissue degradation in intensive protein synthesis. Unlike liver, muscle protein synthesis is extremely dependent on external supplies of essential amino acids. Prolonged nutritional protein deficiency results in decrease of body weight as well as total protein concentration, in particular in early days of starvation. In prolonged starvation during the war, significant decrease of body weight was registered in 70 subjects while their total protein concentration remained within the expected range and did not significantly differ the values recorded in the control group. Concentration of serum albumines in the control group was lower than the concentration recorded in the tested group, while the serum globulins concentration was higher in the control group. Although the difference in body weight between the tested and the control group was statistically significant, no significant difference in the concentration of total proteins, albumines and globulines was recorded.

  12. Changes in Hematological, Biochemical and Non-specific Immune Parameters of Olive Flounder, , Following Starvation

    Directory of Open Access Journals (Sweden)

    Jong-Hyun Kim

    2014-09-01

    Full Text Available Triplicate groups of fed and starved olive flounder, Paralichthys olivaceus (body weight: 119.8±17.46 g, were examined over 42 days for physiological changes using hematological, biochemical, and non-specific immune parameters. No significant differences in concentrations of blood hemoglobin and hematocrit and plasma levels of total cholesterol, aspartate aminotransferase, alanine aminotransferase, glucose, and cortisol were detected between fed and starved groups at any sampling time throughout the experiment. In contrast, plasma total protein concentrations were significantly lower in starved fish than in fed fish from day 7 onwards. Moreover, plasma lysozyme concentrations were significantly higher in starved flounder from day 21 onwards. This result confirms that the response of olive flounder to short-term (less than about 1.5 months starvation consists of a readjustment of metabolism rather than the activation of an alarm-stress response. The present results indicate that starvation does not significantly compromise the health status of fish despite food limitation.

  13. Short-term starvation with a near-fatal asthma attack induced ketoacidosis in a nondiabetic pregnant woman: A case report.

    Science.gov (United States)

    Wei, Kuang-Yu; Chang, Shan-Yueh; Wang, Sheng-Huei; Su, Her-Young; Tsai, Chen-Liang

    2016-06-01

    Life-threatening refractory metabolic acidosis due to starvation ketoacidosis is rarely reported, even among nondiabetic pregnant women, and may be overlooked. Furthermore, stressful situations may increase the acidosis severity.In the present case, a nondiabetic multiparous woman was admitted for a near-fatal asthma attack and vomiting during the third trimester of pregnancy. She was intubated and rapidly developed high anion gap metabolic acidosis. We diagnosed the patient with starvation ketoacidosis based on vomiting with concomitant periods of stress during pregnancy and the absence of other causes of high anion gap metabolic acidosis. She responded poorly to standard treatment, although the ketoacidosis and asthma promptly resolved after an emergency caesarean section. The patient and her baby were safely discharged.Short-term starvation, if it occurs during periods of stress and medication, can result in life-threatening ketoacidosis, even among nondiabetic women during the third trimester of pregnancy. Awareness of this condition may facilitate prompt recognition and proactive treatment for dietary and stress control, and emergent interventions may also improve outcomes.

  14. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger.

    Science.gov (United States)

    van Munster, Jolanda M; Daly, Paul; Delmas, Stéphane; Pullan, Steven T; Blythe, Martin J; Malla, Sunir; Kokolski, Matthew; Noltorp, Emelie C M; Wennberg, Kristin; Fetherston, Richard; Beniston, Richard; Yu, Xiaolan; Dupree, Paul; Archer, David B

    2014-11-01

    Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6h of exposure to wheat straw was very different from the response at 24h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24h of exposure to wheat straw, were also induced after 6h exposure. Importantly, over a third of the genes induced after 6h of exposure to wheat straw were also induced during 6h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Proteomic Profiling of De Novo Protein Synthesis in Starvation-Induced Autophagy Using Bioorthogonal Noncanonical Amino Acid Tagging.

    Science.gov (United States)

    Zhang, J; Wang, J; Lee, Y-M; Lim, T-K; Lin, Q; Shen, H-M

    2017-01-01

    Autophagy is an intracellular degradation process activated by stress factors such as nutrient starvation to maintain cellular homeostasis. There is emerging evidence demonstrating that de novo protein synthesis is involved in the autophagic process. However, up-to-date characterizing of these de novo proteins is technically difficult. In this chapter, we describe a novel method to identify newly synthesized proteins during starvation-mediated autophagy by bioorthogonal noncanonical amino acid tagging (BONCAT), in conjunction with isobaric tagging for relative and absolute quantification (iTRAQ)-based quantitative proteomics. l-azidohomoalanine (AHA) is an analog of methionine, and it can be readily incorporated into the newly synthesized proteins. The AHA-containing proteins can be enriched with avidin beads after a "click" reaction between alkyne-bearing biotin and the azide moiety of AHA. The enriched proteins are then subjected to iTRAQ™ labeling for protein identification and quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). By using this technique, we have successfully profiled more than 700 proteins that are synthesized during starvation-induced autophagy. We believe that this approach is effective in identification of newly synthesized proteins in the process of autophagy and provides useful insights to the molecular mechanisms and biological functions of autophagy. © 2017 Elsevier Inc. All rights reserved.

  16. Autophagy/Xenophagy as a survival strategy of cancer cells. The role of Cathepsins

    International Nuclear Information System (INIS)

    Malorni, W.; Matarrese, P.; Ascione, B.; Ciarlo, L.; Zakeri, Z.

    2009-01-01

    Macroautophagy, often referred as to autophagy (self-cannibalism), designates the genetically determined process by which portions of the cytoplasm, organelles and long-lived proteins are engulfed in double-membraned vacuoles (autophagosomes) and sent for lysosomal degradation. Basal levels of autophagy contribute to the maintenance of intracellular homoeostasis by ensuring the turnover of supernumerary, aged and/or damaged components. Under conditions of starvation, the autophagic pathway operates to supply cells with metabolic substrates, and thus represents an important pro-survival mechanism. In cultured cells, the withdrawal of growth factors, known to represent an experimental condition triggering autophagy, can also enhance xeno-cannibalism (xenophagy; xeno is from ancient greek=foreign)

  17. Identification of genes associated with resilience/vulnerability to sleep deprivation and starvation in Drosophila.

    Science.gov (United States)

    Thimgan, Matthew S; Seugnet, Laurent; Turk, John; Shaw, Paul J

    2015-05-01

    Flies mutant for the canonical clock protein cycle (cyc(01)) exhibit a sleep rebound that is ∼10 times larger than wild-type flies and die after only 10 h of sleep deprivation. Surprisingly, when starved, cyc(01) mutants can remain awake for 28 h without demonstrating negative outcomes. Thus, we hypothesized that identifying transcripts that are differentially regulated between waking induced by sleep deprivation and waking induced by starvation would identify genes that underlie the deleterious effects of sleep deprivation and/or protect flies from the negative consequences of waking. We used partial complementary DNA microarrays to identify transcripts that are differentially expressed between cyc(01) mutants that had been sleep deprived or starved for 7 h. We then used genetics to determine whether disrupting genes involved in lipid metabolism would exhibit alterations in their response to sleep deprivation. Laboratory. Drosophila melanogaster. Sleep deprivation and starvation. We identified 84 genes with transcript levels that were differentially modulated by 7 h of sleep deprivation and starvation in cyc(01) mutants and were confirmed in independent samples using quantitative polymerase chain reaction. Several of these genes were predicted to be lipid metabolism genes, including bubblegum, cueball, and CG4500, which based on our data we have renamed heimdall (hll). Using lipidomics we confirmed that knockdown of hll using RNA interference significantly decreased lipid stores. Importantly, genetically modifying bubblegum, cueball, or hll resulted in sleep rebound alterations following sleep deprivation compared to genetic background controls. We have identified a set of genes that may confer resilience/vulnerability to sleep deprivation and demonstrate that genes involved in lipid metabolism modulate sleep homeostasis. © 2015 Associated Professional Sleep Societies, LLC.

  18. Regulation of neuronal APL-1 expression by cholesterol starvation.

    Directory of Open Access Journals (Sweden)

    Mary Wiese

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a neurodegenerative disorder characterized by the deposition of β-amyloid plaques composed primarily of the amyloid-β peptide, a cleavage product of amyloid precursor protein (APP. While mutations in APP lead to the development of Familial Alzheimer's Disease (FAD, sporadic AD has only one clear genetic modifier: the ε4 allele of the apolipoprotein E (ApoE gene. Cholesterol starvation in Caenorhabditis elegans leads to molting and arrest phenotypes similar to loss-of-function mutants of the APP ortholog, apl-1 (amyloid precursor-like protein 1, and lrp-1 (lipoprotein receptor-related protein 1, suggesting a potential interaction between apl-1 and cholesterol metabolism. METHODOLOGY/PRINCIPAL FINDINGS: Previously, we found that RNAi knock-down of apl-1 leads to aldicarb hypersensitivity, indicating a defect in synaptic function. Here we find the same defect is recapitulated during lrp-1 knock-down and by cholesterol starvation. A cholesterol-free diet or loss of lrp-1 directly affects APL-1 levels as both lead to loss of APL-1::GFP fluorescence in neurons. However, loss of cholesterol does not affect global transcription or protein levels as seen by qPCR and Western blot. CONCLUSIONS: Our results show that cholesterol and lrp-1 are involved in the regulation of synaptic transmission, similar to apl-1. Both are able to modulate APL-1 protein levels in neurons, however cholesterol changes do not affect global apl-1 transcription or APL-1 protein indicating the changes are specific to neurons. Thus, regulation of synaptic transmission and molting by LRP-1 and cholesterol may be mediated by their ability to control APL-1 neuronal protein expression.

  19. Survival of added bacterial species and metabolism of toxic compounds in natural environments

    International Nuclear Information System (INIS)

    King, V.M.

    1987-01-01

    Bacteria able to degrade either 2,4-dichlorophenol (DCP) or phenanthrene (PHEN) were isolated from polluted freshwater environments. Two isolates able to degrade each compound were tested for mineralization with a sensitive 14 C assay and for survival in lake water and sewage using a selective medium. One DCP isolate was identified as Alcaligenes paradoxus and the other as Alcaligenes sp. One PHEN isolate was identified as Pseudomonas fluorescens and the other as Pseudomonas sp. All four isolates survived and grew in sterile environments which indicated that starvation would not be a factor in survival of these strains. The number of organisms declined immediately in number in nonsterile lake water. However, they did survive or even grow in nonsterile sewage for a short period before declining in number. Biotic factors appeared to be influential for survival and mineralization of target compounds in many environments. The removal of protozoa, which prey on bacteria, improved survival of the added cells, but had no influence on the mineralization of 10 μg DCP/L. In comparison, degradation of 10 and 25 mg DCP/L stopped after a few days. Yeast nitrogen base appeared to overcome the lack of nutrient regeneration, a function attributed to protozoa. The additional nutrients increased toxicant mineralization, especially when seeded with appropriate species. Thus, protozoa may limit growth of added cells but appear to be needed for mineralization of higher concentrations of DCP

  20. Vitamin D fails to prevent serum starvation- or staurosporine-induced apoptosis in human and rat osteosarcoma-derived cell lines

    International Nuclear Information System (INIS)

    Witasp, Erika; Gustafsson, Ann-Catrin; Cotgreave, Ian; Lind, Monica; Fadeel, Bengt

    2005-01-01

    Previous studies have suggested that 1,25(OH) 2 D 3 , the active form of vitamin D 3 , may increase the survival of bone-forming osteoblasts through an inhibition of apoptosis. On the other hand, vitamin D 3 has also been shown to trigger apoptosis in human cancer cells, including osteosarcoma-derived cell lines. In the present study, we show that 1,25(OH) 2 D 3 induces a time- and dose-dependent loss of cell viability in the rat osteosarcoma cell line, UMR-106, and the human osteosarcoma cell line, TE-85. We were unable, however, to detect nuclear condensation, phosphatidylserine externalization, or other typical signs of apoptosis in this model. Moreover, 1,25(OH) 2 D 3 failed to protect against apoptosis induced by serum starvation or incubation with the protein kinase inhibitor, staurosporine. These in vitro findings are thus at variance with several previous reports in the literature and suggest that induction of or protection against apoptosis of bone-derived cells may not be a primary function of vitamin D 3

  1. Severe Tryptophan Starvation Blocks Onset of Conventional Persistence and Reduces Reactivation of Chlamydia trachomatis▿

    Science.gov (United States)

    Leonhardt, Ralf M.; Lee, Seung-Joon; Kavathas, Paula B.; Cresswell, Peter

    2007-01-01

    The intracellular survival of the bacterial pathogen Chlamydia trachomatis depends on protein synthesis by the microbe soon after internalization. Pharmacologic inhibition of bacterial translation inhibits early trafficking of the parasitophorous vacuole (inclusion) to the microtubule-organizing center (MTOC) and promotes its fusion with lysosomes, which is normally blocked by Chlamydia. Depletion of cellular tryptophan pools by gamma interferon-inducible indoleamine-2,3-dioxygenase (IDO) is believed to be the major innate immune mechanism controlling C. trachomatis infection in human cells, an action to which the bacteria can respond by converting into a nonreplicating but highly reactivatable persistent state. However, whether severe IDO-mediated tryptophan starvation can be sufficient to fully arrest the chlamydial life cycle and thereby counteract the onset of persistence is unknown. Here we demonstrate that at low exogenous tryptophan concentrations a substantial fraction of C. trachomatis bacteria fail to traffic to the MTOC or to switch into the conventional persistent state in gamma interferon-induced human cells. The organisms stay scattered in the cell periphery, do not retain infectivity, and display only low transcriptional activity. Importantly, the rate at which these aberrant Chlamydia bacteria become reactivated upon replenishment of cellular tryptophan pools is substantially lower. Thus, severe tryptophan depletion in cells with high IDO activity affects chlamydial development more rigorously than previously described. PMID:17724071

  2. Studies on insulin receptor, 2. Studies on the influence of starvation and high fat diet on insulin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y [Hiroshima Univ. (Japan). School of Medicine

    1979-08-01

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using /sup 125/I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and /sup 125/I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and /sup 125/I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in /sup 125/I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia.

  3. Growth hormone-releasing hormone promotes survival of cardiac myocytes in vitro and protects against ischaemia-reperfusion injury in rat heart.

    Science.gov (United States)

    Granata, Riccarda; Trovato, Letizia; Gallo, Maria Pia; Destefanis, Silvia; Settanni, Fabio; Scarlatti, Francesca; Brero, Alessia; Ramella, Roberta; Volante, Marco; Isgaard, Jorgen; Levi, Renzo; Papotti, Mauro; Alloatti, Giuseppe; Ghigo, Ezio

    2009-07-15

    The hypothalamic neuropeptide growth hormone-releasing hormone (GHRH) stimulates GH synthesis and release in the pituitary. GHRH also exerts proliferative effects in extrapituitary cells, whereas GHRH antagonists have been shown to suppress cancer cell proliferation. We investigated GHRH effects on cardiac myocyte cell survival and the underlying signalling mechanisms. Reverse transcriptase-polymerase chain reaction analysis showed GHRH receptor (GHRH-R) mRNA in adult rat ventricular myocytes (ARVMs) and in rat heart H9c2 cells. In ARVMs, GHRH prevented cell death and caspase-3 activation induced by serum starvation and by the beta-adrenergic receptor agonist isoproterenol. The GHRH-R antagonist JV-1-36 abolished GHRH survival action under both experimental conditions. GHRH-induced cardiac cell protection required extracellular signal-regulated kinase (ERK)1/2 and phosphoinositide-3 kinase (PI3K)/Akt activation and adenylyl cyclase/cAMP/protein kinase A signalling. Isoproterenol strongly upregulated the mRNA and protein of the pro-apoptotic inducible cAMP early repressor, whereas GHRH completely blocked this effect. Similar to ARVMs, in H9c2 cardiac cells, GHRH inhibited serum starvation- and isoproterenol-induced cell death and apoptosis through the same signalling pathways. Finally, GHRH improved left ventricular recovery during reperfusion and reduced infarct size in Langendorff-perfused rat hearts, subjected to ischaemia-reperfusion (I/R) injury. These effects involved PI3K/Akt signalling and were inhibited by JV-1-36. Our findings suggest that GHRH promotes cardiac myocyte survival through multiple signalling mechanisms and protects against I/R injury in isolated rat heart, indicating a novel cardioprotective role of this hormone.

  4. Progesterone production requires activation of caspase-3 in preovulatory granulosa cells in a serum starvation model.

    Science.gov (United States)

    An, Li-Sha; Yuan, Xiao-Hua; Hu, Ying; Shi, Zi-Yun; Liu, Xiao-Qin; Qin, Li; Wu, Gui-Qing; Han, Wei; Wang, Ya-Qin; Ma, Xu

    2012-11-01

    Granulosa cells proliferate, differentiate, and undergo apoptosis throughout follicular development. Previous studies have demonstrated that stimulation of progesterone production is accompanied by caspase-3 activation. Moreover, we previously reported that arsenic enhanced caspase-3 activity coupled with progesterone production. Inhibition of caspase-3 activity can significantly inhibit progesterone production induced by arsenic or follicle-stimulating hormone (FSH). Here, we report that serum starvation induces caspase-3 activation coupled with augmentation of progesterone production. Serum starvation also increased the levels of cytochrome P450 cholesterol side chain cleavage enzyme (P450scc) and steroidogenic acute regulatory (StAR) protein, both of which may contribute to progesterone synthesis in preovulatory granulosa cells. Inhibition of caspase-3 activity resulted in a decrease in progesterone production. Deactivation of caspase-3 activity by caspase-3 specific inhibitor also resulted in decreases in P450scc and StAR expression, which may partly contribute to the observed decrease in progesterone production. Our study demonstrates for the first time that progesterone production in preovulatory granulosa cells is required for caspase-3 activation in a serum starvation model. Inhibition of caspase-3 activity can result in decreased expression of the steroidogenic proteins P450scc and StAR. Our work provides further details on the relationship between caspase-3 activation and steroidogenesis and indicates that caspase-3 plays a critical role in progesterone production by granulosa cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Starvation beneficially influences the liver physiology and nutrient metabolism in Edwardsiella tarda infected red sea bream (Pagrus major).

    Science.gov (United States)

    Mohapatra, Sipra; Chakraborty, Tapas; Shimizu, Sonoko; Urasaki, Shintaro; Matsubara, Takahiro; Nagahama, Yoshitaka; Ohta, Kohei

    2015-11-01

    Dietary compromises, especially food restrictions, possess species-specific effects on the health status and infection control in several organisms, including fish. To understand the starvation-mediated physiological responses in Edwardsiella tarda infected red sea bream, especially in the liver, we performed a 20-day starvation experiment using 4 treatment (2 fed and 2 starved) groups, namely, fed-placebo, starved-placebo, fed-infected, and starved-infected, wherein bacterial exposure was done on the 11th day. In the present study, the starved groups showed reduced hepatosomatic index and drastic depletion in glycogen storage and vacuole formation. The fed-infected fish showed significant (Pred sea bream. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Reduction of metal artifacts: beam hardening and photon starvation effects

    Science.gov (United States)

    Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang

    2014-03-01

    The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.

  7. Effects of Starvation and Thermal Stress on the Thermal Tolerance of Silkworm, Bombyx mori: Existence of Trade-offs and Cross-Tolerances.

    Science.gov (United States)

    Mir, A H; Qamar, A

    2017-09-27

    Organisms, in nature, are often subjected to multiple stressors, both biotic and abiotic. Temperature and starvation are among the main stressors experienced by organisms in their developmental cycle and the responses to these stressors may share signaling pathways, which affects the way these responses are manifested. Temperature is a major factor governing the performance of ectothermic organisms in ecosystems worldwide and, therefore, the thermal tolerance is a central issue in the thermobiology of these organisms. Here, we investigated the effects of starvation as well as mild heat and cold shocks on the thermal tolerance of the larvae of silkworm, Bombyx mori (Linnaeus). Starvation acted as a meaningful or positive stressor as it improved cold tolerance, measured as chill coma recovery time (CCRT), but, at the same time, it acted as a negative stressor and impaired the heat tolerance, measured as heat knockdown time (HKT). In the case of heat tolerance, starvation negated the positive effects of both mild cold as well as mild heat shocks and thus indicated the existence of trade-off between these stressors. Both mild heat and cold shocks improved the thermal tolerance, but the effects were more prominent when the indices were measured in response to a stressor of same type, i.e., a mild cold shock improved the cold tolerance more than the heat tolerance and vice versa. This improvement in thermal tolerance by both mild heat as well as cold shocks indicated the possibility of cross-tolerance between these stressors.

  8. Resistance to starvation of Rhodnius neivai Lent, 1953 (Hemiptera: Reduviidae: Triatominae under experimental conditions

    Directory of Open Access Journals (Sweden)

    Daniel R Cabello

    2001-05-01

    Full Text Available The period of resistance to starvation and the loss of weight until death of Rhodnius neivai in all stages of development were studied. Work was based on experiments conducted under controlled laboratory conditions. One hundred specimens of each nymphal instar were observed: 50 were fed on chicken and 50 on rabbit. Adult females and males were kept together and fed on each host. All bugs were weighed weekly until death. Laid eggs were collected weekly and observed during five weeks to obtain hatchability. Resistance to starvation was similar with both hosts and increased with the evolutionary stage, excepting the 5th nymphal instar and adults. With both hosts, loss of weight was abrupt in the first week and steady in the following weeks. In adults, on the first weeks after eating, there was little or no mortality, after which mortality increased rapidly with the starving time. Reproductive output was higher in the bugs fed on rabbit. R. neivai is among the least resistant triatomine species.

  9. Survival strategies in semi-arid climate for isohydric and anisohydric species

    Science.gov (United States)

    Guerin, M. F.; Gentine, P.; Uriarte, M.

    2013-12-01

    The understanding of survival strategies in dry land remains a challenging problem aiming at the interrelationship between local hydrology, plant physiology and climate. Carbon starvation and hydraulic failure are thought to be the two main factors leading to drought-induced mortality beside biotic perturbation. In order to better comprehend mortality the understanding of abiotic mechanisms triggering mortality is being studied in a tractable model for soil-plant-atmosphere continuum emphasizing the role of soil hydraulic properties, photosynthesis, embolism, leaf-gas exchange and climate. In particular the role of the frequency vs. the intensity of droughts is highlighted within such model. The analysis of the model included a differentiation between isohydric and anisohydric tree regulation and is supported by an extensive dataset of Pinion and Juniper growing in a semi-arid ecosystem. An objective of reduced number of parameters was approached with allometric equations to characterize tree's main traits and their hydraulic controls. Leaf area, sapwood area and tree's height are used to derive capacitance, conductance and photosynthetic abilities of the plant. A parameter sensitivity is performed highlighting the role of root:shoot ratio, rooting depth, photosynthetic capacity, quantum efficiency, and most importantly water use efficiency. Analytic development emphasizes two regimes of transpiration/photosynthesis denoted as stage-I (no embolism) and stage-II (embolism dominated) in analogy with stage I-stage II treminology for evaporation (Phillip,1957). Anisohydric species tend to remain in stage-I during which they still can assimilate carbon at full potential thus avoiding carbon starvation. Isohydric species tend to remain longer in stage-II. The effects of drought intensity/frequency on those 2 stages are described. Figure: sensitivity of Piñons stage 1 (top left), stage 2 (top right), and total cavitation duration (sum of stage 1 and stage 2 - bottom left

  10. Involvement of AMP-activated protein kinase in control of adipocyte metabolism during starvation

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Jan; Šponarová, Jana; Mustard, K. J.; Flachs, Pavel; Horáková, Olga; Rossmeisl, Martin; Bardová, Kristina; Thomason-Hughes, M.; Braunerová, Radka; Hardie, D. G.

    2005-01-01

    Roč. 6, č. S1 (2005), s. 52-52 ISSN 1467-7881. [European Congress on Obesity /14./. 01.06.2005-04.06.2005, Athens] R&D Projects: GA MŠk(CZ) 1M0520; GA ČR GA303/05/2580 Institutional research plan: CEZ:AV0Z50110509 Keywords : AMPK * adipocyte * starvation * fatty acid oxidation Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  11. Effects of heat stress and starvation on clonal odontoblast-like cells.

    Science.gov (United States)

    Morotomi, Takahiko; Kitamura, Chiaki; Toyono, Takashi; Okinaga, Toshinori; Washio, Ayako; Saito, Noriko; Nishihara, Tatsuji; Terashita, Masamichi; Anan, Hisashi

    2011-07-01

    Heat stress during restorative procedures, particularly under severe starvation conditions, can trigger damage to dental pulp. In the present study, we examined effects of heat stress on odontoblastic activity and inflammatory responses in an odontoblast-like cell line (KN-3) under serum-starved conditions. Viability, nuclear structures, and inflammatory responses of KN-3 cells were examined in culture medium containing 10% or 1% serum after exposure to heat stress at 43°C for 45 minutes. Gene expression of extracellular matrices, alkaline phosphatase activity, and detection of extracellular calcium deposition in cells exposed to heat stress were also examined. Reduced viability and apoptosis were transiently induced in KN-3 cells during the initial phases after heat stress; thereafter, cells recovered their viability. The cytotoxic effects of heat stress were enhanced under serum-starved conditions. Heat stress also strongly up-regulated expression of heat shock protein 25 as well as transient expression of tumor necrosis factor-alpha, interleukin-6, and cyclooxygenase-2 in KN-3 cells. In contrast, expression of type-1 collagen, runt-related transcription factor 2, and dentin sialophosphoprotein were not inhibited by heat stress although starvation suppressed ALP activity and delayed progression of calcification. Odontoblast-like cells showed thermoresistance with transient inflammatory responses and without loss of calcification activity, and their thermoresistance and calcification activity were influenced by nutritional status. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Survival and weight change among adult individuals of Periplaneta americana (Linnaeus, 1758 (Blattaria, Blattidae subject to various stress conditions

    Directory of Open Access Journals (Sweden)

    Jucelio Peter Duarte

    2015-05-01

    Full Text Available Periplaneta americana is a species of great importance to public health, since it can act as a vector of many pathogens and it reaches large populations in urban environments. This is probably due to its ability to resist starvation and desiccation. This study aimed to evaluate the effects of absence of water and food on survival and weight change among adult P. americana individuals and check whether the initial weight of individuals influences on their survival. Four groups having twenty P. americana couples were formed and subject to: I no water or food; II no food; III no water; and IV control group. Insects were isolated according to the groups, which were weighed at the beginning and end of the stress conditions. They remained under these conditions until all individuals in each test group were dead. Stress conditions caused reduction in survival time when compared to the control group. Adults with higher body mass survived longer when deprived only of food, while among those lacking water, weight had no influence on survival. Total weight loss was greater among individuals deprived of water than those deprived only of food.

  13. The changes in the biochemical compositions and enzymatic activities of rotifer (Brachionus plicatilis, Müller) and Artemia during the enrichment and starvation periods.

    Science.gov (United States)

    Naz, Mehmet

    2008-12-01

    The changes in the biochemical compositions and enzymatic activities of rotifer (Brachionus plicatilis) and Artemia, enriched and stored at 4 degrees C temperature, were determined. The total starvation period was 16 h and samples were taken at the end of the 8th and 16th hours. In present study, the rotifer and nauplii catabolized a large proportion of the protein during the enrichment period. Lipid contents of both live preys increased during the enrichment period and decreased in nauplii and metanauplii throughout the starvation period but lipid content of the rotifer remained relatively constant during the starvation period. The changes observed in the amino acid compositions of Artemia and the rotifer were statistically significant (P < 0.05). The conspicuous decline the essential amino acid (EAA) and nonessential amino acid (NEAA) content of the rotifer was observed during the enrichment period. However, the essential amino acid (EAA) and nonessential amino acid (NEAA) contents of Artemia nauplii increased during the enrichment period. The unenriched and enriched rotifers contained more monounsaturated fatty acid (MUFAs) than polyunsaturated fatty acid (PUFAs) and saturated fatty acids (SFA). However, Artemia contained more PUFAs than MUFAs and SFA during the experimental period. A sharp increase in the amounts of docosahexaenoic acid (DHA) during the enrichment of the rotifer and Artemia nauplii was observed. However, the amount of DHA throughout the starvation period decreased in Artemia metanauplii but not in Artemia nauplii. Significant differences in tryptic, leucine aminopeptidase N (LAP), and alkaline phosphatase (AP) enzyme activities of Artemia and rotifer were observed during the enrichment and starvation period (P < 0.05). The digestive enzymes derived from live food to fish larvae provided the highest contribution at the end of the enrichment period. In conclusion, the results of the study provide important contributions to determine the most

  14. Growth and physiological response of tomato plants to different periods of nitrogen starvation and recovery

    NARCIS (Netherlands)

    Martinez, V.; Amor, del F.M.; Marcelis, L.F.M.

    2005-01-01

    Young, vegetative-state tomato plants, starved of N for 1, 3 or 7 d, followed, in each case, by a 7-d recovery period with nutrient solution containing N, were examined. Relative growth rate (RGR), leaf photosynthesis and leaf expansion were reduced after only 1 d of N starvation.Tissue N

  15. Complete and Voluntary Starvation of 50 Days

    Directory of Open Access Journals (Sweden)

    Bradley Elliott

    2016-09-01

    Full Text Available A 34-year-old obese male (96.8 kg; BMI, 30.2 kg m −1 volitionally undertook a 50-day fast with the stated goal of losing body mass. During this time, only tea, coffee, water, and a daily multivitamin were consumed. Severe and linear loss of body mass is recorded during these 50 days (final 75.4 kg; BMI, 23.5 kg mT 1 . A surprising resilience to effects of fasting on activity levels and physical function is noted. Plasma samples are suggestive of early impairment of liver function, and perturbations to cardiovascular dynamics are also noted. One month following resumption of feeding behavior, body weight was maintained (75.0 kg; BMI, 23.4 kg m −1 . Evidence-based decision-making with the fasting or hunger striking patient is limited by a lack of evidence. This case report suggests that total body mass, not mass lost, may be a key observation in clinical decision-making during fasting and starvation.

  16. Probing Phosphorus Efficient Low Phytic Acid Content Soybean Genotypes with Phosphorus Starvation in Hydroponics Growth System.

    Science.gov (United States)

    Kumar, Varun; Singh, Tiratha Raj; Hada, Alkesh; Jolly, Monica; Ganapathi, Andy; Sachdev, Archana

    2015-10-01

    Phosphorus is an essential nutrient required for soybean growth but is bound in phytic acid which causes negative effects on both the environment as well as the animal nutrition. Lowering of phytic acid levels is associated with reduced agronomic characteristics, and relatively little information is available on the response of soybean plants to phosphorus (P) starvation. In this study, we evaluated the effects of different P starvation concentrations on the phytic acid content, growth, and yield of seven mutant genotypes along with the unirradiated control, JS-335, in a hydroponics growth system. The low phytic acid containing mutant genotypes, IR-JS-101, IR-DS-118, and IR-V-101, showed a relatively high growth rate in low P concentration containing nutrient solution (2 μM), whereas the high P concentration (50 μM) favored the growth of IR-DS-111 and IR-DS-115 mutant genotypes containing moderate phytate levels. The mutant genotypes with high phytic acid content, IR-DS-122, IR-DS-114, and JS-335, responded well under P starvation and did not have any significant effect on the growth and yield of plants. Moreover, the reduction of P concentration in nutrient solution from 50 to 2 μM also reduced the phytic acid content in the seeds of all the soybean genotypes under study. The desirable agronomic performance of low phytic acid containing mutant genotype IR-DS-118 reported in this study suggested it to be a P-efficient genotype which could be considered for agricultural practices under P limiting soils.

  17. Effect of semolina-jaggery diet on survival and development of Drosophila melanogaster

    Science.gov (United States)

    Chattopadhyay, Debarati; James, Joel; Roy, Debasish; Sen, Soumadeep; Chatterjee, Rishita; Thirumurugan, Kavitha

    2015-01-01

    Drosophila melanogaster is an ideal model organism for developmental studies. This study tests the potential of semolina-jaggery (SJ) diet as a new formulation for bulk rearing of flies. Semolina and jaggery are organic products obtained from wheat endosperm and cane sugar, respectively. Semolina is a rich source of carbohydrates and protein. Jaggery has a high content of dietary sugars. Moreover, preparation of semolina jaggery diet is cost-effective and easy. Thus, the current study aimed to compare survival and developmental parameters of flies fed the SJ diet to flies fed the standard cornmeal-sugar-yeast (CSY) diet. SJ diet enhanced survival of flies without affecting fecundity; male flies showed increased resistance to starvation. A higher number of flies emerged at F2 and F3 generation when fed the SJ diet than when fed the control CSY diet. SJ diet did not increase fly body weight and lipid percentage. Therefore, SJ diet can be used for bulk rearing of healthy flies at par with the standard cornmeal-sugar-yeast diet. PMID:26252611

  18. Effect of semolina-jaggery diet on survival and development of Drosophila melanogaster.

    Science.gov (United States)

    Chattopadhyay, Debarati; James, Joel; Roy, Debasish; Sen, Soumadeep; Chatterjee, Rishita; Thirumurugan, Kavitha

    2015-01-01

    Drosophila melanogaster is an ideal model organism for developmental studies. This study tests the potential of semolina-jaggery (SJ) diet as a new formulation for bulk rearing of flies. Semolina and jaggery are organic products obtained from wheat endosperm and cane sugar, respectively. Semolina is a rich source of carbohydrates and protein. Jaggery has a high content of dietary sugars. Moreover, preparation of semolina jaggery diet is cost-effective and easy. Thus, the current study aimed to compare survival and developmental parameters of flies fed the SJ diet to flies fed the standard cornmeal-sugar-yeast (CSY) diet. SJ diet enhanced survival of flies without affecting fecundity; male flies showed increased resistance to starvation. A higher number of flies emerged at F2 and F3 generation when fed the SJ diet than when fed the control CSY diet. SJ diet did not increase fly body weight and lipid percentage. Therefore, SJ diet can be used for bulk rearing of healthy flies at par with the standard cornmeal-sugar-yeast diet.

  19. Uniform Variation in Genetic-Traits of a Marine Bivalve Related to Starvation, Pollution and Geographic Clines

    NARCIS (Netherlands)

    Hummel, H.; Bogaards, R.H.; Amiard-Triquet, C.; Bachelet, G.; Desprez, M.; Marchand, J.; Rybarczyk, H.; Sylvand, B.; De Wit, Y.; De Wolf, L.

    1995-01-01

    Consistent patterns of genetic variation in the marine bivalve Macoma balthica (L.) were found after exposure to low levels of copper, starvation, and along geographic dines. The geographic dines were related to temperature and salinity. Genetic differences were primarily found in the LAP (Leucine

  20. Plant peroxisomes are degraded by starvation-induced and constitutive autophagy in tobacco BY-2 suspension-cultured cells.

    Science.gov (United States)

    Voitsekhovskaja, Olga V; Schiermeyer, Andreas; Reumann, Sigrun

    2014-01-01

    Very recently, autophagy has been recognized as an important degradation pathway for quality control of peroxisomes in Arabidopsis plants. To further characterize the role of autophagy in plant peroxisome degradation, we generated stable transgenic suspension-cultured cell lines of heterotrophic Nicotiana tabacum L. cv. Bright Yellow 2 expressing a peroxisome-targeted version of enhanced yellow fluorescent protein. Indeed, this cell line model system proved advantageous for detailed cytological analyses of autophagy stages and for quantification of cellular peroxisome pools under different culturing conditions and upon inhibitor applications. Complementary biochemical, cytological, and pharmacological analyses provided convincing evidence for peroxisome degradation by bulk autophagy during carbohydrate starvation. This degradation was slowed down by the inhibitor of autophagy, 3-methyladenine (3-MA), but the 3-MA effect ceased at advanced stages of starvation, indicating that another degradation mechanism for peroxisomes might have taken over. 3-MA also caused an increase particularly in peroxisomal proteins and cellular peroxisome numbers when applied under nutrient-rich conditions in the logarithmic growth phase, suggesting a high turnover rate for peroxisomes by basal autophagy under non-stress conditions. Together, our data demonstrate that a great fraction of the peroxisome pool is subject to extensive autophagy-mediated turnover under both nutrient starvation and optimal growth conditions. Our analyses of the cellular pool size of peroxisomes provide a new tool for quantitative investigations of the role of plant peroxisomes in reactive oxygen species metabolism.

  1. Starvation marrow – gelatinous transformation of bone marrow

    Directory of Open Access Journals (Sweden)

    Eric Osgood

    2014-09-01

    Full Text Available Gelatinous bone marrow transformation (GMT, also known as starvation marrow, represents a rare pathological entity of unclear etiology, in which bone marrow histopathology demonstrates hypoplasia, fat atrophy, and gelatinous infiltration. The finding of gelatinous marrow transformation lacks disease specificity; rather, it is an indicator of severe illness and a marker of poor nutritional status, found in patients with eating disorders, acute febrile illnesses, acquired immunodeficiency syndrome, alcoholism, malignancies, and congestive heart failure. We present a middle-aged woman with a history of alcoholism, depression, and anorexia nervosa who presented with failure to thrive and macrocytic anemia, with bone marrow examination demonstrative of gelatinous transformation, all of which resolved with appropriate treatment. To our knowledge, there are very few cases of GMT which have been successfully treated; thus, our case highlights the importance of proper supportive management.

  2. Diversity of Survival Patterns among Escherichia coli O157:H7 Genotypes Subjected to Food-Related Stress Conditions.

    Science.gov (United States)

    Elhadidy, Mohamed; Álvarez-Ordóñez, Avelino

    2016-01-01

    The purpose of this study was to evaluate the resistance patterns to food-related stresses of Shiga toxin producing Escherichia coli O157:H7 strains belonging to specific genotypes. A total of 33 E. coli O157:H7 strains were exposed to seven different stress conditions acting as potential selective pressures affecting the transmission of E. coli O157:H7 to humans through the food chain. These stress conditions included cold, oxidative, osmotic, acid, heat, freeze-thaw, and starvation stresses. The genotypes used for comparison included lineage-specific polymorphism, Shiga-toxin-encoding bacteriophage insertion sites, clade type, tir (A255T) polymorphism, Shiga toxin 2 subtype, and antiterminator Q gene allele. Bacterial resistance to different stressors was calculated by determining D-values (times required for inactivation of 90% of the bacterial population), which were then subjected to univariate and multivariate analyses. In addition, a relative stress resistance value, integrating resistance values to all tested stressors, was calculated for each bacterial strain and allowed for a ranking-type classification of E. coli O157:H7 strains according to their environmental robustness. Lineage I/II strains were found to be significantly more resistant to acid, cold, and starvation stress than lineage II strains. Similarly, tir (255T) and clade 8 encoding strains were significantly more resistant to acid, heat, cold, and starvation stress than tir (255A) and non-clade 8 strains. Principal component analysis, which allows grouping of strains with similar stress survival characteristics, separated strains of lineage I and I/II from strains of lineage II, which in general showed reduced survival abilities. Results obtained suggest that lineage I/II, tir (255T), and clade 8 strains, which have been previously reported to be more frequently associated with human disease cases, have greater multiple stress resistance than strains of other genotypes. The results from this

  3. Resistance to Starvation of Triatoma rubrofasciata (De Geer, 1773 under Laboratory Conditions (Hemiptera: Reduviidae: Triatominae

    Directory of Open Access Journals (Sweden)

    Rojas Cortéz Mirko G

    1998-01-01

    Full Text Available The present work aims at learning the period of resistance to starvation (molting/death of Triatoma rubrofasciata in different stages of development and the respective loss of weight until death. Eggs of specimens from the greater area of the city of São Luis in the State of Maranhão, Brazil, yielded approximately 300 nymphs. These nymphs were placed in labelled Borrel glasses, in which they were weekly fed on rats (Rattus norvegicus, until reaching the stage to be observed. The experiments were conducted in a climatic chamber regulated at 29 ± 1° C, 70% relative humidity and 12 hr photoperiod. The resistance to starvation increased according to the stage of development, except for adult bugs, whose results were similar to the 3rd stage nymphs. In all these development stages there was an abrupt loss of weight in the first week, followed by a gradual loss until death. Comparing this work with those of other authors, it was observed that T. rubrofasciata is among the less resistant triatomine species.

  4. How and When Do Insects Rely on Endogenous Protein and Lipid Resources during Lethal Bouts of Starvation? A New Application for 13C-Breath testing.

    Science.gov (United States)

    McCue, Marshall D; Guzman, R Marena; Passement, Celeste A; Davidowitz, Goggy

    2015-01-01

    Most of our understanding about the physiology of fasting and starvation comes from studies of vertebrates; however, for ethical reasons, studies that monitor vertebrates through the lethal endpoint are scant. Insects are convenient models to characterize the comparative strategies used to cope with starvation because they have diverse life histories and have evolved under the omnipresent challenge of food limitation. Moreover, we can study the physiology of starvation through its natural endpoint. In this study we raised populations of five species of insects (adult grasshoppers, crickets, cockroaches, and larval beetles and moths) on diets labeled with either 13C-palmitic acid or 13C-leucine to isotopically enrich the lipids or the proteins in their bodies, respectively. The insects were allowed to become postabsorptive and then starved. We periodically measured the δ13C of the exhaled breath to characterize how each species adjusted their reliance on endogenous lipids and proteins as energy sources. We found that starving insects employ a wide range of strategies for regulating lipid and protein oxidation. All of the insects except for the beetle larvae were capable of sharply reducing reliance on protein oxidation; however, this protein sparing strategy was usually unsustainable during the entire starvation period. All insects increased their reliance on lipid oxidation, but while some species (grasshoppers, cockroaches, and beetle larvae) were still relying extensively on lipids at the time of death, other species (crickets and moth larvae) allowed rates of lipid oxidation to return to prestarvation levels. Although lipids and proteins are critical metabolic fuels for both vertebrates and insects, insects apparently exhibit a much wider range of strategies for rationing these limited resources during starvation.

  5. How and When Do Insects Rely on Endogenous Protein and Lipid Resources during Lethal Bouts of Starvation? A New Application for 13C-Breath testing.

    Directory of Open Access Journals (Sweden)

    Marshall D McCue

    Full Text Available Most of our understanding about the physiology of fasting and starvation comes from studies of vertebrates; however, for ethical reasons, studies that monitor vertebrates through the lethal endpoint are scant. Insects are convenient models to characterize the comparative strategies used to cope with starvation because they have diverse life histories and have evolved under the omnipresent challenge of food limitation. Moreover, we can study the physiology of starvation through its natural endpoint. In this study we raised populations of five species of insects (adult grasshoppers, crickets, cockroaches, and larval beetles and moths on diets labeled with either 13C-palmitic acid or 13C-leucine to isotopically enrich the lipids or the proteins in their bodies, respectively. The insects were allowed to become postabsorptive and then starved. We periodically measured the δ13C of the exhaled breath to characterize how each species adjusted their reliance on endogenous lipids and proteins as energy sources. We found that starving insects employ a wide range of strategies for regulating lipid and protein oxidation. All of the insects except for the beetle larvae were capable of sharply reducing reliance on protein oxidation; however, this protein sparing strategy was usually unsustainable during the entire starvation period. All insects increased their reliance on lipid oxidation, but while some species (grasshoppers, cockroaches, and beetle larvae were still relying extensively on lipids at the time of death, other species (crickets and moth larvae allowed rates of lipid oxidation to return to prestarvation levels. Although lipids and proteins are critical metabolic fuels for both vertebrates and insects, insects apparently exhibit a much wider range of strategies for rationing these limited resources during starvation.

  6. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation

    OpenAIRE

    López-Ráez, Juan A.; Charnikhova, Tatsiana;; Gómez-Roldán,Victoria;; Matusova, Radoslava;; Kohlen, Wouter;; De Vos, Ric;; Verstappe, Francel;; Puech-Pages, Virginie;; Bécard, Guillaume;; Mulder, Patrick;; Bouwmeester, Harro;

    2008-01-01

    Strigolactones are rhizosphere signalling compounds that mediate host location in arbuscular mycorrhizal (AM) fungi and parasitic plants. Here, the regulation of the biosynthesis of strigolactones is studied in tomato (Solanum lycopersicum). * Strigolactone production under phosphate starvation, in the presence of the carotenoid biosynthesis inhibitor fluridone and in the abscisic acid (ABA) mutant notabilis were assessed using a germination bioassay with seeds of Orobanche ramosa; a hyphal b...

  7. STARVATION RESISTANCE IN DROSOPHILA-MELANOGASTER IN RELATION TO THE POLYMORPHISMS AT THE ADH AND ALPHA-GPDH LOCI

    NARCIS (Netherlands)

    OUDMAN, L; VANDELDEN, W; KAMPING, A; BIJLSMA, R

    In view of the world-wide latitudinal cline of the Adh and alpha Gpdh allozyme frequencies of Drosophila melanogaster and the interactions between these loci, experiments were performed to study the phenotypic effects of these loci. Starvation resistance, oxygen consumption, body weight, protein

  8. Some effects of temperature and starvation on the bivalve @iDonax vittatus@@ (da Costa) in experimental laboratory populations

    Digital Repository Service at National Institute of Oceanography (India)

    Ansell, A.D.; Sivadas, P.

    The effect of temperature on the body weight and composition, and on respiration, filtration and NH, excretion of the bivalve Donax uittatus (da Costa) has been investigated in laboratory-maintained populations under conditions of starvation In all...

  9. Are phloem-derived amino acids the origin of the elevated malate concentration in the xylem sap following mineral N starvation in soybean?

    Science.gov (United States)

    Vitor, Simone C; do Amarante, Luciano; Sodek, Ladaslav

    2018-05-16

    A substantial increase in malate in the xylem sap of soybean subjected to mineral N starvation originates mainly from aspartate, a prominent amino acid of the phloem. A substantial increase in xylem malate was found when non-nodulated soybean plants were transferred to a N-free medium. Nodulated plants growing in the absence of mineral N and, therefore, dependent on symbiotic N 2 fixation also contained elevated concentrations of malate in the xylem sap. When either nitrate or ammonium was supplied, malate concentrations in the xylem sap were low, both for nodulated and non-nodulated plants. Evidence was obtained that the elevated malate concentration of the xylem was derived from amino acids supplied by the phloem. Aspartate was a prominent component of the phloem sap amino acids and, therefore, a potential source of malate. Supplying the roots of intact plants with 13 C-aspartate revealed that malate of the xylem sap was readily labelled under N starvation. A hypothetical scheme is proposed whereby aspartate supplied by the phloem is metabolised in the roots and the products of this metabolism cycled back to the shoot. Under N starvation, aspartate metabolism is diverted from asparagine synthesis to supply N for the synthesis of other amino acids via transaminase activity. The by-product of aspartate transaminase activity, oxaloacetate, is transformed to malate and its export accounts for much of the elevated concentration of malate found in the xylem sap. This mechanism represents a new additional role for malate during mineral N starvation of soybean, beyond that of charge balance.

  10. The effect of starvation and re-feeding on mitochondrial potential in the midgut of Neocaridina davidi (Crustacea, Malacostraca.

    Directory of Open Access Journals (Sweden)

    Agnieszka Włodarczyk

    Full Text Available The midgut in the freshwater shrimp Neocaridina davidi (previously named N. heteropoda (Crustacea, Malacostraca is composed of a tube-shaped intestine and a large hepatopancreas that is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous papers, while here we focused on the ultrastructural changes that occurred in the midgut epithelial cells (D-cells in the intestine, B- and F- cells in the hepatopancreas after long-term starvation and re-feeding. We used transmission electron microscopy, light and confocal microscopes and flow cytometry to describe all of the changes that occurred due to the stressor with special emphasis on mitochondrial alterations. A quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is a relationship between starvation, re-feeding and the inactivation/activation of mitochondria. The results of our studies showed that in the freshwater shrimp N. davidi that were analyzed, long-term starvation activates the degeneration of epithelial cells at the ultrastructural level and causes an increase of cells with depolarized (non-active mitochondria. The process of re-feeding leads to the gradual regeneration of the cytoplasm of the midgut epithelial cells; however, these changes were observed at the ultrastructural level. Additionally, re-feeding causes the regeneration of mitochondrial ultrastructure. Therefore, we can state that the increase in the number of cells with polarized mitochondria occurs slowly and does not depend on ultrastructural alterations.

  11. The effect of starvation and re-feeding on mitochondrial potential in the midgut of Neocaridina davidi (Crustacea, Malacostraca).

    Science.gov (United States)

    Włodarczyk, Agnieszka; Sonakowska, Lidia; Kamińska, Karolina; Marchewka, Angelika; Wilczek, Grażyna; Wilczek, Piotr; Student, Sebastian; Rost-Roszkowska, Magdalena

    2017-01-01

    The midgut in the freshwater shrimp Neocaridina davidi (previously named N. heteropoda) (Crustacea, Malacostraca) is composed of a tube-shaped intestine and a large hepatopancreas that is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous papers, while here we focused on the ultrastructural changes that occurred in the midgut epithelial cells (D-cells in the intestine, B- and F- cells in the hepatopancreas) after long-term starvation and re-feeding. We used transmission electron microscopy, light and confocal microscopes and flow cytometry to describe all of the changes that occurred due to the stressor with special emphasis on mitochondrial alterations. A quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is a relationship between starvation, re-feeding and the inactivation/activation of mitochondria. The results of our studies showed that in the freshwater shrimp N. davidi that were analyzed, long-term starvation activates the degeneration of epithelial cells at the ultrastructural level and causes an increase of cells with depolarized (non-active) mitochondria. The process of re-feeding leads to the gradual regeneration of the cytoplasm of the midgut epithelial cells; however, these changes were observed at the ultrastructural level. Additionally, re-feeding causes the regeneration of mitochondrial ultrastructure. Therefore, we can state that the increase in the number of cells with polarized mitochondria occurs slowly and does not depend on ultrastructural alterations.

  12. Gluconeogenesis during starvation and refeeding phase is affected by previous dietary carbohydrates levels and a glucose stimuli during early life in Siberian sturgeon (Acipenser baerii

    Directory of Open Access Journals (Sweden)

    Xiaofang Liang

    2017-09-01

    Full Text Available Gluconeogenesis responses was assessed during a short starvation period and subsequent refeeding in Siberian sturgeon (Acipenser baerii previously fed different dietary carbohydrates levels and experienced to a glucose stimuli during early life. The sturgeon larvae were previously fed either a high glucose diet (G or a low glucose diet (F from the first feeding to yolk absorption (8 to 12 d post-hatching [dph]. Each group of fish was sub-divided into 2 treatments at 13 dph and was fed either a high-carbohydrate diet (H or a low carbohydrate diet (L until 20 wk. In the current study, the fish in 4 groups (GL, FL, GH and FH were experienced to starvation for 21 d following by re-feeding of their corresponding diets for 21 d. Fish were sampled at postprandial 6 and 24 h before starvation (P6h and P24h, starvation 7, 14 and 21 d (S7, S14 and S21 and 1, 7, 14 and 21 d during refeeding (R1, R7, R14 and R21. Plasma samples during refeeding were taken at P6h at each time point. Glycaemia levels, liver and muscle glycogen contents, activities and mRNA levels of hepatic gluconeogenic enzymes were examined. We found that both dietary carbohydrate levels and early glucose stimuli significantly affected the metabolic responses to starvation and refeeding in Siberian sturgeon (P < 0.05. During prolonged starvation, Siberian sturgeon firstly mobilized the liver glycogen and then improved gluconeogenesis when the dietary carbohydrates were abundant, whereas preserved the liver glycogen stores at a stable level and more effectively promoted gluconeogenesis when the dietary carbohydrates are absent to maintain glucose homoeostasis. During refeeding, as most teleostean, Siberian sturgeon failed controlling the activities and mRNA levels of phosphoenolpyruvate carboxykinase cytosolic forms (PEPCK-C, fructose-1,6-bisphosphatase (FBPase, but particularly controlled phosphoenolpyruvate carboxykinase mitochondrial forms (PEPCK-M activities and mRNA expression

  13. Survival and weight change among adult individuals of Periplaneta americana (Linnaeus, 1758 (Blattaria, Blattidae subject to various stress conditions

    Directory of Open Access Journals (Sweden)

    Jucelio Peter Duarte

    2015-03-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2015v28n2p103 Periplaneta americana is a species of great importance to public health, since it can act as a vector of many pathogens and it reaches large populations in urban environments. This is probably due to its ability to resist starvation and desiccation. This study aimed to evaluate the effects of absence of water and food on survival and weight change among adult P. americana individuals and check whether the initial weight of individuals influences on their survival. Four groups having twenty P. americana couples were formed and subject to: I no water or food; II no food; III no water; and IV control group. Insects were isolated according to the groups, which were weighed at the beginning and end of the stress conditions. They remained under these conditions until all individuals in each test group were dead. Stress conditions caused reduction in survival time when compared to the control group. Adults with higher body mass survived longer when deprived only of food, while among those lacking water, weight had no influence on survival. Total weight loss was greater among individuals deprived of water than those deprived only of food.

  14. Survival of the House Fly (Diptera: Muscidae) on Truvia and Other Sweeteners.

    Science.gov (United States)

    Fisher, Michael L; Fowler, Fallon E; Denning, Steven S; Watson, David W

    2017-07-01

    The house fly, Musca domestica L. (Diptera: Muscidae), is a disease vector of mechanically transmitted pathogens including bacteria, viruses, and protozoans. Opportunities for pathogen transmission can increase as fly longevity increases. Dietary preferences play an important role in insect longevity; therefore, we investigated house fly preferences, sucrose availability, and caloric constraints on house fly longevity. Experimental goals were: 1) to test the effects of calorie restriction on survival of house flies by manipulating concentrations of erythritol (low caloric content) and sucrose (high caloric content), and comparing commercial sweeteners of differing calorie content, 2) to identify house fly preferences for either erythritol or sucrose, and 3) to evaluate the insecticidal activity or toxicity of erythritol on house flies. Our data show that house flies may prefer high calorie options when given a choice and that house fly longevity likely increases as calorie content increases. Additionally, no significant differences in longevity were observed between the water only control (zero calories) and erythritol treatments. This suggests that decreased survival rates and death could be the result of starvation rather than insecticidal activity. This research furthers our understanding of house fly survival and sugar-feeding behavior. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Starvation dynamics of a greedy forager

    Science.gov (United States)

    Bhat, U.; Redner, S.; Bénichou, O.

    2017-07-01

    We investigate the dynamics of a greedy forager that moves by random walking in an environment where each site initially contains one unit of food. Upon encountering a food-containing site, the forager eats all the food there and can subsequently hop an additional S steps without food before starving to death. Upon encountering an empty site, the forager goes hungry and comes one time unit closer to starvation. We investigate the new feature of forager greed; if the forager has a choice between hopping to an empty site or to a food-containing site in its nearest neighborhood, it hops preferentially towards food. If the neighboring sites all contain food or are all empty, the forager hops equiprobably to one of these neighbors. Paradoxically, the lifetime of the forager can depend non-monotonically on greed, and the sense of the non-monotonicity is opposite in one and two dimensions. Even more unexpectedly, the forager lifetime in one dimension is substantially enhanced when the greed is negative; here the forager tends to avoid food in its local neighborhood. We also determine the average amount of food consumed at the instant when the forager starves. We present analytic, heuristic, and numerical results to elucidate these intriguing phenomena.

  16. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation.

    Science.gov (United States)

    López-Ráez, Juan Antonio; Charnikhova, Tatsiana; Gómez-Roldán, Victoria; Matusova, Radoslava; Kohlen, Wouter; De Vos, Ric; Verstappen, Francel; Puech-Pages, Virginie; Bécard, Guillaume; Mulder, Patrick; Bouwmeester, Harro

    2008-01-01

    * Strigolactones are rhizosphere signalling compounds that mediate host location in arbuscular mycorrhizal (AM) fungi and parasitic plants. Here, the regulation of the biosynthesis of strigolactones is studied in tomato (Solanum lycopersicum). * Strigolactone production under phosphate starvation, in the presence of the carotenoid biosynthesis inhibitor fluridone and in the abscisic acid (ABA) mutant notabilis were assessed using a germination bioassay with seeds of Orobanche ramosa; a hyphal branching assay with Gigaspora spp; and by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis. * The root exudates of tomato cv. MoneyMaker induced O. ramosa seed germination and hyphal branching in AM fungi. Phosphate starvation markedly increased, and fluridone strongly decreased, this activity. Exudates of notabilis induced approx. 40% less germination than the wild-type. The LC-MS/MS analysis confirmed that the biological activity and changes therein were due to the presence of several strigolactones; orobanchol, solanacol and two or three didehydro-orobanchol isomers. * These results show that the AM branching factors and parasitic plant germination stimulants in tomato root exudate are strigolactones and that they are biosynthetically derived from carotenoids. The dual activity of these signalling compounds in attracting beneficial AM fungi and detrimental parasitic plants is further strengthened by environmental conditions such as phosphate availability.

  17. Phospho-Rasputin Stabilization by Sec16 Is Required for Stress Granule Formation upon Amino Acid Starvation

    Directory of Open Access Journals (Sweden)

    Angelica Aguilera-Gomez

    2017-07-01

    Full Text Available Most cellular stresses induce protein translation inhibition and stress granule formation. Here, using Drosophila S2 cells, we investigate the role of G3BP/Rasputin in this process. In contrast to arsenite treatment, where dephosphorylated Ser142 Rasputin is recruited to stress granules, we find that, upon amino acid starvation, only the phosphorylated Ser142 form is recruited. Furthermore, we identify Sec16, a component of the endoplasmic reticulum exit site, as a Rasputin interactor and stabilizer. Sec16 depletion results in Rasputin degradation and inhibition of stress granule formation. However, in the absence of Sec16, pharmacological stabilization of Rasputin is not enough to rescue the assembly of stress granules. This is because Sec16 specifically interacts with phosphorylated Ser142 Rasputin, the form required for stress granule formation upon amino acid starvation. Taken together, these results demonstrate that stress granule formation is fine-tuned by specific signaling cues that are unique to each stress. These results also expand the role of Sec16 as a stress response protein.

  18. Nutrient starvation leading to triglyceride accumulation activates the Entner Doudoroff pathway in Rhodococcus jostii RHA1.

    Science.gov (United States)

    Juarez, Antonio; Villa, Juan A; Lanza, Val F; Lázaro, Beatriz; de la Cruz, Fernando; Alvarez, Héctor M; Moncalián, Gabriel

    2017-02-27

    Rhodococcus jostii RHA1 and other actinobacteria accumulate triglycerides (TAG) under nutrient starvation. This property has an important biotechnological potential in the production of sustainable oils. To gain insight into the metabolic pathways involved in TAG accumulation, we analysed the transcriptome of R jostii RHA1 under nutrient-limiting conditions. We correlate these physiological conditions with significant changes in cell physiology. The main consequence was a global switch from catabolic to anabolic pathways. Interestingly, the Entner-Doudoroff (ED) pathway was upregulated in detriment of the glycolysis or pentose phosphate pathways. ED induction was independent of the carbon source (either gluconate or glucose). Some of the diacylglycerol acyltransferase genes involved in the last step of the Kennedy pathway were also upregulated. A common feature of the promoter region of most upregulated genes was the presence of a consensus binding sequence for the cAMP-dependent CRP regulator. This is the first experimental observation of an ED shift under nutrient starvation conditions. Knowledge of this switch could help in the design of metabolomic approaches to optimize carbon derivation for single cell oil production.

  19. The determination of nutritional requirements for Safe Haven Food Supply System (emergency/survival foods)

    Science.gov (United States)

    Ahmed, Selina

    1987-01-01

    The Space Station Safe Haven Food System must sustain 8 crew members under emergency conditions for 45 days. Emergency Survival Foods are defined as a nutritionally balanced collection of high density food and beverages selected to provide for the survival of Space Station flight crews in contingency situations. Since storage volume is limited, the foods should be highly concentrated. A careful study of different research findings regarding starvation and calorie restricted diets indicates that a minimum nutritional need close to RDA is an important factor for sustaining an individual's life in a stressful environment. Fat, protein, and carbohydrates are 3 energy producing nutrients which play a vital role in the growth and maintenance process of human life. A lower intake of protein can minimize the water intake, but it causes a negative nitrogen balance and a lower performance level. Other macro and micro nutrients are also required for nutritional interrelationships to metabolize the other 3 nutrients to their optimum level. The various options for longer duration than 45 days are under investigation.

  20. Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host

    Science.gov (United States)

    Konrad, Matthias; Grasse, Anna V.; Tragust, Simon; Cremer, Sylvia

    2015-01-01

    The fitness effects of symbionts on their hosts can be context-dependent, with usually benign symbionts causing detrimental effects when their hosts are stressed, or typically parasitic symbionts providing protection towards their hosts (e.g. against pathogen infection). Here, we studied the novel association between the invasive garden ant Lasius neglectus and its fungal ectosymbiont Laboulbenia formicarum for potential costs and benefits. We tested ants with different Laboulbenia levels for their survival and immunity under resource limitation and exposure to the obligate killing entomopathogen Metarhizium brunneum. While survival of L. neglectus workers under starvation was significantly decreased with increasing Laboulbenia levels, host survival under Metarhizium exposure increased with higher levels of the ectosymbiont, suggesting a symbiont-mediated anti-pathogen protection, which seems to be driven mechanistically by both improved sanitary behaviours and an upregulated immune system. Ants with high Laboulbenia levels showed significantly longer self-grooming and elevated expression of immune genes relevant for wound repair and antifungal responses (β-1,3-glucan binding protein, Prophenoloxidase), compared with ants carrying low Laboulbenia levels. This suggests that the ectosymbiont Laboulbenia formicarum weakens its ant host by either direct resource exploitation or the costs of an upregulated behavioural and immunological response, which, however, provides a prophylactic protection upon later exposure to pathogens. PMID:25473011

  1. Conformational Flexibility Enables the Function of a BECN1 Region Essential for Starvation-Mediated Autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Yang; Ramanathan, Arvind; Glover, Karen; Stanley, Christopher; Sanishvili, Ruslan; Chakravarthy, Srinivas; Yang, Zhongyu; Colbert, Christopher L.; Sinha, Sangita C.

    2016-04-05

    BECN1 is essential for autophagy, a critical eukaryotic cellular homeostasis pathway. Here we delineate a highly conserved BECN1 domain located between previously characterized BH3 and coiled-coil domains and elucidate its structure and role in autophagy. The 2.0 angstrom sulfur-single-wavelength anomalous dispersion X-ray crystal structure of this domain demonstrates that its N-terminal half is unstructured while its C-terminal half is helical; hence, we name it the flexible helical domain (FHD). Circular dichroism spectroscopy, double electron electron resonance electron paramagnetic resonance, and small-angle X-ray scattering (SAXS) analyses confirm that the FHD is partially disordered, even in the context of adjacent BECN1 domains. Molecular dynamic simulations fitted to SAXS data indicate that the FHD transiently samples more helical conformations. FHD helicity increases in 2,2,2-trifluoroethanol, suggesting it may become more helical upon binding. Lastly, cellular studies show that conserved FHD residues are required for starvation-induced autophagy. Thus, the FHD likely undergoes a binding-associated disorder to-helix transition, and conserved residues critical for this interaction are essential for starvation-induced autophagy.

  2. Cotard’s Syndrome: Two Cases of Self-Starvation

    Directory of Open Access Journals (Sweden)

    Bruno Gonçalves Teixeira

    2015-11-01

    Full Text Available Background: Cotard´s syndrome is a relatively rare condition characterized by various degrees of nihilist delusions, often in the form of self-negation. Aims: To report two cases of Cotard’s syndrome associated with self-starvation and to review the concept and clinical features of the condition. Methods: Two clinical cases of the syndrome were obtained and a literature review of the theme was shortly surveyed. Results and Conclusions: The first case is about a woman who believed that her esophagus and stomach were glued. She was treated with sertraline, mirtazapine and risperidone with good results. The second case describes a man who believed his throat was burnt and he had no internal organs. He was treated with clomipramine and risperidone showing great improvement. This syndrome is a nosological and clinical entity that should not be forgotten. It is essential to provide an urgent and adequate therapeutic approach to these patients.

  3. Phage adsorption and lytic propagation in Lactobacillus plantarum: Could host cell starvation affect them?

    OpenAIRE

    Briggiler Marc?, Mari?ngeles; Reinheimer, Jorge; Quiberoni, Andrea

    2015-01-01

    Background Bacteriophages constitute a great threat to the activity of lactic acid bacteria used in industrial processes. Several factors can influence the infection cycle of bacteriophages. That is the case of the physiological state of host cells, which could produce inhibition or delay of the phage infection process. In the present work, the influence of Lactobacillus plantarum host cell starvation on phage B1 adsorption and propagation was investigated. Result First, cell growth kinetics ...

  4. Characterization of the soybean GmALMT family genes and the function of GmALMT5 in response to phosphate starvation.

    Science.gov (United States)

    Peng, Wenting; Wu, Weiwei; Peng, Junchu; Li, Jiaojiao; Lin, Yan; Wang, Yanan; Tian, Jiang; Sun, Lili; Liang, Cuiyue; Liao, Hong

    2018-03-01

    A potential mechanism to enhance utilization of sparingly soluble forms of phosphorus (P) is the root secretion of malate, which is mainly mediated by the ALMT gene family in plants. In this study, a total of 34 GmALMT genes were identified in the soybean genome. Expression patterns diverged considerably among GmALMTs in response to phosphate (Pi) starvation in leaves, roots and flowers, with expression altered by P availability in 26 of the 34 GmALMTs. One root-specific GmALMT whose expression was significantly enhanced by Pi-starvation, GmALMT5, was studied in more detail to determine its possible role in soybean P nutrition. Analysis of GmALMT5 tissue expression patterns, subcellular localization, and malate exudation from transgenic soybean hairy roots overexpressing GmALMT5, demonstrated that GmALMT5 is a plasma membrane protein that mediates malate efflux from roots. Furthermore, both growth and P content of transgenic Arabidopsis overexpressing GmALMT5 were significantly increased when sparingly soluble Ca-P was used as the external P source. Taken together, these results indicate that members of the soybean GmALMT gene family exhibit diverse responses to Pi starvation. One member of this family, GmALMT5, might contribute to soybean P efficiency by enhancing utilization of sparingly soluble P sources under P limited conditions. © 2017 Institute of Botany, Chinese Academy of Sciences.

  5. A phosphate starvation-driven bidirectional promoter as a potential tool for crop improvement and in vitro plant biotechnology.

    Science.gov (United States)

    Araceli, Oropeza-Aburto; Alfredo, Cruz-Ramírez; Javier, Mora-Macías; Luis, Herrera-Estrella

    2017-05-01

    Phosphate (Pi)-deficient soils are a major limitant factor for crop production in many regions of the world. Despite that plants have innovated several developmental and biochemical strategies to deal with this stress, there are still massive extensions of land which combine several abiotic stresses, including phosphate starvation, that limit their use for plant growth and food production. In several plant species, a genetic programme underlies the biochemical and developmental responses of the organism to cope with low phosphate (Pi) availability. Both protein- and miRNA-coding genes involved in the adaptative response are transcriptionally activated upon Pi starvation. Several of the responsive genes have been identified as transcriptional targets of PHR1, a transcription factor that binds a conserved cis-element called PHR1-binding site (P1BS). Our group has previously described and characterized a minimal genetic arrangement that includes two P1BS elements, as a phosphate-responsive enhancer (EZ2). Here, we report the engineering and successful use of a phosphate-dependent bidirectional promoter, which has been designed and constructed based on the palindromic sequences of the two P1BS elements present in EZ2. This bidirectional promoter has a potential use in both plant in vitro approaches and in the generation of improved crops adapted to Pi starvation and other abiotic stresses. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Experimental study of cell reversal of a high temperature polymer electrolyte membrane fuel cell caused by H2 starvation

    DEFF Research Database (Denmark)

    Zhou, Fan; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    Operation under fuel starvation has been proved to be harmful to the fuel cell by causing severe and irreversible degradation. To characterize the behaviors of the high temperature PEM fuel cell under fuel starvation conditions, the cell voltage and local current density is measured simultaneously...... under different H2 stoichiometries below 1.0 and at different current loads. The experimental results show that the cell voltage decreases promptly when the H2 stoichiometry decreases to below 1.0. Negative cell voltage can be observed which indicates cell reversal. The local current density starts...... to diverge when the cell voltage decreases. In the H2 upstream regions the current densities show an increasing trend, while those in the H2 downstream regions show a decreasing trend. Consequently, the current density distribution becomes very uneven. The current density is the highest in the upstream...

  7. Proteomic analysis of lactose-starved Lactobacillus casei during stationary growth phase.

    Science.gov (United States)

    Hussain, M A; Knight, M I; Britz, M L

    2009-03-01

    Starvation stress is a condition that nonstarter lactic acid bacteria (NSLAB) normally encounter. This study was aimed to investigate starvation-induced proteins in Lactobacillus casei during stationary growth phase. The impact of carbohydrate starvation on L. casei GCRL163 was investigated using two different media (a modified de Man, Rogosa and Sharpe broth and a semi-defined medium). Cells were grown in the presence of excess lactose (1%) or starvation (0%) and differences in the patterns of one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional electrophoresis of the cytosolic protein fractions were investigated. Differentially regulated proteins were identified by MALDI-TOF/TOF mass spectrometry. Many differentially regulated proteins were enzymes of various metabolic pathways involved in carbohydrate metabolism to yield energy. Differences in protein expression were also observed in the two culture conditions tested in this experiment. Numerous glycolytic enzymes were differentially regulated under lactose starvation. The differential expression of these glycolytic enzymes suggests a potential survival strategy under harsh growth conditions (i.e. lactose starvation). This paper reports improved understanding of stress responses and survival mechanism of NSLAB under lactose-depleted cheese-ripening condition. This knowledge of how NSLAB bacteria adapt to lactose starvation could be applied to predict the performances of bacteria in other industrial applications.

  8. Bacterial symbionts, Buchnera, and starvation on wing dimorphism in English grain aphid, Sitobion avenae (F. (Homoptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Fangmei eZhang

    2015-05-01

    Full Text Available Wing dimorphism in aphids can be affected by multiple cues, including both biotic (nutrition, crowding, interspecific interactions, the presence of natural enemies, maternal and transgenerational effects, and alarm pheromone and abiotic factors (temperature, humidity, and photoperiod. The majority of the phloem-feeding aphids carry Buchnera, an obligate symbiotic proteobacteria. Buchnera has a highly reduced genome size, but encode key enzymes in the tryptophan biosynthetic pathway and is crucial for nutritional balance, development and reproduction in aphids. In this study, we investigated the impact of two nutritional-based biotic factors, symbionts and starvation, on the wing dimorphism in the English grain aphid, Sitobion avenae, a devastating insect pest of cereal crops (e.g., wheat worldwide. Elimination of Buchnera using the antibiotic rifampicin significantly reduced the formation of winged morphs, body mass and fecundity in S. avenae. Furthermore, the absence of this primary endosymbiont may disrupt the nutrient acquisition in aphids and alter transgenerational phenotypic expression. Similarly, both survival rate and the formation of winged morphs were substantially reduced after neonatal (< 24h old offspring were starved for a period of time. The combined results shed light on the impact of two nutritional-based biotic factors on the phenotypic plasticity in aphids. A better understanding of the wing dimorphism in aphids will provide the theoretical basis for the prediction and integrated management of these phloem-feeding insect pests.

  9. Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p

    Science.gov (United States)

    Madsen, Christian T.; Sylvestersen, Kathrine B.; Young, Clifford; Larsen, Sara C.; Poulsen, Jon W.; Andersen, Marianne A.; Palmqvist, Eva A.; Hey-Mogensen, Martin; Jensen, Per B.; Treebak, Jonas T.; Lisby, Michael; Nielsen, Michael L.

    2015-01-01

    The essential vitamin biotin is a covalent and tenaciously attached prosthetic group in several carboxylases that play important roles in the regulation of energy metabolism. Here we describe increased acetyl-CoA levels and mitochondrial hyperacetylation as downstream metabolic effects of biotin deficiency. Upregulated mitochondrial acetylation sites correlate with the cellular deficiency of the Hst4p deacetylase, and a biotin-starvation-induced accumulation of Hst4p in mitochondria supports a role for Hst4p in lowering mitochondrial acetylation. We show that biotin starvation and knockout of Hst4p cause alterations in cellular respiration and an increase in reactive oxygen species (ROS). These results suggest that Hst4p plays a pivotal role in biotin metabolism and cellular energy homeostasis, and supports that Hst4p is a functional yeast homologue of the sirtuin deacetylase SIRT3. With biotin deficiency being involved in various metabolic disorders, this study provides valuable insight into the metabolic effects biotin exerts on eukaryotic cells. PMID:26158509

  10. Starvation of children in Syria--sanctions and the politics of revenge.

    Science.gov (United States)

    Sen, Kasturi

    2014-01-01

    As Syria completes two years of western sanctions (2011-13), their dramatic effects on health are being highlighted with first reports of starvation deaths among children in the suburbs of Damascus. Although heavy fighting has taken place in this area, experts had predicted for some time the unworkability of sanctions for regime change, arguing that only civilians would pay the price in a country (Syria in this case) which was once well on the way to meeting the Millennium Development Goals 4 targets on reducing child mortality. In this, as in the case of other "sanctioned" countries, it is not just "civilians" but the most vulnerable among them--children, who are experiencing the tragic consequences of sanctions.

  11. A Conserved Two-Component Signal Transduction System Controls the Response to Phosphate Starvation in Bifidobacterium breve UCC2003.

    NARCIS (Netherlands)

    Alvarez-Martin, P.; Fernandez, M.; O'Connell-Motherway, M.; O'Connell, K.J.; Sauvageot, N.; Fitzgerald, G.F.; Macsharry, J.; Zomer, A.L.; Sinderen, D. van

    2012-01-01

    This work reports on the identification and molecular characterization of the two-component regulatory system (2CRS) PhoRP, which controls the response to inorganic phosphate (P(i)) starvation in Bifidobacterium breve UCC2003. The response regulator PhoP was shown to bind to the promoter region of

  12. Phospho-Rasputin Stabilization by Sec16 Is Required for Stress Granule Formation upon Amino Acid Starvation.

    Science.gov (United States)

    Aguilera-Gomez, Angelica; Zacharogianni, Margarita; van Oorschot, Marinke M; Genau, Heide; Grond, Rianne; Veenendaal, Tineke; Sinsimer, Kristina S; Gavis, Elizabeth R; Behrends, Christian; Rabouille, Catherine

    2017-07-25

    Most cellular stresses induce protein translation inhibition and stress granule formation. Here, using Drosophila S2 cells, we investigate the role of G3BP/Rasputin in this process. In contrast to arsenite treatment, where dephosphorylated Ser142 Rasputin is recruited to stress granules, we find that, upon amino acid starvation, only the phosphorylated Ser142 form is recruited. Furthermore, we identify Sec16, a component of the endoplasmic reticulum exit site, as a Rasputin interactor and stabilizer. Sec16 depletion results in Rasputin degradation and inhibition of stress granule formation. However, in the absence of Sec16, pharmacological stabilization of Rasputin is not enough to rescue the assembly of stress granules. This is because Sec16 specifically interacts with phosphorylated Ser142 Rasputin, the form required for stress granule formation upon amino acid starvation. Taken together, these results demonstrate that stress granule formation is fine-tuned by specific signaling cues that are unique to each stress. These results also expand the role of Sec16 as a stress response protein. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Triatoma rubrovaria (Blanchard, 1843 (Hemiptera-Reduviidae-Triatominae III: patterns of feeding, defecation and resistance to starvation

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Almeida

    2003-04-01

    Full Text Available Data from the Chagas Disease Control Program indicate a growing domiciliary and peridomiciliary invasion of Triatoma rubrovaria in the State of Rio Grande do Sul, where it has become the most frequent triatomine species captured there since the control of T. infestans. Bionomic characteristics that could influence the vectorial capacity of T. rubrovaria as vector of Trypanosoma cruzi were evaluated: patterns of (i feeding, (ii defecation, and (iii resistance to starvation, using insects fed on mice. Fifty three percent of the females showed a defecation pattern conducive to chagasic transmission, defecating either on or near the bite site. The averages of the resistance to starvation varied from 48.1 to 179 days, for the first and fifth nymphal stages, respectively. Our study shows that with respect to the patterns of feeding, defecation and resistance to fasting, T. rubrovaria presented similar rates to the ones observed for other effective vector species, such as T. infestans. Thus, based on our studies we conclude that T. rubrovaria has biological characteristics that can positively influence its capacity to become infected and transmit T. cruzi, and also to keep residual populations after chemical control interventions.

  14. Climatic variation and tortoise survival: has a desert species met its match?

    Science.gov (United States)

    Lovich, Jeffrey E.; Yackulic, Charles B.; Freilich, Jerry; Agha, Mickey; Austin, Meaghan; Meyer, Katherine P.; Arundel, Terence R.; Hansen, Jered; Vamstad, Michael S.; Root, Stephanie A.

    2014-01-01

    While demographic changes in short-lived species may be observed relatively quickly in response to climate changes, measuring population responses of long-lived species requires long-term studies that are not always available. We analyzed data from a population of threatened Agassiz’s desert tortoises (Gopherus agassizii) at a 2.59 km2 study plot in the Sonoran Desert ecosystem of Joshua Tree National Park, California, USA from 1978 to 2012 to examine variation in apparent survival and demography in this long-lived species. Transect-based, mark-recapture surveys were conducted in 10 of those years to locate living and dead tortoises. Previous modeling suggested that this area would become unsuitable as tortoise habitat under a warming and drying climate scenario. Estimated adult population size declined greatly from 1996 to 2012. The population appeared to have high apparent survival from 1978 to 1996 but apparent survival decreased from 1997 to 2002, concurrent with persistent drought. The best model relating apparent survivorship of tortoises ≥18 cm over time was based on a three year moving average of estimated winter precipitation. The postures and positions of a majority of dead tortoises found in 2012 were consistent with death by dehydration and starvation. Some live and many dead tortoises found in 2012 showed signs of predation or scavenging by mammalian carnivores. Coyote (Canis latrans) scats and other evidence from the site confirmed their role as tortoise predators and scavengers. Predation rates may be exacerbated by drought if carnivores switch from preferred mammalian prey to tortoises during dry years. Climate modeling suggests that the region will be subjected to even longer duration droughts in the future and that the plot may become unsuitable for continued tortoise survival. Our results showing wide fluctuations in apparent survival and decreasing tortoise density over time may be early signals of that possible outcome.

  15. Influence of toxic bait type and starvation on worker and queen mortality in laboratory colonies of Argentine ant (Hymenoptera: Formicidae).

    Science.gov (United States)

    Mathieson, Melissa; Toft, Richard; Lester, Philip J

    2012-08-01

    The efficacy of toxic baits should be judged by their ability to kill entire ant colonies, including the colony queen or queens. We studied the efficacy of four toxic baits to the Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae). These baits were Xstinguish that has the toxicant fipronil, Exterm-an-Ant that contains both boric acid and sodium borate, and Advion ant gel and Advion ant bait arena that both have indoxacarb. Experimental nests contained 300 workers and 10 queen ants that were starved for either 24 or 48 h before toxic bait exposure. The efficacy of the toxic baits was strongly influenced by starvation. In no treatment with 24-h starvation did we observe 100% worker death. After 24-h starvation three of the baits did not result in any queen deaths, with only Exterm-an-Ant producing an average of 25% mortality. In contrast, 100% queen and worker mortality was observed in colonies starved for 48 h and given Xstinguish or Exterm-an-Ant. The baits Advion ant gel and Advion ant bait arena were not effective against Argentine ants in these trials, resulting in ants are likely to be starved. Our results suggest queen mortality must be assessed in tests for toxic bait efficacy. Our data indicate that of these four baits, Xstinguish and Exterm-an-Ant are the best options for control of Argentine ants in New Zealand.

  16. Strigolactone biosynthesis is evolutionarily conserved, regulated by phosphate starvation and contributes to resistance against phytopathogenic fungi in a moss, Physcomitrella patens

    KAUST Repository

    Decker, Eva L.; Alder, Adrian; Hunn, Stefan; Ferguson, Jenny; Lehtonen, Mikko T.; Scheler, Bjoern; Kerres, Klaus L.; Wiedemann, Gertrud; Safavi-Rizi, Vajiheh; Nordzieke, Steffen; Balakrishna, Aparna; Baz, Lina Abdulkareem Ali; Avalos, Javier; Valkonen, Jari P. T.; Reski, Ralf; Al-Babili, Salim

    2017-01-01

    . Wild-type (WT) exudates induced seed germination in Orobanche ramosa. This activity was increased upon phosphate starvation and abolished in exudates of both mutants. Furthermore, both mutants showed increased susceptibility to phytopathogenic fungi

  17. On the edge of death: Rates of decline and lower thresholds of biochemical condition in food-deprived fish larvae and juveniles

    DEFF Research Database (Denmark)

    Meyer, Stefan; Caldarone, E.M.; Chicharo, M.A.

    2012-01-01

    Gaining reliable estimates of how long fish early life stages can survive without feeding and how starvation rate and time until death are influenced by body size, temperature and species is critical to understanding processes controlling mortality in the sea. The present study is an across-speci...... are viable proxies for the physiological processes under food deprivation of individual fish pre-recruits in the laboratory and provide useful metrics for research on the role of starvation in the sea......Gaining reliable estimates of how long fish early life stages can survive without feeding and how starvation rate and time until death are influenced by body size, temperature and species is critical to understanding processes controlling mortality in the sea. The present study is an across......-species analysis of starvation-induced changes in biochemical condition in early life stages of ninemarine and freshwater fishes. Datawere compiled on changes in body size (dry weight, DW) and biochemical condition (standardized RNA–DNA ratio, sRD) throughout the course of starvation of yolk-sac and feeding larvae...

  18. Why were "starvation diets" promoted for diabetes in the pre-insulin period?

    Directory of Open Access Journals (Sweden)

    Mazur Allan

    2011-03-01

    Full Text Available Abstract In the decade before the discovery of insulin, the prominent American physicians Frederick Allen and Elliott Joslin advocated severe fasting and undernutrition to prolong the lives of diabetic patients. Detractors called this "starvation dieting," and some patients did indeed starve to death. Allen and Joslin promoted the therapy as a desperate application of animal experimentation to clinical treatment, and texts still describe it that way. This justification was exaggerated. The public record contains only the briefest account of relevant animal experiments, and clinical experience at the time provided little indication that severe undernutrition had better outcomes than low carbohydrate diets then in use.

  19. Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host.

    Science.gov (United States)

    Konrad, Matthias; Grasse, Anna V; Tragust, Simon; Cremer, Sylvia

    2015-01-22

    The fitness effects of symbionts on their hosts can be context-dependent, with usually benign symbionts causing detrimental effects when their hosts are stressed, or typically parasitic symbionts providing protection towards their hosts (e.g. against pathogen infection). Here, we studied the novel association between the invasive garden ant Lasius neglectus and its fungal ectosymbiont Laboulbenia formicarum for potential costs and benefits. We tested ants with different Laboulbenia levels for their survival and immunity under resource limitation and exposure to the obligate killing entomopathogen Metarhizium brunneum. While survival of L. neglectus workers under starvation was significantly decreased with increasing Laboulbenia levels, host survival under Metarhizium exposure increased with higher levels of the ectosymbiont, suggesting a symbiont-mediated anti-pathogen protection, which seems to be driven mechanistically by both improved sanitary behaviours and an upregulated immune system. Ants with high Laboulbenia levels showed significantly longer self-grooming and elevated expression of immune genes relevant for wound repair and antifungal responses (β-1,3-glucan binding protein, Prophenoloxidase), compared with ants carrying low Laboulbenia levels. This suggests that the ectosymbiont Laboulbenia formicarum weakens its ant host by either direct resource exploitation or the costs of an upregulated behavioural and immunological response, which, however, provides a prophylactic protection upon later exposure to pathogens. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. 2,6-Dichlorobenzamide (BAM) herbicide mineralisation by Aminobacter sp. MSH1 during starvation depends on a subpopulation of intact cells maintaining vital membrane functions

    Energy Technology Data Exchange (ETDEWEB)

    Sjoholm, Ole R.; Nybroe, Ole [Department of Agriculture and Ecology, Section of Genetics and Microbiology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Aamand, Jens [Department of Agriculture and Ecology, Section of Genetics and Microbiology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Department of Geochemistry, Geological Survey of Denmark and Greenland, Oster Voldgade 10, 1350 Copenhagen K (Denmark); Sorensen, Jan, E-mail: jan@life.ku.d [Department of Agriculture and Ecology, Section of Genetics and Microbiology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark)

    2010-12-15

    Mineralisation capability was studied in the 2,6-dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 under growth-arrested conditions. Cells were starved in mineral salts (MS) solution or groundwater before {sup 14}C-labelled BAM (0.1 mM) was added. Cell physiology was monitored with a panel of vitality stains combined with flow cytometry to differentiate intact, depolarised and dead cells. Cells starved for up to 3 weeks in MS solution showed immediate growth-linked mineralisation after BAM amendment while a lag-phase was seen after 8 weeks of starvation. In contrast, cells amended with BAM in natural groundwater showed BAM mineralisation but no growth. The cell-specific mineralisation rate was always comparable (10{sup -16} mol C intact cell{sup -1} day{sup -1}) independent of media, growth, or starvation period after BAM amendment; lower rates were only observed as BAM concentration decreased. MSH1 seems useful for bioremediation and should be optimised to maintain an intact cell subpopulation as this seems to be the key parameter for successful mineralisation. - The intact cell population of Aminobacter MSH1 mineralises BAM at a constant rate independent of growth or extended starvation in mineral solution and natural groundwater.

  1. 2,6-Dichlorobenzamide (BAM) herbicide mineralisation by Aminobacter sp. MSH1 during starvation depends on a subpopulation of intact cells maintaining vital membrane functions

    International Nuclear Information System (INIS)

    Sjoholm, Ole R.; Nybroe, Ole; Aamand, Jens; Sorensen, Jan

    2010-01-01

    Mineralisation capability was studied in the 2,6-dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 under growth-arrested conditions. Cells were starved in mineral salts (MS) solution or groundwater before 14 C-labelled BAM (0.1 mM) was added. Cell physiology was monitored with a panel of vitality stains combined with flow cytometry to differentiate intact, depolarised and dead cells. Cells starved for up to 3 weeks in MS solution showed immediate growth-linked mineralisation after BAM amendment while a lag-phase was seen after 8 weeks of starvation. In contrast, cells amended with BAM in natural groundwater showed BAM mineralisation but no growth. The cell-specific mineralisation rate was always comparable (10 -16 mol C intact cell -1 day -1 ) independent of media, growth, or starvation period after BAM amendment; lower rates were only observed as BAM concentration decreased. MSH1 seems useful for bioremediation and should be optimised to maintain an intact cell subpopulation as this seems to be the key parameter for successful mineralisation. - The intact cell population of Aminobacter MSH1 mineralises BAM at a constant rate independent of growth or extended starvation in mineral solution and natural groundwater.

  2. Involvement of AMP - activated protein kinase in fat depot-specific metabolic changes during starvation

    Czech Academy of Sciences Publication Activity Database

    Šponarová, Jana; Mustard, K. J.; Horáková, Olga; Flachs, Pavel; Rossmeisl, Martin; Brauner, Petr; Bardová, Kristina; Thomason-Hughes, M.; Braunerová, Radka; Janovská, Petra; Hardie, D. G.; Kopecký, Jan

    2005-01-01

    Roč. 579, č. 27 (2005), s. 6105-6110 ISSN 0014-5793 R&D Projects: GA ČR(CZ) GA303/05/2580; GA AV ČR(CZ) KJB5011303 Grant - others:Wellcome Trust(GB) 02760; European Commission(XE) LSHM-CT-2004-005272; Diabetes UK(GB) Project Grant; Biotechnology and Biological Sciences Research Council(GB) Research Studentship; GA-(GB) Novo-Nordisk Institutional research plan: CEZ:AV0Z50110509 Keywords : lipid metabolism * AMPK * starvation Subject RIV: ED - Physiology Impact factor: 3.415, year: 2005

  3. The effect of aerobic exercise and starvation on growth performance and postprandial metabolic response in juvenile southern catfish (Silurus meridionalis).

    Science.gov (United States)

    Li, Xiu-Ming; Liu, Li; Yuan, Jian-Ming; Xiao, Yuan-Yuan; Fu, Shi-Jian; Zhang, Yao-Guang

    2016-03-01

    To investigate the effects of aerobic exercise and starvation on growth performance, postprandial metabolic response and their interaction in a sedentary fish species, either satiation-fed or starved juvenile southern catfish (Silurus meridionalis) were exercised at 25 °C under three water velocities, i.e., nearly still water (control), 1 body length (bl) s(-1) and 2 bl s(-1), for eight weeks. Then, the feed intake (FI), food conversion efficiency (FCE), specific growth rate (SGR), morphological parameters, resting ṀO2 (ṀO2rest) and postprandial ṀO2 responses of the experimental fish were measured. Exercise at a low velocity (1 bl s(-1)) showed no effect on any growth performance parameter, whereas exercise at a high velocity (2 bl s(-1)) exhibited higher FI but similar SGR due to the extra energy expenditure from swimming and consequent decreased FCE. Starvation led to a significant body mass loss, whereas the effect intensified in both exercise groups. Exercise resulted in improved cardio-respiratory capacity, as indicated by increased gill and heart indexes, whereas it exhibited no effect on resting and postprandial metabolism in S. meridionalis. The starved fish displayed significantly larger heart, gill and digestive tract indexes compared with the feeding fish, suggesting selective maintenance of cardio-respiratory and digestive function in this fish species during starvation. However, starved fish still exhibited impaired digestive performance, as evidenced by the prolonged duration and low postprandial metabolic increase, and this effect was further exacerbated in both the 1 and 2 bl s(-1) exercise groups. These data suggest the following: (1) aerobic exercise produced no improvement in growth performance but may have led to the impairment of growth under insufficient food conditions; (2) the mass of different organs and tissues responded differently to aerobic exercise and starvation due to the different physiological roles they play; and (3

  4. Proximal Gut Mucosal Epithelial Homeostasis in Aged IL-1 Type I Receptor Knockout Mice After Starvation

    Science.gov (United States)

    2011-08-01

    increases whole-body lean mass and insulin sensitivity in elderly subjects with sarcopenia . Am J Cardiol. 2008; 101:69E. [PubMed: 18157968] 11. Iwakiri R...nutritional deficiencies in the elderly can be corrected by nutritional supplementation [5-7], especially among patients who are fed enterally [8-10...mechanistic approach regarding intestinal cell dysfunction in the elderly . Starvation causes mucosal atrophy and loss of mucosal height [32], and glutamine

  5. Metabolite Profiling of Low-P Tolerant and Low-P Sensitive Maize Genotypes under Phosphorus Starvation and Restoration Conditions.

    Directory of Open Access Journals (Sweden)

    Arshid Hussain Ganie

    Full Text Available Maize (Zea mays L. is one of the most widely cultivated crop plants. Unavoidable economic and environmental problems associated with the excessive use of phosphatic fertilizers demands its better management. The solution lies in improving the phosphorus (P use efficiency to sustain productivity even at low P levels. Untargeted metabolomic profiling of contrasting genotypes provides a snap shot of whole metabolome which differs under specific conditions. This information provides an understanding of the mechanisms underlying tolerance to P stress and the approach for increasing P-use-efficiency.A comparative metabolite-profiling approach based on gas chromatography-mass spectrometry (GC/MS was applied to investigate the effect of P starvation and its restoration in low-P sensitive (HM-4 and low-P tolerant (PEHM-2 maize genotypes. A comparison of the metabolite profiles of contrasting genotypes in response to P-deficiency revealed distinct differences among low-P sensitive and tolerant genotypes. Another set of these genotypes were grown under P-restoration condition and sampled at different time intervals (3, 5 and 10 days to investigate if the changes in metabolite profile under P-deficiency was restored. Significant variations in the metabolite pools of these genotypes were observed under P-deficiency which were genotype specific. Out of 180 distinct analytes, 91 were identified. Phosphorus-starvation resulted in accumulation of di- and trisaccharides and metabolites of ammonium metabolism, specifically in leaves, but decreased the levels of phosphate-containing metabolites and organic acids. A sharp increase in the concentrations of glutamine, asparagine, serine and glycine was observed in both shoots and roots under low-P condition.The new insights generated on the maize metabolome in response to P-starvation and restoration would be useful towards improvement of the P-use efficiency in maize.

  6. Lipid markers of diet history and their retention during experimental starvation in the Bering Sea euphausiid Thysanoessa raschii

    Science.gov (United States)

    Pleuthner, Rachel L.; Shaw, C. Tracy; Schatz, Megan J.; Lessard, Evelyn J.; Harvey, H. Rodger

    2016-12-01

    Two extended pulsed feeding experiments, following the spring bloom period, investigated lipid retention in the prominent Bering Sea euphausiid (krill) Thysanoessa raschii. These experiments occurred during late spring and early summer of 2010. Concurrent taxonomic analysis of the natural algal community allowed prey type to be linked to lipid composition of the natural communities. In late spring, experimental periods of feeding followed by starvation showed an overall decrease in total lipid for T. raschii. In early summer, no consistent trend was observed for total lipid with the visible presence of storage lipid in some animals. Polar lipids, as phospholipids, were the dominant krill lipid class in both experiments constituting ≥88% of total lipid, and triacylglycerols reached a maximum of 5% of total lipid. The sterols cholesterol and brassicasterol+desmosterol comprised 98-99% of total sterol abundances in T. raschii throughout both experiments, even after feeding periods when alternative sterols (i.e. the algal sterol 24-methylenecholesterol) accounted for up to 39% of sterols in potential food particles. Cholesterol abundance and concentration increased during both incubations, likely due to the metabolism of dietary sterols. Major fatty acids observed in krill included C14:0n, C16:0n, C16:1(n-7), C18:1(n-7), C18:1(n-9), C20:5(n-3), and C22:6(n-3) with the diatom-attributed C16:1(n-7) decreasing in abundance and concentration during starvation. Low concentrations of the dinoflagellate-derived sterol and a novel C28:8 PUFA, typically found in dinoflagellates and prymnesiophytes, indicated predation on protozooplankton in early summer when diatom abundances were low. The stability of lipid distributions over periods of starvation and intermittent feeding suggest that fatty acid and sterol biomarkers present in this polar euphausiid principally reflect long-term diet history rather than short-term feeding episodes.

  7. Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.

    Science.gov (United States)

    Li, Weiwei; Chen, Ming; Wang, Erhui; Hu, Liqin; Hawkesford, Malcolm J; Zhong, Li; Chen, Zhu; Xu, Zhaoshi; Li, Liancheng; Zhou, Yongbin; Guo, Changhong; Ma, Youzhi

    2016-10-12

    Autophagy is a cellular degradation process that is highly evolutionarily-conserved in yeast, plants, and animals. In plants, autophagy plays important roles in regulating intracellular degradation and recycling of amino acids in response to nutrient starvation, senescence, and other environmental stresses. Foxtail millet (Setaria italica) has strong resistance to stresses and has been proposed as an ideal material for use in the study of the physiological mechanisms of abiotic stress tolerance in plants. Although the genome sequence of foxtail millet (Setaria italica) is available, the characteristics and functions of abiotic stress-related genes remain largely unknown for this species. A total of 37 putative ATG (autophagy-associated genes) genes in the foxtail millet genome were identified. Gene duplication analysis revealed that both segmental and tandem duplication events have played significant roles in the expansion of the ATG gene family in foxtail millet. Comparative synteny mapping between the genomes of foxtail millet and rice suggested that the ATG genes in both species have common ancestors, as their ATG genes were primarily located in similar syntenic regions. Gene expression analysis revealed the induced expression of 31 SiATG genes by one or more phytohormone treatments, 26 SiATG genes by drought, salt and cold, 24 SiATG genes by darkness and 25 SiATG genes by nitrogen starvation. Results of qRT-PCR showing that among 37 SiATG genes, the expression level of SiATG8a was the highest after nitrogen starvation treatment 24 h, suggesting its potential role in tolerance to nutrient starvation. Moreover, the heterologous expression of SiATG8a in rice improved nitrogen starvation tolerance. Compared to wild type rice, the transgenic rice performed better and had higher aboveground total nitrogen content when the plants were grown under nitrogen starvation conditions. Our results deepen understanding about the characteristics and functions of ATG genes in

  8. TVP1022 and propargylamine protect neonatal rat ventricular myocytes against doxorubicin-induced and serum starvation-induced cardiotoxicity.

    Science.gov (United States)

    Kleiner, Yana; Bar-Am, Orit; Amit, Tamar; Berdichevski, Alexandra; Liani, Esti; Maor, Gila; Reiter, Irina; Youdim, Moussa B H; Binah, Ofer

    2008-09-01

    We recently reported that propargylamine derivatives such as rasagiline (Azilect) and its S-isomer TVP1022 are neuroprotective. The aim of this study was to test the hypothesis that the neuroprotective agents TVP1022 and propargylamine (the active moiety of propargylamine derivatives) are also cardioprotective. We specifically investigated the protective efficacy of TVP1022 and propargylamine in neonatal rat ventricular myocytes (NRVM) against apoptosis induced by the anthracycline chemotherapeutic agent doxorubicin and by serum starvation. We demonstrated that pretreatment of NRVM cultures with TVP1022 or propargylamine attenuated doxorubicin-induced and serum starvation-induced apoptosis, inhibited the increase in cleaved caspase 3 levels, and reversed the decline in Bcl-2/Bax ratio. These cytoprotective effects were shown to reside in the propargylamine moiety. Finally, we showed that TVP1022 neither caused proliferation of the human cancer cell lines HeLa and MDA-231 nor interfered with the anti-cancer efficacy of doxorubicin. These results suggest that TVP1022 should be considered as a novel cardioprotective agent against ischemic insults and against anthracycline cardiotoxicity and can be coadministered with doxorubicin in the treatment of human malignancies.

  9. Starvation, Together with the SOS Response, Mediates High Biofilm-Specific Tolerance to the Fluoroquinolone Ofloxacin

    Science.gov (United States)

    Bernier, Steve P.; Lebeaux, David; DeFrancesco, Alicia S.; Valomon, Amandine; Soubigou, Guillaume; Coppée, Jean-Yves; Ghigo, Jean-Marc; Beloin, Christophe

    2013-01-01

    High levels of antibiotic tolerance are a hallmark of bacterial biofilms. In contrast to well-characterized inherited antibiotic resistance, molecular mechanisms leading to reversible and transient antibiotic tolerance displayed by biofilm bacteria are still poorly understood. The physiological heterogeneity of biofilms influences the formation of transient specialized subpopulations that may be more tolerant to antibiotics. In this study, we used random transposon mutagenesis to identify biofilm-specific tolerant mutants normally exhibited by subpopulations located in specialized niches of heterogeneous biofilms. Using Escherichia coli as a model organism, we demonstrated, through identification of amino acid auxotroph mutants, that starved biofilms exhibited significantly greater tolerance towards fluoroquinolone ofloxacin than their planktonic counterparts. We demonstrated that the biofilm-associated tolerance to ofloxacin was fully dependent on a functional SOS response upon starvation to both amino acids and carbon source and partially dependent on the stringent response upon leucine starvation. However, the biofilm-specific ofloxacin increased tolerance did not involve any of the SOS-induced toxin–antitoxin systems previously associated with formation of highly tolerant persisters. We further demonstrated that ofloxacin tolerance was induced as a function of biofilm age, which was dependent on the SOS response. Our results therefore show that the SOS stress response induced in heterogeneous and nutrient-deprived biofilm microenvironments is a molecular mechanism leading to biofilm-specific high tolerance to the fluoroquinolone ofloxacin. PMID:23300476

  10. Responses of barley root and shoot proteomes to long‐term nitrogen deficiency, short‐term nitrogen starvation and ammonium

    DEFF Research Database (Denmark)

    Laurell Blom Møller, Anders; Pedas, Pai; Andersen, Birgit

    2011-01-01

    plants grown hydroponically for 33 d with 5 mm nitrate, plants grown under N deficiency (0.5 mm nitrate, 33 d) or short‐term N starvation (28 d with 5 mm nitrate followed by 5 d with no N source) were compared. N deficiency caused changes in C and N metabolism and ascorbate‐glutathione cycle enzymes...

  11. Mitochondrial ribosomal protein L41 mediates serum starvation-induced cell-cycle arrest through an increase of p21WAF1/CIP1

    International Nuclear Information System (INIS)

    Kim, Mi Jin; Yoo, Young A.; Kim, Hyung Jung; Kang, Seongman; Kim, Yong Geon; Kim, Jun Suk; Yoo, Young Do

    2005-01-01

    Ribosomal proteins not only act as components of the translation apparatus but also regulate cell proliferation and apoptosis. A previous study reported that MRPL41 plays an important role in p53-dependent apoptosis. It also showed that MRPL41 arrests the cell cycle by stabilizing p27 Kip1 in the absence of p53. This study found that MRPL41 mediates the p21 WAF1/CIP1 -mediated G1 arrest in response to serum starvation. The cells were released from serum starvation-induced G1 arrest via the siRNA-mediated blocking of MRPL41 expression. Overall, these results suggest that MRPL41 arrests the cell cycle by increasing the p21 WAF1/CIP1 and p27 Kip1 levels under the growth inhibitory conditions

  12. Stochastic feeding of fish larvae and their metabolic handling of starvation

    Science.gov (United States)

    Augustine, S.; Litvak, M. K.; Kooijman, S. A. L. M.

    2011-11-01

    Developmental patterns of yolk-sac larvae are well captured by the standard DEB model: (i) when feeding is delayed post birth the size at which post-feeding growth begins is reduced but the rate of growth post-feeding is unaffected and (ii) maternal effects (initial energy in egg) show up as differences in condition at birth and maximum length of non fed individuals. We extended the standard DEB model in two ways to account for starvation. (I): if somatic maintenance can no longer be paid structure is also mobilized to cover the costs, but at an extra cost-conversion efficiency of structure to energy. Death occurs if structure reaches a fraction of the maximum at the onset of shrinking. (II): if maturity maintenance can no longer be paid then maturity level decays exponentially (rejuvenation). Hazard due to rejuvenation is proportional to the difference between maturity and the maximum maturity at the onset of rejuvenation. We performed Monte Carlo simulation studies which treat feeding as a random process to evaluate the contribution of the metabolic handling of starvation to early teleost life history. The simulations suggest that food density strongly impacts growth, energy reserves, mineral fluxes, hazard and mortality from shrinking. Environmental factors can soon override maternal induced differences between individuals. Moreover in the low food density, simulated individuals from eggs of lower caloric content experience mortality from shrinking earlier than their counterparts issued from higher energy eggs. Empirically observed patterns of real data, i.e. high scatter in respiration in combination with low scatter in lengths, can be expected when the metabolism is treated as a deterministic system while behaviourally controlled input is stochastic. At low food densities where mortality from shrinking reaches 10% almost all individuals experience hazard due to rejuvenation. This hazard is difficult to access experimentally but represents moments of heightened

  13. Females increase reproductive investment in response to helper-mediated improvements in allo-feeding, nest survival, nestling provisioning and post-fledging survival in the Karoo scrub-robin Cercotrichas coryphaeus

    Science.gov (United States)

    Lloyd, P.; Andrew, Taylor W.; du Plessis, Morné A.; Martin, T.E.

    2009-01-01

    In many cooperatively-breeding species, the presence of one or more helpers improves the reproductive performance of the breeding pair receiving help. Helper contributions can take many different forms, including allo-feeding, offspring provisioning, and offspring guarding or defence. Yet, most studies have focussed on single forms of helper contribution, particularly offspring provisioning, and few have evaluated the relative importance of a broader range of helper contributions to group reproductive performance. We examined helper contributions to multiple components of breeding performance in the Karoo scrub-robin Cercotrichas coryphaeus, a facultative cooperative breeder. We also tested a prediction of increased female investment in reproduction when helpers improve conditions for rearing young. Helpers assisted the breeding male in allo-feeding the incubating female, increasing allo-feeding rates. Greater allo-feeding correlated with greater female nest attentiveness during incubation. Nest predation was substantially lower among pairs breeding with a helper, resulting in a 74% increase in the probability of nest survival. Helper contributions to offspring provisioning increased nestling feeding rates, resulting in a reduced incidence of nestling starvation and increased nestling mass. Nestling mass had a strong, positive effect on post-fledging survival. Controlling for female age and habitat effects, annual production of fledged young was 130% greater among pairs breeding with a helper, and was influenced most strongly by helper correlates with nest survival, despite important helper effects on offspring provisioning. Females breeding with a helper increased clutch size, supporting the prediction of increased female investment in reproduction in response to helper benefits. ?? 2009 J. Avian Biol.

  14. Investigating temporal changes in the yeast phosphoproteome upon fatty acid starvation

    DEFF Research Database (Denmark)

    Pultz, Dennis; Bennetzen, Martin; Andersen, Jens S.

    2011-01-01

    under nutrition but not malnutrition extends the life span of multiple species, ranging from single-celled organisms like yeast to mammals. This increase in longevity by dietary restriction (DR) is coupled to profound beneficial effects on age-related pathology. Despite the number of studies on DR......Investigating stemporal changes in the yeast phosphoproteome upon fatty acid starvation Dennis Pultz*, Martin Bennetzen*, Jens S. Andersen and Nils J.Færgeman. Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark, 5230 Reducing food intake to induce...... and the physiological changes DR induces, only little is known about the genetics and signalling networks which regulate the DR response. We have recently shown that inhibition of fatty acid synthesis in Saccharomyces cerevisiae results in a dependency on autophagy in maintaining normal life span. We further believe...

  15. Phosphate starvation triggers production and secretion of an extracellular lipoprotein in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Sophie Le Blastier

    Full Text Available Life in oligotrophic environments necessitates quick adaptive responses to a sudden lack of nutrients. Secretion of specific degradative enzymes into the extracellular medium is a means to mobilize the required nutrient from nearby sources. The aquatic bacterium Caulobacter crescentus must often face changes in its environment such as phosphate limitation. Evidence reported in this paper indicates that under phosphate starvation, C. crescentus produces a membrane surface-anchored lipoprotein named ElpS subsequently released into the extracellular medium. A complete set of 12 genes encoding a type II secretion system (T2SS is located adjacent to the elpS locus in the C. crescentus genome. Deletion of this T2SS impairs release of ElpS in the environment, which surprisingly remains present at the cell surface, indicating that the T2SS is not involved in the translocation of ElpS to the outer membrane but rather in its release. Accordingly, treatment with protease inhibitors prevents release of ElpS in the extracellular medium suggesting that ElpS secretion relies on a T2SS-secreted protease. Finally, secretion of ElpS is associated with an increase in alkaline phosphatase activity in culture supernatants, suggesting a role of the secreted protein in inorganic phosphate mobilization. In conclusion, we have shown that upon phosphate starvation, C. crescentus produces an outer membrane bound lipoprotein, ElpS, which is further cleaved and released in the extracellular medium in a T2SS-dependent manner. Our data suggest that ElpS is associated with an alkaline phosphatase activity, thereby allowing the bacterium to gather inorganic phosphates from a poor environment.

  16. LKR/SDH plays important roles throughout the tick life cycle including a long starvation period.

    Directory of Open Access Journals (Sweden)

    Banzragch Battur

    Full Text Available BACKGROUND: Lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH is a bifunctional enzyme catalyzing the first two steps of lysine catabolism in plants and mammals. However, to date, the properties of the lysine degradation pathway and biological functions of LKR/SDH have been very little described in arthropods such as ticks. METHODOLOGY/PRINCIPAL FINDINGS: We isolated and characterized the gene encoding lysine-ketoglutarate reductase (LKR, EC 1.5.1.8 and saccharopine dehydrogenase (SDH, EC 1.5.1.9 from a tick, Haemaphysalis longicornis, cDNA library that encodes a bifunctional polypeptide bearing domains similar to the plant and mammalian LKR/SDH enzymes. Expression of LKR/SDH was detected in all developmental stages, indicating an important role throughout the tick life cycle, including a long period of starvation after detachment from the host. The LKR/SDH mRNA transcripts were more abundant in unfed and starved ticks than in fed and engorged ticks, suggesting that tick LKR/SDH are important for the starved tick. Gene silencing of LKR/SDH by RNAi indicated that the tick LKR/SDH plays an integral role in the osmotic regulation of water balance and development of eggs in ovary of engorged females. CONCLUSIONS/SIGNIFICANCE: Transcription analysis and gene silencing of LKR/SDH indicated that tick LKR/SDH enzyme plays not only important roles in egg production, reproduction and development of the tick, but also in carbon, nitrogen and water balance, crucial physiological processes for the survival of ticks. This is the first report on the role of LKR/SDH in osmotic regulation in animals including vertebrate and arthropods.

  17. Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis

    KAUST Repository

    Lei, Mingguang; Zhu, Chuanmei; Liu, Yidan; Karthikeyan, Athikkattuvalasu S.; Bressan, Ray Anthony; Raghothama, Kashchandra G.; Liu, Dong

    2010-01-01

    With the exception of root hair development, the role of the phytohormone ethylene is not clear in other aspects of plant responses to inorganic phosphate (Pi) starvation. The induction of AtPT2 was used as a marker to find novel signalling

  18. Cytokine-mediated FOXO3a phosphorylation suppresses FasL expression in hemopoietic cell lines: investigations of the role of Fas in apoptosis due to cytokine starvation.

    Science.gov (United States)

    Behzad, Hayedeh; Jamil, Sarwat; Denny, Trisha A; Duronio, Vincent

    2007-05-01

    We have investigated phosphatidylinositol 3-kinase (PI3K)-dependent survival signalling pathways using several cytokines in three different hemopoietic cell lines, MC/9, FDC-P1, and TF-1. Cytokines caused PI3K- and PKB-dependent phosphorylation of FOXO3a (previously known as FKHRL1) at three distinct sites. Following cytokine withdrawal or PI3K inhibition, both of which are known to lead to apoptosis, there was a loss of FOXO3a phosphorylation, and a resulting increase in forkhead transcriptional activity, along with increased expression of Fas Ligand (FasL), which could be detected at the cell surface. Concurrently, an increase in cell surface expression of Fas was also detected. Despite the presence of both FasL and Fas, there was no detectable evidence that activation of Fas-mediated apoptotic events was contributing to apoptosis resulting from cytokine starvation or inhibition of PI3K activity. Thus, inhibition of FOXO3a activity is mediated by the PI3K-PKB pathway, but regulation of FasL is not the primary means by which cell survival is regulated in cytokine-dependent hemopoietic cells. We were also able to confirm increased expression of known FOXO3a targets, Bim and p27kip1. Together, these results support the conclusion that mitochondrial-mediated signals play the major role in apoptosis of hemopoietic cells due to loss of cytokine signalling.

  19. SU-E-I-92: Is Photon Starvation Preventing Metal Artifact Reduction Algorithm From Working in KVCT?

    Energy Technology Data Exchange (ETDEWEB)

    Paudel, M [University of Alberta, Cross Cancer Institute, Edmonton, AB (Canada); currently at University of Toronto, Sunnybrook Health Sciences Center, Toronto, ON (Canada); MacKenzie, M; Fallone, B; Rathee, S [University of Alberta, Cross Cancer Institute, Edmonton, AB (Canada)

    2014-06-01

    Purpose: High density/high atomic number metallic objects create shading and streaking metal artifacts in the CT image that can cause inaccurate delineation of anatomical structures or inaccurate radiation dose calculation. A modified iterative maximum-likelihood polychromatic algorithm for CT (mIMPACT) that models the energy response of detectors, photon interaction processes and beam polychromaticity has successfully reduced metal artifacts in MVCT. Our extension of mIMPACT in kVCT did not significantly reduce metal artifacts for high density metal like steel. We hypothesize that photon starvation may result in the measured data in a commercial kVCT imaging beam. Methods: We measured attenuation of a range of steel plate thicknesses, sandwiched between two 12cm thick solid water blocks, using a Phillips Big Bore CTTM scanner in scout acquisition mode with 120kVp and 200mAs. The transmitted signal (y) was normalized to the air scan signal (y{sub 0}) to get attenuation [i.e., ln(y/y{sub 0})] data for a detector. Results: Below steel plate thickness of 13.4mm, the variations in measured attenuation as a function of view number are characterized by a quantum noise and show increased attenuation with metal thickness. On or above this thickness the attenuation shows discrete levels in addition to the quantum noise. Some views have saturated attenuation value. The histograms of the measured attenuation for up to 36.7mm of steel show this trend. The detector signal is so small that the quantization levels in the analog to digital (A-to-D) converter are visible, a clear indication of photon starvation. Conclusion: Photons reaching the kVCT detector after passing through a thick metal plate are either so low in number that the signal measured has large quantum noise, or are completely absorbed inside the plate creating photon starvation. This is un-interpretable by the mIMPACT algorithm and cannot reduce metal artifacts in kVCT for certain realistic thicknesses of steel

  20. Increase of chromium tolerance in Scenedesmus acutus after sulfur starvation: Chromium uptake and compartmentalization in two strains with different sensitivities to Cr(VI).

    Science.gov (United States)

    Marieschi, M; Gorbi, G; Zanni, C; Sardella, A; Torelli, A

    2015-10-01

    In photosynthetic organisms sulfate constitutes the main sulfur source for the biosynthesis of GSH and its precursor Cys. Hence, sulfur availability can modulate the capacity to cope with environmental stresses, a phenomenon known as SIR/SED (Sulfur Induced Resistance or Sulfur Enhanced Defence). Since chromate may compete for sulfate transport into the cells, in this study chromium accumulation and tolerance were investigated in relation to sulfur availability in two strains of the unicellular green alga Scenedesmus acutus with different Cr-sensitivities. Paradoxically, sulfur deprivation has been demonstrated to induce a transient increase of Cr-tolerance in both strains. Sulfur deprivation is known to enhance the sulfate uptake/assimilation pathway leading to important consequences on Cr-tolerance: (i) reduced chromate uptake due to the induction of high affinity sulfate transporters (ii) higher production of cysteine and GSH which can play a role both through the formation of unsoluble complexes and their sequestration in inert compartments. To investigate the role of the above mentioned mechanisms, Cr accumulation in total cells and in different cell compartments (cell wall, membranes, soluble and miscellaneous fractions) was analyzed in both sulfur-starved and unstarved cells. Both strains mainly accumulated chromium in the soluble fraction, but the uptake was higher in the wild-type. In this type a short period of sulfur starvation before Cr(VI) treatment lowered chromium accumulation to the level observed in the unstarved Cr-tolerant strain, in which Cr uptake seems instead less influenced by S-starvation, since no significant decrease was observed. The increase in Cr-tolerance following S-starvation seems thus to rely on different mechanisms in the two strains, suggesting the induction of a mechanism constitutively active in the Cr-tolerant strain, maybe a high affinity sulfate transporter also in the wild-type. Changes observed in the cell wall and

  1. Glucose starvation boosts Entamoeba histolytica virulence.

    Directory of Open Access Journals (Sweden)

    Ayala Tovy

    2011-08-01

    Full Text Available The unicellular parasite, Entamoeba histolytica, is exposed to numerous adverse conditions, such as nutrient deprivation, during its life cycle stages in the human host. In the present study, we examined whether the parasite virulence could be influenced by glucose starvation (GS. The migratory behaviour of the parasite and its capability to kill mammalian cells and to lyse erythrocytes is strongly enhanced following GS. In order to gain insights into the mechanism underlying the GS boosting effects on virulence, we analyzed differences in protein expression levels in control and glucose-starved trophozoites, by quantitative proteomic analysis. We observed that upstream regulatory element 3-binding protein (URE3-BP, a transcription factor that modulates E.histolytica virulence, and the lysine-rich protein 1 (KRiP1 which is induced during liver abscess development, are upregulated by GS. We also analyzed E. histolytica membrane fractions and noticed that the Gal/GalNAc lectin light subunit LgL1 is up-regulated by GS. Surprisingly, amoebapore A (Ap-A and cysteine proteinase A5 (CP-A5, two important E. histolytica virulence factors, were strongly down-regulated by GS. While the boosting effect of GS on E. histolytica virulence was conserved in strains silenced for Ap-A and CP-A5, it was lost in LgL1 and in KRiP1 down-regulated strains. These data emphasize the unexpected role of GS in the modulation of E.histolytica virulence and the involvement of KRiP1 and Lgl1 in this phenomenon.

  2. Dynamic Changes in Yeast Phosphatase Families Allow for Specialization in Phosphate and Thiamine Starvation.

    Science.gov (United States)

    Nahas, John V; Iosue, Christine L; Shaik, Noor F; Selhorst, Kathleen; He, Bin Z; Wykoff, Dennis D

    2018-05-10

    Convergent evolution is often due to selective pressures generating a similar phenotype. We observe relatively recent duplications in a spectrum of Saccharomycetaceae yeast species resulting in multiple phosphatases that are regulated by different nutrient conditions - thiamine and phosphate starvation. This specialization is both transcriptional and at the level of phosphatase substrate specificity. In Candida glabrata , loss of the ancestral phosphatase family was compensated by the co-option of a different histidine phosphatase family with three paralogs. Using RNA-seq and functional assays, we identify one of these paralogs, CgPMU3 , as a thiamine phosphatase. We further determine that the 81% identical paralog CgPMU2 does not encode thiamine phosphatase activity; however, both are capable of cleaving the phosphatase substrate, 1-napthyl-phosphate. We functionally demonstrate that members of this family evolved novel enzymatic functions for phosphate and thiamine starvation, and are regulated transcriptionally by either nutrient condition, and observe similar trends in other yeast species. This independent, parallel evolution involving two different families of histidine phosphatases suggests that there were likely similar selective pressures on multiple yeast species to recycle thiamine and phosphate. In this work, we focused on duplication and specialization, but there is also repeated loss of phosphatases, indicating that the expansion and contraction of the phosphatase family is dynamic in many Ascomycetes. The dynamic evolution of the phosphatase gene families is perhaps just one example of how gene duplication, co-option, and transcriptional and functional specialization together allow species to adapt to their environment with existing genetic resources. Copyright © 2018, G3: Genes, Genomes, Genetics.

  3. Phospho-Rasputin Stabilization by Sec16 Is Required for Stress Granule Formation upon Amino Acid Starvation

    OpenAIRE

    Aguilera-Gomez, Angelica; Zacharogianni, Margarita; van Oorschot, Marinke M; Genau, Heide; Grond, Rianne; Veenendaal, Tineke; Sinsimer, Kristina S; Gavis, Elizabeth R; Behrends, Christian; Rabouille, Catherine

    2017-01-01

    Most cellular stresses induce protein translation inhibition and stress granule formation. Here, using Drosophila S2 cells, we investigate the role of G3BP/Rasputin in this process. In contrast to arsenite treatment, where dephosphorylated Ser142 Rasputin is recruited to stress granules, we find that, upon amino acid starvation, only the phosphorylated Ser142 form is recruited. Furthermore, we identify Sec16, a component of the endoplasmic reticulum exit site, as a Rasputin interactor and sta...

  4. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process.

    Science.gov (United States)

    Sun, Xian; Cao, Yu; Xu, Hui; Liu, Yan; Sun, Jianrui; Qiao, Dairong; Cao, Yi

    2014-03-01

    Triacylglyceride (TAG) and carbohydrate are potential feedstock for biofuels production. In this study, a two-stage process was applied for enhancing TAG/carbohydrate production in the selected microalgae - Neochloris oleoabundans HK-129. In stage I, effects of nitrogen, light intensity and iron on cell growth were investigated, and the highest biomass productivity of 292.83±5.83mg/L/d was achieved. In stage II, different nitrogen-starvation periods, light intensities and iron concentrations were employed to trigger accumulation of TAG and carbohydrate. The culture under 2-day N-starvation, 200μmol/m(2)/s light intensity and 0.037mM Fe(3+) concentration produced the maximum TAG and carbohydrate productivity of 51.58mg/L/d and 90.70mg/L/d, respectively. Nitrogen starvation period and light intensity had marked effects on TAG/carbohydrate accumulation and fatty acids profile, compared to iron concentration. The microalgal lipid was mainly composed of C16/C18 fatty acids (90.02%), saturated fatty acids (29.82%), and monounsaturated fatty acids (32.67%), which is suitable for biodiesel synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Developmental and age-specific effects of selection on divergent virgin life span on fat content and starvation resistance in Drosophila melanogaster

    NARCIS (Netherlands)

    Vermeulen, Cornelis; Van de Zande, Louis; Bijlsma, R.

    Investigations into the genetic basis of longevity variation have shown life span to be positively correlated with starvation resistance and negatively with female fecundity, both of which rely on lipid content. To assess the firmness of this relation, we assayed correlated responses in age-specific

  6. Modeling hydrogen starvation conditions in proton-exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ohs, Jan Hendrik; Sauter, Ulrich; Maass, Sebastian [Robert Bosch GmbH, Robert-Bosch-Platz 1, 70839 Gerlingen-Schillerhoehe (Germany); Stolten, Detlef [Forschungszentrum Juelich GmbH, IEF-3: Fuel Cells, 52425 Juelich (Germany)

    2011-01-01

    In this study, a steady state and isothermal 2D-PEM fuel cell model is presented. By simulation of a single cell along the channel and in through-plane direction, its behaviour under hydrogen starvation due to nitrogen dilution is analysed. Under these conditions, carbon corrosion and water electrolysis are observed on the cathode side. This phenomenon, causing severe cell degradation, is known as reverse current decay mechanism in literature. Butler-Volmer equations are used to model the electrochemical reactions. In addition, we account for permeation of gases through the membrane and for the local water content within the membrane. The results show that the membrane potential locally drops in areas starved from hydrogen. This leads to potential gradients >1.2 V between electrode and membrane on the cathode side resulting in significant carbon corrosion and electrolysis reaction rates. The model enables the analysis of sub-stoichiometric states occurring during anode gas recirculation or load transients. (author)

  7. An alternative methionine aminopeptidase, MAP-A, is required for nitrogen starvation and high-light acclimation in the cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Drath, Miriam; Baier, Kerstin; Forchhammer, Karl

    2009-05-01

    Methionine aminopeptidases (MetAPs or MAPs, encoded by map genes) are ubiquitous and pivotal enzymes for protein maturation in all living organisms. Whereas most bacteria harbour only one map gene, many cyanobacterial genomes contain two map paralogues, the genome of Synechocystis sp. PCC 6803 even three. The physiological function of multiple map paralogues remains elusive so far. This communication reports for the first time differential MetAP function in a cyanobacterium. In Synechocystis sp. PCC 6803, the universally conserved mapC gene (sll0555) is predominantly expressed in exponentially growing cells and appears to be a housekeeping gene. By contrast, expression of mapA (slr0918) and mapB (slr0786) genes increases during stress conditions. The mapB paralogue is only transiently expressed, whereas the widely distributed mapA gene appears to be the major MetAP during stress conditions. A mapA-deficient Synechocystis mutant shows a subtle impairment of photosystem II properties even under non-stressed conditions. In particular, the binding site for the quinone Q(B) is affected, indicating specific N-terminal methionine processing requirements of photosystem II components. MAP-A-specific processing becomes essential under certain stress conditions, since the mapA-deficient mutant is severely impaired in surviving conditions of prolonged nitrogen starvation and high light exposure.

  8. The comparison of lipid profiling in mouse brain and liver after starvation and a high-fat diet: A medical systems biology approach

    NARCIS (Netherlands)

    Ginneken, V.J.T. van; Verheij, E.; Hekman, M.; Greef, J. van der; Feskens, E.J.M.; Poelmann, R.E.

    2011-01-01

    We investigated with LC-MS techniques, measuring approximately 109 lipid compounds, in mouse brain and liver tissue after 48 hours of starvation and a High-Fat Diet if brain and liver lipid composition changed. We measured Cholesterolesters (ChE), Lysophosphatidyl-cholines (LPC), Phosphatidylcholine

  9. Effects of starvation, refeeding, and insulin on energy-linked metabolic processes in catfish (Rhamdia hilarii) adapted to a carbohydrate-rich diet

    International Nuclear Information System (INIS)

    Machado, C.R.; Garofalo, M.A.; Roselino, J.E.; Kettelhut, I.C.; Migliorini, R.H.

    1988-01-01

    The effects of starvation and of a short period of refeeding on energy-linked metabolic processes, as well as the effects of insulin administration, were investigated in an omnivorous fish (catfish, Rhamdia hilarii) previously adapted to a carbohydrate-rich diet. Following food deprivation blood sugar levels declined progressively to about 50% of fed values after 30 days. During the same period plasma free fatty acid (FFA) concentration increased twofold. Starvation resulted in reduced concentrations of lipid and glycogen in the liver and of glycogen, lipid, and protein in white muscle. However, taking into account the initial and final concentrations of tissue constituents, the liver weight, and the large fractions of body weight represented by muscle, it could be estimated that most of the energy utilized during starvation derived from the catabolism of muscle lipid and protein. Refeeding starved fishes for 48 hr induced several-fold increases in the rates of in vivo and in vitro incorporation of [14C]glucose into liver and muscle lipid and of [14C]glycine into liver and muscle protein. Incorporation of [14C]glucose into liver glycogen was also increased. However; refeeding did not affect the incorporation of labeled glucose into muscle glycogen, neither in vivo nor in vitro. Administration of pharmacological doses of insulin to normally fed catfishes resulted in marked increases in the in vivo incorporation of 14C from glucose into lipid and protein in both liver and muscle. In contrast, labeled glucose incorporation into muscle glycogen was not affected by insulin and label incorporation into liver glycogen was actually lower than that in noninjected controls

  10. Effect of environmental stress factors on the uptake and survival of Campylobacter jejuni in Acanthamoeba castellanii

    DEFF Research Database (Denmark)

    Bui, Thanh Xuan; Qvortrup, Klaus; Wolff, Anders

    2012-01-01

    -exposure to heat, starvation, oxidative or osmotic stresses encountered in the environment may affect the subsequent interaction of C. jejuni with free-living protozoa. To test this hypothesis, we examined the impact of environmental stress on expression of virulence-associated genes (ciaB, dnaJ, and htrA) of C......Background: Campylobacter jejuni is a major cause of bacterial food-borne illness in Europe and North America. The mechanisms allowing survival in the environment and transmission to new hosts are not well understood. Environmental free-living protozoa may facilitate both processes. Pre......, heat treated or osmotically stressed bacteria than with control bacteria. Also, while similar to 1.5 x 10(3) colony forming unit/ml internalized bacteria could typically be recovered 24 h post-gentamicin treatment with control bacteria, no starved, heat treated or osmotically stressed bacteria could...

  11. Phosphorylated Akt Protein at Ser473 Enables HeLa Cells to Tolerate Nutrient-Deprived Conditions

    Science.gov (United States)

    Fathy, Moustafa; Awale, Suresh; Nikaido, Toshio

    2017-12-29

    Background: Despite angiogenesis, many tumours remain hypovascular and starved of nutrients while continuing to grow rapidly. The specific biochemical mechanisms associated with starvation resistance, austerity, may be new biological characters of cancer that are critical for cancer progression. Objective: This study aim was to investigate the effect of nutrient starvation on HeLa cells and the possible mechanism by which the cells are able to tolerate nutrient-deprived conditions. Methods: Nutrient starvation was achieved by culturing HeLa cells in nutrient-deprived medium (NDM) and cell survival was estimated by using cell counting kit-8. The effect of starvation on cell cycle distribution and the quantitative analysis of apoptotic cells were investigated by flow cytometry using propidium iodide staining. Western blotting was used to detect the expression levels of Akt and phosphorylated Akt at Ser473 (Ser473p-Akt) proteins. Results: HeLa cells displayed extremely long survival when cultured in NDM. The percentage of apoptotic HeLa cells was significantly increased by starvation in a time-dependent manner. A significant increase in the expression of Ser473p-Akt protein after starvation was also observed. Furthermore, it was found that Akt inhibitor III molecule inhibited the cells proliferation in a concentration- and time-dependent manner. Conclusion: Results of the present study provide evidence that Akt activation may be implicated in the tolerance of HeLa cells for nutrient starvation and may help to suggest new therapeutic strategies designed to prevent austerity of cervical cancer cells through inhibition of Akt activation. Creative Commons Attribution License

  12. Energy metabolism and nutrient oxidation in young pigs and rats during feeding, starvation and re-feeding

    DEFF Research Database (Denmark)

    Chwalibog, André; Jakobsen, Kirsten; Tauson, Anne-Helene

    2005-01-01

    production during feeding and re-feeding was covered by OXP+OXCHO with no OXF and reversibly after 2 days of starvation by OXP+OXF with no OXCHO. The rat may be a suitable model for pigs regarding general patterns of quantitative nutrient partition, but any direct application of results measured with rats...... to pigs shall be taken cautiously, keeping in mind that modern pigs have been selected for a high growth rate and protein deposition which has not been the case for the laboratory rat....

  13. Development of photosynthetic activity in Porphyridium purpureum (Rhodophyta) following nitrogen starvation

    Energy Technology Data Exchange (ETDEWEB)

    Levy, I.; Gantt, E. (Smithsonian Institution, Washington, DC (USA))

    1990-03-01

    The effects of nitrogen limitation on laboratory cultures of Porphyridium purpureum Bory, Drew and Ross were studied under continuous white light illumination (35 {mu}E {times} m{sup {minus}2} {times} s{sup {minus}1}). Growth ceased, respiration exceeded photosynthesis, chlorophyll content was reduced by 80%, and phycoerythrin content was reduced by 99% over a period of 14 days under nitrogen limitation. Recovery upon addition of nitrogen resulted in increased phycobiliprotein content, appearance of phycobilisomes attached to the thylakoids, increased oxygen evolution, and increased fluorescence emission from photosystem 1 (720 nm) and photosystem 2 (685 nm) upon excitation by green light. Growth resumes after 72 h and was concomitant with an increase of chlorophyll, phycoerythrin and phycobilisomes per thylakoid area. The results suggest that photosystem 1 was less affected by nitrogen starvation than photosystem 2 and that the recovery was largely dependent on the restoration of phycobilisomes and other photosystem components.

  14. Nitrogen starvation of cyanobacteria results in the production of β-N-methylamino-L-alanine.

    Science.gov (United States)

    Downing, S; Banack, S A; Metcalf, J S; Cox, P A; Downing, T G

    2011-08-01

    β-N-Methylamino-L-alanine, an unusual amino acid implicated in neurodegenerative disease, has been detected in cultures of nearly all genera of environmentally ubiquitous cyanobacteria tested. The compound is present within cyanobacterial cells in free and protein-associated forms, with large variations occurring in the concentration of these pools between species as well as within single strains. With a lack of knowledge and supporting data on the regulation of BMAA production and the role of this compound in cyanobacteria, the association between BMAA and cyanobacteria is still subject to debate. In this study we investigated the biosynthesis of BMAA in axenic non-diazotrophic cyanobacterial cultures using the stable isotope ¹⁵N. Nitrogen starvation of nutritionally replete cells resulted in an increase in free cellular ¹⁵N BMAA suggesting that BMAA may be the result of catabolism to provide nitrogen or that BMAA is synthesised to serve a functional role in the cell in response to nitrogen deprivation. The addition of NO₃⁻ and NH₄⁺ to the culture medium following starvation resulted in a decrease of free cellular BMAA without a corresponding increase in the protein-associated fraction. The use of ammonia as a nitrogen source resulted in a more rapid reduction of BMAA when compared to nitrate. This study provides the first data regarding the regulation of intracellular BMAA concentrations in cyanobacteria with results conclusively showing the production of ¹⁵N BMAA by an axenic cyanobacterial culture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. A conserved two-component signal transduction system controls the response to phosphate starvation in Bifidobacterium breve UCC2003.

    Science.gov (United States)

    Alvarez-Martin, Pablo; Fernández, Matilde; O'Connell-Motherway, Mary; O'Connell, Kerry Joan; Sauvageot, Nicolas; Fitzgerald, Gerald F; MacSharry, John; Zomer, Aldert; van Sinderen, Douwe

    2012-08-01

    This work reports on the identification and molecular characterization of the two-component regulatory system (2CRS) PhoRP, which controls the response to inorganic phosphate (P(i)) starvation in Bifidobacterium breve UCC2003. The response regulator PhoP was shown to bind to the promoter region of pstSCAB, specifying a predicted P(i) transporter system, as well as that of phoU, which encodes a putative P(i)-responsive regulatory protein. This interaction is assumed to cause transcriptional modulation under conditions of P(i) limitation. Our data suggest that the phoRP genes are subject to positive autoregulation and, together with pstSCAB and presumably phoU, represent the complete regulon controlled by the phoRP-encoded 2CRS in B. breve UCC2003. Determination of the minimal PhoP binding region combined with bioinformatic analysis revealed the probable recognition sequence of PhoP, designated here as the PHO box, which together with phoRP is conserved among many high-GC-content Gram-positive bacteria. The importance of the phoRP 2CRS in the response of B. breve to P(i) starvation conditions was confirmed by analysis of a B. breve phoP insertion mutant which exhibited decreased growth under phosphate-limiting conditions compared to its parent strain UCC2003.

  16. The natural compound Guttiferone F sensitizes prostate cancer to starvation induced apoptosis via calcium and JNK elevation.

    Science.gov (United States)

    Li, Xin; Lao, Yuanzhi; Zhang, Hong; Wang, Xiaoyu; Tan, Hongsheng; Lin, Zhixiu; Xu, Hongxi

    2015-04-11

    In a cytotoxicity screen in serum-free medium, Guttiferone F showed strong growth inhibitory effect against prostate cancer cells. Prostate cancer cells LNCaP and PC3 were treated with Guttiferone F in serum depleted medium. Sub-G1 phase distributions were estimated with flow cytometry. Mitochondrial disruption was observed under confocal microscope using Mitotracker Red staining. Gene and protein expression changes were detected by real-time PCR and Western blotting. Ca(2+) elevation was examined by Fluo-4 staining under fluorescence microscope. PC3 xenografts in mice were examined by immunohistochemical analysis. Guttiferone F had strong growth inhibitory effect against prostate cancer cell lines under serum starvation. It induced a significant increase in sub-G1 fraction and DNA fragmentation. In serum-free medium, Guttiferone F triggered mitochondria dependent apoptosis by regulating Bcl-2 family proteins. In addition, Guttiferone F attenuated the androgen receptor expression and phosphorylation of ERK1/2, while activating the phosphorylation of JNK and Ca(2+) flux. Combination of caloric restriction with Guttiferone F in vivo could increase the antitumor effect without causing toxicity. Guttiferone F induced prostate cancer cell apoptosis under serum starvation via Ca(2+) elevation and JNK activation. Combined with caloric restriction, Guttiferone F exerted significant growth inhibition of PC3 cells xenograft in vivo. Guttiferone F is therefore a potential anti-cancer compound.

  17. Effects of Pluronic F-68 on Tetrahymena cells: protection against chemical and physical stress and prolongation of survival under toxic conditions

    DEFF Research Database (Denmark)

    Hellung-Larsen, P; Assaad, F; Pankratova, Stanislava

    2000-01-01

    exposed to hyperthermia (43 degrees C). The cellular survival is increased at reduced temperatures (e.g. 4 degrees C instead of 36 degrees C) and at increased cellular concentrations (e.g. 100 cells ml(-1) instead of 25 or 10 cells ml(-1)). There is no effect of pre-incubation with Pluronic......The effects of the non-ionic surfactant Pluronic F-68 (0.01% w/v) on Tetrahymena cells have been studied. A marked protection against chemical and physical stress was observed. The chemical stress effects were studied in cells suspended in buffer (starvation) or in buffers with added ingredients....... The protective effect of Pluronic towards Tetrahymena is observed for concentrations in the range from 0.001 to 0.1% w/v....

  18. Cell survival under nutrient stress is dependent on metabolic conditions regulated by Akt and not by autophagic vacuoles.

    Science.gov (United States)

    Bruno, P; Calastretti, A; Priulla, M; Asnaghi, L; Scarlatti, F; Nicolin, A; Canti, G

    2007-10-01

    Akt activation assists tumor cell survival and promotes resistance to chemotherapy. Here we show that constitutively active Akt (CA-Akt) cells are highly sensitized to cell death induced by nutrient and growth factor deprivation, whereas dominant-negative Akt (DN-Akt) cells have a high rate of survival. The content of autophagosomes in starved CA-Akt cells was high, while DN-Akt cells expressed autophagic vacuoles constitutively, independently of nutrition conditions. Thus Akt down-regulation and downstream events can induce autophagosomes which were not directly determinants of cell death. Biochemical analysis in Akt-mutated cells show that (i) Akt and mTOR proteins were degraded more rapidly than the housekeeping proteins, (ii) mTOR phosphorylation at position Thr(2446) was relatively high in DN-Akt and low in CA-Akt cells, induced by starvation in mock cells only, which suggests reduced autoregulation of these pathways in Akt-mutated cells, (iii) both protein synthesis and protein degradation were significantly higher in starved CA-Akt cells than in starved DN-Akt cells or mock cells. In conclusion, constitutively active Akt, unable to control synthesis and wasting of proteins, accelerates the death of starved cells.

  19. Neonatal piglet traits of importance for survival in crates and indoor pens

    DEFF Research Database (Denmark)

    Pedersen, Lene Juul; Berg, Peer; Jørgensen, Grete

    2011-01-01

    The primary aim of the present study was to investigate whether the same piglet traits contributed to the same causes of neonatal piglet mortality in crates (CT) and pens (PN). Gilts originating from 2 distinct genetic groups that differed in breeding value for piglet survival rate at d 5 (SR5......) were used. These were distributed to farrow in either PN or CT as follows: high-SR5 and CT (n = 30); low-SR5 and CT (n = 27); high-SR5 and PN (n = 22); and low-SR5 and PN (n = 24). Data on individual piglets were collected at birth, including interbirth interval; birth order; birth weight; rectal...... with a logit link function. No significant effect (NS) of housing was observed on the odds of a piglet being stillborn (F1,73 = 0.1, NS), being crushed (F1,53 = 1.4, NS), or dying of starvation (F1,53 = 0.3, NS). No significant differences were observed between the 2 genetic groups for any category...

  20. Facilitated recruitment of Pdc2p, a yeast transcriptional activator, in response to thiamin starvation.

    Science.gov (United States)

    Nosaka, Kazuto; Esaki, Hiroyoshi; Onozuka, Mari; Konno, Hiroyuki; Hattori, Yasunao; Akaji, Kenichi

    2012-05-01

    In Saccharomyces cerevisiae, genes involved in thiamin pyrophosphate (TPP) synthesis (THI genes) and the pyruvate decarboxylase structural gene PDC5 are transcriptionally induced in response to thiamin starvation. Three positive regulatory factors (Thi2p, Thi3p, and Pdc2p) are involved in the expression of THI genes, whereas only Pdc2p is required for the expression of PDC5. Thi2p and Pdc2p serve as transcriptional activators and each factor can interact with Thi3p. The target consensus DNA sequence of Thi2p has been deduced. When TPP is not bound to Thi3p, the interactions between the regulatory factors are increased and THI gene expression is upregulated. In this study, we demonstrated that Pdc2p interacts with the upstream region of THI genes and PDC5. The association of Pdc2p or Thi2p with THI gene promoters was enhanced by thiamin starvation, suggesting that Pdc2p and Thi2p assist each other in their recruitment to the THI promoters via interaction with Thi3p. It is highly likely that, under thiamin-deprived conditions, a ternary Thi2p/Thi3p/Pdc2p complex is formed and transactivates THI genes in yeast cells. On the other hand, the association of Pdc2p with PDC5 was unaffected by thiamin. We also identified a DNA element in the upstream region of PDC5, which can bind to Pdc2p and is required for the expression of PDC5. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Sensor kinase KinB and its pathway-associated key factors sense the signal of nutrition starvation in sporulation of Bacillus subtilis.

    Science.gov (United States)

    Liu, Weipeng; He, Zeying; Gao, Feng; Yan, Jinyuan; Huang, Xiaowei

    2018-01-03

    Bacillus subtilis responds to environmental stress cues and develops endospores for survival. In the process of endospore formation, sporulation initiation is a vital stage and this stage is governed by autophosphorylation of the sensor histidine kinases. The second major sensor kinase KinB perceives the intracellular changes of GTP and ATP during sporulation. However, determination of the environmental signals as well as its related signaling pathway of KinB requires further elucidation. Our current study found that, contrary to the sporulation failure induced by ΔkinA in the nutrient-rich 2× SG medium, the sensor kinase KinB sensed the environmental cues in the nutrient-poor MM medium. Two other membrane proteins, KapB and KbaA, also responded similarly to the same external signal as KinB. Both KapB and KbaA acted upstream of KinB, but they exerted their regulation upon KinB independently. Furthermore, we demonstrated that both the SH3 domain and the α-helix structure in KapB are required for sensing or transducing the signal of sporulation initiation. Collectively, our work here supplied the direct evidences that KinB and its pathway sense the external signal of nutrient starvation in MM medium, and further analyzes the interrelationship among KinB, KbaA, and KapB. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  2. An unusual correlation between ppGpp pool size and rate of ribosome synthesis during partial pyrimidine starvation of Escherichia coli

    DEFF Research Database (Denmark)

    Vogel, Ulla; Pedersen, Steen; Jensen, Kaj Frank

    1991-01-01

    Escherichia coli was exposed to partial pyrimidine starvation by feeding a pyrBI strain orotate as the only pyrimidine source. Subsequently, differential rates of synthesis of rRNA and of a few ribosome-associated proteins as well as the pool sizes of nucleoside triphosphates and ppGpp were measu...

  3. Cellular trafficking of thymosin beta-4 in HEPG2 cells following serum starvation.

    Directory of Open Access Journals (Sweden)

    Giuseppina Pichiri

    Full Text Available Thymosin beta-4 (Tβ4 is an ubiquitous multi-functional regenerative peptide, related to many critical biological processes, with a dynamic and flexible conformation which may influence its functions and its subcellular distribution. For these reasons, the intracellular localization and trafficking of Tβ4 is still not completely defined and is still under investigation in in vivo as well as in vitro studies. In the current study we used HepG2 cells, a human hepatoma cell line; cells growing in normal conditions with fetal bovine serum expressed high levels of Tβ4, restricted to the cytoplasm until 72 h. At 84 h, a diffuse Tβ4 cytoplasmic immunostaining shifted to a focal perinuclear and nuclear reactivity. In the absence of serum, nuclear reactivity was localized in small granules, evenly dispersed throughout the entire nuclear envelop, and was observed as earlier as at 48 h. Cytoplasmic immunostaining for Tβ4 in HepG2 cells under starvation appeared significantly lower at 48 h and decreased progressively at 72 and at 84 h. At these time points, the decrease in cytoplasmic staining was associated with a progressive increase in nuclear reactivity, suggesting a possible translocation of the peptide from the cytoplasm to the nuclear membrane. The normal immunocytochemical pattern was restored when culture cells submitted to starvation for 84 h received a new complete medium for 48 h. Mass spectrometry analysis, performed on the nuclear and cytosolic fractions of HepG2 growing with and without serum, showed that Tβ4 was detectable only in the cytosolic and not in the intranuclear fraction. These data suggest that Tβ4 is able to translocate from different cytoplasmic domains to the nuclear membrane and back, based on different stress conditions within the cell. The punctuate pattern of nuclear Tβ4 immunostaining associated with Tβ4 absence in the nucleoplasm suggest that this peptide might be localized in the nuclear pores, where it could

  4. The Putative HORMA Domain Protein Atg101 Dimerizes and Is Required for Starvation-Induced and Selective Autophagy in Drosophila

    Directory of Open Access Journals (Sweden)

    Krisztina Hegedűs

    2014-01-01

    Full Text Available The large-scale turnover of intracellular material including organelles is achieved by autophagy-mediated degradation in lysosomes. Initiation of autophagy is controlled by a protein kinase complex consisting of an Atg1-family kinase, Atg13, FIP200/Atg17, and the metazoan-specific subunit Atg101. Here we show that loss of Atg101 impairs both starvation-induced and basal autophagy in Drosophila. This leads to accumulation of protein aggregates containing the selective autophagy cargo ref(2P/p62. Mapping experiments suggest that Atg101 binds to the N-terminal HORMA domain of Atg13 and may also interact with two unstructured regions of Atg1. Another HORMA domain-containing protein, Mad2, forms a conformational homodimer. We show that Drosophila Atg101 also dimerizes, and it is predicted to fold into a HORMA domain. Atg101 interacts with ref(2P as well, similar to Atg13, Atg8a, Atg16, Atg18, Keap1, and RagC, a known regulator of Tor kinase which coordinates cell growth and autophagy. These results raise the possibility that the interactions and dimerization of the putative HORMA domain protein Atg101 play critical roles in starvation-induced autophagy and proteostasis, by promoting the formation of protein aggregate-containing autophagosomes.

  5. Nitrogen starvation affects bacterial adhesion to soil Adesão de bactérias desnutridas por nitrogênio a solo

    Directory of Open Access Journals (Sweden)

    Maria Tereza Borges

    2008-09-01

    Full Text Available One of the main factors limiting the bioremediation of subsoil environments based on bioaugmentation is the transport of selected microorganisms to the contaminated zones. The characterization of the physiological responses of the inoculated microorganisms to starvation, especially the evaluation of characteristics that affect the adhesion of the cells to soil particles, is fundamental to anticipate the success or failure of bioaugmentation. The objective of this study was to investigate the effect of nitrogen starvation on cell surface hydrophobicity and cell adhesion to soil particles by bacterial strains previously characterized as able to use benzene, toluene or xilenes as carbon and energy sources. The strains LBBMA 18-T (non-identified, Arthrobacter aurescens LBBMA 98, Arthrobacter oxydans LBBMA 201, and Klebsiella sp. LBBMA 204-1 were used in the experiments. Cultivation of the cells in nitrogen-deficient medium caused a significant reduction of the adhesion to soil particles by all the four strains. Nitrogen starvation also reduced significantly the strength of cell adhesion to the soil particles, except for Klebsiella sp. LBBMA 204-1. Two of the four strains showed significant reduction in cell surface hydrophobicity. It is inferred that the efficiency of bacterial transport through soils might be potentially increased by nitrogen starvation.Um dos principais fatores limitantes da biorremediação in situ de solos subterrâneos, baseada na bioaumentação, é o transporte dos microrganismos selecionados até o local contaminado. A caracterização das respostas fisiológicas dos microrganismos introduzidos no subsolo a condições de escassez nutricional, notadamente a avaliação de características que afetam a adesão celular ao solo, é fundamental para se prever o sucesso da bioaumentação. O objetivo deste trabalho foi determinar o efeito da desnutrição em meio com escassez de nitrogênio sobre a hidrofobicidade celular e a

  6. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals

    Czech Academy of Sciences Publication Activity Database

    Koeslin-Findeklee, F.; Becker, M. A.; van der Graaff, E.; Roitsch, Thomas; Horst, W. J.

    2015-01-01

    Roč. 66, č. 13 (2015), s. 3669-3681 ISSN 0022-0957 Institutional support: RVO:67179843 Keywords : Brassica napus * cytokinins * genotypic differences * leaf senescence * nitrogen efficiency * nitrogen starvation * reciprocal grafting * stay-green Subject RIV: EH - Ecology, Behaviour Impact factor: 5.677, year: 2015

  7. Effects of long term feeding diets differing in protein source and pre-slaughter starvation on biometry, qualitative traits and liver IGF-I expression in large rainbow trout

    Directory of Open Access Journals (Sweden)

    Emilio Tibaldi

    2010-01-01

    Full Text Available The effects of feeding two complete extruded diets differing in protein source (fish meal-FM vs. vegetable proteins-VP over 30 weeks and subsequent 30 days of starvation on biometry, fillet composition and liver IGF-I mRNA were studied in large rainbow trout. At the end of the feeding period, the dietary protein source little affected major biometry traits, dressing out yields and overall adiposity (P>0.05 but fish given the VP diet resulted in higher content of PUFA n-6 fatty acids in mus- cle (0.46 vs. 0.22 g/100g fillet, P0.05 and of all fatty acids in fillet (P<0.05, except DHA. Liver IGF-I mRNA content was little affected by the test diet and starvation.

  8. Nitrogen Starvation and TorC1 Inhibition Differentially Affect Nuclear Localization of the Gln3 and Gat1 Transcription Factors Through the Rare Glutamine tRNACUG in Saccharomyces cerevisiae

    Science.gov (United States)

    Tate, Jennifer J.; Rai, Rajendra; Cooper, Terrance G.

    2015-01-01

    A leucine, leucyl-tRNA synthetase–dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2Δ mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2Δ mutation, does not require tRNACUG for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors

  9. Hypoxia modifies the feeding preferences of Drosophila. Consequences for diet dependent hypoxic survival

    Directory of Open Access Journals (Sweden)

    Frelin Christian

    2010-05-01

    Full Text Available Abstract Background Recent attention has been given to the relationships between diet, longevity, aging and resistance to various forms of stress. Flies do not simply ingest calories. They sense different concentrations of carbohydrate and protein macronutrients and they modify their feeding behavior in response to changes in dietary conditions. Chronic hypoxia is a major consequence of cardiovascular diseases. Dietary proteins have recently been shown to decrease the survival of chronically hypoxic Drosophila. Whether flies modify their feeding behavior in response to hypoxia is not currently known. This study uses the recently developed capillary feeding assay to analyze the feeding behavior of normoxic and chronically hypoxic Drosophila melanogaster. Results The intakes rates of sucrose and yeast by normoxic or chronically hypoxic flies (5% O2 were analyzed under self selecting and "no choice" conditions. Chronically hypoxic flies fed on pure yeast diets or mixed diets under self selection conditions stopped feeding on yeast. Flies fed on mixed diets under "no choice" conditions reduced their food intakes. Hypoxia did not modify the adaptation of flies to diluted diets or to imbalanced diets. Mortality was assessed in parallel experiments. Dietary yeast had two distinct effects on hypoxic flies (i a repellent action which eventually led to starvation and which was best observed in the absence of dietary sucrose and (ii a toxic action which led to premature death. Finally we determined that hypoxic survivals were correlated to the intakes of sucrose, which suggested that dietary yeast killed flies by reducing their intake of sucrose. The feeding preferences of adult Drosophila were insensitive to NO scavengers, NO donor molecules and inhibitors of phosphodiesterases which are active on Drosophila larvae. Conclusion Chronically hypoxic flies modify their feeding behavior. They avoid dietary yeast which appears to be toxic. Hypoxic survival is

  10. PfeIK1, a eukaryotic initiation factor 2α kinase of the human malaria parasite Plasmodium falciparum, regulates stress-response to amino-acid starvation

    Directory of Open Access Journals (Sweden)

    Ranford-Cartwright Lisa

    2009-05-01

    Full Text Available Abstract Background Post-transcriptional control of gene expression is suspected to play an important role in malaria parasites. In yeast and metazoans, part of the stress response is mediated through phosphorylation of eukaryotic translation initiation factor 2α (eIF2α, which results in the selective translation of mRNAs encoding stress-response proteins. Methods The impact of starvation on the phosphorylation state of PfeIF2α was examined. Bioinformatic methods were used to identify plasmodial eIF2α kinases. The activity of one of these, PfeIK1, was investigated using recombinant protein with non-physiological substrates and recombinant PfeIF2α. Reverse genetic techniques were used to disrupt the pfeik1 gene. Results The data demonstrate that the Plasmodium falciparum eIF2α orthologue is phosphorylated in response to starvation, and provide bioinformatic evidence for the presence of three eIF2α kinases in P. falciparum, only one of which (PfPK4 had been described previously. Evidence is provided that one of the novel eIF2α kinases, PfeIK1, is able to phosphorylate the P. falciparum eIF2α orthologue in vitro. PfeIK1 is not required for asexual or sexual development of the parasite, as shown by the ability of pfeik1- parasites to develop into sporozoites. However, eIF2α phosphorylation in response to starvation is abolished in pfeik1- asexual parasites Conclusion This study strongly suggests that a mechanism for versatile regulation of translation by several kinases with a similar catalytic domain but distinct regulatory domains, is conserved in P. falciparum.

  11. Real-time metabolome profiling of the metabolic switch between starvation and growth.

    Science.gov (United States)

    Link, Hannes; Fuhrer, Tobias; Gerosa, Luca; Zamboni, Nicola; Sauer, Uwe

    2015-11-01

    Metabolic systems are often the first networks to respond to environmental changes, and the ability to monitor metabolite dynamics is key for understanding these cellular responses. Because monitoring metabolome changes is experimentally tedious and demanding, dynamic data on time scales from seconds to hours are scarce. Here we describe real-time metabolome profiling by direct injection of living bacteria, yeast or mammalian cells into a high-resolution mass spectrometer, which enables automated monitoring of about 300 compounds in 15-30-s cycles over several hours. We observed accumulation of energetically costly biomass metabolites in Escherichia coli in carbon starvation-induced stationary phase, as well as the rapid use of these metabolites upon growth resumption. By combining real-time metabolome profiling with modeling and inhibitor experiments, we obtained evidence for switch-like feedback inhibition in amino acid biosynthesis and for control of substrate availability through the preferential use of the metabolically cheaper one-step salvaging pathway over costly ten-step de novo purine biosynthesis during growth resumption.

  12. A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis.

    Science.gov (United States)

    Nacry, Philippe; Canivenc, Geneviève; Muller, Bertrand; Azmi, Abdelkrim; Van Onckelen, Harry; Rossignol, Michel; Doumas, Patrick

    2005-08-01

    The changes in root system architecture (RSA) triggered by phosphate (P) deprivation were studied in Arabidopsis (Arabidopsis thaliana) plants grown for 14 d on 1 mM or 3 microM P. Two different temporal phases were observed in the response of RSA to low P. First, lateral root (LR) development was promoted between days 7 and 11 after germination, but, after day 11, all root growth parameters were negatively affected, leading to a general reduction of primary root (PR) and LR lengths and of LR density. Low P availability had contrasting effects on various stages of LR development, with a marked inhibition of primordia initiation but a strong stimulation of activation of the initiated primordia. The involvement of auxin signaling in these morphological changes was investigated in wild-type plants treated with indole-3-acetic acid or 2,3,5-triiodobenzoic acid and in axr4-1, aux1-7, and eir1-1 mutants. Most effects of low P on RSA were dramatically modified in the mutants or hormone-treated wild-type plants. This shows that auxin plays a major role in the P starvation-induced changes of root development. From these data, we hypothesize that several aspects of the RSA response to low P are triggered by local modifications of auxin concentration. A model is proposed that postulates that P starvation results in (1) an overaccumulation of auxin in the apex of the PR and in young LRs, (2) an overaccumulation of auxin or a change in sensitivity to auxin in the lateral primordia, and (3) a decrease in auxin concentration in the lateral primordia initiation zone of the PR and in old laterals. Measurements of local changes in auxin concentrations induced by low P, either by direct quantification or by biosensor expression pattern (DR5::beta-glucuronidase reporter gene), are in line with these hypotheses. Furthermore, the observation that low P availability mimicked the action of auxin in promoting LR development in the alf3 mutant confirmed that P starvation stimulates

  13. Mutations in the NOT Genes or in the Translation Machinery Similarly Display Increased Resistance to Histidine Starvation

    Directory of Open Access Journals (Sweden)

    Martine A. Collart

    2017-05-01

    Full Text Available The NOT genes encode subunits of the conserved Ccr4-Not complex, a global regulator of gene expression, and in particular of mRNA metabolism. They were originally identified in a selection for increased resistance to histidine starvation in the yeast S. cerevisiae. Recent work indicated that the Not5 subunit, ortholog of mammalian CNOT3, determines global translation levels by defining binding of the Ccr4-Not scaffold protein Not1 to ribosomal mRNAs during transcription. This is needed for optimal translation of ribosomal proteins. In this work we searched for mutations in budding yeast that were resistant to histidine starvation using the same selection that originally led to the isolation of the NOT genes. We thereby isolated mutations in ribosome-related genes. This common phenotype of ribosome mutants and not mutants is in good agreement with the positive role of the Not proteins for translation. In this regard, it is interesting that frequent mutations in RPL5 and RPL10 or in CNOT3 have been observed to accumulate in adult T-cell acute lymphoblastic leukemia (T-ALL. This suggests that in metazoans a common function implicating ribosome subunits and CNOT3 plays a role in the development of cancer. In this perspective we suggest that the Ccr4-Not complex, according to translation levels and fidelity, could itself be involved in the regulation of amino acid biosynthesis levels. We discuss how this could explain why mutations have been identified in many cancers.

  14. Effect of periodical starvation on the life history of Brachionus plicatilis O.F. Müller (Rotifera): a possible strategy for population stability.

    Science.gov (United States)

    Yoshinaga; Hagiwara; Tsukamoto

    2000-10-25

    To estimate the changes in the life history of the rotifer Brachionus plicatilis O.F. Müller under starvation, we carried out an individual culture and determined the effects of periodical food deprivation on its asexual reproductive characteristics such as lifespan, reproductive period, age at first egg and offspring production, and lifetime fecundity (total number of offspring produced in her lifetime). Rotifers were fed for 1-3 h daily, and were then starved until the next day. Control animals were fed throughout their lifespan. Starved rotifers matured and produced their first offspring at an older age than the control animals. The periodical starvation resulted in a decrease in the lifetime fecundity to less than half that of the non-starved control. The reproductive period and lifespan were 2-3 times longer in the starved animals than in the control animals. The negative relationship between lifespan and lifetime fecundity is interpreted as a trade-off in an alternative life-history strategy of rotifers under starved conditions. The great decrease in fecundity and extension of lifespan enables rotifers to compensate to keep the population in equilibrium.

  15. Regional asymmetry of metabolic and antioxidant profile in the sciaenid fish shi drum (Umbrina cirrosa white muscle. Response to starvation and refeeding

    Directory of Open Access Journals (Sweden)

    M. Carmen Hidalgo

    2017-04-01

    Full Text Available The objective of the present study is to characterize the metabolic and antioxidant profile of white muscle of shi drum in two sites of the body, anterior dorsal (AM and posterior dorsal (PM portions. In addition, it will be analyzed the possible effect of starvation and a subsequent refeeding, with two different protocols, pair feeding and ad libitum. Activities of key enzymes of intermediary metabolism and of antioxidant enzymes, as well as lipid peroxidation, as an index of oxidative stress, were evaluated. The results indicate the existence of a regional asymmetry of the metabolic capacities of the white muscle of shi drum, which is likely related to the different contribution to swimming of the body regions examined. Starvation induces a metabolic depression that is more marked in those activities that support burst swimming in PM, while those activities supporting maintenance requirements are conserved. The greatest energy demands during starvation appear to lie in AM, which showed the highest oxidative metabolism rate. The increased use of fatty acids as energy source for AM leads to oxidative stress. A period of more than four weeks of refeeding for full restoration of metabolic capacities in AM is needed, probably related to the higher muscle mass located in this region. On the contrary, all enzyme activities in PM returned to control levels in both refeeding protocols, but pair feeding seems to be advantageous since compensatory growth has been taking place without signs of oxidative stress. This work was addressed to gain knowledge on the physiology of a promising fish species in aquaculture like shi drum. The results displayed here show how the starving and further re-feeding events could generate oxidative stress situations characterized by high lipid peroxidation levels which may influence negatively on the quality of the edible part of the fish. This study opens an interesting field on this fish species which deserves being

  16. Shell condition and survival of Puget Sound pteropods are impaired by ocean acidification conditions.

    Directory of Open Access Journals (Sweden)

    D Shallin Busch

    Full Text Available We tested whether the thecosome pteropod Limacina helicina from Puget Sound, an urbanized estuary in the northwest continental US, experiences shell dissolution and altered mortality rates when exposed to the high CO2, low aragonite saturation state (Ωa conditions that occur in Puget Sound and the northeast Pacific Ocean. Five, week-long experiments were conducted in which we incubated pteropods collected from Puget Sound in four carbon chemistry conditions: current summer surface (∼460-500 µatm CO2, Ωa≈1.59, current deep water or surface conditions during upwelling (∼760 and ∼1600-1700 µatm CO2, Ωa≈1.17 and 0.56, and future deep water or surface conditions during upwelling (∼2800-3400 µatm CO2, Ωa≈0.28. We measured shell condition using a scoring regime of five shell characteristics that capture different aspects of shell dissolution. We characterized carbon chemistry conditions in statistical analyses with Ωa, and conducted analyses considering Ωa both as a continuous dataset and as discrete treatments. Shell dissolution increased linearly as aragonite saturation state decreased. Discrete treatment comparisons indicate that shell dissolution was greater in undersaturated treatments compared to oversaturated treatments. Survival increased linearly with aragonite saturation state, though discrete treatment comparisons indicated that survival was similar in all but the lowest saturation state treatment. These results indicate that, under starvation conditions, pteropod survival may not be greatly affected by current and expected near-future aragonite saturation state in the NE Pacific, but shell dissolution may. Given that subsurface waters in Puget Sound's main basin are undersaturated with respect to aragonite in the winter and can be undersaturated in the summer, the condition and persistence of the species in this estuary warrants further study.

  17. Shell condition and survival of Puget Sound pteropods are impaired by ocean acidification conditions.

    Science.gov (United States)

    Busch, D Shallin; Maher, Michael; Thibodeau, Patricia; McElhany, Paul

    2014-01-01

    We tested whether the thecosome pteropod Limacina helicina from Puget Sound, an urbanized estuary in the northwest continental US, experiences shell dissolution and altered mortality rates when exposed to the high CO2, low aragonite saturation state (Ωa) conditions that occur in Puget Sound and the northeast Pacific Ocean. Five, week-long experiments were conducted in which we incubated pteropods collected from Puget Sound in four carbon chemistry conditions: current summer surface (∼460-500 µatm CO2, Ωa≈1.59), current deep water or surface conditions during upwelling (∼760 and ∼1600-1700 µatm CO2, Ωa≈1.17 and 0.56), and future deep water or surface conditions during upwelling (∼2800-3400 µatm CO2, Ωa≈0.28). We measured shell condition using a scoring regime of five shell characteristics that capture different aspects of shell dissolution. We characterized carbon chemistry conditions in statistical analyses with Ωa, and conducted analyses considering Ωa both as a continuous dataset and as discrete treatments. Shell dissolution increased linearly as aragonite saturation state decreased. Discrete treatment comparisons indicate that shell dissolution was greater in undersaturated treatments compared to oversaturated treatments. Survival increased linearly with aragonite saturation state, though discrete treatment comparisons indicated that survival was similar in all but the lowest saturation state treatment. These results indicate that, under starvation conditions, pteropod survival may not be greatly affected by current and expected near-future aragonite saturation state in the NE Pacific, but shell dissolution may. Given that subsurface waters in Puget Sound's main basin are undersaturated with respect to aragonite in the winter and can be undersaturated in the summer, the condition and persistence of the species in this estuary warrants further study.

  18. Effective inhibition of lytic development of bacteriophages λ, P1 and T4 by starvation of their host, Escherichia coli

    Directory of Open Access Journals (Sweden)

    Węgrzyn Alicja

    2007-02-01

    Full Text Available Abstract Background Bacteriophage infections of bacterial cultures cause serious problems in genetic engineering and biotechnology. They are dangerous not only because of direct effects on the currently infected cultures, i.e. their devastation, but also due to a high probability of spreading the phage progeny throughout a whole laboratory or plant, which causes a real danger for further cultivations. Therefore, a simple method for quick inhibition of phage development after detection of bacterial culture infection should be very useful. Results Here, we demonstrate that depletion of a carbon source from the culture medium, which provokes starvation of bacterial cells, results in rapid inhibition of lytic development of three Escherichia coli phages, λ, P1 and T4. Since the effect was similar for three different phages, it seems that it may be a general phenomenon. Moreover, similar effects were observed in flask cultures and in chemostats. Conclusion Bacteriophage lytic development can be inhibited efficiently by carbon source limitation in bacterial cultures. Thus, if bacteriophage contamination is detected, starvation procedures may be recommended to alleviate deleterious effects of phage infection on the culture. We believe that this strategy, in combination with the use of automated and sensitive bacteriophage biosensors, may be employed in the fermentation laboratory practice to control phage outbreaks in bioprocesses more effectively.

  19. The gene expression of the neuronal protein, SLC38A9, changes in mouse brain after in vivo starvation and high-fat diet.

    Directory of Open Access Journals (Sweden)

    Sofie V Hellsten

    Full Text Available SLC38A9 is characterized as a lysosomal component of the amino acid sensing Ragulator-RAG GTPase complex, controlling the mechanistic target of rapamycin complex 1 (mTORC1. Here, immunohistochemistry was used to map SLC38A9 in mouse brain and staining was detected throughout the brain, in cortex, hypothalamus, thalamus, hippocampus, brainstem and cerebellum. More specifically, immunostaining was found in areas known to be involved in amino acid sensing and signaling pathways e.g. piriform cortex and hypothalamus. SLC38A9 immunoreactivity co-localized with both GABAergic and glutamatergic neurons, but not with astrocytes. SLC38A9 play a key role in the mTORC1 pathway, and therefore we performed in vivo starvation and high-fat diet studies, to measure gene expression alterations in specific brain tissues and in larger brain regions. Following starvation, Slc38a9 was upregulated in brainstem and cortex, and in anterior parts of the brain (Bregma 3.2 to -2.1mm. After high-fat diet, Slc38a9 was specifically upregulated in hypothalamus, while overall downregulation was noticed throughout the brain (Bregma 3.2 to -8.6mm.

  20. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Thomas; /ZAH, Heidelberg; Klessen, Ralf S.; /ZAH, Heidelberg /KIPAC, Menlo Park; Mac Low, Mordecai-Mark; /Amer. Museum Natural Hist.; Banerjee, Robi; /ZAH, Heidelberg

    2010-08-25

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  1. Compensatory growth response of rainbow trout Oncorhynchus mykiss Walbaum following short starvation periods

    Science.gov (United States)

    Azodi, Maryam; Ebrahimi, Eisa; Farhadian, Omidvar; Mahboobi-Soofiani, Nasrollah; Morshedi, Vahid

    2015-07-01

    This sixty-day study was performed to determine the effects of short-term starvation and re-feeding cycles on growth, feeding performances and body composition of rainbow trout ( Oncorhynchus mykiss). Three hundred trout fingerlings with an average initial weight of 17.5±0.06 g were randomly distributed in 15 circular fiberglass tanks. The fish were exposed to 5 different feeding regimes; control: continuously fed twice daily to apparent satiation; T1: starved for 1 day and re-fed for 2 days; T2: starved for 1 day and re-fed for 4 days; T3: starved for 3 days and re-fed for 12 days; T4: starved for 4 days and re-fed for 16 days. At the end of the experiment, growth performance, feed utilization, whole body ash and moisture contents were not significantly ( P>0.05) different among the treatments. However, whole body protein content in T3 was significantly higher than other treatments ( Ptrout culture.

  2. Amino acid starvation has opposite effects on mitochondrial and cytosolic protein synthesis.

    Directory of Open Access Journals (Sweden)

    Mark A Johnson

    Full Text Available Amino acids are essential for cell growth and proliferation for they can serve as precursors of protein synthesis, be remodelled for nucleotide and fat biosynthesis, or be burnt as fuel. Mitochondria are energy producing organelles that additionally play a central role in amino acid homeostasis. One might expect mitochondrial metabolism to be geared towards the production and preservation of amino acids when cells are deprived of an exogenous supply. On the contrary, we find that human cells respond to amino acid starvation by upregulating the amino acid-consuming processes of respiration, protein synthesis, and amino acid catabolism in the mitochondria. The increased utilization of these nutrients in the organelle is not driven primarily by energy demand, as it occurs when glucose is plentiful. Instead it is proposed that the changes in the mitochondrial metabolism complement the repression of cytosolic protein synthesis to restrict cell growth and proliferation when amino acids are limiting. Therefore, stimulating mitochondrial function might offer a means of inhibiting nutrient-demanding anabolism that drives cellular proliferation.

  3. Proteomic analysis of iron acquisition, metabolic and regulatory responses of Yersinia pestis to iron starvation

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2010-01-01

    Full Text Available Abstract Background The Gram-negative bacterium Yersinia pestis is the causative agent of the bubonic plague. Efficient iron acquisition systems are critical to the ability of Y. pestis to infect, spread and grow in mammalian hosts, because iron is sequestered and is considered part of the innate host immune defence against invading pathogens. We used a proteomic approach to determine expression changes of iron uptake systems and intracellular consequences of iron deficiency in the Y. pestis strain KIM6+ at two physiologically relevant temperatures (26°C and 37°C. Results Differential protein display was performed for three Y. pestis subcellular fractions. Five characterized Y. pestis iron/siderophore acquisition systems (Ybt, Yfe, Yfu, Yiu and Hmu and a putative iron/chelate outer membrane receptor (Y0850 were increased in abundance in iron-starved cells. The iron-sulfur (Fe-S cluster assembly system Suf, adapted to oxidative stress and iron starvation in E. coli, was also more abundant, suggesting functional activity of Suf in Y. pestis under iron-limiting conditions. Metabolic and reactive oxygen-deactivating enzymes dependent on Fe-S clusters or other iron cofactors were decreased in abundance in iron-depleted cells. This data was consistent with lower activities of aconitase and catalase in iron-starved vs. iron-rich cells. In contrast, pyruvate oxidase B which metabolizes pyruvate via electron transfer to ubiquinone-8 for direct utilization in the respiratory chain was strongly increased in abundance and activity in iron-depleted cells. Conclusions Many protein abundance differences were indicative of the important regulatory role of the ferric uptake regulator Fur. Iron deficiency seems to result in a coordinated shift from iron-utilizing to iron-independent biochemical pathways in the cytoplasm of Y. pestis. With growth temperature as an additional variable in proteomic comparisons of the Y. pestis fractions (26°C and 37°C, there was

  4. Using the reactive scope model to understand why stress physiology predicts survival during starvation in Galápagos marine iguanas.

    Science.gov (United States)

    Romero, L Michael

    2012-05-01

    Even though the term "stress" is widely used, a precise definition is notoriously difficult. Notwithstanding this difficulty, stress continues to be an important concept in biology because it attempts to describe how animals cope with environmental change under emergency conditions. Without a precise definition, however, it becomes nearly impossible to make testable a priori predictions about how physiological and hormonal systems will respond to emergency conditions and what the ultimate impact on the animal will be. The reactive scope model is a recent attempt to formulate testable predictions. This model provides a physiological basis to explain why corticosterone negative feedback, but not baseline corticosterone concentrations, corticosterone responses to acute stress, or the interrenal capacity to secrete corticosterone, is correlated with survival during famine conditions in Galápagos marine iguanas. Reactive scope thus provides a foundation for interpreting and predicting physiological stress responses. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. (+)-Grandifloracin, an antiausterity agent, induces autophagic PANC-1 pancreatic cancer cell death.

    Science.gov (United States)

    Ueda, Jun-ya; Athikomkulchai, Sirivan; Miyatake, Ryuta; Saiki, Ikuo; Esumi, Hiroyasu; Awale, Suresh

    2014-01-01

    Human pancreatic tumors are known to be highly resistant to nutrient starvation, and this prolongs their survival in the hypovascular (austere) tumor microenvironment. Agents that retard this tolerance to nutrient starvation represent a novel antiausterity strategy in anticancer drug discovery. (+)-Grandifloracin (GF), isolated from Uvaria dac, has shown preferential toxicity to PANC-1 human pancreatic cancer cells under nutrient starvation, with a PC50 value of 14.5 μM. However, the underlying mechanism is not clear. In this study, GF was found to preferentially induce PANC-1 cell death in a nutrient-deprived medium via hyperactivation of autophagy, as evidenced by a dramatic upregulation of microtubule-associated protein 1 light chain 3. No change was observed in expression of the caspase-3 and Bcl-2 apoptosis marker proteins. GF was also found to strongly inhibit the activation of Akt, a key regulator of cancer cell survival and proliferation. Because pancreatic tumors are highly resistant to current therapies that induce apoptosis, the alternative cell death mechanism exhibited by GF provides a novel therapeutic insight into antiausterity drug candidates.

  6. Melatonin redirects carbohydrates metabolism during sugar starvation in plant cells.

    Science.gov (United States)

    Kobylińska, Agnieszka; Borek, Sławomir; Posmyk, Małgorzata M

    2018-05-01

    Recent studies have shown that melatonin is an important molecule in plant physiology. It seems that the most important is that melatonin efficacy eliminates oxidative stress (direct and indirect antioxidant) and moreover induce plant stress reaction and switch on different defence strategies (preventively and interventively actions). In this report, the impact of exogenous melatonin on carbohydrate metabolism in Nicotiana tabacum L. line Bright Yellow 2 (BY-2) suspension cells during sugar starvation was examined. We analysed starch concentration, α-amylase and PEPCK activity as well as proteolytic activity in culture media. It has been shown that BY-2 cell treatment with 200 nM of melatonin improved viability of sugar-starved cells. It was correlated with higher starch content and phosphoenolpyruvate carboxykinase (PEPCK) activity. The obtained results revealed that exogenous melatonin under specific conditions (stress) can play regulatory role in sugar metabolism, and it may modulate carbohydrate concentration in etiolated BY-2 cells. Moreover, our results confirmed the hypothesis that if the starch is synthesised even in sugar-starved cells, it is highly probable that melatonin shifts the BY-2 cell metabolism on gluconeogenesis pathway and allows for synthesis of carbohydrates from nonsugar precursors, that is amino acids. These points to another defence strategy that was induced by exogenous melatonin applied in plants to overcome adverse environmental conditions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Varying response of the concentration and content of soybean seed mineral elements, carbohydrates, organic acids, amino acids, protein, and oil to phosphorus starvation and CO2 enrichment

    Science.gov (United States)

    A detailed investigation of the concentration (g-1 seed weight) and content (g plant-1) of seed mineral elements and metabolic profile under phosphorus (P) starvation at ambient (aCO2) and elevated carbon dioxide (eCO2) in soybean is limited. Soybean plants were grown in a controlled environment at ...

  8. Drifter, a novel, low copy hAT-like transposon in Fusarium oxysporum is activated during starvation.

    Science.gov (United States)

    Rep, Martijn; van der Does, H Charlotte; Cornelissen, Ben J C

    2005-06-01

    The facultative pathogenic fungus Fusarium oxysporum is known to harbour many different transposable and/or repetitive elements. We have identified Drifter, a novel DNA transposon of the hAT family in F. oxysporum. It was found adjoining SIX1-H, a truncated homolog of the SIX1 avirulence gene in F. oxysporum f. sp. lycopersici. Absence of a target site duplication as well as the 5' part of SIX1-H suggests that transposition of Drifter into the ancestor of SIX1-H was followed by loss of a chromosomal segment through recombination between Drifters. F. oxysporum isolates belonging to various formae speciales harbour between 0 and 5 full-length copies of Drifter and/or one or more copies with an internal deletion. Transcription of Drifter is activated during starvation for carbon or nitrogen.

  9. PDHK-2 deficiency is associated with attenuation of lipase-mediated fat consumption for the increased survival of Caenorhabditis elegans dauers.

    Directory of Open Access Journals (Sweden)

    Sunhee Kim

    Full Text Available In Caenorhabditis elegans, slow fat consumption has been suggested to contribute to the extension of the survival rate during nutritionally adverse conditions. Here, we investigated the potential role of pyruvate dehydrogenase kinase (PDHK-2, the C. elegans homolog of mammalian PDK, effects on fat metabolism under nutritional conditions. PDHK-2 was expressed at low levels under well-fed conditions but was highly induced during long-term starvation and in the dauer state. This increase in pdhk-2 expression was regulated by both DAF-16 and NHR-49. Dauer-specific induction of PDHK-2 was abolished upon entry into the post-dauer stage. Interestingly, in the long-term dauer state, stored fat levels were higher in daf-2(e1370;pdhk-2 double mutants than in daf-2(e1370, suggesting a positive relationship between PDHK-2 activity and fat consumption. PDHK-2 deficiency has been shown to lead to greater preservation of residual fats, which would be predicted to contribute to survival during the dauer state. A test of this prediction showed that the survival rates of daf-2(e1370;pdhk-2(tm3075 and daf-2(e1370;pdhk-2(tm3086 double mutants were higher than that of daf-2(e1370, suggesting that loss of either the ATP-binding domain (tm3075 or branched chain keto-acid dehydrogenase kinase domain (tm3086 of PDHK-2 leads to reduced fat consumption and thus favors increased dauer survival. This attenuated fat consumption in the long-term dauer state of C. elegans daf-2 (e1370;pdhk-2 mutants was associated with concomitant down-regulation of the lipases ATGL (adipose triglyceride lipase, HSL (hormone-sensitive lipase, and C07E3.9 (phospholipase. In contrast, PDHK-2 overexpression in wild-type starved worms induced lipase expression and promoted abnormal dauer formation. Thus, we propose that PDHK-2 serves as a molecular bridge, connecting fat metabolism and survival under nutritionally adverse conditions in C. elegans.

  10. Kibra and aPKC regulate starvation-induced autophagy in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ahrum [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Neufeld, Thomas P. [Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 (United States); Choe, Joonho, E-mail: jchoe@kaist.ac.kr [Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2015-12-04

    Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apical membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. - Highlights: • Loss of Kibra causes defects in autophagosome formation and autophagic degradation. • Constitutively-active aPKCs negatively regulate autophagy. • Kibra interacts with aPKC in vitro and in vivo. • Kibra regulates autophagy downstream of aPKC.

  11. Effects of starvation on the transport of Escherichia coli K12 in saturated porous media are dependent on pH and ionic strength

    Science.gov (United States)

    Xu, S.; Walczak, J. J.; Wang, L.; Bardy, S. L.; Li, J.

    2010-12-01

    In this research, we investigate the effects of starvation on the transport of E. coli K12 in saturated porous media. Particularly, we examine the relationship between such effects and the pH and ionic strength of the electrolyte solutions that were used to suspend bacterial cells. E. coli K12 (ATCC 10798) cells were cultured using either Luria-Bertani Miller (LB-Miller) broth (10 g trypton, 5 g yeast extract and 10 g NaCl in 1 L of deionized water) or LB-Luria broth (10 g tryptone, 5 g yeast extract and 0.5 g NaCl in 1 L of deionized water). Both broths had similar pH (~7.1) but differed in ionic strength (LB-Miller: ~170 mM, LB-Luria: ~ 8 mM). The bacterial cells were then harvested and suspended using one of the following electrolyte solutions: phosphate buffered saline (PBS) (pH ~7.2; ionic strength ~170 mM), 168 mM NaCl (pH ~5.7), 5% of PBS (pH ~ 7.2; ionic strength ~ 8 mM) and 8 mM NaCl (pH ~ 5.7). Column transport experiments were performed at 0, 21 and 48 hours following cell harvesting to evaluate the change in cell mobility over time under “starvation” conditions. Our results showed that 1) starvation increased the mobility of E. coli K12 cells; 2) the most significant change in mobility occurred when bacterial cells were suspended in an electrolyte solution that had different pH and ionic strength (i.e., LB-Miller culture suspended in 8 mM NaCl and LB-Luria culture suspended in 168 mM Nacl); and 3) the change in cell mobility primarily occurred within the first 21 hours. The size of the bacterial cells was measured and the surface properties (e.g., zeta potential, hydrophobicity, cell-bound protein, LPS sugar content, outer membrane protein profiles) of the bacterial cells were characterized. We found that the measured cell surface properties could not fully explain the observed changes in cell mobility caused by starvation.

  12. 79 Women's Struggles and Independence in Adichie's Purple ...

    African Journals Online (AJOL)

    Nekky Umera

    Adichie remarkably dramatizes in her works, women's determination to survive in the face of violence, sexual assault, extreme starvation, senseless brutality .... developed a master-servant colonial mentality and a self-denigrating inferiority ...

  13. Dynamic metabolomics differentiates between carbon and energy starvation in recombinant Saccharomyces cerevisiae fermenting xylose

    Directory of Open Access Journals (Sweden)

    Bergdahl Basti

    2012-05-01

    , a reduced GTP/GDP ratio and accumulation of PEP and aromatic amino acids. These changes are strong indicators of carbon starvation. The XR/XDH-strain displayed few such traits. The coexistence of these traits and a stable adenylate charge indicates that xylose supplies energy to the cells but does not suppress a response similar to carbon starvation. Particular signals may play a role in the latter, of which the GTP/GMP ratio could be a candidate as it decreased significantly in both strains.

  14. Protein synthesis and degradation during starvation-induced cardiac atrophy in rabbits

    International Nuclear Information System (INIS)

    Samarel, A.M.; Parmacek, M.S.; Magid, N.M.; Decker, R.S.; Lesch, M.

    1987-01-01

    To determine the relative importance of protein degradation in the development of starvation-induced cardiac atrophy, in vivo fractional synthetic rates of total cardiac protein, myosin heavy chain, actin, light chain 1, and light chain 2 were measured in fed and fasted rabbits by continuous infusion of [ 3 H] leucine. In addition, the rate of left ventricular protein accumulation and loss were assessed in weight-matched control and fasted rabbits. Rates of total cardiac protein degradation were then estimated as the difference between rates of synthesis and growth. Fasting produced left ventricular atrophy by decreasing the rate of left ventricular protein synthesis (34.8 +/- 1.4, 27.3 +/- 3.0, and 19.3 +/- 1.2 mg/day of left ventricular protein synthesized for 0-, 3-, and 7-day fasted rabbits, respectively). Inhibition of contractile protein synthesis was evident by significant reductions in the fractional synthetic rates of all myofibrillar protein subunits. Although fractional rates of protein degradation increased significantly within 7 days of fasting, actual amounts of left ventricular protein degraded per day were unaffected. Thus, prolonged fasting profoundly inhibits the synthesis of new cardiac protein, including the major protein constituents of the myofibril. Both this inhibition in new protein synthesis as well as a smaller but significant reduction in the average half-lives of cardiac proteins are responsible for atrophy of the heart in response to fasting

  15. Developmental Ethanol Exposure Causes Reduced Feeding and Reveals a Critical Role for Neuropeptide F in Survival

    Science.gov (United States)

    Guevara, Amanda; Gates, Hillary; Urbina, Brianna; French, Rachael

    2018-01-01

    Food intake is necessary for survival, and natural reward circuitry has evolved to help ensure that animals ingest sufficient food to maintain development, growth, and survival. Drugs of abuse, including alcohol, co-opt the natural reward circuitry in the brain, and this is a major factor in the reinforcement of drug behaviors leading to addiction. At the junction of these two aspects of reward are alterations in feeding behavior due to alcohol consumption. In particular, developmental alcohol exposure (DAE) results in a collection of physical and neurobehavioral disorders collectively referred to as Fetal Alcohol Spectrum Disorder (FASD). The deleterious effects of DAE include intellectual disabilities and other neurobehavioral changes, including altered feeding behaviors. Here we use Drosophila melanogaster as a genetic model organism to study the effects of DAE on feeding behavior and the expression and function of Neuropeptide F. We show that addition of a defined concentration of ethanol to food leads to reduced feeding at all stages of development. Further, genetic conditions that reduce or eliminate NPF signaling combine with ethanol exposure to further reduce feeding, and the distribution of NPF is altered in the brains of ethanol-supplemented larvae. Most strikingly, we find that the vast majority of flies with a null mutation in the NPF receptor die early in larval development when reared in ethanol, and provide evidence that this lethality is due to voluntary starvation. Collectively, we find a critical role for NPF signaling in protecting against altered feeding behavior induced by developmental ethanol exposure. PMID:29623043

  16. Modulation of innate immunity and gene expressions in white shrimp Litopenaeus vannamei following long-term starvation and re-feeding

    Science.gov (United States)

    Lin, Yong-Chin; Chen, Jiann-Chu; C. Man, Siti Nursafura; W. Morni, Wan Zabidii; N.A. Suhaili, Awangku Shahrir; Cheng, Sha-Yen; Hsu, Chih-Hung

    2012-01-01

    The survival rate, weight loss, immune parameters, resistance against Vibrio alginolyticus and white-spot syndrome virus (WSSV), and expressions of lipopolysaccharide- and ß-glucan-binding protein (LGBP), peroxinectin (PX), prophenoloxidase-activating enzyme (ppA), prophenoloxidase (proPO) I, proPO II, α2-macroglobulin (α2-M), integrin ß, heat shock protein 70 (HSP70), cytosolic manganese superoxide dismutase (cytMnSOD), mitochondrial manganese superoxide dismutase (mtMnSOD), and extracellular copper and zinc superoxide dismutase (ecCuZnSOD) were examined in the white shrimp Litopenaeus vannamei (8.18 ± 0.86 g body weight) which had been denied food (starved) for up to 14–28 days. Among shrimp which had been starved for 7, 14, 21, and 28 days, 100%, 90%, 71%, and 59% survived, and they lost 3.2%, 7.3%, 9.2%, and 10.4% of their body weight, respectively. Hyaline cells (HCs), granular cells (GCs, including semi-granular cells), the total haemocyte count (THC), phenoloxidase (PO) activity, respiratory bursts (RBs), and SOD activity significantly decreased in shrimp which had been starved for 1, 1, 1, 5, 14, and 3 days, respectively. The expression of integrin ß significantly decreased after 0.5–5 days of starvation, whereas the expressions of LGBP, PX, proPO I, proPO II, ppA, and α2-M increased after 0.5–1 days. Transcripts of all genes except ecCuZnSOD decreased to the lowest level after 5 days, and tended to background values after 7 and 14 days. Cumulative mortality rates of 7-day-starved shrimp challenged with V. alginolyticus and WSSV were significantly higher than those of challenged control-shrimp for 1–7 and 1–4 days, respectively. In another experiment, immune parameters of shrimp which had been starved for 7 and 14 days and then received normal feeding (at 5% of their body weight daily) were examined after 3, 6, and 12 h, and 1, 3, and 5 days. All immune parameters of 7-day-starved shrimp were able to return to their baseline values

  17. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus.

    Science.gov (United States)

    Ferreira, V S; Pinto, R F; Sant'Anna, C

    2016-03-01

    Chlorophyll is a photosynthetic pigment found in plants and algal organisms and is a bioproduct with human health benefits and a great potential for use in the food industry. The chlorophyll content in microalgae strains varies in response to environmental factors. In this work, we assessed the effect of nitrogen depletion and low light intensity on the chlorophyll content of the Scenedesmus dimorphus microalga. The growth of S. dimorphus under low light intensity led to a reduction in cell growth and volume as well as increased cellular chlorophyll content. Nitrogen starvation led to a reduction in cell growth and the chlorophyll content, changes in the yield and productivity of chlorophylls a and b. Transmission electron microscopy was used to investigate the ultrastructural changes in the S. dimorphus exposed to nitrogen and light deficiency. In contrast to nitrogen depletion, low light availability was an effective mean for increasing the total chlorophyll content of green microalga S. dimorphus. The findings acquired in this work are of great biotechnological importance to extend knowledge of choosing the right culture condition to stimulate the effectiveness of microalgae strains for chlorophyll production purposes. © 2015 The Society for Applied Microbiology.

  18. Metabolic Reprogramming During Purine Stress in the Protozoan Pathogen Leishmania donovani

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jessica L.; Yates, Phillip A.; Soysa, Radika; Alfaro, Joshua F.; Yang, Feng; Burnum-Johnson, Kristin E.; Petyuk, Vladislav A.; Weitz, Karl K.; Camp, David G.; Smith, Richard D.; Wilmarth, Phillip A.; David, Larry L.; Ramasamy, Gowthaman; Myler, Peter J.; Carter, Nicola S.

    2014-02-27

    The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over 3 months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6-48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms.

  19. How low can you go? Assessing minimum concentrations of NSC in carbon limited tree saplings

    Science.gov (United States)

    Hoch, Guenter; Hartmann, Henrik; Schwendener, Andrea

    2016-04-01

    Tissue concentrations of non-structural carbohydrates (NSC) are frequently used to determine the carbon balance of plants. Over the last years, an increasing number of studies have inferred carbon starvation in trees under environmental stress like drought from low tissue NSC concentrations. However, such inferences are limited by the fact that minimum concentrations of NSC required for survival are not known. So far, it was hypothesized that even under lethal carbon starvation, starch and low molecular sugar concentrations cannot be completely depleted and that minimum NSC concentrations at death vary across tissues and species. Here we present results of an experiment that aimed to determine minimum NSC concentrations in different tissues of saplings of two broad-leaved tree species (Acer pseudoplatanus and Quercus petratea) exposed to lethal carbon starvation via continuous darkening. In addition, we investigated recovery rates of NSC concentrations in saplings that had been darkened for different periods of time and were then re-exposed to light. Both species survived continuous darkening for about 12 weeks (confirmed by testing the ability to re-sprout after darkness). In all investigated tissues, starch concentrations declined close to zero within three to six weeks of darkness. Low molecular sugars also decreased strongly within the first weeks of darkness, but seemed to stabilize at low concentrations of 0.5 to 2 % dry matter (depending on tissue and species) almost until death. NSC concentrations recovered surprisingly fast in saplings that were re-exposed to light. After 3 weeks of continuous darkness, tissue NSC concentrations recovered within 6 weeks to levels of unshaded control saplings in all tissues and in both species. To our knowledge, this study represents the first experimental attempt to quantify minimum tissue NSC concentrations at lethal carbon starvation. Most importantly, our results suggest that carbon-starved tree saplings are able to

  20. Phosphate or phosphite addition promotes the proteolytic turnover of phosphate-starvation inducible tomato purple acid phosphatase isozymes.

    Science.gov (United States)

    Bozzo, Gale G; Singh, Vinay K; Plaxton, William C

    2004-08-27

    Within 48 h of the addition of 2.5 mM phosphate (HPO42-, Pi) or phosphite (H2PO3-, Phi) to 8-day-old Pi-starved (-Pi) tomato suspension cells: (i) secreted and intracellular purple acid phosphatase (PAP) activities decreased by about 12- and 6-fold, respectively and (ii) immunoreactive PAP polypeptides either disappeared (secreted PAPs) or were substantially reduced (intracellular PAP). The degradation of both secreted PAP isozymes was correlated with the de novo synthesis of two extracellular serine proteases having M(r)s of 137 and 121 kDa. In vitro proteolysis of purified secreted tomato PAP isozymes occurred following their 24 h incubation with culture filtrate from Pi-resupplied cells. The results indicate that Pi or Phi addition to -Pi tomato cells induces serine proteases that degrade Pi-starvation inducible extracellular proteins.

  1. Metabolome Analysis Reveals Betaine Lipids as Major Source for Triglyceride Formation, and the Accumulation of Sedoheptulose during Nitrogen-Starvation of Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Jennifer Popko

    Full Text Available Oleaginous microalgae are considered as a promising resource for the production of biofuels. Especially diatoms arouse interest as biofuel producers since they are most productive in carbon fixation and very flexible to environmental changes in the nature. Naturally, triacylglycerol (TAG accumulation in algae only occurs under stress conditions like nitrogen-limitation. We focused on Phaeodactylum strain Pt4 (UTEX 646, because of its ability to grow in medium with low salinity and therefore being suited when saline water is less available or for wastewater cultivation strategies. Our data show an increase in neutral lipids during nitrogen-depletion and predominantly 16:0 and 16:1(n-7 accumulated in the TAG fraction. The molecular species composition of TAG suggests a remodeling primarily from the betaine lipid diacylglyceroltrimethylhomoserine (DGTS, but a contribution of the chloroplast galactolipid monogalactosyldiacylglycerol (MGDG cannot be excluded. Interestingly, the acyl-CoA pool is rich in 20:5(n-3 and 22:6(n-3 in all analyzed conditions, but these fatty acids are almost excluded from TAG. Other metabolites most obviously depleted under nitrogen-starvation were amino acids, lyso-phospholipids and tricarboxylic acid (TCA cycle intermediates, whereas sulfur-containing metabolites as dimethylsulfoniopropionate, dimethylsulfoniobutyrate and methylsulfate as well as short acyl chain carnitines, propanoyl-carnitine and butanoyl-carnitine increased upon nitrogen-starvation. Moreover, the Calvin cycle may be de-regulated since sedoheptulose accumulated after nitrogen-depletion. Together the data provide now the basis for new strategies to improve lipid production and storage in Phaeodactylum strain Pt4.

  2. Effects of prolonged drought on stem non-structural carbohydrates content and post-drought hydraulic recovery in Laurus nobilis L.: The possible link between carbon starvation and hydraulic failure.

    Science.gov (United States)

    Trifilò, Patrizia; Casolo, Valentino; Raimondo, Fabio; Petrussa, Elisa; Boscutti, Francesco; Lo Gullo, Maria Assunta; Nardini, Andrea

    2017-11-01

    Drought-induced tree decline is a complex event, and recent hypotheses suggest that hydraulic failure and carbon starvation are co-responsible for this process. We tested the possible role of non-structural carbohydrates (NSC) content on post-drought hydraulic recovery, to verify the hypothesis that embolism reversal represents a mechanistic link between carbon starvation and stem hydraulics. Measurements were performed in laurel plants subjected to similar water stress levels either over short or long term, to induce comparable embolism levels. Plants subjected to mild and prolonged water shortage (S) showed reduced growth, adjustment of turgor loss point driven by changes in both osmotic potential at full turgor and bulk modulus of elasticity, a lower content of soluble NSC and a higher content of starch with respect to control (C) plants. Moreover, S plants showed a lower ability to recover from xylem embolism than C plants, even after irrigation. Our data suggest that plant carbon status might indirectly influence plant performance during and after drought via effects on xylem hydraulic functioning, supporting the view of a possible mechanistic link between the two processes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Survival analysis

    International Nuclear Information System (INIS)

    Badwe, R.A.

    1999-01-01

    The primary endpoint in the majority of the studies has been either disease recurrence or death. This kind of analysis requires a special method since all patients in the study experience the endpoint. The standard method for estimating such survival distribution is Kaplan Meier method. The survival function is defined as the proportion of individuals who survive beyond certain time. Multi-variate comparison for survival has been carried out with Cox's proportional hazard model

  4. Symmorphosis through dietary regulation: a combinatorial role for proteolysis, autophagy and protein synthesis in normalising muscle metabolism and function of hypertrophic mice after acute starvation.

    Directory of Open Access Journals (Sweden)

    Henry Collins-Hooper

    Full Text Available Animals are imbued with adaptive mechanisms spanning from the tissue/organ to the cellular scale which insure that processes of homeostasis are preserved in the landscape of size change. However we and others have postulated that the degree of adaptation is limited and that once outside the normal levels of size fluctuations, cells and tissues function in an aberant manner. In this study we examine the function of muscle in the myostatin null mouse which is an excellent model for hypertrophy beyond levels of normal growth and consequeces of acute starvation to restore mass. We show that muscle growth is sustained through protein synthesis driven by Serum/Glucocorticoid Kinase 1 (SGK1 rather than Akt1. Furthermore our metabonomic profiling of hypertrophic muscle shows that carbon from nutrient sources is being channelled for the production of biomass rather than ATP production. However the muscle displays elevated levels of autophagy and decreased levels of muscle tension. We demonstrate the myostatin null muscle is acutely sensitive to changes in diet and activates both the proteolytic and autophagy programmes and shutting down protein synthesis more extensively than is the case for wild-types. Poignantly we show that acute starvation which is detrimental to wild-type animals is beneficial in terms of metabolism and muscle function in the myostatin null mice by normalising tension production.

  5. Excess Vitamin Intake before Starvation does not Affect Body Mass, Organ Mass, or Blood Variables but Affects Urinary Excretion of Riboflavin in Starving Rats

    OpenAIRE

    Moriya, Aya; Fukuwatari, Tsutomu; Shibata, Katsumi

    2013-01-01

    B-vitamins are important for producing energy from amino acids, fatty acids, and glucose. The aim of this study was to elucidate the effects of excess vitamin intake before starvation on body mass, organ mass, blood, and biological variables as well as on urinary excretion of riboflavin in rats. Adult rats were fed two types of diets, one with a low vitamin content (minimum vitamin diet for optimum growth) and one with a sufficient amount of vitamins (excess vitamin diet). Body mass, organ ma...

  6. Yeast Colonies: A Model for Studies of Aging, Environmental Adaptation, and Longevity

    Directory of Open Access Journals (Sweden)

    Libuše Váchová

    2012-01-01

    Full Text Available When growing on solid surfaces, yeast, like other microorganisms, develops organized multicellular populations (colonies and biofilms that are composed of differentiated cells with specialized functions. Life within these populations is a prevalent form of microbial existence in natural settings that provides the cells with capabilities to effectively defend against environmental attacks as well as efficiently adapt and survive long periods of starvation and other stresses. Under such circumstances, the fate of an individual yeast cell is subordinated to the profit of the whole population. In the past decade, yeast colonies, with their complicated structure and high complexity that are also developed under laboratory conditions, have become an excellent model for studies of various basic cellular processes such as cell interaction, signaling, and differentiation. In this paper, we summarize current knowledge on the processes related to chronological aging, adaptation, and longevity of a colony cell population and of its differentiated cell constituents. These processes contribute to the colony ability to survive long periods of starvation and mostly differ from the survival strategies of individual yeast cells.

  7. Transaldolase inhibition impairs mitochondrial respiration and induces a starvation-like longevity response in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Christopher F Bennett

    2017-03-01

    Full Text Available Mitochondrial dysfunction can increase oxidative stress and extend lifespan in Caenorhabditis elegans. Homeostatic mechanisms exist to cope with disruptions to mitochondrial function that promote cellular health and organismal longevity. Previously, we determined that decreased expression of the cytosolic pentose phosphate pathway (PPP enzyme transaldolase activates the mitochondrial unfolded protein response (UPRmt and extends lifespan. Here we report that transaldolase (tald-1 deficiency impairs mitochondrial function in vivo, as evidenced by altered mitochondrial morphology, decreased respiration, and increased cellular H2O2 levels. Lifespan extension from knockdown of tald-1 is associated with an oxidative stress response involving p38 and c-Jun N-terminal kinase (JNK MAPKs and a starvation-like response regulated by the transcription factor EB (TFEB homolog HLH-30. The latter response promotes autophagy and increases expression of the flavin-containing monooxygenase 2 (fmo-2. We conclude that cytosolic redox established through the PPP is a key regulator of mitochondrial function and defines a new mechanism for mitochondrial regulation of longevity.

  8. Network survivability performance

    Science.gov (United States)

    1993-11-01

    This technical report has been developed to address the survivability of telecommunications networks including services. It responds to the need for a common understanding of, and assessment techniques for network survivability, availability, integrity, and reliability. It provides a basis for designing and operating telecommunications networks to user expectations for network survivability and a foundation for continuing industry activities in the subject area. This report focuses on the survivability of both public and private networks and covers a wide range of users. Two frameworks are established for quantifying and categorizing service outages, and for classifying network survivability techniques and measures. The performance of the network survivability techniques is considered; however, recommended objectives are not established for network survivability performance.

  9. Behaviourally mediated indirect effects : interference competition increases predation mortality in foraging redshanks

    NARCIS (Netherlands)

    Minderman, J; Lind, J; Cresswell, W

    The effect of competition for a limiting resource on the population dynamics of competitors is usually assumed to operate directly through starvation, yet may also affect survival indirectly through behaviourally mediated effects that affect risk of predation. Thus, competition can affect more than

  10. Global mapping of protein phosphorylation events identifies novel signalling hubs mediating fatty acid starvation responses in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Pultz, Dennis; Bennetzen, Martin; Rødkær, Steven Vestergaard

    2011-01-01

    Dietary restriction (DR) extends the life span of multiple species, ranging from single-celled organisms like yeast to mammals. This increase in longevity by dietary restriction is coupled to profound beneficial effects on age-related pathology. Despite the number of studies on DR...... and the physiological changes DR induces, only little is known about the genetics and signalling networks, which regulate the DR response. We have recently shown that inhibition of fatty acid synthesis in Saccharomyces cerevisiae induces autophagy mediated by TORC1 signalling and affects life span. In the present study...... in a temporal manner in response to inhibition of fatty acid synthesis by cerulenin. By in silico analysis of these phosphorylation events, we have identified the major downstream regulated processes and signalling networks mediating the cellular response to fatty acid starvation. The analysis further...

  11. Expressionof Drosophila FOXO regulates growth and can phenocopy starvation

    Directory of Open Access Journals (Sweden)

    Lockyer Joseph M

    2003-07-01

    Full Text Available Abstract Background Components of theinsulin signaling pathway are important regulators of growth. TheFOXO (forkhead box, sub-group "O" transcriptionfactors regulate cellular processes under conditions of low levelsof insulin signaling. Studies in mammalian cell culture show thatactivation of FOXO transcription factors causes cell death or cellcycle arrest. The Caenorhabiditis elegans homologue ofFOXO, Daf-16, is required for the formation of dauer larvae in responseto nutritional stress. In addition, FOXO factors have been implicatedin stress resistance and longevity. Results We have identifiedthe Drosophila melanogaster homologue of FOXO (dFOXO,which is conserved in amino acid sequence compared with the mammalianFOXO homologues and Daf-16. Expression of dFOXO during early larvaldevelopment causes inhibition of larval growth and alterations infeeding behavior. Inhibition of larval growth is reversible upondiscontinuation of dFOXO expression. Expression of dFOXO duringthe third larval instar or at low levels during development leadsto the generation of adults that are reduced in size. Analysis ofthe wings and eyes of these small flies indicates that the reductionin size is due to decreases in cell size and cell number. Overexpressionof dFOXO in the developing eye leads to a characteristic phenotypewith reductions in cell size and cell number. This phenotype canbe rescued by co-expression of upstream insulin signaling components,dPI3K and dAkt, however, this rescue is not seen when FOXO is mutatedto a constitutively active form. Conclusions dFOXO is conservedin both sequence and regulatory mechanisms when compared with otherFOXO homologues. The establishment of Drosophila as a model forthe study of FOXO transcription factors should prove beneficialto determining the biological role of these signaling molecules.The alterations in larval development seen upon overexpression ofdFOXO closely mimic the phenotypic effects of starvation, suggestinga

  12. Effects of starvation on protein synthesis and nucleic acid metabolism in the muscle of the barred sand bass Paralabrax nebulifer

    Energy Technology Data Exchange (ETDEWEB)

    Lowery, M.S.

    1987-01-01

    Starvation induced different protein synthesis responses in red and white muscle of the barred sand bass Paralabrax nebulifer. Red muscle had /sup 14/C-leucine incorporation rates into total protein which were several times higher than white muscle in both the fed and starved states. Muscle was separated into a myofibrillar fraction consisting of the structural proteins and a sarcoplasmic fraction consisting of soluble proteins. Synthesis of the myofibrillar fraction of white muscle decreased by 90%, while red muscle myofibrillar synthesis remained essentially unchanged. Changes in the labeling of several enzymes purified from the sarcoplasmic fraction were different even though the overall loss of enzyme activity was similar, suggesting that changes in synthesis rates were important in maintaining appropriate relative enzyme concentrations.

  13. Ammonium-induced inhibition of ammonium-starved Nitrosomonas europaea cells in soil and sand slurries

    NARCIS (Netherlands)

    Gerards, S.; Duyts, H.; Laanbroek, H.J.

    1998-01-01

    Ammonia-oxidising bacteria are poor competitors for limiting amounts of ammonium. Hence, starvation for ammonium seems to be the regular condition for these bacteria in natural environments. Long-term survival in the absence of ammonium will be dependent on the ability to maintain large population

  14. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.

    Science.gov (United States)

    Yeh, Kuei-Ling; Chang, Jo-Shu

    2011-11-01

    Microalgae are recognized for serving as a sustainable source for biodiesel production. This study investigated the effect of nitrogen starvation strategies and photobioreactor design on the performance of lipid production and of CO(2) fixation of an indigenous microalga Chlorella vulgaris ESP-31. Comparison of single-stage and two-stage nitrogen starvation strategies shows that single-stage cultivation on basal medium with low initial nitrogen source concentration (i.e., 0.313 g/L KNO(3)) was the most effective approach to enhance microalgal lipid production, attaining a lipid productivity of 78 mg/L/d and a lipid content of 55.9%. The lipid productivity of C. vulgaris ESP-31 was further upgraded to 132.4 mg/L/d when it was grown in a vertical tubular photobioreactor with a high surface to volume ratio of 109.3 m(2)/m(3) . The high lipid productivity was also accompanied by fixation of 6.36 g CO(2) during the 10-day photoautotrophic growth with a CO(2) fixation rate of 430 mg/L/d. Analysis of fatty acid composition of the microalgal lipid indicates that over 65% of fatty acids in the microalgal lipid are saturated [i.e., palmitic acid (C16:0) and stearic acid (C18:0)] and monounsaturated [i.e., oleic acid (C18:1)]. This lipid quality is suitable for biodiesel production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Polioencephalomalacia and Heart Failure Secondary to Presumptive Thiamine Deficiency, Hepatic Lipidosis, and Starvation in 2 Abandoned Siamese Cats.

    Science.gov (United States)

    Anholt, H; Himsworth, C; Britton, A

    2016-07-01

    Two 4-year-old spayed female Siamese cats were seized by the British Columbia Society for the Prevention of Cruelty to Animals after confinement to an abandoned housing unit without food for 9 weeks. One cat was found dead, and the second was euthanized within 24 hours due to neurologic deterioration despite therapy. Polioencephalomalacia of the caudal colliculus, hepatic lipidosis, cachexia, and congestive heart failure with cardiomyocyte atrophy were identified in both cats through postmortem examination and attributed to a prolonged period of starvation. Brain lesions were likely the result of thiamine deficiency (Chastek paralysis), which can be associated with both malnutrition and liver disease. This case highlights the importance of thiamine supplementation during realimentation of cats with hepatic lipidosis. Heart failure resulting from cachexia may have contributed to the death of the first cat and the morbidity of the second cat. © The Author(s) 2016.

  16. Drosophila larvae lacking the bcl-2 gene, buffy, are sensitive to nutrient stress, maintain increased basal target of rapamycin (Tor signaling and exhibit characteristics of altered basal energy metabolism

    Directory of Open Access Journals (Sweden)

    Monserrate Jessica P

    2012-07-01

    Full Text Available Abstract Background B cell lymphoma 2 (Bcl-2 proteins are the central regulators of apoptosis. The two bcl-2 genes in Drosophila modulate the response to stress-induced cell death, but not developmental cell death. Because null mutants are viable, Drosophila provides an optimum model system to investigate alternate functions of Bcl-2 proteins. In this report, we explore the role of one bcl-2 gene in nutrient stress responses. Results We report that starvation of Drosophila larvae lacking the bcl-2 gene, buffy, decreases survival rate by more than twofold relative to wild-type larvae. The buffy null mutant reacted to starvation with the expected responses such as inhibition of target of rapamycin (Tor signaling, autophagy initiation and mobilization of stored lipids. However, the autophagic response to starvation initiated faster in larvae lacking buffy and was inhibited by ectopic buffy. We demonstrate that unusually high basal Tor signaling, indicated by more phosphorylated S6K, was detected in the buffy mutant and that removal of a genomic copy of S6K, but not inactivation of Tor by rapamycin, reverted the precocious autophagy phenotype. Instead, Tor inactivation also required loss of a positive nutrient signal to trigger autophagy and loss of both was sufficient to activate autophagy in the buffy mutant even in the presence of enforced phosphoinositide 3-kinase (PI3K signaling. Prior to starvation, the fed buffy mutant stored less lipid and glycogen, had high lactate levels and maintained a reduced pool of cellular ATP. These observations, together with the inability of buffy mutant larvae to adapt to nutrient restriction, indicate altered energy metabolism in the absence of buffy. Conclusions All animals in their natural habitats are faced with periods of reduced nutrient availability. This study demonstrates that buffy is required for adaptation to both starvation and nutrient restriction. Thus, Buffy is a Bcl-2 protein that plays an

  17. Effects of drought on the animal population in Eritrea

    Energy Technology Data Exchange (ETDEWEB)

    Woldehiwet, Z; Haywood, S; Trafford, J

    1985-08-17

    Most nomads in Eritrea have lost their animals due to outright starvation or diseases aggravated by malnutrition, resulting in part from drought. Animals surviving the drought itself are succumbing to infectious diseases and ecto- and endoparasites. Affected animals include camels as well as bovine and caprine populations.

  18. Unravelling the cross-talk between iron starvation and oxidative stress responses highlights the key role of PerR (alr0957) in peroxide signalling in the cyanobacterium Nostoc PCC 7120.

    Science.gov (United States)

    Yingping, Fan; Lemeille, Sylvain; Talla, Emmanuel; Janicki, Annick; Denis, Yann; Zhang, Cheng-Cai; Latifi, Amel

    2014-10-01

    The cyanobacterial phylum includes oxygenic photosynthetic prokaryotes of a wide variety of morphologies, metabolisms and ecologies. Their adaptation to their various ecological niches is mainly achieved by sophisticated regulatory mechanisms and depends on a fine cross-talk between them. We assessed the global transcriptomic response of the filamentous cyanobacterium Nostoc PCC 7120 to iron starvation and oxidative stress. More than 20% of the differentially expressed genes in response to iron stress were also responsive to oxidative stress. These transcripts include antioxidant proteins-encoding genes that confirms that iron depletion leads to reactive oxygen accumulation. The activity of the Fe-superoxide dismutase was not significantly decreased under iron starvation, indicating that the oxidative stress generated under iron deficiency is not a consequence of (SOD) deficiency. The transcriptional data indicate that the adaptation of Nostoc to iron-depleted conditions displays important differences with what has been shown in unicellular cyanobacteria. While the FurA protein that regulates the response to iron deprivation has been well characterized in Nostoc, the regulators in charge of the oxidative stress response are unknown. Our study indicates that the alr0957 (perR) gene encodes the master regulator of the peroxide stress. PerR is a peroxide-sensor repressor that senses peroxide by metal-catalysed oxidation.

  19. 76 FR 11925 - American Red Cross Month, 2011

    Science.gov (United States)

    2011-03-03

    ... Corporal Frank W. Buckles, the Last Surviving American Veteran of World War I #0; #0; #0; Presidential... struggling with starvation and disease, the American Red Cross and its international partners have served... confront the world's most pressing challenges. During World War I, President Woodrow Wilson called on our...

  20. UTILIZATION OF SWEETPOTATO BASED CONFECTION ...

    African Journals Online (AJOL)

    oma

    Journal of Agriculture and Social Research (JASR) VOL. ... percent and is accompanied with higher price index values in the food component of the ... food consumption falling below a critical level with regards to health and survival. ..... discontinuous preferences because malnutrition and in the worst case, starvation is a ...

  1. The cell membrane and the struggle for life of lactic acid bacteria

    NARCIS (Netherlands)

    Konings, WN

    The major life-threatening event for lactic acid bacteria (LAB) in their natural environment is the depletion of their energy sources and LAB can survive such conditions only for a short period of time. During periods of starvation LAB can exploit optimally the potential energy sources in their

  2. Modelling survival

    DEFF Research Database (Denmark)

    Ashauer, Roman; Albert, Carlo; Augustine, Starrlight

    2016-01-01

    The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test...

  3. Lithium Improves Survival of PC12 Pheochromocytoma Cells in High-Density Cultures and after Exposure to Toxic Compounds

    Directory of Open Access Journals (Sweden)

    Cinzia Fabrizi

    2014-01-01

    Full Text Available Autophagy is an evolutionary conserved mechanism that allows for the degradation of long-lived proteins and entire organelles which are driven to lysosomes for digestion. Different kinds of stressful conditions such as starvation are able to induce autophagy. Lithium and rapamycin are potent autophagy inducers with different molecular targets. Lithium stimulates autophagy by decreasing the intracellular myo-inositol-1,4,5-triphosphate levels, while rapamycin acts through the inhibition of the mammalian target of rapamycin (mTOR. The correlation between autophagy and cell death is still a matter of debate especially in transformed cells. In fact, the execution of autophagy can protect cells from death by promptly removing damaged organelles such as mitochondria. Nevertheless, an excessive use of the autophagic machinery can drive cells to death via a sort of self-cannibalism. Our data show that lithium (used within its therapeutic window stimulates the overgrowth of the rat Pheochromocytoma cell line PC12. Besides, lithium and rapamycin protect PC12 cells from toxic compounds such as thapsigargin and trimethyltin. Taken together these data indicate that pharmacological activation of autophagy allows for the survival of Pheochromocytoma cells in stressful conditions such as high-density cultures and exposure to toxins.

  4. Does greed help a forager survive?

    Science.gov (United States)

    Bhat, U.; Redner, S.; Bénichou, O.

    2017-06-01

    We investigate the role of greed on the lifetime of a random-walking forager on an initially resource-rich lattice. Whenever the forager lands on a food-containing site, all the food there is eaten and the forager can hop S more steps without food before starving. Upon reaching an empty site, the forager comes one time unit closer to starvation. The forager is also greedy—given a choice to move to an empty or to a food-containing site in its local neighborhood, the forager moves preferentially toward food. Surprisingly, the forager lifetime varies nonmonotonically with greed, with different senses of the nonmonotonicity in one and two dimensions. Also unexpectedly, the forager lifetime in one dimension has a huge peak for very negative greed where the forager is food averse.

  5. Reproduction rates under variable food conditions and starvation in Mnemiopsis leidyi: significance for the invasion success of a ctenophore

    DEFF Research Database (Denmark)

    Jaspers, Cornelia; Møller, Lene Friis; Kiørboe, Thomas

    2015-01-01

    Europe. Furthermore, starved animals continue to produce eggs for up to 12 days after cessation of feeding with high overall hatching success of 65–90%. These life history traits allow M. leidyi to thrive and reproduce in environments with varying food conditions and give it a competitive advantage under...... on the reproduction of laboratory-reared and field-caught animals during starvation. Our results show that the half-saturation zooplankton prey concentration for egg production is reached at food levels of 12–23 µgC L−1, which is below the average summer food concentration encountered in invaded areas of northern...... unfavourable conditions. This may explain why recurrent population blooms are observed and sustained in localized areas in invaded northern Europe, where water exchange is limited and zooplankton food resources are quickly depleted by M. leidyi. We suggest that these reproductive life history traits are key...

  6. Growth Phase, Oxygen, Temperature and Starvation Affect the Development of Viable but Non-Culturable State of Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    Bin eWu

    2016-03-01

    Full Text Available AbstractVibrio cholerae can enter into a viable but non-culturable (VBNC state in order to survive in unfavourable environments. In this study, we studied the roles of five physicochemical and microbiological factors or states, namely, different strains, growth phases, oxygen, temperature, and starvation, on the development of VBNC of V. cholerae in artificial sea water (ASW. Different strains of the organism, the growth phase, and oxygen levels affected the progress of VBNC development. It was found that the VBNC state was induced faster in V. cholerae serogroup O1 classical biotype strain O395 than in O1 El Tor biotype strains C6706 and N16961. When cells in different growth phases were used for VBNC induction, stationary-phase cells lost their culturability more quickly than exponential-phase cells, while induction of a totally non-culturable state took longer to achieve for stationary-phase cells in all three strains, suggesting that heterogeneity of cells should be considered. Aeration strongly accelerated the loss of culturability. During the development of the VBNC state, the culturable cell count under aeration conditions was almost 106-fold lower than under oxygen-limited conditions for all three strains. The other two factors, temperature and nutrients-rich environment, may prevent the induction of VBNC cells. At 22°C or 37°C in ASW, most of the cells rapidly died and the culturable cell count reduced from about 108 CFU/mL to 106–105 CFU/mL. The total cell counts showed that cells that lost viability were decomposed, and the viable cell counts were the same as culturable cell counts, indicating that the cells did not reach the VBNC state. VBNC state development was blocked when ASW was supplied with Luria-Bertani broth (LB, but it was not affected in ASW with M9, suggesting that specific nutrients in LB may prevent the development of VBNC state. These results revealed that the five factors evaluated in this study had different

  7. Challenges in the estimation of Net SURvival: The CENSUR working survival group.

    Science.gov (United States)

    Giorgi, R

    2016-10-01

    Net survival, the survival probability that would be observed, in a hypothetical world, where the cancer of interest would be the only possible cause of death, is a key indicator in population-based cancer studies. Accounting for mortality due to other causes, it allows cross-country comparisons or trends analysis and provides a useful indicator for public health decision-making. The objective of this study was to show how the creation and formalization of a network comprising established research teams, which already had substantial and complementary experience in both cancer survival analysis and methodological development, make it possible to meet challenges and thus provide more adequate tools, to improve the quality and the comparability of cancer survival data, and to promote methodological transfers in areas of emerging interest. The Challenges in the Estimation of Net SURvival (CENSUR) working survival group is composed of international researchers highly skilled in biostatistics, methodology, and epidemiology, from different research organizations in France, the United Kingdom, Italy, Slovenia, and Canada, and involved in French (FRANCIM) and European (EUROCARE) cancer registry networks. The expected advantages are an interdisciplinary, international, synergistic network capable of addressing problems in public health, for decision-makers at different levels; tools for those in charge of net survival analyses; a common methodology that makes unbiased cross-national comparisons of cancer survival feasible; transfer of methods for net survival estimations to other specific applications (clinical research, occupational epidemiology); and dissemination of results during an international training course. The formalization of the international CENSUR working survival group was motivated by a need felt by scientists conducting population-based cancer research to discuss, develop, and monitor implementation of a common methodology to analyze net survival in order

  8. The Insecticide Imidacloprid Causes Mortality of the Freshwater Amphipod Gammarus pulex by Interfering with Feeding Behavior

    Science.gov (United States)

    Nyman, Anna-Maija; Hintermeister, Anita; Schirmer, Kristin; Ashauer, Roman

    2013-01-01

    If an organism does not feed, it dies of starvation. Even though some insecticides which are used to control pests in agriculture can interfere with feeding behavior of insects and other invertebrates, the link from chemical exposure via affected feeding activity to impaired life history traits, such as survival, has not received much attention in ecotoxicology. One of these insecticides is the neonicotinoid imidacloprid, a neurotoxic substance acting specifically on the insect nervous system. We show that imidacloprid has the potential to indirectly cause lethality in aquatic invertebrate populations at low, sublethal concentrations by impairing movements and thus feeding. We investigated feeding activity, lipid content, immobility, and survival of the aquatic arthropod Gammarus pulex under exposure to imidacloprid. We performed experiments with 14 and 21 days duration, both including two treatments with two high, one day pulses of imidacloprid and one treatment with a low, constant concentration. Feeding of G. pulex as well as lipid content were significantly reduced under exposure to the low, constant imidacloprid concentration (15 µg/L). Organisms were not able to move and feed – and this caused high mortality after 14 days of constant exposure. In contrast, feeding and lipid content were not affected by repeated imidacloprid pulses. In these treatments, animals were mostly immobilized during the chemical pulses but did recover relatively fast after transfer to clean water. We also performed a starvation experiment without exposure to imidacloprid which showed that starvation alone does not explain the mortality in the constant imidacloprid exposure. Using a multiple stressor toxicokinetic-toxicodynamic modeling approach, we showed that both starvation and other toxic effects of imidacloprid play a role for determining mortality in constant exposure to the insecticide. PMID:23690941

  9. The insecticide imidacloprid causes mortality of the freshwater amphipod Gammarus pulex by interfering with feeding behavior.

    Directory of Open Access Journals (Sweden)

    Anna-Maija Nyman

    Full Text Available If an organism does not feed, it dies of starvation. Even though some insecticides which are used to control pests in agriculture can interfere with feeding behavior of insects and other invertebrates, the link from chemical exposure via affected feeding activity to impaired life history traits, such as survival, has not received much attention in ecotoxicology. One of these insecticides is the neonicotinoid imidacloprid, a neurotoxic substance acting specifically on the insect nervous system. We show that imidacloprid has the potential to indirectly cause lethality in aquatic invertebrate populations at low, sublethal concentrations by impairing movements and thus feeding. We investigated feeding activity, lipid content, immobility, and survival of the aquatic arthropod Gammarus pulex under exposure to imidacloprid. We performed experiments with 14 and 21 days duration, both including two treatments with two high, one day pulses of imidacloprid and one treatment with a low, constant concentration. Feeding of G. pulex as well as lipid content were significantly reduced under exposure to the low, constant imidacloprid concentration (15 µg/L. Organisms were not able to move and feed--and this caused high mortality after 14 days of constant exposure. In contrast, feeding and lipid content were not affected by repeated imidacloprid pulses. In these treatments, animals were mostly immobilized during the chemical pulses but did recover relatively fast after transfer to clean water. We also performed a starvation experiment without exposure to imidacloprid which showed that starvation alone does not explain the mortality in the constant imidacloprid exposure. Using a multiple stressor toxicokinetic-toxicodynamic modeling approach, we showed that both starvation and other toxic effects of imidacloprid play a role for determining mortality in constant exposure to the insecticide.

  10. Correlation between survival, ability to rejoin DNA and stability of DNA after preirradiation inhibition of protein synthesis in a rec- mutant of Escherichia coli K12

    International Nuclear Information System (INIS)

    Pirsel, M.; Slezarikova, V.

    1977-01-01

    A 90 min inhibition of protein synthesis induced by starvation for amino acids (AA - ) or by chloramphenicol (CAP) treatment prior to UV irradiation (2.5 J m -2 ) increased more than tenfold the resistance of the strain Escherichia coli K12 SR19 to UV radiation. Under these conditions, cultures in which protein synthesis was inhibited before the UV irradiation rejoin short regions of DNA synthesized after the irradiation to a normal-size molecule, whereas an exponentially growing culture does not rejoin DNA synthesized after UV irradiation to a molecule of a normal size. In the exponentially growing culture both the parental and the newly synthesized DNA are unstable after the irradiation. In cultures with inhibited protein synthesis only the parental DNA is somewhat unstable. In Escherichia coli K12 SR19 where protein synthesis was inhibited before the irradiation, a correlation between the survival of cells, the ability to rejoin short regions of DNA synthesized after UV irradiation, and a higher stability of both parental and newly synthesized DNAs could be demonstrated. (author)

  11. Survival in common cancers defined by risk and survival of family members

    Directory of Open Access Journals (Sweden)

    Jianguang Ji

    2011-10-01

    Full Text Available Studies on survival between familial and sporadic cancers have been inconclusive and only recent data on a limited number of cancers are available on the concordance of survival between family members. In this review, we address these questions by evaluating the published and unpublished data from the nation-wide Swedish Family-Cancer Database and a total of 13 cancer sites were assessed. Using sporadic cancer as reference, HRs were close to 1.0 for most of the familial cancers in both the offspring and parental generations, which suggested that survival in patients with familial and sporadic cancers was equal, with an exception for ovarian cancer with a worse prognosis. Compared to offspring whose parents had a poor survival, those with a good parental survival had a decreased risk of death for most cancers and HR was significantly decreased for cancers in the breast, prostate, bladder, and kidney. For colorectal and nervous system cancers, favorable survival between the generations showed a borderline significance. These data are consistent in showing that both good and poor survival in certain cancers aggregate in families. Genetic factors are likely to contribute to the results. These observations call for intensified efforts to consider heritability in survival as one mechanism regulating prognosis in cancer patients.

  12. Genetic and phenotypic evidence of the Salmonella enterica serotype Enteritidis human-animal interface in Chile

    Directory of Open Access Journals (Sweden)

    Patricio eRetamal

    2015-05-01

    Full Text Available Salmonella enterica serotype Enteritidis is a worldwide zoonotic agent that has been recognized as a very important food-borne bacterial pathogen, mainly associated with consumption of poultry products. The aim of this work was to determine genotypic and phenotypic evidence of S. Enteritidis transmission among seabirds, poultry and humans in Chile. Genotyping was performed using PCR-based virulotyping, pulse-field gel electrophoresis (PFGE and multi-locus sequence typing (MLST. Pathogenicity-associated phenotypes were determined with survival to free radicals, acidic pH, starvation, antimicrobial resistance, and survival within human dendritic cells. As result of PCR and PFGE assays, some isolates from the three hosts showed identical genotypic patterns, and through MLST it was determined that all of them belong to sequence type 11. Results of phenotypic assays showed diversity of survival capabilities among isolates. When results were analyzed according to bacterial host, statistical differences were identified in starvation and dendritic cells survival assays. In addition, isolates from seabirds showed the highest rates of resistance to gentamycin, tetracycline and ampicillin. Overall, the very close genetic and phenotypic traits shown by isolates from humans, poultry and seabirds suggest the inter-species transmission of S. Enteritidis bacteria between hosts, likely through anthropogenic environmental contamination that determines infection of seabirds with bacteria that are potentially pathogenic for other susceptible organism, including humans.

  13. Endothelial cells provide a notch-dependent pro-tumoral niche for enhancing breast cancer survival, stemness and pro-metastatic properties.

    Directory of Open Access Journals (Sweden)

    Pegah Ghiabi

    Full Text Available Treating metastasis has been challenging due to tumors complexity and heterogeneity. This complexity is partly related to the crosstalk between tumor and its microenvironment. Endothelial cells -the building blocks of tumor vasculature- have been shown to have additional roles in cancer progression than angiogenesis and supplying oxygen and nutrients. Here, we show an alternative role for endothelial cells in supporting breast cancer growth and spreading independent of their vascular functions. Using endothelial cells and breast cancer cell lines MDA-MB231 and MCF-7, we developed co-culture systems to study the influence of tumor endothelium on breast tumor development by both in vitro and in vivo approaches. Our results demonstrated that endothelial cells conferred survival advantage to tumor cells under complete starvation and enriched the CD44HighCD24Low/- stem cell population in tumor cells. Moreover, endothelial cells enhanced the pro-metastatic potential of breast cancer cells. The in vitro and in vivo results concordantly confirmed a role for endothelial Jagged1 to promote breast tumor through notch activation. Here, we propose a role for endothelial cells in enhancing breast cancer progression, stemness, and pro-metastatic traits through a perfusion-independent manner. Our findings may be beneficial in developing novel therapeutic approaches.

  14. Year after

    International Nuclear Information System (INIS)

    Tangley, L.

    1985-01-01

    This feature article highlights a two-volume report, The Environmental Consequences of Nuclear War, which was released in September 1985 at the Scientific Committee on Problems of the Environment (SCOPE) general assemble in Washington, DC. Severe climatic disturbances and ecosystem effects would result in only a fraction of the surviving population being fed. Human starvation would be rampant since stored food could feed only a quarter of the surviving populations. The impact of the study on policy decisions is discussed

  15. The SULTR gene family in maize (Zea mays L.): Gene cloning and expression analyses under sulfate starvation and abiotic stress.

    Science.gov (United States)

    Huang, Qin; Wang, Meiping; Xia, Zongliang

    2018-01-01

    Sulfur is an essential macronutrient required for plant growth, development and stress responses. The family of sulfate transporters (SULTRs) mediates the uptake and translocation of sulfate in higher plants. However, basic knowledge of the SULTR gene family in maize (Zea mays L.) is scarce. In this study, a genome-wide bioinformatic analysis of SULTR genes in maize was conducted, and the developmental expression patterns of the genes and their responses to sulfate starvation and abiotic stress were further investigated. The ZmSULTR family includes eight putative members in the maize genome and is clustered into four groups in the phylogenetic tree. These genes displayed differential expression patterns in various organs of maize. For example, expression of ZmSULTR1;1 and ZmSULTR4;1 was high in roots, and transcript levels of ZmSULTR3;1 and ZmSULTR3;3 were high in shoots. Expression of ZmSULTR1;2, ZmSULTR2;1, ZmSULTR3;3, and ZmSULTR4;1 was high in flowers. Also, these eight genes showed differential responses to sulfate deprivation in roots and shoots of maize seedlings. Transcript levels of ZmSULTR1;1, ZmSULTR1;2, and ZmSULTR3;4 were significantly increased in roots during 12-day-sulfate starvation stress, while ZmSULTR3;3 and ZmSULTR3;5 only showed an early response pattern in shoots. In addition, dynamic transcriptional changes determined via qPCR revealed differential expression profiles of these eight ZmSULTR genes in response to environmental stresses such as salt, drought, and heat stresses. Notably, all the genes, except for ZmSULTR3;3, were induced by drought and heat stresses. However, a few genes were induced by salt stress. Physiological determination showed that two important thiol-containing compounds, cysteine and glutathione, increased significantly under these abiotic stresses. The results suggest that members of the SULTR family might function in adaptations to sulfur deficiency stress and adverse growing environments. This study will lay a

  16. Transcriptome Analysis of Two Rice Varieties Contrasting for Nitrogen Use Efficiency under Chronic N Starvation Reveals Differences in Chloroplast and Starch Metabolism-Related Genes

    Directory of Open Access Journals (Sweden)

    Subodh Kumar Sinha

    2018-04-01

    Full Text Available The nitrogen use efficiency (NUE of crop plants is limited and enhancing it in rice, a major cereal crop, would be beneficial for farmers and the environment alike. Here we report the genome-wide transcriptome analysis of two rice genotypes, IR 64 (IR64 and Nagina 22 (N22 under optimal (+N and chronic starvation (-N of nitrogen (N from 15-day-old root and shoot tissues. The two genotypes were found to be contrasting in their response to -N; IR64 root architecture and root dry weight remained almost equivalent to that under +N conditions, while N22 showed high foraging ability but a substantial reduction in biomass under -N. Similarly, the photosynthetic pigments showed a drastic reduction in N22 under low N, while IR64 was more resilient. Nitrate reductase showed significantly low specific activity under -N in both genotypes. Glutamate synthase (GOGAT and citrate synthase CS activity were highly reduced in N22 but not in IR64. Transcriptome analysis of these genotypes revealed nearly double the number of genes to be differentially expressed (DEGs in roots (1016 compared to shoots (571. The response of the two genotypes to N starvation was distinctly different reflecting their morphological/biochemical response with just two and eight common DEGs in the root and shoot tissues. There were a total of 385 nitrogen-responsive DEGs (106 in shoots and 279 in roots between the two genotypes. Fifty-two of the 89 DEGs identified as specific to N22 root tissues were also found to be differentially expressed between the two genotypes under -N. Most of these DEGs belonged to starch and chloroplast metabolism, followed by membrane and signaling proteins. Physical mapping of DEGs revealed 95 DEGs in roots and 76 in shoots to be present in quantitative trait loci (QTL known for NUE.

  17. Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5

    International Nuclear Information System (INIS)

    Kitanovic, Ana; Bonowski, Felix; Heigwer, Florian; Ruoff, Peter; Kitanovic, Igor; Ungewiss, Christin; Wölfl, Stefan

    2012-01-01

    Metabolic pathways play an indispensable role in supplying cellular systems with energy and molecular building blocks for growth, maintenance and repair and are tightly linked with lifespan and systems stability of cells. For optimal growth and survival cells rapidly adopt to environmental changes. Accumulation of acetic acid in stationary phase budding yeast cultures is considered to be a primary mechanism of chronological aging and induction of apoptosis in yeast, which has prompted us to investigate the dependence of acetic acid toxicity on extracellular conditions in a systematic manner. Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK), and glucose-6-phosphate dehydrogenase (G6PDH) we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation.

  18. Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5

    Energy Technology Data Exchange (ETDEWEB)

    Kitanovic, Ana; Bonowski, Felix; Heigwer, Florian [Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg (Germany); Ruoff, Peter [Faculty of Science and Technology, Centre for Organelle Research, University of Stavanger, Stavanger (Norway); Kitanovic, Igor; Ungewiss, Christin; Wölfl, Stefan, E-mail: wolfl@uni-hd.de [Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg (Germany)

    2012-09-21

    Metabolic pathways play an indispensable role in supplying cellular systems with energy and molecular building blocks for growth, maintenance and repair and are tightly linked with lifespan and systems stability of cells. For optimal growth and survival cells rapidly adopt to environmental changes. Accumulation of acetic acid in stationary phase budding yeast cultures is considered to be a primary mechanism of chronological aging and induction of apoptosis in yeast, which has prompted us to investigate the dependence of acetic acid toxicity on extracellular conditions in a systematic manner. Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK), and glucose-6-phosphate dehydrogenase (G6PDH) we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation.

  19. A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation.

    Science.gov (United States)

    Petrucco, S; Bolchi, A; Foroni, C; Percudani, R; Rossi, G L; Ottonello, S

    1996-01-01

    we isolated a novel gene that is selectively induced both in roots and shoots in response to sulfur starvation. This gene encodes a cytosolic, monomeric protein of 33 kD that selectively binds NADPH. The predicted polypeptide is highly homologous ( > 70%) to leguminous isoflavone reductases (IFRs), but the maize protein (IRL for isoflavone reductase-like) belongs to a novel family of proteins present in a variety of plants. Anti-IRL antibodies specifically recognize IFR polypeptides, yet the maize protein is unable to use various isoflavonoids as substrates. IRL expression is correlated closely to glutathione availability: it is persistently induced in seedlings whose glutathione content is about fourfold lower than controls, and it is down-regulated rapidly when control levels of glutathione are restored. This glutathione-dependent regulation indicates that maize IRL may play a crucial role in the establishment of a thiol-independent response to oxidative stress under glutathione shortage conditions.

  20. Multinationals and plant survival

    DEFF Research Database (Denmark)

    Bandick, Roger

    2010-01-01

    The aim of this paper is twofold: first, to investigate how different ownership structures affect plant survival, and second, to analyze how the presence of foreign multinational enterprises (MNEs) affects domestic plants’ survival. Using a unique and detailed data set on the Swedish manufacturing...... sector, I am able to separate plants into those owned by foreign MNEs, domestic MNEs, exporting non-MNEs, and purely domestic firms. In line with previous findings, the result, when conditioned on other factors affecting survival, shows that foreign MNE plants have lower survival rates than non......-MNE plants. However, separating the non-MNEs into exporters and non-exporters, the result shows that foreign MNE plants have higher survival rates than non-exporting non-MNEs, while the survival rates of foreign MNE plants and exporting non-MNE plants do not seem to differ. Moreover, the simple non...

  1. Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress.

    Science.gov (United States)

    Jarc, Eva; Kump, Ana; Malavašič, Petra; Eichmann, Thomas O; Zimmermann, Robert; Petan, Toni

    2018-03-01

    Cancer cells driven by the Ras oncogene scavenge unsaturated fatty acids (FAs) from their environment to counter nutrient stress. The human group X secreted phospholipase A 2 (hGX sPLA 2 ) releases FAs from membrane phospholipids, stimulates lipid droplet (LD) biogenesis in Ras-driven triple-negative breast cancer (TNBC) cells and enables their survival during starvation. Here we examined the role of LDs, induced by hGX sPLA 2 and unsaturated FAs, in protection of TNBC cells against nutrient stress. We found that hGX sPLA 2 releases a mixture of unsaturated FAs, including ω-3 and ω-6 polyunsaturated FAs (PUFAs), from TNBC cells. Starvation-induced breakdown of LDs induced by low micromolar concentrations of unsaturated FAs, including PUFAs, was associated with protection from cell death. Interestingly, adipose triglyceride lipase (ATGL) contributed to LD breakdown during starvation, but it was not required for the pro-survival effects of hGX sPLA 2 and unsaturated FAs. High micromolar concentrations of PUFAs, but not OA, induced oxidative stress-dependent cell death in TNBC cells. Inhibition of triacylglycerol (TAG) synthesis suppressed LD biogenesis and potentiated PUFA-induced cell damage. On the contrary, stimulation of LD biogenesis by hGX sPLA 2 and suppression of LD breakdown by ATGL depletion reduced PUFA-induced oxidative stress and cell death. Finally, lipidomic analyses revealed that sequestration of PUFAs in LDs by sPLA 2 -induced TAG remodelling and retention of PUFAs in LDs by inhibition of ATGL-mediated TAG lipolysis protect from PUFA lipotoxicity. LDs are thus antioxidant and pro-survival organelles that guard TNBC cells against nutrient and lipotoxic stress and emerge as attractive targets for novel therapeutic interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Longitudinal study of parasite-induced mortality of a long-lived host: the importance of exposure to non-parasitic stressors.

    Science.gov (United States)

    Chin, Hilary M-H; Luong, Lien T; Shostak, Allen W

    2017-12-01

    Hosts face mortality from parasitic and environmental stressors, but interactions of parasitism with other stressors are not well understood, particularly for long-lived hosts. We monitored survival of flour beetles (Tribolium confusum) in a longitudinal design incorporating cestode (Hymenolepis diminuta) infection, starvation and exposure to the pesticide diatomaceous earth (DE). We found that cestode cysticercoids exhibit increasing morphological damage and decreasing ability to excyst over time, but were never eliminated from the host. In the presence of even mild environmental stressors, host lifespan was reduced sufficiently that extensive degradation of cysticercoids was never realized. Median host lifespan was 200 days in the absence of stressors, and 3-197 days with parasitism, starvation and/or DE. Early survival of parasitized hosts was higher relative to controls in the presence of intermediate concentrations of DE, but reduced under all other conditions tested. Parasitism increased host mortality in the presence of other stressors at times when parasitism alone did not cause mortality, consistent with an interpretation of synergy. Environmental stressors modified the parasite numbers needed to reveal intensity-dependent host mortality, but only rarely masked intensity dependence. The longitudinal approach produced observations that would have been overlooked or misinterpreted if survival had only been monitored at a single time point.

  3. Global expression pattern comparison between low phosphorus insensitive 4 and WT Arabidopsis reveals an important role of reactive oxygen species and jasmonic acid in the root tip response to phosphate starvation

    OpenAIRE

    Chacón-López, Alejandra; Ibarra-Laclette, Enrique; Sánchez-Calderón, Lenin; Gutiérrez-Alanís, Dolores; Herrera-Estrella, Luis

    2011-01-01

    Plants are exposed to several biotic and abiotic stresses. A common environmental stress that plants have to face both in natural and agricultural ecosystems that impacts both its growth and development is low phosphate (Pi) availability. There has been an important progress in the knowledge of the molecular mechanisms by which plants cope with Pi deficiency. However, the mechanisms that mediate alterations in the architecture of the Arabidopsis root system responses to Pi starvation are stil...

  4. Survival analysis models and applications

    CERN Document Server

    Liu, Xian

    2012-01-01

    Survival analysis concerns sequential occurrences of events governed by probabilistic laws.  Recent decades have witnessed many applications of survival analysis in various disciplines. This book introduces both classic survival models and theories along with newly developed techniques. Readers will learn how to perform analysis of survival data by following numerous empirical illustrations in SAS. Survival Analysis: Models and Applications: Presents basic techniques before leading onto some of the most advanced topics in survival analysis.Assumes only a minimal knowledge of SAS whilst enablin

  5. Fledgling survival increases with development time and adult survival across north and south temperate zones

    Science.gov (United States)

    Lloyd, Penn; Martin, Thomas E.

    2016-01-01

    Slow life histories are characterized by high adult survival and few offspring, which are thought to allow increased investment per offspring to increase juvenile survival. Consistent with this pattern, south temperate zone birds are commonly longer-lived and have fewer young than north temperate zone species. However, comparative analyses of juvenile survival, including during the first few weeks of the post-fledging period when most juvenile mortality occurs, are largely lacking. We combined our measurements of fledgling survival for eight passerines in South Africa with estimates from published studies of 57 north and south temperate zone songbird species to test three predictions: (1) fledgling survival increases with length of development time in the nest; (2) fledgling survival increases with adult survival and reduced brood size controlled for development time; and (3) south temperate zone species, with their higher adult survival and smaller brood sizes, exhibit higher fledgling survival than north temperate zone species controlled for development time. We found that fledgling survival was higher among south temperate zone species and generally increased with development time and adult survival within and between latitudinal regions. Clutch size did not explain additional variation, but was confounded with adult survival. Given the importance of age-specific mortality to life history evolution, understanding the causes of these geographical patterns of mortality is important.

  6. Chemical Constituents of Mangifera indica and Their Antiausterity Activity against the PANC-1 Human Pancreatic Cancer Cell Line.

    Science.gov (United States)

    Nguyen, Hai Xuan; Do, Truong Nhat Van; Le, Tho Huu; Nguyen, Mai Thanh Thi; Nguyen, Nhan Trung; Esumi, Hiroyasu; Awale, Suresh

    2016-08-26

    Human pancreatic cancer cell lines such as PANC-1 have an altered metabolism, enabiling them to tolerate and survive under extreme conditions of nutrient starvation. The search for candidates that inhibit their viability during nutrition starvation represents a novel antiausterity strategy in anticancer drug discovery. A methanol extract of the bark of Mangifera indica was found to inhibit the survival of PANC-1 human pancreatic cancer cells preferentially under nutrient-deprived conditions with a PC50 value of 15.5 μg/mL, without apparent toxicity, in normal nutrient-rich conditions. Chemical investigation on this bioactive extract led to the isolation of 19 compounds (1-19), including two new cycloartane-type triterpenes, mangiferolate A (1) and mangiferolate B (2). The structures of 1 and 2 were determined by NMR spectroscopic analysis. Among the isolated compounds, mangiferolate B (2) and isoambolic acid (12) exhibited potent preferential cytotoxicity against PANC-1 human pancreatic cancer cells under the nutrition-deprived condition with PC50 values of 11.0 and 4.8 μM, respectively.

  7. Applied survival analysis using R

    CERN Document Server

    Moore, Dirk F

    2016-01-01

    Applied Survival Analysis Using R covers the main principles of survival analysis, gives examples of how it is applied, and teaches how to put those principles to use to analyze data using R as a vehicle. Survival data, where the primary outcome is time to a specific event, arise in many areas of biomedical research, including clinical trials, epidemiological studies, and studies of animals. Many survival methods are extensions of techniques used in linear regression and categorical data, while other aspects of this field are unique to survival data. This text employs numerous actual examples to illustrate survival curve estimation, comparison of survivals of different groups, proper accounting for censoring and truncation, model variable selection, and residual analysis. Because explaining survival analysis requires more advanced mathematics than many other statistical topics, this book is organized with basic concepts and most frequently used procedures covered in earlier chapters, with more advanced topics...

  8. Arctigenin suppresses unfolded protein response and sensitizes glucose deprivation-mediated cytotoxicity of cancer cells.

    Science.gov (United States)

    Sun, Shengrong; Wang, Xiong; Wang, Changhua; Nawaz, Ahmed; Wei, Wen; Li, Juanjuan; Wang, Lijun; Yu, De-Hua

    2011-01-01

    The involvement of unfolded protein response (UPR) activation in tumor survival and resistance to chemotherapies suggests a new anticancer strategy targeting UPR pathway. Arctigenin, a natural product, has been recently identified for its antitumor activity with selective toxicity against cancer cells under glucose starvation with unknown mechanism. Here we found that arctigenin specifically blocks the transcriptional induction of two potential anticancer targets, namely glucose-regulated protein-78 (GRP78) and its analog GRP94, under glucose deprivation, but not by tunicamycin. The activation of other UPR pathways, e.g., XBP-1 and ATF4, by glucose deprivation was also suppressed by arctigenin. A further transgene experiment showed that ectopic expression of GRP78 at least partially rescued arctigenin/glucose starvation-mediated cell growth inhibition, suggesting the causal role of UPR suppression in arctigenin-mediated cytotoxicity under glucose starvation. These observations bring a new insight into the mechanism of action of arctigenin and may lead to the design of new anticancer therapeutics. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Fungal mycelia show lag time before re-growth on endogenous carbon.

    Science.gov (United States)

    Pollack, Judith K; Li, Zheng Jian; Marten, Mark R

    2008-06-15

    Nutrient starvation is a common occurrence for filamentous fungi. To better understand the effects of starvation, we used a parallel plate flow chamber to study individual fungal mycelia when subjected to a step change in glucose concentration. We report the presence of a finite "lag time" in starved mycelia during which they ceased to grow/extend while switching from growth on exogenous carbon to re-growth on endogenous carbon. This lag time precedes other morphological or physiological changes such as change in growth rate (50-70% reduction), vacuolation (up to 16%), and decreased hyphal diameter (almost 50% reduction). Data suggests that during lag time, vacuolar degradation produces sufficient endogenous carbon to support survival and restart hyphal extension. Lag time is inversely related to the size of the mycelium at the time of starvation, which suggests a critical flow of endogenous carbon to the apical tip. We present a mathematical model consistent with our experimental observations that relate lag time, area, and flow of endogenous carbon. (c) 2008 Wiley Periodicals, Inc.

  10. A statistical solution for survival curves in photobiology

    International Nuclear Information System (INIS)

    Chen, L.C.

    1981-01-01

    The mathematical model that includes the cellular repair mechanisms proposed by Haynes and modified by Pelico has been adjusted by Non-linear Least Squares Method and a computer program was also used. The parametric values obtained agreed with the graphic ones. This method has the advantage that one can obtain the parameters by a function fitting at all the experimental measurement, and also allows the determination of experimental errors. The studies performed on pre-starved cells without amino-acids and glucose show a greater photo-resistance for strains non mutated in uvr gene. This phenomenon appears to be dependent on functionality of this gene. A mathematical model was proposed to describe quantitatively the starvation effect in function of time. (Author) [pt

  11. Plasmalogens rescue neuronal cell death through an activation of AKT and ERK survival signaling.

    Directory of Open Access Journals (Sweden)

    Md Shamim Hossain

    Full Text Available Neuronal cells are susceptible to many stresses, which will cause the apoptosis and neurodegenerative diseases. The precise molecular mechanism behind the neuronal protection against these apoptotic stimuli is necessary for drug discovery. In the present study, we have found that plasmalogens (Pls, which are glycerophospholipids containing vinyl ether linkage at sn-1 position, can protect the neuronal cell death upon serum deprivation. Interestingly, caspse-9, but not caspase-8 and caspase-12, was cleaved upon the serum starvation in Neuro-2A cells. Pls treatments effectively reduced the activation of caspase-9. Furthermore, cellular signaling experiments showed that Pls enhanced phosphorylation of the phosphoinositide 3-kinase (PI3K-dependent serine/threonine-specific protein kinase AKT and extracellular-signal-regulated kinases ERK1/2. PI3K/AKT inhibitor LY294002 and MAPK/ERK kinase (MEK inhibitor U0126 treatments study clearly indicated that Pls-mediated cell survival was dependent on the activation of these kinases. In addition, Pls also inhibited primary mouse hippocampal neuronal cell death induced by nutrient deprivation, which was associated with the inhibition of caspase-9 and caspase-3 cleavages. It was reported that Pls content decreased in the brain of the Alzheimer's patients, which indicated that the reduction of Pls content could endanger neurons. The present findings, taken together, suggest that Pls have an anti-apoptotic action in the brain. Further studies on precise mechanisms of Pls-mediated protection against cell death may lead us to establish a novel therapeutic approach to cure neurodegenerative disorders.

  12. Dying to remember, remembering to survive: mortality salience and survival processing.

    Science.gov (United States)

    Burns, Daniel J; Hart, Joshua; Kramer, Melanie E; Burns, Amy D

    2014-01-01

    Processing items for their relevance to survival improves recall for those items relative to numerous other deep processing encoding techniques. Perhaps related, placing individuals in a mortality salient state has also been shown to enhance retention of items encoded after the morality salience manipulation (e.g., in a pleasantness rating task), a phenomenon we dubbed the "dying-to-remember" (DTR) effect. The experiments reported here further explored the effect and tested the possibility that the DTR effect is related to survival processing. Experiment 1 replicated the effect using different encoding tasks, demonstrating that the effect is not dependent on the pleasantness task. In Experiment 2 the DTR effect was associated with increases in item-specific processing, not relational processing, according to several indices. Experiment 3 replicated the main results of Experiment 2, and tested the effects of mortality salience and survival processing within the same experiment. The DTR effect and its associated difference in item-specific processing were completely eliminated when the encoding task required survival processing. These results are consistent with the interpretation that the mechanisms responsible for survival processing and DTR effects are overlapping.

  13. Repair models of cell survival and corresponding computer program for survival curve fitting

    International Nuclear Information System (INIS)

    Shen Xun; Hu Yiwei

    1992-01-01

    Some basic concepts and formulations of two repair models of survival, the incomplete repair (IR) model and the lethal-potentially lethal (LPL) model, are introduced. An IBM-PC computer program for survival curve fitting with these models was developed and applied to fit the survivals of human melanoma cells HX118 irradiated at different dose rates. Comparison was made between the repair models and two non-repair models, the multitar get-single hit model and the linear-quadratic model, in the fitting and analysis of the survival-dose curves. It was shown that either IR model or LPL model can fit a set of survival curves of different dose rates with same parameters and provide information on the repair capacity of cells. These two mathematical models could be very useful in quantitative study on the radiosensitivity and repair capacity of cells

  14. Depression and Liver Transplant Survival.

    Science.gov (United States)

    Meller, William; Welle, Nicole; Sutley, Kristen; Thurber, Steven

    Patients who underwent liver transplantation and experienced clinical depression have heretofore evinced lower survival rates when compared to nondepressed counterparts. To investigate the hypothesis that transplant patients who seek and obtain medical treatment for depression would circumvent the prior reduced survival findings. A total of 765 patients with liver transplants were scrutinized for complications following transplantation. Further, 104 patients experienced posttransplant depression as manifested by diagnosis and treatment by medical personnel. Survival analyses were conducted comparing hazard and survival curves for these selected individuals and the remainder of transplant patients. Contrary to prior data and consistent with the aforementioned hypothesis, median survival durations, survival curves, and hazard functions (controlling for age and prolonged posttransplant survival for the depressed patients were better. The improved survival for the depressed patients may simply be related to an amelioration of depressed symptoms via antidepressant medications. However, this interpretation would only be congruent with reduced hazard, not elevated survival, beyond the norm (median) for other transplant participants. Assuming the reliability and generalization of our findings, perhaps a reasonable and compelling interpretation is that combined with the effectiveness of antidepressant medications, the seeking and receiving treatment for depression is a type of proxy measure of a more global pattern of adherence to recommended posttransplant medical regimens. Copyright © 2017 The Academy of Psychosomatic Medicine. Published by Elsevier Inc. All rights reserved.

  15. Asparaginase II-GFP fusion as a tool for studying the secretion of the enzyme under nitrogen starvation Fusão asparaginase II-GFP como ferramenta para estudo da via secretora de enzima sobre depleção por nitrogênio

    Directory of Open Access Journals (Sweden)

    Adriana Sotero-Martins

    2003-12-01

    Full Text Available Production of asparaginase II of Saccharomyces cerevisiae is regulated by nitrogen and can be used as a model system for studying other secreted proteins in yeast. Green fluorescent protein (GFP from Aequorea victoria was fused to the carboxy-terminus of the enzyme by genomic integration to the locus ASP3 of S. cerevisiae. We determined asparaginase II activity, mRNA ASP3, mRNA ASP3-GFP and GFP fluorescence. Nitrogen starvation in cells carrying the chimera ASP3-GFP caused an increase in fluorescence and in the expression of ASP3. We have shown that cells producing the chimera Asp3-GFPp displayed the same response to nitrogen starvation as control cells. We demonstrated that Asp3-GFPp can be used for studying asparaginase II secretion under nitrogen starvation in vivo.A produção de asparaginase II de Saccharomyces cerevisiae é regulada por nitrogênio e pode ser utilizada como um sistema modelo para estudar outras proteínas secretadas, em leveduras. A proteína "green fluorescent protein" (GFP de Aequorea victoria foi fusionada à porção carboxi-terminal de Asp3p por integração genômica da sequência de GFP ao locus ASP3. Determinaram-se os níveis de atividade de asparaginase II, mRNA ASP3, mRNA ASP3-GFP e de fluorescência para GFP. A depleção para nitrogênio, em células portadoras do gene quimérico ASP3-GFP, fez aumentar a fluorescência, assim como a expressão de ASP3. Demonstramos que Asp3-GFPp pode ser utilizada para estudar a secreção de asparaginase II em células submetidas à privação de nitrogênio in vivo.

  16. SUB1 Plays a Negative Role during Starvation Induced Sporulation Program in Saccharomyces cerevisiae.

    Science.gov (United States)

    Gupta, Ritu; Sadhale, Parag P; Vijayraghavan, Usha

    2015-01-01

    Saccharomyces cerevisiae Sub1 is involved in several cellular processes such as, transcription initiation, elongation, mRNA processing and DNA repair. It has also been reported to provide cellular resistance during conditions of oxidative DNA damage and osmotic stress. Here, we report a novel role of SUB1 during starvation stress-induced sporulation, which leads to meiosis and spore formation in diploid yeast cells. Deletion of SUB1 gene significantly increased sporulation efficiency as compared to the wild-type cells in S288c genetic background. Whereas, the sporulation functions of the sub1(Y66A) missense mutant were similar to Sub1. SUB1 transcript and protein levels are downregulated during sporulation, in highly synchronized and sporulation proficient wild-type SK1 cells. The changes in Sub1 levels during sporulation cascade correlate with the induction of middle sporulation gene expression. Deletion of SUB1 increased middle sporulation gene transcript levels with no effect on their induction kinetics. In wild-type cells, Sub1 associates with chromatin at these loci in a temporal pattern that correlates with their enhanced gene expression seen in sub1Δ cells. We show that SUB1 genetically interacts with HOS2, which led us to speculate that Sub1 might function with Set3 repressor complex during sporulation. Positive Cofactor 4, human homolog of Sub1, complemented the sub1Δ sporulation phenotype, suggesting conservation of function. Taken together, our results suggest that SUB1 acts as a negative regulator of sporulation.

  17. Effect of confinement and starvation on stress parameters in the American lobster (Homarus americanus

    Directory of Open Access Journals (Sweden)

    Edo D'Agaro

    2014-12-01

    Full Text Available The American lobster (Homarus americanus is one of the most important crustacean resources in North America. In Italy and Europe, this fishery product is available throughout the year and it has a high and increasing commercial demand. American lobsters are traditionally marketed live and stocked, without feed, in temperature controlled recirculating systems for several weeks before being sold in the market places. The current Italian legislation does not fix a maximum length of time for the crustacean confinement and specific welfare requirements. In the present research, a 4-week experiment was carried out using 42 adult H. americanus reared in 4 recirculating aquaculture tanks. After one month of confinement, mean glucose, protein and total haemocyte count levels in the hemolymph of H. americanus were stable and similar (P>0.05 to the values observed at the beginning of the experiment. Results of the proximate analysis of the abdominal muscles of H. americanus showed no significant differences in concentrations of crude protein, lipid and ash during the trial. At the end of the experiment, the sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting analysis revealed a marked degradation of the muscle myofibrillar proteins. A number of fragments, possibly from myosin, were evident in the range between 50 and 220 kDa between time t0 and t28. Results of this study show that the main hemolymphatic variables and degradation analysis of the muscle myofibrillar proteins can be used as sensitive indicators of the crustacean stress response to confinement and starvation.

  18. Conditional survival is greater than overall survival at diagnosis in patients with osteosarcoma and Ewing's sarcoma.

    Science.gov (United States)

    Miller, Benjamin J; Lynch, Charles F; Buckwalter, Joseph A

    2013-11-01

    Conditional survival is a measure of the risk of mortality given that a patient has survived a defined period of time. These estimates are clinically helpful, but have not been reported previously for osteosarcoma or Ewing's sarcoma. We determined the conditional survival of patients with osteosarcoma and Ewing's sarcoma given survival of 1 or more years. We used the Surveillance, Epidemiology, and End Results (SEER) Program database to investigate cases of osteosarcoma and Ewing's sarcoma in patients younger than 40 years from 1973 to 2009. The SEER Program is managed by the National Cancer Institute and provides survival data gathered from population-based cancer registries. We used an actuarial life table analysis to determine any cancer cause-specific 5-year survival estimates conditional on 1 to 5 years of survival after diagnosis. We performed a similar analysis to determine 20-year survival from the time of diagnosis. The estimated 5-year survival improved each year after diagnosis. For local/regional osteosarcoma, the 5-year survival improved from 74.8% at baseline to 91.4% at 5 years-meaning that if a patient with localized osteosarcoma lives for 5 years, the chance of living for another 5 years is 91.4%. Similarly, the 5-year survivals for local/regional Ewing's sarcoma improved from 72.9% at baseline to 92.5% at 5 years, for metastatic osteosarcoma 35.5% at baseline to 85.4% at 5 years, and for metastatic Ewing's sarcoma 31.7% at baseline to 83.6% at 5 years. The likelihood of 20-year cause-specific survival from the time of diagnosis in osteosarcoma and Ewing's sarcoma was almost 90% or greater after 10 years of survival, suggesting that while most patients will remain disease-free indefinitely, some experience cancer-related complications years after presumed eradication. The 5-year survival estimates of osteosarcoma and Ewing's sarcoma improve with each additional year of patient survival. Knowledge of a changing risk profile is useful in counseling

  19. Effects of light intensity and nitrogen starvation on glycerolipid, glycerophospholipid, and carotenoid composition in Dunaliella tertiolecta culture.

    Directory of Open Access Journals (Sweden)

    So-Hyun Kim

    Full Text Available Time-course variation of lipid and carotenoid production under high light (300 μE/m²s and nitrogen starvation conditions was determined in a Dunaliella tertiolecta strain. Nanoelectrospray (nanoESI chip based direct infusion was used for lipid analysis and ultra-performance liquid chromatography (UPLC coupled with a photodiode array (PDA or atmospheric chemical ionization mass spectrometry (APCI-MS was used for carotenoid analysis. A total of 29 lipids and 7 carotenoids were detected. Alterations to diacylglyceryltrimethylhomoserine (DGTS and digalactosyldiacylglycerol (DGDG species were significant observations under stress conditions. Their role in relation to the regulation of photosynthesis under stress condition is discussed in this study. The total carotenoid content was decreased under stress conditions, while ã-carotene was increased under nitrate-deficient cultivation. The highest productivity of carotenoid was attained under high light and nitrate sufficiency (HLNS condition, which result from the highest level of biomass under HLNS. When stress was induced at stationary phase, the substantial changes to the lipid composition occurred, and the higher carotenoid content and productivity were exhibited. This is the first report to investigate the variation of lipids, including glycerolipid, glycerophospholipid, and carotenoid in D. tertiolecta in response to stress conditions using lipidomics tools.

  20. Alkali production associated with malolactic fermentation by oral streptococci and protection against acid, oxidative, or starvation damage.

    Science.gov (United States)

    Sheng, Jiangyun; Baldeck, Jeremiah D; Nguyen, Phuong T M; Quivey, Robert G; Marquis, Robert E

    2010-07-01

    Alkali production by oral streptococci is considered important for dental plaque ecology and caries moderation. Recently, malolactic fermentation (MLF) was identified as a major system for alkali production by oral streptococci, including Streptococcus mutans. Our major objectives in the work described in this paper were to further define the physiology and genetics of MLF of oral streptococci and its roles in protection against metabolic stress damage. L-Malic acid was rapidly fermented to L-lactic acid and CO(2) by induced cells of wild-type S. mutans, but not by deletion mutants for mleS (malolactic enzyme) or mleP (malate permease). Mutants for mleR (the contiguous regulator gene) had intermediate capacities for MLF. Loss of capacity to catalyze MLF resulted in loss of capacity for protection against lethal acidification. MLF was also found to be protective against oxidative and starvation damage. The capacity of S. mutans to produce alkali from malate was greater than its capacity to produce acid from glycolysis at low pH values of 4 or 5. MLF acted additively with the arginine deiminase system for alkali production by Streptococcus sanguinis, but not with urease of Streptococcus salivarius. Malolactic fermentation is clearly a major process for alkali generation by oral streptococci and for protection against environmental stresses.

  1. Alkali production associated with malolactic fermentation by oral streptococci and protection against acid, oxidative, or starvation damage

    Science.gov (United States)

    Sheng, Jiangyun; Baldeck, Jeremiah D.; Nguyen, Phuong T.M.; Quivey, Robert G.; Marquis, Robert E.

    2011-01-01

    Alkali production by oral streptococci is considered important for dental plaque ecology and caries moderation. Recently, malolactic fermentation (MLF) was identified as a major system for alkali production by oral streptococci, including Streptococcus mutans. Our major objectives in the work described in this paper were to further define the physiology and genetics of MLF of oral streptococci and its roles in protection against metabolic stress damage. l-Malic acid was rapidly fermented to l-lactic acid and CO2 by induced cells of wild-type S. mutans, but not by deletion mutants for mleS (malolactic enzyme) or mleP (malate permease). Mutants for mleR (the contiguous regulator gene) had intermediate capacities for MLF. Loss of capacity to catalyze MLF resulted in loss of capacity for protection against lethal acidification. MLF was also found to be protective against oxidative and starvation damage. The capacity of S. mutans to produce alkali from malate was greater than its capacity to produce acid from glycolysis at low pH values of 4 or 5. MLF acted additively with the arginine deiminase system for alkali production by Streptococcus sanguinis, but not with urease of Streptococcus salivarius. Malolactic fermentation is clearly a major process for alkali generation by oral streptococci and for protection against environmental stresses. PMID:20651853

  2. Phosphoenolpyruvate carboxykinase in bovine tick Rhipicephalus (Boophilus) micro plus embryogenesis and starvation larvae

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, J.G. de; Mentizingen, L.G.; Logullo, C. [Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ (Brazil). Centro de Biociencias e Biotecnologia. Lab.de Quimica e Funcao de Proteinas e Peptideos (LQFPP); Andrade, C.P. de; Vaz Junior, Itabajara [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Centro de Biotecnologia; Daffre, S.; Esteves, E. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Ciencias Biomedicas

    2008-07-01

    Full text: Phosphoenolpyruvate carboxykinase (PEPCK) is considered a key rate controlling enzyme in gluconeogenesis pathway. Gluconeogenesis is a highly regulated process, catalyzed by several enzymes subject to regulation by insulin. Normally, insulin rapidly and substantially inhibits PEPCK gene transcription and the PEPCK activity is proportional to the rate of gene transcription. The transcriptional regulation of the PEPCK gene has been extensively studied. CREM is the transcription factor that bind efficiently to the putative cyclic AMP response element (CRE) in PEPCK gene. Several other transcription factors can bind to this element and activate transcription. In oviparous animals, such as bovine tick R. microplus, the embryonic development occurs outside the maternal organism, implying that all the nutrients necessary for embryogenesis must be present in the oocytes. We observed the relationship between the main energy sources and the morphogenetic changes that occur during R. microplus tick embryogenesis. Energy homeostasis is maintained by glycogen mobilization in the beginning of embryogenesis, as its content is drastically decreased during the first five days of development. Afterwards, the activity of the gluconeogenesis enzyme PEPCK increases enormously, as indicated by a concomitant increase in glucose content (Moraes et al., 2007). Here, we analyzed PEPCK gene transcription by qPCR during the embryogenesis and starvation larvae. The PEPCK transcription was higher at first and 15th day eggs of the development. In larvae the levels of PEPCK transcripts is increased at fifth day after hatch. However, the activity is continuous increased in larvae the form first up to 15th day. Now we are investigating the involvement of CREM in the PEPCK gene transcription in these cells. In this sense, we obtained CREM sequence from TIGR ESTs R. microplus bank and designed the specific primers to qPCR. Taken together our results suggest the involvement of PEPCK to the

  3. Phosphoenolpyruvate carboxykinase in bovine tick Rhipicephalus (Boophilus) micro plus embryogenesis and starvation larvae

    International Nuclear Information System (INIS)

    Andrade, J.G. de; Mentizingen, L.G.; Logullo, C.; Andrade, C.P. de; Vaz Junior, Itabajara; Daffre, S.; Esteves, E.

    2008-01-01

    Full text: Phosphoenolpyruvate carboxykinase (PEPCK) is considered a key rate controlling enzyme in gluconeogenesis pathway. Gluconeogenesis is a highly regulated process, catalyzed by several enzymes subject to regulation by insulin. Normally, insulin rapidly and substantially inhibits PEPCK gene transcription and the PEPCK activity is proportional to the rate of gene transcription. The transcriptional regulation of the PEPCK gene has been extensively studied. CREM is the transcription factor that bind efficiently to the putative cyclic AMP response element (CRE) in PEPCK gene. Several other transcription factors can bind to this element and activate transcription. In oviparous animals, such as bovine tick R. microplus, the embryonic development occurs outside the maternal organism, implying that all the nutrients necessary for embryogenesis must be present in the oocytes. We observed the relationship between the main energy sources and the morphogenetic changes that occur during R. microplus tick embryogenesis. Energy homeostasis is maintained by glycogen mobilization in the beginning of embryogenesis, as its content is drastically decreased during the first five days of development. Afterwards, the activity of the gluconeogenesis enzyme PEPCK increases enormously, as indicated by a concomitant increase in glucose content (Moraes et al., 2007). Here, we analyzed PEPCK gene transcription by qPCR during the embryogenesis and starvation larvae. The PEPCK transcription was higher at first and 15th day eggs of the development. In larvae the levels of PEPCK transcripts is increased at fifth day after hatch. However, the activity is continuous increased in larvae the form first up to 15th day. Now we are investigating the involvement of CREM in the PEPCK gene transcription in these cells. In this sense, we obtained CREM sequence from TIGR ESTs R. microplus bank and designed the specific primers to qPCR. Taken together our results suggest the involvement of PEPCK to the

  4. The iron chelator deferasirox protects mice from mucormycosis through iron starvation

    Science.gov (United States)

    Ibrahim, Ashraf S.; Gebermariam, Teclegiorgis; Fu, Yue; Lin,, Lin; Husseiny, Mohamed I.; French, Samuel W.; Schwartz, Julie; Skory, Christopher D.; Edwards, John E.; Spellberg, Brad J.

    2007-01-01

    Mucormycosis causes mortality in at least 50% of cases despite current first-line therapies. Clinical and animal data indicate that the presence of elevated available serum iron predisposes the host to mucormycosis. Here we demonstrate that deferasirox, an iron chelator recently approved for use in humans by the US FDA, is a highly effective treatment for mucormycosis. Deferasirox effectively chelated iron from Rhizopus oryzae and demonstrated cidal activity in vitro against 28 of 29 clinical isolates of Mucorales at concentrations well below clinically achievable serum levels. When administered to diabetic ketoacidotic or neutropenic mice with mucormycosis, deferasirox significantly improved survival and decreased tissue fungal burden, with an efficacy similar to that of liposomal amphotericin B. Deferasirox treatment also enhanced the host inflammatory response to mucormycosis. Most importantly, deferasirox synergistically improved survival and reduced tissue fungal burden when combined with liposomal amphotericin B. These data support clinical investigation of adjunctive deferasirox therapy to improve the poor outcomes of mucormycosis with current therapy. As iron availability is integral to the pathogenesis of other infections (e.g., tuberculosis, malaria), broader investigation of deferasirox as an antiinfective treatment is warranted. PMID:17786247

  5. Survival curves for irradiated cells

    International Nuclear Information System (INIS)

    Gibson, D.K.

    1975-01-01

    The subject of the lecture is the probability of survival of biological cells which have been subjected to ionising radiation. The basic mathematical theories of cell survival as a function of radiation dose are developed. A brief comparison with observed survival curves is made. (author)

  6. Saposin C promotes survival and prevents apoptosis via PI3K/Akt-dependent pathway in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Lee Tae-Jin

    2004-11-01

    Full Text Available Abstract Background In addition to androgens, growth factors are also implicated in the development and neoplastic growth of the prostate gland. Prosaposin is a potent neurotrophic molecule. Homozygous inactivation of prosaposin in mice has led to the development of a number of abnormalities in the male reproductive system, including atrophy of the prostate gland and inactivation of mitogen-activated protein kinase (MAPK and Akt in prostate epithelial cells. We have recently reported that prosaposin is expressed at a higher level by androgen-independent (AI prostate cancer cells as compared to androgen-sensitive prostate cancer cells or normal prostate epithelial and stromal cells. In addition, we have demonstrated that a synthetic peptide (prosaptide TX14A, derived from the trophic sequence of the saposin C domain of prosaposin, stimulated cell proliferation, migration and invasion and activated the MAPK signaling pathway in prostate cancer cells. The biological significances of saposin C and prosaposin in prostate cancer are not known. Results Here, we report that saposin C, in a cell type-specific and dose-dependent manner, acts as a survival factor, activates the Akt-signaling pathway, down-modulates caspase-3, -7, and -9 expression and/or activity, and decreases the cleaved nuclear substrate of caspase-3 in prostate cancer cells under serum-starvation stress. In addition, prosaptide TX14A, saposin C, or prosaposin decreased the growth-inhibitory effect, caspase-3/7 activity, and apoptotic cell death induced by etoposide. We also discovered that saposin C activates the p42/44 MAP kinase pathway in a pertussis toxin-sensitive and phosphatidylinositol 3-kinase (PI3K /Akt-dependent manner in prostate cancer cells. Our data also show that the anti-apoptotic activity of saposin C is at least partially mediated via PI3K/Akt signaling pathway. Conclusion We postulate that as a mitogenic, survival, and anti-apoptotic factor for prostate cancer cells

  7. Survival pathways under stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Survival pathways under stress. Bacteria survive by changing gene expression. pattern. Three important pathways will be discussed: Stringent response. Quorum sensing. Proteins performing function to control oxidative damage.

  8. Survival rates and predictors of survival among colorectal cancer patients in a Malaysian tertiary hospital.

    Science.gov (United States)

    Magaji, Bello Arkilla; Moy, Foong Ming; Roslani, April Camilla; Law, Chee Wei

    2017-05-18

    Colorectal cancer is the third most commonly diagnosed malignancy and the fourth leading cause of cancer-related death globally. It is the second most common cancer among both males and females in Malaysia. The economic burden of colorectal cancer is likely to increase over time owing to its current trend and aging population. Cancer survival analysis is an essential indicator for early detection and improvement in cancer treatment. However, there was a scarcity of studies concerning survival of colorectal cancer patients as well as its predictors. Therefore, we aimed to determine the 1-, 3- and 5-year survival rates, compare survival rates among ethnic groups and determine the predictors of survival among colorectal cancer patients. This was an ambidirectional cohort study conducted at the University Malaya Medical Centre (UMMC) in Kuala Lumpur, Malaysia. All Malaysian citizens or permanent residents with histologically confirmed diagnosis of colorectal cancer seen at UMMC from 1 January 2001 to 31 December 2010 were included in the study. Demographic and clinical characteristics were extracted from the medical records. Patients were followed-up until death or censored at the end of the study (31st December 2010). Censored patients' vital status (whether alive or dead) were cross checked with the National Registration Department. Survival analyses at 1-, 3- and 5-year intervals were performed using the Kaplan-Meier method. Log-rank test was used to compare the survival rates, while Cox proportional hazard regression analysis was carried out to determine the predictors of 5-year colorectal cancer survival. Among 1212 patients, the median survival for colorectal, colon and rectal cancers were 42.0, 42.0 and 41.0 months respectively; while the 1-, 3-, and 5-year relative survival rates ranged from 73.8 to 76.0%, 52.1 to 53.7% and 40.4 to 45.4% respectively. The Chinese patients had the lowest 5-year survival compared to Malay and Indian patients. Based on the 814

  9. Survival rates of birds of tropical and temperate forests: will the dogma survive?

    Science.gov (United States)

    Karr, J.R.; Nichols, J.D.; Klimkiewicz, M.K.; Brawn, J.D.

    1990-01-01

    Survival rates of tropical forest birds are widely assumed to be high relative to the survival rates of temperate forest birds. Much life-history theory is based on this assumption despite the lack of empirical data to support it. We provide the first detailed comparison of survival rates of tropical and temperate forest birds based on extensive data bases and modern capture-recapture models. We find no support for the conventional wisdom. Because clutch size is only one component of reproductive rate, the frequently assumed, simple association between clutch size and adult survival rates should not necessarily be expected. Our results emphasize the need to consider components of fecundity in addition to clutch size when comparing the life histories of tropical and temperate birds and suggest similar considerations in the development of vertebrate life-history theory.

  10. Survival of falling robots

    Science.gov (United States)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  11. Network ties and survival

    DEFF Research Database (Denmark)

    Acheampong, George; Narteh, Bedman; Rand, John

    2017-01-01

    Poultry farming has been touted as one of the major ways by which poverty can be reduced in low-income economies like Ghana. Yet, anecdotally there is a high failure rate among these poultry farms. This current study seeks to understand the relationship between network ties and survival chances...... of small commercial poultry farms (SCPFs). We utilize data from a 2-year network survey of SCPFs in rural Ghana. The survival of these poultry farms are modelled using a lagged probit model of farms that persisted from 2014 into 2015. We find that network ties are important to the survival chances...... but this probability reduces as the number of industry ties increases but moderation with dynamic capability of the firm reverses this trend. Our findings show that not all network ties aid survival and therefore small commercial poultry farmers need to be circumspect in the network ties they cultivate and develop....

  12. Survival of falling robots

    Science.gov (United States)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-02-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  13. DE-FG02-04ER63746 FinalTechnicalReport

    Energy Technology Data Exchange (ETDEWEB)

    Lidstrom, M.E.

    2009-09-05

    This is the final technical report for a project involving the study of stress response systems in the radiation-resistant bacterium, Deinococcus radiodurans. Three stresses of importance for a mixed waste treatment strain were studied, heat shock, solvent shock, and phosphate starvation. In each case, specific genes involved in the ability to survive the stress were identified using a systems biology approach, and analysis of mutants was used to understand mechanisms. This study has led to increased understanding of the ways in which a potential treatment strain could be manipulated to survive multiple stresses for treatment of mixed wastes.

  14. Survival during the Breeding Season: Nest Stage, Parental Sex, and Season Advancement Affect Reed Warbler Survival.

    Directory of Open Access Journals (Sweden)

    Kaja Wierucka

    Full Text Available Avian annual survival has received much attention, yet little is known about seasonal patterns in survival, especially of migratory passerines. In order to evaluate survival rates and timing of mortality within the breeding season of adult reed warblers (Acrocephalus scirpaceus, mark-recapture data were collected in southwest Poland, between 2006 and 2012. A total of 612 individuals (304 females and 308 males were monitored throughout the entire breeding season, and their capture-recapture histories were used to model survival rates. Males showed higher survival during the breeding season (0.985, 95% CI: 0.941-0.996 than females (0.869, 95% CI: 0.727-0.937. Survival rates of females declined with the progression of the breeding season (from May to August, while males showed constant survival during this period. We also found a clear pattern within the female (but not male nesting cycle: survival was significantly lower during the laying, incubation, and nestling periods (0.934, 95% CI: 0.898-0.958, when birds spent much time on the nest, compared to the nest building and fledgling periods (1.000, 95% CI: 1.00-1.000, when we did not record any female mortality. These data (coupled with some direct evidence, like bird corpses or blood remains found next to/on the nest may suggest that the main cause of adult mortality was on-nest predation. The calculated survival rates for both sexes during the breeding season were high compared to annual rates reported for this species, suggesting that a majority of mortality occurs at other times of the year, during migration or wintering. These results have implications for understanding survival variation within the reproductive period as well as general trends of avian mortality.

  15. Cancer survival among Alaska Native people.

    Science.gov (United States)

    Nash, Sarah H; Meisner, Angela L W; Zimpelman, Garrett L; Barry, Marc; Wiggins, Charles L

    2018-03-26

    Recent cancer survival trends among American Indian and Alaska Native (AN) people are not well understood; survival has not been reported among AN people since 2001. This study examined cause-specific survival among AN cancer patients for lung, colorectal, female breast, prostate, and kidney cancers. It evaluated whether survival differed between cancers diagnosed in 1992-2002 (the earlier period) and cancers diagnosed in 2003-2013 (the later period) and by the age at diagnosis (<65 vs ≥65 years), stage at diagnosis (local or regional/distant/unknown), and sex. Kaplan-Meier and Cox proportional hazards models were used to estimate univariate and multivariate-adjusted cause-specific survival for each cancer. An improvement was observed in 5-year survival over time from lung cancer (hazard ratio [HR] for the later period vs the earlier period, 0.83; 95% confidence interval [CI], 0.72-0.97), and a marginally nonsignificant improvement was observed for colorectal cancer (HR, 0.81; 95% CI, 0.66-1.01). Site-specific differences in survival were observed by age and stage at diagnosis. This study presents the first data on cancer survival among AN people in almost 2 decades. During this time, AN people have experienced improvements in survival from lung and colorectal cancers. The reasons for these improvements may include increased access to care (including screening) as well as improvements in treatment. Improving cancer survival should be a priority for reducing the burden of cancer among AN people and eliminating cancer disparities. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.

  16. Influence of intracellular adenosine-triphosphate concentration of yeast cells on survival following X-irradiation

    International Nuclear Information System (INIS)

    Reinhard, R.D.; Pohlit, W.

    1975-01-01

    The effect of D-glucose, 2-deoxy-D-glucose and starvation in buffer on the ATP-concentration of yeast cells has been studied. In both the wild-type and a respiratory-deficient mutant strain 2-deoxy-D-glucose decreases the value for ATP, while it is enhanced by glucose only in the mutant strain. Populations with different ATP-concentrations have been irradiated. The results suggest that ATP may be an essential factor in the system that determines the length of the shoulder of the dose effect curves. (orig.) [de

  17. Revealing fosfomycin primary effect on Staphylococcus aureus transcriptome: modulation of cell envelope biosynthesis and phosphoenolpyruvate induced starvation

    Directory of Open Access Journals (Sweden)

    Gruden Kristina

    2010-06-01

    Full Text Available Abstract Background Staphylococcus aureus is a highly adaptable human pathogen and there is a constant search for effective antibiotics. Fosfomycin is a potent irreversible inhibitor of MurA, an enolpyruvyl transferase that uses phosphoenolpyruvate as substrate. The goal of this study was to identify the pathways and processes primarily affected by fosfomycin at the genome-wide transcriptome level to aid development of new drugs. Results S. aureus ATCC 29213 cells were treated with sub-MIC concentrations of fosfomycin and harvested at 10, 20 and 40 minutes after treatment. S. aureus GeneChip statistical data analysis was complemented by gene set enrichment analysis. A visualization tool for mapping gene expression data into biological pathways was developed in order to identify the metabolic processes affected by fosfomycin. We have shown that the number of significantly differentially expressed genes in treated cultures increased with time and with increasing fosfomycin concentration. The target pathway - peptidoglycan biosynthesis - was upregulated following fosfomycin treatment. Modulation of transport processes, cofactor biosynthesis, energy metabolism and nucleic acid biosynthesis was also observed. Conclusions Several pathways and genes downregulated by fosfomycin have been identified, in contrast to previously described cell wall active antibiotics, and was explained by starvation response induced by phosphoenolpyruvate accumulation. Transcriptomic profiling, in combination with meta-analysis, has been shown to be a valuable tool in determining bacterial response to a specific antibiotic.

  18. 46 CFR 117.200 - Survival craft-general.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Survival craft-general. 117.200 Section 117.200 Shipping... Number and Type of Survival Craft § 117.200 Survival craft—general. (a) Each survival craft required on a... craft they replace. (c) A summary of survival craft requirements is provided in Table 117.200(c). Table...

  19. Beta-hydroxy-beta-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways.

    Science.gov (United States)

    Kornasio, Reut; Riederer, Ingo; Butler-Browne, Gillian; Mouly, Vincent; Uni, Zehava; Halevy, Orna

    2009-05-01

    Beta-hydroxy-beta-methylbutyrate (HMB), a leucine catabolite, has been shown to prevent exercise-induced protein degradation and muscle damage. We hypothesized that HMB would directly regulate muscle-cell proliferation and differentiation and would attenuate apoptosis, the latter presumably underlying satellite-cell depletion during muscle degradation or atrophy. Adding various concentrations of HMB to serum-starved myoblasts induced cell proliferation and MyoD expression as well as the phosphorylation of MAPK/ERK. HMB induced differentiation-specific markers, increased IGF-I mRNA levels and accelerated cell fusion. Its inhibition of serum-starvation- or staurosporine-induced apoptosis was reflected by less apoptotic cells, reduced BAX expression and increased levels of Bcl-2 and Bcl-X. Annexin V staining and flow cytometry analysis showed reduced staurosporine-induced apoptosis in human myoblasts in response to HMB. HMB enhanced the association of the p85 subunit of PI3K with tyrosine-phosphorylated proteins. HMB elevated Akt phosphorylation on Thr308 and Ser473 and this was inhibited by Wortmannin, suggesting that HMB acts via Class I PI3K. Blocking of the PI3K/Akt pathway with specific inhibitors revealed its requirement in mediating the promotive effects of HMB on muscle cell differentiation and fusion. These direct effects of HMB on myoblast differentiation and survival resembling those of IGF-I, at least in culture, suggest its positive influence in preventing muscle wasting.

  20. Overall survival and disease-free survival in endometrial cancer: prognostic factors in 276 patients

    Directory of Open Access Journals (Sweden)

    Tejerizo-García A

    2013-09-01

    Full Text Available Álvaro Tejerizo-García,1 Jesús S Jiménez-López,1 José L Muñoz-González,1 Sara Bartolomé-Sotillos,1 Laura Marqueta-Marqués,1 Gregorio López-González,1 José F Pérez-Regadera Gómez21Service of Obstetrics and Gynecology, 2Radiation Oncology Service, Hospital Universitario 12 de Octubre, Madrid, SpainObjective: The aim of the study reported here was to assess the disease-free survival and overall survival of patients with endometrial cancer and to determine independent factors affecting the prognosis.Materials and methods: This was a retrospective study of a single-center clinical series of 276 patients (mean age 64 years with histologically confirmed cancer of the corpus uteri. The standard treatments were extrafascial total hysterectomy and bilateral salpingo-oophorectomy with selective pelvic/para-aortic node dissection, according to risk for recurrence. Actuarial overall survival and disease-free survival were estimated according to the Kaplan–Meier method. Univariate and multivariate Cox proportional hazards analyses were used to assess the prognostic significance of the different variables.Results: The estimated median follow-up, determined using the inverse Kaplan–Meier method, was 45 months (95% confidence interval [CI] 41.2–48.8 for disease-free survival and 46 months (95% CI 43.0–49.0 for overall survival. The statistically significant variables affecting disease-free survival and overall survival were age, serous-papillary and clear-cell histological types, outer-half myometrial invasion, advanced International Federation of Gynecology and Obstetrics (FIGO stage, tumor grades G2 and G3, incomplete surgical resection, positive lymph nodes, lymphovascular space invasion, tumor remnants of >1 cm after surgery, and high-risk group. In the multivariate Cox regression model, predictors of tumor recurrence included advanced FIGO stage (hazard ratio [HR] 4.90, 95% CI 2.57–9.36, P < 0.001 and tumor grades G2 (HR 4.79, 95

  1. Survival Patterns Among Newcomers To Franchising

    OpenAIRE

    Timothy Bates

    1997-01-01

    This study analyzes survival patterns among franchisee firms and establishments that began operations in 1986 and 1987. Differing methodologies and data bases are utilized to demonstrate that 1) franchises have higher survival rates than independents, and 2) franchises have lower survival rates than independent business formations. Analyses of corporate establishment data generate high franchisee survival rates relative to independents, while analyses of young firm data generate the opposite ...

  2. The effect of channel flow pattern on internal properties distribution of a proton exchange membrane fuel cell for cathode starvation conditions

    International Nuclear Information System (INIS)

    Ko, Dong Soo; Kang, Young Min; Yang, Jang Sik; Jeong, Ji Hwan; Choi, Gyung Min; Kim, Duck Jool

    2010-01-01

    The effect of channel flow pattern on the internal properties distribution of a proton exchange membrane fuel cell (PEMFC) for cathode starvation conditions in a unit cell was investigated through numerical studies and experiments. The polarization curves of a lab-scale mixed serpentine PEMFC were measured with increasing current loads for different cell temperatures (40, 50, and 60 .deg. C) at a relative humidity of 100%. To study the local temperature on the membrane, the water content in the MEA, and the gas velocity in terms of the channel type of the PEMFC with operating characteristics, numerical studies using the es-pemfc module of STAR-CD, which have been matched to the experimental data, were conducted in detail. The water content and velocity at the cathode channel bend of the mixed serpentine channel were relatively higher than those at the single and double channels. Conversely, the local temperature and mean temperature on the membrane of a single serpentine channel were the highest among all channels. These results can be used to design the PEMFC system, the channel flow field, and the cooling device

  3. Serum Starvation-Induced Voltage-Gated Potassium Channel Kv7.5 Expression and Its Regulation by Sp1 in Canine Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Bo Hyung Lee

    2014-01-01

    Full Text Available The KCNQ gene family, whose members encode Kv7 channels, belongs to the voltage-gated potassium (Kv channel group. The roles of this gene family have been widely investigated in nerve and muscle cells. In the present study, we investigated several characteristics of Kv7.5, which is strongly expressed in the canine osteosarcoma cell line, CCL-183. Serum starvation upregulated Kv7.5 expression, and the Kv7 channel opener, flupirtine, attenuated cell proliferation by arresting cells in the G0/G1 phase. We also showed that Kv7.5 knockdown helps CCL-183 cells to proliferate. In an effort to find an endogenous regulator of Kv7.5, we used mithramycin A to reduce the level of the transcription factor Sp1, and it strongly inhibited the induction of Kv7.5 in CCL-183 cells. These results suggest that the activation of Kv7.5 by flupirtine may exert an anti-proliferative effect in canine osteosarcoma. Therefore, Kv7.5 is a possible molecular target for canine osteosarcoma therapy.

  4. ASURV: Astronomical SURVival Statistics

    Science.gov (United States)

    Feigelson, E. D.; Nelson, P. I.; Isobe, T.; LaValley, M.

    2014-06-01

    ASURV (Astronomical SURVival Statistics) provides astronomy survival analysis for right- and left-censored data including the maximum-likelihood Kaplan-Meier estimator and several univariate two-sample tests, bivariate correlation measures, and linear regressions. ASURV is written in FORTRAN 77, and is stand-alone and does not call any specialized libraries.

  5. Network survivability performance (computer diskette)

    Science.gov (United States)

    1993-11-01

    File characteristics: Data file; 1 file. Physical description: 1 computer diskette; 3 1/2 in.; high density; 2.0MB. System requirements: Mac; Word. This technical report has been developed to address the survivability of telecommunications networks including services. It responds to the need for a common understanding of, and assessment techniques for network survivability, availability, integrity, and reliability. It provides a basis for designing and operating telecommunication networks to user expectations for network survivability.

  6. Meta-analysis of single-arm survival studies: a distribution-free approach for estimating summary survival curves with random effects.

    Science.gov (United States)

    Combescure, Christophe; Foucher, Yohann; Jackson, Daniel

    2014-07-10

    In epidemiologic studies and clinical trials with time-dependent outcome (for instance death or disease progression), survival curves are used to describe the risk of the event over time. In meta-analyses of studies reporting a survival curve, the most informative finding is a summary survival curve. In this paper, we propose a method to obtain a distribution-free summary survival curve by expanding the product-limit estimator of survival for aggregated survival data. The extension of DerSimonian and Laird's methodology for multiple outcomes is applied to account for the between-study heterogeneity. Statistics I(2)  and H(2) are used to quantify the impact of the heterogeneity in the published survival curves. A statistical test for between-strata comparison is proposed, with the aim to explore study-level factors potentially associated with survival. The performance of the proposed approach is evaluated in a simulation study. Our approach is also applied to synthesize the survival of untreated patients with hepatocellular carcinoma from aggregate data of 27 studies and synthesize the graft survival of kidney transplant recipients from individual data from six hospitals. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Attributing death to cancer: cause-specific survival estimation.

    Directory of Open Access Journals (Sweden)

    Mathew A

    2002-10-01

    Full Text Available Cancer survival estimation is an important part of assessing the overall strength of cancer care in a region. Generally, the death of a patient is taken as the end point in estimation of overall survival. When calculating the overall survival, the cause of death is not taken into account. With increasing demand for better survival of cancer patients it is important for clinicians and researchers to know about survival statistics due to disease of interest, i.e. net survival. It is also important to choose the best method for estimating net survival. Increase in the use of computer programmes has made it possible to carry out statistical analysis without guidance from a bio-statistician. This is of prime importance in third- world countries as there are a few trained bio-statisticians to guide clinicians and researchers. The present communication describes current methods used to estimate net survival such as cause-specific survival and relative survival. The limitation of estimation of cause-specific survival particularly in India and the usefulness of relative survival are discussed. The various sources for estimating cancer survival are also discussed. As survival-estimates are to be projected on to the population at large, it becomes important to measure the variation of the estimates, and thus confidence intervals are used. Rothman′s confidence interval gives the most satisfactory result for survival estimate.

  8. Prognostic Factors for Survival in Patients with Gastric Cancer using a Random Survival Forest

    Science.gov (United States)

    Adham, Davoud; Abbasgholizadeh, Nategh; Abazari, Malek

    2017-01-01

    Background: Gastric cancer is the fifth most common cancer and the third top cause of cancer related death with about 1 million new cases and 700,000 deaths in 2012. The aim of this investigation was to identify important factors for outcome using a random survival forest (RSF) approach. Materials and Methods: Data were collected from 128 gastric cancer patients through a historical cohort study in Hamedan-Iran from 2007 to 2013. The event under consideration was death due to gastric cancer. The random survival forest model in R software was applied to determine the key factors affecting survival. Four split criteria were used to determine importance of the variables in the model including log-rank, conversation?? of events, log-rank score, and randomization. Efficiency of the model was confirmed in terms of Harrell’s concordance index. Results: The mean age of diagnosis was 63 ±12.57 and mean and median survival times were 15.2 (95%CI: 13.3, 17.0) and 12.3 (95%CI: 11.0, 13.4) months, respectively. The one-year, two-year, and three-year rates for survival were 51%, 13%, and 5%, respectively. Each RSF approach showed a slightly different ranking order. Very important covariates in nearly all the 4 RSF approaches were metastatic status, age at diagnosis and tumor size. The performance of each RSF approach was in the range of 0.29-0.32 and the best error rate was obtained by the log-rank splitting rule; second, third, and fourth ranks were log-rank score, conservation of events, and the random splitting rule, respectively. Conclusion: Low survival rate of gastric cancer patients is an indication of absence of a screening program for early diagnosis of the disease. Timely diagnosis in early phases increases survival and decreases mortality. Creative Commons Attribution License

  9. Survival Processing and the Stroop Task

    Directory of Open Access Journals (Sweden)

    Stephanie A. Kazanas

    2015-11-01

    Full Text Available This study was designed to investigate the impact of survival processing with a novel task for this paradigm: the Stroop color-naming task. As the literature is mixed with regard to task generalizability, with survival processing promoting better memory for words, but not better memory for faces or paired associates, these types of task investigations are important to a growing field of research. Using the Stroop task provides a unique contribution, as identifying items by color is an important evolutionary adaptation and not specific to humans as is the case with word recall. Our results indicate that survival processing, with its accompanying survival-relevance rating task, remains the best mnemonic strategy for word memory. However, our results also indicate that presenting the survival passage does not motivate better color-naming performance than color-naming alone. In addition, survival processing led to a larger amount of Stroop interference, though not significantly larger than the other conditions. Together, these findings suggest that considering one’s survival when performing memory and attention-based tasks does not enhance cognitive performance generally, although greater allocation of attentional resources to color-incongruent concrete objects could be considered adaptive. These findings support the notion that engaging in deeper processing via survival-relevance ratings may preserve these words across a variety of experimental manipulations.

  10. DNA synthesis and uv resistance in Escherichia coli K12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Slezarikova, V [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Vyskumny Ustav Onkologicky

    1976-01-01

    The influence was studied of preirradiation inhibition of proteosynthesis by amino acids starvation on survival and DNA synthesis in E. coli K 12 cells, which differ by their genetic features with regard to a certain type of repair. The surviving fraction was studied by appropriate dilution of cell suspension and spreading on agar plates. DNA synthesis was investigated by the incorporation of thymine-2-/sup 14/C. In our conditions a correlation was found between cell survival and the resistance of DNA replication to UV radiation in cells proficient in excision and post-replication repair. This correlation was not found in the excision deficient strain. It is concluded that enhanced resistance of DNA replication is not a sufficient condition for enhanced cell resistance.

  11. IPO survival in a reputational market

    OpenAIRE

    Espenlaub, Susanne; Khurshed, Arif; Mohamed, Abdulkadir

    2012-01-01

    We examine IPO survival in a 'reputational' market, the Alternative Investment Market (AIM), where principle-based regulation pivots on the role of a regulatory agent, the nominated advisor (Nomad) to the IPO company. We find that Nomad reputation has a significant impact on IPO survival. IPOs backed by reputable Nomads 'survive longer (by about two years) than those backed by other Nomads. We also find that survival rates of AIM IPOs are broadly comparable to those of North American IPOs. Wh...

  12. Estimation of age- and stage-specific Catalan breast cancer survival functions using US and Catalan survival data

    Science.gov (United States)

    2009-01-01

    Background During the last part of the 1990s the chance of surviving breast cancer increased. Changes in survival functions reflect a mixture of effects. Both, the introduction of adjuvant treatments and early screening with mammography played a role in the decline in mortality. Evaluating the contribution of these interventions using mathematical models requires survival functions before and after their introduction. Furthermore, required survival functions may be different by age groups and are related to disease stage at diagnosis. Sometimes detailed information is not available, as was the case for the region of Catalonia (Spain). Then one may derive the functions using information from other geographical areas. This work presents the methodology used to estimate age- and stage-specific Catalan breast cancer survival functions from scarce Catalan survival data by adapting the age- and stage-specific US functions. Methods Cubic splines were used to smooth data and obtain continuous hazard rate functions. After, we fitted a Poisson model to derive hazard ratios. The model included time as a covariate. Then the hazard ratios were applied to US survival functions detailed by age and stage to obtain Catalan estimations. Results We started estimating the hazard ratios for Catalonia versus the USA before and after the introduction of screening. The hazard ratios were then multiplied by the age- and stage-specific breast cancer hazard rates from the USA to obtain the Catalan hazard rates. We also compared breast cancer survival in Catalonia and the USA in two time periods, before cancer control interventions (USA 1975–79, Catalonia 1980–89) and after (USA and Catalonia 1990–2001). Survival in Catalonia in the 1980–89 period was worse than in the USA during 1975–79, but the differences disappeared in 1990–2001. Conclusion Our results suggest that access to better treatments and quality of care contributed to large improvements in survival in Catalonia. On

  13. Yeast Colonies: A Model for Studies of Aging, Environmental Adaptation, and Longevity

    OpenAIRE

    Libuše Váchová; Michal Čáp; Zdena Palková

    2012-01-01

    When growing on solid surfaces, yeast, like other microorganisms, develops organized multicellular populations (colonies and biofilms) that are composed of differentiated cells with specialized functions. Life within these populations is a prevalent form of microbial existence in natural settings that provides the cells with capabilities to effectively defend against environmental attacks as well as efficiently adapt and survive long periods of starvation and other stresses. Under such circum...

  14. 46 CFR 180.175 - Survival craft equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Survival craft equipment. 180.175 Section 180.175... TONS) LIFESAVING EQUIPMENT AND ARRANGEMENTS Survival Craft Arrangements and Equipment § 180.175 Survival craft equipment. (a) General. Each item of survival craft equipment must be of good quality, and...

  15. Maternal Diet and Insulin-Like Signaling Control Intergenerational Plasticity of Progeny Size and Starvation Resistance.

    Directory of Open Access Journals (Sweden)

    Jonathan D Hibshman

    2016-10-01

    Full Text Available Maternal effects of environmental conditions produce intergenerational phenotypic plasticity. Adaptive value of these effects depends on appropriate anticipation of environmental conditions in the next generation, and mismatch between conditions may contribute to disease. However, regulation of intergenerational plasticity is poorly understood. Dietary restriction (DR delays aging but maternal effects have not been investigated. We demonstrate maternal effects of DR in the roundworm C. elegans. Worms cultured in DR produce fewer but larger progeny. Nutrient availability is assessed in late larvae and young adults, rather than affecting a set point in young larvae, and maternal age independently affects progeny size. Reduced signaling through the insulin-like receptor daf-2/InsR in the maternal soma causes constitutively large progeny, and its effector daf-16/FoxO is required for this effect. nhr-49/Hnf4, pha-4/FoxA, and skn-1/Nrf also regulate progeny-size plasticity. Genetic analysis suggests that insulin-like signaling controls progeny size in part through regulation of nhr-49/Hnf4, and that pha-4/FoxA and skn-1/Nrf function in parallel to insulin-like signaling and nhr-49/Hnf4. Furthermore, progeny of DR worms are buffered from adverse consequences of early-larval starvation, growing faster and producing more offspring than progeny of worms fed ad libitum. These results suggest a fitness advantage when mothers and their progeny experience nutrient stress, compared to an environmental mismatch where only progeny are stressed. This work reveals maternal provisioning as an organismal response to DR, demonstrates potentially adaptive intergenerational phenotypic plasticity, and identifies conserved pathways mediating these effects.

  16. 46 CFR 133.105 - Survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Survival craft. 133.105 Section 133.105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS LIFESAVING SYSTEMS Requirements for All OSVs § 133.105 Survival craft. (a) Each survival craft must be approved and equipped as...

  17. Clustered survival data with left-truncation

    DEFF Research Database (Denmark)

    Eriksson, Frank; Martinussen, Torben; Scheike, Thomas H.

    2015-01-01

    Left-truncation occurs frequently in survival studies, and it is well known how to deal with this for univariate survival times. However, there are few results on how to estimate dependence parameters and regression effects in semiparametric models for clustered survival data with delayed entry....... Surprisingly, existing methods only deal with special cases. In this paper, we clarify different kinds of left-truncation and suggest estimators for semiparametric survival models under specific truncation schemes. The large-sample properties of the estimators are established. Small-sample properties...

  18. 46 CFR 117.175 - Survival craft equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Survival craft equipment. 117.175 Section 117.175... AND ARRANGEMENTS Survival Craft Arrangements and Equipment § 117.175 Survival craft equipment. (a) General. Each item of survival craft equipment must be of good quality, and efficient for the purpose it...

  19. Global variations in cancer survival. Study Group on Cancer Survival in Developing Countries.

    Science.gov (United States)

    Sankaranarayanan, R; Swaminathan, R; Black, R J

    1996-12-15

    Population-based cancer registries from Algeria, China, Costa Rica, Cuba, India, the Philippines, and Thailand are collaborating with the International Agency for Research on Cancer in a study of cancer survival in developing countries. Comparisons with the SEER program results of the National Cancer Institute in the United States, and the EUROCARE study of survival in European countries revealed considerable differences in the survival of patients with certain tumors associated with intensive chemotherapeutic treatment regimes (Hodgkin's disease and testicular tumors), more modest differences in the survival of patients with tumors for which early diagnosis and treatment confer an improved prognosis (carcinomas of the large bowel, breast, and cervix), and only slight differences for tumors associated with poor prognosis (carcinomas of the stomach, pancreas, and lung). With limited resources to meet the challenge of the increasing incidence of cancer expected in the next few decades, health authorities in developing countries should be aware of the importance of investing in a range of cancer control activities, including primary prevention and early detection programs as well as treatment.

  20. Cancer survival for Aboriginal and Torres Strait Islander Australians: a national study of survival rates and excess mortality.

    Science.gov (United States)

    Condon, John R; Zhang, Xiaohua; Baade, Peter; Griffiths, Kalinda; Cunningham, Joan; Roder, David M; Coory, Michael; Jelfs, Paul L; Threlfall, Tim

    2014-01-31

    National cancer survival statistics are available for the total Australian population but not Indigenous Australians, although their cancer mortality rates are known to be higher than those of other Australians. We aimed to validate analysis methods and report cancer survival rates for Indigenous Australians as the basis for regular national reporting. We used national cancer registrations data to calculate all-cancer and site-specific relative survival for Indigenous Australians (compared with non-Indigenous Australians) diagnosed in 2001-2005. Because of limited availability of Indigenous life tables, we validated and used cause-specific survival (rather than relative survival) for proportional hazards regression to analyze time trends and regional variation in all-cancer survival between 1991 and 2005. Survival was lower for Indigenous than non-Indigenous Australians for all cancers combined and for many cancer sites. The excess mortality of Indigenous people with cancer was restricted to the first three years after diagnosis, and greatest in the first year. Survival was lower for rural and remote than urban residents; this disparity was much greater for Indigenous people. Survival improved between 1991 and 2005 for non-Indigenous people (mortality decreased by 28%), but to a much lesser extent for Indigenous people (11%) and only for those in remote areas; cancer survival did not improve for urban Indigenous residents. Cancer survival is lower for Indigenous than other Australians, for all cancers combined and many individual cancer sites, although more accurate recording of Indigenous status by cancer registers is required before the extent of this disadvantage can be known with certainty. Cancer care for Indigenous Australians needs to be considerably improved; cancer diagnosis, treatment, and support services need to be redesigned specifically to be accessible and acceptable to Indigenous people.

  1. The history and development of NASA survival equipment.

    Science.gov (United States)

    Radnofsky, M. I.

    1972-01-01

    A research and development program on survival equipment was begun in early 1960 with the Mercury Program. The Mercury survival kit is discussed together with Gemini survival equipment, and Apollo I survival equipment. A study program is conducted to assess potential survival problems that may be associated with future space flights landing in polar waters. Survival kit requirements for applications on the Skylab program are also considered. Other investigations are concerned with the design of a global survival kit in connection with Space Shuttle missions.

  2. Coyote removal, understory cover, and survival of white-tailed deer neonates: Coyote Control and Fawn Survival

    Energy Technology Data Exchange (ETDEWEB)

    Kilgo, John C. [USDA Forest Service; Southern Research Station, New Ellenton, SC (United States); Vukovich, Mark [USDA Forest Service; Southern Research Station, New Ellenton, SC (United States); Ray, H. Scott [USDA Forest Service, Savannah River; New Ellenton, SC (United States); Shaw, Christopher E. [USDA Forest Service; Southern Research Station, New Ellenton, SC (United States); Ruth, Charles [South Carolina Dept. of Natural Resources, Columbia, SC (United States)

    2014-09-01

    Predation by coyotes (Canis latrans) on white-tailed deer (Odocoileus virginianus) neonates has led to reduced recruitment in many deer populations in southeastern North America. This low recruitment combined with liberal antlerless deer harvest has resulted in declines in some deer populations, and consequently, increased interest in coyote population control. We investigated whether neonate survival increased after coyote removal, whether coyote predation on neonates was additive to other mortality sources, and whether understory vegetation density affected neonate survival. We monitored neonate survival for 4 years prior to (2006–2009) and 3 years during (2010–2012) intensive coyote removal on 3 32-km2 units on the United States Department of Energy’s Savannah River Site, South Carolina. We removed 474 coyotes (1.63 coyotes/km2 per unit per year), reducing coyote abundance by 78% from pre-removal levels. The best model (wi = 0.927) describing survival probability among 216 radio-collared neonates included a within-year quadratic time trend variable, date of birth, removal treatment, and a varying removal year effect. Under this model, survival differed between pre-treatment and removal periods and it differed among years during the removal period, being >100% greater than pre-treatment survival (0.228) during the first removal year (0.513), similar to pre-treatment survival during the second removal year (0.202), and intermediate during the third removal year (0.431). Despite an initial increase, the overall effect of coyote removal on neonate survival was modest. Mortality rate attributable to coyote predation was lowest during the first removal year (0.357) when survival was greatest, but the mortality rate from all other causes did not differ between the pretreatment period and any year during removals, indicating that coyote predation acted as an additive source of mortality. Survival probability was not related to

  3. 46 CFR 180.200 - Survival craft-general.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Survival craft-general. 180.200 Section 180.200 Shipping...) LIFESAVING EQUIPMENT AND ARRANGEMENTS Number and Type of Survival Craft § 180.200 Survival craft—general. (a) Each survival craft required on a vessel by this part must meet one of the following: (1) For an...

  4. 46 CFR 199.201 - Survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Survival craft. 199.201 Section 199.201 Shipping COAST... craft. (a) Each survival craft must be approved and equipped as follows: (1) Each lifeboat must be... addition to the survival craft required in paragraph (b)(1) of this section, additional liferafts must be...

  5. 46 CFR 199.261 - Survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Survival craft. 199.261 Section 199.261 Shipping COAST... SYSTEMS FOR CERTAIN INSPECTED VESSELS Additional Requirements for Cargo Vessels § 199.261 Survival craft. (a) Each survival craft must be approved and equipped as follows: (1) Each lifeboat must be a totally...

  6. Octopamine and Tyramine Contribute Separately to the Counter-Regulatory Response to Sugar Deficit in Drosophila

    Directory of Open Access Journals (Sweden)

    Christine Damrau

    2018-01-01

    Full Text Available All animals constantly negotiate external with internal demands before and during action selection. Energy homeostasis is a major internal factor biasing action selection. For instance, in addition to physiologically regulating carbohydrate mobilization, starvation-induced sugar shortage also biases action selection toward food-seeking and food consumption behaviors (the counter-regulatory response. Biogenic amines are often involved when such widespread behavioral biases need to be orchestrated. In mammals, norepinephrine (noradrenalin is involved in the counterregulatory response to starvation-induced drops in glucose levels. The invertebrate homolog of noradrenalin, octopamine (OA and its precursor tyramine (TA are neuromodulators operating in many different neuronal and physiological processes. Tyrosine-ß-hydroxylase (tßh mutants are unable to convert TA into OA. We hypothesized that tßh mutant flies may be aberrant in some or all of the counter-regulatory responses to starvation and that techniques restoring gene function or amine signaling may elucidate potential mechanisms and sites of action. Corroborating our hypothesis, starved mutants show a reduced sugar response and their hemolymph sugar concentration is elevated compared to control flies. When starved, they survive longer. Temporally controlled rescue experiments revealed an action of the OA/TA-system during the sugar response, while spatially controlled rescue experiments suggest actions also outside of the nervous system. Additionally, the analysis of two OA- and four TA-receptor mutants suggests an involvement of both receptor types in the animals' physiological and neuronal response to starvation. These results complement the investigations in Apis mellifera described in our companion paper (Buckemüller et al., 2017.

  7. Multivariate survival analysis and competing risks

    CERN Document Server

    Crowder, Martin J

    2012-01-01

    Multivariate Survival Analysis and Competing Risks introduces univariate survival analysis and extends it to the multivariate case. It covers competing risks and counting processes and provides many real-world examples, exercises, and R code. The text discusses survival data, survival distributions, frailty models, parametric methods, multivariate data and distributions, copulas, continuous failure, parametric likelihood inference, and non- and semi-parametric methods. There are many books covering survival analysis, but very few that cover the multivariate case in any depth. Written for a graduate-level audience in statistics/biostatistics, this book includes practical exercises and R code for the examples. The author is renowned for his clear writing style, and this book continues that trend. It is an excellent reference for graduate students and researchers looking for grounding in this burgeoning field of research.

  8. Cardiovascular disease incidence and survival

    DEFF Research Database (Denmark)

    Byberg, Stine; Agyemang, Charles; Zwisler, Ann Dorthe

    2016-01-01

    Studies on cardiovascular disease (CVD) incidence and survival show varying results between different ethnic groups. Our aim was to add a new dimension by exploring the role of migrant status in combination with ethnic background on incidence of-and survival from-CVD and more specifically acute...... of some types of cardiovascular disease compared to Danish-born. Family-reunified migrants on the other hand had lower rates of CVD. All migrants had better survival than Danish-born indicating that migrants may not always be disadvantaged in health....

  9. 46 CFR 28.120 - Survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Survival craft. 28.120 Section 28.120 Shipping COAST... VESSELS Requirements for All Vessels § 28.120 Survival craft. (a) Except as provided in paragraphs (b) through (h) of this section and 28.305, each vessel must carry the survival craft specified in Table 28...

  10. Integrative Genomic and Proteomic Analysis of the Response of Lactobacillus casei Zhang to Glucose Restriction.

    Science.gov (United States)

    Yu, Jie; Hui, Wenyan; Cao, Chenxia; Pan, Lin; Zhang, Heping; Zhang, Wenyi

    2018-03-02

    Nutrient starvation is an important survival challenge for bacteria during industrial production of functional foods. As next-generation sequencing technology has greatly advanced, we performed proteomic and genomic analysis to investigate the response of Lactobacillus casei Zhang to a glucose-restricted environment. L. casei Zhang strains were permitted to evolve in glucose-restricted or normal medium from a common ancestor over a 3 year period, and they were sampled at 1000, 2000, 3000, 4000, 5000, 6000, 7000, and 8000 generations and subjected to proteomic and genomic analyses. Genomic resequencing data revealed different point mutations and other mutational events in each selected generation of L. casei Zhang under glucose restriction stress. The differentially expressed proteins induced by glucose restriction were mostly related to fructose and mannose metabolism, carbohydrate metabolic processes, lyase activity, and amino-acid-transporting ATPase activity. Integrative proteomic and genomic analysis revealed that the mutations protected L. casei Zhang against glucose starvation by regulating other cellular carbohydrate, fatty acid, and amino acid catabolism; phosphoenolpyruvate system pathway activation; glycogen synthesis; ATP consumption; pyruvate metabolism; and general stress-response protein expression. The results help reveal the mechanisms of adapting to glucose starvation and provide new strategies for enhancing the industrial utility of L. casei Zhang.

  11. Suppressed translation as a mechanism of initiation of CASP8 (caspase 8)-dependent apoptosis in autophagy-deficient NSCLC cells under nutrient limitation.

    Science.gov (United States)

    Allavena, Giulia; Cuomo, Francesca; Baumgartner, Georg; Bele, Tadeja; Sellgren, Alexander Yarar; Oo, Kyaw Soe; Johnson, Kaylee; Gogvadze, Vladimir; Zhivotovsky, Boris; Kaminskyy, Vitaliy O

    2018-01-01

    Macroautophagy/autophagy inhibition under stress conditions is often associated with increased cell death. We found that under nutrient limitation, activation of CASP8/caspase-8 was significantly increased in autophagy-deficient lung cancer cells, which precedes mitochondria outer membrane permeabilization (MOMP), CYCS/cytochrome c release, and activation of CASP9/caspase-9, indicating that under such conditions the activation of CASP8 is a primary event in the initiation of apoptosis as well as essential to reduce clonogenic survival of autophagy-deficient cells. Starvation leads to suppression of CFLAR proteosynthesis and accumulation of CASP8 in SQSTM1 puncta. Overexpression of CFLARs reduces CASP8 activation and apoptosis during starvation, while its silencing promotes efficient activation of CASP8 and apoptosis in autophagy-deficient U1810 lung cancer cells even under nutrient-rich conditions. Similar to starvation, inhibition of protein translation leads to efficient activation of CASP8 and cell death in autophagy-deficient lung cancer cells. Thus, here for the first time we report that suppressed translation leads to activation of CASP8-dependent apoptosis in autophagy-deficient NSCLC cells under conditions of nutrient limitation. Our data suggest that targeting translational machinery can be beneficial for elimination of autophagy-deficient cells via the CASP8-dependent apoptotic pathway.

  12. Evolutionary Consequence of a Trade-Off between Growth and Maintenance along with Ribosomal Damages.

    Science.gov (United States)

    Ying, Bei-Wen; Honda, Tomoya; Tsuru, Saburo; Seno, Shigeto; Matsuda, Hideo; Kazuta, Yasuaki; Yomo, Tetsuya

    2015-01-01

    Microorganisms in nature are constantly subjected to a limited availability of resources and experience repeated starvation and nutrition. Therefore, microbial life may evolve for both growth fitness and sustainability. By contrast, experimental evolution, as a powerful approach to investigate microbial evolutionary strategies, often targets the increased growth fitness in controlled, steady-state conditions. Here, we address evolutionary changes balanced between growth and maintenance while taking nutritional fluctuations into account. We performed a 290-day-long evolution experiment with a histidine-requiring Escherichia coli strain that encountered repeated histidine-rich and histidine-starved conditions. The cells that experienced seven rounds of starvation and re-feed grew more sustainably under prolonged starvation but dramatically lost growth fitness under rich conditions. The improved sustainability arose from the evolved capability to use a trace amount of histidine for cell propagation. The reduced growth rate was attributed to mutations genetically disturbing the translation machinery, that is, the ribosome, ultimately slowing protein translation. This study provides the experimental demonstration of slow growth accompanied by an enhanced affinity to resources as an evolutionary adaptation to oscillated environments and verifies that it is possible to evolve for reduced growth fitness. Growth economics favored for population increase under extreme resource limitations is most likely a common survival strategy adopted by natural microbes.

  13. Nitrogen-responsive genes are differentially regulated in planta during Fusarium oxyspsorum f. sp. lycopersici infection.

    Science.gov (United States)

    Divon, Hege H; Rothan-Denoyes, Beatrice; Davydov, Olga; DI Pietro, Antonio; Fluhr, Robert

    2005-07-01

    SUMMARY Nitrogen is an essential growth component whose availability will limit microbial spread, and as such it serves as a key control point in dictating an organism's adaptation to various environments. Little is known about fungal nutrition in planta. To enhance our understanding of this process we examined the transcriptional adaptation of Fusarium oxysporum f. sp. lycopersici, the causal agent for vascular wilt in tomato, during nutritional stress and plant colonization. Using RT-PCR and microarray technology we compared fungal gene expression in planta to axenic nitrogen starvation culture. Several expressed sequence tags, representing at least four genes, were identified that are concomitantly induced during nitrogen starvation and in planta growth. Three of these genes show similarity to a general amino acid permease, a peptide transporter and an uricase, all functioning in organic nitrogen acquisition. We further show that these genes represent a distinguishable subset of the nitrogen-responsive transcripts that respond to amino acids commonly available in the plant. Our results indicate that nitrogen starvation partially mimics in planta growth conditions, and further suggest that minute levels of organic nitrogen sources dictate the final outcome of fungal gene expression in planta. The nature of the identified transcripts suggests modes of nutrient uptake and survival for Fusarium during colonization.

  14. Stimulated human fibroblast cell survival

    International Nuclear Information System (INIS)

    Smith, B.P.; Gale, K.L.; Einspenner, M.; Greenstock, C.L.; Gentner, N.E.

    1992-01-01

    Techniques for cloning cultured mammalian cells have supported the most universally-accepted method for measuring the induction of lethality by geno-toxicants such as ionizing radiation: the 'survival of colony-forming ability (CFA)' assay. Since most cultured human cell lines exhibit plating efficiency (i.e. the percentage of cells that are capable of reproductively surviving and dividing to form visible colonies) well below 100%, such assays are in essence 'survival of plating efficiency' assays, since they are referred to the plating (or cloning) efficiency of control (i.e. unirradiated) cells. (author). 8 refs., 2 figs

  15. Restricted pleiotropy facilitates mutational erosion of major life-history traits.

    Science.gov (United States)

    Marek, Agnieszka; Korona, Ryszard

    2013-11-01

    Radical shifts to new natural and human made niches can make some functions unneeded and thus exposed to genetic degeneration. Here we ask not about highly specialized and rarely used functions but those relating to major life-history traits, rate of growth, and resistance to prolonged starvation. We found that in yeast each of the two traits was visibly impaired by at least several hundred individual gene deletions. There were relatively few deletions affecting negatively both traits and likely none harming one but improving the other. Functional profiles of gene deletions affecting either growth or survival were strikingly different: the first related chiefly to synthesis of macromolecules whereas the second to maintenance and recycling of cellular structures. The observed pattern of gene indispensability corresponds to that of gene induction, providing a rather rare example of agreement between the results of deletion and expression studies. We conclude that transitions to new environments in which the ability to grow at possibly fastest rate or survive under very long starvation become practically unnecessary can result in rapid erosion of these vital functions because they are coded by many genes constituting large mutational targets and because restricted pleiotropy is unlikely to constrain this process. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  16. Modeling the eco-physiology of the purple mauve stinger, Pelagia noctiluca using Dynamic Energy Budget theory

    Science.gov (United States)

    Augustine, Starrlight; Rosa, Sara; Kooijman, Sebastiaan A. L. M.; Carlotti, François; Poggiale, Jean-Christophe

    2014-11-01

    Parameters for the standard Dynamic Energy Budget (DEB) model were estimated for the purple mauve stinger, Pelagia noctiluca, using literature data. Overall, the model predictions are in good agreement with data covering the full life-cycle. The parameter set we obtain suggests that P. noctiluca is well adapted to survive long periods of starvation since the predicted maximum reserve capacity is extremely high. Moreover we predict that the reproductive output of larger individuals is relatively insensitive to changes in food level while wet mass and length are. Furthermore, the parameters imply that even if food were scarce (ingestion levels only 14% of the maximum for a given size) an individual would still mature and be able to reproduce. We present detailed model predictions for embryo development and discuss the developmental energetics of the species such as the fact that the metabolism of ephyrae accelerates for several days after birth. Finally we explore a number of concrete testable model predictions which will help to guide future research. The application of DEB theory to the collected data allowed us to conclude that P. noctiluca combines maximizing allocation to reproduction with rather extreme capabilities to survive starvation. The combination of these properties might explain why P. noctiluca is a rapidly growing concern to fisheries and tourism.

  17. Conditional Melanoma Cancer Survival in the United States

    Directory of Open Access Journals (Sweden)

    Ray M. Merrill

    2016-02-01

    Full Text Available Beyond relative survival, which indicates the likelihood that patients will not die from causes associated with their cancer, conditional relative survival probabilities provide further useful prognostic information to cancer patients, tailored to the time already survived from diagnosis. This study presents conditional relative survival for melanoma patients in the United States, diagnosed during 2000–2008 and followed through 2012. Analyses are based on 62,803 male and 50,261 female cases in population-based cancer registries in the Surveillance, Epidemiology, and End Results Program of the National Cancer Institute. Five-year relative survival estimates are presented for melanoma patients who have already survived one, two, three, four, or five years after the initial diagnosis. Five- and ten-year relative survival decreases with age, stage at diagnosis, and is lower among males, Blacks, and Hispanics. Five-year conditional relative survival improves with each year already survived. The potential for improvement in five-year conditional relative survival is greatest for older age, males, Blacks, Hispanics, and in later staged cases. For local disease, five-year conditional relative survival was significantly lower in ages greater than 65 years and in Blacks. It was significantly higher in females, non-Hispanics, and married individuals. Age had a greater inverse relationship with five-year survival in later staged disease. A similar result occurred for females and married individuals. In contrast, non-Hispanics had better five-year survival if diagnosed with local or regional disease, but not distant disease.

  18. Democratic survival in Latin America (1945-2005

    Directory of Open Access Journals (Sweden)

    Aníbal PÉREZ-LIÑÁN

    2014-12-01

    Full Text Available Why do democracies survive or break down? In this paper, it returns to this classic question with an empirical focus on Latin America from 1945 to 2005. The argument deviates from the quantitative literature and a good part of the qualitative literature on democratic survival and breakdown. It is argued that structural variables such as the level of development and inequalities have not shaped prospects for democratic survival in Latin America. Nor, contrary to findings in some of the literature, has economic performance affected the survival of competitive regimes. Instead, it is focused on the regional political environment and on actors’ normative preferences about democracy and dictatorship and their policy radicalism or moderation. It is argued that 1 a higher level of development did not increase the likelihood of democratic survival in Latin America over this long time; 2 if actors have a normative preference for democracy, it is more likely to survive; and 3 policy moderation facilitates democratic survival.

  19. Nutrient acquisition strategies of mammalian cells.

    Science.gov (United States)

    Palm, Wilhelm; Thompson, Craig B

    2017-06-07

    Mammalian cells are surrounded by diverse nutrients, such as glucose, amino acids, various macromolecules and micronutrients, which they can import through transmembrane transporters and endolysosomal pathways. By using different nutrient sources, cells gain metabolic flexibility to survive periods of starvation. Quiescent cells take up sufficient nutrients to sustain homeostasis. However, proliferating cells depend on growth-factor-induced increases in nutrient uptake to support biomass formation. Here, we review cellular nutrient acquisition strategies and their regulation by growth factors and cell-intrinsic nutrient sensors. We also discuss how oncogenes and tumour suppressors promote nutrient uptake and thereby support the survival and growth of cancer cells.

  20. Early survival factor deprivation in the olfactory epithelium enhances activity-dependent survival

    Directory of Open Access Journals (Sweden)

    Adrien eFrançois

    2013-12-01

    Full Text Available The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs. However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226. We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population towards detection of environmental odorants.

  1. Radionuclide blood cell survival studies

    International Nuclear Information System (INIS)

    Bentley, S.A.; Miller, D.T.

    1986-01-01

    Platelet and red cell survival studies are reviewed. The use of 51 Cr and di-isopropylfluoridate labelled with tritium or 32 P is discussed for red cell survival study and 51 Cr and 111 In-oxine are considered as platelet labels. (UK)

  2. Effects of irradiance and prey deprivation on growth, cell carbon and photosynthetic activity of the freshwater kleptoplastidic dinoflagellate Nusuttodinium (= Gymnodinium) aeruginosum (Dinophyceae)

    DEFF Research Database (Denmark)

    Drumm, Kirstine; Liebst-Olsen, Mette; Daugbjerg, Niels

    2017-01-01

    not explain the observed growth rates at high irradiances. Cultures of N. aeruginosum subjected to prey starvation were able to survive for at least 27 days in the light. The sequestered chloroplasts maintained their photosynthetic activity during the entire period of starvation, during which the population......The freshwater dinoflagellate Nusuttodinium aeruginosum lacks permanent chloroplasts. Rather it sequesters chloroplasts as well as other cell organelles, like mitochondria and nuclei, from ingested cryptophyte prey. In the present study, growth rates, cell production and photosynthesis were...... measured at seven irradiances, ranging from 10 to 140 µmol photons m-2s-1, when fed the cryptophyte Chroomonas sp. Growth rates were positively influenced by irradiance and increased from 0.025 d-1 at 10 µmol photons m-2s-1 to maximum growth rates of ~0.3 d-1 at irradiances ≥ 40 µmol photons m-2s-1...

  3. Biostatistics series module 9: Survival analysis

    Directory of Open Access Journals (Sweden)

    Avijit Hazra

    2017-01-01

    Full Text Available Survival analysis is concerned with “time to event“ data. Conventionally, it dealt with cancer death as the event in question, but it can handle any event occurring over a time frame, and this need not be always adverse in nature. When the outcome of a study is the time to an event, it is often not possible to wait until the event in question has happened to all the subjects, for example, until all are dead. In addition, subjects may leave the study prematurely. Such situations lead to what is called censored observations as complete information is not available for these subjects. The data set is thus an assemblage of times to the event in question and times after which no more information on the individual is available. Survival analysis methods are the only techniques capable of handling censored observations without treating them as missing data. They also make no assumption regarding normal distribution of time to event data. Descriptive methods for exploring survival times in a sample include life table and Kaplan–Meier techniques as well as various kinds of distribution fitting as advanced modeling techniques. The Kaplan–Meier cumulative survival probability over time plot has become the signature plot for biomedical survival analysis. Several techniques are available for comparing the survival experience in two or more groups – the log-rank test is popularly used. This test can also be used to produce an odds ratio as an estimate of risk of the event in the test group; this is called hazard ratio (HR. Limitations of the traditional log-rank test have led to various modifications and enhancements. Finally, survival analysis offers different regression models for estimating the impact of multiple predictors on survival. Cox's proportional hazard model is the most general of the regression methods that allows the hazard function to be modeled on a set of explanatory variables without making restrictive assumptions concerning the

  4. Microbial survival and odor in laundry

    DEFF Research Database (Denmark)

    Jepsen, Signe Munk; Johansen, Charlotte; Stahnke, Louise Heller

    2001-01-01

    The survival and distribution of microflora during laundering at 30 or 40 degreesC in commercial U.S. and European Union (E.U.) detergents were determined in laboratory wash experiments. Four test strains-Staphylococcus epidermidis, S. aureus, Escherichia coli, and Pseudomonas aeruginosa-were eva......The survival and distribution of microflora during laundering at 30 or 40 degreesC in commercial U.S. and European Union (E.U.) detergents were determined in laboratory wash experiments. Four test strains-Staphylococcus epidermidis, S. aureus, Escherichia coli, and Pseudomonas aeruginosa......-were evaluated on cotton textile. A significant survival and transfer between textiles were found for all four test strains washed in E.U. and U.S. color detergents (without bleach), whereas no survival was observed in bleach-containing detergents. Gram-negative strains generally survived in greater numbers than...... Gram-positive strains. A greater survival was observed in U.S. detergents at U.S. conditions (30 degreesC, 12 min) than in E.U. detergents at E.U. conditions (40 degreesC, 30 min). The adhesion of odorants to cotton and polyester textiles during washing and drying was studied using six previously...

  5. Survival Processing Enhances Visual Search Efficiency.

    Science.gov (United States)

    Cho, Kit W

    2018-05-01

    Words rated for their survival relevance are remembered better than when rated using other well-known memory mnemonics. This finding, which is known as the survival advantage effect and has been replicated in many studies, suggests that our memory systems are molded by natural selection pressures. In two experiments, the present study used a visual search task to examine whether there is likewise a survival advantage for our visual systems. Participants rated words for their survival relevance or for their pleasantness before locating that object's picture in a search array with 8 or 16 objects. Although there was no difference in search times among the two rating scenarios when set size was 8, survival processing reduced visual search times when set size was 16. These findings reflect a search efficiency effect and suggest that similar to our memory systems, our visual systems are also tuned toward self-preservation.

  6. Characterization of zebrafish larvae suction feeding flow using μPIV and optical coherence tomography

    OpenAIRE

    Pekkan, Kerem; Uslu, Fazıl E.; Chang, Brain; Mani, Karthick; Chen, Chia-Yuan; Holzman, Roi

    2016-01-01

    The hydrodynamics of suction feeding is critical for the survival of fish larvae; failure to capture food during the onset of autonomous feeding can rapidly lead to starvation and mortality. Fluid mechanics experiments that investigate the suction feeding of suspended particles are limited to adult fishes, which operate at large Reynolds numbers. This manuscript presents the first literature results in which the external velocity fields generated during suction feeding of early zebrafish larv...

  7. Survival after stereotactic biopsy of malignant gliomas

    International Nuclear Information System (INIS)

    Coffey, R.J.; Lunsford, L.D.; Taylor, F.H.

    1988-01-01

    For many patients with malignant gliomas in inaccessible or functionally important locations, stereotactic biopsy followed by radiation therapy (RT) may be a more appropriate initial treatment than craniotomy and tumor resection. We studied the long term survival in 91 consecutive patients with malignant gliomas diagnosed by stereotactic biopsy: 64 had glioblastoma multiforme (GBM) and 27 had anaplastic astrocytoma (AA). Sixty-four per cent of the GBMs and 33% of the AAs involved deep or midline cerebral structures. The treatment prescribed after biopsy, the tumor location, the histological findings, and the patient's age at presentation (for AAs) were statistically important factors determining patient survival. If adequate RT (tumor dose of 5000 to 6000 cGy) was not prescribed, the median survival was less than or equal to 11 weeks regardless of tumor histology or location. The median survival for patients with deep or midline tumors who completed RT was similar in AA (19.4 weeks) and GBM (27 weeks) cases. Histology was an important predictor of survival only for patients with adequately treated lobar tumors. The median survival in lobar GBM patients who completed RT was 46.9 weeks, and that in lobar AA patients who completed RT was 129 weeks. Cytoreductive surgery had no statistically significant effect on survival. Among the clinical factors examined, age of less than 40 years at presentation was associated with prolonged survival only in AA patients. Constellations of clinical features, tumor location, histological diagnosis, and treatment prescribed were related to survival time

  8. How can survival processing improve memory encoding?

    Science.gov (United States)

    Luo, Meng; Geng, Haiyan

    2013-11-01

    We investigated the psychological mechanism of survival processing advantage from the perspective of false memory in two experiments. Using a DRM paradigm in combination with analysis based on signal detection theory, we were able to separately examine participants' utilization of verbatim representation and gist representation. Specifically, in Experiment 1, participants rated semantically related words in a survival scenario for a survival condition but rated pleasantness of words in the same DRM lists for a non-survival control condition. The results showed that participants demonstrated more gist processing in the survival condition than in the pleasantness condition; however, the degree of item-specific processing in the two encoding conditions did not significantly differ. In Experiment 2, the control task was changed to a category rating task, in which participants were asked to make category ratings of words in the category lists. We found that the survival condition involved more item-specific processing than did the category condition, but we found no significant difference between the two encoding conditions at the level of gist processing. Overall, our study demonstrates that survival processing can simultaneously promote gist and item-specific representations. When the control tasks only promoted either item-specific representation or gist representation, memory advantages of survival processing occurred.

  9. Probabilistic Survivability Versus Time Modeling

    Science.gov (United States)

    Joyner, James J., Sr.

    2016-01-01

    This presentation documents Kennedy Space Center's Independent Assessment work completed on three assessments for the Ground Systems Development and Operations (GSDO) Program to assist the Chief Safety and Mission Assurance Officer during key programmatic reviews and provided the GSDO Program with analyses of how egress time affects the likelihood of astronaut and ground worker survival during an emergency. For each assessment, a team developed probability distributions for hazard scenarios to address statistical uncertainty, resulting in survivability plots over time. The first assessment developed a mathematical model of probabilistic survivability versus time to reach a safe location using an ideal Emergency Egress System at Launch Complex 39B (LC-39B); the second used the first model to evaluate and compare various egress systems under consideration at LC-39B. The third used a modified LC-39B model to determine if a specific hazard decreased survivability more rapidly than other events during flight hardware processing in Kennedy's Vehicle Assembly Building.

  10. Does biological relatedness affect child survival?

    Directory of Open Access Journals (Sweden)

    2003-05-01

    Full Text Available Objective: We studied child survival in Rakai, Uganda where many children are fostered out or orphaned. Methods: Biological relatedness is measured as the average of the Wright's coefficients between each household member and the child. Instrumental variables for fostering include proportion of adult males in household, age and gender of household head. Control variables include SES, religion, polygyny, household size, child age, child birth size, and child HIV status. Results: Presence of both parents in the household increased the odds of survival by 28%. After controlling for the endogeneity of child placement decisions in a multivariate model we found that lower biological relatedness of a child was associated with statistically significant reductions in child survival. The effects of biological relatedness on child survival tend to be stronger for both HIV- and HIV+ children of HIV+ mothers. Conclusions: Reductions in the numbers of close relatives caring for children of HIV+ mothers reduce child survival.

  11. Survival of influenza virus on banknotes.

    Science.gov (United States)

    Thomas, Yves; Vogel, Guido; Wunderli, Werner; Suter, Patricia; Witschi, Mark; Koch, Daniel; Tapparel, Caroline; Kaiser, Laurent

    2008-05-01

    Successful control of a viral disease requires knowledge of the different vectors that could promote its transmission among hosts. We assessed the survival of human influenza viruses on banknotes given that billions of these notes are exchanged daily worldwide. Banknotes were experimentally contaminated with representative influenza virus subtypes at various concentrations, and survival was tested after different time periods. Influenza A viruses tested by cell culture survived up to 3 days when they were inoculated at high concentrations. The same inoculum in the presence of respiratory mucus showed a striking increase in survival time (up to 17 days). Similarly, B/Hong Kong/335/2001 virus was still infectious after 1 day when it was mixed with respiratory mucus. When nasopharyngeal secretions of naturally infected children were used, influenza virus survived for at least 48 h in one-third of the cases. The unexpected stability of influenza virus in this nonbiological environment suggests that unusual environmental contamination should be considered in the setting of pandemic preparedness.

  12. Survival of Influenza Virus on Banknotes▿

    Science.gov (United States)

    Thomas, Yves; Vogel, Guido; Wunderli, Werner; Suter, Patricia; Witschi, Mark; Koch, Daniel; Tapparel, Caroline; Kaiser, Laurent

    2008-01-01

    Successful control of a viral disease requires knowledge of the different vectors that could promote its transmission among hosts. We assessed the survival of human influenza viruses on banknotes given that billions of these notes are exchanged daily worldwide. Banknotes were experimentally contaminated with representative influenza virus subtypes at various concentrations, and survival was tested after different time periods. Influenza A viruses tested by cell culture survived up to 3 days when they were inoculated at high concentrations. The same inoculum in the presence of respiratory mucus showed a striking increase in survival time (up to 17 days). Similarly, B/Hong Kong/335/2001 virus was still infectious after 1 day when it was mixed with respiratory mucus. When nasopharyngeal secretions of naturally infected children were used, influenza virus survived for at least 48 h in one-third of the cases. The unexpected stability of influenza virus in this nonbiological environment suggests that unusual environmental contamination should be considered in the setting of pandemic preparedness. PMID:18359825

  13. Working memory load eliminates the survival processing effect.

    Science.gov (United States)

    Kroneisen, Meike; Rummel, Jan; Erdfelder, Edgar

    2014-01-01

    In a series of experiments, Nairne, Thompson, and Pandeirada (2007) demonstrated that words judged for their relevance to a survival scenario are remembered better than words judged for a scenario not relevant on a survival dimension. They explained this survival-processing effect by arguing that nature "tuned" our memory systems to process and remember fitness-relevant information. Kroneisen and Erdfelder (2011) proposed that it may not be survival processing per se that facilitates recall but the richness and distinctiveness with which information is encoded. To further test this account, we investigated how the survival processing effect is affected by cognitive load. If the survival processing effect is due to automatic processes or, alternatively, if survival processing is routinely prioritized in dual-task contexts, we would expect this effect to persist under cognitive load conditions. If the effect relies on cognitively demanding processes like richness and distinctiveness of encoding, however, the survival processing benefit should be hampered by increased cognitive load during encoding. Results were in line with the latter prediction, that is, the survival processing effect vanished under dual-task conditions.

  14. Survival and Neurodevelopmental Outcomes among Periviable Infants.

    Science.gov (United States)

    Younge, Noelle; Goldstein, Ricki F; Bann, Carla M; Hintz, Susan R; Patel, Ravi M; Smith, P Brian; Bell, Edward F; Rysavy, Matthew A; Duncan, Andrea F; Vohr, Betty R; Das, Abhik; Goldberg, Ronald N; Higgins, Rosemary D; Cotten, C Michael

    2017-02-16

    Data reported during the past 5 years indicate that rates of survival have increased among infants born at the borderline of viability, but less is known about how increased rates of survival among these infants relate to early childhood neurodevelopmental outcomes. We compared survival and neurodevelopmental outcomes among infants born at 22 to 24 weeks of gestation, as assessed at 18 to 22 months of corrected age, across three consecutive birth-year epochs (2000-2003 [epoch 1], 2004-2007 [epoch 2], and 2008-2011 [epoch 3]). The infants were born at 11 centers that participated in the National Institute of Child Health and Human Development Neonatal Research Network. The primary outcome measure was a three-level outcome - survival without neurodevelopmental impairment, survival with neurodevelopmental impairment, or death. After accounting for differences in infant characteristics, including birth center, we used multinomial generalized logit models to compare the relative risk of survival without neurodevelopmental impairment, survival with neurodevelopmental impairment, and death. Data on the primary outcome were available for 4274 of 4458 infants (96%) born at the 11 centers. The percentage of infants who survived increased from 30% (424 of 1391 infants) in epoch 1 to 36% (487 of 1348 infants) in epoch 3 (Pneurodevelopmental impairment increased from 16% (217 of 1391) in epoch 1 to 20% (276 of 1348) in epoch 3 (P=0.001), whereas the percentage of infants who survived with neurodevelopmental impairment did not change significantly (15% [207 of 1391] in epoch 1 and 16% [211 of 1348] in epoch 3, P=0.29). After adjustment for changes in the baseline characteristics of the infants over time, both the rate of survival with neurodevelopmental impairment (as compared with death) and the rate of survival without neurodevelopmental impairment (as compared with death) increased over time (adjusted relative risks, 1.27 [95% confidence interval {CI}, 1.01 to 1.59] and 1

  15. Survival chance in papillary thyroid cancer in Hungary: individual survival probability estimation using the Markov method

    International Nuclear Information System (INIS)

    Esik, Olga; Tusnady, Gabor; Daubner, Kornel; Nemeth, Gyoergy; Fuezy, Marton; Szentirmay, Zoltan

    1997-01-01

    Purpose: The typically benign, but occasionally rapidly fatal clinical course of papillary thyroid cancer has raised the need for individual survival probability estimation, to tailor the treatment strategy exclusively to a given patient. Materials and methods: A retrospective study was performed on 400 papillary thyroid cancer patients with a median follow-up time of 7.1 years to establish a clinical database for uni- and multivariate analysis of the prognostic factors related to survival (Kaplan-Meier product limit method and Cox regression). For a more precise prognosis estimation, the effect of the most important clinical events were then investigated on the basis of a Markov renewal model. The basic concept of this approach is that each patient has an individual disease course which (besides the initial clinical categories) is affected by special events, e.g. internal covariates (local/regional/distant relapses). On the supposition that these events and the cause-specific death are influenced by the same biological processes, the parameters of transient survival probability characterizing the speed of the course of the disease for each clinical event and their sequence were determined. The individual survival curves for each patient were calculated by using these parameters and the independent significant clinical variables selected from multivariate studies, summation of which resulted in a mean cause-specific survival function valid for the entire group. On the basis of this Markov model, prediction of the cause-specific survival probability is possible for extrastudy cases, if it is supposed that the clinical events occur within new patients in the same manner and with the similar probability as within the study population. Results: The patient's age, a distant metastasis at presentation, the extent of the surgical intervention, the primary tumor size and extent (pT), the external irradiation dosage and the degree of TSH suppression proved to be

  16. Breakfast of champions or kiss of death? Survival and sexual performance of protein-fed, sterile Mediterranean fruit flies (Diptera: Tephritidae)

    International Nuclear Information System (INIS)

    Yuval, B.; Maor, M.; Levy, K.; Kaspi, R.; Taylor, P.; Shelly, T.

    2007-01-01

    The sterile insect technique (SIT) is increasingly being used around the world to control Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), the Mediterranean fruit fly as part of an area-wide integrated approach. One option that may improve the effectiveness of the SIT, by increasing the sexual competitiveness of released sterile males, consists of feeding males protein during the post-teneral stage, a diet that increases sexual performance of wild males. We examine the effects of diet on the successive hurdles males must overcome in order to inseminate females, i.e., joining leks, copulating females, having their sperm stored and inhibition of female remating. In addition, we address the effects of diet on post-release foraging success, longevity, and the ability to withstand starvation. While protein feeding universally increases the sexual success of wild males, its effect on sterile males varies with strain, experimental settings, and environmental conditions. In some cases, treatments that resulted in the best sexual performance were significantly associated with increased vulnerability to starvation. However, no particular diet affected the ability of sterile males to find nutrients in the field when these where available. We suggest it may be better to release relatively short-lived flies that are highly competitive, rather than long-lived, sexually ineffective ones. (author) [es

  17. Global Activities and Plant Survival

    DEFF Research Database (Denmark)

    Bandick, Roger

    2014-01-01

    the highest exit rates. Moreover, the exit rates of globally engaged plants seem to be unaffected by increased foreign presence, whereas there appears to be a negative impact on the survival rates of non-exporting non-MNE plants. Finally, the result reveals that the survival ratio of plants of acquired...

  18. Understanding survival analysis: Kaplan-Meier estimate.

    Science.gov (United States)

    Goel, Manish Kumar; Khanna, Pardeep; Kishore, Jugal

    2010-10-01

    Kaplan-Meier estimate is one of the best options to be used to measure the fraction of subjects living for a certain amount of time after treatment. In clinical trials or community trials, the effect of an intervention is assessed by measuring the number of subjects survived or saved after that intervention over a period of time. The time starting from a defined point to the occurrence of a given event, for example death is called as survival time and the analysis of group data as survival analysis. This can be affected by subjects under study that are uncooperative and refused to be remained in the study or when some of the subjects may not experience the event or death before the end of the study, although they would have experienced or died if observation continued, or we lose touch with them midway in the study. We label these situations as censored observations. The Kaplan-Meier estimate is the simplest way of computing the survival over time in spite of all these difficulties associated with subjects or situations. The survival curve can be created assuming various situations. It involves computing of probabilities of occurrence of event at a certain point of time and multiplying these successive probabilities by any earlier computed probabilities to get the final estimate. This can be calculated for two groups of subjects and also their statistical difference in the survivals. This can be used in Ayurveda research when they are comparing two drugs and looking for survival of subjects.

  19. Surviving severe traumatic brain injury in Denmark

    DEFF Research Database (Denmark)

    Odgaard, Lene; Poulsen, Ingrid; Kammersgaard, Lars Peter

    2015-01-01

    PURPOSE: To identify all hospitalized patients surviving severe traumatic brain injury (TBI) in Denmark and to compare these patients to TBI patients admitted to highly specialized rehabilitation (HS-rehabilitation). PATIENTS AND METHODS: Patients surviving severe TBI were identified from...... severe TBI were admitted to HS-rehabilitation. Female sex, older age, and non-working status pre-injury were independent predictors of no HS-rehabilitation among patients surviving severe TBI. CONCLUSION: The incidence rate of hospitalized patients surviving severe TBI was stable in Denmark...

  20. Survival Analysis

    CERN Document Server

    Miller, Rupert G

    2011-01-01

    A concise summary of the statistical methods used in the analysis of survival data with censoring. Emphasizes recently developed nonparametric techniques. Outlines methods in detail and illustrates them with actual data. Discusses the theory behind each method. Includes numerous worked problems and numerical exercises.