WorldWideScience

Sample records for thermokarst lake extent

  1. Observing a catastrophic thermokarst lake drainage in northern Alaska

    Science.gov (United States)

    Jones, Benjamin M.; Arp, Christopher D.

    2015-01-01

    The formation and drainage of thermokarst lakes have reshaped ice-rich permafrost lowlands in the Arctic throughout the Holocene. North of Teshekpuk Lake, on the Arctic Coastal Plain of northern Alaska, thermokarst lakes presently occupy 22.5% of the landscape, and drained thermokarst lake basins occupy 61.8%. Analysis of remotely sensed imagery indicates that nine lakes (>10 ha) have drained in the 1,750 km2 study area between 1955 and 2014. The most recent lake drainage was observed using in situ data loggers providing information on the duration and magnitude of the event, and a nearby weather station provided information on the environmental conditions preceding the lake drainage. Lake 195 (L195), an 80 ha thermokarst lake with an estimated water volume of ~872,000 m3, catastrophically drained on 05 July 2014. Abundant winter snowfall and heavy early summer precipitation resulted in elevated lake water levels that likely promoted bank overtopping, thermo-erosion along an ice-wedge network, and formation of a 9 m wide, 2 m deep, and 70 m long drainage gully. The lake emptied in 36 hours, with 75% of the water volume loss occurring in the first ten hours. The observed peak discharge of the resultant flood was 25 m3/s, which is similar to that in northern Alaska river basins whose areas are more than two orders of magnitude larger. Our findings support the catastrophic nature of sudden lake drainage events and the mechanistic hypotheses developed by J. Ross Mackay.

  2. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska

    Science.gov (United States)

    Jones, Benjamin M.; Grosse, G.; Arp, C.D.; Jones, M.C.; Walter, Anthony K.M.; Romanovsky, V.E.

    2011-01-01

    Quantifying changes in thermokarst lake extent is of importance for understanding the permafrost-related carbon budget, including the potential release of carbon via lake expansion or sequestration as peat in drained lake basins. We used high spatial resolution remotely sensed imagery from 1950/51, 1978, and 2006/07 to quantify changes in thermokarst lakes for a 700 km2 area on the northern Seward Peninsula, Alaska. The number of water bodies larger than 0.1 ha increased over the entire observation period (666 to 737 or +10.7%); however, total surface area decreased (5,066 ha to 4,312 ha or -14.9%). This pattern can largely be explained by the formation of remnant ponds following partial drainage of larger water bodies. Thus, analysis of large lakes (>40 ha) shows a decrease of 24% and 26% in number and area, respectively, differing from lake changes reported from other continuous permafrost regions. Thermokarst lake expansion rates did not change substantially between 1950/51 and 1978 (0.35 m/yr) and 1978 and 2006/07 (0.39 m/yr). However, most lakes that drained did expand as a result of surface permafrost degradation before lateral drainage. Drainage rates over the observation period were stable (2.2 to 2.3 per year). Thus, analysis of decadal-scale, high spatial resolution imagery has shown that lake drainage in this region is triggered by lateral breaching and not subterranean infiltration. Future research should be directed toward better understanding thermokarst lake dynamics at high spatial and temporal resolution as these systems have implications for landscape-scale hydrology and carbon budgets in thermokarst lake-rich regions in the circum-Arctic.

  3. Geophysical Investigation of a Thermokarst Lake Talik in Continuous Permafrost

    Science.gov (United States)

    Creighton, A.; Parsekian, A.; Arp, C. D.; Jones, B. M.; Babcock, E.; Bondurant, A. C.

    2016-12-01

    On the Arctic Coastal Plain (ACP) of northern Alaska, shallow thermokarst lakes cover up to 25% of the landscape. These lakes occupy depressions created by the subsidence of thawed, ice-rich permafrost. Areas of unfrozen sediment, or taliks, can form under lakes that have a mean annual bottom temperature greater than 0°C. The geometry of these taliks, as well as the processes that create them, are important for understanding interactions between surface water, groundwater, and carbon cycling. Non-invasive geophysical methods are a useful means to study talik sediments as borehole studies yield few data points, and the contrast between unfrozen and frozen sediments is an ideal geophysical target. To study talik configuration associated with an actively expanding thermokarst lake, we conducted a geophysical transect across Peatball Lake. This lake has an estimated initiation age of 1400 calendar years BP. Over the past 60 years, lake surface area has increased through thermal and mechanical shoreline erosion. A talik of previously unknown thickness likely exists below Peatball Lake. We conducted a transect of transient electromagnetic soundings across the lake extending into the surrounding terrestrial environment. Since permafrost has relatively high resistivity compared to talik sediments, the interpreted electrical structure of the subsurface likely reflects talik geometry. We also conducted nuclear magnetic resonance soundings at representative locations along the transect. These measurements can provide data on sub-lake sediment properties including water content. Together, these measurements resolve the talik structure across the lake transect and showed evidence of varying talik thicknesses from the lake edge to center. These is no evidence of a talik at the terrestrial control sites. These results can help constrain talik development models and thus provide insight into Arctic and permafrost processes in the face of a changing climate.

  4. Thermokarst lake methanogenesis along a complete talik profile

    Directory of Open Access Journals (Sweden)

    J. K. Heslop

    2015-07-01

    Full Text Available Thermokarst (thaw lakes emit methane (CH4 to the atmosphere formed from thawed permafrost organic matter (OM, but the relative magnitude of CH4 production in surface lake sediments vs. deeper thawed permafrost horizons is not well understood. We assessed anaerobic CH4 production potentials from various depths along a 590 cm long lake sediment core that captured the entire sediment package of the talik (thaw bulb beneath the center of an interior Alaska thermokarst lake, Vault Lake, and the top 40 cm of thawing permafrost beneath the talik. We also studied the adjacent Vault Creek permafrost tunnel that extends through ice-rich yedoma permafrost soils surrounding the lake and into underlying gravel. Our results showed CH4 production potentials were highest in the organic-rich surface lake sediments, which were 151 cm thick (mean ± SD: 5.95 ± 1.67 μg C–CH4 g dw−1 d−1; 125.9 ± 36.2 μg C–CH4 g C−1org d−1. High CH4 production potentials were also observed in recently thawed permafrost (1.18 ± 0.61 μg C–CH4g dw−1 d−1; 59.60± 51.5 μg C–CH4 g C−1org d−1 at the bottom of the talik, but the narrow thicknesses (43 cm of this horizon limited its overall contribution to total sediment column CH4 production in the core. Lower rates of CH4 production were observed in sediment horizons representing permafrost that has been thawing in the talik for a longer period of time. No CH4 production was observed in samples obtained from the permafrost tunnel, a non-lake environment. Our findings imply that CH4 production is highly variable in thermokarst lake systems and that both modern OM supplied to surface sediments and ancient OM supplied to both surface and deep lake sediments by in situ thaw and shore erosion of yedoma permafrost are important to lake CH4 production.

  5. Thermokarst lake methanogenesis along a complete talik profile

    Science.gov (United States)

    Heslop, J.K.; Walter Anthony, K.M.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.; Bondurant, A.; Grosse, G.; Jones, Miriam C.

    2015-01-01

    Thermokarst (thaw) lakes emit methane (CH4) to the atmosphere formed from thawed permafrost organic matter (OM), but the relative magnitude of CH4 production in surface lake sediments vs. deeper thawed permafrost horizons is not well understood. We assessed anaerobic CH4 production potentials from various depths along a 590 cm long lake sediment core that captured the entire sediment package of the talik (thaw bulb) beneath the center of an interior Alaska thermokarst lake, Vault Lake, and the top 40 cm of thawing permafrost beneath the talik. We also studied the adjacent Vault Creek permafrost tunnel that extends through ice-rich yedoma permafrost soils surrounding the lake and into underlying gravel. Our results showed CH4 production potentials were highest in the organic-rich surface lake sediments, which were 151 cm thick (mean ± SD: 5.95 ± 1.67 μg C–CH4 g dw−1 d−1; 125.9 ± 36.2 μg C–CH4 g C−1org d−1). High CH4 production potentials were also observed in recently thawed permafrost (1.18 ± 0.61 μg C–CH4g dw−1 d−1; 59.60± 51.5 μg C–CH4 g C−1org d−1) at the bottom of the talik, but the narrow thicknesses (43 cm) of this horizon limited its overall contribution to total sediment column CH4 production in the core. Lower rates of CH4 production were observed in sediment horizons representing permafrost that has been thawing in the talik for a longer period of time. No CH4 production was observed in samples obtained from the permafrost tunnel, a non-lake environment. Our findings imply that CH4production is highly variable in thermokarst lake systems and that both modern OM supplied to surface sediments and ancient OM supplied to both surface and deep lake sediments by in situ thaw and shore erosion of yedoma permafrost are important to lake CH4 production.

  6. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch

    Science.gov (United States)

    Walter Anthony, K. M.; Zimov, S. A.; Grosse, G.; Jones, Miriam C.; Anthony, P.; Chapin, F. S.; Finlay, J. C.; Mack, M. C.; Davydov, S.; Frenzel, P.F.; Frolking, S.

    2014-01-01

    Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch1,2,3,4. However, the same thermokarst lakes can also sequester carbon5, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47±10 grams of carbon per square metre per year; mean±standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears7

  7. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska

    Science.gov (United States)

    Liu, Lin; Schaefer, Kevin; Gusmeroli, Alessio; Grosse, Guido; Jones, Benjamin M.; Zhang, Tinjun; Parsekian, Andrew; Zebker, Howard

    2014-01-01

    Drained thermokarst lake basins (DTLBs) are ubiquitous landforms on Arctic tundra lowland. Their dynamic states are seldom investigated, despite their importance for landscape stability, hydrology, nutrient fluxes, and carbon cycling. Here we report results based on high-resolution Interferometric Synthetic Aperture Radar (InSAR) measurements using space-borne data for a study area located on the North Slope of Alaska near Prudhoe Bay, where we focus on the seasonal thaw settlement within DTLBs, averaged between 2006 and 2010. The majority (14) of the 18 DTLBs in the study area exhibited seasonal thaw settlement of 3–4 cm. However, four of the DTLBs examined exceeded 4 cm of thaw settlement, with one basin experiencing up to 12 cm. Combining the InSAR observations with the in situ active layer thickness measured using ground penetrating radar and mechanical probing, we calculated thaw strain, an index of thaw settlement strength along a transect across the basin that underwent large thaw settlement. We found thaw strains of 10–35% at the basin center, suggesting the seasonal melting of ground ice as a possible mechanism for the large settlement. These findings emphasize the dynamic nature of permafrost landforms, demonstrate the capability of the InSAR technique to remotely monitor surface deformation of individual DTLBs, and illustrate the combination of ground-based and remote sensing observations to estimate thaw strain. Our study highlights the need for better description of the spatial heterogeneity of landscape-scale processes for regional assessment of surface dynamics on Arctic coastal lowlands.

  8. The evolution of a thermokarst-lake landscape: Late Quaternary permafrost degradation and stabilization in interior Alaska

    Science.gov (United States)

    Edwards, Mary E.; Grosse, Guido; Jones, Benjamin M.; McDowell, Patricia F.

    2016-01-01

    Thermokarst processes characterize a variety of ice-rich permafrost terrains and often lead to lake formation. The long-term evolution of thermokarst landscapes and the stability and longevity of lakes depend upon climate, vegetation and ground conditions, including the volume of excess ground ice and its distribution. The current lake status of thermokarst-lake landscapes and their future trajectories under climate warming are better understood in the light of their long-term development. We studied the lake-rich southern marginal upland of the Yukon Flats (northern interior Alaska) using dated lake-sediment cores, observations of river-cut exposures, and remotely-sensed data. The region features thick (up to 40 m) Quaternary deposits (mainly loess) that contain massive ground ice. Two of three studied lakes formed ~ 11,000–12,000 cal yr BP through inferred thermokarst processes, and fire may have played a role in initiating thermokarst development. From ~ 9000 cal yr BP, all lakes exhibited steady sedimentation, and pollen stratigraphies are consistent with regional patterns. The current lake expansion rates are low (0 to drainage, nor of multiple lake generations within a basin. However, LiDAR images reveal linear “corrugations” (> 5 m amplitude), deep thermo-erosional gullies, and features resembling lake drainage channels, suggesting that highly dynamic surface processes have previously shaped the landscape. Evidently, widespread early Holocene permafrost degradation and thermokarst lake initiation were followed by lake longevity and landscape stabilization, the latter possibly related to establishment of dense forest cover. Partial or complete drainage of three lakes in 2013 reveals that there is some contemporary landscape dynamism. Holocene landscape evolution in the study area differs from that described from other thermokarst-affected regions; regional responses to future environmental change may be equally individualistic.

  9. Detecting unfrozen sediments below thermokarst lakes with surface nuclear magnetic resonance

    Science.gov (United States)

    Parsekian, Andrew D.; Grosse, Guido; Walbrecker, Jan O.; Müller-Petke, Mike; Keating, Kristina; Liu, Lin; Jones, Benjamin M.; Knight, Rosemary

    2013-01-01

    A talik is a layer or body of unfrozen ground that occurs in permafrost due to an anomaly in thermal, hydrological, or hydrochemical conditions. Information about talik geometry is important for understanding regional surface water and groundwater interactions as well as sublacustrine methane production in thermokarst lakes. Due to the direct measurement of unfrozen water content, surface nuclear magnetic resonance (NMR) is a promising geophysical method for noninvasively estimating talik dimensions. We made surface NMR measurements on thermokarst lakes and terrestrial permafrost near Fairbanks, Alaska, and confirmed our results using limited direct measurements. At an 8 m deep lake, we observed thaw bulb at least 22 m below the surface; at a 1.4 m deep lake, we detected a talik extending between 5 and 6 m below the surface. Our study demonstrates the value that surface NMR may have in the cryosphere for studies of thermokarst lake hydrology and their related role in the carbon cycle.

  10. Methane turnover and environmental change from Holocene biomarker records in a thermokarst lake in Arctic Alaska

    Science.gov (United States)

    Elvert, Marcus; Pohlman, John; Becker, Kevin W.; Gaglioti, Benjamin V.; Hinrichs, Kai-Uwe; Wooller, Matthew J.

    2016-01-01

    Arctic lakes and wetlands contribute a substantial amount of methane to the contemporary atmosphere, yet profound knowledge gaps remain regarding the intensity and climatic control of past methane emissions from this source. In this study, we reconstruct methane turnover and environmental conditions, including estimates of mean annual and summer temperature, from a thermokarst lake (Lake Qalluuraq) on the Arctic Coastal Plain of northern Alaska for the Holocene by using source-specific lipid biomarkers preserved in a radiocarbon-dated sediment core. Our results document a more prominent role for methane in the carbon cycle when the lake basin was an emergent fen habitat between ~12,300 and ~10,000 cal yr BP, a time period closely coinciding with the Holocene Thermal Maximum (HTM) in North Alaska. Enhanced methane turnover was stimulated by relatively warm temperatures, increased moisture, nutrient supply, and primary productivity. After ~10,000 cal yr BP, a thermokarst lake with abundant submerged mosses evolved, and through the mid-Holocene temperatures were approximately 3°C cooler. Under these conditions, organic matter decomposition was attenuated, which facilitated the accumulation of submerged mosses within a shallower Lake Qalluuraq. Reduced methane assimilation into biomass during the mid-Holocene suggests that thermokarst lakes are carbon sinks during cold periods. In the late-Holocene from ~2700 cal yr BP to the most recent time, however, temperatures and carbon deposition rose and methane oxidation intensified, indicating that more rapid organic matter decomposition and enhanced methane production could amplify climate feedback via potential methane emissions in the future.

  11. Spatial dynamics of thermokarst and thermo-erosion at lakes and ponds in North Siberia and Northwest Alaska using high-resolution remote sensing

    Science.gov (United States)

    Grosse, G.; Tillapaugh, M.; Romanovsky, V. E.; Walter, K. M.; Plug, L. J.

    2008-12-01

    Formation, growth, and drainage of thermokarst lakes in ice-rich permafrost deposits are important factors of landscape dynamics in extent Arctic lowlands. Monitoring of spatial and temporal dynamics of such lakes will allow an assessment of permafrost stability and enhance the capabilities for modelling and quantifying biogeochemical processes related to permafrost degradation in a warming Arctic. In this study we use high-resolution remote sensing and GIS to analyze the development of thermokarst lakes and ponds in two study regions in North Siberia and Northwest Alaska. The sites are 1) the Cherskii region in the Kolyma lowland (Siberia) and 2) the Kitluk River area on the northern Seward Peninsula (Alaska). Both regions are characterized by continuous permafrost, a highly dissected and dynamic thermokarst landscape, uplands of Late Pleistocene permafrost deposits with high excess ice contents, and a large total volume of permafrost-stored carbon. These ice-rich Yedoma or Yedoma-like deposits are highly vulnerable to permafrost degradation forced by climate warming or other surface disturbance. Time series of high- resolution imagery (aerial, Corona, Ikonos, Alos Prism) covering more than 50 years of lake dynamics allow detailed assessments of processes and spatial patterns of thermokarst lake expansion and drainage in continuous permafrost. Time series of high-resolution imagery (aerial, Corona, Ikonos, Alos Prism) covering more than 50 years of lake dynamics allow detailed assessments of processes and spatial patterns of thermokarst lake expansion and drainage in continuous permafrost. Processes identified include thaw slumping, wave undercutting of frozen sediments or peat blocks and subsequent mass wasting, thaw collapse of near-shore zones, sinkhole formation and ice-wedge tunnelling, and gully formation by thermo-erosion. We use GIS-based tools to relate the remote sensing results to field data (ground ice content, topography, lithology, and relative age

  12. A synthesis of thermokarst lake water balance in high-latitude regions of North America from isotope tracers

    Science.gov (United States)

    MacDonald, Lauren A.; Wolfe, Brent B.; Turner, Kevin W.; Anderson, Lesleigh; Arp, Christopher D.; Birks, Jean; Bouchard, Frédéric; Edwards, Thomas W.D.; Farquharson, Nicole; Hall, Roland I.; McDonald, Ian; Narancic, Biljana; Ouimet, Chantal; Pienitz, Reinhard; Tondu, Jana; White, Hilary

    2017-01-01

    Numerous studies utilizing remote sensing imagery and other methods have documented that thermokarst lakes are undergoing varied hydrological transitions in response to recent climate changes, from surface area expansion to drainage and evaporative desiccation. Here, we provide a synthesis of hydrological conditions for 376 lakes of mainly thermokarst origin across high-latitude North America. We assemble surface water isotope compositions measured during the past decade at five lake-rich landscapes including Arctic Coastal Plain (Alaska), Yukon Flats (Alaska), Old Crow Flats (Yukon), northwestern Hudson Bay Lowlands (Manitoba), and Nunavik (Quebec). These landscapes represent the broad range of thermokarst environments by spanning gradients in meteorological, permafrost, and vegetation conditions. An isotope framework was established based on flux-weighted long-term averages of meteorological conditions for each lake to quantify water balance metrics. The isotope composition of source water and evaporation-to-inflow ratio for each lake were determined, and the results demonstrated a substantial array of regional and subregional diversity of lake hydrological conditions. Controls on lake water balance and how these vary among the five landscapes and with differing environmental drivers are assessed. Findings reveal that lakes in the Hudson Bay Lowlands are most vulnerable to evaporative desiccation, whereas those in Nunavik are most resilient. However, we also identify the complexity in predicting hydrological responses of these thermokarst landscapes to future climate change.

  13. Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska

    Science.gov (United States)

    Jones, Miriam C.; Grosse, Guido; Jones, Benjamin M.; Anthony, Katey Walter

    2012-01-01

    Thermokarst lakes and peat-accumulating drained lake basins cover a substantial portion of Arctic lowland landscapes, yet the role of thermokarst lake drainage and ensuing peat formation in landscape-scale carbon (C) budgets remains understudied. Here we use measurements of terrestrial peat thickness, bulk density, organic matter content, and basal radiocarbon age from permafrost cores, soil pits, and exposures in vegetated, drained lake basins to characterize regional lake drainage chronology, C accumulation rates, and the role of thermokarst-lake cycling in carbon dynamics throughout the Holocene on the northern Seward Peninsula, Alaska. Most detectable lake drainage events occurred within the last 4,000 years with the highest drainage frequency during the medieval climate anomaly. Peat accumulation rates were highest in young (50–500 years) drained lake basins (35.2 g C m−2 yr−1) and decreased exponentially with time since drainage to 9 g C m−2 yr−1 in the oldest basins. Spatial analyses of terrestrial peat depth, basal peat radiocarbon ages, basin geomorphology, and satellite-derived land surface properties (Normalized Difference Vegetation Index (NDVI); Minimum Noise Fraction (MNF)) from Landsat satellite data revealed significant relationships between peat thickness and mean basin NDVI or MNF. By upscaling observed relationships, we infer that drained thermokarst lake basins, covering 391 km2 (76%) of the 515 km2 study region, store 6.4–6.6 Tg organic C in drained lake basin terrestrial peat. Peat accumulation in drained lake basins likely serves to offset greenhouse gas release from thermokarst-impacted landscapes and should be incorporated in landscape-scale C budgets.

  14. Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Lu, Zong; Whitman, Matthew S.

    2012-01-01

    The balance of thermokarst lakes with bedfast- and floating-ice regimes across Arctic lowlands regulates heat storage, permafrost thaw, winter-water supply, and over-wintering aquatic habitat. Using a time-series of late-winter synthetic aperture radar (SAR) imagery to distinguish lake ice regimes in two regions of the Arctic Coastal Plain of northern Alaska from 2003–2011, we found that 18% of the lakes had intermittent ice regimes, varying between bedfast-ice and floating-ice conditions. Comparing this dataset with a radar-based lake classification from 1980 showed that 16% of the bedfast-ice lakes had shifted to floating-ice regimes. A simulated lake ice thinning trend of 1.5 cm/yr since 1978 is believed to be the primary factor driving this form of lake change. The most profound impacts of this regime shift in Arctic lakes may be an increase in the landscape-scale thermal offset created by additional lake heat storage and its role in talik development in otherwise continuous permafrost as well as increases in over-winter aquatic habitat and winter-water supply.

  15. Patterns and controls of mercury accumulation in sediments from three thermokarst lakes on the Arctic Coastal Plain of Alaska

    Science.gov (United States)

    Burke, Samantha M.; Zimmerman, Christian E.; Branfireun, Brian A.; Koch, Joshua C.; Swanson, Heidi K.

    2018-01-01

    The biogeochemical cycle of mercury will be influenced by climate change, particularly at higher latitudes. Investigations of historical mercury accumulation in lake sediments inform future predictions as to how climate change might affect mercury biogeochemistry; however, in regions with a paucity of data, such as the thermokarst-rich Arctic Coastal Plain of Alaska (ACP), the trajectory of mercury accumulation in lake sediments is particularly uncertain. Sediment cores from three thermokarst lakes on the ACP were analyzed to understand changes in, and drivers of, Hg accumulation over the past ~ 100 years. Mercury accumulation in two of the three lakes was variable and high over the past century (91.96 and 78.6 µg/m2/year), and largely controlled by sedimentation rate. Mercury accumulation in the third lake was lower (14.2 µg/m2/year), more temporally uniform, and was more strongly related to sediment Hg concentration than sedimentation rate. Sediment mercury concentrations were quantitatively related to measures of sediment composition and VRS-inferred chlorophyll a, and sedimentation rates were related to various catchment characteristics. These results were compared to data from 37 previously studied Arctic and Alaskan lakes. Results from the meta-analysis indicate that thermokarst lakes have significantly higher and more variable Hg accumulation rates than non-thermokarst lakes, suggesting that certain properties (e.g., thermal erosion, thaw slumping, low hydraulic conductivity) likely make lakes prone to high and variable Hg accumulation rates. Differences and high variability in Hg accumulation among high latitude lakes highlight the complexity of predicting future climate-related change impacts on mercury cycling in these environments.

  16. Expansion rate and geometry of floating vegetation mats on the margins of thermokarst lakes, northern Seward Peninsula, Alaska, USA

    Science.gov (United States)

    Parsekian, A.D.; Jones, Benjamin M.; Jones, M.; Grosse, G.; Walter, Anthony K.M.; Slater, L.

    2011-01-01

    Investigations on the northern Seward Peninsula in Alaska identified zones of recent (<50years) permafrost collapse that led to the formation of floating vegetation mats along thermokarst lake margins. The occurrence of floating vegetation mat features indicates rapid degradation of near-surface permafrost and lake expansion. This paper reports on the recent expansion of these collapse features and their geometry is determined using geophysical and remote sensing measurements. The vegetation mats were observed to have an average thickness of 0.57m and petrophysical modeling indicated that gas content of 1.5-5% enabled floatation above the lake surface. Furthermore, geophysical investigation provides evidence that the mats form by thaw and subsidence of the underlying permafrost rather than terrestrialization. The temperature of the water below a vegetation mat was observed to remain above freezing late in the winter. Analysis of satellite and aerial imagery indicates that these features have expanded at maximum rates of 1-2myr-1 over a 56year period. Including the spatial coverage of floating 'thermokarst mats' increases estimates of lake area by as much as 4% in some lakes. ?? 2011 John Wiley & Sons, Ltd.

  17. High and Increasing Shoreline Erosion Rates of Thermokarst Lakes Set in Ice-Rich Permafrost Terrain of the Arctic Coastal Plain of Alaska

    Science.gov (United States)

    Bondurant, A. C.; Arp, C. D.; Jones, B. M.; Shur, Y.; Daanen, R. P.

    2017-12-01

    Thermokarst lakes are a dominant landform shaping landscapes and impacting permafrost on the Arctic Coastal Plain (ACP) of northern Alaska, a region of continuous permafrost. Here lakes cover greater than 20% of the landscape and drained lake basins cover an additional 50 to 60% of the landscape. The formation, expansion, and drainage of thaw lakes has been described by some researchers as part of a natural cycle that has reworked the ACP landscape during the Holocene. Yet the factors and processes controlling contemporary thermokarst lake expansion remain poorly described. This study focuses on the factors controlling expansion rates of thermokarst lakes in three ACP regions that vary in landscape history, ground-ice content, and lake morphology (i.e. size and depth), as well as evaluating changes through time. Through the use of historical aerial imagery, satellite imagery, and field observations, this study identifies the controlling factors at multiple spatial and temporal scales to better understand the processes relating to thermokarst lake expansion. Studies of 35 lakes across the ACP shows regional differences in expansion rate related to permafrost ice content ranging from an average expansion rate of 0.62 m/yr where ice content is highest ( 86%) to 0.16 m/yr where ice content is lowest (45%-71%). A subset of these lakes analyzed over multiple time periods show increasing rates of erosion, with average rates being 37% higher over the period 1979-2002 (0.73 m/yr) compared to 1948-1979 (0.53 m/yr). These increased rates of erosion have important implications for the regional hydrologic cycle and localized permafrost degradation. Predicting how thermokarst lakes will behave locally and on a landscape scale is increasingly important for managing habitat and water resources and informing models of land-climate interactions in the Arctic.

  18. Hydrogeomorphic processes of thermokarst lakes with grounded-ice and floating-ice regimes on the Arctic coastal plain, Alaska

    Science.gov (United States)

    Arp, C.D.; Jones, Benjamin M.; Urban, F.E.; Grosse, G.

    2011-01-01

    Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35-year period. Shoreline erosion rates due to permafrost degradation ranged from L) with periods of full and nearly dry basins. Shorter-term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long-term record for only shallow lakes. Our analysis suggests that grounded-ice lakes are ice-free on average 37 days longer than floating-ice lakes resulting in a longer period of evaporative loss and more frequent negative P − EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes.

  19. Expansion rate and geometry of floating vegetation mats on the margins of thermokarst lakes, northern Seward Peninsula, Alaska, USA

    Science.gov (United States)

    Parsekian, A.D.; Jones, Benjamin M.; Jones, M.; Grosse, G.; Walter, Anthony K.M.; Slater, L.

    2011-01-01

    Investigations on the northern Seward Peninsula in Alaska identified zones of recent (geometry is determined using geophysical and remote sensing measurements. The vegetation mats were observed to have an average thickness of 0.57m and petrophysical modeling indicated that gas content of 1.5-5% enabled floatation above the lake surface. Furthermore, geophysical investigation provides evidence that the mats form by thaw and subsidence of the underlying permafrost rather than terrestrialization. The temperature of the water below a vegetation mat was observed to remain above freezing late in the winter. Analysis of satellite and aerial imagery indicates that these features have expanded at maximum rates of 1-2myr-1 over a 56year period. Including the spatial coverage of floating 'thermokarst mats' increases estimates of lake area by as much as 4% in some lakes. ?? 2011 John Wiley & Sons, Ltd.

  20. Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia - observations and modeling (Lena River Delta, Siberia)

    Science.gov (United States)

    Boike, J.; Georgi, C.; Kirilin, G.; Muster, S.; Abramova, K.; Fedorova, I.; Chetverova, A.; Grigoriev, M.; Bornemann, N.; Langer, M.

    2015-10-01

    Thermokarst lakes are typical features of the northern permafrost ecosystems, and play an important role in the thermal exchange between atmosphere and subsurface. The objective of this study is to describe the main thermal processes of the lakes and to quantify the heat exchange with the underlying sediments. The thermal regimes of five lakes located within the continuous permafrost zone of northern Siberia (Lena River Delta) were investigated using hourly water temperature and water level records covering a 3-year period (2009-2012), together with bathymetric survey data. The lakes included thermokarst lakes located on Holocene river terraces that may be connected to Lena River water during spring flooding, and a thermokarst lake located on deposits of the Pleistocene Ice Complex. Lakes were covered by ice up to 2 m thick that persisted for more than 7 months of the year, from October until about mid-June. Lake-bottom temperatures increased at the start of the ice-covered period due to upward-directed heat flux from the underlying thawed sediment. Prior to ice break-up, solar radiation effectively warmed the water beneath the ice cover and induced convective mixing. Ice break-up started at the beginning of June and lasted until the middle or end of June. Mixing occurred within the entire water column from the start of ice break-up and continued during the ice-free periods, as confirmed by the Wedderburn numbers, a quantitative measure of the balance between wind mixing and stratification that is important for describing the biogeochemical cycles of lakes. The lake thermal regime was modeled numerically using the FLake model. The model demonstrated good agreement with observations with regard to the mean lake temperature, with a good reproduction of the summer stratification during the ice-free period, but poor agreement during the ice-covered period. Modeled sensitivity to lake depth demonstrated that lakes in this climatic zone with mean depths > 5 m develop

  1. Evolution of soil and vegetation cover on the bottom of drained thermokarst lake (a case study in the European Northeast of Russia)

    Science.gov (United States)

    Kaverin, Dmitry; Pastukhov, Alexander

    2015-04-01

    The evolution of soils and landscapes has been studied in a lake bed of former thermokarst lake, which was totally drained in 1979. Melioration of thermokarst lakes was conducted experimentally and locally under Soviet economics program during 1970-s. The aim of the program was to increase in biomass productivity of virgin tundra permafrost-thermokarst sites under agricultural activities. The former thermokarst lake "Opytnoe" located in the Bolshezemelskaya Tundra, Russian European Northeast. The lake bed is covered by peat-mineral sediments, which serves as soil-forming sediments favoring subsequent permafrost aggradation and cryogenic processes as well. Initially, after drainage, swampy meadows had been developed almost all over the lake bed. Further on, succession of landscape went diversely, typical and uncommon tundra landscapes formed. When activated, cryogenic processes favored the formation of peat mounds under dwarf shrub - lichen vegetation (7% of the area). Frost cracks and peat circles affected flat mounds all over the former lake bottom. On drained peat sites, with no active cryogenic processes, specific grass meadows on Cryic Sapric Histosols were developed. Totally, permafrost-affected soils occupy 77% of the area (2011). In some part of the lake bed further development of waterlogging leads to the formation of marshy meadows and willow communities where Gleysols prevail. During last twenty years, permafrost degradation has occurred under tall shrub communities, and it will progress in future. Water erosion processes in the drained lake bottom promoted the formation of local hydrographic network. In the stream floodplain grassy willow-stands formed on Fluvisols (3% of the area). The study has been conducted under Clima-East & RFBR 14-05-31111 projects.

  2. Contribution of supra-permafrost discharge to thermokarst lake water balances on the northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Pan, Xicai; Yu, Qihao; You, Yanhui; Chun, Kwok Pan; Shi, Xiaogang; Li, Yanping

    2017-12-01

    The seasonal hydrological mechanisms of two thermokarst lakes on the northeastern Qinghai-Tibet Plateau (QTP) were characterized by three-year intensive field observations and a water balance model. In three ice-free seasons, the supra-permafrost discharge contributed a mean ratio of over 170% of the precipitation. In the ice-cover seasons, the supra-permafrost discharge contribution varied between -20% and 22% of the water storage change. Results show that a large portion of the lake water storage change is because of the supra-permafrost discharge resulting from precipitation. Furthermore, a precipitation-subsurface runoff function is preliminarily identified in which the supra-permafrost discharge nonlinearly increased with more precipitation. Our results show that the recent lake expansion is linked with increasing supra-permafrost discharge dominated by precipitation. This study also suggests that we need to pay attention to the nonlinear increase of precipitation-controlled supra-permafrost discharge on the large lake expansion at the catchment scale in the QTP region, instead of only looking at the inputs (e.g., precipitation and river discharge) as shown in the previous studies.

  3. Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Cuicui Mu

    2016-01-01

    Full Text Available Thermokarst lakes are widely distributed on the Qinghai-Tibetan Plateau (QTP, which accounts for 8% of the global permafrost area. These lakes probably promote organic matter biodegradation and thus accelerate the emission of carbon-based greenhouse gases. However, little is known about greenhouse gas concentrations and their stable isotopes characteristics of these lakes. In this study, we measured the concentrations of dissolved organic carbon (DOC, dissolved CO2 and CH4, as well as the distribution of δ13CCO2, δ13CCH4, and δ13COM (organic matter of lake sediments in thermokarst lakes on the QTP. Results showed that the OM of the lake sediments was highly decomposed. The concentrations of DOC, CO2 and CH4 in the lake water on the QTP were 1.2–49.6 mg L–1, 3.6–45.0 μmol L–1 and 0.28–3.0 μmol L–1, respectively. The highest CO2 and CH4 concentrations were recorded in July while the lowest values in September, which suggested that temperature had an effect on greenhouse gas production, although this pattern may also relate to thermal stratification of the water column. The results implied that thermokast lakes should be paid more attention to regarding carbon cycle and greenhouse gas emissions on the QTP.

  4. Circumpolar distribution and carbon storage of thermokarst landscapes

    Science.gov (United States)

    Olefeldt, David; Goswami, S.; Grosse, G.; Hayes, D.; Hugelius, G.; Kuhry, P.; McGuire, A. David; Romanovsky, V.E.; Sannel, A.B.K.; Schuur, E.A.G.; Turetsky, M.R.

    2016-01-01

    Thermokarst is the process whereby the thawing of ice-rich permafrost ground causes land subsidence, resulting in development of distinctive landforms. Accelerated thermokarst due to climate change will damage infrastructure, but also impact hydrology, ecology and biogeochemistry. Here, we present a circumpolar assessment of the distribution of thermokarst landscapes, defined as landscapes comprised of current thermokarst landforms and areas susceptible to future thermokarst development. At 3.6 × 106 km2, thermokarst landscapes are estimated to cover ∼20% of the northern permafrost region, with approximately equal contributions from three landscape types where characteristic wetland, lake and hillslope thermokarst landforms occur. We estimate that approximately half of the below-ground organic carbon within the study region is stored in thermokarst landscapes. Our results highlight the importance of explicitly considering thermokarst when assessing impacts of climate change, including future landscape greenhouse gas emissions, and provide a means for assessing such impacts at the circumpolar scale.

  5. Characterizing Post-Drainage Succession in Thermokarst Lake Basins on the Seward Peninsula, Alaska with TerraSAR-X Backscatter and Landsat-based NDVI Data

    Directory of Open Access Journals (Sweden)

    Prajna Regmi

    2012-11-01

    Full Text Available Drained thermokarst lake basins accumulate significant amounts of soil organic carbon in the form of peat, which is of interest to understanding carbon cycling and climate change feedbacks associated with thermokarst in the Arctic. Remote sensing is a tool useful for understanding temporal and spatial dynamics of drained basins. In this study, we tested the application of high-resolution X-band Synthetic Aperture Radar (SAR data of the German TerraSAR-X satellite from the 2009 growing season (July–September for characterizing drained thermokarst lake basins of various age in the ice-rich permafrost region of the northern Seward Peninsula, Alaska. To enhance interpretation of patterns identified in X-band SAR for these basins, we also analyzed the Normalized Difference Vegetation Index (NDVI calculated from a Landsat-5 Thematic Mapper image acquired on July 2009 and compared both X-band SAR and NDVI data with observations of basin age. We found significant logarithmic relationships between (a TerraSAR-X backscatter and basin age from 0 to 10,000 years, (b Landat-5 TM NDVI and basin age from 0 to 10,000 years, and (c TerraSAR-X backscatter and basin age from 50 to 10,000 years. NDVI was a better indicator of basin age over a period of 0–10,000 years. However, TerraSAR-X data performed much better for discriminating radiocarbon-dated basins (50–10,000 years old. No clear relationships were found for either backscatter or NDVI and basin age from 0 to 50 years. We attribute the decreasing trend of backscatter and NDVI with increasing basin age to post-drainage changes in the basin surface. Such changes include succession in vegetation, soils, hydrology, and renewed permafrost aggradation, ground ice accumulation and localized frost heave. Results of this study show the potential application of X-band SAR data in combination with NDVI data to map long-term succession dynamics of drained thermokarst lake basins.

  6. Characterizing post-drainage succession in Thermokarst Lake Basins on the Seward Peninsula, Alaska with TerraSAR-X Backscatter and Landsat-based NDVI data

    Science.gov (United States)

    Regmi, Prajna; Grosse, Guido; Jones, Miriam C.; Jones, Benjamin M.; Walter Anthony, Katey

    2012-01-01

    Drained thermokarst lake basins accumulate significant amounts of soil organic carbon in the form of peat, which is of interest to understanding carbon cycling and climate change feedbacks associated with thermokarst in the Arctic. Remote sensing is a tool useful for understanding temporal and spatial dynamics of drained basins. In this study, we tested the application of high-resolution X-band Synthetic Aperture Radar (SAR) data of the German TerraSAR-X satellite from the 2009 growing season (July–September) for characterizing drained thermokarst lake basins of various age in the ice-rich permafrost region of the northern Seward Peninsula, Alaska. To enhance interpretation of patterns identified in X-band SAR for these basins, we also analyzed the Normalized Difference Vegetation Index (NDVI) calculated from a Landsat-5 Thematic Mapper image acquired on July 2009 and compared both X-band SAR and NDVI data with observations of basin age. We found significant logarithmic relationships between (a) TerraSAR-X backscatter and basin age from 0 to 10,000 years, (b) Landat-5 TM NDVI and basin age from 0 to 10,000 years, and (c) TerraSAR-X backscatter and basin age from 50 to 10,000 years. NDVI was a better indicator of basin age over a period of 0–10,000 years. However, TerraSAR-X data performed much better for discriminating radiocarbon-dated basins (50–10,000 years old). No clear relationships were found for either backscatter or NDVI and basin age from 0 to 50 years. We attribute the decreasing trend of backscatter and NDVI with increasing basin age to post-drainage changes in the basin surface. Such changes include succession in vegetation, soils, hydrology, and renewed permafrost aggradation, ground ice accumulation and localized frost heave. Results of this study show the potential application of X-band SAR data in combination with NDVI data to map long-term succession dynamics of drained thermokarst lake basins.

  7. Impact of Increased Thermokarst Activity on Polycyclic Aromatic Compound (PAC) Accumulation in Sediment of Lakes in the Hydrocarbon-Rich Uplands Adjacent to the Mackenzie Delta, NT, Canada

    Science.gov (United States)

    Eickmeyer, D.; Thienpont, J. R.; Blais, J. M.

    2017-12-01

    In ecologically sensitive, hydrocarbon-rich regions like the western Canadian Arctic, environmental monitoring of oil and gas development often focuses on both direct and unintentional consequences of increased exploration and extraction of hydrocarbon resources. However, proper assessments of impact from these activities could be confounded by natural petrogenic sources in permafrost-rich regions where increased thermokarst activity results in permafrost exposure and erosion of hydrocarbon-rich deposits. Using a paired-lake design in the tundra uplands adjacent to the Mackenzie Delta, NT, we examined 4 lakes with retrogressive thaw slump scars along their shores, and 4 nearby undisturbed reference lakes, focusing on polycyclic aromatic compound (PAC) deposition and composition in the sediment. Total organic carbon (TOC)-normalized concentrations for parent and alkylated PACs were higher in surface sediments of slump-affected lakes than the reference lakes. This followed the pattern previously observed for persistent organic pollutants in these lakes where presence of thaw slumps on the lake shore was associated with lower TOC content in the water column, resulting in a smaller pool of available organic carbon, leading to higher PAC concentrations. Diagnostic ratios of specific PACs also suggested the sediment of slump-affected lakes had greater influence from petroleum-based PAC sources than their reference counterparts. This interpretation was corroborated by a principle components analysis of the metal content in the sediment. Slump-affected lakes were enriched in metals related to shale-based, Quaternary deposits of the Mackenzie Basin (e.g. Ca, Sr, Mg) when compared to reference lakes where these surficial materials were not exposed by thermokarst activity. Higher PAC concentrations and composition indicative of petrogenic sources observed in sediment of slump-affected lakes were best explained as a combination of low TOC availability and increased inputs of

  8. Source Characterization and Temporal Variation of Methane Seepage from Thermokarst Lakes on the Alaska North Slope in Response to Arctic Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-09-30

    The goals of this research were to characterize the source, magnitude and temporal variability of methane seepage from thermokarst lakes (TKL) within the Alaska North Slope gas hydrate province, assess the vulnerability of these areas to ongoing and future arctic climate change and determine if gas hydrate dissociation resulting from permafrost melting is contributing to the current lake emissions. Analyses were focused on four main lake locations referred to in this report: Lake Qalluuraq (referred to as Lake Q) and Lake Teshekpuk (both on Alaska's North Slope) and Lake Killarney and Goldstream Bill Lake (both in Alaska's interior). From analyses of gases coming from lakes in Alaska, we showed that ecological seeps are common in Alaska and they account for a larger source of atmospheric methane today than geologic subcap seeps. Emissions from the geologic source could increase with potential implications for climate warming feedbacks. Our analyses of TKL sites showing gas ebullition were complemented with geophysical surveys, providing important insight about the distribution of shallow gas in the sediments and the lake bottom manifestation of seepage (e.g., pockmarks). In Lake Q, Chirp data were limited in their capacity to image deeper sediments and did not capture the thaw bulb. The failure to capture the thaw bulb at Lake Q may in part be related to the fact that the present day lake is a remnant of an older, larger, and now-partially drained lake. These suggestions are consistent with our analyses of a dated core of sediment from the lake that shows that a wetland has been present at the site of Lake Q since approximately 12,000 thousand years ago. Chemical analyses of the core indicate that the availability of methane at the site has changed during the past and is correlated with past environmental changes (i.e. temperature and hydrology) in the Arctic. Discovery of methane seeps in Lake Teshekpuk in the northernmost part of the lake during 2009

  9. Quantification of upland thermokarst features with high resolution remote sensing

    International Nuclear Information System (INIS)

    Belshe, E F; Schuur, E A G; Grosse, G

    2013-01-01

    Climate-induced changes to permafrost are altering high latitude landscapes in ways that could increase the vulnerability of the vast soil carbon pools of the region. Permafrost thaw is temporally dynamic and spatially heterogeneous because, in addition to the thickening of the active layer, localized thermokarst features form when ice-rich permafrost thaws and the ground subsides. Thermokarst produces a diversity of landforms and alters the physical environment in dynamic ways. To estimate potential changes to the carbon cycle it is imperative to quantify the size and distribution of thermokarst landforms. By performing a supervised classification on a high resolution IKONOS image, we detected and mapped small, irregular thermokarst features occurring within an upland watershed in discontinuous permafrost of Interior Alaska. We found that 12% of the Eight Mile Lake (EML) watershed has undergone thermokarst, predominantly in valleys where tussock tundra resides. About 35% of the 3.7 km 2 tussock tundra class has likely transitioned to thermokarst. These landscape level changes created by permafrost thaw at EML have important implications for ecosystem carbon cycling because thermokarst features are forming in carbon-rich areas and are altering the hydrology in ways that increase seasonal thawing of the soil. (letter)

  10. Impacts of shore expansion and catchment characteristics on lacustrine thermokarst records in permafrost lowlands, Alaska Arctic Coastal Plain

    Science.gov (United States)

    Lenz, Josefine; Jones, Benjamin M.; Wetterich, Sebastian; Tjallingii, Rik; Fritz, Michael; Arp, Christopher D.; Rudaya, Natalia; Grosse, Guido

    2016-01-01

    Arctic lowland landscapes have been modified by thermokarst lake processes throughout the Holocene. Thermokarst lakes form as a result of ice-rich permafrost degradation, and they may expand over time through thermal and mechanical shoreline erosion. We studied proximal and distal sedimentary records from a thermokarst lake located on the Arctic Coastal Plain of northern Alaska to reconstruct the impact of catchment dynamics and morphology on the lacustrine depositional environment and to quantify carbon accumulation in thermokarst lake sediments. Short cores were collected for analysis of pollen, sedimentological, and geochemical proxies. Radiocarbon and 210Pb/137Cs dating, as well as extrapolation of measured historic lake expansion rates, were applied to estimate a minimum lake age of ~1400 calendar years BP. The pollen record is in agreement with the young lake age as it does not include evidence of the “alder high” that occurred in the region ~4000 cal yr BP. The lake most likely initiated from a remnant pond in a drained thermokarst lake basin (DTLB) and deepened rapidly as evidenced by accumulation of laminated sediments. Increasing oxygenation of the water column as shown by higher Fe/Ti and Fe/S ratios in the sediment indicate shifts in ice regime with increasing water depth. More recently, the sediment source changed as the thermokarst lake expanded through lateral permafrost degradation, alternating from redeposited DTLB sediments, to increased amounts of sediment from eroding, older upland deposits, followed by a more balanced combination of both DTLB and upland sources. The characterizing shifts in sediment sources and depositional regimes in expanding thermokarst lakes were, therefore, archived in the thermokarst lake sedimentary record. This study also highlights the potential for Arctic lakes to recycle old carbon from thawing permafrost and thermokarst processes.

  11. Thermokarst transformation of permafrost preserved glaciated landscapes.

    Science.gov (United States)

    Kokelj, S.; Tunnicliffe, J. F.; Fraser, R.; Kokoszka, J.; Lacelle, D.; Lantz, T. C.; Lamoureux, S. F.; Rudy, A.; Shakil, S.; Tank, S. E.; van der Sluijs, J.; Wolfe, S.; Zolkos, S.

    2017-12-01

    Thermokarst is the fundamental mechanism of landscape change and a primary driver of downstream effects in a warming circumpolar world. Permafrost degradation is inherently non-linear because latent heat effects can inhibit thawing. However, once this thermal transition is crossed thermokarst can accelerate due to the interaction of thermal, physical and ecological feedbacks. In this paper we highlight recent climate and precipitation-driven intensification of thaw slumping that is transforming permafrost preserved glaciated landscapes in northwestern Canada. The continental distribution of slump affected terrain reflects glacial extents and recessional positions of the Laurentide Ice sheet. On this basis and in conjunction with intense thermokarst in cold polar environments, we highlight the critical roles of geological legacy and climate history in dictating the sensitivity of permafrost terrain. These glaciated landscapes, maintained in a quasi-stable state throughout much of the late Holocene are now being transformed into remarkably dynamic environments by climate-driven thermokarst. Individual disturbances displace millions of cubic metres of previously frozen material downslope, converting upland sedimentary stores into major source areas. Precipitation-driven evacuation of sediment by fluidized mass flows perpetuates non-linear enlargement of disturbances. The infilling of valleys with debris deposits tens of metres thick increases stream base-levels and promotes rapid valley-side erosion. These processes destabilize adjacent slopes and proliferate disturbance effects. Physically-based modeling of thaw slump development provides insight into the trajectories of landscape change, and the mapping of fluvial linkages portrays the cascade of effects across watershed scales. Post-glacial or "paraglacial" models of landscape evolution provide a useful framework for understanding the nature and magnitude of climate-driven changes in permafrost preserved glaciated

  12. Satellite-Based Assessment of the spatial extent of Aquatic Vegetation in Lake Victoria

    Science.gov (United States)

    Clark, W.; Aligeti, N.; Jeyaprakash, T.; Martins, M.; Stodghill, J.; Winstanley, H.

    2011-12-01

    Lake Victoria in Africa is the second largest freshwater lake in the world and is known for its abundance of aquatic wildlife. In particular over 200 different fish species are caught and sold by local fisherman. The lake is a major contributor to the local economy as a corridor of transportation, source of drinking water, and source of hydropower. However, the invasion of aquatic vegetation such as water hyacinth in the lake has disrupted each of these markets. Aquatic vegetation now covers a substantial area of the coastline blocking waterways, disrupting hydropower, hindering the collection of drinking water and decreasing the profitability of fishing. The vegetation serves as a habitat for disease carrying mosquitoes as well as snakes and snails that spread the parasitic disease bilharzia. The current control measures of invasive aquatic vegetation rely on biological, chemical and mechanical control. The objective of this study was to utilize remote sensing to map aquatic vegetation within Lake Victoria from 2000 to 2011. MODIS, Landsat 4-5TM, and Landsat 7-ETM imagery was employed to perform change detections in vegetation and identify the extent of aquatic vegetation throughout the years. The efficiency of containment efforts were evaluated and ideal time for application of such efforts were suggested. A methodology for aquatic vegetation surveillance was created. The results of this project were presented as a workshop to the Lake Victoria Fisheries Organization, SERVIR, and other partner organizations. The workshop provided instruction into the use of NASA and other satellite derived products. Time series animations of the spatial extent of aquatic vegetation within the lake were created. By identifying seasons of decreased aquatic vegetation, ideal times to employ control efforts were identified. SERVIR will subsequently utilize the methodologies and mapping results of this study to develop operational aquatic vegetation surveillance for Lake Victoria.

  13. Climate change expands the spatial extent and duration of preferred thermal habitat for lake Superior fishes.

    Directory of Open Access Journals (Sweden)

    Timothy J Cline

    Full Text Available Climate change is expected to alter species distributions and habitat suitability across the globe. Understanding these shifting distributions is critical for adaptive resource management. The role of temperature in fish habitat and energetics is well established and can be used to evaluate climate change effects on habitat distributions and food web interactions. Lake Superior water temperatures are rising rapidly in response to climate change and this is likely influencing species distributions and interactions. We use a three-dimensional hydrodynamic model that captures temperature changes in Lake Superior over the last 3 decades to investigate shifts in habitat size and duration of preferred temperatures for four different fishes. We evaluated habitat changes in two native lake trout (Salvelinus namaycush ecotypes, siscowet and lean lake trout, Chinook salmon (Oncorhynchus tshawytscha, and walleye (Sander vitreus. Between 1979 and 2006, days with available preferred thermal habitat increased at a mean rate of 6, 7, and 5 days per decade for lean lake trout, Chinook salmon, and walleye, respectively. Siscowet lake trout lost 3 days per decade. Consequently, preferred habitat spatial extents increased at a rate of 579, 495 and 419 km(2 per year for the lean lake trout, Chinook salmon, and walleye while siscowet lost 161 km(2 per year during the modeled period. Habitat increases could lead to increased growth and production for three of the four fishes. Consequently, greater habitat overlap may intensify interguild competition and food web interactions. Loss of cold-water habitat for siscowet, having the coldest thermal preference, could forecast potential changes from continued warming. Additionally, continued warming may render more suitable conditions for some invasive species.

  14. Traditional ecological knowledge reveals the extent of sympatric lake trout diversity and habitat preferences

    Directory of Open Access Journals (Sweden)

    Kia Marin

    2017-06-01

    Full Text Available Multidisciplinary approaches to conservation have become increasingly important in northern regions. Because many First Nations communities have relied on freshwater fish populations for essential food over millennia, community members often possess traditional ecological knowledge (TEK. We consulted Cree First Nation fishers to collate TEK for one of Canada's most important subsistence fishes (lake trout in Québec's largest lake (Mistassini, 2335 km2. We further integrated TEK with what was regionally known scientifically about the species, toward effective fisheries conservation. Cree fishers described a richer diversity of sympatric lake trout forms than did scientific research that was conducted simultaneously, based on color, size, fin accent patterns, scale texture and depth, and spatial preferences. Traditional ecological knowledge also provided descriptions of lake trout seasonal movements, spawning locations, and reproductive timing that were not captured by scientific research, and highlighted several concerns or temporal changes of import to future management initiatives. Our study highlights the wealth of TEK on harvested species in First Nations communities. It further illustrates how TEK can reveal not only distinctions within species of relevance to natural resource management and taxonomy, but also informs upon the extent of such population differentiation, thereby providing important conservation benefits for remote and northern regions.

  15. Role of rainwater induced subsurface flow in water-level dynamics and thermoerosion of shallow thermokarst ponds on the Northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Pan, X.; Yu, Q.; You, Y.

    2014-12-01

    Understanding hydrological and thermal regimes of thermokarst lakes is of great importance for predicting their responses to climate change. However, mechanism of water-level dynamics and associated thermal effects on thermoerosion of thermokarst lakes are still not well understood on the Qinghai-Tibet Plateau (QTP). In this study, we investigate two typical shallow thermokarst ponds (namely small lakes) in a warm permafrost region with thick active layer on the northeastern QTP through quantifying water budget. Results demonstrate that, rainfall induced subsurface lateral flow dominates pond water-level regime. Annual variation of pond water-level relies on areal water budget of surrounding active layer, particularly the high variable of precipitation. Besides, it is worth noting the extraordinary warming during the late ice-cover period, because marked air gap between upper ice-cover and underlying water, led by the upward thawing of thick ice-cover, might result in greenhouse-like condition due to the unique weather that strong solar radiation and little snowpack. This hydrological mechanism also exerts evident impacts on thermal regime and thermoerosion of the shallow thermokarst ponds, and they are closely related to retreat of thermokarst pondshore and underlying permafrost degradation. These findings imply a localized model addressing the unique hydrological and thermal regimes of thermokarst lakes would be essential to study the evolution of these shallow rainwater dominated thermokarst ponds on the QTP.

  16. Congener Patterns of Persistent Organic Pollutants Establish the Extent of Contaminant Biotransport by Pacific Salmon in the Great Lakes.

    Science.gov (United States)

    Gerig, Brandon S; Chaloner, Dominic T; Janetski, David J; Rediske, Richard R; O'Keefe, James P; Moerke, Ashley H; Lamberti, Gary A

    2016-01-19

    In the Great Lakes, introduced Pacific salmon (Oncorhynchus spp.) can transport persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), to new environments during their spawning migrations. To explore the nature and extent of POP biotransport by salmon, we compared 58 PCB and 6 PBDE congeners found in spawning salmon directly to those in resident stream fish. We hypothesized that stream fish exposed to salmon spawners would have congener patterns similar to those of salmon, the presumed contaminant source. Using permutational multivariate analysis of variance (PERMANOVA) and nonmetric multidimensional scaling (NMDS), we found that POP congener patterns of Pacific salmon varied among regions in the Great Lakes basin (i.e., Lake Huron, Lake Michigan, or Lake Superior), tissue type (whole fish or eggs), and contaminant type (PCB or PBDE). For stream-resident fish, POP congener pattern was influenced by the presence of salmon, location (i.e., Great Lakes Basin), and species identity (i.e., brook trout [Salvelinus fontinalis] or mottled sculpin [Cottus bairdii]). Similarity in congener patterns indicated that salmon are a source of POPs to brook trout in stream reaches receiving salmon spawners from Lake Michigan and Lake Huron but not from Lake Superior. Congener patterns of mottled sculpin differed from those of brook trout and salmon, suggesting that brook trout and mottled sculpin either use salmon tissue to differing degrees, acquire POPs from different dietary sources, or bioaccumulate or metabolize POPs differently. Overall, our analyses identified the important role of salmon in contaminant biotransport but also demonstrated that the extent of salmon-mediated POP transfer and uptake in Great Lakes tributaries is location- and species-specific.

  17. The deep chlorophyll layer in Lake Ontario: Extent, mechanisms of formation, and abiotic predictors

    Science.gov (United States)

    Scofield, Anne E.; Watkins, James M.; Weidel, Brian C.; Luckey, Frederick J.; Rudstam, Lars G.

    2017-01-01

    Epilimnetic production has declined in Lake Ontario, but increased production in metalimnetic deep chlorophyll layers (DCLs) may compensate for these losses. We investigated the spatial and temporal extent of DCLs, the mechanisms driving DCL formation, and the use of physical variables for predicting the depth and concentration of the deep chlorophyll maximum (DCM) during April–September 2013. A DCL with DCM concentrations 2 to 3 times greater than those in the epilimnion was present when the euphotic depth extended below the epilimnion, which occurred primarily from late June through mid-August. In situ growth was important for DCL formation in June and July, but settling and photoadaptation likely also contributed to the later-season DCL. Supporting evidence includes: phytoplankton biovolume was 2.4 × greater in the DCL than in the epilimnion during July, the DCL phytoplankton community of July was different from that of May and the July epilimnion (p = 0.004), and there were concurrences of DCM with maxima in fine particle concentration and dissolved oxygen saturation. Higher nutrient levels in the metalimnion may also be a necessary condition for DCL formation because July metalimnetic concentrations were 1.5 × (nitrate) and 3.5 × (silica) greater than in the epilimnion. Thermal structure variables including epilimnion depth, thermocline depth, and thermocline steepness were useful for predicting DCM depth; the inclusion of euphotic depth only marginally improved these predictions. However, euphotic depth was critical for predicting DCM concentrations. The DCL is a productive and predictable feature of the Lake Ontario ecosystem during the stratified period.

  18. Thermokarst and thaw-related landscape dynamics -- an annotated bibliography with an emphasis on potential effects on habitat and wildlife

    Science.gov (United States)

    Jones, Benjamin M.; Amundson, Courtney L.; Koch, Joshua C.; Grosse, Guido

    2013-01-01

    Permafrost has warmed throughout much of the Northern Hemisphere since the 1980s, with colder permafrost sites warming more rapidly (Romanovsky and others, 2010; Smith and others, 2010). Warming of the near-surface permafrost may lead to widespread terrain instability in ice-rich permafrost in the Arctic and the Subarctic, and may result in thermokarst development and other thaw-related landscape features (Jorgenson and others, 2006; Gooseff and others, 2009). Thermokarst and other thaw-related landscape features result from varying modes and scales of permafrost thaw, subsidence, and removal of material. An increase in active-layer depth, water accumulation on the soil surface, permafrost degradation and associated retreat of the permafrost table, and changes to lake shores and coastal bluffs act and interact to create thermokarst and other thaw-related landscape features (Shur and Osterkamp, 2007). There is increasing interest in the spatial and temporal dynamics of thermokarst and other thaw-related features from diverse disciplines including landscape ecology, hydrology, engineering, and biogeochemistry. Therefore, there is a need to synthesize and disseminate knowledge on the current state of near-surface permafrost terrain. The term "thermokarst" originated in the Russian literature, and its scientific use has varied substantially over time (Shur and Osterkamp, 2007). The modern definition of thermokarst refers to the process by which characteristic landforms result from the thawing of ice-rich permafrost or the melting of massive ice (van Everdingen, 1998), or, more specifically, the thawing of ice-rich permafrost and (or) melting of massive ice that result in consolidation and deformation of the soil surface and formation of specific forms of relief (Shur, 1988). Jorgenson (2013) identifies 23 distinct thermokarst and other thaw-related features in the Arctic, Subarctic, and Antarctic based primarily on differences in terrain condition, ground-ice volume

  19. Vegetation Index, Lake Vegetation Index Regions.This layer describes the spatial extent of the North and South Lake Vegetation Index (LVI) biological regions, as described in Fore et al. 2007, Assessing the Biological Condition of Florida Lakes: Development of the Lake Veg, Published in 2008, 1:24000 (1in=2000ft) scale, Florida Department of Environmental Protection (FDEP).

    Data.gov (United States)

    NSGIC State | GIS Inventory — Vegetation Index dataset current as of 2008. Lake Vegetation Index Regions.This layer describes the spatial extent of the North and South Lake Vegetation Index (LVI)...

  20. Spatial extent and dissipation of the deep chlorophyll layer in Lake Ontario during the Lake Ontario lower foodweb assessment, 2003 and 2008

    Science.gov (United States)

    Watkins, J. M.; Weidel, Brian M.; Rudstam, L. G.; Holek, K. T.

    2014-01-01

    Increasing water clarity in Lake Ontario has led to a vertical redistribution of phytoplankton and an increased importance of the deep chlorophyll layer in overall primary productivity. We used in situ fluorometer profiles collected in lakewide surveys of Lake Ontario in 2008 to assess the spatial extent and intensity of the deep chlorophyll layer. In situ fluorometer data were corrected with extracted chlorophyll data using paired samples from Lake Ontario collected in August 2008. The deep chlorophyll layer was present offshore during the stratified conditions of late July 2008 with maximum values from 4-13 μg l-1 corrected chlorophyll a at 10 to 17 m depth within the metalimnion. Deep chlorophyll layer was closely associated with the base of the thermocline and a subsurface maximum of dissolved oxygen, indicating the feature's importance as a growth and productivity maximum. Crucial to the deep chlorophyll layer formation, the photic zone extended deeper than the surface mixed layer in mid-summer. The layer extended through most of the offshore in July 2008, but was not present in the easternmost transect that had a deeper surface mixed layer. By early September 2008, the lakewide deep chlorophyll layer had dissipated. A similar formation and dissipation was observed in the lakewide survey of Lake Ontario in 2003.

  1. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity

    Science.gov (United States)

    Schneider von Deimling, T.; Grosse, G.; Strauss, J.; Schirrmeister, L.; Morgenstern, A.; Schaphoff, S.; Meinshausen, M.; Boike, J.

    2015-06-01

    High-latitude soils store vast amounts of perennially frozen and therefore inert organic matter. With rising global temperatures and consequent permafrost degradation, a part of this carbon stock will become available for microbial decay and eventual release to the atmosphere. We have developed a simplified, two-dimensional multi-pool model to estimate the strength and timing of future carbon dioxide (CO2) and methane (CH4) fluxes from newly thawed permafrost carbon (i.e. carbon thawed when temperatures rise above pre-industrial levels). We have especially simulated carbon release from deep deposits in Yedoma regions by describing abrupt thaw under newly formed thermokarst lakes. The computational efficiency of our model allowed us to run large, multi-centennial ensembles under various scenarios of future warming to express uncertainty inherent to simulations of the permafrost carbon feedback. Under moderate warming of the representative concentration pathway (RCP) 2.6 scenario, cumulated CO2 fluxes from newly thawed permafrost carbon amount to 20 to 58 petagrams of carbon (Pg-C) (68% range) by the year 2100 and reach 40 to 98 Pg-C in 2300. The much larger permafrost degradation under strong warming (RCP8.5) results in cumulated CO2 release of 42 to 141 Pg-C and 157 to 313 Pg-C (68% ranges) in the years 2100 and 2300, respectively. Our estimates only consider fluxes from newly thawed permafrost, not from soils already part of the seasonally thawed active layer under pre-industrial climate. Our simulated CH4 fluxes contribute a few percent to total permafrost carbon release yet they can cause up to 40% of total permafrost-affected radiative forcing in the 21st century (upper 68% range). We infer largest CH4 emission rates of about 50 Tg-CH4 per year around the middle of the 21st century when simulated thermokarst lake extent is at its maximum and when abrupt thaw under thermokarst lakes is taken into account. CH4 release from newly thawed carbon in wetland

  2. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity

    Directory of Open Access Journals (Sweden)

    T. Schneider von Deimling

    2015-06-01

    Full Text Available High-latitude soils store vast amounts of perennially frozen and therefore inert organic matter. With rising global temperatures and consequent permafrost degradation, a part of this carbon stock will become available for microbial decay and eventual release to the atmosphere. We have developed a simplified, two-dimensional multi-pool model to estimate the strength and timing of future carbon dioxide (CO2 and methane (CH4 fluxes from newly thawed permafrost carbon (i.e. carbon thawed when temperatures rise above pre-industrial levels. We have especially simulated carbon release from deep deposits in Yedoma regions by describing abrupt thaw under newly formed thermokarst lakes. The computational efficiency of our model allowed us to run large, multi-centennial ensembles under various scenarios of future warming to express uncertainty inherent to simulations of the permafrost carbon feedback. Under moderate warming of the representative concentration pathway (RCP 2.6 scenario, cumulated CO2 fluxes from newly thawed permafrost carbon amount to 20 to 58 petagrams of carbon (Pg-C (68% range by the year 2100 and reach 40 to 98 Pg-C in 2300. The much larger permafrost degradation under strong warming (RCP8.5 results in cumulated CO2 release of 42 to 141 Pg-C and 157 to 313 Pg-C (68% ranges in the years 2100 and 2300, respectively. Our estimates only consider fluxes from newly thawed permafrost, not from soils already part of the seasonally thawed active layer under pre-industrial climate. Our simulated CH4 fluxes contribute a few percent to total permafrost carbon release yet they can cause up to 40% of total permafrost-affected radiative forcing in the 21st century (upper 68% range. We infer largest CH4 emission rates of about 50 Tg-CH4 per year around the middle of the 21st century when simulated thermokarst lake extent is at its maximum and when abrupt thaw under thermokarst lakes is taken into account. CH4 release from newly thawed carbon in

  3. Quantifying the Variability of CH4 Emissions from Pan-Arctic Lakes with Lake Biogeochemical and Landscape Evolution Models

    Science.gov (United States)

    Tan, Z.; Zhuang, Q.

    2014-12-01

    Recent studies in the arctic and subarctic show that CH4 emissions from pan-arctic lakes are playing much more significant roles in the regional carbon cycling than previously estimated. Permafrost thawing due to pronounced warming at northern high latitudes affects lake morphology, changing its CH4 emissions. Thermokarst can enlarge the extent of artic lakes, exposing stable ancient carbon buried in the permafrost zone for degradation and changing a previously known carbon sink to a large carbon source. In some areas, the thawing of subarctic discontinuous and isolated permafrost can diminish thermokarst lakes. To date, few models have considered these important hydrological and biogeochemical processes to provide adequate estimation of CH4 emissions from these lakes. To fill this gap, we have developed a process-based climate-sensitive lake biogeochemical model and a landscape evolution model, which have been applied to quantify the state and variability of CH4 emissions from this freshwater system. Site-level experiments show the models are capable to capture the spatial and temporal variability of CH4 emissions from lakes across Siberia and Alaska. With the lake biogeochemical model solely, we estimate that the magnitude of CH4 emissions from lakes is 13.2 Tg yr-1 in the north of 60 ºN at present, which is on the same order of CH4 emissions from northern high-latitude wetlands. The maximum increment is 11.8 Tg CH4 yr-1 by the end of the 21st century when the worst warming scenario is assumed. We expect the landscape evolution model will improve the existing estimates.

  4. Recent dynamics of hydro-ecosystems in thermokarst depressions in Central Siberia from satellite and in situ observations: Importance for agriculture and human life.

    Science.gov (United States)

    Zakharova, Elena A; Kouraev, Alexei V; Stephane, Guillaso; Franck, Garestier; Desyatkin, Roman V; Desyatkin, Alexey R

    2018-02-15

    Alases, which are thermokarst depressions that are occupied by grasslands and lakes, are an important element of the Central Yakutian periglacial landscape. In recent decades, climatic changes in Central Yakutia have resulted in important changes in environmental conditions. We use different remote-sensing instruments (Landsat 8, TerraSAR-X, ENVISAT-RA2, and Jason-2) alongside in situ observations to investigate 1) the spatial distribution and water regime of alas lakes and their relationships with climatic and geomorphologic factors, 2) the relationship of the alas' grassland productivity with the water regime and 3) the potential of alas grasslands for local agriculture. During the 2002-2010 period, the lake water level rose by 1.3m on average, resulting in lake expansion throughout the region. Since 2011, the lake area decreased and the water level declined by 70cm on the middle terraces (low ground-ice content), while the wetting trend continued until 2016 at higher elevations. Small thermokarst lakes (local agriculture, which is based on horse and cattle breeding. We estimate that these alas grasslands can provide enough forage supply for local communities. However, the real alas yield is several times less than the theoretical value because of grassland degradation that is caused by recent thermokarst and waterlogging in the most productive phytocenosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Analyzing the extents of Basaka Lake expansion and soil and water quality status of Matahara irrigation scheme, Awash Basin (Ethiopia)

    International Nuclear Information System (INIS)

    Olumana Dinka, M.

    2010-01-01

    Basaka Lake, unlike most of the other terminal Lakes in Main Ethiopian Rift, is expanding at substantial rate. Its expansion is particular concern owing to its poor water quality. Different studies were conducted on Basaka Lake, but none of them addressed the complex Lake water balance components at different hydrologic periods and come up with decisive backgrounds for the cause and its potential damaging effect. The current study attempted to analyze the expansion of Basaka Lake since 1960s from Landsat images and other ancillary data and then assess the potential cause through conceptual water balance modeling. The work required combined use of remote sensing, GIS and hydrologic models. The decadal land use-land cover change (LUCC) was mapped and its effects on the hydrologic processes (runoff, soil loss and sedimentation) of the lake catchment were estimated. A conceptual Lake water balance model was systematically formulated, solved, calibrated and validated. Groundwater flux model was then developed as function of the other water balance components. Generally, a tremendous expansion of Basaka Lake, degradation of soil and water quality status at Matahara Sugar Estate (MSE), rapid LUCC and the resulting changes in the regimes of hydrologic processes in the Lake catchment are observed. These problems revealed the need for urgent mitigation measures. Therefore, sustainable Lake management measures that could minimize its potential environmental threats are suggested. Moreover, correcting measures that could reduce, if not prevented, the potential impacts of waterlogging and its allied problems at MSE are suggested. (author) [de

  6. Expanded spatial extent of the Medieval Climate Anomaly revealed in lake-sediment records across the boreal region in northwest Ontario.

    Science.gov (United States)

    Laird, Kathleen R; Haig, Heather A; Ma, Susan; Kingsbury, Melanie V; Brown, Thomas A; Lewis, C F Michael; Oglesby, Robert J; Cumming, Brian F

    2012-09-01

    Multi-decadal to centennial-scale shifts in effective moisture over the past two millennia are inferred from sedimentary records from six lakes spanning a ~250 km region in northwest Ontario. This is the first regional application of a technique developed to reconstruct drought from drainage lakes (open lakes with surface outlets). This regional network of proxy drought records is based on individual within-lake calibration models developed using diatom assemblages collected from surface sediments across a water-depth gradient. Analysis of diatom assemblages from sediment cores collected close to the near-shore ecological boundary between benthic and planktonic diatom taxa indicated this boundary shifted over time in all lakes. These shifts are largely dependent on climate-driven influences, and can provide a sensitive record of past drought. Our lake-sediment records indicate two periods of synchronous signals, suggesting a common large-scale climate forcing. The first is a period of prolonged aridity during the Medieval Climate Anomaly (MCA, c. 900-1400 CE). Documentation of aridity across this region expands the known spatial extent of the MCA megadrought into a region that historically has not experienced extreme droughts such as those in central and western north America. The second synchronous period is the recent signal of the past ~100 years, which indicates a change to higher effective moisture that may be related to anthropogenic forcing on climate. This approach has the potential to fill regional gaps, where many previous paleo-lake depth methods (based on deeper centrally located cores) were relatively insensitive. By filling regional gaps, a better understanding of past spatial patterns in drought can be used to assess the sensitivity and realism of climate model projections of future climate change. This type of data is especially important for validating high spatial resolution, regional climate models. © 2012 Blackwell Publishing Ltd.

  7. The regional abundance and size distribution of lakes and reservoirs in the United States and implication for estimates of global lake extent

    Science.gov (United States)

    McDonald, Cory P.; Rover, Jennifer; Stets, Edward G.; Striegl, Robert G.

    2012-01-01

    We analyzed complete geospatial data for the 3.5 million lakes and reservoirs larger than 0.001 km2, with a combined surface area of 131,000 km2, in the contiguous United States (excluding the Laurentian Great Lakes) and identified their regional distribution characteristics. For Alaska, we also analyzed (1) incomplete data that suggest that the state contains 1–2.5 million lakes larger than 0.001 km2 covering over 50,000 km2 and (2) localized high-resolution (5 m) data that suggest that the number of very small water bodies ( 0.001 km2 in some areas. The Pareto distribution cannot accurately describe the lake abundance-size relationship across the entire size spectrum, and extrapolation of this density function to small size classes has likely resulted in the overestimation of the number of small lakes in the world. While small water bodies dominate in terms of numbers, they are not numerous enough to dominate in terms of surface area, as has been previously suggested. Extending our results to the global scale suggests that there are on the order of 64 million water bodies larger than 0.001 km2 in the world, with a total surface area of approximately 3.8 million km2.

  8. Evaluation of Green-LiDAR Data for Mapping Extent, Density and Height of Aquatic Reed Beds at Lake Chiemsee, Bavaria—Germany

    Directory of Open Access Journals (Sweden)

    Nicolás Corti Meneses

    2017-12-01

    Full Text Available Aquatic reed is an important indicator for the ecological assessment of freshwater lakes. Monitoring is essential to document its expansion or deterioration and decline. The applicability of Green-LiDAR data for the status assessment of aquatic reed beds of Bavarian freshwater lakes was investigated. The study focused on mapping diagnostic structural parameters of aquatic reed beds by exploring 3D data provided by the Green-LiDAR system. Field observations were conducted over 14 different areas of interest along 152 cross-sections. The data indicated the morphologic and phenologic traits of aquatic reed, which were used for validation purposes. For the automatic classification of aquatic reed bed spatial extent, density and height, a rule-based algorithm was developed. LiDAR data allowed for the delimitating of the aquatic reed frontline, as well as shoreline, and therefore an accurate quantification of extents (Hausdorff distance = 5.74 m and RMSE of cross-sections length 0.69 m. The overall accuracy measured for aquatic reed bed density compared to the simultaneously recorded aerial imagery was 96% with a Kappa coefficient of 0.91 and 72% (Kappa = 0.5 compared to field measurements. Digital Surface Models (DSM, calculated from point clouds, similarly showed a high level of agreement in derived heights of flat surfaces (RMSE = 0.1 m and showed an adequate agreement of aquatic reed heights with evenly distributed errors (RMSE = 0.8 m. Compared to field measurements, aerial laser scanning delivered valuable information with no disturbance of the habitat. Analysing data with our classification procedure improved the efficiency, reproducibility, and accuracy of the quantification and monitoring of aquatic reed beds.

  9. Temporal Behavior of Lake Size-Distribution in a Thawing Permafrost Landscape in Northwestern Siberia

    Directory of Open Access Journals (Sweden)

    Johanna Mård Karlsson

    2014-01-01

    Full Text Available Arctic warming alters regional hydrological systems, as permafrost thaw increases active layer thickness and in turn alters the pathways of water flow through the landscape. Further, permafrost thaw may change the connectivity between deeper and shallower groundwater and surface water altering the terrestrial water balance and distribution. Thermokarst lakes and wetlands in the Arctic offer a window into such changes as these landscape elements depend on permafrost and are some of the most dynamic and widespread features in Arctic lowland regions. In this study we used Landsat remotely sensed imagery to investigate potential shifts in thermokarst lake size-distributions, which may be brought about by permafrost thaw, over three distinct time periods (1973, 1987–1988, and 2007–2009 in three hydrological basins in northwestern Siberia. Results revealed fluctuations in total area and number of lakes over time, with both appearing and disappearing lakes alongside stable lakes. On the whole basin scales, there is no indication of any sustained long-term change in thermokarst lake area or lake size abundance over time. This statistical temporal consistency indicates that spatially variable change effects on local permafrost conditions have driven the individual lake changes that have indeed occurred over time. The results highlight the importance of using multi-temporal remote sensing data that can reveal complex spatiotemporal variations distinguishing fluctuations from sustained change trends, for accurate interpretation of thermokarst lake changes and their possible drivers in periods of climate and permafrost change.

  10. Influence of permafrost on lake terraces of Lake Heihai (NE Tibetan Plateau)

    Science.gov (United States)

    Lockot, Gregori; Hartmann, Kai; Wünnemann, Bernd

    2013-04-01

    The Tibetan Plateau (TP) is one of the key regions for climatic global change. Besides the poles the TP is the third highest storage of frozen water in glaciers. Here global warming is three times higher than in the rest of the world. Additionally the TP provides water for billions of people and influences the moisture availability from the Indian and East Asian monsoon systems. During the Holocene extent and intensity of the monsoonal systems changed. Hence, in the last decades, a lot of work was done to reconstruct timing and frequency of monsoonal moisture, to understand the past and give a better forecast for the future. Comparative workings often show very heterogeneous patterns of timing and frequency of the Holocene precipitation and temperature maximum, emphasizing the local importance of catchment dynamics. In this study we present first results of lake Heihai (36°N, 93°15'E, 4500m a.s.l.), situated at the north-eastern border of the TP. The lake is surrounded by a broad band of near-shore lake sediments, attesting a larger lake extent in the past. These sediments were uplifted by permafrost, reaching nowadays heights ca. +8 meters above present lake level. Due to the uplift one of the main inflows was blocked and the whole hydrology of the catchment changed. To quantify the uplift of permafrost Hot Spot Analysis were accomplished at a DEM of the near-shore area. As a result regions of high permafrost uplift and those which mirror the original height of lake ground were revealed. The most obvious uplift took place in the northern and western part of the lake, where the four uplift centers are located. In contrast the southern and eastern areas show a rather degraded pattern (probably by fluvial erosion, thermokarst, etc.). The ancient lake bottom, without permafrost uplift was estimated to be 4-6 meters above the modern lake level. For a better understanding of permafrost interaction inside the terrace bodies a 5m sediment profile was sampled and

  11. Accelerating Thermokarst Transforms Ice-Cored Terrain Triggering a Downstream Cascade to the Ocean

    Science.gov (United States)

    Rudy, A. C. A.; Lamoureux, S. F.; Kokelj, S. V.; Smith, I. R.; England, J. H.

    2017-11-01

    Recent climate warming has activated the melt-out of relict massive ice in permafrost-preserved moraines throughout the western Canadian Arctic. This ice that has persisted since the last glaciation, buried beneath as little as 1 m of overburden, is now undergoing accelerated permafrost degradation and thermokarst. Here we document recent and intensifying thermokarst activity on eastern Banks Island that has increased the fluvial transport of sediments and solutes to the ocean. Isotopic evidence demonstrates that a major contribution to discharge is melt of relict ground ice, resulting in a significant hydrological input from thermokarst augmenting summer runoff. Accelerated thermokarst is transforming the landscape and the summer hydrological regime and altering the timing of terrestrial to marine and lacustrine transfers over significant areas of the western Canadian Arctic. The intensity of the landscape changes demonstrates that regions of cold, continuous permafrost are undergoing irreversible alteration, unprecedented since deglaciation ( 13 cal kyr B.P.).

  12. Methane bubbling from northern lakes: present and future contributions to the global methane budget.

    Science.gov (United States)

    Walter, Katey M; Smith, Laurence C; Chapin, F Stuart

    2007-07-15

    Large uncertainties in the budget of atmospheric methane (CH4) limit the accuracy of climate change projections. Here we describe and quantify an important source of CH4 -- point-source ebullition (bubbling) from northern lakes -- that has not been incorporated in previous regional or global methane budgets. Employing a method recently introduced to measure ebullition more accurately by taking into account its spatial patchiness in lakes, we estimate point-source ebullition for 16 lakes in Alaska and Siberia that represent several common northern lake types: glacial, alluvial floodplain, peatland and thermokarst (thaw) lakes. Extrapolation of measured fluxes from these 16 sites to all lakes north of 45 degrees N using circumpolar databases of lake and permafrost distributions suggests that northern lakes are a globally significant source of atmospheric CH4, emitting approximately 24.2+/-10.5Tg CH4yr(-1). Thermokarst lakes have particularly high emissions because they release CH4 produced from organic matter previously sequestered in permafrost. A carbon mass balance calculation of CH4 release from thermokarst lakes on the Siberian yedoma ice complex suggests that these lakes alone would emit as much as approximately 49000Tg CH4 if this ice complex was to thaw completely. Using a space-for-time substitution based on the current lake distributions in permafrost-dominated and permafrost-free terrains, we estimate that lake emissions would be reduced by approximately 12% in a more probable transitional permafrost scenario and by approximately 53% in a 'permafrost-free' Northern Hemisphere. Long-term decline in CH4 ebullition from lakes due to lake area loss and permafrost thaw would occur only after the large release of CH4 associated thermokarst lake development in the zone of continuous permafrost.

  13. New age constraints for the Saalian glaciation in northern central Europe: Implications for the extent of ice sheets and related proglacial lake systems

    Science.gov (United States)

    Lang, Jörg; Lauer, Tobias; Winsemann, Jutta

    2018-01-01

    A comprehensive palaeogeographic reconstruction of ice sheets and related proglacial lake systems for the older Saalian glaciation in northern central Europe is presented, which is based on the integration of palaeo-ice flow data, till provenance, facies analysis, geomorphology and new luminescence ages of ice-marginal deposits. Three major ice advances with different ice-advance directions and source areas are indicated by palaeo-ice flow directions and till provenance. The first ice advance was characterised by a southwards directed ice flow and a dominance of clasts derived from southern Sweden. The second ice advance was initially characterised by an ice flow towards the southwest. Clasts are mainly derived from southern and central Sweden. The latest stage in the study area (third ice advance) was characterised by ice streaming (Hondsrug ice stream) in the west and a re-advance in the east. Clasts of this stage are mainly derived from eastern Fennoscandia. Numerical ages for the first ice advance are sparse, but may indicate a correlation with MIS 8 or early MIS 6. New pIRIR290 luminescence ages of ice-marginal deposits attributed to the second ice advance range from 175 ± 10 to 156 ± 24 ka and correlate with MIS 6. The ice sheets repeatedly blocked the main river-drainage pathways and led to the formation of extensive ice-dammed lakes. The formation of proglacial lakes was mainly controlled by ice-damming of river valleys and major bedrock spillways; therefore the lake levels and extends were very similar throughout the repeated ice advances. During deglaciation the lakes commonly increased in size and eventually drained successively towards the west and northwest into the Lower Rhine Embayment and the North Sea. Catastrophic lake-drainage events occurred when large overspill channels were suddenly opened. Ice-streaming at the end of the older Saalian glaciation was probably triggered by major lake-drainage events.

  14. Variety, State and Origin of Drained Thaw Lake Basins in West-Siberian North

    Science.gov (United States)

    Kirpotin, S.; Polishchuk, Y.; Bryksina, N.; Sugaipova, A.; Pokrovsky, O.; Shirokova, L.; Kouraev, A.; Zakharova, E.; Kolmakova, M.; Dupre, B.

    2009-04-01

    repeated permafrost heaving from small declustered frozen mounds to recovery of palsa plateaus due to growing and merging of isolated mounds. It was shown that satellite altimetry, which was applied for the first time in permafrost zone in the framework of Russian-French project CAR-WET-SIB, is a prospective method to study lakes and khasyreis state and dynamic. References [1] Kirpotin S.N., Naumov A .V., Vorobiov S.N., Mironycheva-Tokareva N.P., Kosych N.P., Lapshina E.D., Marquand J., Kulizhski S.P., Bleuten W. 2007. Western-Siberian Peatlands: Indicators of Climate Change and Their Role in Global Carbon Balance. Chapter 33 in Climate Change and Terrestrial Carbon Sequestration in Central Asia / edited by R.Lal, M.Suleimenov, B.A.Stewart, D.O.Hansen, and P.Doraiswamy, Taylor and Francis, Amsterdam, Holland, pp. 453-472. [2] Kirpotin S., Polishchuk Yu., Zakharova E., Shirokova L., Pokrovsky O., Kolmakova M., Dupre B. 2008. One of Possible Mechanisms of Thermokarst Lakes Drainage in West-Siberian North // International Journal of Environmental Studies. Vol.65, No 5, October 2008, 631-635. [3] Smith, L.C., Sheng, Y., McDonald, G.M., Hinzman, L.D. 2005. Disappearing Arctic Lakes, Science, 308, 1429 [4] Hinkel, K.M., Eisner, W.R., Bockheim, J.G., Nelson, F.E., Peterson, K.M., and Dai, X. 2003. Spatial Extent, Age, and Carbon Stoks in Drained Thaw Lake Basins on the Barrow Peninsula. Alaska. Arctic, Antarctic, and Alpine Research, 35, 3, 291-300.

  15. AL:PE Acidification of mountain lakes: Palaeolimnology and Ecology. Part 2. - Extention. Final report to the Norwegian Research Council; AL:PE Acidification of mountain lakes: palaeolimnology and ecology. Part 2 - Utvidelse. Sluttrapport til Norges forskningsraad

    Energy Technology Data Exchange (ETDEWEB)

    Wathne, B M; Rosseland, B O; Lien, L

    1996-09-01

    Alpine and arctic regions, the least affected areas of Europe, are threatened by acid precipitation and long-range pollution. The international project discussed in this report was started to assess the conditions for alpine or arctic lakes, chemically and biologically combined with analyses of sediment cores. The work was done on lakes of various degrees of acidification and the results may be used to evaluate how fast the environment is changing, in what direction, and biological effects. The AL:PE project is the first comprehensive study of alpine lakes on a European level. The project was financed through EU`s research programme combined with funds from the participating countries. The project, which is now finally ending after 5 years of activity, is briefly surveyed in the report. One of the conclusions is that contamination from long-range pollutants can be found in even the most outlying places. 58 refs., 106 figs., 58 tabs.

  16. Response of CO2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development

    Science.gov (United States)

    Jason Vogel; Edward A.G. Schuur; Christian Trucco; Hanna. Lee

    2009-01-01

    Climate change in high latitudes can lead to permafrost thaw, which in ice-rich soils can result in ground subsidence, or thermokarst. In interior Alaska, we examined seasonal and annual ecosystem CO2 exchange using static and automatic chamber measurements in three areas of a moist acidic tundra ecosystem undergoing varying degrees of permafrost...

  17. Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska

    Science.gov (United States)

    Kanevskiy, Mikhail; Shur, Yuri; Jorgenson, Torre; Brown, Dana R. N.; Moskalenko, Nataliya; Brown, Jerry; Walker, Donald A.; Raynolds, Martha K.; Buchhorn, Marcel

    2017-11-01

    Widespread degradation of ice wedges has been observed during the last decades in numerous areas within the continuous permafrost zone of Eurasia and North America. To study ice-wedge degradation, we performed field investigations at Prudhoe Bay and Barrow in northern Alaska during 2011-2016. In each study area, a 250-m transect was established with plots representing different stages of ice-wedge degradation/stabilization. Field work included surveying ground- and water-surface elevations, thaw-depth measurements, permafrost coring, vegetation sampling, and ground-based LiDAR scanning. We described cryostratigraphy of frozen soils and stable isotope composition, analyzed environmental characteristics associated with ice-wedge degradation and stabilization, evaluated the vulnerability and resilience of ice wedges to climate change and disturbances, and developed new conceptual models of ice-wedge dynamics that identify the main factors affecting ice-wedge degradation and stabilization and the main stages of this quasi-cyclic process. We found significant differences in the patterns of ice-wedge degradation and stabilization between the two areas, and the patterns were more complex than those previously described because of the interactions of changing topography, water redistribution, and vegetation/soil responses that can interrupt or reinforce degradation. Degradation of ice wedges is usually triggered by an increase in the active-layer thickness during exceptionally warm and wet summers or as a result of flooding or disturbance. Vulnerability of ice wedges to thermokarst is controlled by the thickness of the intermediate layer of the upper permafrost, which overlies ice wedges and protects them from thawing. In the continuous permafrost zone, degradation of ice wedges rarely leads to their complete melting; and in most cases wedges eventually stabilize and can then resume growing, indicating a somewhat cyclic and reversible process. Stabilization of ice wedges

  18. Monitoring Bedfast Ice and Ice Phenology in Lakes of the Lena River Delta Using TerraSAR-X Backscatter and Coherence Time Series

    Directory of Open Access Journals (Sweden)

    Sofia Antonova

    2016-11-01

    Full Text Available Thermokarst lakes and ponds are major elements of permafrost landscapes, occupying up to 40% of the land area in some Arctic regions. Shallow lakes freeze to the bed, thus preventing permafrost thaw underneath them and limiting the length of the period with greenhouse gas production in the unfrozen lake sediments. Radar remote sensing permits to distinguish lakes with bedfast ice due to the difference in backscatter intensities from bedfast and floating ice. This study investigates the potential of a unique time series of three-year repeat-pass TerraSAR-X (TSX imagery with high temporal (11 days and spatial (10 m resolution for monitoring bedfast ice as well as ice phenology of lakes in the zone of continuous permafrost in the Lena River Delta, Siberia. TSX backscatter intensity is shown to be an excellent tool for monitoring floating versus bedfast lake ice as well as ice phenology. TSX-derived timing of ice grounding and the ice growth model CLIMo are used to retrieve the ice thicknesses of the bedfast ice at points where in situ ice thickness measurements were available. Comparison shows good agreement in the year of field measurements. Additionally, for the first time, an 11-day sequential interferometric coherence time series is analyzed as a supplementary approach for the bedfast ice monitoring. The coherence time series detects most of the ice grounding as well as spring snow/ice melt onset. Overall, the results show the great value of TSX time series for monitoring Arctic lake ice and provide a basis for various applications: for instance, derivation of shallow lakes bathymetry, evaluation of winter water resources and locating fish winter habitat as well as estimation of taliks extent in permafrost.

  19. Relict thermokarst carbon source kept stable within gas hydrate stability zone of the South Kara Sea

    Science.gov (United States)

    Portnov, A.; Mienert, J.; Winsborrow, M.; Vadakkepuliyambatta, S.; Semenov, P.

    2017-12-01

    Substantial shallow sources of carbon can exist in the South Kara Sea shelf, extending offshore from the permafrost areas of Yamal Peninsula and the Polar Ural coast. Our study presents new evidence for >250 buried relict thermokarst units. These amalgamated thawing wedges formed in the uppermost permafrost of the past and are still recognizable in today's non-permafrost areas. Part of these potential carbon reservoirs are kept stable within the South Kara Sea gas hydrate stability zone (GHSZ). We utilize an extensive 2D high-resolution seismic dataset, collected in the South Kara Sea in 2005-2006 by Marine Arctic Geological Expedition (MAGE), to map distinctive U-shaped units that are acoustically transparent. These units appear all over the study area in water depths 50-250 m. Created by thermal erosion into Cretaceous-Paleogene bedrock, they are buried under the younger glacio-marine deposits and reach hundreds of meters wide and up to 100 meters thick. They show the characteristics of relict thermokarst, generated during ancient episode(s) of sea level regression of the South Kara Sea. These thermokarst units are generally limited by the Upper Regional Unconformity, which is an erosional horizon created by several glaciation events during the Pleistocene. On land, permafrost is known to sequester large volumes of carbon, half of which is concentrated within thermokarst structures. Based on modern thermokarst analogues we demonstrate with our study that a significant amount of organic carbon can be stored under the Kara Sea. To assess the stability of these shallow carbon reservoirs we carried out GHSZ modeling, constrained by geochemical analyses, temperature measurements and precise bathymetry. This revealed a significant potential for a GHSZ in water depths >225 m. The relict thermokast carbon storage system is stable under today's extremely low bottom water temperatures ( -1.7 °C) that allows for buried GHSZ, located tens of meters below the seabed

  20. Post-fire Thermokarst Development Along a Planned Road Corridor in Arctic Alaska

    Science.gov (United States)

    Jones, B. M.; Grosse, G.; Larsen, C. F.; Hayes, D. J.; Arp, C. D.; Liu, L.; Miller, E.

    2015-12-01

    Wildfire disturbance in northern high latitude regions is an important factor contributing to ecosystem and landscape change. In permafrost influenced terrain, fire may initiate thermokarst development which impacts hydrology, vegetation, wildlife, carbon storage and infrastructure. In this study we differenced two airborne LiDAR datasets that were acquired in the aftermath of the large and severe Anaktuvuk River tundra fire, which in 2007 burned across a proposed road corridor in Arctic Alaska. The 2009 LiDAR dataset was acquired by the Alaska Department of Transportation in preparation for construction of a gravel road that would connect the Dalton Highway with the logistical camp of Umiat. The 2014 LiDAR dataset was acquired by the USGS to quantify potential post-fire thermokarst development over the first seven years following the tundra fire event. By differencing the two 1 m resolution digital terrain models, we measured permafrost thaw subsidence across 34% of the burned tundra area studied, and observed less than 1% in similar, undisturbed tundra terrain units. Ice-rich, yedoma upland terrain was most susceptible to thermokarst development following the disturbance, accounting for 50% of the areal and volumetric change detected, with some locations subsiding more than six meters over the study period. Calculation of rugosity, or surface roughness, in the two datasets showed a doubling in microtopography on average across the burned portion of the study area, with a 340% increase in yedoma upland terrain. An additional LiDAR dataset was acquired in April 2015 to document the role of thermokarst development on enhanced snow accumulation and subsequent snowmelt runoff within the burn area. Our findings will enable future vulnerability assessments of ice-rich permafrost terrain as a result of shifting disturbance regimes. Such assessments are needed to address questions focused on the impact of permafrost degradation on physical, ecological, and socio

  1. Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia

    Science.gov (United States)

    Fuchs, Matthias; Grosse, Guido; Strauss, Jens; Günther, Frank; Grigoriev, Mikhail; Maximov, Georgy M.; Hugelius, Gustaf

    2018-02-01

    Ice-rich yedoma-dominated landscapes store considerable amounts of organic carbon (C) and nitrogen (N) and are vulnerable to degradation under climate warming. We investigate the C and N pools in two thermokarst-affected yedoma landscapes - on Sobo-Sise Island and on Bykovsky Peninsula in the north of eastern Siberia. Soil cores up to 3 m depth were collected along geomorphic gradients and analysed for organic C and N contents. A high vertical sampling density in the profiles allowed the calculation of C and N stocks for short soil column intervals and enhanced understanding of within-core parameter variability. Profile-level C and N stocks were scaled to the landscape level based on landform classifications from 5 m resolution, multispectral RapidEye satellite imagery. Mean landscape C and N storage in the first metre of soil for Sobo-Sise Island is estimated to be 20.2 kg C m-2 and 1.8 kg N m-2 and for Bykovsky Peninsula 25.9 kg C m-2 and 2.2 kg N m-2. Radiocarbon dating demonstrates the Holocene age of thermokarst basin deposits but also suggests the presence of thick Holocene-age cover layers which can reach up to 2 m on top of intact yedoma landforms. Reconstructed sedimentation rates of 0.10-0.57 mm yr-1 suggest sustained mineral soil accumulation across all investigated landforms. Both yedoma and thermokarst landforms are characterized by limited accumulation of organic soil layers (peat). We further estimate that an active layer deepening of about 100 cm will increase organic C availability in a seasonally thawed state in the two study areas by ˜ 5.8 Tg (13.2 kg C m-2). Our study demonstrates the importance of increasing the number of C and N storage inventories in ice-rich yedoma and thermokarst environments in order to account for high variability of permafrost and thermokarst environments in pan-permafrost soil C and N pool estimates.

  2. Permafrost thaw and intense thermokarst activity decreases abundance of stream benthic macroinvertebrates.

    Science.gov (United States)

    Chin, Krista S; Lento, Jennifer; Culp, Joseph M; Lacelle, Denis; Kokelj, Steven V

    2016-08-01

    Intensification of permafrost thaw has increased the frequency and magnitude of large permafrost slope disturbances (mega slumps) in glaciated terrain of northwestern Canada. Individual thermokarst disturbances up to 40 ha in area have made large volumes of previously frozen sediments available for leaching and transport to adjacent streams, significantly increasing sediment and solute loads in these systems. To test the effects of this climate-sensitive disturbance regime on the ecology of Arctic streams, we explored the relationship between physical and chemical variables and benthic macroinvertebrate communities in disturbed and undisturbed stream reaches in the Peel Plateau, Northwest Territories, Canada. Highly disturbed and undisturbed stream reaches differed with respect to taxonomic composition and invertebrate abundance. Minimally disturbed reaches were not differentiated by these variables but rather were distributed along a disturbance gradient between highly disturbed and undisturbed sites. In particular, there was evidence of a strong negative relationship between macroinvertebrate abundance and total suspended solids, and a positive relationship between abundance and the distance from the disturbance. Increases in both sediments and nutrients appear to be the proximate cause of community differences in highly disturbed streams. Declines in macroinvertebrate abundance in response to slump activity have implications for the food webs of these systems, potentially leading to negative impacts on higher trophic levels, such as fish. Furthermore, the disturbance impacts on stream health can be expected to intensify as climate change increases the frequency and magnitude of thermokarst. © 2016 John Wiley & Sons Ltd.

  3. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland

    Science.gov (United States)

    Lara, M.; Genet, Helene; McGuire, A. David; Euskirchen, Eugénie S.; Zhang, Yujin; Brown, Dana R. N.; Jorgenson, M.T.; Romanovsky, V.; Breen, Amy L.; Bolton, W.R.

    2016-01-01

    Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of

  4. Thermokarst in pingos and adjacent collapse scar bogs in interior Alaska

    Science.gov (United States)

    Douglas, T. A.; Turetsky, M. R.

    2017-12-01

    A region of discontinuous permafrost 50 kilometers southeast of Fairbanks, Alaska exhibits rapid thermokarst and landscape change. The area contains a dozen pingos (hydrolaccoliths), mounds of ice covered by earth material typically 100 meters across and 20 meters above the surrounding ground surface. The pingos have sunken craters in their centers formed through melting and collapse of an inner ice lens core. Adjacent to the pingos are collapse scar bogs in various states of formation and ice wedge terrain undergoing thaw subsidence to polygons and thermokarst mounds (baydzherakhs). With a mean annual temperature of -1 degree C the area contains warm ecosystem-protected permafrost vulnerable to thaw. We analyzed historical imagery to the 1970s to track water features in a subset of pingos. The craters have expanded over the past few decades suggesting melting and collapse of the ice cored center and potential permafrost degradation along pingo margins. Collapse scar bogs in adjacent low-elevation terrain are roughly the same size as the pingos but have little vertical elevation gradient compared to the surrounding terrain. Electrical resistivity tomography (ERT) measurements, high resolution GPS surveys, SIPRE coring, and thaw depth probing were focused along nine 400 meter transects across three of the pingos to identify relationships between geophysical properties, permafrost composition, seasonal thaw, and ecological state. A large ( 40 meters across and 20 meters thick) lens shaped region of thawed permafrost is evident in the ERT results about 10 meters below the ground surface in the center of one pingo we surveyed in detail. This is believed to be the original ice cored region of the pingo that has melted. A thin (1-5 meters thick) layer of permafrost is present above this thawed region while the rampart margins surrounding the pingo are underlain by thick (10-30 m) permafrost. The pingo and thermokarst features reside in a location where rapid permafrost

  5. Comment on: "Bachmann, R. W., M. V. Hoyer, and D. E. Canfield. 2013. The extent that natural lakes in the United States of America have been changed by cultural eutrophication. Limnology and Oceanography 58:945-950."

    Science.gov (United States)

    In a recent paper, Bachmann et al. (2013) conclude, based on paleolimnological reconstructions, that lakes in the conterminous U.S. have undergone very little cultural eutrophication. They go on to suggest that their results invalidate the efforts of the U.S. EPA to establish num...

  6. Great Lakes Ice Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Charts show ice extent and concentration three times weekly during the ice season, for all lakes except Ontario, from the 1973/74 ice season through the 2001/2002...

  7. Rain increases methane production and methane oxidation in a boreal thermokarst bog

    Science.gov (United States)

    Neumann, R. B.; Moorberg, C.; Turner, J.; Wong, A.; Waldrop, M. P.; Euskirchen, E. S.; Edgar, C.; Turetsky, M. R.

    2017-12-01

    Bottom-up biogeochemical models of wetland methane emissions simulate the response of methane production, oxidation and transport to wetland conditions and environmental forcings. One reason for mismatches between bottom-up and top-down estimates of emissions is incomplete knowledge of factors and processes that control microbial rates and methane transport. To advance mechanistic understanding of wetland methane emissions, we conducted a multi-year field investigation and plant manipulation experiment in a thermokarst bog located near Fairbanks, Alaska. The edge of the bog is experiencing active permafrost thaw, while the center of the bog thawed 50 to 100 years ago. Our study, which captured both an average year and two of the wettest years on record, revealed how rain interacts with vascular vegetation and recently thawed permafrost to affect methane emissions. In the floating bog, rain water warmed and oxygenated the subsurface, but did not alter soil saturation. The warmer peat temperatures increased both microbial methane production and plant productivity at the edge of the bog near the actively thawing margin, but minimally altered microbial and plant activity in the center of the bog. These responses indicate processes at the edge of the bog were temperature limited while those in the center were not. The compounding effect of increased microbial activity and plant productivity at the edge of the bog doubled methane emissions from treatments with vascular vegetation during rainy years. In contrast, methane emissions from vegetated treatments in the center of the bog did not change with rain. The oxygenating influence of rain facilitated greater methane oxidation in treatments without vascular vegetation, which offset warming-induced increases in methane production at the edge of the bog and decreased methane emissions in the center of the bog. These results elucidate the complex and spatially variable response of methane production and oxidation in

  8. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes.

    Science.gov (United States)

    Hultman, Jenni; Waldrop, Mark P; Mackelprang, Rachel; David, Maude M; McFarland, Jack; Blazewicz, Steven J; Harden, Jennifer; Turetsky, Merritt R; McGuire, A David; Shah, Manesh B; VerBerkmoes, Nathan C; Lee, Lang Ho; Mavrommatis, Kostas; Jansson, Janet K

    2015-05-14

    Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular 'omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  9. Wetland succession in a permafrost collapse: interactions between fire and thermokarst

    Directory of Open Access Journals (Sweden)

    I. H. Myers-Smith

    2008-09-01

    Full Text Available To determine the influence of fire and thermokarst in a boreal landscape, we investigated peat cores within and adjacent to a permafrost collapse feature on the Tanana River Floodplain of Interior Alaska. Radioisotope dating, diatom assemblages, plant macrofossils, charcoal fragments, and carbon and nitrogen content of the peat profile indicate ~600 years of vegetation succession with a transition from a terrestrial forest to a sedge-dominated wetland over 100 years ago, and to a Sphagnum-dominated peatland in approximately 1970. The shift from sedge to Sphagnum, and a decrease in the detrended tree-ring width index of black spruce trees adjacent to the collapse coincided with an increase in the growing season temperature record from Fairbanks. This concurrent wetland succession and reduced growth of black spruce trees indicates a step-wise ecosystem-level response to a change in regional climate. In 2001, fire was observed coincident with permafrost collapse and resulted in lateral expansion of the peatland. These observations and the peat profile suggest that future warming and/or increased fire disturbance could promote permafrost degradation, peatland expansion, and increase carbon storage across this landscape; however, the development of drought conditions could reduce the success of both black spruce and Sphagnum, and potentially decrease the long-term ecosystem carbon storage.

  10. Seasonal Oxygen Dynamics in a Thermokarst Bog in Interior Alaska: Implications for Rates of Methane Oxidation

    Science.gov (United States)

    Neumann, R. B.; Moorberg, C.; Wong, A.; Waldrop, M. P.; Turetsky, M. R.

    2015-12-01

    Methane is a potent greenhouse gas, and wetlands represent the largest natural source of methane to the atmosphere. However, much of the methane generated in anoxic wetlands never gets emitted to the atmosphere; up to >90% of generated methane can get oxidized to carbon dioxide. Thus, oxidation is an important methane sink and changes in the rate of methane oxidation can affect wetland methane emissions. Most methane is aerobically oxidized at oxic-anoxic interfaces where rates of oxidation strongly depend on methane and oxygen concentrations. In wetlands, oxygen is often the limiting substrate. To improve understanding of belowground oxygen dynamics and its impact on methane oxidation, we deployed two planar optical oxygen sensors in a thermokarst bog in interior Alaska. Previous work at this site indicated that, similar to other sites, rates of methane oxidation decrease over the growing season. We used the sensors to track spatial and temporal patterns of oxygen concentrations over the growing season. We coupled these in-situ oxygen measurements with periodic oxygen injection experiments performed against the sensor to quantify belowground rates of oxygen consumption. We found that over the season, the thickness of the oxygenated water layer at the peatland surface decreased. Previous research has indicated that in sphagnum-dominated peatlands, like the one studied here, rates of methane oxidation are highest at or slightly below the water table. It is in these saturated but oxygenated locations that both methane and oxygen are available. Thus, a seasonal reduction in the thickness of the oxygenated water layer could restrict methane oxidation. The decrease in thickness of the oxygenated layer coincided with an increase in the rate of oxygen consumption during our oxygen injection experiments. The increase in oxygen consumption was not explained by temperature; we infer it was due to an increase in substrate availability for oxygen consuming reactions and

  11. Lake Chad, Chad, Africa

    Science.gov (United States)

    1992-01-01

    Hydrologic and ecologic changes in the Lake Chad Basin are shown in this Oct 1992 photograph. In space photo documentation, Lake Chad was at its greatest area extent (25,000 sq. km.) during Gemini 9 in June 1966 (see S66-38444). Its reduction during the severe droughts from 1968 to 1974 was first noted during Skylab (1973-1974). After the drought began again in 1982, the lake reached its minimum extent (1,450 sq. km.) in Space Shuttle photographs taken in 1984 and 1985. In this STS-52 photograph, Lake Chad has begun to recover. The area of the open water and interdunal impoundments in the southern basin (the Chari River Basin) is estimated to be 1,900 to 2100 sq. km. Note the green vegetation in the valley of the K'Yobe flow has wetted the northern lake basin for the first time in several years. There is evidence of biomass burning south of the K'Yobe Delta and in the vegetated interdunal areas near the dike in the center of the lake. Also note the dark 'Green Line' of the Sahel (the g

  12. Landsat-based trend analysis of lake dynamics across northern permafrost regions

    Science.gov (United States)

    Nitze, Ingmar; Grosse, Guido; Jones, Benjamin M.; Arp, Christopher D.; Ulrich, Mathias; Federov, Alexander; Veremeeva, Alexandra

    2017-01-01

    Lakes are a ubiquitous landscape feature in northern permafrost regions. They have a strong impact on carbon, energy and water fluxes and can be quite responsive to climate change. The monitoring of lake change in northern high latitudes, at a sufficiently accurate spatial and temporal resolution, is crucial for understanding the underlying processes driving lake change. To date, lake change studies in permafrost regions were based on a variety of different sources, image acquisition periods and single snapshots, and localized analysis, which hinders the comparison of different regions. Here we present, a methodology based on machine-learning based classification of robust trends of multi-spectral indices of Landsat data (TM,ETM+, OLI) and object-based lake detection, to analyze and compare the individual, local and regional lake dynamics of four different study sites (Alaska North Slope, Western Alaska, Central Yakutia, Kolyma Lowland) in the northern permafrost zone from 1999 to 2014. Regional patterns of lake area change on the Alaska North Slope (-0.69%), Western Alaska (-2.82%), and Kolyma Lowland (-0.51%) largely include increases due to thermokarst lake expansion, but more dominant lake area losses due to catastrophic lake drainage events. In contrast, Central Yakutia showed a remarkable increase in lake area of 48.48%, likely resulting from warmer and wetter climate conditions over the latter half of the study period. Within all study regions, variability in lake dynamics was associated with differences in permafrost characteristics, landscape position (i.e. upland vs. lowland), and surface geology. With the global availability of Landsat data and a consistent methodology for processing the input data derived from robust trends of multi-spectral indices, we demonstrate a transferability, scalability and consistency of lake change analysis within the northern permafrost region.

  13. First inventory of optical lake types in the permafrost landscapes of the central Lena River Delta and central Yamal - case studies of Coloured Dissolved Organic Matter (cDOM) and turbidity regimes

    Science.gov (United States)

    Heim, Birgit; Bartsch, Annett; Dvornikov, Yuri; Leibman, Marina; Eulenburg, Antje; Morgenstern, Anne; Boike, Julia; Widhalm, Barbara; Fedorova, Irina; Chetverova, Antonina

    2015-04-01

    We provide a first satellite-based inventory of optical lake types in the permafrost landscapes of the central Lena River Delta and central Yamal using multi-sensor satellite data. Within our thematic network between our groups we seek to investigate how we may link: • multi-sensor remote sensing analysis (optical and radar) • tachymmetrical and satellite-based stereographical analysis • geochemical and hydrodynamical ground investigations in the thermokarst- and thermoerosional-influenced landscape types in the central Lena Delta and the Yamal region in Siberia. We are investigating the turbidity regimes of the lakes and the catchment characteristics (vegetation, geomorphology, topography) using satellite-derived information from optical and radar sensors. For some of the lakes in Yamal and the central Lena River Delta we were able to sample for Dissolved Organic Carbon, DOC, and coloured dissolved organic matter, cDOM (the absorbing fraction of the DOC pool). The sediment sources for turbidity spatial patterns are provided by the large subaquatic sedimentary banks and lake cliffs. The cDOM regimes influence the transparency of the different lake types. However, turbidity seems to play the dominant role in providing the water colour of thermokarst lake types.

  14. Analysis of Thermal Structure of Arctic Lakes at Local and Regional Scales Using in Situ and Multidate Landsat-8 Data

    Science.gov (United States)

    Huang, Yan; Liu, Hongxing; Hinkel, Kenneth; Yu, Bailang; Beck, Richard; Wu, Jianping

    2017-11-01

    The Arctic coastal plain is covered with numerous thermokarst lakes. These lakes are closely linked to climate and environmental change through their heat and water budgets. We examined the intralake thermal structure at the local scale and investigated the water temperature pattern of lakes at the regional scale by utilizing extensive in situ measurements and multidate Landsat-8 remote sensing data. Our analysis indicates that the lake skin temperatures derived from satellite thermal sensors during most of the ice-free summer period effectively represent the lake bulk temperature because the lakes are typically well-mixed and without significant vertical stratification. With the relatively high-resolution Landsat-8 thermal data, we were able to quantitatively examine intralake lateral temperature differences and gradients in relation to geographical location, topography, meteorological factors, and lake morphometry for the first time. Our results suggest that wind speed and direction not only control the vertical stratification but also influences lateral differences and gradients of lake surface temperature. Wind can considerably reduce the intralake temperature gradient. Interestingly, we found that geographical location (latitude, longitude, distance to the ocean) and lake morphometry (surface size, depth, volume) not only control lake temperature regionally but also affect the lateral temperature gradient and homogeneity level within each individual lake. For the Arctic coastal plain, at regional scales, inland and southern lakes tend to have larger horizontal temperature differences and gradients compared to coastal and northern lakes. At local scales, large and shallow lakes tend to have large lateral temperature differences relative to small and deep lakes.

  15. LIMNOLOGY, LAKE BASINS, LAKE WATERS

    Directory of Open Access Journals (Sweden)

    Petre GÂŞTESCU

    2009-06-01

    Full Text Available Limnology is a border discipline between geography, hydrology and biology, and is also closely connected with other sciences, from it borrows research methods. Physical limnology (the geography of lakes, studies lake biotopes, and biological limnology (the biology of lakes, studies lake biocoenoses. The father of limnology is the Swiss scientist F.A. Forel, the author of a three-volume entitled Le Leman: monographie limnologique (1892-1904, which focuses on the geology physics, chemistry and biology of lakes. He was also author of the first textbook of limnology, Handbuch der Seenkunde: allgemeine Limnologie,(1901. Since both the lake biotope and its biohydrocoenosis make up a single whole, the lake and lakes, respectively, represent the most typical systems in nature. They could be called limnosystems (lacustrine ecosystems, a microcosm in itself, as the American biologist St.A. Forbes put it (1887.

  16. Remotely Sensing Lake Water Volumes on the Inner Arctic Coastal Plain of Northern Alaska

    Science.gov (United States)

    Simpson, C. E.; Arp, C. D.; Jones, B. M.; Hinkel, K. M.; Carroll, M.; Smith, L. C.

    2017-12-01

    Thermokarst lake depth is controlled by the amount of excess ice in near-surface permafrost, with lake depths of about 1 - 3 m in areas of epigenetic permafrost and over 10 m in areas of syngenetic permafrost. An important exception to these general patterns is found on the inner Arctic Coastal Plain (ACP) of northern Alaska, where deep lakes occur in Pleistocene-aged, ground-ice poor sandy terrain. These lakes cover 20% of the currently inactive sand sheet and dune deposit (referred to as the Pleistocene Sand Sea) that comprises approximately 7000 km2 of the ACP. Surrounded by high and eroding bluffs, sand sea lakes lie in natural depressions and are characterized by wide, shallow littoral shelves and central troughs that are typically oriented NNW to SSE and can reach depths greater than 20 m. Despite their unique form and extensive coverage, these lakes have received little prior study and a literature gap remains regarding regional water storage. This research classifies sand sea lakes, estimates individual lake volume, and provides a first quantification of water storage in a region of the lake-dominated ACP. We measured bathymetric profiles in 19 sand sea lakes using a sonar recorder to capture various lake depth gradients. Bathymetric surveys collected by oil industry consultants, lake monitoring programs, and habitat studies serve as additional datasets. These field measured lake depth data points were used to classify Color Infrared Photography, WorldView-2 satellite imagery, and Landsat-OLI satellite imagery to develop a spectral depth-classification algorithm and facilitate the interpolation of the bathymetry for study lakes in the inner ACP. Finally, we integrate the remotely sensed bathymetry and imagery-derived lake surface area to estimate individual and regional-scale lake volume. In addition to the natural function of these lakes in water storage, energy balance, and habitat provision, the need for winter water supply to build ice roads for oil

  17. Methane Ebullition During Simulated Lake Expansion and Permafrost Degradation

    Science.gov (United States)

    Mazéas, O.; von Fischer, J. C.; Whelan, M.; Rhew, R.

    2007-12-01

    Methane, a potent greenhouse gas, is emitted by Arctic tundra and lakes. Ebullition, or bubbling, of methane from Arctic lakes has been shown to be a major transport mechanism from the sediment to the atmosphere, and ebullition rates are greatest near the edges of the lakes where active erosion is occurring. In regions of continuous permafrost, Arctic lakes have been expanding in recent decades, attributed to permafrost melting and development of thermokarst. Lake expansion occurs when the margins erode into water, supplying large amounts of organic rich material to the sediment-water interface. This allows carbon that was previously stored in the soil (active layer and permafrost) to become bioavailable and subject to decomposition. An increase in Arctic methane emissions as a result of permafrost thawing and lake expansion would constitute a positive feedback to Arctic warming. In order to better understand these processes, an experiment was initiated in July 2007 at the Barrow Environmental Observatory, Barrow, AK. Different layers of locally collected tundra soil were placed into incubation chambers at the bottom of a shallow (about 1 m deep) lake. Each experimental chamber consists of a bucket fixed underneath an inverted funnel, with a sampling port on top to capture and collect the emitted gases. Gas samples are analyzed for methane and carbon dioxide concentrations, as well as relevant isotopic compositions. Gas sampling has occurred at frequent intervals during the late summer and will continue through the early winter. Three replicates of each layer (active layer, seasonally frozen active layer and permafrost) were incubated, as well as an empty control chamber. An additional chamber containing thawed permafrost and cellulose-rich sawdust was placed for comparison, as cellulose is a major component of plant tissue and the fermentation of the cellulose should yield substrates for methanogenesis. Total production of methane versus organic carbon content of

  18. The predominance of young carbon in Arctic whole-lake CH4 and CO2 emissions and implications for Boreal yedoma lakes.

    Science.gov (United States)

    Elder, C.; Xu, X.; Walker, J. C.; Walter Anthony, K. M.; Pohlman, J.; Arp, C. D.; Townsend-Small, A.; Hinkel, K. M.; Czimczik, C. I.

    2017-12-01

    Lakes in Arctic and Boreal regions are hotspots for atmospheric exchange of the greenhouse gases CO2 and CH4. Thermokarst lakes are a subset of these Northern lakes that may further accelerate climate warming by mobilizing ancient permafrost C (> 11,500 years old) that has been disconnected from the active C cycle for millennia. Northern lakes are thus potentially powerful agents of the permafrost C-climate feedback. While they are critical for projecting the magnitude and timing these feedbacks from the rapidly warming circumpolar region, we lack datasets capturing the diversity of northern lakes, especially regarding their CH4contributions to whole-lake C emissions and their ability to access and mobilize ancient C. We measured the radiocarbon (14C) ages of CH4 and CO2 emitted from 60 understudied lakes and ponds in Arctic and Boreal Alaska during winter and summer to estimate the ages of the C sources yielding these gases. Integrated mean ages for whole-lake emissions were inferred from the 14C-age of dissolved gases sampled beneath seasonal ice. Additionally, we measured concentrations and 14C values of gases emitted by ebullition and diffusion in summer to apportion C emission pathways. Using a multi-sourced mass balance approach, we found that whole-lake CH4 and CO2 emissions were predominantly sourced from relatively young C in most lakes. In Arctic lakes, CH4 originated from 850 14C-year old C on average, whereas dissolved CO2 was sourced from 400 14C-year old C, and represented 99% of total dissolved C flux. Although ancient C had a minimal influence (11% of total emissions), we discovered that lakes in finer-textured aeolian deposits (Yedoma) emitted twice as much ancient C as lakes in sandy regions. In Boreal, yedoma-type lakes, CH4 and CO2 were fueled by significantly older sources, and mass balance results estimated CH4-ebullition to comprise 50-60% of whole-lake CH4 emissions. The mean 14C-age of Boreal emissions was 6,000 14C-years for CH4-C, and 2

  19. Hydrological network and classification of lakes on the Third Pole

    Science.gov (United States)

    Gao, Yang; Wang, Weicai; Yao, Tandong; Lu, Ning; Lu, Anxin

    2018-05-01

    The intensity and form of changes in closed lakes, upstream lakes and outflow lakes on the Third Pole (TP) differ based on their drainage mode. Researchers' insufficient understanding of the hydrological networks associated with lakes hampers studies of the relationship between lakes and climate. In this study, we establish a comprehensive hydrological network for each lake (>1 km2) on the TP using 106 Landsat images, 236 Chinese topographic maps, and SRTM DEM. Three-hundred-ninety-seven closed lakes, 488 upstream lakes and 317 outflow lakes totaling 3,5498.49 km2, 7,378.82 km2, and 3,382.29 km2, respectively, were identified on the TP using 2010 data. Two-hundred-thirty-four closed lakes were found to not be linked to upstream lakes. The remaining 163 closed lakes were connected to and fed by the 488 upstream lakes. The object-oriented analyses within this study indicated that more rapid changes occurred in the surface extent of closed lakes than in upstream lakes or outflow lakes on the TP from 1970 s to 2010. Furthermore, the water volume of the examined closed lakes was almost nine times greater than that of the upstream lakes from 2003 to 2009. All the examined closed lakes exhibited an obvious water volume change compared to the corresponding upstream lakes in the same basin. Furthermore, two case studies illustrate that the annual and seasonal dynamics associated with the changes in closed lakes may reflect climate change patterns, while the upstream lake dynamics may be more controlled by the lakeshore terrain and drainage characteristics. The lake inventory and hydrological network catalogued in this study provide a basis for developing a better understanding of lake response to climate change on the TP.

  20. Transient Tsunamis in Lakes

    Science.gov (United States)

    Couston, L.; Mei, C.; Alam, M.

    2013-12-01

    A large number of lakes are surrounded by steep and unstable mountains with slopes prone to failure. As a result, landslides are likely to occur and impact water sitting in closed reservoirs. These rare geological phenomena pose serious threats to dam reservoirs and nearshore facilities because they can generate unexpectedly large tsunami waves. In fact, the tallest wave experienced by contemporary humans occurred because of a landslide in the narrow bay of Lituya in 1958, and five years later, a deadly landslide tsunami overtopped Lake Vajont's dam, flooding and damaging villages along the lakefront and in the Piave valley. If unstable slopes and potential slides are detected ahead of time, inundation maps can be drawn to help people know the risks, and mitigate the destructive power of the ensuing waves. These maps give the maximum wave runup height along the lake's vertical and sloping boundaries, and can be obtained by numerical simulations. Keeping track of the moving shorelines along beaches is challenging in classical Eulerian formulations because the horizontal extent of the fluid domain can change over time. As a result, assuming a solid slide and nonbreaking waves, here we develop a nonlinear shallow-water model equation in the Lagrangian framework to address the problem of transient landslide-tsunamis. In this manner, the shorelines' three-dimensional motion is part of the solution. The model equation is hyperbolic and can be solved numerically by finite differences. Here, a 4th order Runge-Kutta method and a compact finite-difference scheme are implemented to integrate in time and spatially discretize the forced shallow-water equation in Lagrangian coordinates. The formulation is applied to different lake and slide geometries to better understand the effects of the lake's finite lengths and slide's forcing mechanism on the generated wavefield. Specifically, for a slide moving down a plane beach, we show that edge-waves trapped by the shoreline and free

  1. Lake Cadagno

    DEFF Research Database (Denmark)

    Tonolla, Mauro; Storelli, Nicola; Danza, Francesco

    2017-01-01

    Lake Cadagno (26 ha) is a crenogenic meromictic lake located in the Swiss Alps at 1921 m asl with a maximum depth of 21 m. The presence of crystalline rocks and a dolomite vein rich in gypsum in the catchment area makes the lake a typical “sulphuretum ” dominated by coupled carbon and sulphur...... cycles. The chemocline lies at about 12 m depth, stabilized by density differences of salt-rich water supplied by sub-aquatic springs to the monimolimnion and of electrolyte-poor surface water feeding the mixolimnion. Steep sulphide and light gradients in the chemocline support the growth of a large...... in the chemocline. Small-celled PSB together with the sulfate-reducing bacterium Desulfocapsa thiozymogenes sp. form stable aggregates in the lake, which represent small microenvironments with an internal sulphur cycle. Eukaryotic primary producers in the anoxic zones are dominated by Cryptomonas phaseolus...

  2. Playa Lakes

    Data.gov (United States)

    Kansas Data Access and Support Center — This digital dataset provides information about the spatial distribution of soil units associated with playa lakes. Specific soil types have been designated by the...

  3. Differentiating TOC sources, preservation, and potential methane emissions in sub-Arctic lakes in Sweden

    Science.gov (United States)

    Johnson, J. E.; Varner, R. K.; Wik, M.; Chanton, J.; Crill, P. M.

    2015-12-01

    Organic carbon-rich sediments from high latitude, shallow lakes and ponds are significant sources of methane throughout the Arctic. The origin and evolution of these lakes and ponds, however, is often not the same. Several lake types have been identified based on (1) hydrological conditions (melt-water fed, rain water fed, groundwater influenced, evaporation dominated, drained) (2) permafrost condition (thermokarst), and (3) time of origin (glacial or post-glacial). Given sufficient time (100's to 1000's years) many of these lake types may morph into others. In sub-Arctic Sweden, near Abisko and within the zone of discontinuous permafrost, the elongate glacial lake Torneträsk is fed by several streams draining the surrounding highlands. Lake Tornetrask is one of several NW-SE trending glacial lakes common in the landscape throughout northern and western Sweden. Between and alongside these glacial lakes, several small (ponds exist in low-lying mires. Sediment cores from the lakes in the Stordalen Mire are characterized by high total organic carbon (TOC) content (10-50 wt. %) in the uppermost ~50 cm and commonly underlain by glaciofluvial derived sediments with lower TOC (emissions from several of these lakes has also been measured and is driven by heat input. Coincident young ages of carbon in the sediments and in methane indicate in situ production. A published record from Lake Torneträsk shows sediments there contain significantly less TOC (1-2.5 wt. %) that is derived primarily from old, terrestrial organic carbon delivered via rivers to the lake. Although the larger and deeper glacial lakes currently occupy much of the landscape it is becoming clear that as the Arctic warms TOC preservation and methane production in the smaller lakes and ponds play a more significant, immediate role in emission of methane to the atmosphere. With continued warming in the Arctic, terrestrial TOC will be relinquished from highland watersheds to glacial lakes, but the methane

  4. Principles of lake sedimentology

    International Nuclear Information System (INIS)

    Janasson, L.

    1983-01-01

    This book presents a comprehensive outline on the basic sedimentological principles for lakes, and focuses on environmental aspects and matters related to lake management and control-on lake ecology rather than lake geology. This is a guide for those who plan, perform and evaluate lake sedimentological investigations. Contents abridged: Lake types and sediment types. Sedimentation in lakes and water dynamics. Lake bottom dynamics. Sediment dynamics and sediment age. Sediments in aquatic pollution control programmes. Subject index

  5. Simulating Lake-Groundwater Interactions During Decadal Climate Cycles: Accounting For Variable Lake Area In The Watershed

    Science.gov (United States)

    Virdi, M. L.; Lee, T. M.

    2009-12-01

    The volume and extent of a lake within the topo-bathymetry of a watershed can change substantially during wetter and drier climate cycles, altering the interaction of the lake with the groundwater flow system. Lake Starr and other seepage lakes in the permeable sandhills of central Florida are vulnerable to climate changes as they rely exclusively on rainfall and groundwater for inflows in a setting where annual rainfall and recharge vary widely. The groundwater inflow typically arrives from a small catchment area bordering the lake. The sinkhole origin of these lakes combined with groundwater pumping from underlying aquifers further complicate groundwater interactions. Understanding the lake-groundwater interactions and their effects on lake stage over multi-decadal climate cycles is needed to manage groundwater pumping and public expectation about future lake levels. The interdependence between climate, recharge, changing lake area and the groundwater catchment pose unique challenges to simulating lake-groundwater interactions. During the 10-year study period, Lake Starr stage fluctuated more than 13 feet and the lake surface area receded and expanded from 96 acres to 148 acres over drier and wetter years that included hurricanes, two El Nino events and a La Nina event. The recently developed Unsaturated Zone Flow (UZF1) and Lake (LAK7) packages for MODFLOW-2005 were used to simulate the changing lake sizes and the extent of the groundwater catchment contributing flow to the lake. The lake area was discretized to occupy the largest surface area at the highest observed stage and then allowed to change size. Lake cells convert to land cells and receive infiltration as receding lake area exposes the underlying unsaturated zone to rainfall and recharge. The unique model conceptualization also made it possible to capture the dynamic size of the groundwater catchment contributing to lake inflows, as the surface area and volume of the lake changed during the study

  6. Great Lakes

    Science.gov (United States)

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  7. Changing values of lake ecosystem services as a result of bacteriological contamination on Lake Trzesiecko and Lake Wielimie, Poland

    Directory of Open Access Journals (Sweden)

    Cichoń Małgorzata

    2017-12-01

    Full Text Available Lake ecosystems, on the one hand, are affected by tourism, and on the other by development for tourism. Lake ecosystem services include: water with its self-cleaning processes, air with climate control processes, as well as flora and fauna. Utilisation of services leads to interventions in the structure of ecosystems and their processes. Only to a certain extent, this is specific to each type of environmental interference, remains within the limits of ecosystem resilience and does not lead to its degradation. One of the threats is bacteriological contamination, for which the most reliable sanitation indicator is Escherichia coli. In lake water quality studies it is assumed that the lakeshore cannot be a source of bacteria. It has been hypothesised that the problem of bacterial contamination can be serious for the places that do not have any infrastructure, especially sanitation. Consequently, the purpose of the study was to determine the extent to which lakeshore sanitation, in particular the level of bacteriological contamination, has an impact on the value of services provided by the selected lake ecosystems (Lake Trzesiecko and Lake Wielimie – Szczecinek Lake District. Five selected services related to lake ecosystems are: water, control over the spread of contagious diseases, aesthetic values, tourism and recreation, as well as the hydrological cycle with its self-cleaning function. Services, as well as the criteria adopted for evaluation, allow us to conclude that the services provided by the lake ecosystems are suitable to fulfill a recreation function. However, the inclusion of quality criteria for sanitary status has shown that the value of system services has dropped by as much as 50%. Value changes are visible primarily for water and aesthetic qualities. Such a significant decrease in the value of services clearly indicates the importance of the sanitary conditions of lakes and their appropriate infrastructure. In view of the

  8. Lake Chapala change detection using time series

    Science.gov (United States)

    López-Caloca, Alejandra; Tapia-Silva, Felipe-Omar; Escalante-Ramírez, Boris

    2008-10-01

    The Lake Chapala is the largest natural lake in Mexico. It presents a hydrological imbalance problem caused by diminishing intakes from the Lerma River, pollution from said volumes, native vegetation and solid waste. This article presents a study that allows us to determine with high precision the extent of the affectation in both extension and volume reduction of the Lake Chapala in the period going from 1990 to 2007. Through satellite images this above-mentioned period was monitored. Image segmentation was achieved through a Markov Random Field model, extending the application towards edge detection. This allows adequately defining the lake's limits as well as determining new zones within the lake, both changes pertaining the Lake Chapala. Detected changes are related to a hydrological balance study based on measuring variables such as storage volumes, evapotranspiration and water balance. Results show that the changes in the Lake Chapala establish frail conditions which pose a future risk situation. Rehabilitation of the lake requires a hydrologic balance in its banks and aquifers.

  9. Bathymetry of Lake Michigan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Michigan has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  10. Bathymetry of Lake Ontario

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Ontario has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  11. Bathymetry of Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Superior has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  12. Great Lakes Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lakes Michigan, Erie, Saint Clair, Ontario and Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and...

  13. Bathymetry of Lake Huron

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  14. The Aquatic Macrophyte Seed Bank in Lake Onalaska, Wisconsin

    National Research Council Canada - National Science Library

    McFarland, D

    1998-01-01

    .... americana have made a partial recovery. While the production of vegetative propagules may largely account for increases in populations of both species, the extent to which seed production may contribute to their expansion in the lake is unknown...

  15. Great Lakes Science Center

    Data.gov (United States)

    Federal Laboratory Consortium — Since 1927, Great Lakes Science Center (GLSC) research has provided critical information for the sound management of Great Lakes fish populations and other important...

  16. Life in Ice: Microbial Growth Dynamics and Greenhouse Gas Production During Winter in a Thermokarst Bog Revealed by Stable Isotope Probing Targeted Metagenomics

    Science.gov (United States)

    Blazewicz, S.; White, R. A., III; Tas, N.; Euskirchen, E. S.; Mcfarland, J. W.; Jansson, J.; Waldrop, M. P.

    2016-12-01

    Permafrost contains a reservoir of frozen C estimated to be twice the size of the current atmospheric C pool. In response to changing climate, permafrost is rapidly warming which could result in widespread seasonal thawing. When permafrost thaws, soils that are rich in ice and C often transform into thermokarst wetlands with anaerobic conditions and significant production of atmospheric CH4. While most C flux research in recently thawed permafrost concentrates on the few summer months when seasonal thaw has occurred, there is mounting evidence that sizeable portions of annual CO2 and CH4 efflux occurs over winter or during a rapid burst of emissions associated with seasonal thaw. A potential mechanism for such efflux patterns is microbial activity in frozen soils over winter where gasses produced are partially trapped within ice until spring thaw. In order to better understand microbial transformation of soil C to greenhouse gas over winter, we applied stable isotope probing (SIP) targeted metagenomics combined with process measurements and field flux data to reveal activities of microbial communities in `frozen' soil from an Alaskan thermokarst bog. Field studies revealed build-up of CO2 and CH4 in frozen soils suggesting that microbial activity persisted throughout the winter in soils poised just below the freezing point. Laboratory incubations designed to simulate in-situ winter conditions (-1.5 °C and anaerobic) revealed continuous CH4 and CO2 production. Strikingly, the quantity of CH4 produced in 6 months in frozen soil was equivalent to approximately 80% of CH4 emitted during the 3 month summer `active' season. Heavy water SIP targeted iTag sequencing revealed growing bacteria and archaea in the frozen anaerobic soil. Growth was primarily observed in two bacterial phyla, Firmicutes and Bacteroidetes, suggesting that fermentation was likely the major C mineralization pathway. SIP targeted metagenomics facilitated characterization of the primary metabolic

  17. Lake Cadagno

    DEFF Research Database (Denmark)

    Tonolla, Mauro; Storelli, Nicola; Danza, Francesco

    2017-01-01

    cycles. The chemocline lies at about 12 m depth, stabilized by density differences of salt-rich water supplied by sub-aquatic springs to the monimolimnion and of electrolyte-poor surface water feeding the mixolimnion. Steep sulphide and light gradients in the chemocline support the growth of a large...... in the chemocline. Small-celled PSB together with the sulfate-reducing bacterium Desulfocapsa thiozymogenes sp. form stable aggregates in the lake, which represent small microenvironments with an internal sulphur cycle. Eukaryotic primary producers in the anoxic zones are dominated by Cryptomonas phaseolus...

  18. Modeling and management of pit lake water chemistry 1: Theory

    International Nuclear Information System (INIS)

    Castendyk, D.N.; Eary, L.E.; Balistrieri, L.S.

    2015-01-01

    Highlights: • Review of pit lake literature in the context of pit lake predictions. • Review of approaches used to predict pit wall-rock runoff and leachate. • Review of approaches used to generate a pit lake water balance. • Review of approaches used to generate a hydrodynamic prediction. • Review of approaches used to generate a geochemical prediction of a future pit lake. - Abstract: Pit lakes are permanent hydrologic/landscape features that can result from open pit mining for metals, coal, uranium, diamonds, oil sands, and aggregates. Risks associated with pit lakes include local and regional impacts to water quality and related impacts to aquatic and terrestrial ecosystems. Stakeholders rely on predictive models of water chemistry to prepare for and manage these risks. This paper is the first of a two part series on the modeling and management of pit lakes. Herein, we review approaches that have been used to quantify wall-rock runoff geochemistry, wall-rock leachate geochemistry, pit lake water balance, pit lake limnology (i.e. extent of vertical mixing), and pit lake water quality, and conclude with guidance on the application of models within the mine life cycle. The purpose of this paper is to better prepare stakeholders, including future modelers, mine managers, consultants, permitting agencies, land management agencies, regulators, research scientists, academics, and other interested parties, for the challenges of predicting and managing future pit lakes in un-mined areas

  19. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales

    Science.gov (United States)

    Goldsmith, Yonaton; Broecker, Wallace S.; Xu, Hai; Polissar, Pratigya J.; deMenocal, Peter B.; Porat, Naomi; Lan, Jianghu; Cheng, Peng; Zhou, Weijian; An, Zhisheng

    2017-02-01

    The magnitude, rate, and extent of past and future East Asian monsoon (EAM) rainfall fluctuations remain unresolved. Here, late Pleistocene-Holocene EAM rainfall intensity is reconstructed using a well-dated northeastern China closed-basin lake area record located at the modern northwestern fringe of the EAM. The EAM intensity and northern extent alternated rapidly between wet and dry periods on time scales of centuries. Lake levels were 60 m higher than present during the early and middle Holocene, requiring a twofold increase in annual rainfall, which, based on modern rainfall distribution, requires a ˜400 km northward expansion/migration of the EAM. The lake record is highly correlated with both northern and southern Chinese cave deposit isotope records, supporting rainfall “intensity based” interpretations of these deposits as opposed to an alternative “water vapor sourcing” interpretation. These results indicate that EAM intensity and the northward extent covary on orbital and millennial timescales. The termination of wet conditions at 5.5 ka BP (˜35 m lake drop) triggered a large cultural collapse of Early Neolithic cultures in north China, and possibly promoted the emergence of complex societies of the Late Neolithic.

  20. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales.

    Science.gov (United States)

    Goldsmith, Yonaton; Broecker, Wallace S; Xu, Hai; Polissar, Pratigya J; deMenocal, Peter B; Porat, Naomi; Lan, Jianghu; Cheng, Peng; Zhou, Weijian; An, Zhisheng

    2017-02-21

    The magnitude, rate, and extent of past and future East Asian monsoon (EAM) rainfall fluctuations remain unresolved. Here, late Pleistocene-Holocene EAM rainfall intensity is reconstructed using a well-dated northeastern China closed-basin lake area record located at the modern northwestern fringe of the EAM. The EAM intensity and northern extent alternated rapidly between wet and dry periods on time scales of centuries. Lake levels were 60 m higher than present during the early and middle Holocene, requiring a twofold increase in annual rainfall, which, based on modern rainfall distribution, requires a ∼400 km northward expansion/migration of the EAM. The lake record is highly correlated with both northern and southern Chinese cave deposit isotope records, supporting rainfall "intensity based" interpretations of these deposits as opposed to an alternative "water vapor sourcing" interpretation. These results indicate that EAM intensity and the northward extent covary on orbital and millennial timescales. The termination of wet conditions at 5.5 ka BP (∼35 m lake drop) triggered a large cultural collapse of Early Neolithic cultures in north China, and possibly promoted the emergence of complex societies of the Late Neolithic.

  1. Mid-Wisconsin to Holocene permafrost and landscape dynamics based on a drained lake basin core from the northern Seward Peninsula, northwest Alaska

    Science.gov (United States)

    Lenz, Josefine; Grosse, Guido; Jones, Benjamin M.; Anthony, Katey M. Walter; Bobrov, Anatoly; Wulf, Sabine; Wetterich, Sebastian

    2016-01-01

    Permafrost-related processes drive regional landscape dynamics in the Arctic terrestrial system. A better understanding of past periods indicative of permafrost degradation and aggradation is important for predicting the future response of Arctic landscapes to climate change. Here, we used a multi-proxy approach to analyse a ~ 4 m long sediment core from a drained thermokarst lake basin on the northern Seward Peninsula in western Arctic Alaska (USA). Sedimentological, biogeochemical, geochronological, micropalaeontological (ostracoda, testate amoebae) and tephra analyses were used to determine the long-term environmental Early-Wisconsin to Holocene history preserved in our core for central Beringia. Yedoma accumulation dominated throughout the Early to Late-Wisconsin but was interrupted by wetland formation from 44.5 to 41.5 ka BP. The latter was terminated by the deposition of 1 m of volcanic tephra, most likely originating from the South Killeak Maar eruption at about 42 ka BP. Yedoma deposition continued until 22.5 ka BP and was followed by a depositional hiatus in the sediment core between 22.5 and 0.23 ka BP. We interpret this hiatus as due to intense thermokarst activity in the areas surrounding the site, which served as a sediment source during the Late-Wisconsin to Holocene climate transition. The lake forming the modern basin on the upland initiated around 0.23 ka BP and drained catastrophically in spring 2005. The present study emphasises that Arctic lake systems and periglacial landscapes are highly dynamic and that permafrost formation as well as degradation in central Beringia was controlled by regional to global climate patterns as well as by local disturbances.

  2. Tributaries affect the thermal response of lakes to climate change

    Science.gov (United States)

    Råman Vinnå, Love; Wüest, Alfred; Zappa, Massimiliano; Fink, Gabriel; Bouffard, Damien

    2018-01-01

    Thermal responses of inland waters to climate change varies on global and regional scales. The extent of warming is determined by system-specific characteristics such as fluvial input. Here we examine the impact of ongoing climate change on two alpine tributaries, the Aare River and the Rhône River, and their respective downstream peri-alpine lakes: Lake Biel and Lake Geneva. We propagate regional atmospheric temperature effects into river discharge projections. These, together with anthropogenic heat sources, are in turn incorporated into simple and efficient deterministic models that predict future water temperatures, river-borne suspended sediment concentration (SSC), lake stratification and river intrusion depth/volume in the lakes. Climate-induced shifts in river discharge regimes, including seasonal flow variations, act as positive and negative feedbacks in influencing river water temperature and SSC. Differences in temperature and heating regimes between rivers and lakes in turn result in large seasonal shifts in warming of downstream lakes. The extent of this repressive effect on warming is controlled by the lakes hydraulic residence time. Previous studies suggest that climate change will diminish deep-water oxygen renewal in lakes. We find that climate-related seasonal variations in river temperatures and SSC shift deep penetrating river intrusions from summer towards winter. Thus potentially counteracting the otherwise negative effects associated with climate change on deep-water oxygen content. Our findings provide a template for evaluating the response of similar hydrologic systems to on-going climate change.

  3. Tributaries affect the thermal response of lakes to climate change

    Directory of Open Access Journals (Sweden)

    L. Råman Vinnå

    2018-01-01

    Full Text Available Thermal responses of inland waters to climate change varies on global and regional scales. The extent of warming is determined by system-specific characteristics such as fluvial input. Here we examine the impact of ongoing climate change on two alpine tributaries, the Aare River and the Rhône River, and their respective downstream peri-alpine lakes: Lake Biel and Lake Geneva. We propagate regional atmospheric temperature effects into river discharge projections. These, together with anthropogenic heat sources, are in turn incorporated into simple and efficient deterministic models that predict future water temperatures, river-borne suspended sediment concentration (SSC, lake stratification and river intrusion depth/volume in the lakes. Climate-induced shifts in river discharge regimes, including seasonal flow variations, act as positive and negative feedbacks in influencing river water temperature and SSC. Differences in temperature and heating regimes between rivers and lakes in turn result in large seasonal shifts in warming of downstream lakes. The extent of this repressive effect on warming is controlled by the lakes hydraulic residence time. Previous studies suggest that climate change will diminish deep-water oxygen renewal in lakes. We find that climate-related seasonal variations in river temperatures and SSC shift deep penetrating river intrusions from summer towards winter. Thus potentially counteracting the otherwise negative effects associated with climate change on deep-water oxygen content. Our findings provide a template for evaluating the response of similar hydrologic systems to on-going climate change.

  4. Limnology of Eifel maar lakes

    National Research Council Canada - National Science Library

    Scharf, Burkhard W; Björk, Sven

    1992-01-01

    ... & morphometry - Physical & chemical characteristics - Calcite precipitation & solution in Lake Laacher See - Investigations using sediment traps in Lake Gemundener Maar - Phytoplankton of Lake Weinfelder Maar...

  5. Bathymetry of Lake Erie and Lake Saint Clair

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Erie and Lake Saint Clair has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and...

  6. 27 CFR 4.2 - Territorial extent.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Territorial extent. 4.2 Section 4.2 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LABELING AND ADVERTISING OF WINE Scope § 4.2 Territorial extent. This part...

  7. Interannual and Seasonal Patterns of Carbon Dioxide, Water, and Energy Fluxes From Ecotonal and Thermokarst-Impacted Ecosystems on Carbon-Rich Permafrost Soils in Northeastern Siberia

    Science.gov (United States)

    Euskirchen, Eugénie S.; Edgar, Colin W.; Syndonia Bret-Harte, M.; Kade, Anja; Zimov, Nikita; Zimov, Sergey

    2017-10-01

    Eastern Siberia Russia is currently experiencing a distinct and unprecedented rate of warming. This change is particularly important given the large amounts of carbon stored in the yedoma permafrost soils that become vulnerable to thaw and release under warming. Data from this region pertaining to year-round carbon, water, and energy fluxes are scarce, particularly in sensitive ecotonal ecosystems near latitudinal treeline, as well as those already impacted by permafrost thaw. Here we investigated the interannual and seasonal carbon dioxide, water, and energy dynamics at an ecotonal forested site and a disturbed thermokarst-impacted site. The ecotonal site was approximately neutral in terms of CO2 uptake/release, while the disturbed site was either a source or neutral. Our data suggest that high rates of plant productivity during the growing season at the disturbed site may, in part, counterbalance higher rates of respiration during the cold season compared to the ecotonal site. We also found that the ecotonal site was sensitive to the timing of the freezeup of the soil active layer in fall, releasing more CO2 when freezeup occurred later. Both sites showed a negative water balance, although the ecotonal site appeared more sensitive to dry conditions. Water use efficiency at the ecotonal site was lower during warmer summers. Overall, these Siberian measurements indicate ecosystem sensitivity to warmer conditions during the fall and to drier conditions during the growing season and provide a better understanding of ecosystem response to climate in a part of the circumpolar Arctic where current knowledge is weakest.

  8. Predicting future glacial lakes in Austria using different modelling approaches

    Science.gov (United States)

    Otto, Jan-Christoph; Helfricht, Kay; Prasicek, Günther; Buckel, Johannes; Keuschnig, Markus

    2017-04-01

    Glacier retreat is one of the most apparent consequences of temperature rise in the 20th and 21th centuries in the European Alps. In Austria, more than 240 new lakes have formed in glacier forefields since the Little Ice Age. A similar signal is reported from many mountain areas worldwide. Glacial lakes can constitute important environmental and socio-economic impacts on high mountain systems including water resource management, sediment delivery, natural hazards, energy production and tourism. Their development significantly modifies the landscape configuration and visual appearance of high mountain areas. Knowledge on the location, number and extent of these future lakes can be used to assess potential impacts on high mountain geo-ecosystems and upland-lowland interactions. Information on new lakes is critical to appraise emerging threads and potentials for society. The recent development of regional ice thickness models and their combination with high resolution glacier surface data allows predicting the topography below current glaciers by subtracting ice thickness from glacier surface. Analyzing these modelled glacier bed surfaces reveals overdeepenings that represent potential locations for future lakes. In order to predict the location of future glacial lakes below recent glaciers in the Austrian Alps we apply different ice thickness models using high resolution terrain data and glacier outlines. The results are compared and validated with ice thickness data from geophysical surveys. Additionally, we run the models on three different glacier extents provided by the Austrian Glacier Inventories from 1969, 1998 and 2006. Results of this historical glacier extent modelling are compared to existing glacier lakes and discussed focusing on geomorphological impacts on lake evolution. We discuss model performance and observed differences in the results in order to assess the approach for a realistic prediction of future lake locations. The presentation delivers

  9. Lake or Pond WBID

    Data.gov (United States)

    Vermont Center for Geographic Information — The VT DEC (Vermont Department of Environmental Conservation) manages an inventory of lake and pond information. The "Lakes and Ponds Inventory" stores the Water...

  10. National Lakes Assessment Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Lakes Assessment (NLA) is a first-ever statistically-valid survey of the biological condition of lakes and reservoirs throughout the U.S. The U.S....

  11. DNR 24K Lakes

    Data.gov (United States)

    Minnesota Department of Natural Resources — Medium scale lake polygons derived from the National Wetlands Inventory (NWI) polygons and MnDOT Basemap lake delineations. Integrated with the DNR 24K Streams...

  12. Phosphorus Loadings to the World's Largest Lakes: Sources and Trends

    Science.gov (United States)

    Fink, Gabriel; Alcamo, Joseph; Flörke, Martina; Reder, Klara

    2018-04-01

    Eutrophication is a major water quality issue in lakes worldwide and is principally caused by the loadings of phosphorus from catchment areas. It follows that to develop strategies to mitigate eutrophication, we must have a good understanding of the amount, sources, and trends of phosphorus pollution. This paper provides the first consistent and harmonious estimates of current phosphorus loadings to the world's largest 100 lakes, along with the sources of these loadings and their trends. These estimates provide a perspective on the extent of lake eutrophication worldwide, as well as potential input to the evaluation and management of eutrophication in these lakes. We take a modeling approach and apply the WorldQual model for these estimates. The advantage of this approach is that it allows us to fill in large gaps in observational data. From the analysis, we find that about 66 of the 100 lakes are located in developing countries and their catchments have a much larger average phosphorus yield than the lake catchments in developed countries (11.1 versus 0.7 kg TP km-2 year-1). Second, the main source of phosphorus to the examined lakes is inorganic fertilizer (47% of total). Third, between 2005-2010 and 1990-1994, phosphorus pollution increased at 50 out of 100 lakes. Sixty percent of lakes with increasing pollution are in developing countries. P pollution changed primarily due to changing P fertilizer use. In conclusion, we show that the risk of P-stimulated eutrophication is higher in developing countries.

  13. Anthropopression markers in lake bottom sediments

    Science.gov (United States)

    Nadolna, Anna; Nowicka, Barbara

    2014-05-01

    Lakes are vulnerable to various types of anthropogenic disturbances. Responses of lake ecosystems to environmental stressors are varied and depend not only on the type of a factor but also on the lake natural resistance to degradation. Within the EULAKES project an evaluation of anthropogenic stress extent in a flow-through, postglacial, ribbon lake (Lake Charzykowskie) was carried out. It was assumed, that this impact manifests unevenly, depending on a type and degree of the pressure on the shore zones, water quality of tributaries, lake basin shape and dynamics of a water movement. It was stated, that anthropogenic markers are substances accumulated in bottom sediments as a result of allochthonous substances inflow from the catchment and atmosphere. Along the selected transects 105 samples from the top layer of sediments (about 20 cm) was collected representing the contemporary accumulation (about 15 years). The content of selected chemical elements and compounds was examined, including nutrients (TN and TP), heavy metals (arsenic, cadmium, lead, chromium, nickel, copper, zinc, mercury, iron, and manganese) and pesticides (DDT, DDD, DDE, DMDT , γ-HCH). The research was conducted in the deepest points of each lake basin and along the research transects - while choosing the spots, the increased intensity of anthropogenic impact (ports, roads with heavy traffic, wastewater discharge zones, built-up areas) was taken into consideration. The river outlets to the lake, where there are ecotonal zones between limnic and fluvial environment, were also taken into account. Analysis of the markers distribution was carried out against the diversity of chemical characteristics of limnic sediments. Ribbon shape of the lake basin and the dominant wind direction provide an opportunity of easy water mixing to a considerable depth. Intensive waving processes cause removal of the matter from the littoral zone towards lake hollows (separated by the underwater tresholds), where the

  14. Circulation and Respiration in Ice-covered Alaskan Arctic Lakes

    Science.gov (United States)

    MacIntyre, S.; Cortés, A.

    2016-12-01

    Arctic lakes are ice-covered 9 months of the year. For some of this time, the sediments heat the overlying water, and respiration in the sediments increases specific conductivity, depletes oxygen, and produces greenhouse gases (GHG). Whether anoxia forms and whether the greenhouse gases are sequestered at depth depends on processes inducing circulation and upward fluxes. Similarly, whether the GHG are released at ice off depends on the extent of vertical mixing at that time. Using time series meteorological data and biogeochemical arrays with temperature, specific conductivity, and optical oxygen sensors in 5 lakes ranging from 1 to 150 ha, we illustrate the connections between meteorological forcing and within lake processes including gravity currents resulting from increased density just above the sediment water interface and internal waves including those induced by winds acting on the surface of the ice and at ice off. CO2 production was well predicted by the initial rate of oxygen drawdown near the bottom at ice on and that the upward density flux depended on lake size, with values initially high in all lakes but near molecular in lakes of a few hectares in size by mid-winter. Both CO2 production and within lake vertical fluxes were independent of the rate of cooling in fall and subsequent within lake temperatures under the ice. Anoxia formed near the sediments in all 5 lakes with the concentration of CH4 dependent, in part, on lake size and depth. Twenty to fifty percent of the greenhouse gases produced under the ice remained in the lakes by the time thermal stratification was established in summer despite considerable internal wave induced mixing at the time of ice off. These observations and analysis lay a framework for understanding the links between within lake hydrodynamics, within year variability, and the fraction of greenhouse gases produced over the winter which evade at ice off.

  15. What caused the decline of China's largest freshwater lake? Attribution analysis on Poyang Lake water level variations in recent years

    Science.gov (United States)

    Ye, Xuchun; Xu, Chong-Yu; Zhang, Qi

    2017-04-01

    In recent years, dramatic decline of water level of the Poyang Lake, China's largest freshwater lake, has raised wide concerns about the water security and wetland ecosystem. This remarkable hydrological change coincided with several factors like the initial operation of the Three Gorges Dam (TGD) in 2003, the big change of lake bottom topography due to extensive sand mining in the lake since 2000, and also climate change and other human activities in the Yangtze River basin may add to this complexity. Questions raised to what extent that the lake hydrological changes is caused by climate change and/or human activities. In this study, quantitative assessment was conducted to clarify the magnitude and mechanism of specific influencing factors on recent lake decline (2003-2014), with reference to the period of 1980-1999. The attempts were achieved through the reconstruction of lake water level scenarios by the framework of neural network. Major result indicates that the effect of lake bottom topography change due to sand mining activities has became the dominant factor for the recent lake decline, especially in winter season with low water level. However, the effect of TGD regulation shows strong seasonal features, its effect can accounts for 33%-42% of the average water level decline across the lake during the impoundment period of September-October. In addition, the effect of climate change and other human activities over the Yangtze River basin needs to be highly addressed, which is particularly prominent on reducing lake water level during the summer flood season and autumn recession period. The result also revealed that due to different mechanism, the responses of the lake water level to the three influencing factors are not consistent and show great spatial and temporal differences.

  16. Western Alaska ESI: LAKES (Lake Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing lakes and land masses used in the creation of the Environmental Sensitivity Index (ESI) for Western Alaska. The...

  17. Updated Vertical Extent of Collision Damage

    DEFF Research Database (Denmark)

    Tagg, R.; Bartzis, P.; Papanikolaou, P.

    2002-01-01

    The probabilistic distribution of the vertical extent of collision damage is an important and somewhat controversial component of the proposed IMO harmonized damage stability regulations for cargo and passenger ships. The only pre-existing vertical distribution, currently used in the international...

  18. The Geographic Extent of Global Supply Chains

    DEFF Research Database (Denmark)

    Machikita, Tomohiro; Ueki, Yasushi

    2012-01-01

    We study the extent to which inter-firm relationships are locally concentrated and what determines firm differences in geographic proximity to domestic or foreign suppliers and customers. From micro-data on selfreported customer and supplier data of firms in Indonesia, the Philippines, Thailand, ...

  19. Tracking fine-scale seasonal evolution of surface water extent in Central Alaska and the Canadian Shield

    Science.gov (United States)

    Cooley, S. W.; Smith, L. C.; Pitcher, L. H.; Pavelsky, T.; Topp, S.

    2017-12-01

    Quantifying spatial and temporal variability in surface water storage at high latitudes is critical for assessing environmental sensitivity to climate change. Traditionally the tradeoff between high spatial and high temporal resolution space-borne optical imagery has limited the ability to track fine-scale changes in surface water extent. However, the recent launch of hundreds of earth-imaging CubeSats by commercial satellite companies such as Planet opens up new possibilities for monitoring surface water from space. In this study we present a comparison of seasonal evolution of surface water extent in two study areas with differing geologic, hydrologic and permafrost regimes, namely, the Yukon Flats in Central Alaska and the Canadian Shield north of Yellowknife, N.W.T. Using near-daily 3m Planet CubeSat imagery, we track individual lake surface area from break-up to freeze-up during summer 2017 and quantify the spatial and temporal variability in inundation extent. We validate our water delineation method and inundation extent time series using WorldView imagery, coincident in situ lake shoreline mapping and pressure transducer data for 19 lakes in the Northwest Territories and Alaska collected during the NASA Arctic Boreal Vulnerability Experiment (ABoVE) 2017 field campaign. The results of this analysis demonstrate the value of CubeSat imagery for dynamic surface water research particularly at high latitudes and illuminate fine-scale drivers of cold regions surface water extent.

  20. Pollution at Lake Mariut

    International Nuclear Information System (INIS)

    Nour ElDin, H.; Halim, S. N.; Shalby, E.

    2004-01-01

    Lake Mariut, south Alexandria, Egypt suffered in the recent decades from intensive pollution as a result of a continuous discharge of huge amounts of agriculture wastewater that contains a large concentration of the washed pesticides and fertilizers in addition to domestic and industrial untreated wastewater. The over flow from the lake is discharged directly to the sea through El-Max pumping station via EI-Umum drain. Lake Mariout is surrounded by a huge number of different industrial activities and also the desert road is cutting the lake, this means that a huge number of various pollutants cycle through the air and settle down in the lake, by the time and during different seasons these pollutants after accumulation and different chemical interactions will release again from the lake to the surrounding area affecting the surrounding zone

  1. Great Lakes Literacy Principles

    Science.gov (United States)

    Fortner, Rosanne W.; Manzo, Lyndsey

    2011-03-01

    Lakes Superior, Huron, Michigan, Ontario, and Erie together form North America's Great Lakes, a region that contains 20% of the world's fresh surface water and is home to roughly one quarter of the U.S. population (Figure 1). Supporting a $4 billion sport fishing industry, plus $16 billion annually in boating, 1.5 million U.S. jobs, and $62 billion in annual wages directly, the Great Lakes form the backbone of a regional economy that is vital to the United States as a whole (see http://www.miseagrant.umich.edu/downloads/economy/11-708-Great-Lakes-Jobs.pdf). Yet the grandeur and importance of this freshwater resource are little understood, not only by people in the rest of the country but also by many in the region itself. To help address this lack of knowledge, the Centers for Ocean Sciences Education Excellence (COSEE) Great Lakes, supported by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration, developed literacy principles for the Great Lakes to serve as a guide for education of students and the public. These “Great Lakes Literacy Principles” represent an understanding of the Great Lakes' influences on society and society's influences on the Great Lakes.

  2. The Key Lake project

    International Nuclear Information System (INIS)

    1991-01-01

    Key Lake is located in the Athabasca sand stone basin, 640 kilometers north of Saskatoon, Saskatchewan, Canada. The three sources of ore at Key Lake contain 70 100 tonnes of uranium. Features of the Key Lake Project were described under the key headings: work force, mining, mill process, tailings storage, permanent camp, environmental features, worker health and safety, and economic benefits. Appendices covering the historical background, construction projects, comparisons of western world mines, mining statistics, Northern Saskatchewan surface lease, and Key Lake development and regulatory agencies were included

  3. Is Eurasian October snow cover extent increasing?

    International Nuclear Information System (INIS)

    Brown, R D; Derksen, C

    2013-01-01

    A number of recent studies present evidence of an increasing trend in Eurasian snow cover extent (SCE) in the October snow onset period based on analysis of the National Oceanic and Atmospheric Administration (NOAA) historical satellite record. These increases are inconsistent with fall season surface temperature warming trends across the region. Using four independent snow cover data sources (surface observations, two reanalyses, satellite passive microwave retrievals) we show that the increasing SCE is attributable to an internal trend in the NOAA CDR dataset to chart relatively more October snow cover extent over the dataset overlap period (1982–2005). Adjusting the series for this shift results in closer agreement with other independent datasets, stronger correlation with continentally-averaged air temperature anomalies, and a decrease in SCE over 1982–2011 consistent with surface air temperature warming trends over the same period. (letter)

  4. The extent of forest in dryland biomes

    Science.gov (United States)

    Jean-Francois Bastin; Nora Berrahmouni; Alan Grainger; Danae Maniatis; Danilo Mollicone; Rebecca Moore; Chiara Patriarca; Nicolas Picard; Ben Sparrow; Elena Maria Abraham; Kamel Aloui; Ayhan Atesoglu; Fabio Attore; Caglar Bassullu; Adia Bey; Monica Garzuglia; Luis G. GarcÌa-Montero; Nikee Groot; Greg Guerin; Lars Laestadius; Andrew J. Lowe; Bako Mamane; Giulio Marchi; Paul Patterson; Marcelo Rezende; Stefano Ricci; Ignacio Salcedo; Alfonso Sanchez-Paus Diaz; Fred Stolle; Venera Surappaeva; Rene Castro

    2017-01-01

    Dryland biomes cover two-fifths of Earth’s land surface, but their forest area is poorly known. Here, we report an estimate of global forest extent in dryland biomes, based on analyzing more than 210,000 0.5-hectare sample plots through a photo-interpretation approach using large databases of satellite imagery at (i) very high spatial resolution and (ii) very high...

  5. Limnology of Eifel maar lakes

    National Research Council Canada - National Science Library

    Scharf, Burkhard W; Björk, Sven

    1992-01-01

    ... : Species composition & seasonal periodicity - Qualitative & quantitative investigations on cladoceran zooplankton of oligotrophic maar lakes - Population dynamics of pelagic copepods in maar lakes - Population dynamics...

  6. Lakes, Lagerstaetten, and Evolution

    Science.gov (United States)

    Kordesch, E. G.; Park, L. E.

    2001-12-01

    The diversity of terrestrial systems is estimated to be greater than in the marine realm. However no hard data yet exists to substantiate this claim. Ancient lacustrine deposits may preserve an exceptionally diverse fossil fauna and aid in determining continental faunal diversities. Fossils preserved in lake deposits, especially those with exceptional preservation (i.e. Konservat Lagerstaetten), may represent a dependable method for determining species diversity changes in the terrestrial environment because of their faunal completeness. Important Konservat Lagerstaetten, such as the Green River Formation (US) and Messel (Germany), both Eocene in age, are found in lake sediments and show a remarkable faunal diversity for both vertebrates and invertebrates. To date information from nearly 25 lake lagerstaetten derived from different types of lake basins from the Carboniferous to the Miocene have been collected and described. Carboniferous sites derive from the cyclothems of Midcontinent of the US while many Cenozoic sites have been described from North and South America as well as Europe and Australia. Asian sites contain fossils from the Mesozoic and Cenozoic. With this data, insight into the evolutionary processes associated with lake systems can be examined. Do lakes act as unique evolutionary crucibles in contrast to marine systems? The speciation of cichlid fishes in present-day African lakes appears to be very high and is attributed to the diversity of environments found in large rift lakes. Is this true of all ancient lakes or just large rift lakes? The longevity of a lake system may be an important factor in allowing speciation and evolutionary processes to occur; marine systems are limited only in the existence of environments as controlled by tectonics and sea level changes, on the order of tens of millions of years. Rift lakes are normally the longest lived in the millions of years. Perhaps there are only certain types of lakes in which speciation of

  7. Examining the relationship between mercury and organic matter in lake sediments along a latitudinal transect in subarctic Canada

    Science.gov (United States)

    Galloway, Jennifer M.; Sanei, Hamed; Parsons, Michael; Swindles, Graeme T.; Macumber, Andrew L.; Patterson, R. Timothy; Palmer, Michael; Falck, Hendrik

    2016-04-01

    ., Smol, J.P., Stewart, K., Wang, X., Yang, F. 2011. Response to comment on climate change and mercury accumulation in Canadian high and subarctic lakes. Environ Sci Technol 45: 6705-06.5Deison, R., Smol, J.P., Kokelj, S.V., Pisaric, M.F.J., Kimpe, L.E., Poulain, A.J., Sanei, H., Theinpoint, J.R., Blais, J.M. 2012. Spatial and temporal assessment of mercury and organic matter in thermokarst affected lakes of the Mackenzie Delta Uplands, NT, Canada. Environ Sci Tech 46: 8748-55.

  8. Ecology of Meromictic Lakes

    NARCIS (Netherlands)

    Gulati, R.D.; Zadereev, E.S.; Degermendzhy, A.G.

    2017-01-01

    This volume presents recent advances in the research on meromictic lakes and a state-of-the art overview of this area. After an introduction to the terminology and geographic distribution of meromictic lakes, three concise chapters describe their physical, chemical and biological features. The

  9. Research Misconduct—Definitions, Manifestations and Extent

    Directory of Open Access Journals (Sweden)

    Lutz Bornmann

    2013-10-01

    Full Text Available In recent years, the international scientific community has been rocked by a number of serious cases of research misconduct. In one of these, Woo Suk Hwang, a Korean stem cell researcher published two articles on research with ground-breaking results in Science in 2004 and 2005. Both articles were later revealed to be fakes. This paper provides an overview of what research misconduct is generally understood to be, its manifestations and the extent to which they are thought to exist.

  10. Lake Afdera: a threatened saline lake in Ethiopia | Getahun | SINET ...

    African Journals Online (AJOL)

    Lake Afdera is a saline lake located in the Afar region, Northern Ethiopia. Because of its inaccessibility it is one of the least studied lakes of the country. It supports life including three species of fish of which two are endemic. Recently, reports are coming out that this lake is used for salt extraction. This paper gives some ...

  11. Lake trout in northern Lake Huron spawn on submerged drumlins

    Science.gov (United States)

    Riley, Stephen C.; Binder, Thomas; Wattrus, Nigel J.; Faust, Matthew D.; Janssen, John; Menzies, John; Marsden, J. Ellen; Ebener, Mark P.; Bronte, Charles R.; He, Ji X.; Tucker, Taaja R.; Hansen, Michael J.; Thompson, Henry T.; Muir, Andrew M.; Krueger, Charles C.

    2014-01-01

    Recent observations of spawning lake trout Salvelinus namaycush near Drummond Island in northern Lake Huron indicate that lake trout use drumlins, landforms created in subglacial environments by the action of ice sheets, as a primary spawning habitat. From these observations, we generated a hypothesis that may in part explain locations chosen by lake trout for spawning. Most salmonines spawn in streams where they rely on streamflows to sort and clean sediments to create good spawning habitat. Flows sufficient to sort larger sediment sizes are generally lacking in lakes, but some glacial bedforms contain large pockets of sorted sediments that can provide the interstitial spaces necessary for lake trout egg incubation, particularly if these bedforms are situated such that lake currents can penetrate these sediments. We hypothesize that sediment inclusions from glacial scavenging and sediment sorting that occurred during the creation of bedforms such as drumlins, end moraines, and eskers create suitable conditions for lake trout egg incubation, particularly where these bedforms interact with lake currents to remove fine sediments. Further, these bedforms may provide high-quality lake trout spawning habitat at many locations in the Great Lakes and may be especially important along the southern edge of the range of the species. A better understanding of the role of glacially-derived bedforms in the creation of lake trout spawning habitat may help develop powerful predictors of lake trout spawning locations, provide insight into the evolution of unique spawning behaviors by lake trout, and aid in lake trout restoration in the Great Lakes.

  12. Glacial lakes of the Central and Patagonian Andes

    Science.gov (United States)

    Wilson, Ryan; Glasser, Neil F.; Reynolds, John M.; Harrison, Stephan; Anacona, Pablo Iribarren; Schaefer, Marius; Shannon, Sarah

    2018-03-01

    The prevalence and increased frequency of high-magnitude Glacial Lake Outburst Floods (GLOFs) in the Chilean and Argentinean Andes suggests this region will be prone to similar events in the future as glaciers continue to retreat and thin under a warming climate. Despite this situation, monitoring of glacial lake development in this region has been limited, with past investigations only covering relatively small regions of Patagonia. This study presents new glacial lake inventories for 1986, 2000 and 2016, covering the Central Andes, Northern Patagonia and Southern Patagonia. Our aim was to characterise the physical attributes, spatial distribution and temporal development of glacial lakes in these three sub-regions using Landsat satellite imagery and image datasets available in Google Earth and Bing Maps. Glacial lake water volume was also estimated using an empirical area-volume scaling approach. Results reveal that glacial lakes across the study area have increased in number (43%) and areal extent (7%) between 1986 and 2016. Such changes equate to a glacial lake water volume increase of 65 km3 during the 30-year observation period. However, glacial lake growth and emergence was shown to vary sub-regionally according to localised topography, meteorology, climate change, rate of glacier change and the availability of low gradient ice areas. These and other factors are likely to influence the occurrence of GLOFs in the future. This analysis represents the first large-scale census of glacial lakes in Chile and Argentina and will allow for a better understanding of lake development in this region, as well as, providing a basis for future GLOF risk assessments.

  13. Biology and chemistry of three Pennsylvania lakes: responses to acid precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Bradt, P.T.; Dudley, J.L.; Berg, M.B.; Barrasso, D.S.

    1986-09-01

    The biology and chemistry of three northeastern Pennsylvania lakes was studied from summer 1981 through summer 1983 to evaluate lakes with different sensitivities to acidification. At the acidified lake there were fewer phytoplankton and zooplankton species than at the moderately sensitive lakes. The most numerous plankton species in all three lakes are reportedly acid tolerant. Among the benthic macro-invertebrates (BMI) there were more acid tolerant Chironomidae at the acidified lake, but more acid intolerant Ephemeroptera and Mollusca and a higher wet weight at the least sensitive lake. There were no differences among the lakes' BMI mean total numbers or mean number of taxa. The fish community at the acidified lake was dominated by stunted Lepomis gibbosus, but L. machrochirous were most abundant in the other lakes. Principal component analysis suggested a shift in all three lakes over the sampling period toward combined lower pH, alkalinity, specific conductance, Ca and Mg and higher Al and Mn. Such chemical changes have been associated with acidification. The rate and extent of acidification appeared to be controlled by geological and hydrological characteristics of the drainage basins. 38 refs.

  14. Biology and chemistry of tree Pennsylvania lakes: responses to acid precipitation. [Lepomis gibbosus; Lepomis machrochirous

    Energy Technology Data Exchange (ETDEWEB)

    Bradt, P.T.; Dudley, J.L.; Berg, M.B.; Barrasso, D.S.

    1986-01-01

    The biology and chemistry of three northeastern Pennsylvania lakes was studied from summer 1981 through summer 1983 to evaluate lakes with different sensitivities to acidification. At the acidifies lake (total alkalinity par. delta 0.0 ..mu..eq L/sup -1/) there were fewer phytoplankton and zooplankton species than at the moderately sensitive lakes. The most numerous plankton species in all three lakes are reportedly acid tolerant. Among the benthic macro- invertebrates (BMI) there were more acid tolerant Chironomidae at the acidified lake, but more acid intolerant Ephemeroptera and Mollusca and a higher wet weight at the least sensitive lake. There were no differences among the lakes' BMI mean total numbers or mean number of taxa. The fish community at the acidified lake was dominated by stunted Lepomis gibbosus, but L. machrochirous were most abundant in the other lakes. Principal component analysis suggested a shift in all three lakes over the sampling period toward combined lower pH, alkalinity, specific conductance, Ca, and Mg and higher Al and Mn. Such chemical changes have been associated with acidification. The rate and extent of acidification appeared to be controlled by geological and hydrological characteristics of the drainage basins.

  15. An ecohydrological-based management of Lake Beratan in Bedugul, Bali

    Science.gov (United States)

    Atmaja, D. M.; Budiastuti, M. S.; Setyono, P.; Sunarto

    2018-04-01

    Lake Beratan is one of waterway ecosystems located in the upper land of Bedugul, Bali and has become a tourist object which is visited by many foreign as well as domestic tourists. This is supported by a sufficiently high economic growth which, without the community’s being aware of, has caused environmental problems such as the shallowing of the lake, erosion, and water pollution to such an extent that have resulted in the degradation of the function of the lake as the site of catchment. The degradation of the function of the lake can be overcome by ecohydrological-based management. This study was aimed at developing an integrated and long lasting Lake Beratan environment management concept. The study used a descriptive qualitative approach using a survey, by collecting primary and secondary data. On the basis of those data the mapping of the potentials of the lake and problems of the lake which were then integrated to formulate criteria for sustainable use of Lake Beratan waters environment resources. The determination of zonation of the lake was done based on those criteria and the community’s existence consideration as well as the exising system of the lake waterway environment use. Based on the study in the field, some recommendations could be made concerning Lake Beratan waterway sustainable and integrated management.

  16. Chemical composition of Lake Orta sediments

    Directory of Open Access Journals (Sweden)

    Monica BELTRAMI

    2001-08-01

    Full Text Available Lake Orta (18.2 km2, 1.3 km3, 143 m max. depth has been severely polluted since industrialisation of its watershed began in 1926, at which time the lake began to receive industrial effluents containing high concentrations of copper and ammonia. Chromium-, nickel-, and zinc-rich effluents from plating factories have also contributed to pollution levels, and pH -levels dropped below 4.0 as a result of the oxidation of ammonia to nitrates. More than 60 papers have documented the evolution of the chemical characteristics of both water and sediment, and the sudden decline of plankton, as well as benthos and fish. As a remedial action the lake was limed from May 1989 to June 1990 with 10,900 tons of CaCO3. The treatment was immediately effective in raising the pH and decreasing the metal concentrations in the water column, and plankton and fish communities quickly rebounded. However, the chemical characteristics of sediments were influenced by the liming to a much lesser extent. Since 900 tons of copper and the same amount of chromium were contained in the top 10 cm of sediment, it appears likely that the sediment could potentially act as a current and future source of these metals to the water column. This observation has resulted in the implementation of a vigorous monitoring regime to track the post-liming recovery of Lake Orta.

  17. Modelling catchment hydrological responses in a Himalayan Lake ...

    Indian Academy of Sciences (India)

    water extent of the lake barely covers 11.5 km2. (Badar and Romshoo ... Recent developments of decision support systems based on GIS and distributed hydrological models .... flow of the methodology is given in figure 2. 3.1.1 Model structure ...

  18. Surficial geology of Panther Lake Quadrangle, Oswego County, New York

    Science.gov (United States)

    Miller, Todd S.

    1981-01-01

    The location and extent of eight kinds of surficial deposits in Panther Lake quadrangle, Oswego County, N.Y., are mapped on a 7.5-minute U.S. Geological Survey topographic map. The map was compiled to indicate the lithology and potential for groundwater development at any specific location. (USGS)

  19. Prediction of lake depth across a 17-state region in the United States

    Science.gov (United States)

    Oliver, Samantha K.; Soranno, Patricia A.; Fergus, C. Emi; Wagner, Tyler; Winslow, Luke A.; Scott, Caren E.; Webster, Katherine E.; Downing, John A.; Stanley, Emily H.

    2016-01-01

    Lake depth is an important characteristic for understanding many lake processes, yet it is unknown for the vast majority of lakes globally. Our objective was to develop a model that predicts lake depth using map-derived metrics of lake and terrestrial geomorphic features. Building on previous models that use local topography to predict lake depth, we hypothesized that regional differences in topography, lake shape, or sedimentation processes could lead to region-specific relationships between lake depth and the mapped features. We therefore used a mixed modeling approach that included region-specific model parameters. We built models using lake and map data from LAGOS, which includes 8164 lakes with maximum depth (Zmax) observations. The model was used to predict depth for all lakes ≥4 ha (n = 42 443) in the study extent. Lake surface area and maximum slope in a 100 m buffer were the best predictors of Zmax. Interactions between surface area and topography occurred at both the local and regional scale; surface area had a larger effect in steep terrain, so large lakes embedded in steep terrain were much deeper than those in flat terrain. Despite a large sample size and inclusion of regional variability, model performance (R2 = 0.29, RMSE = 7.1 m) was similar to other published models. The relative error varied by region, however, highlighting the importance of taking a regional approach to lake depth modeling. Additionally, we provide the largest known collection of observed and predicted lake depth values in the United States.

  20. Lake sturgeon population characteristics in Rainy Lake, Minnesota and Ontario

    Science.gov (United States)

    Adams, W.E.; Kallemeyn, L.W.; Willis, D.W.

    2006-01-01

    Rainy Lake contains a native population of lake sturgeon Acipenser fulvescens that has been largely unstudied. The aims of this study were to document the population characteristics of lake sturgeon in Rainy Lake and to relate environmental factors to year-class strength for this population. Gill-netting efforts throughout the study resulted in the capture of 322 lake sturgeon, including 50 recaptures. Lake sturgeon in Rainy Lake was relatively plump and fast growing compared with a 32-population summary. Population samples were dominated by lake sturgeon between 110 and 150 cm total length. Age–structure analysis of the samples indicated few younger (<10 years) lake sturgeon, but the smallest gill net mesh size used for sampling was 102 mm (bar measure) and would not retain small sturgeon. Few lake sturgeon older than age 50 years were captured, and maximum age of sampled fish was 59 years. Few correlations existed between lake sturgeon year-class indices and both annual and monthly climate variables, except that mean June air temperature was positively correlated with year-class strength. Analysis of Rainy Lake water elevation and resulting lake sturgeon year-class strength indices across years yielded consistent but weak negative correlations between late April and early June, when spawning of lake sturgeon occurs. The baseline data collected in this study should allow Rainy Lake biologists to establish more specific research questions in the future.

  1. Water Surface Overgrowing of the Tatra’s Lakes

    Directory of Open Access Journals (Sweden)

    Kapusta Juraj

    2018-03-01

    Full Text Available Tatra’s lakes are vulnerable ecosystems and an important element of the alpine landscape. Mainly some shallow lake basins succumb to intense detritus sedimentation, fine fractions of material from the catchment area or to the overgrowing of water level by vegetation. In this paper, changes and dynamics of the 12 Tatra’s lake shorelines that were selected based on the detailed mapping of their extent are pointed out. Changes were assessed by accurate comparisons of historical and current orthophoto maps from the years 1949, 1955 and 2015 – and therefore, based on the oldest and the latest relevant materials. Due to the overgrowing of lakes caused by vegetation, their water surface decreased from −0.9% up to −47.9%, during the examined period. Losses were caused by the overgrowing of open water surface by the communities of sedges and peat bogs. The most significant dynamics of the shorelines during the last decades were reached by those lakes, into which fine sediments were simultaneously deposited by means of mountain water coarse. These sediments made the marginal parts of the lake basins shallower and accelerated rapid expansion of vegetation to the detriment of the open water surface. The overgrowing of shallow moraine lakes lying in the vegetation zone is a significant phenomenon of the High Tatras alpine landscape. It leads to their gradual extinction, turn into peat bogs and wet alpine meadows.

  2. Yellowstone Lake Nanoarchaeota

    Directory of Open Access Journals (Sweden)

    Scott eClingenpeel

    2013-09-01

    Full Text Available Considerable Nanoarchaeota novelty and diversity were encountered in Yellowstone Lake, Yellowstone National Park, where sampling targeted lake floor hydrothermal vent fluids, streamers and sediments associated with these vents, and in planktonic photic zones in three different regions of the lake. Significant homonucleotide repeats (HR were observed in pyrosequence reads and in near full-length Sanger sequences, averaging 112 HR per 1,349 bp clone and could confound diversity estimates derived from pyrosequencing, resulting in false nucleotide insertions or deletions (indels. However, Sanger sequencing of two different sets of PCR clones (110 bp, 1349 bp demonstrated that at least some of these indels are real. The majority of the Nanoarchaeota PCR amplicons were vent associated; however, curiously, one relatively small Nanoarchaeota OTU (70 pyrosequencing reads was only found in photic zone water samples obtained from a region of the lake furthest removed from the hydrothermal regions of the lake. Extensive pyrosequencing failed to demonstrate the presence of an Ignicoccus lineage in this lake, suggesting the Nanoarchaeota in this environment are associated with novel Archaea hosts. Defined phylogroups based on near full-length PCR clones document the significant Nanoarchaeota 16S rRNA gene diversity in this lake and firmly establish a terrestrial clade distinct from the marine Nanoarcheota as well as from other geographical locations.

  3. Whiting in Lake Michigan

    Science.gov (United States)

    2002-01-01

    Satellites provide a view from space of changes on the Earth's surface. This series of images from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) aboard the Orbview-2 satellite shows the dramatic change in the color of Lake Michigan during the summer. The bright color that appears in late summer is probably caused by calcium carbonate-chalk-in the water. Lake Michigan always has a lot of calcium carbonate in it because the floor of the lake is limestone. During most of the year the calcium carbonate remains dissolved in the cold water, but at the end of summer the lake warms up, lowering the solubility of calcium carbonate. As a result, the calcium carbonate precipitates out of the water, forming clouds of very small solid particles that appear as bright swirls from above. The phenomenon is appropriately called a whiting event. A similar event occured in 1999, but appears to have started later and subsided earlier. It is also possible that a bloom of the algae Microcystis is responsible for the color change, but unlikely because of Lake Michigan's depth and size. Microcystis blooms have occured in other lakes in the region, however. On the shore of the lake it is possible to see the cities of Chicago, Illinois, and Milwaukee, Wisconsin. Both appear as clusters of gray-brown pixels. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  4. Ecology of playa lakes

    Science.gov (United States)

    Haukos, David A.; Smith, Loren M.

    1992-01-01

    Between 25,000 and 30,000 playa lakes are in the playa lakes region of the southern high plains (Fig. 1). Most playas are in west Texas (about 20,000), and fewer, in New Mexico, Oklahoma, Kansas, and Colorado. The playa lakes region is one of the most intensively cultivated areas of North America. Dominant crops range from cotton in southern areas to cereal grains in the north. Therefore, most of the native short-grass prairie is gone, replaced by crops and, recently, grasses of the Conservation Reserve Program. Playas are the predominant wetlands and major wildlife habitat of the region.More than 115 bird species, including 20 species of waterfowl, and 10 mammal species have been documented in playas. Waterfowl nest in the area, producing up to 250,000 ducklings in wetter years. Dominant breeding and nesting species are mallards and blue-winged teals. During the very protracted breeding season, birds hatch from April through August. Several million shorebirds and waterfowl migrate through the area each spring and fall. More than 400,000 sandhill cranes migrate through and winter in the region, concentrating primarily on the larger saline lakes in the southern portion of the playa lakes region.The primary importance of the playa lakes region to waterfowl is as a wintering area. Wintering waterfowl populations in the playa lakes region range from 1 to 3 million birds, depending on fall precipitation patterns that determine the number of flooded playas. The most common wintering ducks are mallards, northern pintails, green-winged teals, and American wigeons. About 500,000 Canada geese and 100,000 lesser snow geese winter in the playa lakes region, and numbers of geese have increased annually since the early 1980’s. This chapter describes the physiography and ecology of playa lakes and their attributes that benefit waterfowl.

  5. Changes in ice cover thickness and lake level of Lake Hoare, Antarctica - Implications for local climatic change

    Science.gov (United States)

    Wharton, Robert A., Jr.; Mckay, Christopher P.; Clow, Gary D.; Andersen, Dale T.; Simmons, George M., Jr.; Love, F. G.

    1992-01-01

    Results are reported from 10 years of ice-thickness measurements at perennially ice-covered Lake Hoare in southern Victoria Land, Antarctica. The ice cover of this lake had been thinning steadily at a rate exceeding 20 cm/yr during the last decade but seems to have recently stabilized at a thickness of 3.3 m. Data concerning lake level and degree-days above freezing are presented to show the relationship between peak summer temperatures and the volume of glacier-derived meltwater entering Lake Hoare each summer. From these latter data it is inferred that peak summer temperatures have been above 0 C for a progressively longer period of time each year since 1972. Possible explanations for the thinning of the lake ice are considered. The thickness of the ice cover is determined by the balance between freezing during the winter and ablation that occurs all year but maximizes in summer. It is suggested that the term most likely responsible for the change in the ice cover thickness at Lake Hoare is the extent of summer melting, consistent with the rising lake levels.

  6. An Integrated Approach for Understanding Anthropogenic and Climatic Impacts on Lakes: A Case study from Lake Iznik, Turkey

    Science.gov (United States)

    Derin, Y.; Milewski, A.; Fryar, A. E.; Schroeder, P.

    2013-12-01

    Lakes are among the most vital natural water resource, providing many environmental and economic advantages to a region. Unfortunately, many lakes are disappearing or continue to be polluted as industrial and agricultural practices increase to keep pace with rising populations. Lake Iznik, the biggest lake (approximately 300 km2) in the Marmara Region in Turkey, is a significant water resource as it provides opportunities for recreational activities, agriculture, industry, and water production for the region. However, rapid population growth combined with poor land management practices in this water basin has contributed to decreased water quality and water levels. As a result, Lake Iznik has switched from being Mesotrophic to Eutrophic in the past thirty years. This research aims to understand both the anthropogenic and climatic impacts on Lake Iznik. An integrated approach combining satellite remote sensing, hydrogeology, hydrologic modeling, and climatology was utilized to identify the source and timing responsible for the decline in water quality and quantity. Specifically, Landsat TM images from 1990, 2000, 2005, and 2010 were collected, processed, and analyzed for changes in landuse/landcover and surface area extent of Lake Iznik. Water level and water quality data (e.g. streamflow, lake level, pH, conductivity, total nitrogen, total dissolved solid etc.) collected from the General Directorate of State Hydraulic Works (DSI) from 1980-2012 were obtained from 4 stations and compared to the Landsat landuse mosaics. Meteorological data collected from Turkish State Meteorological Service from 1983-2012 were obtained from 3 stations (precipitation, temperature, atmospheric pressure, relative humidity, vapor pressure, wind speed and pan evaporation). A hydrologic model using MIKE21 was constructed to measure the change in streamflow and subsequent lake level as a result of changes in both land use and climate. Results have demonstrated the drop in water level from

  7. Multi-Elements in Waters and Sediments of Shallow Lakes: Relationships with Water, Sediment, and Watershed Characteristics.

    Science.gov (United States)

    Kissoon, La Toya T; Jacob, Donna L; Hanson, Mark A; Herwig, Brian R; Bowe, Shane E; Otte, Marinus L

    2015-06-01

    We measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments. Percent woodland cover in watersheds, turbidity, open water area, and macrophyte cover collectively explained 65.2 % of variation in element concentrations in lake waters. Sediment fraction smaller than 63 µm, percent woodland in watersheds, open water area, and sediment organic matter collectively explained 64.2 % of variation in element concentrations in lake sediments. In contrast to earlier work on shallow lakes, our results showed the extent to which multiple elements in shallow lake waters and sediments were influenced by a combination of variables including sediment characteristics, lake morphology, and percent land cover in watersheds. These results are informative because they help illustrate the extent of functional connectivity between shallow lakes and adjacent lands within these lake watersheds.

  8. LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes

    Science.gov (United States)

    Soranno, Patricia A.; Bacon, Linda C.; Beauchene, Michael; Bednar, Karen E.; Bissell, Edward G.; Boudreau, Claire K.; Boyer, Marvin G.; Bremigan, Mary T.; Carpenter, Stephen R.; Carr, Jamie W.; Cheruvelil, Kendra S.; Christel, Samuel T.; Claucherty, Matt; Collins, Sarah M.; Conroy, Joseph D.; Downing, John A.; Dukett, Jed; Fergus, C. Emi; Filstrup, Christopher T.; Funk, Clara; Gonzalez, Maria J.; Green, Linda T.; Gries, Corinna; Halfman, John D.; Hamilton, Stephen K.; Hanson, Paul C.; Henry, Emily N.; Herron, Elizabeth M.; Hockings, Celeste; Jackson, James R.; Jacobson-Hedin, Kari; Janus, Lorraine L.; Jones, William W.; Jones, John R.; Keson, Caroline M.; King, Katelyn B.S.; Kishbaugh, Scott A.; Lapierre, Jean-Francois; Lathrop, Barbara; Latimore, Jo A.; Lee, Yuehlin; Lottig, Noah R.; Lynch, Jason A.; Matthews, Leslie J.; McDowell, William H.; Moore, Karen E.B.; Neff, Brian; Nelson, Sarah J.; Oliver, Samantha K.; Pace, Michael L.; Pierson, Donald C.; Poisson, Autumn C.; Pollard, Amina I.; Post, David M.; Reyes, Paul O.; Rosenberry, Donald; Roy, Karen M.; Rudstam, Lars G.; Sarnelle, Orlando; Schuldt, Nancy J.; Scott, Caren E.; Skaff, Nicholas K.; Smith, Nicole J.; Spinelli, Nick R.; Stachelek, Joseph J.; Stanley, Emily H.; Stoddard, John L.; Stopyak, Scott B.; Stow, Craig A.; Tallant, Jason M.; Tan, Pang-Ning; Thorpe, Anthony P.; Vanni, Michael J.; Wagner, Tyler; Watkins, Gretchen; Weathers, Kathleen C.; Webster, Katherine E.; White, Jeffrey D.; Wilmes, Marcy K.; Yuan, Shuai

    2017-01-01

    Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states.LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600–12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales.

  9. LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes.

    Science.gov (United States)

    Soranno, Patricia A; Bacon, Linda C; Beauchene, Michael; Bednar, Karen E; Bissell, Edward G; Boudreau, Claire K; Boyer, Marvin G; Bremigan, Mary T; Carpenter, Stephen R; Carr, Jamie W; Cheruvelil, Kendra S; Christel, Samuel T; Claucherty, Matt; Collins, Sarah M; Conroy, Joseph D; Downing, John A; Dukett, Jed; Fergus, C Emi; Filstrup, Christopher T; Funk, Clara; Gonzalez, Maria J; Green, Linda T; Gries, Corinna; Halfman, John D; Hamilton, Stephen K; Hanson, Paul C; Henry, Emily N; Herron, Elizabeth M; Hockings, Celeste; Jackson, James R; Jacobson-Hedin, Kari; Janus, Lorraine L; Jones, William W; Jones, John R; Keson, Caroline M; King, Katelyn B S; Kishbaugh, Scott A; Lapierre, Jean-Francois; Lathrop, Barbara; Latimore, Jo A; Lee, Yuehlin; Lottig, Noah R; Lynch, Jason A; Matthews, Leslie J; McDowell, William H; Moore, Karen E B; Neff, Brian P; Nelson, Sarah J; Oliver, Samantha K; Pace, Michael L; Pierson, Donald C; Poisson, Autumn C; Pollard, Amina I; Post, David M; Reyes, Paul O; Rosenberry, Donald O; Roy, Karen M; Rudstam, Lars G; Sarnelle, Orlando; Schuldt, Nancy J; Scott, Caren E; Skaff, Nicholas K; Smith, Nicole J; Spinelli, Nick R; Stachelek, Joseph J; Stanley, Emily H; Stoddard, John L; Stopyak, Scott B; Stow, Craig A; Tallant, Jason M; Tan, Pang-Ning; Thorpe, Anthony P; Vanni, Michael J; Wagner, Tyler; Watkins, Gretchen; Weathers, Kathleen C; Webster, Katherine E; White, Jeffrey D; Wilmes, Marcy K; Yuan, Shuai

    2017-12-01

    Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states.LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600-12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales. © The Author 2017. Published by Oxford University Press.

  10. LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes

    Science.gov (United States)

    Bacon, Linda C; Beauchene, Michael; Bednar, Karen E; Bissell, Edward G; Boudreau, Claire K; Boyer, Marvin G; Bremigan, Mary T; Carpenter, Stephen R; Carr, Jamie W; Christel, Samuel T; Claucherty, Matt; Conroy, Joseph D; Downing, John A; Dukett, Jed; Filstrup, Christopher T; Funk, Clara; Gonzalez, Maria J; Green, Linda T; Gries, Corinna; Halfman, John D; Hamilton, Stephen K; Hanson, Paul C; Henry, Emily N; Herron, Elizabeth M; Hockings, Celeste; Jackson, James R; Jacobson-Hedin, Kari; Janus, Lorraine L; Jones, William W; Jones, John R; Keson, Caroline M; King, Katelyn B S; Kishbaugh, Scott A; Lathrop, Barbara; Latimore, Jo A; Lee, Yuehlin; Lottig, Noah R; Lynch, Jason A; Matthews, Leslie J; McDowell, William H; Moore, Karen E B; Neff, Brian P; Nelson, Sarah J; Oliver, Samantha K; Pace, Michael L; Pierson, Donald C; Poisson, Autumn C; Pollard, Amina I; Post, David M; Reyes, Paul O; Rosenberry, Donald O; Roy, Karen M; Rudstam, Lars G; Sarnelle, Orlando; Schuldt, Nancy J; Scott, Caren E; Smith, Nicole J; Spinelli, Nick R; Stachelek, Joseph J; Stanley, Emily H; Stoddard, John L; Stopyak, Scott B; Stow, Craig A; Tallant, Jason M; Thorpe, Anthony P; Vanni, Michael J; Wagner, Tyler; Watkins, Gretchen; Weathers, Kathleen C; Webster, Katherine E; White, Jeffrey D; Wilmes, Marcy K; Yuan, Shuai

    2017-01-01

    Abstract Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states. LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600–12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales. PMID:29053868

  11. Lake Urmia (Iran): can future socio-ecologically motivated river basin management restore lake water levels in an arid region with extensive agricultural development?

    Science.gov (United States)

    Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh

    2015-04-01

    Lake Urmia, one of the world's largest hyper saline lakes located in northwest of Iran, is a UNESCO Biosphere Reserve and Ramsar site, protected as a national park and, supports invaluable and unique biodiversity and related ecosystem services for the region's 6.5 million inhabitants. Due to increased development of the region's water resources for agriculture and industry and to a certain extent climate change, the lake has started to shrink dramatically since 1995 and now is holding less than 30 percent of its volume. Rapid development in agricultural sector and land-use changes has resulted in immense construction of dams and water diversions in almost all lake feeding rivers, intensifying lake shrinking, increasing salinity and degrading its ecosystem. Recently, lake's cultural and environmental importance and social pressure has raised concerns and brought government attention to the lake restoration plans. Along with poor management, low yield agriculture as the most water consuming activity in the region with, rapid, insufficient development is one of the most influential drivers in the lake desiccation. Part of the lake restoration plans in agricultural sector is to restrict the agricultural areas in the main feeding river basins flowing mostly in the southern part of the lake and decreasing the agricultural water use in this area. This study assess the efficiency and effectiveness of the proposed plans and its influence on the lake level rise and its impacts on economy in the region using a system dynamics model developed for the Lake consist of hydrological and agro-economical sub-systems. The effect of decrease in agricultural area in the region on GDP and region economy was evaluated and compared with released water contribution in lake level rise for a five year simulation period.

  12. Halls Lake 1990

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salt marsh habitats along the shoreline of Halls Lake are threatened by wave erosion, but the reconstruction of barrier islands to reduce this erosion will modify or...

  13. Lake Level Reconstructions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past lake levels, mostly related to changes in moisture balance (evaporation-precipitation). Parameter keywords describe what was measured in this data...

  14. The Key Lake project

    International Nuclear Information System (INIS)

    Glattes, G.

    1985-01-01

    Aspects of project financing for the share of the Canadian subsidiary of Uranerzbergbau-GmbH, Bonn, in the uranium mining and milling facility at Key Lake, Saskatchewan, by a Canadian bank syndicate. (orig.) [de

  15. Foy Lake paleodiatom data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Percent abundance of 109 diatom species collected from a Foy Lake (Montana, USA) sediment core that was sampled every ∼5–20 years, yielding a ∼7 kyr record over 800...

  16. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    Science.gov (United States)

    Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-01-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  17. Dragon Lake, Siberia

    Science.gov (United States)

    2002-01-01

    Nicknamed 'Dragon Lake,' this body of water is formed by the Bratskove Reservoir, built along the Angara river in southern Siberia, near the city of Bratsk. This image was acquired in winter, when the lake is frozen. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on December 19, 1999. This is a natural color composite image made using blue, green, and red wavelengths. Image provided by the USGS EROS Data Center Satellite Systems Branch

  18. Resilience and Restoration of Lakes

    Directory of Open Access Journals (Sweden)

    Stephen R. Carpenter

    1997-06-01

    Full Text Available Lake water quality and ecosystem services are normally maintained by several feedbacks. Among these are nutrient retention and humic production by wetlands, nutrient retention and woody habitat production by riparian forests, food web structures that cha nnel phosphorus to consumers rather than phytoplankton, and biogeochemical mechanisms that inhibit phosphorus recycling from sediments. In degraded lakes, these resilience mechanisms are replaced by new ones that connect lakes to larger, regional economi c and social systems. New controls that maintain degraded lakes include runoff from agricultural and urban areas, absence of wetlands and riparian forests, and changes in lake food webs and biogeochemistry that channel phosphorus to blooms of nuisance al gae. Economic analyses show that degraded lakes are significantly less valuable than normal lakes. Because of this difference in value, the economic benefits of restoring lakes could be used to create incentives for lake restoration.

  19. Flood-inundation maps for Lake Champlain in Vermont and in northern Clinton County, New York

    Science.gov (United States)

    Flynn, Robert H.; Hayes, Laura

    2016-06-30

    Digital flood-inundation maps for an approximately100-mile length of Lake Champlain in Addison, Chittenden, Franklin, and Grand Isle Counties in Vermont and northern Clinton County in New York were created by the U.S. Geological Survey (USGS) in cooperation with the International Joint Commission (IJC). The flood-inundationmaps, which can be accessed through the International Joint Commission (IJC) Web site at http://www.ijc.org/en_/, depict estimates of the areal extent flooding correspondingto selected water levels (stages) at the USGS lake gage on the Richelieu River (Lake Champlain) at Rouses Point, N.Y. (station number 04295000). In this study, wind and seiche effects (standing oscillating wave with a long wavelength) were not taken into account and the flood-inundation mapsreflect 11 stages (elevations) for Lake Champlain that are static for the study length of the lake. Near-real-time stages at this lake gage, and others on Lake Champlain, may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at the Richelieu River (Lake Champlain) at Rouses Point.Static flood boundary extents were determined for LakeChamplain in Addison, Chittenden, Franklin, and Grand Isle Counties in Vermont and northern Clinton County in New York using recently acquired (2013–2014) lidar (light detection and ranging) and may be referenced to any of the five USGS lake gages on Lake Champlain. Of these five lakgages, USGS lake gage 04295000, Richelieu River (Lake Champlain) at Rouses Point, N.Y., is the only USGS lake gage that is also a National Weather Service prediction location. Flood boundary extents for the Lake Champlain static flood-inundation map corresponding to the May 201 flood(103.2 feet [ft], National Geodetic Vertical Datum [NGVD] 29) were evaluated by comparing these boundary

  20. Is Lake Chabot Eutrophic?

    Science.gov (United States)

    Pellegrini, K.; Logan, J.; Esterlis, P.; Lew, A.; Nguyen, M.

    2013-12-01

    Introduction/Abstract: Lake Chabot is an integral part of the East Bay watershed that provides habitats for animals and recreation for humans year-round. Lake Chabot has been in danger of eutrophication due to excessive dumping of phosphorous and nitrogen into the water from the fertilizers of nearby golf courses and neighboring houses. If the lake turned out to be eutrophified, it could seriously impact what is currently the standby emergency water supply for many Castro Valley residents. Eutrophication is the excessive richness of nutrients such as nitrogen and phosphorus in a lake, usually as a result of runoff. This buildup of nutrients causes algal blooms. The algae uses up most of the oxygen in the water, and when it dies, it causes the lake to hypoxify. The fish in the lake can't breathe, and consequently suffocate. Other oxygen-dependant aquatic creatures die off as well. Needless to say, the eutrophication of a lake is bad news for the wildlife that lives in or around it. The level of eutrophication in our area in Northern California tends to increase during the late spring/early summer months, so our crew went out and took samples of Lake Chabot on June 2. We focused on the area of the lake where the water enters, known on the map as Honker Bay. We also took readings a ways down in deeper water for comparison's sake. Visually, the lake looked in bad shape. The water was a murky green that glimmered with particulate matter that swirled around the boat as we went by. In the Honker Bay region where we focused our testing, there were reeds bathed in algae that coated the surface of the lake in thick, swirling patterns. Surprisingly enough, however, our test results didn't reveal any extreme levels of phosphorous or nitrogen. They were slightly higher than usual, but not by any significant amount. The levels we found were high enough to stimulate plant and algae growth and promote eutrophication, but not enough to do any severe damage. After a briefing with a

  1. Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the central Tibetan Plateau and driving force analysis

    Science.gov (United States)

    Song, C.; Sheng, Y.

    2015-12-01

    High-altitude lakes in the Tibetan Plateau (TP) showed strong spatio-temporal variability during past decades. The lake dynamics can be associated with several key factors including lake type, supply of glacial meltwater, local climate variations. It is important to differentiate these factors when analyzing the driving force of lakes dynamics. With a focus on lakes over the Tanggula Mountains of the central TP, this study investigates the temporal evolution patterns of lake area and water level of different types: glacier-fed closed lake, non-glacier-fed closed lake and upstream lake (draining into closed lakes). We collected all available Landsat archive data and quantified the inter-annual variability of lake extents. Results show accelerated expansions of both glacier-fed and non-glacier-fed lakes during 1970s-2013, and different temporal patterns of the two types of lakes: the non-glacier-fed lakes displayed a batch-wise growth pattern, with obvious growth in 2002, 2005 and 2011 and slight changes in other years, while glacier-fed lakes showed steady expanding tendency. The contrasting patterns are confirmed by the distinction of lake level change between the two groups derived from satellite altimetry during 2003-2009. The upstream lakes remained largely stable due to natural drainage regulation. The intermittent expansions for non-glacier-fed lakes were found to be related to excessive precipitation events and positive "precipitation-evaporation". In contrast, glacier-fed lake changes showed weak correlations with precipitation variations, which imply a joint contribution from glacial meltwater to water budgets. A simple estimation reveals that the increased water storage for all of examined lakes contributed from precipitation/evaporation (0.31±0.09 Gt/yr) slightly overweighed the glacial meltwater supply (0.26±0.08 Gt/yr).

  2. Glacial lake inventory and lake outburst potential in Uzbekistan.

    Science.gov (United States)

    Petrov, Maxim A; Sabitov, Timur Y; Tomashevskaya, Irina G; Glazirin, Gleb E; Chernomorets, Sergey S; Savernyuk, Elena A; Tutubalina, Olga V; Petrakov, Dmitriy A; Sokolov, Leonid S; Dokukin, Mikhail D; Mountrakis, Giorgos; Ruiz-Villanueva, Virginia; Stoffel, Markus

    2017-08-15

    Climate change has been shown to increase the number of mountain lakes across various mountain ranges in the World. In Central Asia, and in particular on the territory of Uzbekistan, a detailed assessment of glacier lakes and their evolution over time is, however lacking. For this reason we created the first detailed inventory of mountain lakes of Uzbekistan based on recent (2002-2014) satellite observations using WorldView-2, SPOT5, and IKONOS imagery with a spatial resolution from 2 to 10m. This record was complemented with data from field studies of the last 50years. The previous data were mostly in the form of inventories of lakes, available in Soviet archives, and primarily included localized in-situ data. The inventory of mountain lakes presented here, by contrast, includes an overview of all lakes of the territory of Uzbekistan. Lakes were considered if they were located at altitudes above 1500m and if lakes had an area exceeding 100m 2 . As in other mountain regions of the World, the ongoing increase of air temperatures has led to an increase in lake number and area. Moreover, the frequency and overall number of lake outburst events have been on the rise as well. Therefore, we also present the first outburst assessment with an updated version of well-known approaches considering local climate features and event histories. As a result, out of the 242 lakes identified on the territory of Uzbekistan, 15% are considered prone to outburst, 10% of these lakes have been assigned low outburst potential and the remainder of the lakes have an average level of outburst potential. We conclude that the distribution of lakes by elevation shows a significant influence on lake area and hazard potential. No significant differences, by contrast, exist between the distribution of lake area, outburst potential, and lake location with respect to glaciers by regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. How much acidification has occurred in Adirondack region lakes (New York, USA) since preindustrial times

    International Nuclear Information System (INIS)

    Cumming, B.F.; Smol, J.P.; Kingston, J.C.; Charles, D.F.; Birks, H.J.B.

    1992-01-01

    Preindustrial and present-day lake water pH, acid neutralizing capacity (ANC), total monomeric aluminum Al(sub m), and dissolved organic carbon (DOC) were inferred from the species composition of diatom and chrysophyte microfossils in the tops (present-day inferences) and bottoms (pre-1850 inferences) of sediment cores collected from a statistically selected set of Adirondack lakes. Results from the study lakes were extrapolated to a predefined target population of 675 low-alkalinity Adirondack region lakes. Estimates of preindustrial to present-day changes in lake water chemistry show that approximately 25-35% of the target population has acidified. The magnitude of acidification was greatest in the low-alkalinity lakes of the southwestern Adirondacks, an area with little geological ability to neutralize acidic deposition and receives the highest annual average rainfall in the region. The authors estimate that approximately 80% of the target population lakes with present-day measured pH = or < 5.2 and 30-45% of lakes with pH between 5.2 and 6.0 have undergone large declines in pH and ANC, and concomitant increases in Al(sub m). Estimated changes in (DOC) were small and show no consistent pattern in the acidified lakes. The study provides the first statistically based regional evaluation of the extent of lake acidification in the Adirondacks

  4. Differences in the exploitation of bream in three shallow lake systems and their relation to water quality

    NARCIS (Netherlands)

    Lammens, E.H.R.R.; Nes, van E.H.; Mooij, W.M.

    2002-01-01

    1. The development of bream populations, water transparency, chlorophyll-a concentration, extent of submerged vegetation and densities of the zebra mussel, Dreissena polymorpha, were analysed in three shallow eutrophic lake systems subject to different fish management. 2. In Lake Veluwemeer, the

  5. Differences in the exploitation of bream in three shallow lake systems and their relation to water quality

    NARCIS (Netherlands)

    Lammens, E.H.R.R.; Van Nes, E.H.; Mooij, W.M.

    2002-01-01

    SUMMARY1. The development of bream populations, water transparency, chlorophyll-a concentration, extent of submerged vegetation and densities of the zebra mussel, Dreissena polymorpha, were analysed in three shallow eutrophic lake systems subject to different fish management. 2. In Lake Veluwemeer,

  6. Lake Morphometry for NHD Lakes in Tennessee Region 6 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  7. Lake Morphometry for NHD Lakes in Ohio Region 5 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  8. Lake Morphometry for NHD Lakes in California Region 18 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  9. New paleoreconstruction of transgressive stages in the northern part of Lake Ladoga, NW Russia.

    Science.gov (United States)

    Terekhov, Anton; Sapelko, Tatyana

    2016-04-01

    Lake Ladoga is one of the largest lakes in the world and the largest in Europe. The watershed of lake Ladoga covers the North-Western part of European Russia and the Eastern Finland. Lake basin is on the border between the Baltic shield and the East European Platform. The most consistent paleoreconstructions of Lake Ladoga history are based on bottom sediments of smaller lakes, which used to be a part of Ladoga in the past. The stages of Ladoga evolution are directly connected with the history of the Baltic Ice Lake (BIL) and of the Ancylus Lake. Water level of these lakes was significant higher than nowadays level. Lake Ladoga in its present limits used to be an Eastern gulf of BIL and Ancylus Lake. The preceding paleoreconstructions of Ladoga water level oscillations were undertaken by G. de Geer, J. Ailio, E. Hyyppä, K. Markov, D. Kvasov, D. Malakhovskiy, M. Ekman, G. Lak, N. Davydova, M. Saarnisto, D. Subetto and others. The new data on multivariate analysis of bottom sediments of lakes which used to belong to Ladoga, collected in the last few years, allows to create several maps of Ladoga transgressive stages in Late Glacial period and post-glacial time. A series of maps showing the extent of Ladoga transgression was created based on lake sediments multivariate analysis and a GIS-modeling using the digital elevation data with an accuracy of several meters and an open-source software (QGIS and SAGA). Due to post-glacial rebound of the lake watershed territory, GIS-modeling should comprise the extent of the glacioisostatic uplift, so the chart of a present-day uplift velocity for Fennoscandia of Ekman and Mäkinen was used. The new digital elevation models were calculated for several moments in the past, corresponding to the most probable dates of smaller lakes isolation from Lake Ladoga. Then, the basin of Ladoga was "filled" with water into GIS program to the levels sufficient for the smaller lakes to join and to split-off. The modern coastlines of Ladoga and

  10. Effects of land use on lake nutrients: The importance of scale, hydrologic connectivity, and region

    Science.gov (United States)

    Soranno, Patricia A.; Cheruvelil, Kendra Spence; Wagner, Tyler; Webster, Katherine E.; Bremigan, Mary Tate

    2015-01-01

    Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents. This research aims to increase model performance by exploring three factors that affect the relationship between land use and downstream nutrients in freshwater: the spatial extent for measuring land use, hydrologic connectivity, and the regional differences in both the amount of nutrients and effects of land use on them. We quantified the effects of these three factors that relate land use to lake total phosphorus (TP) and total nitrogen (TN) in 346 north temperate lakes in 7 regions in Michigan, USA. We used a linear mixed modeling framework to examine the importance of spatial extent, lake hydrologic class, and region on models with individual lake nutrients as the response variable, and individual land use types as the predictor variables. Our modeling approach was chosen to avoid problems of multi-collinearity among predictor variables and a lack of independence of lakes within regions, both of which are common problems in broad-scale analyses of freshwaters. We found that all three factors influence land use-lake nutrient relationships. The strongest evidence was for the effect of lake hydrologic connectivity, followed by region, and finally, the spatial extent of land use measurements. Incorporating these three factors into relatively simple models of land use effects on lake nutrients should help to improve predictions and understanding of land use-lake nutrient interactions at broad scales.

  11. Optical ages indicate the southwestern margin of the Green Bay Lobe in Wisconsin, USA, was at its maximum extent until about 18,500 years ago

    Science.gov (United States)

    Attig, J.W.; Hanson, P.R.; Rawling, J.E.; Young, A.R.; Carson, E.C.

    2011-01-01

    Samples for optical dating were collected to estimate the time of sediment deposition in small ice-marginal lakes in the Baraboo Hills of Wisconsin. These lakes formed high in the Baraboo Hills when drainage was blocked by the Green Bay Lobe when it was at or very near its maximum extent. Therefore, these optical ages provide control for the timing of the thinning and recession of the Green Bay Lobe from its maximum position. Sediment that accumulated in four small ice-marginal lakes was sampled and dated. Difficulties with field sampling and estimating dose rates made the interpretation of optical ages derived from samples from two of the lake basins problematic. Samples from the other two lake basins-South Bluff and Feltz basins-responded well during laboratory analysis and showed reasonably good agreement between the multiple ages produced at each site. These ages averaged 18.2. ka (n= 6) and 18.6. ka (n= 6), respectively. The optical ages from these two lake basins where we could carefully select sediment samples provide firm evidence that the Green Bay Lobe stood at or very near its maximum extent until about 18.5. ka.The persistence of ice-marginal lakes in these basins high in the Baraboo Hills indicates that the ice of the Green Bay Lobe had not experienced significant thinning near its margin prior to about 18.5. ka. These ages are the first to directly constrain the timing of the maximum extent of the Green Bay Lobe and the onset of deglaciation in the area for which the Wisconsin Glaciation was named. ?? 2011 Elsevier B.V.

  12. Glacier Instability, Rapid Glacier Lake Growth and Related Hazards at Belvedere Glacier, Macugnaga, Italy

    Science.gov (United States)

    Huggel, C.; Kaeaeb, A.; Haeberli, W.; Mortara, G.; Chiarle, M.; Epifani, F.

    2002-12-01

    overtopping and failure of ice dam with catastrophic subglacial drainage. In consideration of the current bathymetric studies and ice thickness measurements from the 1980ies, it was assumed that the floatation equilibrium was possibly reached by end of June. In case of an ice dam, the maximum discharge of a related subglacial drainage was estimated at 200 m3/s, probably involving a large debris flow. Extension and nature of thermokarst processes of the lake/ice interface are currently studied by repeated bathymetric measurements and adaption of corresponding models. In July/August 2002, geodetic ice flow velocity measurements showed that the enhanced flow velocities have decreased probably indicat ing the end of the surge-like movement. In conclusion, the developments at Macugnaga are an excellent example illustrating the need for inte grated hazard assessments in consideration of complex process chains. The current situation requires studies on different aspects, such as rock instabilities, glacier dynamics and hydrology, geomorphody namics, and mitigation-construction planning.

  13. Geophysical study of the Clear Lake region, California

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, R.H.

    1975-01-01

    Results of geophysical studies in the Clear Lake region of California, north of San Francisco, have revealed a prominent, nearly circular negative gravity anomaly with an amplitude of more than 25 milligals (mgal) and an areal extent of approximately 250 square miles and, in addition, a number of smaller positive and negative anomalies. The major negative gravity anomaly is closely associated with the Clear Lake volcanic field and with an area characterized by hot springs and geothermal fields. However, the anomaly cannot be explained by mapped surface geologic features of the area. Aeromagnetic data in the Clear Lake region show no apparent correlation with the major negative gravity anomaly; the local magnetic field is affected principally by serpentine. An electrical resistivity low marks the central part of the gravity minimum, and a concentration of earthquake epicenters characterizes the Clear Lake volcanic field area. The primary cause of the major negative gravity anomaly is believed to be a hot intrusive mass, possibly a magma chamber, that may underlie the Clear Lake volcanic field and vicinity. This mass may serve as a source of heat for the geothermal phenomena in the area. Other smaller gravity anomalies in the Clear Lake region are apparently caused by near-surface geologic features, including relatively dense units of the Franciscan Formation and less dense Cenozoic sedimentary and volcanic rock units.

  14. Geologic map of Medicine Lake volcano, northern California

    Science.gov (United States)

    Donnelly-Nolan, Julie M.

    2011-01-01

    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  15. Real-estate lakes

    Science.gov (United States)

    Rickert, David A.; Spieker, Andrew Maute

    1971-01-01

    Since the dawn of civilization waterfront land has been an irresistible attraction to man. Throughout history he has sought out locations fronting on oceans, rivers, and lakes. Originally sought for proximity .to water supply and transportation, such locations are now sought more for their esthetic qualities and for recreation. Usable natural waterfront property is limited, however, and the more desirable sites in many of our urban areas have already been taken. The lack of available waterfront sites has led to the creation of many artificial bodies of water. The rapid suburbanization that has characterized urban growth in America since the end of World War II, together with increasing affluence and le-isure time, has created a ready market for waterfront property. Accordingly, lake-centered subdivisions and developments dot the suburban landscape in many of our major urban areas. Literally thousands of lakes surrounded by homes have materialized during this period of rapid growth. Recently, several "new town" communities have been planned around this lake-centered concept. A lake can be either an asset or a liaoility to a community. A clean, clear, attractively landscaped lake is a definite asset, whereas a weed-choked, foul-smelling mudhole is a distinct liability. The urban environment poses both problems and imaginative opportunities in the development of lakes. Creation of a lake causes changes in all aspects of the environment. Hydrologic systems and ecological patterns are usually most severely altered. The developer should be aware of the potential changes; it is not sufficient merely to build a dam across a stream or to dig a hole in the ground. Development of Gl a successful lake requires careful planning for site selection and design, followed by thorough and cc ntinual management. The purpose of this report is to describe the characteristics of real-estate lakes, to pinpoint potential pmblems, and to suggest possible planning and management guidelines

  16. Lake Michigan lake trout PCB model forecast post audit

    Science.gov (United States)

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents th...

  17. Methane emissions from permafrost thaw lakes limited by lake drainage.

    NARCIS (Netherlands)

    van Huissteden, J.; Berrittella, C.; Parmentier, F.J.W.; Mi, Y.; Maximov, T.C.; Dolman, A.J.

    2011-01-01

    Thaw lakes in permafrost areas are sources of the strong greenhouse gas methane. They develop mostly in sedimentary lowlands with permafrost and a high excess ground ice volume, resulting in large areas covered with lakes and drained thaw-lake basins (DTLBs; refs,). Their expansion is enhanced by

  18. Great Lakes Environmental Database (GLENDA)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Great Lakes Environmental Database (GLENDA) houses environmental data on a wide variety of constituents in water, biota, sediment, and air in the Great Lakes area.

  19. Functional microbiology of soda lakes

    NARCIS (Netherlands)

    Sorokin, D.Y.; Banciu, H.L.; Muyzer, G.

    2015-01-01

    Soda lakes represent unique permanently haloalkaline system. Despite the harsh conditions, they are inhabited by abundant, mostly prokaryotic, microbial communities. This review summarizes results of studies of main functional groups of the soda lake prokaryotes responsible for carbon, nitrogen and

  20. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    Science.gov (United States)

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sanctuaries for lake trout in the Great Lakes

    Science.gov (United States)

    Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.

    1987-01-01

    Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.

  2. Water quality of Lake Austin and Town Lake, Austin, Texas

    Science.gov (United States)

    Andrews, Freeman L.; Wells, Frank C.; Shelby, Wanda J.; McPherson, Emma

    1988-01-01

    Lake Austin and Town Lake are located on the Colorado River in Travis County, central Texas, and serve as a source of water for municipal and industrial water supplies, electrical-power generation, and recreation for more than 500,000 people in the Austin metropolitan area. Lake Austin, located immediately downstream of Lake Travis, extends for more than 20 miles into the western edge of the city of Austin. Town Lake extends through the downtown area of the city of Austin for nearly 6 miles where the Colorado River is impounded by Longhorn Dam.

  3. Lake Morphometry for NHD Lakes in Great Lakes Region 4 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  4. Technologies for lake restoration

    Directory of Open Access Journals (Sweden)

    Helmut KLAPPER

    2003-09-01

    Full Text Available Lakes are suffering from different stress factors and need to be restored using different approaches. The eutrophication remains as the main water quality management problem for inland waters: both lakes and reservoirs. The way to curb the degradation is to stop the nutrient sources and to accelerate the restoration with help of in-lake technologies. Especially lakes with a long retention time need (eco- technological help to decrease the nutrient content in the free water. The microbial and other organic matter from sewage and other autochthonous biomasses, causes oxygen depletion, which has many adverse effects. In less developed countries big reservoirs function as sewage treatment plants. Natural aeration solves problems only partly and many pollutants tend to accumulate in the sediments. The acidification by acid rain and by pyrite oxidation has to be controlled by acid neutralizing technologies. Addition of alkaline chemicals is useful only for soft waters, and technologies for (microbial alkalinization of very acidic hardwater mining lakes are in development. The corrective measures differ from those in use for eutrophication control. The salinization and water shortage mostly occurs if more water is used than available. L. Aral, L. Tschad, the Dead Sea or L. Nasser belong to waters with most severe environmental problems on a global scale. Their hydrologic regime needs to be evaluated. The inflow of salt water at the bottom of some mining lakes adds to stability of stratification, and thus accumulation of hydrogen sulphide in the monimolimnion of the meromictic lakes. Destratification, which is the most used technology, is only restricted applicable because of the dangerous concentrations of the byproducts of biological degradation. The contamination of lakes with hazardous substances from industry and agriculture require different restoration technologies, including subhydric isolation and storage, addition of nutrients for better self

  5. Lakes on Mars

    CERN Document Server

    Cabrol, Nathalie A

    2014-01-01

    On Earth, lakes provide favorable environments for the development of life and its preservation as fossils. They are extremely sensitive to climate fluctuations and to conditions within their watersheds. As such, lakes are unique markers of the impact of environmental changes. Past and current missions have now demonstrated that water once flowed at the surface of Mars early in its history. Evidence of ancient ponding has been uncovered at scales ranging from a few kilometers to possibly that of the Arctic ocean. Whether life existed on Mars is still unknown; upcoming missions may find critic

  6. Terrestrial CDOM in Lakes of Yamal Peninsula: Connection to Lake and Lake Catchment Properties

    Directory of Open Access Journals (Sweden)

    Yury Dvornikov

    2018-01-01

    Full Text Available In this study, we analyze interactions in lake and lake catchment systems of a continuous permafrost area. We assessed colored dissolved organic matter (CDOM absorption at 440 nm (a(440CDOM and absorption slope (S300–500 in lakes using field sampling and optical remote sensing data for an area of 350 km2 in Central Yamal, Siberia. Applying a CDOM algorithm (ratio of green and red band reflectance for two high spatial resolution multispectral GeoEye-1 and Worldview-2 satellite images, we were able to extrapolate the a(λCDOM data from 18 lakes sampled in the field to 356 lakes in the study area (model R2 = 0.79. Values of a(440CDOM in 356 lakes varied from 0.48 to 8.35 m−1 with a median of 1.43 m−1. This a(λCDOM dataset was used to relate lake CDOM to 17 lake and lake catchment parameters derived from optical and radar remote sensing data and from digital elevation model analysis in order to establish the parameters controlling CDOM in lakes on the Yamal Peninsula. Regression tree model and boosted regression tree analysis showed that the activity of cryogenic processes (thermocirques in the lake shores and lake water level were the two most important controls, explaining 48.4% and 28.4% of lake CDOM, respectively (R2 = 0.61. Activation of thermocirques led to a large input of terrestrial organic matter and sediments from catchments and thawed permafrost to lakes (n = 15, mean a(440CDOM = 5.3 m−1. Large lakes on the floodplain with a connection to Mordy-Yakha River received more CDOM (n = 7, mean a(440CDOM = 3.8 m−1 compared to lakes located on higher terraces.

  7. Multisensor Analyzed Sea Ice Extent - Northern Hemisphere (MASIE-NH)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Multisensor Analyzed Sea Ice Extent Northern Hemisphere (MASIE-NH) products provide measurements of daily sea ice extent and sea ice edge boundary for the...

  8. Do invasive quagga mussels alter CO2 dynamics in the Laurentian Great Lakes?

    Science.gov (United States)

    Lin, Peng; Guo, Laodong

    2016-12-01

    The Laurentian Great Lakes have experienced unprecedented ecological and environmental changes, especially after the introduction of invasive quagga mussel (Dreissena rostriformis bugensis). While impacts on ecological functions have been widely recognized, the response of carbon dynamics to invasive species remains largely unknown. We report new CO2 data showing significant increases in pCO2 (up to 800 μatm in Lake Michigan) and CO2 emission fluxes in most of the Great Lakes compared to those prior to or during the early stage of the colonization of invasive quagga mussels. The increased CO2 supersaturation is most prominent in Lakes Huron and Michigan, followed by Lakes Ontario and Erie, but no evident change was observed in Lake Superior. This trend mirrors the infestation extent of invasive quagga mussels in the Great Lakes and is consistent with the decline in primary production and increase in water clarity observed pre- and post-Dreissena introduction, revealing a close linkage between invasive species and carbon dynamics. The Great Lakes have become a significant CO2 source to the atmosphere, emitting >7.7 ± 1.0 Tg-C annually, which is higher than the organic carbon burial rate in global inland-seas and attesting to the significant role of the Laurentian Great Lakes in regional/global CO2 budget and cycling.

  9. Hierarchy in factors affecting fish biodiversity in floodplain lakes of the Mississippi Alluvial Valley

    Science.gov (United States)

    Dembkowski, D.J.; Miranda, L.E.

    2012-01-01

    River-floodplain ecosystems offer some of the most diverse and dynamic environments in the world. Accordingly, floodplain habitats harbor diverse fish assemblages. Fish biodiversity in floodplain lakes may be influenced by multiple variables operating on disparate scales, and these variables may exhibit a hierarchical organization depending on whether one variable governs another. In this study, we examined the interaction between primary variables descriptive of floodplain lake large-scale features, suites of secondary variables descriptive of water quality and primary productivity, and a set of tertiary variables descriptive of fish biodiversity across a range of floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas (USA). Lakes varied considerably in their representation of primary, secondary, and tertiary variables. Multivariate direct gradient analyses indicated that lake maximum depth and the percentage of agricultural land surrounding a lake were the most important factors controlling variation in suites of secondary and tertiary variables, followed to a lesser extent by lake surface area. Fish biodiversity was generally greatest in large, deep lakes with lower proportions of watershed agricultural land. Our results may help foster a holistic approach to floodplain lake management and suggest the framework for a feedback model wherein primary variables can be manipulated for conservation and restoration purposes and secondary and tertiary variables can be used to monitor the success of such efforts. ?? 2011 Springer Science+Business Media B.V.

  10. Factors affecting fish biodiversity in floodplain lakes of the Mississippi Alluvial Valley

    Science.gov (United States)

    Miranda, Leandro E.; Dembkowski, Daniel J.

    2012-01-01

    River-floodplain ecosystems offer some of the most diverse and dynamic environments in the world. Accordingly, floodplain habitats harbor diverse fish assemblages. Fish biodiversity in floodplain lakes may be influenced by multiple variables operating on disparate scales, and these variables may exhibit a hierarchical organization depending on whether one variable governs another. In this study, we examined the interaction between primary variables descriptive of floodplain lake large-scale features, suites of secondary variables descriptive of water quality and primary productivity, and a set of tertiary variables descriptive of fish biodiversity across a range of floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas (USA). Lakes varied considerably in their representation of primary, secondary, and tertiary variables. Multivariate direct gradient analyses indicated that lake maximum depth and the percentage of agricultural land surrounding a lake were the most important factors controlling variation in suites of secondary and tertiary variables, followed to a lesser extent by lake surface area. Fish biodiversity was generally greatest in large, deep lakes with lower proportions of watershed agricultural land. Our results may help foster a holistic approach to floodplain lake management and suggest the framework for a feedback model wherein primary variables can be manipulated for conservation and restoration purposes and secondary and tertiary variables can be used to monitor the success of such efforts.

  11. Poet Lake Crystal Approval

    Science.gov (United States)

    This September 19, 2016 letter from EPA approves the petition from Poet Biorefining-Lake Crystal, regarding non-grandfathered ethanol produced through a dry mill process, qualifying under the Clean Air Act for renewable fuel (D-code 6) RINs under the RFS

  12. Lake Kariba, Zimbabwe

    African Journals Online (AJOL)

    1984-02-01

    Feb 1, 1984 ... rings word opgesom terwyl sommige van die lesse wat by Kariba geleer is en 'n ... one area of the lake must have an effect, directly or indirectly, on other consumer organisms in the aquatic environment. Con- sidering ... are liable to attain their high density at the price of other taxa. ... be measured. Data on ...

  13. IN LAKE TANA, ETHIOPIA

    African Journals Online (AJOL)

    Turbidity showed depressed effect on biomass ... Key words/phrases: Biomass, duration of development, Lake Tana, large-turbid ... 36°45'-38°14'E and at an altitude of 1830 In, a.s.l. ... 30 cm mouth opening, 1.2 m cod end), which was ... times of the three copepods were measured under .... The greatest density values were.

  14. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions

    Science.gov (United States)

    Herbst, Seth J.; Marsden, J. Ellen; Lantry, Brian F.

    2013-01-01

    Lake Whitefish Coregonus clupeaformis support some of the most valuable commercial freshwater fisheries in North America. Recent growth and condition decreases in Lake Whitefish populations in the Great Lakes have been attributed to the invasion of the dreissenid mussels, zebra mussels Dreissena polymorpha and quagga mussels D. bugensis, and the subsequent collapse of the amphipod, Diporeia, a once-abundant high energy prey source. Since 1993, Lake Champlain has also experienced the invasion and proliferation of zebra mussels, but in contrast to the Great Lakes, Diporeia were not historically abundant. We compared the diet, condition, and energy density of Lake Whitefish from Lake Champlain after the dreissenid mussel invasion to values for those of Lake Whitefish from Lakes Michigan, Huron, Erie, and Ontario. Lake Whitefish were collected using gill nets and bottom trawls, and their diets were quantified seasonally. Condition was estimated using Fulton's condition factor (K) and by determining energy density. In contrast to Lake Whitefish from some of the Great Lakes, those from Lake Champlain Lake Whitefish did not show a dietary shift towards dreissenid mussels, but instead fed primarily on fish eggs in spring, Mysis diluviana in summer, and gastropods and sphaeriids in fall and winter. Along with these dietary differences, the condition and energy density of Lake Whitefish from Lake Champlain were high compared with those of Lake Whitefish from Lakes Michigan, Huron, and Ontario after the dreissenid invasion, and were similar to Lake Whitefish from Lake Erie; fish from Lakes Michigan, Huron, and Ontario consumed dreissenids, whereas fish from Lake Erie did not. Our comparisons of Lake Whitefish populations in Lake Champlain to those in the Great Lakes indicate that diet and condition of Lake Champlain Lake Whitefish were not negatively affected by the dreissenid mussel invasion.

  15. Depositional environments of Late Triassic lake, east-central New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hester, P.M. (Bureau of Land Management, Albuquerque, NM (USA))

    1989-09-01

    The Redonda Member of the Chinle Formation represents deposition in a large, polymictic lake during the Late Triassic (Norian) in east-central New Mexico. This study documents and defines an extensive lacustrine system situated in western Pangaea which was influenced by both tectonic and climatic events. Areal extent of the lake may have been as much as 5,000 km{sup 2}.

  16. Local monitoring program for invasion of zebra mussel (Dreissena polymorpha) in the Dam lake Zhrebchevo, Bulgaria

    OpenAIRE

    Stoyanova, Stefka; Nikolov, Galin; Velichkova, Katya; Atanasoff, Alexander; Mumun, Sevdegul

    2015-01-01

    Zebra mussels (Dreissena polymorpha) are bivalve mollusks approximately 1 to 5 cm long that live in freshwater lakes. They have invaded many Bulgarian freshwater ecosystems in recent decades. Because of their ability to settle on almost any substrate, zebra mussels cause severe damage to closed water systems, RAS and intensive fish farming systems. In order to assess the status of the mussel population in the lake in the area of the Forest group fish farm, the distribution, extent of coloniza...

  17. Temperature Dependence of Apparent Respiratory Quotients and Oxygen Penetration Depth in Contrasting Lake Sediments

    Science.gov (United States)

    Sobek, Sebastian; Gudasz, Cristian; Koehler, Birgit; Tranvik, Lars J.; Bastviken, David; Morales-Pineda, María.

    2017-11-01

    Lake sediments constitute an important compartment in the carbon cycle of lakes, by burying carbon over geological timescales and by production and emission of greenhouse gases. The degradation of organic carbon (OC) in lake sediments is linked to both temperature and oxygen (O2), but the interactive nature of this regulation has not been studied in lake sediments in a quantitative way. We present the first systematic investigation of the effects of temperature on the apparent respiratory quotient (RQ, i.e., the molar ratio between carbon dioxide (CO2) production and O2 consumption) in two contrasting lake sediments. Laboratory incubations of sediment cores of a humic lake and an eutrophic lake across a 1-21°C temperature gradient over 157 days revealed that both CO2 production and O2 consumption were positively, exponentially, and similarly dependent on temperature. The apparent RQ differed significantly between the lake sediments (0.63 ± 0.26 and 0.99 ± 0.28 in the humic and the eutrophic lake, respectively; mean ± SD) and was significantly and positively related to temperature. The O2 penetration depth into the sediment varied by a factor of 2 over the 1-21°C temperature range and was significantly, negatively, and similarly related to temperature in both lake sediments. Accordingly, increasing temperature may influence the overall extent of OC degradation in lake sediments by limiting O2 supply to aerobic microbial respiration to the topmost sediment layer, resulting in a concomitant shift to less effective anaerobic degradation pathways. This suggests that temperature may represent a key controlling factor of the OC burial efficiency in lake sediments.

  18. Interactions of artificial lakes with groundwater applying an integrated MODFLOW solution

    Science.gov (United States)

    El-Zehairy, A. A.; Lubczynski, M. W.; Gurwin, J.

    2018-02-01

    Artificial lakes (reservoirs) are regulated water bodies with large stage fluctuations and different interactions with groundwater compared with natural lakes. A novel modelling study characterizing the dynamics of these interactions is presented for artificial Lake Turawa, Poland. The integrated surface-water/groundwater MODFLOW-NWT transient model, applying SFR7, UZF1 and LAK7 packages to account for variably-saturated flow and temporally variable lake area extent and volume, was calibrated throughout 5 years (1-year warm-up, 4-year simulation), applying daily lake stages, heads and discharges as control variables. The water budget results showed that, in contrast to natural lakes, the reservoir interactions with groundwater were primarily dependent on the balance between lake inflow and regulated outflow, while influences of precipitation and evapotranspiration played secondary roles. Also, the spatio-temporal lakebed-seepage pattern was different compared with natural lakes. The large and fast-changing stages had large influence on lakebed-seepage and water table depth and also influenced groundwater evapotranspiration and groundwater exfiltration, as their maxima coincided not with rainfall peaks but with highest stages. The mean lakebed-seepage ranged from 0.6 mm day-1 during lowest stages (lake-water gain) to 1.0 mm day-1 during highest stages (lake-water loss) with largest losses up to 4.6 mm day-1 in the peripheral zone. The lakebed-seepage of this study was generally low because of low lakebed leakance (0.0007-0.0015 day-1) and prevailing upward regional groundwater flow moderating it. This study discloses the complexity of artificial lake interactions with groundwater, while the proposed front-line modelling methodology can be applied to any reservoir, and also to natural lake interactions with groundwater.

  19. Citizen and Satellite Measurements Used to Estimate Lake Water Storage Variations

    Science.gov (United States)

    Parkins, G.; Pavelsky, T.; Yelton, S.; Ghafoor, S. K.; Hossain, F.

    2017-12-01

    Of the roughly 20-40 million lakes in the world larger than 0.01 km2, perhaps a few thousand receive regular water level monitoring, and only approximately a thousand are included in the largest lake level databases. The prospect for on-the-ground, automated monitoring of a significant fraction of the world's lakes is not high given the considerable expense involved. In comparison to many other measurements, however, measuring lake water level is relatively simple under most conditions. A staff gauge installed in a lake, essentially a leveled ruler, can be read relatively simply by both experts and ordinary citizens. Reliable staff gauges cost far less than automated systems, making them an attractive alternative. However, staff gauges are only effective when they are regularly observed and when those observations are communicated to a central database. We have developed and tested a system for citizen scientists to monitor water levels in 15 lakes in Eastern North Carolina, USA and to easily report those measurements to our project team. We combine these citizen measurements with Landsat measurements of inundated area to track variations in lake water storage. Here, we present the resulting lake water level, inundation extent, and lake storage change time series and assess measurement accuracy. Our primary validation method for citizen-measured lake water levels is comparison with heights from pressure transducers also installed in all fifteen lakes. We use the validated results to understand spatial patterns in the lake hydrology of Eastern North Carolina. Finally, we consider the motivations of citizens who participate in the project and discuss the feedback they have provided regarding our measurement and communication systems.

  20. Microbiology of Lonar Lake and other soda lakes

    Science.gov (United States)

    Paul Antony, Chakkiath; Kumaresan, Deepak; Hunger, Sindy; Drake, Harold L; Murrell, J Colin; Shouche, Yogesh S

    2013-01-01

    Soda lakes are saline and alkaline ecosystems that are believed to have existed throughout the geological record of Earth. They are widely distributed across the globe, but are highly abundant in terrestrial biomes such as deserts and steppes and in geologically interesting regions such as the East African Rift valley. The unusual geochemistry of these lakes supports the growth of an impressive array of microorganisms that are of ecological and economic importance. Haloalkaliphilic Bacteria and Archaea belonging to all major trophic groups have been described from many soda lakes, including lakes with exceptionally high levels of heavy metals. Lonar Lake is a soda lake that is centered at an unusual meteorite impact structure in the Deccan basalts in India and its key physicochemical and microbiological characteristics are highlighted in this article. The occurrence of diverse functional groups of microbes, such as methanogens, methanotrophs, phototrophs, denitrifiers, sulfur oxidizers, sulfate reducers and syntrophs in soda lakes, suggests that these habitats harbor complex microbial food webs that (a) interconnect various biological cycles via redox coupling and (b) impact on the production and consumption of greenhouse gases. Soda lake microorganisms harbor several biotechnologically relevant enzymes and biomolecules (for example, cellulases, amylases, ectoine) and there is the need to augment bioprospecting efforts in soda lake environments with new integrated approaches. Importantly, some saline and alkaline lake ecosystems around the world need to be protected from anthropogenic pressures that threaten their long-term existence. PMID:23178675

  1. Lake trout rehabilitation in Lake Erie: a case history

    Science.gov (United States)

    Cornelius, Floyd C.; Muth, Kenneth M.; Kenyon, Roger

    1995-01-01

    Native lake trout (Salvelinus namaycush) once thrived in the deep waters of eastern Lake Erie. The impact of nearly 70 years of unregulated exploitation and over 100 years of progressively severe cultural eutrophication resulted in the elimination of lake trout stocks by 1950. Early attempts to restore lake trout by stocking were unsuccessful in establishing a self-sustaining population. In the early 1980s, New York's Department of Environmental Conservation, Pennsylvania's Fish and Boat Commission, and the U.S. Fish and Wildlife Service entered into a cooperative program to rehabilitate lake trout in the eastern basin of Lake Erie. After 11 years of stocking selected strains of lake trout in U.S. waters, followed by effective sea lamprey control, lake trout appear to be successfully recolonizing their native habitat. Adult stocks have built up significantly and are expanding their range in the lake. Preliminary investigations suggest that lake trout reproductive habitat is still adequate for natural reproduction, but natural recruitment has not been documented. Future assessments will be directed toward evaluation of spawning success and tracking age-class cohorts as they move through the fishery.

  2. Scale and watershed features determine lake chemistry patterns across physiographic regions in the far north of Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Josef MacLeod

    2016-11-01

    Full Text Available Changes in the far north of Ontario (>50°N latitude, like climate warming and increased industrial development, will have direct effects on watershed characteristics and lakes. To better understand the nature of remote northern lakes that span the Canadian Shield and Hudson Bay Lowlands, and to address the pressing need for limnological data for this vast, little-studied area of Ontario, lake chemistry surveys were conducted during 2011-2012. Lakes at the transition between these physiographic regions displayed highly variable water chemistry, reflecting the peatland landscape with a mix of bog and fen watersheds, and variations in the extent of permafrost. In the transition area, Shield and Lowlands lakes could not be clearly differentiated based on water chemistry; peat cover decouples, to varying degrees, the lakes from the influences of bedrock and surficial deposits. Regional chemistry differences were apparent across a much broader area of northern Ontario, due to large-scale spatial changes in geology and in the extent of peatlands and permafrost.  Shield lakes in the far northwest of Ontario had Ca, Mg, and TP concentrations markedly higher than those of many Lowlands lakes and previously studied Shield lakes south of 50°N, related to an abundance of lacustrine and glacial end-moraine deposits in the north.

  3. Northern Great Basin Seasonal Lakes: Vulnerability to Climate Change.

    Science.gov (United States)

    Russell, M.; Eitel, J.

    2017-12-01

    Seasonal alkaline lakes in southeast Oregon, northeast California, and northwest Nevada serve as important habitat for migrating birds utilizing the Pacific Flyway, as well as local plant and animal communities. Despite their ecological importance, and anecdotal suggestions that these lakes are becoming less reliable, little is known about the vulnerability of these lakes to climate change. Our research seeks to understand the vulnerability of Northern Great Basin seasonal lakes to climate change. For this, we will be using historical information from the European Space Agency's Global Surface Water Explorer and the University of Idaho's gridMET climate product, to build a model that allows estimating surface water extent and timing based on climate variables. We will then utilize downscaled future climate projections to model surface water extent and timing in the coming decades. In addition, an unmanned aerial system (UAS) will be utilized at a subset of dried basins to obtain precise 3D bathymetry and calculate water volume hypsographs, a critical factor in understanding the likelihood of water persistence and biogeochemical habitat suitability. These results will be incorporated into decision support tools that land managers can utilize in water conservation, wildlife management, and climate mitigation actions. Future research may pair these forecasts with animal movement data to examine fragmentation of migratory corridors and species-specific impacts.

  4. Evolution of alkaline lakes - Lake Van case study

    Science.gov (United States)

    Tillman Meyer, Felix; Viehberg, Finn; Bahroun, Sonya; Wolf, Annabel; Immenhauser, Adrian; Kwiecien, Ola

    2017-04-01

    Lake Van in Eastern Anatolia (Turkey) is the largest terminal soda lake on Earth. The lake sedimentary profile covers ca. 600 ka (Stockhecke et al. 2014) Based on lithological changes, the presence of freshwater microfossils and close-to-freshwater pH value in the pore water, members of ICDP PALEOVAN concluded that Lake Van might have started as an open lake. Here we show paleontological and geochemical evidence in favour of this idea and constrain the time, when Lake Van likely transformed into a closed lake. Additionally we provide the first conceptual model of how this closure may have happened. Our archives of choice are inorganic and biogenic carbonates, separated by wet sieving. We identified microfossil assemblages (fraction > 125 µm) and performed high-resolution oxygen isotope (delta18O) and elemental (Mg/Ca, Sr/Ca) analyses of the fraction plants growing in the photic zone as food supply. These two aspects point to an increasing salinity in a shallowing lake. The delta18O values of inorganic carbonates are relatively low during the initial phase of Lake Van and increase abruptly (ca. 7‰) after 530 ka BP. At approximately the same time combination of Sr/Ca and Mg/Ca data suggest first occurrence of aragonite. Again, these findings suggest geochemical changes of the lake water concurrent with transition documented by microfossils. Comparison between Lake Van and Lake Ohrid (Lacey et al. 2016) delta18O data, precludes regional climate change (e.g.: increased evaporation) as the main driver of observed changes. With no evidence for increased volcanic or tectonic activity (e.g.: tephra layers, deformation structures, slumping) in the Lake Van sedimentary profile around 530 ka, it seems unlikely that a pyroclastic flow blocked the outflow of the lake. Alternatively, a portion of inflow has been diverged which might have caused a change in the hydrological balance and lake level falling below its outlet. However, as no geomorphological data confirming this

  5. Predicting Maximum Lake Depth from Surrounding Topography

    Science.gov (United States)

    Lake volume aids understanding of the physical and ecological dynamics of lakes, yet is often not readily available. The data needed to calculate lake volume (i.e. bathymetry) are usually only collected on a lake by lake basis and are difficult to obtain across broad regions. ...

  6. Lake-level frequency analysis for Devils Lake, North Dakota

    Science.gov (United States)

    Wiche, Gregg J.; Vecchia, Aldo V.

    1996-01-01

    Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow. Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lakevolume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lake-volume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient. However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines. The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model

  7. Lake-wide distribution of Dreissena in Lake Michigan, 1999

    Science.gov (United States)

    Fleischer, Guy W.; DeSorcie, Timothy J.; Holuszko, Jeffrey D.

    2001-01-01

    The Great Lakes Science Center has conducted lake-wide bottom trawl surveys of the fish community in Lake Michigan each fall since 1973. These systematic surveys are performed at depths of 9 to 110 m at each of seven index sites around Lake Michigan. Zebra mussel (Dreissena polymorpha) populations have expanded to all survey locations and at a level to sufficiently contribute to the bottom trawl catches. The quagga (Dreissena bugensis), recently reported in Lake Michigan, was likely in the catches though not recognized. Dreissena spp. biomass ranged from about 0.6 to 15 kg/ha at the various sites in 1999. Dreissenid mussels were found at depths of 9 to 82 m, with their peak biomass at 27 to 46 m. The colonization of these exotic mussels has ecological implications as well as potential ramifications on the ability to sample fish consistently and effectively with bottom trawls in Lake Michigan.

  8. Measurement and Analysis of Extreme Wave and Ice Actions in the Great Lakes for Offshore Wind Platform Design

    Energy Technology Data Exchange (ETDEWEB)

    England, Tony [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; van Nieuwstadt, Lin [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; De Roo, Roger [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Karr, Dale [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Lozenge, David [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Meadows, Guy [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering

    2016-05-30

    This project, funded by the Department of Energy as DE-EE0005376, successfully measured wind-driven lake ice forces on an offshore structure in Lake Superior through one of the coldest winters in recent history. While offshore regions of the Great Lakes offer promising opportunities for harvesting wind energy, these massive bodies of freshwater also offer extreme and unique challenges. Among these challenges is the need to anticipate forces exerted on offshore structures by lake ice. The parameters of interest include the frequency, extent, and movement of lake ice, parameters that are routinely monitored via satellite, and ice thickness, a parameter that has been monitored at discrete locations over many years and is routinely modeled. Essential relationships for these data to be of use in the design of offshore structures and the primary objective of this project are measurements of maximum forces that lake ice of known thicknesses might exert on an offshore structure.

  9. The diversity of benthic mollusks of Lake Victoria and Lake Burigi ...

    African Journals Online (AJOL)

    Molluscan diversity, abundance and distribution in sediments of Lake Victoria and its satellite lake, Lake Burigi, were investigated. The survey was carried out in January and February 2002 for Lake Victoria and in March and April 2002 for Lake Burigi. Ten genera were recorded from four zones of Lake Victoria while only ...

  10. Paleoenvironments, Evolution, and Geomicrobiology in a Tropical Pacific Lake: The Lake Towuti Drilling Project (TOWUTI)

    Science.gov (United States)

    Vogel, Hendrik; Russell, James M.; Bijaksana, Satria; Crowe, Sean; Fowle, David; Haffner, Douglas; King, John; Marwoto, Ristiyanti; Melles, Martin; von Rintelen, Thomas; Stevenson, Janelle; Watkinson, Ian; Wattrus, Nigel

    2014-05-01

    drying between ~33,000 and 16,000 yr BP when high-latitude ice sheets expanded and global temperatures cooled. This in combination with the observed little direct influence of precessional orbital forcing and exposure of the Sunda Shelf implies that central Indonesian hydroclimate varies strongly in response to high-latitude climate forcing: a hypothesis we aim to test across multiple glacial-interglacial cycles through scientific drilling. Indeed, numerous high-amplitude reflectors in the upper 150 m of lacustrine fill suggest repeated cycles of moisture-balance variations in the tropical Pacific. In summary drilling in Lake Towuti will help to: (1) Document the timing, frequency, and amplitude of orbital- to millennial-scale changes in surface hydrology and terrestrial temperature in the Indo-Pacific Warm Pool across multiple glacial-interglacial cycles; (2) Understand how variations in terrestrial hydrology and temperature in central Indonesia respond to changes in the mean state of the ENSO system, the monsoons, high-latitude forcing, and insolation; (3) Analyze the long-term stability and resilience of rainforest vegetation to changes in climate, greenhouse gases, and fire frequency; (4) Study the extent, biogeography, and metabolism of microbial life in the sediments of a non-sulfidic, ferrginous basin, and their relationships to carbon cycling, redox metal deposition, and the concentration of metal ore minerals; (5) Study the effects of climate-driven changes in the aquatic environment on both lacustrine microbial populations, and the geobiosphere within the lake's sediment; (6) Determine the age of Lake Towuti, and the ensuing rates of speciation of Towuti's endemic fauna and flora; (7) Identify the timing of past lake level fluctuations in Towuti, changes in hydrological connections among the Malili Lakes, and how these influenced biological colonization events, habitat stability, and modes of speciation (sympatric, allopatric). Important milestones concerning

  11. Elliot Lake progress report

    International Nuclear Information System (INIS)

    Findlay, W.; Scott, A.S.

    1980-01-01

    The intent of the Elliot Lake remedial program is to identify houses in Elliot Lake with annual average WL's in excess of 0.02, discover the routes of radon entry into identified houses and close enough of them to reduce the annual average WL to an acceptable level, and to demonstrate that the annual average WL is below 0.02 in houses where remedial work was not thought necessary as well as in houses where remedial work has been completed. The remedial program is organized into two subprograms, the survey program and the remedial action program. By December 31, 1979 more than 17000 survey measurements had been carried out, identifying 157 houses where remedial action was required and confirming that no action was needed in 413 houses. Remedial work had been completed on 98 houses

  12. Angora Fire, Lake Tahoe

    Science.gov (United States)

    2007-01-01

    On the weekend of June 23, 2007, a wildfire broke out south of Lake Tahoe, which stretches across the California-Nevada border. By June 28, the Angora Fire had burned more than 200 homes and forced some 2,000 residents to evacuate, according to The Seattle Times and the Central Valley Business Times. On June 27, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the burn scar left by the Angora fire. The burn scar is dark gray, or charcoal. Water bodies, including the southern tip of Lake Tahoe and Fallen Leaf Lake, are pale silvery blue, the silver color a result of sunlight reflecting off the surface of the water. Vegetation ranges in color from dark to bright green. Streets are light gray, and the customary pattern of meandering residential streets and cul-de-sacs appears throughout the image, including the area that burned. The burn scar shows where the fire obliterated some of the residential areas just east of Fallen Leaf Lake. According to news reports, the U.S. Forest Service had expressed optimism about containing the fire within a week of the outbreak, but a few days after the fire started, it jumped a defense, forcing the evacuation of hundreds more residents. Strong winds that had been forecast for June 27, however, did not materialize, allowing firefighters to regain ground in controlling the blaze. On June 27, authorities hoped that the fire would be completely contained by July 3. According to estimates provided in the daily report from the National Interagency Fire Center, the fire had burned 3,100 acres (about 12.5 square kilometers) and was about 55 percent contained as of June 28. Some mandatory evacuations remained in effect. NASA image by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  13. Great Lakes Energy Institute

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J. Iwan [Case Western Reserve Univ., Cleveland, OH (United States)

    2012-11-18

    The vision of the Great Lakes Energy Institute is to enable the transition to advanced, sustainable energy generation, storage, distribution and utilization through coordinated research, development, and education. The Institute will place emphasis on translating leading edge research into next generation energy technology. The Institute’s research thrusts focus on coordinated research in decentralized power generation devices (e.g. fuel cells, wind turbines, solar photovoltaic devices), management of electrical power transmission and distribution, energy storage, and energy efficiency.

  14. Limnology of Lake Midmar

    CSIR Research Space (South Africa)

    Breen, CM

    1983-12-01

    Full Text Available goals. Those which seem important to us are: the identification of the limnological responses affecting water quality which are of universal application. Some such as phosphorus load are well known whereas others may still require to be identified... Figure 17 Pattern of release of total nitrogen and phosphorus from decomposing vegetation ............................. 56 Figure 18 Changes in the amounts of total phosphorus within the lake, the inflow and the outflow on a weekly basis....... 59...

  15. Restoring life to acidified lakes

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, M

    1986-05-01

    In 1983 EPRI initiated the lake acidification mitigation project (LAMP) in order to examine the long-term ecosystem effects of liming lakes, and to develop a model for calculating optimal liming doses. Investigations were carried out at lakes under 3 sets of conditions: reacidification, maintenance liming and preventive maintenance liming. The research so far has indicated that liming is a safe and effective technique.

  16. Radioecological characteristics of Lake Zarnowieckie

    International Nuclear Information System (INIS)

    Soszka, G.J.; Grzybowska, D.; Rostek, J.; Pietruszewski, A.; Wardaszko, T.; Kalinowska, A.; Tomczak, J.

    1986-01-01

    Results are presented of the radioecological studies carried out in Lake Zarnowieckie as a part of pre-operational investigations related to the construction of a nuclear power station at this lake. Concentrations of essential radionuclides were determined in water, bottom sediments and selected plants and animals. Analyses were made of the distribution and spreading of 90 Sr and 137 Cs in the lake ecosystem and in the near-by meadows. 28 refs., 6 figs., 6 tabs. (author)

  17. Preliminary assessment of the impact of fluctuating water levels on northern pike in Reindeer Lake

    International Nuclear Information System (INIS)

    Chen, M.

    1993-03-01

    Reindeer Lake in north eastern Saskatchewan regulates water levels for the Island Falls hydroelectric power plant. Since inception of the Whitesand Dam on the lake, there have been concerns that fluctuating water levels could be adversely impacting the habitat and population of northern pike in the lake. The extent of water level fluctuations during the pike spawning period of Reindeer Lake and its effect on spawning success was investigated. Since construction of the Whitesand Dam in 1942 Reindeer Lake water levels have averaged ca 1.71 m higher than had the dam not existed, creating ca 430 km 2 of new surface area. Much of this area is shallow water and prone to growth of aquatic vegetation, which is suitable spawning and nursery habitat for northern pike. Annual and periodic water level fluctuations of Reindeer Lake have been higher than under natural conditions. During northern pike spawning and nursing periods, water levels in the lake have generally increased, in 60 out of 64 y. It is concluded that operation of the dam has not caused any direct negative impacts on the northern pike habitat in the lake. 2 refs., 4 figs., 4 tabs

  18. Environmental Monitoring, Water Quality - Lakes Assessments - Attaining

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This layer shows only attaining lakes of the Integrated List. The Lakes Integrated List represents lake assessments in an integrated format for the Clean Water Act...

  19. Algae Bloom in a Lake

    Directory of Open Access Journals (Sweden)

    David Sanabria

    2008-01-01

    Full Text Available The objective of this paper is to determine the likelihood of an algae bloom in a particular lake located in upstate New York. The growth of algae in this lake is caused by a high concentration of phosphorous that diffuses to the surface of the lake. Our calculations, based on Fick's Law, are used to create a mathematical model of the driving force of diffusion for phosphorous. Empirical observations are also used to predict whether the concentration of phosphorous will diffuse to the surface of this lake within a specified time and under specified conditions.

  20. Submerged Grove in Lake Onogawa

    OpenAIRE

    Sato, Yasuhiro; Nakamura, Soken; Ochiai, Masahiro

    1996-01-01

    Abstract : The first record by ultrasonic echo sounding on the distribution of the submerged standing trees on the bottom of Lake Onogawa is presented. Lake Onogawa is a dammed lake formed at the time of the eruption of the volcano Mt.Bandai in 1888. Since then the original vegetation of the dammed valley has remained submerged. Many submerged standing trees are distributed on the bottom within about 600m from the northeast end of the lake. The density of the trees in this area is sufficient ...

  1. Evolving hydrologic connectivity in discontinuous permafrost lowlands: what it means for lake systems

    Science.gov (United States)

    Walvoord, M. A.; Jepsen, S. M.; Rover, J.; Voss, C. I.; Briggs, M. A.

    2015-12-01

    Permafrost influence on the hydrologic connectivity of surface water bodies in high-latitude lowlands is complicated by subsurface heterogeneity and the propensity of the system to change over time. In general, permafrost limits the subsurface exchange of water, solute, and nutrients between lakes and rivers. It follows that permafrost thaw could enhance subsurface hydrologic connectivity among surface water bodies, but the impact of this process on lake distribution is not well known. Changes in the extent of lakes in interior Alaska have important ecological and societal impacts since lakes provide (1) critical habitat for migratory arctic shorebirds and waterfowl, fish, and wildlife, and (2) provisional, recreational, and cultural resources for local communities. We utilize electromagnetic imaging of the shallow subsurface and remote sensing of lake level dynamics in the Yukon Flats of interior Alaska, USA, together with water balance modeling, to gain insight into the influence of discontinuous permafrost on lowland lake systems. In the study region with relatively low precipitation, observations suggest that lakes that are hydrologically isolated during normal conditions are sustained by periodic river flooding events, including ice-jam floods that occur during river ice break-up. Climatically-influenced alterations in flooding frequency and intensity, as well as depth to permafrost, are quantitatively assessed in the context of lake maintenance. Scenario modeling is used to evaluate lake level evolution under plausible changing conditions. Model results demonstrate how permafrost degradation can reduce the dependence of typical lowland lakes on flooding events. Study results also suggest that river flooding may recharge a more spatially widespread zone of lakes and wetlands under future scenarios of permafrost table deepening and enhanced subsurface hydrologic connectivity.

  2. Lake Charles CCS Project

    Energy Technology Data Exchange (ETDEWEB)

    Leib, Thomas [Leucadia Energy, LLC, Salt Lake City, UT (United States); Cole, Dan [Denbury Onshore, LLC, Plano, TX (United States)

    2015-06-30

    In late September 2014 development of the Lake Charles Clean Energy (LCCE) Plant was abandoned resulting in termination of Lake Charles Carbon Capture and Sequestration (CCS) Project which was a subset the LCCE Plant. As a result, the project was only funded through Phase 2A (Design) and did not enter Phase 2B (Construction) or Phase 2C (Operations). This report was prepared relying on information prepared and provided by engineering companies which were engaged by Leucadia Energy, LLC to prepare or review Front End Engineering and Design (FEED) for the Lake Charles Clean Energy Project, which includes the Carbon Capture and Sequestration (CCS) Project in Lake Charles, Louisiana. The Lake Charles Carbon Capture and Sequestration (CCS) Project was to be a large-scale industrial CCS project intended to demonstrate advanced technologies that capture and sequester carbon dioxide (CO2) emissions from industrial sources into underground formations. The Scope of work was divided into two discrete sections; 1) Capture and Compression prepared by the Recipient Leucadia Energy, LLC, and 2) Transport and Sequestration prepared by sub-Recipient Denbury Onshore, LLC. Capture and Compression-The Lake Charles CCS Project Final Technical Report describes the systems and equipment that would be necessary to capture CO2 generated in a large industrial gasification process and sequester the CO2 into underground formations. The purpose of each system is defined along with a description of its equipment and operation. Criteria for selection of major equipment are provided and ancillary utilities necessary for safe and reliable operation in compliance with environmental regulations are described. Construction considerations are described including a general arrangement of the CCS process units within the overall gasification project. A cost estimate is provided, delineated by system area with cost breakdown showing equipment, piping and materials

  3. Holocene Lake-Level Fluctuations of Lake Aricota, Southern Peru

    Science.gov (United States)

    Placzek, Christa; Quade, Jay; Betancourt, Julio L.

    2001-09-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17° 22‧S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ∼2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16°S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes.

  4. Planning applications in east central Florida. [resources management and planning, land use, and lake algal blooms in Brevard County from Skylab imagery

    Science.gov (United States)

    Hannah, J. W.; Thomas, G. L.; Esparza, F. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Lake Apopka and three lakes downstream of it (Dora, Eustis, and Griffin) are in an advanced state of eutrophication with high algal concentrations. This feature has shown up consistently on ERTS-1 images in the form of a characteristic water color for those lakes. As expected, EREP photographs also show a characteristic color for those lakes. What was not expected is that Lake Griffin shows a clear pattern of this coloration. Personnel familiar with the lake believe that the photograph does, indeed, show an algal bloom. It is reported that the algal concentration is often significantly higher in the southern portion of the lake. What the photograph shows that was not otherwise known is the pattern of the algal bloom. A similar, but less pronounced, effect is seen in Lake Tohopekaliga. Personnel stationed at Kissimmee reported that there was an algal bloom on that lake at the time of the EREP pass and that its extent corresponded approximately to that shown on the photograph. Again, the EREP photograph gives information about the extent of the bloom that could not be obtained practically by sampling. ERTS-1 images give some indication of this algal distribution on Lake Griffin in some cases, but are inconclusive.

  5. Mono Lake sediments preserve a record of recent environmental change

    Science.gov (United States)

    Meixnerova, J.; Betts, M.; Westacott, S.; Ingalls, M.; Miller, L. G.; Sessions, A. L.; Trower, L.; Geobiology Course, A.

    2017-12-01

    Modern Mono Lake is a geochemically unique closed-basin, hypersaline soda lake. Since 1941, anthropogenic water diversions have decreased the lake's volume and water level, driving changes in water chemistry and ecology. Mono Lake sediments offer an opportunity to investigate the nature and extent of these changes. We analyzed a 70 cm sediment core from the center of Mono Lake recording the past 116 years of deposition. At the time of recovery, the entire core was dark green. 16S rRNA gene analysis indicated a sedimentary bacterial community dominated by Cyanobacteria. SEM imaging revealed abundant, well-preserved diatom frustules below 10 cm core depth, in contrast they are nearly absent above 10 cm depth. Fatty acid (FAME) biomarkers for diatoms and algal sterols were present throughout the core in varying concentrations. Phytol was exceptionally abundant in the core; ratios of phytol/C-18 FAME were commonly >200. The δ13Corg ranged between -17.5 and -20‰ in the lower 52 cm of the core while the upper part shows significant decrease of δ13Corg to -28‰. We interpret the shift in δ13Corg as an ecological transition from mainly diatoms in the lower core towards the green alga Picocystis, which is the main primary producer today and has a δ13Corg value of -32.5‰. The onset of this change dates back 23 years, which roughly coincides with the highest reported salinity, 88 g/L in 1995. We hypothesize that diatoms gradually became marginalized as a result of hypersaline conditions. We also observed a variety of trends that may be characterized as unique fingerprints of Mono Lake. The unusually high abundance of phytol was consistent with the core's pervasive green coloring and could potentially indicate a higher preservation potential of phytol under alkaline conditions. Throughout the core, δ15Norg fluctuated between +10 and +13‰. Such atypical enrichment in δ15Norg could be explained by NH4 dissociation and subsequent NH3 volatilization under high p

  6. PYRAMID LAKE RENEWEABLE ENERGY PLAN

    Energy Technology Data Exchange (ETDEWEB)

    HIGH DESERT GEOCULTURE, LLC

    2009-06-06

    The Pyramid Lake Renewable Energy Plan covers these areas: energy potential (primarily focusing on geothermal resource potential, but also more generally addressing wind energy potential); renewable energy market potential; transmission system development; geothermal direct use potential; and business structures to accomplish the development objectives of the Pyramid Lake Paiute Tribe.

  7. Choking Lake Winnipeg

    Science.gov (United States)

    Byrne, J. M.; Little, L. J.; Dodgson, K. A.; MacDonald, R. J.; Graham, J.

    2009-12-01

    The problems of waterway eutrophication and coastal zone hypoxia are reaching epidemic proportions. Fresh water and coastal marine environments around the world are suffering unprecedented pollution loadings. We are developing an education program to address the dramatic need for public, community and K-12 education about the harsh impacts of elevated nutrient loads on fresh and marine water environments. The Lake Winnipeg watershed is adopted as the poster child of fresh water eutrophication in western North America. The watershed, one of the largest on the continent, is in rapid decline due to pollution, population pressures and water diversion. A concerted education program is needed to change personal and society actions that negatively impact the Winnipeg watershed; and the confluence of the watershed - Lake Winnipeg. But the education program goes beyond Lake Winnipeg. Negative impacts of nutrient loads are adversely affecting environments right to the oceans. Major dead zones that are expanding on our continental shelves due to nutrient overloading threaten to coalesce into extensive regions of marine life die-off. This presentation outlines the documentary education production process under development. We are building a series of Public Service Announcements (PSAs) for national television networks. The PSAs will direct educators, stakeholders and citizens to an associated website with educational video clips detailing the issues of eutrophication and hypoxia. The video clips or webisodes, present interviews with leading scientists. The discussions address the causes of the problems, and presents workable solutions to nutrient overloads from a variety of sources. The webisodes are accompanied by notes and advice to teachers on ways and means to use the webisodes in classrooms. The project is fully funed by a group of Canadian Community Foundations, with the understanding the work wil be available free to educators anywhere in the world. Our education

  8. Lake Carnegie, Western Australia

    Science.gov (United States)

    2002-01-01

    Ephemeral Lake Carnegie, in Western Australia, fills with water only during periods of significant rainfall. In dry years, it is reduced to a muddy marsh. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on May 19, 1999. This is a false-color composite image made using shortwave infrared, infrared, and red wavelengths. The image has also been sharpened using the sensor's panchromatic band. Image provided by the USGS EROS Data Center Satellite Systems Branch. This image is part of the ongoing Landsat Earth as Art series.

  9. Environmental conditions synchronize waterbird mortality events in the Great Lakes

    Science.gov (United States)

    Prince, Karine; Chipault, Jennifer G.; White, C. LeAnn; Zuckerberg, Benjamin

    2018-01-01

    Since the 1960s, periodic outbreaks of avian botulism type E have contributed to large-scale die-offs of thousands of waterbirds throughout the Great Lakes of the United States. In recent years, these events have become more common and widespread. Occurring during the summer and autumn months, the prevalence of these die-offs varies across years and is often associated with years of warmer lake temperatures and lower water levels. Little information exists on how environmental conditions mediate the spatial and temporal characteristics of mortality events.In 2010, a citizen science programme, Avian Monitoring for Botulism Lakeshore Events (AMBLE), was launched to enhance surveillance efforts and detect the appearance of beached waterbird carcasses associated with avian botulism type E outbreaks in northern Lake Michigan. Using these data, our goal was to quantify the within-year characteristics of mortality events for multiple species, and to test whether the synchrony of these events corresponded to fluctuations in two environmental factors suspected to be important in the spread of avian botulism: water temperature and the prevalence of green macroalgae.During two separate events of mass waterbird mortality, we found that the detection of bird carcasses was spatially synchronized at scales of c. 40 km. Notably, the extent of this spatial synchrony in avian mortality matched that of fluctuations in lake surface water temperatures and the prevalence of green macroalgae.Synthesis and applications. Our findings are suggestive of a synchronizing effect where warmer lake temperatures and the appearance of macroalgae mediate the characteristics of avian mortality. In future years, rising lake temperatures and a higher propensity of algal masses could lead to increases in the magnitude and synchronization of avian mortality due to botulism. We advocate that citizen-based monitoring efforts are critical for identifying the potential environmental conditions associated

  10. L-Lake macroinvertebrate community

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    1996-06-01

    To characterize the present benthic macroinvertebrate community of L-Lake, Regions 5 and 7 of the reservoir were sampled in September 1995 at the same locations sampled in 1988 and 1989 during the L-Lake monitoring program. The macroinvertebrate community of 1995 is compared to that of 1988 and 1989. The species composition of L-Lake`s macroinvertebrate community has changed considerably since 1988-1989, due primarily to maturation of the reservoir ecosystem. L-Lake contains a reasonably diverse macroinvertebrate community that is capable of supporting higher trophic levels, including a diverse assemblage of fish species. The L-Lake macroinvertebrate community is similar to those of many other southeastern reservoirs, and there is no indication that the macroinvertebrate community is perturbed by chemical or physical stressors.

  11. L-Lake macroinvertebrate community

    International Nuclear Information System (INIS)

    Specht, W.L.

    1996-06-01

    To characterize the present benthic macroinvertebrate community of L-Lake, Regions 5 and 7 of the reservoir were sampled in September 1995 at the same locations sampled in 1988 and 1989 during the L-Lake monitoring program. The macroinvertebrate community of 1995 is compared to that of 1988 and 1989. The species composition of L-Lake's macroinvertebrate community has changed considerably since 1988-1989, due primarily to maturation of the reservoir ecosystem. L-Lake contains a reasonably diverse macroinvertebrate community that is capable of supporting higher trophic levels, including a diverse assemblage of fish species. The L-Lake macroinvertebrate community is similar to those of many other southeastern reservoirs, and there is no indication that the macroinvertebrate community is perturbed by chemical or physical stressors

  12. Littoral sedimentation of rift lakes: an illustrated overview from the modern to Pliocene Lake Turkana (East African Rift System, Kenya)

    Science.gov (United States)

    Schuster, Mathieu; Nutz, Alexis

    2015-04-01

    Existing depositional models for rift lakes can be summarized as clastics transported by axial and lateral rivers, then distributed by fan-deltas and/or deltas into a standing water body which is dominated by settling of fine particles, and experiencing occasional coarser underflows. Even if known from paleolakes and modern lakes, reworking of clastics by alongshore drift, waves and storms are rarely considered in depositional models. However, if we consider the lake Turkana Basin (East African Rift System, Kenya) it is obvious that this vision is incomplete. Three representative time slices are considered here: the modern Lake Turkana, the Megalake Turkana which developed thanks to the African Humid Period (Holocene), and the Plio-Pleistocene highstand episodes of paleolake Turkana (Nachukui, Shungura and Koobi Fora Formations, Omo Group). First, remarkable clastic morphosedimentary structures such as beach ridges, spits, washover fans, lagoons, or wave-dominated deltas are very well developed along the shoreline of modern lake Turkana, suggesting strong hydrodynamics responsible for a major reworking of the fluvial-derived clastics all along the littoral zone (longshore and cross-shore transport) of the lake. Similarly, past hydrodynamics are recorded from prominent raised beach ridges and spits, well-preserved all around the lake, above its present water-level (~360 m asl) and up to ~455 m. These large-scale clastic morphosedimentary structures also record the maximum extent of Megalake Turkana during the African Humid Period, as well as its subsequent regression forced by the end of the Holocene climatic optimum. Several hundreds of meters of fluvial-deltaic-lacustrine deposits spanning the Pliocene-Pleistocene are exposed in the Turkana basin thanks to tectonic faulting. These deposits are world famous for their paleontological and archeological content that documents the very early story of Mankind. They also preserve several paleolake highstand episodes with

  13. Shifts in the diets of slimy sculpin (Cottus cognatus) and lake whitefish (Coregonus clupeaformis) in Lake Ontario following the collapse of the burrowing amphipod Diporeia

    Science.gov (United States)

    Owens, Randall W.; Dittman, Dawn E.

    2003-01-01

    In Lake Ontario, the diets of slimy sculpin Cottus cognatus and lake whitefish Coregonus clupeaformis shifted from a diet dominated by the burrowing amphipod, Diporeia, and to a lesser extent, Mysis, to a more diverse diet, after Diporeia collapsed, to one dominated by Mysis and prey that were formerly less important or uncommon such as Chironomidae, Oligochaeta, and Ostracoda. Additionally, lake whitefish still preyed on native mollusks like Sphaeriidae and Gastropoda, but also preyed on exotic mollusks, Dreissena spp., which are swallowed intact and subsequently crushed in its muscular stomach. Whether Diporeia was abundant (1992) or scarce (1999), selection indices for Diporeia by slimy sculpins was positive, suggesting that Diporeia was a preferred prey. Unlike lake whitefish, slimy sculpins avoided Dreissena; therefore, energy diverted to Dreissena production was a real loss for slimy sculpins. The shifts in the diet of these benthic fishes corresponded with drastic changes in the benthic community between 1992 and 1999. The collapse of Diporeia, formerly the most abundant macroinvertebrate in the benthic community, along with sharp declines in the abundance of Oligochaeta and Sphaeriidae, coincided with the establishment and rapid expansion of Dreissena bugensis, the quagga mussel, and to a lesser degree Dreissena polymorpha, the zebra mussel. It appears that the Diporeia population first collapsed at depths >70 m in southeastern Lake Ontario by autumn 1992, at shallower depths in the eastern Lake Ontario by 1995, and along the entire south shore line at depths 100 m by 1999. In response to the disappearance of Diporeia, populations of two native benthivores, slimy sculpin and lake whitefish, collapsed in eastern Lake Ontario, perhaps due in part to starvation, because Diporeia was their principal prey. Presently, alternative food resources do not appear sufficient to sustain these two benthivores at their former levels of abundance. We do not expect slimy

  14. Physical and chemical consequences of artificially deepened thermocline in a small humic lake - a paired whole-lake climate change experiment

    Science.gov (United States)

    Forsius, M.; Saloranta, T.; Arvola, L.; Salo, S.; Verta, M.; Ala-Opas, P.; Rask, M.; Vuorenmaa, J.

    2010-05-01

    Climate change with higher air temperatures and changes in cloud cover, radiation and wind speed alters the heat balance and stratification patterns of lakes. A paired whole-lake thermocline manipulation experiment of a small (0.047 km2) shallow dystrophic lake (Halsjärvi) was carried out in southern Finland. A thermodynamic model (MyLake) was used for both predicting the impacts of climate change scenarios and for determining the manipulation target of the experiment. The model simulations assuming several climate change scenarios indicated large increases in the whole-lake monthly mean temperature (+1.4-4.4 °C in April-October for the A2 scenario), and shortening of the length of the ice covered period by 56-89 days. The thermocline manipulation resulted in large changes in the thermodynamic properties of the lake, and those were rather well consistent with the simulated future increases in the heat content during the summer-autumn season. The manipulation also resulted in changes in the oxygen stratification, and the expansion of the oxic water layer increased the spatial extent of the sediment surface oxic-anoxic interfaces. The experiment also affected several other chemical constituents; concentrations of TotN, NH4 and organic carbon showed a statistically significant decrease, likely due to both unusual hydrological conditions during the experiment period and increased decomposition and sedimentation. Changes in mercury processes and in the aquatic food web were also introduced. In comparison with the results of a similar whole-lake manipulation experiment in a deep, oligotrophic, clear-watered lake in Norway, it is evident that shallow dystrophic lakes, common in the boreal region, are more sensitive to physical perturbations. This means that projected climate change may strongly modify their physical and chemical conditions in the future.

  15. Modeling Lake Storage Dynamics to support Arctic Boreal Vulnerability Experiment (ABoVE)

    Science.gov (United States)

    Vimal, S.; Lettenmaier, D. P.; Smith, L. C.; Smith, S.; Bowling, L. C.; Pavelsky, T.

    2017-12-01

    The Arctic and Boreal Zone (ABZ) of Canada and Alaska includes vast areas of permafrost, lakes, and wetlands. Permafrost thawing in this area is expected to increase due to the projected rise of temperature caused by climate change. Over the long term, this may reduce overall surface water area, but in the near-term, the opposite is being observed, with rising paludification (lake/wetland expansion). One element of NASA's ABoVE field experiment is observations of lake and wetland extent and surface elevations using NASA's AirSWOT airborne interferometric radar, accompanied by a high-resolution camera. One use of the WSE retrievals will be to constrain model estimates of lake storage dynamics. Here, we compare predictions using the lake dynamics algorithm within the Variable Infiltration Capacity (VIC) land surface scheme. The VIC lake algorithm includes representation of sub-grid topography, where the depth and area of seasonally-flooded areas are modeled as a function of topographic wetness index, basin area, and slope. The topography data used is from a new global digital elevation model, MERIT-DEM. We initially set up VIC at sites with varying permafrost conditions (i.e., no permafrost, discontinuous, continuous) in Saskatoon and Yellowknife, Canada, and Toolik Lake, Alaska. We constrained the uncalibrated model with the WSE at the time of the first ABoVE flight, and quantified the model's ability to predict WSE and ΔWSE during the time of the second flight. Finally, we evaluated the sensitivity of the VIC-lakes model and compared the three permafrost conditions. Our results quantify the sensitivity of surface water to permafrost state across the target sites. Furthermore, our evaluation of the lake modeling framework contributes to the modeling and mapping framework for lake and reservoir storage change evaluation globally as part of the SWOT mission, planned for launch in 2021.

  16. Modeling the GLOF Hazard Process Chain at Imja Lake in the Nepal Himalaya

    Science.gov (United States)

    Lala, J.; McKinney, D. C.; Rounce, D.

    2017-12-01

    The Hindu Kush-Himalaya region contains more glacial ice than any other non-polar region on earth. Many glacial lakes in Nepal are held in place by natural moraine dams, which are inherently unstable. Avalanches or landslides entering glacial lakes can cause tsunami-like waves that can overtop the moraines and trigger glacial lake outburst floods (GLOF). Mass loss at the Imja glacier is the highest in the Mount Everest region, and contributes to the expansion of Imja Tsho, a lake with several villages downstream. A GLOF from the lake might destroy both property and human life, making an understanding of flood triggering processes beneficial for both the downstream villages and other GLOF-prone areas globally. The process chain for an avalanche-induced GLOF was modeled numerically. The volume and velocity of debris from avalanches entering various future lake extents were calculated using RAMMS. Resulting waves and downstream flooding were simulated using BASEMENT to evaluate erosion at the terminal moraine. Wave characteristics in BASEMENT were validated with empirical equations to ensure the proper transfer of momentum from the avalanche to the lake. Moraine erosion was determined for two geomorphologic scenarios: a site-specific scenario using field samples, and a worst-case scenario based on past literature. Both cases resulted in no flooding outside the river channel at downstream villages. Worst-case scenario geomorphology resulted in increased channelization of the lake outlet and some moraine erosion but no catastrophic collapse. Site-specific data yielded similar results but with even less erosion and downstream discharge. While the models confirmed that Imja Tsho is unlikely to produce a catastrophic GLOF in the near future, they also highlight the importance of continued monitoring of the lake. Furthermore, the ease and flexibility of these methods allows for their adoption by a wide range of stakeholders for modeling other high-risk lakes.

  17. Reconstructed North American Snow Extent, 1900-1993

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains reconstructed monthly North American snow extent values for November through March, 1900-1993. Investigators used a combination of satellite...

  18. Exploring the extent to which ELT students utilise smartphones for ...

    African Journals Online (AJOL)

    Zehra

    2015-11-09

    Nov 9, 2015 ... aimed to explore the extent to which English Language Teaching (ELT) students utilise ... Given the fact that almost all students have a personal smartphone, and use it ..... ears as a disadvantage for smartphones (Kétyi,.

  19. 75 FR 34934 - Safety Zone; Fireworks for the Virginia Lake Festival, Buggs Island Lake, Clarksville, VA

    Science.gov (United States)

    2010-06-21

    ...-AA00 Safety Zone; Fireworks for the Virginia Lake Festival, Buggs Island Lake, Clarksville, VA AGENCY... Fireworks for the Virginia Lake Festival event. This action is intended to restrict vessel traffic movement... Virginia Lake Festival, Buggs Island Lake, Clarksville, VA (a) Regulated Area. The following area is a...

  20. Holocene lake-level fluctuations of Lake Aricota, Southern Peru

    Science.gov (United States)

    Placzek, C.; Quade, Jay; Betancourt, J.L.

    2001-01-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17?? 22???S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (Titicaca (16?? S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes. ?? 2001 University of Washington.

  1. Speciation of aluminium, arsenic and molybdenum in excessively limed lakes

    International Nuclear Information System (INIS)

    Sjoestedt, Carin; Waellstedt, Teresia; Gustafsson, Jon Petter; Borg, Hans

    2009-01-01

    The possible existence of the potentially toxic oxyanions of Al (Al(OH) 4 - ), As (HAsO 4 2- ), and Mo (MoO 4 2- ) was examined in excessively limed lakes. In-situ dialysis (MWCO 1 kDa) was performed in the surface and bottom waters of two excessively limed lakes (pH 7.1-7.7) and one acidic lake (pH ∼ 5.4). The dialysable metal concentrations were compared to the equilibrium distribution of species as calculated with the geochemical code Visual MINTEQ incorporating the CD-MUSIC and Stockholm Humic models for complexation onto colloidal ferrihydrite and dissolved organic matter. Arsenic and molybdenum in the excessively limed lakes were to a large extent present in the dialysable fraction (> 79% and > 92% respectively). They were calculated to exist as free or adsorbed oxyanions. Most of the Al was observed to reside in the colloidal fraction (51-82%). In agreement with this, model predictions indicated aluminium to be present mostly as colloids or bound to dissolved organic matter. Only a small fraction was modelled as Al(OH) 4 - ions. In most cases, modelled values were in agreement with the dialysis results. The free concentrations of the three oxyanions were mostly low compared to toxic levels.

  2. Remote Sensing and Underwater Glider Observations of a Springtime Plume in Western Lake Superior

    Science.gov (United States)

    Plumes are commonly observed in satellite imagery of western Lake Superior following storm events, and represent a significant cross-shelf pathway for sediment and other constituents. However, their subsurface extent is poorly understood. This study reports results from plume ob...

  3. Effects of simultaneous climate change and geomorphic evolution on thermal characteristics of a shallow Alaskan lake

    Science.gov (United States)

    Griffiths, Jennifer R.; Schindler, Daniel E.; Balistrieri, Laurie S.; Ruggerone, Gregory T.

    2011-01-01

    We used a hydrodynamics model to assess the consequences of climate warming and contemporary geomorphic evolution for thermal conditions in a large, shallow Alaskan lake. We evaluated the effects of both known climate and landscape change, including rapid outlet erosion and migration of the principal inlet stream, over the past 50 yr as well as future scenarios of geomorphic restoration. Compared to effects of air temperature during the past 50 yr, lake thermal properties showed little sensitivity to substantial (~60%) loss of lake volume, as the lake maximum depth declined from 6 m to 4 m driven by outlet erosion. The direction and magnitude of future lake thermal responses will be driven largely by the extent of inlet stream migration when it occurs simultaneously with outlet erosion. Maintaining connectivity with inlet streams had substantial effects on buffering lake thermal responses to warming climate. Failing to account for changing rates and types of geomorphic processes under continuing climate change may misidentify the primary drivers of lake thermal responses and reduce our ability to understand the consequences for aquatic organisms.

  4. Lake Izabal (Guatemala) shoreline detection and inundated area estimation from ENVISAT ASAR images

    Science.gov (United States)

    Medina, C.; Gomez-Enri, J.; Alonso, J. J.; Villares, P.

    2008-10-01

    The surface extent of a lake reflects its water storage variations. This information has important hydrological and operational applications. However, there is a lack of information regarding this subject because the traditional methodologies for this purposes (ground surveys, aerial photos) requires high resources investments. Remote sensing techniques (optical/radar sensors) permit a low cost, constant and accurate monitoring of this parameter. The objective of this study was to determine the surface variations of Lake Izabal, the largest one in Guatemala. The lake is located close to the Caribbean Sea coastline. The climate in the region is predominantly cloudy and rainy, being the Synthetic Aperture Radar (SAR) the best suited sensor for this purpose. Although several studies have successfully used SAR products in detecting land-water boundaries, all of them highlighted some sensor limitations. These limitations are mainly caused by roughened water surfaces caused by strong winds which are frequent in Lake Izabal. The ESA's ASAR data products were used. From the set of 9 ASAR images used, all of them have wind-roughened ashore waters in several levels. Here, a chain of image processing steps were applied in order to extract a reliable shoreline. The shoreline detection is the key task for the surface estimation. After the shoreline extraction, the inundated area of the lake was estimated. In-situ lake level measurements were used for validation. The results showed good agreement between the inundated areas estimations and the lake level gauges.

  5. Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972-2010.

    Science.gov (United States)

    Li, Yingkui; Liao, Jingjuan; Guo, Huadong; Liu, Zewen; Shen, Guozhuang

    2014-01-01

    Most glaciers in the Himalayas and the Tibetan Plateau are retreating, and glacier melt has been emphasized as the dominant driver for recent lake expansions on the Tibetan Plateau. By investigating detailed changes in lake extents and levels across the Tibetan Plateau from Landsat/ICESat data, we found a pattern of dramatic lake changes from 1970 to 2010 (especially after 2000) with a southwest-northeast transition from shrinking, to stable, to rapidly expanding. This pattern is in distinct contrast to the spatial characteristics of glacier retreat, suggesting limited influence of glacier melt on lake dynamics. The plateau-wide pattern of lake change is related to precipitation variation and consistent with the pattern of permafrost degradation induced by rising temperature. More than 79% of lakes we observed on the central-northern plateau (with continuous permafrost) are rapidly expanding, even without glacial contributions, while lakes fed by retreating glaciers in southern regions (with isolated permafrost) are relatively stable or shrinking. Our study shows the limited role of glacier melt and highlights the potentially important contribution of permafrost degradation in predicting future water availability in this region, where understanding these processes is of critical importance to drinking water, agriculture, and hydropower supply of densely populated areas in South and East Asia.

  6. Magnetic and gravity studies of Mono Lake, east-central, California

    Science.gov (United States)

    Athens, Noah D.; Ponce, David A.; Jayko, Angela S.; Miller, Matt; McEvoy, Bobby; Marcaida, Mae; Mangan, Margaret T.; Wilkinson, Stuart K.; McClain, James S.; Chuchel, Bruce A.; Denton, Kevin M.

    2014-01-01

    From August 26 to September 5, 2011, the U.S. Geological Survey (USGS) collected more than 600 line-kilometers of shipborne magnetic data on Mono Lake, 20 line-kilometers of ground magnetic data on Paoha Island, 50 gravity stations on Paoha and Negit Islands, and 28 rock samples on Paoha and Negit Islands, in east-central California. Magnetic and gravity investigations were undertaken in Mono Lake to study regional crustal structures and to aid in understanding the geologic framework, in particular regarding potential geothermal resources and volcanic hazards throughout Mono Basin. Furthermore, shipborne magnetic data illuminate local structures in the upper crust beneath Mono Lake where geologic exposure is absent. Magnetic and gravity methods, which sense contrasting physical properties of the subsurface, are ideal for studying Mono Lake. Exposed rock units surrounding Mono Lake consist mainly of Quaternary alluvium, lacustrine sediment, aeolian deposits, basalt, and Paleozoic granitic and metasedimentary rocks (Bailey, 1989). At Black Point, on the northwest shore of Mono Lake, there is a mafic cinder cone that was produced by a subaqueous eruption around 13.3 ka. Within Mono Lake there are several small dacite cinder cones and flows, forming Negit Island and part of Paoha Island, which also host deposits of Quaternary lacustrine sediments. The typical density and magnetic properties of young volcanic rocks contrast with those of the lacustrine sediment, enabling us to map their subsurface extent.

  7. Forest blowdown and lake acidification

    International Nuclear Information System (INIS)

    Dobson, J.E.; Rush, R.M.; Peplies, R.W.

    1990-01-01

    The authors examine the role of forest blowdown in lake acidification. The approach combines geographic information systems (GIS) and digital remote sensing with traditional field methods. The methods of analysis consist of direct observation, interpretation of satellite imagery and aerial photographs, and statistical comparison of two geographical distributions-one representing forest blow-down and another representing lake chemistry. Spatial and temporal associations between surface water pH and landscape disturbance are strong and consistent in the Adirondack Mountains of New York. In 43 Adirondack Mountain watersheds, lake pH is associated with the percentage of the watershed area blown down and with hydrogen ion deposition (Spearman rank correlation coefficients of -0.67 and -0.73, respectively). Evidence of a temporal association is found at Big Moose Lake and Jerseyfield Lake in New York and the Lygners Vider Plateau of Sweden. They conclude that forest blowdown facilities the acidification of some lakes by altering hydrologic pathways so that waters (previously acidified by acid deposition and/or other sources) do not experience the neutralization normally available through contact with subsurface soils and bedrock. Increased pipeflow is suggested as a mechanism that may link the biogeochemical impacts of forest blowdown to lake chemistry

  8. The importance of lake-specific characteristics for water quality across the continental United States.

    Science.gov (United States)

    Read, Emily K; Patil, Vijay P; Oliver, Samantha K; Hetherington, Amy L; Brentrup, Jennifer A; Zwart, Jacob A; Winters, Kirsten M; Corman, Jessica R; Nodine, Emily R; Woolway, R Iestyn; Dugan, Hilary A; Jaimes, Aline; Santoso, Arianto B; Hong, Grace S; Winslow, Luke A; Hanson, Paul C; Weathers, Kathleen C

    2015-06-01

    regionalization schemes to guide water quality criteria could be improved by consideration of lake-specific characteristics, which were the most important predictors of water quality at the scale of the continental United States. The spatial extent and high quality of contextual data available for this analysis makes this work an unprecedented application of landscape limnology theory to water quality data. Further, the demonstrated importance of lake morphology over other controls on water quality is relevant to both aquatic scientists and managers.

  9. Glacial lake monitoring in the Karakoram Range using historical Landsat Thematic Mapper archive (1982 - 2014)

    Science.gov (United States)

    Chan, J. Y. H.; Kelly, R. E. J.; Evans, S. G.

    2014-12-01

    Glacierized regions are one of the most dynamic land surface environments on the planet (Evans and Delaney, In Press). They are susceptible to various types of natural hazards such as landslides, glacier avalanches, and glacial lake outburst floods (GLOF). GLOF events are increasingly common and present catastrophic flood hazards, the causes of which are sensitive to climate change in complex high mountain topography (IPCC, 2013). Inundation and debris flows from GLOF events have repeatedly caused significant infrastructure damages and loss of human lives in the high mountain regions of the world (Huggel et al, 2002). The research is designed to develop methods for the consistent detection of glacier lakes formation during the Landsat Thematic Mapper (TM) era (1982 - present), to quantify the frequency of glacier lake development and estimate lake volume using Landsat imagery and digital elevation model (DEM) data. Landsat TM scenes are used to identify glacier lakes in the Shimshal and Shaksgam valley, particularly the development of Lake Virjeab in year 2000 and Kyagar Lake in 1998. A simple thresholding technique using Landsat TM infrared bands, along with object-based segmentation approaches are used to isolate lake extent. Lake volume is extracted by intersecting the lake extent with the DEM surface. Based on previous studies and DEM characterization in the region, Shuttle Radar Topography Mission (SRTM) DEM is preferred over Advanced Spaceborne Thermal Emission and Reflection (ASTER) GDEM due to higher accuracy. Calculated errors in SRTM height estimates are 5.81 m compared with 8.34 m for ASTER. SRTM data are preferred because the DEM measurements were made over short duration making the DEM internally consistent. Lake volume derived from the Landsat TM imagery and DEM are incorporated into a simple GLOF model identified by Clague and Matthews (1973) to estimate the potential peak discharge (Qmax) of a GLOF event. We compare the simple Qmax estimates with

  10. Microplastics in Taihu Lake, China.

    Science.gov (United States)

    Su, Lei; Xue, Yingang; Li, Lingyun; Yang, Dongqi; Kolandhasamy, Prabhu; Li, Daoji; Shi, Huahong

    2016-09-01

    In comparison with marine environments, the occurrence of microplastics in freshwater environments is less understood. In the present study, we investigated microplastic pollution levels during 2015 in Taihu Lake, the third largest Chinese lake located in one of the most developed areas of China. The abundance of microplastics reached 0.01 × 10(6)-6.8 × 10(6) items/km(2) in plankton net samples, 3.4-25.8 items/L in surface water, 11.0-234.6 items/kg dw in sediments and 0.2-12.5 items/g ww in Asian clams (Corbicula fluminea). The average abundance of microplastics was the highest in plankton net samples from the southeast area of the lake and in the sediments from the northwest area of the lake. The northwest area of the lake was the most heavily contaminated area of the lake, as indicated by chlorophyll-α and total phosphorus. The microplastics were dominated by fiber, 100-1000 μm in size and cellophane in composition. To our best knowledge, the microplastic levels measured in plankton net samples collected from Taihu Lake were the highest found in freshwater lakes worldwide. The ratio of the microplastics in clams to each sediment sample ranged from 38 to 3810 and was negatively correlated to the microplastic level in sediments. In brief, our results strongly suggest that high levels of microplastics occurred not only in water but also in organisms in Taihu Lake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Validating an erosion model using the environmental radionuclide 210Pb in the Lake Wollumboola catchment, southwestern NSW, Australia

    International Nuclear Information System (INIS)

    Simms, A.; Woodroffe, C.; Jones, B.G.; Heijnis, H.; Harrison, J.; Brooke, B.

    2005-01-01

    Soil erosion is a key limitation to achieving sustainable land use and effective soil management, and is the major source of sediment to Australian water bodies resulting in degradation of water quality. Sediment delivery is an important constraint on the sustainable management of coastal lakes along the south coast of New South Wales. Assessment and mitigation of sediment input is a major issue for the sustainable management of water bodies such as coastal lakes and soil erosion caused by rainfall and runoff is of particular concern. In this paper we examine the application of 210 Pb analyses of sediment samples to test the extent to which a modified version of the Universal Soil Loss Equation for Australian conditions (OxMUSCLE) is valid. The model is applied to Lake Wollumboola to estimate sediment yield from the catchment into its terminal lake, which is a saline coastal lake 172 km south of Sydney. 14 refs., 1 fig., 1 tab

  12. Year-Round Carbon Fluxes in a Subarctic Landscape Show the Importance of Lake Emissions According to Season

    Science.gov (United States)

    Jammet, M.; Crill, P. M.; Friborg, T.

    2014-12-01

    Lakes are increasingly recognized as important components of the global terrestrial carbon budget. Northern lakes are especially of interest due to a high density of open-water ecosystems in Northern latitudes and a potential increase in lake areal extent where permafrost is thawing. A better understanding of lake-atmosphere interactions requires long-term and direct measurement of surface fluxes. This is rarely achieved in Northern landscapes where seasonally ice-covered lakes are mostly studied during the open water season, and measurement methods do not always allow an integration of all gas transport pathways to the atmosphere. We present here ecosystem-scale data from Stordalen (68°20'N, 19°03'E), a thawing permafrost peatland in subarctic Sweden, where an eddy covariance system is used in an innovative way to quantify the importance of methane (CH4) emissions from a shallow lake. After more than a year of surface flux monitoring, it is found that spring is a crucial season for lake-atmosphere CH4 exchange. Despite its shallow depth, more than half of annual CH4 emissions from the lake were recorded at ice-out, suggesting significant winter CH4 production in lake sediments. Lake water dynamics seemed to drive the observed spring release rates. In contrast, summer methane emissions in Stordalen were dominated by the minerotrophic fens. This underlines the importance of considering the full annual budget when assessing the carbon source strength of seasonally ice-covered lakes. Carbon dioxide fluxes were also monitored and will be briefly discussed, as well as the significance of northern lakes spring burst for global atmospheric CH4 budget.

  13. Key Lake spill. Final report

    International Nuclear Information System (INIS)

    1984-03-01

    On January 5, 1984 contaminated water overflowed a storage reservoir at the Key Lake uranium mill onto the ice on a neighboring lake, into a muskeg area and onto a road. Outflow continued for two days, partially undercutting a retaining dyke. This report concludes the spill was the result of poor operation by the Key Lake Mining Corp.. The environmental impact will be minimal after cleanup. Improvements can be made in the regulatory process, and it is necessary to prepare for possible future mishaps

  14. 2010 Great Lakes Restoration Initiative Bathymetric Lidar: Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data contained in this file contain hydrographic and topographic data collected by the Fugro LADS Mk II system along the Lake Superior coast of Minnessota,...

  15. Lead pollution in a large, prairie-pothole lake (Rush Lake, WI, USA): Effects on abundance and community structure of indigenous sediment bacteria

    International Nuclear Information System (INIS)

    Grandlic, Christopher J.; Geib, Ian; Pilon, Renee; Sandrin, Todd R.

    2006-01-01

    Rush Lake (WI, USA), the largest prairie-pothole lake east of the Mississippi River, has been contaminated with lead pollution as a result of over 140 years of waterfowl hunting. We examined: (1) the extent of lead pollution in Rush Lake sediments and (2) whether lead pollution in Rush Lake is affecting the abundance and community structure of indigenous sediment bacteria. Sediment lead concentrations did not exceed 59 mg Pb kg -1 dry sediment. No relationship was observed between sediment lead concentration and the abundance of aerobic (P = 0.498) or anaerobic (P = 0.416) heterotrophic bacteria. Similarly, lead did not appear to affect bacterial community structure when considering both culturable and nonculturable community members. In contrast, the culturable fraction of sediment bacteria in samples containing 59 mg Pb kg -1 exhibited a unique community structure. While factors other than lead content likely play roles in determining bacterial community structure in the sediments of Rush Lake, these data suggest that the culturable fraction of sediment bacterial communities is affected by elevated lead levels. - Low levels of lead pollution in Rush Lake are not impinging upon the abundance of indigenous sediment bacteria, but may be affecting the community structure of the culturable fraction of these bacteria

  16. Improving regional climate and hydrological forecasting following the record setting flooding across the Lake Ontario - St. Lawrence River system

    Science.gov (United States)

    Gronewold, A.; Seglenieks, F.; Bruxer, J.; Fortin, V.; Noel, J.

    2017-12-01

    In the spring of 2017, water levels across Lake Ontario and the upper St. Lawrence River exceeded record high levels, leading to widespread flooding, damage to property, and controversy over regional dam operating protocols. Only a few years earlier, water levels on Lakes Superior, Michigan, and Huron (upstream of Lake Ontario) had dropped to record low levels leading to speculation that either anthropogenic controls or climate change were leading to chronic water loss from the Great Lakes. The contrast between low water level conditions across Earth's largest lake system from the late 1990s through 2013, and the rapid rise prior to the flooding in early 2017, underscores the challenges of quantifying and forecasting hydrologic impacts of rising regional air and water temperatures (and associated changes in lake evaporation) and persistent increases in long-term precipitation. Here, we assess the hydrologic conditions leading to the recent record flooding across the Lake Ontario - St. Lawrence River system, with a particular emphasis on understanding the extent to which those conditions were consistent with observed and anticipated changes in historical and future climate, and the extent to which those conditions could have been anticipated through improvements in seasonal climate outlooks and hydrological forecasts.

  17. Jordan Lake Watershed Protection District

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — Polygon representing the area of the Jordan Lake Watershed Protection District. The Watershed Protection District (PDF) is a sensitive area of land that drains to...

  18. Great Lakes Environmental Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NOAA-GLERL and its partners conduct innovative research on the dynamic environments and ecosystems of the Great Lakes and coastal regions to provide information for...

  19. Paleosecular variations from lake sediments

    International Nuclear Information System (INIS)

    Lund, S.P.; Banerjee, S.K.

    1979-01-01

    Data are presented on the secular variations of the magnetization of wet and dry lake sediments for 17 North American locations. The usefullness of this data in terms of the geomagnetic field is discussed

  20. Identification of Biokinetic Models Using the Concept of Extents.

    Science.gov (United States)

    Mašić, Alma; Srinivasan, Sriniketh; Billeter, Julien; Bonvin, Dominique; Villez, Kris

    2017-07-05

    The development of a wide array of process technologies to enable the shift from conventional biological wastewater treatment processes to resource recovery systems is matched by an increasing demand for predictive capabilities. Mathematical models are excellent tools to meet this demand. However, obtaining reliable and fit-for-purpose models remains a cumbersome task due to the inherent complexity of biological wastewater treatment processes. In this work, we present a first study in the context of environmental biotechnology that adopts and explores the use of extents as a way to simplify and streamline the dynamic process modeling task. In addition, the extent-based modeling strategy is enhanced by optimal accounting for nonlinear algebraic equilibria and nonlinear measurement equations. Finally, a thorough discussion of our results explains the benefits of extent-based modeling and its potential to turn environmental process modeling into a highly automated task.

  1. Extent, accuracy, and credibility of breastfeeding information on the Internet.

    Science.gov (United States)

    Shaikh, Ulfat; Scott, Barbara J

    2005-05-01

    Our objective was to test and describe a model for evaluating Websites related to breastfeeding. Forty Websites most likely to be accessed by the public were evaluated for extent, accuracy, credibility, presentation, ease of use, and adherence to ethical and medical Internet publishing standards. Extent and accuracy of Website content were determined by a checklist of critical information. The majority of Websites reviewed provided accurate information and complied with the International Code of Marketing of Breast-milk Substitutes. Approximately half the Websites complied with standards of medical Internet publishing. While much information on breastfeeding on the Internet is accurate, there is wide variability in the extent of information, usability of Websites, and compliance with standards of medical Internet publishing. Results of this study may be helpful to health care professionals as a model for evaluating breastfeeding-related Websites and to highlight considerations when recommending or designing Websites.

  2. Ecotechnological water quality control in acidic mining lakes. Part 2. Primary production and respiration; Oekotechnologische Steuerung der Gewaesserguete in sauren Tagebauseen. Teil 2. Primaerproduktion und Respiration

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, W. [Inst. fuer Wasser und Boden, Dresden (Germany); Nixdorf, B. [Brandenburgisch-Technische Univ., Fakultaet fuer Umweltwissenschaften, Lehrstuhl fuer Gewaesserschutz, Bad Saarow (Germany)

    2002-07-01

    The necessity of neutralizing acidic mining lakes is obvious if the water is to be used in reservoirs (Lohsa II) or for other purposes such as balancing the water budget, fishing or recreation or to be discharged into river systems. Flushing of mining lakes with alkaline surface water from rivers is the moist common method to stabilize the lake structures and to neutralize acidic water. This method is limited in lakes without river coupling or with a high re-acidification potential. The present contribution demonstrates the possibility of biogenic alkalinity production in acidic mining lakes focusing on the main biological processes of primary production and respiration. The influence of biogenic matter transformation on water chemistry in acidic mining lakes is analyzed. Calculation of the extent of aerobic and anaerobic decay of organic matter will be a necessary prerequisite for sustainable sulfate reduction. (orig.)

  3. Supraglacial Lakes in the Percolation Zone of the Western Greenland Ice Sheet: Formation and Development using Operation IceBridge Snow Radar and ATM (2009-2014)

    Science.gov (United States)

    Chen, C.; Howat, I. M.; de la Peña, S.

    2015-12-01

    Surface meltwater lakes on the Greenland Ice Sheet have appeared at higher elevations, extending well into the percolation zone, under recent warming, with the largest expansion occurring in the western Greenland Ice Sheet. The conditions that allow lakes to form atop firn are poorly constrained, but the formation of new lakes imply changes in the permeability of the firn at high elevations, promoting meltwater runoff. We explore the formation and evolution of new surface lakes in this region above 1500 meters, using a combination of satellite imagery and repeat Snow (2-6.5 GHz) radar echograms and LIDAR measurements from NASA's Operation IceBridge of 2009-2014. We identify conditions for surface lake formation at their farthest inland extent and suggest behaviors of persistence and lake drainage are due to differences in regional ice dynamics.

  4. Spatial distribution of seepage at a flow-through lake: Lake Hampen, Western Denmark

    DEFF Research Database (Denmark)

    Kidmose, Jacob Baarstrøm; Engesgaard, Peter Knudegaard; Nilsson, Bertel

    2011-01-01

    recharge patiern of the lake and relating these to the geologic history of the lake. Recharge of the surrounding aquifer by lake water occurs off shore in a narrow zone, as measured from lake–groundwater gradients. A 33-m-deep d18O profi le at the recharge side shows a lake d18O plume at depths...... that corroborates the interpretation of lake water recharging off shore and moving down gradient. Inclusion of lake bed heterogeneity in the model improved the comparison of simulated and observed discharge to the lake. The apparent age of the discharging groundwater to the lake was determined by CFCs, resulting...

  5. Can small zooplankton mix lakes?

    OpenAIRE

    Simoncelli, S.; Thackeray, S.J.; Wain, D.J.

    2017-01-01

    The idea that living organisms may contribute to turbulence and mixing in lakes and oceans (biomixing) dates to the 1960s, but has attracted increasing attention in recent years. Recent modeling and experimental studies suggest that marine organisms can enhance turbulence as much as winds and tides in oceans, with an impact on mixing. However, other studies show opposite and contradictory results, precluding definitive conclusions regarding the potential importance of biomixing. For lakes, on...

  6. Lake Turkana National Parks Kenya.

    OpenAIRE

    2005-01-01

    Lake Turkana is the largest, most northerly and most saline of Africa's Rift Valley lakes and an outstanding laboratory for the study of plant and animal communities. The three National Parks are a stopover for migrant waterfowl and are major breeding grounds for the Nile crocodile and hippopotamus. The Koobi Fora deposits are rich in pre-human, mammalian, molluscan and other fossil remains and have contributed more to the understanding of Quaternary palaeoenvironments than any other site on ...

  7. Radiocarbon dating of lake sediments

    OpenAIRE

    Pocevičius, Matas

    2016-01-01

    Matas Pocevičius, Radiocarbon dating of lake sediments, bachelor thesis, Vilnius University, Faculty of Physics, Department of General Physics and Spectroscopy, physics, Vilnius, 45 p., 2016. The aim of this study is to evaluate the possibility of radiocarbon dating application for Tapeliai lake bottom sediments. The literature review discusses topics related to accelerator mass spectrometry, principles of radiocarbon formation, importance of nuclear fallout for 14C, possible applications of ...

  8. Real-time flood extent maps based on social media

    Science.gov (United States)

    Eilander, Dirk; van Loenen, Arnejan; Roskam, Ruud; Wagemaker, Jurjen

    2015-04-01

    During a flood event it is often difficult to get accurate information about the flood extent and the people affected. This information is very important for disaster risk reduction management and crisis relief organizations. In the post flood phase, information about the flood extent is needed for damage estimation and calibrating hydrodynamic models. Currently, flood extent maps are derived from a few sources such as satellite images, areal images and post-flooding flood marks. However, getting accurate real-time or maximum flood extent maps remains difficult. With the rise of social media, we now have a new source of information with large numbers of observations. In the city of Jakarta, Indonesia, the intensity of unique flood related tweets during a flood event, peaked at 8 tweets per second during floods in early 2014. A fair amount of these tweets also contains observations of water depth and location. Our hypothesis is that based on the large numbers of tweets it is possible to generate real-time flood extent maps. In this study we use tweets from the city of Jakarta, Indonesia, to generate these flood extent maps. The data-mining procedure looks for tweets with a mention of 'banjir', the Bahasa Indonesia word for flood. It then removes modified and retweeted messages in order to keep unique tweets only. Since tweets are not always sent directly from the location of observation, the geotag in the tweets is unreliable. We therefore extract location information using mentions of names of neighborhoods and points of interest. Finally, where encountered, a mention of a length measure is extracted as water depth. These tweets containing a location reference and a water level are considered to be flood observations. The strength of this method is that it can easily be extended to other regions and languages. Based on the intensity of tweets in Jakarta during a flood event we can provide a rough estimate of the flood extent. To provide more accurate flood extend

  9. Anthropogenic effects on sedimentary facies in Lake Baldeney, West Germany

    Science.gov (United States)

    Neumann-Mahlkau, Peter; Niehaus, Heinz Theo

    1983-12-01

    Analysis of well logs of Lake Baldeney, a reservoir of the Ruhr River, yields four facies factors that reflect the effect of anthropogenic processes on the sediment. First, the sedimentation rate is directly related to the subsidence caused by mining. The extent of the subsidence was such that the sediment load of the river could not compensate for the sinking of the lake bottom. Discharged sediment filled about one-fifth of the basin within 40 years. In certain areas of the basin the sedimentation rate reached up to 10 cm per year. Second, the grain-size distribution of the sediment was influenced by long-term and short-term events. During the subsidence, grain-size distribution remained relatively constant. The destruction of the Möhne River dam during World War II resulted in the presence of an extremely large grain size as evidenced by the so-called Möhnelage. The filling of the lake after 1961 was accompanied by a continual increase in medium grain size. Third, until 1975, the mode of the lake sediment reflects the effect of mining in the vicinity of the lake. High coal content can be traced to its origin. The introduction of modern production processes, modernization of coal dressing, and hydraulic hauling is documented in the sediment. Finally, the heavy metal content of the sediment corresponds to the industrial development in the drainage area the Ruhr River. The accumulation of Cd reached an extreme concentration, exceeding the natural content by a thousand times. Variation in concentration reflects an increase in industrial production, as well as measures undertaken to restore water quality.

  10. LEVEL AND EXTENT OF MERCURY CONTAMINATION IN OREGON LOTIC FISH

    Science.gov (United States)

    As part of the U.S. EPA's EMAP Oregon Pilot project, we conducted a probability survey of 154 Oregon streams and rivers to assess the spatial extent of mercury (Hg) contamination in fish tissue across the state. Samples consisted of whole fish analyses of both small (< 120 mm) a...

  11. Spatial extent in demographic research - approach and problems

    Directory of Open Access Journals (Sweden)

    Knežević Aleksandar

    2015-01-01

    Full Text Available One of the starting methodological problems in demographic research is the definition of spatial extent, which mostly doesn’t correspond to spatial extent already defined by different levels of administrative-territorial unitsthat are used for distribution of usable statistical data. That’s why determining the spatial extent of a demographic research is closely tied with administrative-territorial division of the territory that is being researched, wherein the fact that differentiation of demographic phenomena and processes cannot be the only basis of setting the principles of regionalization must be strictly acknowledged. This problem is particularly common in historical demographic analyses of geographically determined wholes, which are in administratively-territorial sense represented by one or more smaller territorial units, with their borders changing through the history, which directly affects comparability of the statistical data, and makes it considerably more difficult to track demographic change through longer time intervals. The result of these efforts is usually a solution based on a compromise which enables us to examine the dynamics of population change with little deviation from already defined borders of regional geographic wholes. For that reason in this paper the problem of defining spatial extent in demographic research is examined trough several different approaches in case of Eastern Serbia, as a geographically determined region, a historic area, a spatially functioning whole and as a statistical unit for demographic research, with no judgment calls in regard to any of the regionalization principles. [Projekat Ministarstva nauke Republike Srbije, br. III 47006

  12. The Extent of Immature Fish Harvesting by the Commercial Fishery ...

    African Journals Online (AJOL)

    The sustainability of a given fishery is a function of the number of sexually matured fish present in water. If there is intensive immature fishing, the population of fish reaching the stage of recruitment will decrease, which in turn results in lower yield and biomass. The present study was conducted to estimate the extent of ...

  13. Does Trust Influence the Extent of Inter-Organizational Barter?

    DEFF Research Database (Denmark)

    Sudzina, Frantisek

    2014-01-01

    The 1999 World Business Environment Survey investigated, among many other things, the extent of inter-organizational barter in various countries. Reported values differed a lot, e.g. it was less than 1% in Hungary but more than 30% in neighboring Croatia. Since in many such contracts goods and...

  14. Veterinary drug prescriptions: to what extent do pet owners comply ...

    African Journals Online (AJOL)

    Separate questionnaires were designed for pet owners (clients) and veterinarians to ascertain the existence and extent of noncompliance in veterinary practice in lbadan and to elucidate the influence of such factors as logistics, education, economy, attitudes and veterinarian/client relationship on non-compliance. Analyses ...

  15. To what extent does banks' credit stimulate economic growth ...

    African Journals Online (AJOL)

    This study examines the extent to which banks' credit affects economic growth in Nigeria. The data used was collected from the Central Bank of Nigeria statistical bulletin for a period of 24 years from 1990 to 2013. We used credit to the private sector, credit to the public sector and inflation to proxy commercial bank credit ...

  16. Extent of reaction in open systems with multiple heterogeneous reactions

    Science.gov (United States)

    Friedly, John C.

    1991-01-01

    The familiar batch concept of extent of reaction is reexamined for systems of reactions occurring in open systems. Because species concentrations change as a result of transport processes as well as reactions in open systems, the extent of reaction has been less useful in practice in these applications. It is shown that by defining the extent of the equivalent batch reaction and a second contribution to the extent of reaction due to the transport processes, it is possible to treat the description of the dynamics of flow through porous media accompanied by many chemical reactions in a uniform, concise manner. This approach tends to isolate the reaction terms among themselves and away from the model partial differential equations, thereby enabling treatment of large problems involving both equilibrium and kinetically controlled reactions. Implications on the number of coupled partial differential equations necessary to be solved and on numerical algorithms for solving such problems are discussed. Examples provided illustrate the theory applied to solute transport in groundwater flow.

  17. Extent and Distribution of Groundwater Resources in Parts of ...

    African Journals Online (AJOL)

    The extent and distribution of groundwater resources in parts of Anambra State, Nigeria has been investigated. The results show that the study area is directly underlain by four different geological formations including, Alluvial Plain Sands, Ogwashi-Asaba Formation, Ameki/Nanka Sands and Imo Shale, with varying water ...

  18. Extent of implementation of collection development policies in ...

    African Journals Online (AJOL)

    The study is a survey research on the extent of implementation of collection development policies in academic libraries in Imo state. The population of the study comprises five (5) academic libraries in the area of study. The academic libraries understudy are: Imo State University Owerri (IMSU), Federal University of ...

  19. An investigation into Nigerian teacher's attitude towards and extent ...

    African Journals Online (AJOL)

    The attitude of Biology teachers towards and their extent of improvisation, were investigated 80 teachers from 50 randomly selected secondary schools in Oyo state of Nigeria participated in the study. Analysis of the twenty item questionnaire administered to the teachers revealed that though many of them exhibited positive ...

  20. Extent of implementation of Collection Development Policies (CDP ...

    African Journals Online (AJOL)

    The study was on the extent of implementation of collection development policies by public University libraries in the Niger Delta Area, Nigeria. Descriptive survey design was employed. Population for the study consisted of all the 16 Colle ction Development Librarians in the Area studied. No sample was used because the ...

  1. The extent of groundwater use for domestic and irrigation activities ...

    African Journals Online (AJOL)

    AKMENSAH

    2015-06-04

    Jun 4, 2015 ... Albert Kobina Mensah1*, Evans Appiah Kissi2, Kwabena Krah3 and Okoree D. Mireku4. 1Department of Geography, Kenyatta University, Nairobi. 2Department of .... catchment in Kiambu County in Kenya had limited themselves to the assessment of water quality. Little work has been done on the extent to ...

  2. Forest extent and deforestation in tropical Africa since 1900.

    Science.gov (United States)

    Aleman, Julie C; Jarzyna, Marta A; Staver, A Carla

    2018-01-01

    Accurate estimates of historical forest extent and associated deforestation rates are crucial for quantifying tropical carbon cycles and formulating conservation policy. In Africa, data-driven estimates of historical closed-canopy forest extent and deforestation at the continental scale are lacking, and existing modelled estimates diverge substantially. Here, we synthesize available palaeo-proxies and historical maps to reconstruct forest extent in tropical Africa around 1900, when European colonization accelerated markedly, and compare these historical estimates with modern forest extent to estimate deforestation. We find that forests were less extensive in 1900 than bioclimatic models predict. Resultantly, across tropical Africa, ~ 21.7% of forests have been deforested, yielding substantially slower deforestation than previous estimates (35-55%). However, deforestation was heterogeneous: West and East African forests have undergone almost complete decline (~ 83.3 and 93.0%, respectively), while Central African forests have expanded at the expense of savannahs (~ 1.4% net forest expansion, with ~ 135,270 km 2 of savannahs encroached). These results suggest that climate alone does not determine savannah and forest distributions and that many savannahs hitherto considered to be degraded forests are instead relatively old. These data-driven reconstructions of historical biome distributions will inform tropical carbon cycle estimates, carbon mitigation initiatives and conservation planning in both forest and savannah systems.

  3. The Extent of Reversibility of Polychlorinated Biphenyl Adsorption

    Science.gov (United States)

    The extent of reversibility of PCB bonding to sediments has been characterized in studies on the partitioning behavior of a hexachlorobiphenyl isomer. Linear non-singular isotherms have been observed for the adsorption and desorption of 2.4.5.2?,4?,5? hexachlorobiphenyl (HCBP) to...

  4. The Extent of Educational Technology's Influence on Contemporary Educational Practices

    OpenAIRE

    Kim, Bradford-Watts

    2005-01-01

    This paper investigates how advances in educational technologies have influenced contemporary educational practices.It discusses the nature of educational technology, the limitations imposed by the digital divide and other factors of uptake, and the factors leading to successful implementation of educational technologies.The extent of influence is then discussed,together with the probable implications for educational sites for the future.

  5. Determining wetland spatial extent and seasonal variations of the ...

    African Journals Online (AJOL)

    This study, done in the Witbank Dam Catchment in Mpumalanga Province of South Africa, explores a remote-sensing technique to delineate wetland extent and assesses the seasonal variations of the inundated area. The objective was to monitor the spatio-temporal changes of wetlands over time through remote sensing ...

  6. 32 CFR 728.12 - Extent of care.

    Science.gov (United States)

    2010-07-01

    ... § 728.12 Extent of care. Members who are away from their duty stations or are on duty where there is no... providing authorization for non-Federal care at DHHS expense. (b) Maternity episode for active duty female... facilities (once the mother has been admitted to the USMTF) from funds available for care of active duty...

  7. 27 CFR 24.158 - Extent of relief.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Extent of relief. 24.158 Section 24.158 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT..., until all tax is fully paid. (d) Wine vinegar plant bond. The surety will be relieved of liability for...

  8. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area

    DEFF Research Database (Denmark)

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    We examined the relationship between environmental factors and the richness of submerged macrophytes species in 73 Danish lakes, which are mainly small, shallow, and have mesotrophic to hypertrophic conditions. We found that mean species richness per lake was only 4.5 in acid lakes of low...... alkalinity but 12.3 in lakes of high alkalinity due to a greater occurrence of the species-rich group of elodeids. Mean species richness per lake also increased significantly with increasing Secchi depth. No significant relationship between species richness and lake surface area was observed among the entire...... group of lakes or a subset of eutrophic lakes, as the growth of submerged macrophytes in large lakes may be restricted by wave action in shallow water and light restriction in deep water. In contrast, macrophyte species richness increased with lake surface area in transparent lakes, presumably due...

  9. Widespread occurrence of distinct alkenones from Group I haptophytes in freshwater lakes: Implications for paleotemperature and paleoenvironmental reconstructions

    Science.gov (United States)

    Longo, William M.; Huang, Yongsong; Yao, Yuan; Zhao, Jiaju; Giblin, Anne E.; Wang, Xian; Zech, Roland; Haberzettl, Torsten; Jardillier, Ludwig; Toney, Jaime; Liu, Zhonghui; Krivonogov, Sergey; Kolpakova, Marina; Chu, Guoqiang; D'Andrea, William J.; Harada, Naomi; Nagashima, Kana; Sato, Miyako; Yonenobu, Hitoshi; Yamada, Kazuyoshi; Gotanda, Katsuya; Shinozuka, Yoshitsugu

    2018-06-01

    Alkenones are C35-C42 polyunsaturated ketone lipids that are commonly employed to reconstruct changes in sea surface temperature. However, their use in coastal seas and saline lakes can be hindered by species-mixing effects. We recently hypothesized that freshwater lakes are immune to species-mixing effects because they appear to exclusively host Group I haptophyte algae, which produce a distinct distribution of alkenones with a relatively consistent response of alkenone unsaturation to temperature. To evaluate this hypothesis and explore the geographic extent of Group I haptophytes, we analyzed alkenones in sediment and suspended particulate matter samples from lakes distributed throughout the mid- and high latitudes of the Northern Hemisphere (n = 30). Our results indicate that Group I-type alkenone distributions are widespread in freshwater lakes from a range of different climates (mean annual air temperature range: -17.3-10.9 °C; mean annual precipitation range: 125-1657 mm yr-1; latitude range: 40-81°N), and are commonly found in neutral to basic lakes (pH > 7.0), including volcanic lakes and lakes with mafic bedrock. We show that these freshwater lakes do not feature alkenone distributions characteristic of Group II lacustrine haptophytes, providing support for the hypothesis that freshwater lakes are immune to species-mixing effects. In lakes that underwent temporal shifts in salinity, we observed mixed Group I/II alkenone distributions and the alkenone contributions from each group could be quantified with the RIK37 index. Additionally, we observed significant correlations of alkenone unsaturation (U37K) with seasonal and mean annual air temperature with this expanded freshwater lakes dataset, with the strongest correlation occurring during the spring transitional season (U37K = 0.029 * T - 0.49; r2 = 0.60; p < 0.0001). We present new sediment trap data from two lakes in northern Alaska (Toolik Lake, 68.632°N, 149.602°W; Lake E5, 68.643°N, 149.458

  10. Effects of lake trout refuges on lake whitefish and cisco in the Apostle Islands Region of Lake Superior

    Science.gov (United States)

    Zuccarino-Crowe , Chiara M.; Taylor, William W.; Hansen, Michael J.; Seider, Michael J.; Krueger, Charles C.

    2016-01-01

    Lake trout refuges in the Apostle Islands region of Lake Superior are analogous to the concept of marine protected areas. These refuges, established specifically for lake trout (Salvelinus namaycush) and closed to most forms of recreational and commercial fishing, were implicated as one of several management actions leading to successful rehabilitation of Lake Superior lake trout. To investigate the potential significance of Gull Island Shoal and Devils Island Shoal refuges for populations of not only lake trout but also other fish species, relative abundances of lake trout, lake whitefish (Coregonus clupeaformis), and cisco (Coregonus artedi) were compared between areas sampled inside versus outside of refuge boundaries. During 1982–2010, lake trout relative abundance was higher and increased faster inside the refuges, where lake trout fishing was prohibited, than outside the refuges. Over the same period, lake whitefish relative abundance increased faster inside than outside the refuges. Both evaluations provided clear evidence that refuges protected these species. In contrast, trends in relative abundance of cisco, a prey item of lake trout, did not differ significantly between areas inside and outside the refuges. This result did not suggest indirect or cascading refuge effects due to changes in predator levels. Overall, this study highlights the potential of species-specific refuges to benefit other fish species beyond those that were the refuges' original target. Improved understanding of refuge effects on multiple species of Great Lakes fishes can be valuable for developing rationales for refuge establishment and predicting associated fish community-level effects.

  11. Carbonaceous particle record in lake sediments from the Arctic and other remote areas of the northern hemisphere

    International Nuclear Information System (INIS)

    Rose, N.L.

    1995-01-01

    Lake sediments, including spheroidal carbonaceous particles produced by high temperature combustion of fossil fuels, contain a record of lake, catchment and atmospheric deposition history. The spatial and temporal distributions of these particles can indicate the extent to which a single lake or a region has been contaminated by airborne pollutants (e.g. sulfur, polycyclic aromatic hydrocarbons (PAHs)) derived from fossil fuels. The carbonaceous particle records of two Arctic lakes, Shuonijavr and Stepanovichjarvi, close to local pollution sources on the Kola Peninsula, Russia, are compared with the record of a remote lake on Svalbard and with mid-latitude remote mountain lakes in Europe and Asia. Although, Shuonijavr and Stepanovichjarvi show relatively high levels of contamination, as expected, the presence of carbonaceous particles at all of the remote sites studied suggests there is a hemispherical background of these particles. Other less remote mountain lakes in Europe have been found to contain significant concentrations of particles and these may represent regional deposition patterns. Carbonaceous particle analysis may provide an effective assessment of whether a lake site is receiving local, regional or background levels of deposition

  12. Arctic lake physical processes and regimes with implications for winter water availability and management in the National Petroleum Reserve Alaska.

    Science.gov (United States)

    Jones, Benjamin M; Arp, Christopher D; Hinkel, Kenneth M; Beck, Richard A; Schmutz, Joel A; Winston, Barry

    2009-06-01

    Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA.

  13. Organic carbon mass accumulation rate regulates the flux of reduced substances from the sediments of deep lakes

    Directory of Open Access Journals (Sweden)

    T. Steinsberger

    2017-07-01

    Full Text Available The flux of reduced substances, such as methane and ammonium, from the sediment to the bottom water (Fred is one of the major factors contributing to the consumption of oxygen in the hypolimnia of lakes and thus crucial for lake oxygen management. This study presents fluxes based on sediment porewater measurements from different water depths of five deep lakes of differing trophic states. In meso- to eutrophic lakes Fred was directly proportional to the total organic carbon mass accumulation rate (TOC-MAR of the sediments. TOC-MAR and thus Fred in eutrophic lakes decreased systematically with increasing mean hypolimnion depth (zH, suggesting that high oxygen concentrations in the deep waters of lakes were essential for the extent of organic matter mineralization leaving a smaller fraction for anaerobic degradation and thus formation of reduced compounds. Consequently, Fred was low in the 310 m deep meso-eutrophic Lake Geneva, with high O2 concentrations in the hypolimnion. By contrast, seasonal anoxic conditions enhanced Fred in the deep basin of oligotrophic Lake Aegeri. As TOC-MAR and zH are based on more readily available data, these relationships allow estimating the areal O2 consumption rate by reduced compounds from the sediments where no direct flux measurements are available.

  14. Changes in Rongbuk lake and Imja lake in the Everest region of Himalaya

    Science.gov (United States)

    Chen, W.; Doko, T.; Liu, C.; Ichinose, T.; Fukui, H.; Feng, Q.; Gou, P.

    2014-12-01

    The Himalaya holds the world record in terms of range and elevation. It is one of the most extensively glacierized regions in the world except the Polar Regions. The Himalaya is a region sensitive to climate change. Changes in the glacial regime are indicators of global climate changes. Since the second half of the last century, most Himalayan glaciers have melted due to climate change. These changes directly affected the changes of glacial lakes in the Himalayan region due to the glacier retreat. New glacial lakes are formed, and a number of them have expanded in the Everest region of the Himalayas. This paper focuses on the two glacial lakes which are Imja Lake, located at the southern slope, and Rongbuk Lake, located at the northern slope in the Mt. Everest region, Himalaya to present the spatio-temporal changes from 1976 to 2008. Topographical conditions between two lakes were different (Kruskal-Wallis test, p < 0.05). Rongbuk Lake was located at 623 m higher than Imja Lake, and radiation of Rongbuk Lake was higher than the Imja Lake. Although size of Imja Lake was larger than the Rongbuk Lake in 2008, the growth speed of Rongbuk Lake was accelerating since 2000 and exceeds Imja Lake in 2000-2008. This trend of expansion of Rongbuk Lake is anticipated to be continued in the 21st century. Rongbuk Lake would be the biggest potential risk of glacial lake outburst flood (GLOF) at the Everest region of Himalaya in the future.

  15. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009

    Science.gov (United States)

    Li, Chunlan; Wang, Jun; Hu, Richa; Yin, Shan; Bao, Yuhai; Li, Yuwei

    2018-06-01

    Hulun Lake is the largest freshwater lake in northern Inner Mongolia and even minor changes in its level may have major effects on the ecology of the lake and the surrounding area. In this study, we used high-precision elevation data for the interval from 2003-2009 measured by the Geoscience Laser Altimetry System (GLAS) on board the Ice, Cloud, and land Elevation Satellite (ICESat) to assess annual and seasonal water level variations of Hulun Lake. The altimetry data of 32 satellite tracks were processed using the RANdom SAmple Consensus algorithm (RANSAC) to eliminate elevation outliers, and subsequently the Normalized Difference Water Index (NDWI) was used to delineate the area of the lake. From 2003-2009, the shoreline of Hulun Lake retreated westwards, which was especially notable in the southern part of the lake. There was only a small decrease in water level, from 530.72 m to 529.22 m during 2003-2009, an average rate of 0.08 m/yr. The area of the lake decreased at a rate of 49.52 km2/yr, which was mainly the result of the shallow bathymetry in the southern part of the basin. The decrease in area was initially rapid, then much slower, and finally rapid again. Generally, the lake extent and water level decreased due to higher temperatures, intense evaporation, low precipitation, and decreasing runoff. And their fluctuations were caused by a decrease in intraannual temperature, evaporation, and a slight increase in precipitation. Overall, a combination of factors related to climate change were responsible for the variations of the water level of Hulun Lake during the study interval. The results improve our understanding of the impact of climate change on Hulun Lake and may facilitate the formulation of response strategies.

  16. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009

    Science.gov (United States)

    Li, Chunlan; Wang, Jun; Hu, Richa; Yin, Shan; Bao, Yuhai; Li, Yuwei

    2017-07-01

    Hulun Lake is the largest freshwater lake in northern Inner Mongolia and even minor changes in its level may have major effects on the ecology of the lake and the surrounding area. In this study, we used high-precision elevation data for the interval from 2003-2009 measured by the Geoscience Laser Altimetry System (GLAS) on board the Ice, Cloud, and land Elevation Satellite (ICESat) to assess annual and seasonal water level variations of Hulun Lake. The altimetry data of 32 satellite tracks were processed using the RANdom SAmple Consensus algorithm (RANSAC) to eliminate elevation outliers, and subsequently the Normalized Difference Water Index (NDWI) was used to delineate the area of the lake. From 2003-2009, the shoreline of Hulun Lake retreated westwards, which was especially notable in the southern part of the lake. There was only a small decrease in water level, from 530.72 m to 529.22 m during 2003-2009, an average rate of 0.08 m/yr. The area of the lake decreased at a rate of 49.52 km2/yr, which was mainly the result of the shallow bathymetry in the southern part of the basin. The decrease in area was initially rapid, then much slower, and finally rapid again. Generally, the lake extent and water level decreased due to higher temperatures, intense evaporation, low precipitation, and decreasing runoff. And their fluctuations were caused by a decrease in intraannual temperature, evaporation, and a slight increase in precipitation. Overall, a combination of factors related to climate change were responsible for the variations of the water level of Hulun Lake during the study interval. The results improve our understanding of the impact of climate change on Hulun Lake and may facilitate the formulation of response strategies.

  17. The rise and fall of water hyacinth in Lake Victoria and the Kagera River basin, 1989-2001

    Science.gov (United States)

    Albright, Thomas P.; Moorhouse, T.G.; McNabb, T.J.

    2004-01-01

    Water hyacinth (Eichhornia crassipes (Mart.) Solms) is an invasive aquatic macrophyte associated with major negative economic and ecological impacts to the Lake Victoria region since the plant's establishment in Uganda in the 1980s. Reliable estimates of water hyacinth distribution and extent are required to gauge the severity of the problem through time, relate water hyacinth abundance to environmental factors, identify areas requiring management action, and assess the efficacy of management actions. To provide such estimates and demonstrate the utility of remote sensing for this application, we processed and analyzed remotely sensed imagery to determine the distribution and extent of water hyacinth. Maps were produced and coverage was quantified using a hybrid unsupervised image classification approach with manual editing for each of the riparian countries of Kenya, Tanzania, and Uganda, as well as for numerous gulfs and bays. A similar procedure was carried out for selected lakes in the Rwanda-Tanzania borderlands lakes region in the Kagera River basin. Results confirm the severity of the water hyacinth infestation, especially in the northern parts of the lake. A maximum lake-wide extent of at least 17,374 ha was attained in 1998. Following this, a combination of factors, including conditions associated with the 1997 to 1998 El Nin??o and biocontrol with water hyacinth weevils, appear to have contributed to a major decline in water hyacinth in the most affected parts of the lake. Some lakes in the Kagera basin, such as Lake Mihindi, Rwanda, were severely infested in the late 1990s, but the level of infestation in most of these decreased markedly by the early 2000s.

  18. Surficial geologic map of Berrien County, Michigan, and the adjacent offshore area of Lake Michigan

    Science.gov (United States)

    Stone, Byron D.; Kincare, Kevin A.; O'Leary, Dennis W.; Newell, Wayne L.; Taylor, Emily M.; Williams, Van S.; Lundstrom, Scott C.; Abraham, Jared E.; Powers, Michael H.

    2017-12-13

    The surficial geologic map of Berrien County, southwestern Michigan (sheet 1), shows the distribution of glacial and postglacial deposits at the land surface and in the adjacent offshore area of Lake Michigan. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics, stratigraphic relationships, and age. Drill-hole information correlated in cross sections provides details of typical stratigraphic sequences that compose one or more penetrated geologic map units. A new bedrock geologic map (on sheet 2) includes contours of the altitude of the eroded top of bedrock and shows the distribution of middle Paleozoic shale and carbonate units in the subcrop. A sediment thickness map (also on sheet 2) portrays the extent of as much as 150 meters of surficial materials that overlie the bedrock surface.The major physical features of the county are related principally to deposits of the last Laurentide ice sheet that advanced and then retreated back through the region from about 19,000 to 14,000 radiocarbon years before present. Glacial and postglacial deposits underlie the entire county; shale bedrock crops out only in the adjacent offshore area on the bottom of Lake Michigan. All glacial deposits and glacial meltwater deposits in Berrien County are related to the late Wisconsinan glacial advances of the Lake Michigan ice lobe and its three regional recessional moraines, which cross the county as three north-northeast-trending belts.From east to west (oldest to youngest), the three moraine belts are known as the Kalamazoo, Valparaiso, and Lake Border morainic systems. The till-ridge morainic systems (Lake Border and local Valparaiso morainic systems) consist of multiple, elongate moraine ridges separated by till plains and lake-bottom plains. Tills in ground and end moraines in Berrien County are distinguished as informal units, and are correlated with three proposed regional till units in southwestern Michigan

  19. Emerging Glacial Lakes in the Cordillera Blanca, Peru: A Case Study at Arteson Glacier

    Science.gov (United States)

    Chisolm, R. E.; Mckinney, D. C.; Gomez, J.; Voss, K.

    2012-12-01

    Arteson glacier show the ice thickness ranging from 20 meters at the terminus and gradually increasing to about 160 meters at the highest part of the glacier. A negative bed slope from the glacier terminus to the higher elevations of the glacier indicates that the conditions are favorable for the growth of a glacial lake, and this growth is likely to be limited only by the amount of ice available and the rate of melt. A more informed glacier melt model that accounts for the ice thickness and glacial extent can give us better estimates of the future mass balance of the new glacial lake at the base of the Arteson glacier. These mass balance estimates will in turn influence hydraulic models of potential GLOFs for the glacial lake system below Arteson glacier and the resulting risk assessment studies.

  20. Spruce Lake Dam reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, G. [SGE Acres Ltd., Fredericton, NB (Canada); Barnard, J. [SGE Acres Ltd., St. John' s, NF (Canada); Vriezen, C. [City of Saint John, NF (Canada); Stephenson, M. [Jacques Whitford Environment Ltd., Fredericton, NB (Canada)

    2004-09-01

    Spruce Lake Dam was constructed in 1898 as part of the water supply system for Saint John, New Brunswick. The original dam was a 6 meter high, 140 meter long concrete gravity dam with an intake structure at its mid point and an overflow spillway at the left abutment. A rehabilitation project was launched in 2001 to bring the deteriorated dam into conformance with the dam safety guidelines of the Canadian Dam Association. The project criteria included minimal disruption to normal operation of water supply facilities and no negative effect on water quality. The project involved installation of a new low level outlet, removal of a gate house and water intake pipes, replacement of an access road culvert in the spillway channel, and raising the earth dam section by 1.8 meters to allow for increased water storage. The new raised section has an impervious core. The project also involved site and geotechnical investigations as well as hydrotechnical and environmental studies. This presentation described the final design of the remedial work and the environmental permitting procedures. Raising the operating level of the system proved successful as demonstrated by the fewer number of pumping days required after dam rehabilitation. The dam safety assessment under the Canadian Environmental Assessment Act began in April 2001, and the rehabilitation was completed by the end of 2002. 1 tab., 8 figs.

  1. Spray Lakes reclamation project

    International Nuclear Information System (INIS)

    Zacaruk, M.R.

    1996-01-01

    When the level of the Spray Lakes (Alberta) reservoir was lowered by four metres, 208 ha of shoreline was exposed offering little to no wildlife benefit and only limited recreation potential. A reclamation plan for 128 ha of shoreline was therefore developed. A wild life-palatable, self-sustaining vegetation cover was established. Approximately 90 ha was scarified, and/or had tree stumps removed prior to seeding, while approximately 40 ha was seeded and fertilized only. The remaining 80 ha of shoreline was not revegetated due to limited access; these areas will be allowed to re-establish naturally from the forested edge. The species were selected based on their adaptation to alkaline soils, drought tolerance, persistence in a stand and rooting characteristics, as well as palatability to wildlife. Alfalfa, white clover and fall rye were seeded. In general, all areas of the reclamation plan are successfully revegetated. Areas which were recontoured are stable and non-eroding. Success was most significant in areas which had been scarified, then seeded and trackpacked. Areas that were seeded and fertilized only were less well established at the end of the first year, but showed improvement in the second and third years. The area will be monitored to ensure the reclaimed vegetation is self-sustaining

  2. Anthropogenic and climatic factors enhancing hypolimnetic anoxia in a temperate mountain lake

    Science.gov (United States)

    Sánchez-España, Javier; Mata, M. Pilar; Vegas, Juana; Morellón, Mario; Rodríguez, Juan Antonio; Salazar, Ángel; Yusta, Iñaki; Chaos, Aida; Pérez-Martínez, Carmen; Navas, Ana

    2017-12-01

    Oxygen depletion (temporal or permanent) in freshwater ecosystems is a widespread and globally important environmental problem. However, the factors behind increased hypolimnetic anoxia in lakes and reservoirs are often diverse and may involve processes at different spatial and temporal scales. Here, we evaluate the combined effects of different anthropogenic pressures on the oxygen dynamics and water chemistry of Lake Enol, an emblematic mountain lake in Picos de Europa National Park (NW Spain). A multidisciplinary study conducted over a period of four years (2013-2016) indicates that the extent and duration of hypolimnetic anoxia has increased dramatically in recent years. The extent and duration of hypolimnetic anoxia is typical of meso-eutrophic systems, in contrast with the internal productivity of the lake, which remains oligo-mesotrophic and phosphorus-limited. This apparent contradiction is ascribed to the combination of different external pressures in the catchment, which have increased the input of allochthonous organic matter in recent times through enhanced erosion and sediment transport. The most important among these pressures appears to be cattle grazing, which affects not only the import of carbon and nutrients, but also the lake microbiology. The contribution of clear-cutting, runoff channelling, and tourism is comparatively less significant. The cumulative effects of these local human impacts are not only affecting the lake metabolism, but also the import of sulfate, nitrate- and ammonium-nitrogen, and metals (Zn). However, these local factors alone cannot explain entirely the observed oxygen deficit. Climatic factors (e.g., warmer and drier spring and autumn seasons) are also reducing oxygen levels in deep waters through a longer and increasingly steep thermal stratification. Global warming may indirectly increase anoxia in many other mountain lakes in the near future.

  3. Assessing the Global Extent of Rivers Observable by SWOT

    Science.gov (United States)

    Pavelsky, T.; Durand, M. T.; Andreadis, K.; Beighley, E.; Allen, G. H.; Miller, Z.

    2013-12-01

    Flow of water through rivers is among the key fluxes in the global hydrologic cycle and its knowledge would advance the understanding of flood hazards, water resources management, ecology, and climate. However, gauges providing publicly accessible measurements of river stage or discharge remain sparse in many regions. The Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA and the French Centre National d'Etudes Spatiales (CNES) that would provide the first high-resolution images of simultaneous terrestrial water surface height, inundation extent, and ocean surface elevation. Among SWOT's primary goals is the direct observation of variations in river water surface elevation and, where possible, estimation of river discharge from SWOT measurements. The mission science requirements specify that rivers wider than 100 m would be observed globally, with a goal of observing rivers wider than 50m. However, the extent of anticipated SWOT river observations remains fundamentally unknown because no high-resolution, global dataset of river widths exists. Here, we estimate the global extent of rivers wider than 50 m-100 m thresholds using established relationships among river width, discharge, and drainage area. We combine a global digital elevation model with in situ river discharge data to estimate the global extent of SWOT-observable rivers, and validate these estimates against satellite-derived measurements of river width in two large river basins (the Yukon and the Ohio). We then compare the extent of SWOT-observed rivers with the current publicly-available, global gauge network included in the Global Runoff Data Centre (GRDC) database to examine the impact of SWOT on the availability of river observation over continental and global scales. Results suggest that if SWOT observes 100 m wide rivers, river basins with areas greater than 50,000 km2 will commonly be measured. If SWOT could observe 50 m wide rivers, then most 10,000 km2 basins

  4. Arctic lake physical processes and regimes with implications for winter water availability and management in the national petroleum reserve alaska

    Science.gov (United States)

    Jones, Benjamin M.; Arp, C.D.; Hinkel, Kenneth M.; Beck, R.A.; Schmutz, J.A.; Winston, B.

    2009-01-01

    Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p modeled lake area extent from 1985 to 2007 showed no long-term trends. In addition, high-resolution aerial photography, bathymetric surveys, water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA. ?? 2008 Springer Science+Business Media, LLC.

  5. The reproduction of lake trout in southern Lake Superior

    Science.gov (United States)

    Eschmeyer, Paul H.

    1955-01-01

    The principal spawning grounds of lake trout (Salvelinus namaycush namaycush) in United States waters of southern Lake Superior are on rocky shoals at depths of less than 20 fathoms. Most spawning occurs in October and early November. Of the mature fish collected on or near the spawning grounds, 60 to 69 percent were males. Among mature fish the average length of females was greater than that of males; few males less than 24 inches or females less than 26 inches in total length were caught. Recoveries of lake trout tagged on the spawning grounds showed that some males remained in the immediate area for a period of several weeks during the spawning season. Marked fish showed a tendency to return during later years to spawning grounds on which they had been tagged, even though many of them ranged long distances between spawning seasons.

  6. Lessons Learned from Stakeholder-Driven Modeling in the Western Lake Erie Basin

    Science.gov (United States)

    Muenich, R. L.; Read, J.; Vaccaro, L.; Kalcic, M. M.; Scavia, D.

    2017-12-01

    Lake Erie's history includes a great environmental success story. Recognizing the impact of high phosphorus loads from point sources, the United States and Canada 1972 Great Lakes Water Quality Agreement set load reduction targets to reduce algae blooms and hypoxia. The Lake responded quickly to those reductions and it was declared a success. However, since the mid-1990s, Lake Erie's algal blooms and hypoxia have returned, and this time with a dominant algae species that produces toxins. Return of the algal blooms and hypoxia is again driven by phosphorus loads, but this time a major source is the agriculturally-dominated Maumee River watershed that covers NW Ohio, NE Indiana, and SE Michigan, and the hypoxic extent has been shown to be driven by Maumee River loads plus those from the bi-national and multiple land-use St. Clair - Detroit River system. Stakeholders in the Lake Erie watershed have a long history of engagement with environmental policy, including modeling and monitoring efforts. This talk will focus on the application of interdisciplinary, stakeholder-driven modeling efforts aimed at understanding the primary phosphorus sources and potential pathways to reduce these sources and the resulting algal blooms and hypoxia in Lake Erie. We will discuss the challenges, such as engaging users with different goals, benefits to modeling, such as improvements in modeling data, and new research questions emerging from these modeling efforts that are driven by end-user needs.

  7. The extent of emphysema in patients with COPD

    DEFF Research Database (Denmark)

    Shaker, Saher Burhan; Stavngaard, Trine; Hestad, Marianne

    2009-01-01

    BACKGROUND AND AIMS: The global initiative for COPD (GOLD) adopted the degree of airway obstruction as a measure of the severity of the disease. The objective of this study was to apply CT to assess the extent of emphysema in patients with chronic obstructive pulmonary disease (COPD) and relate...... measurement and visual and quantitative assessment of CT, from which the relative area of emphysema below -910 Hounsfield units (RA-910) was extracted. RESULTS: Mean RA-910 was 7.4% (n = 5) in patients with GOLD stage I, 17.0% (n = 119) in stage II, 24.2% (n = 79) in stage III and 33.9% (n = 6) in stage IV....... Regression analysis showed a change in RA-910 of 7.8% with increasing severity according to GOLD stage (P emphysema, whereas 25 patients had no emphysema. CONCLUSION: The extent of emphysema...

  8. Extent of hippocampal atrophy predicts degree of deficit in recall.

    Science.gov (United States)

    Patai, Eva Zita; Gadian, David G; Cooper, Janine M; Dzieciol, Anna M; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-10-13

    Which specific memory functions are dependent on the hippocampus is still debated. The availability of a large cohort of patients who had sustained relatively selective hippocampal damage early in life enabled us to determine which type of mnemonic deficit showed a correlation with extent of hippocampal injury. We assessed our patient cohort on a test that provides measures of recognition and recall that are equated for difficulty and found that the patients' performance on the recall tests correlated significantly with their hippocampal volumes, whereas their performance on the equally difficult recognition tests did not and, indeed, was largely unaffected regardless of extent of hippocampal atrophy. The results provide new evidence in favor of the view that the hippocampus is essential for recall but not for recognition.

  9. Recent warming of lake Kivu.

    Science.gov (United States)

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  10. Recent warming of lake Kivu.

    Directory of Open Access Journals (Sweden)

    Sergei Katsev

    Full Text Available Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  11. 33 CFR 162.134 - Connecting waters from Lake Huron to Lake Erie; traffic rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; traffic rules. 162.134 Section 162.134 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.134 Connecting waters from Lake Huron to Lake Erie; traffic rules. (a) Detroit River. The...

  12. 33 CFR 162.132 - Connecting waters from Lake Huron to Lake Erie; communications rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; communications rules. 162.132 Section 162.132 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.132 Connecting waters from Lake Huron to Lake Erie; communications rules. (a...

  13. 33 CFR 162.130 - Connecting waters from Lake Huron to Lake Erie; general rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; general rules. 162.130 Section 162.130 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.130 Connecting waters from Lake Huron to Lake Erie; general rules. (a) Purpose. The...

  14. 33 CFR 162.138 - Connecting waters from Lake Huron to Lake Erie; speed rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; speed rules. 162.138 Section 162.138 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.138 Connecting waters from Lake Huron to Lake Erie; speed rules. (a) Maximum speed limit for...

  15. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...

  16. 33 CFR 162.140 - Connecting waters from Lake Huron to Lake Erie; miscellaneous rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; miscellaneous rules. 162.140 Section 162.140 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.140 Connecting waters from Lake Huron to Lake Erie; miscellaneous rules. (a...

  17. Energy density of lake whitefish Coregonus clupeaformis in Lakes Huron and Michigan

    Science.gov (United States)

    Pothoven, S.A.; Nalepa, T.F.; Madenjian, C.P.; Rediske, R.R.; Schneeberger, P.J.; He, J.X.

    2006-01-01

    We collected lake whitefish Coregonus clupeaformis off Alpena and Tawas City, Michigan, USA in Lake Huron and off Muskegon, Michigan USA in Lake Michigan during 2002–2004. We determined energy density and percent dry weight for lake whitefish from both lakes and lipid content for Lake Michigan fish. Energy density increased with increasing fish weight up to 800 g, and then remained relatively constant with further increases in fish weight. Energy density, adjusted for weight, was lower in Lake Huron than in Lake Michigan for both small (≤800 g) and large fish (>800 g). Energy density did not differ seasonally for small or large lake whitefish or between adult male and female fish. Energy density was strongly correlated with percent dry weight and percent lipid content. Based on data from commercially caught lake whitefish, body condition was lower in Lake Huron than Lake Michigan during 1981–2003, indicating that the dissimilarity in body condition between the lakes could be long standing. Energy density and lipid content in 2002–2004 in Lake Michigan were lower than data for comparable sized fish collected in 1969–1971. Differences in energy density between lakes were attributed to variation in diet and prey energy content as well as factors that affect feeding rates such as lake whitefish density and prey abundance.

  18. A report on the extent of radioisotope usage in Malaysia

    International Nuclear Information System (INIS)

    1983-04-01

    A market survey was carried out to study the extent of radioisotope usage in Malaysia. From the survey, the radioisotopes and their activities/quantities that are used in Industry, Medicine and Research were identified. The radioisotopes that are frequently needed or routinely used were also determined and this formed the basis of the recommendations put forward in this report. It is proposed that PUSPATI adopt the concept of a Distribution Centre in order to provide a service to the Malaysian community. (author)

  19. The extent and impact of outsourcing: evidence from Germany

    OpenAIRE

    Craig P. Aubuchon; Subhayu Bandyopadhyay; Sumon Bhaumik

    2012-01-01

    The authors use data from several sources, including plant-level data from the manufacturing sector in Germany, to expand the literature on outsourcing. They find that, in Germany, the extent of outsourcing among manufacturing industries is higher than among service industries and that the outsourcing intensity of these industries did not change much between 1995 and 2005. They also find a statistically significantly positive impact of industry-level outsourcing intensity on German plant-leve...

  20. Statistics of Radial Ship Extent as Seen by a Seeker

    Science.gov (United States)

    2014-06-01

    Auckland in pure and applied mathematics and physics, and a Master of Science in physics from the same university with a thesis in applied accelerator...does not demand contributions from two angle bins to one extent bin, unlike the rectangle; this is a very big advantage of the ellipse model. However...waveform that mimics the full length of a ship. This allows more economical use to be made of available false-target generation resources. I wish to

  1. Preparation of aluminium lakes by electrocoagulation

    OpenAIRE

    Prapai Pradabkham

    2008-01-01

    Aluminium lakes have been prepared by electrocoagulation employing aluminium as electrodes. The electrocoagulation is conducted in an aqueous alcoholic solution and is completed within one hour. The dye content in the lake ranges approximately between 4-32%.

  2. Global Lake and River Ice Phenology Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Lake and River Ice Phenology Database contains freeze and thaw/breakup dates as well as other descriptive ice cover data for 865 lakes and rivers in the...

  3. Lake Tahoe Water Quality Improvement Programs

    Science.gov (United States)

    Information on the Lake Tahoe watershed, EPA's protection efforts, water quality issues, effects of climate, change, Lake Tahoe Total Maximum Daily Load (TMDL), EPA-sponsored projects, and list of partner agencies.

  4. Biota - 2011 Vegetation Inventory - Marsh Lake, MN

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — 2011 Vegetation Classification for Marsh Lake, MN Vegetation Project Report, OMBIL Environmental Stewardship - Level 1 Inventory. Marsh Lake is located on the...

  5. To what extent can the nuclear public relations be effective?

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Teruaki [CRC Research Institute, Tokyo (Japan)

    1996-06-01

    The effect of public relations (PRs) on the public`s attitude to nuclear energy was assessed using a model developed under the assumption that the extent of attitude change of the public by the PRs activity is essentially the same as that by the nuclear information released by the newsmedia. The attitude change of the public was quantitatively estimated by setting variables explicitly manifesting the activities such as the circulation of exclusive publicity and the area of advertising messages in the newspaper as parameters. The public`s attitude became clear to have a nonlinear dependence on the amount of activity, the extent of its change being varied considerably with demographic classes. Under a given financial condition, the offer of PRs information to the people, as many as possible in a target region, in spite of its little force of appeal, was found to be more effective for the amelioration of public attitude than the repeated offer of the information to a limited member of the public. It also became clear that there exists the most effective media mix for the activity depending on the extent of target region and on the target class of demography, therefore, it is quite significant to determine beforehand the proper conditions for the activity to be executed, such a situation indicating the need for the introduction of nuclear PRs management. (Author).

  6. Regional Mapping of Plantation Extent Using Multisensor Imagery

    Science.gov (United States)

    Torbick, N.; Ledoux, L.; Hagen, S.; Salas, W.

    2016-12-01

    Industrial forest plantations are expanding rapidly across the tropics and monitoring extent is critical for understanding environmental and socioeconomic impacts. In this study, new, multisensor imagery were evaluated and integrated to extract the strengths of each sensor for mapping plantation extent at regional scales. Three distinctly different landscapes with multiple plantation types were chosen to consider scalability and transferability. These were Tanintharyi, Myanmar, West Kalimantan, Indonesia, and southern Ghana. Landsat-8 Operational Land Imager (OLI), Phased Array L-band Synthetic Aperture Radar-2 (PALSAR-2), and Sentinel-1A images were fused within a Classification and Regression Tree (CART) framework using random forest and high-resolution surveys. Multi-criteria evaluations showed both L-and C-band gamma nought γ° backscatter decibel (dB), Landsat reflectance ρλ, and texture indices were useful for distinguishing oil palm and rubber plantations from other land types. The classification approach identified 750,822 ha or 23% of the Taninathryi, Myanmar, and 216,086 ha or 25% of western West Kalimantan as plantation with very high cross validation accuracy. The mapping approach was scalable and transferred well across the different geographies and plantation types. As archives for Sentinel-1, Landsat-8, and PALSAR-2 continue to grow, mapping plantation extent and dynamics at moderate resolution over large regions should be feasible.

  7. To what extent can the nuclear public relations be effective?

    International Nuclear Information System (INIS)

    Ohnishi, Teruaki

    1996-01-01

    The effect of public relations (PRs) on the public's attitude to nuclear energy was assessed using a model developed under the assumption that the extent of attitude change of the public by the PRs activity is essentially the same as that by the nuclear information released by the newsmedia. The attitude change of the public was quantitatively estimated by setting variables explicitly manifesting the activities such as the circulation of exclusive publicity and the area of advertising messages in the newspaper as parameters. The public's attitude became clear to have a nonlinear dependence on the amount of activity, the extent of its change being varied considerably with demographic classes. Under a given financial condition, the offer of PRs information to the people, as many as possible in a target region, in spite of its little force of appeal, was found to be more effective for the amelioration of public attitude than the repeated offer of the information to a limited member of the public. It also became clear that there exists the most effective media mix for the activity depending on the extent of target region and on the target class of demography, therefore, it is quite significant to determine beforehand the proper conditions for the activity to be executed, such a situation indicating the need for the introduction of nuclear PRs management. (Author)

  8. Exploring the Origin, Extent, and Future of Life

    Science.gov (United States)

    Bertka, Constance M.

    2009-09-01

    1. Astrobiology in societal context Constance Bertka; Part I. Origin of Life: 2. Emergence and the experimental pursuit of the origin of life Robert Hazen; 3. From Aristotle to Darwin, to Freeman Dyson: changing definitions of life viewed in historical context James Strick; 4. Philosophical aspects of the origin-of-life problem: the emergence of life and the nature of science Iris Fry; 5. The origin of terrestrial life: a Christian perspective Ernan McMullin; 6. The alpha and the omega: reflections on the origin and future of life from the perspective of Christian theology and ethics Celia Deane-Drummond; Part II. Extent of Life: 7. A biologist's guide to the Solar System Lynn Rothschild; 8. The quest for habitable worlds and life beyond the Solar System Carl Pilcher; 9. A historical perspective on the extent and search for life Steven J. Dick; 10. The search for extraterrestrial life: epistemology, ethics, and worldviews Mark Lupisella; 11. The implications of discovering extraterrestrial life: different searches, different issues Margaret S. Race; 12. God, evolution, and astrobiology Cynthia S. W. Crysdale; Part III. Future of Life: 13. Planetary ecosynthesis on Mars: restoration ecology and environmental ethics Christopher P. McKay; 14. The trouble with intrinsic value: an ethical primer for astrobiology Kelly C. Smith; 15. God's preferential option for life: a Christian perspective on astrobiology Richard O. Randolph; 16. Comparing stories about the origin, extent, and future of life: an Asian religious perspective Francisca Cho; Index.

  9. Monitoring the Extent of Forests on National to Global Scales

    Science.gov (United States)

    Townshend, J.; Townshend, J.; Hansen, M.; DeFries, R.; DeFries, R.; Sohlberg, R.; Desch, A.; White, B.

    2001-05-01

    Information on forest extent and change is important for many purposes, including understanding the global carbon cycle and managing natural resources. International statistics on forest extent are generated using many different sources often producing inconsistent results spatially and through time. Results will be presented comparing forest extent derived from the recent global Food and Agricultural Organization's (FAO) FRA 2000 report with products derived using wall-to-wall Landsat, AVHRR and MODIS data sets. The remotely sensed data sets provide consistent results in terms of total area despite considerable differences in spatial resolution. Although the location of change can be satisfactorily detected with all three remotely sensed data sets, reliable measurement of change can only be achieved through use of Landsat-resolution data. Contrary to the FRA 2000 results we find evidence of an increase in deforestation rates in the late 1990s in several countries. Also we have found evidence of considerable changes in some countries for which little or no change is reported by FAO. The results indicate the benefits of globally consistent analyses of forest cover based on multiscale remotely sensed data sets rather than a reliance on statistics generated by individual countries with very different definitions of forest and methods used to derive them.

  10. The extent of emphysema in patients with COPD.

    Science.gov (United States)

    Shaker, Saher Burhan; Stavngaard, Trine; Hestad, Marianne; Bach, Karen Skjoelstrup; Tonnesen, Philip; Dirksen, Asger

    2009-01-01

    The global initiative for COPD (GOLD) adopted the degree of airway obstruction as a measure of the severity of the disease. The objective of this study was to apply CT to assess the extent of emphysema in patients with chronic obstructive pulmonary disease (COPD) and relate this extent to the GOLD stage of airway obstruction. We included 209 patients with COPD. COPD was defined as FEV(1)/FVC or=20 pack-years. Patients were assessed by lung function measurement and visual and quantitative assessment of CT, from which the relative area of emphysema below -910 Hounsfield units (RA-910) was extracted. Mean RA-910 was 7.4% (n = 5) in patients with GOLD stage I, 17.0% (n = 119) in stage II, 24.2% (n = 79) in stage III and 33.9% (n = 6) in stage IV. Regression analysis showed a change in RA-910 of 7.8% with increasing severity according to GOLD stage (P < 0.001). Combined visual and quantitative assessment of CT showed that 184 patients had radiological evidence of emphysema, whereas 25 patients had no emphysema. The extent of emphysema increases with increasing severity of COPD and most patients with COPD have emphysema. Tissue destruction by emphysema is therefore an important determinant of disease severity in COPD.

  11. Zooplankton communities in a large prealpine lake, Lake Constance: comparison between the Upper and the Lower Lake

    Directory of Open Access Journals (Sweden)

    Gerhard MAIER

    2005-08-01

    Full Text Available The zooplankton communities of two basins of a large lake, Lake Constance, were compared during the years 2002 and 2003. The two basins differ in morphology, physical and chemical conditions. The Upper Lake basin has a surface area of 470 km2, a mean depth of 100 and a maximum depth of 250 m; the Lower Lake basin has a surface area of 62 km2, a mean depth of only 13 and a maximum depth of 40 m. Nutrient, chlorophyll-a concentrations and mean temperatures are somewhat higher in the Lower than in the Upper Lake. Total abundance of rotifers (number per m2 lake surface was higher and rotifer development started earlier in the year in the Lower than in the Upper Lake. Total abundance of crustaceans was higher in the Upper Lake in the year 2002; in the year 2003 no difference in abundance could be detected between the lake basins, although in summer crustacean abundance was higher in the Lower than in the Upper Lake. Crustacean communities differed significantly between lake basins while there was no apparent difference in rotifer communities. In the Lower Lake small crustaceans, like Bosmina spp., Ceriodaphnia pulchella and Thermocyclops oithonoides prevailed. Abundance (number per m2 lake surface of predatory cladocerans, large daphnids and large copepods was much lower in the Lower than in the Upper Lake, in particular during the summer months. Ordination with nonmetric multidimensional scaling (NMS separated communities of both lakes along gradients that correlated with temperature and chlorophyll a concentration. Clutches of copepods were larger in the Lower than in the Upper Lake. No difference could be detected in clutch size of large daphnids between lake basins. Our results show that zooplankton communities in different basins of Lake Constance can be very different. They further suggest that the lack of large crustaceans in particular the lack of large predatory cladocerans in the Lower Lake can have negative effects on growth and

  12. 33 CFR 162.220 - Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hoover Dam, Lake Mead, and Lake... REGULATIONS § 162.220 Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev. (a) Lake Mead and... the axis of Hoover Dam and that portion of Lake Mohave (Colorado River) extending 4,500 feet...

  13. lakemorpho: Calculating lake morphometry metrics in R.

    Science.gov (United States)

    Hollister, Jeffrey; Stachelek, Joseph

    2017-01-01

    Metrics describing the shape and size of lakes, known as lake morphometry metrics, are important for any limnological study. In cases where a lake has long been the subject of study these data are often already collected and are openly available. Many other lakes have these data collected, but access is challenging as it is often stored on individual computers (or worse, in filing cabinets) and is available only to the primary investigators. The vast majority of lakes fall into a third category in which the data are not available. This makes broad scale modelling of lake ecology a challenge as some of the key information about in-lake processes are unavailable. While this valuable in situ information may be difficult to obtain, several national datasets exist that may be used to model and estimate lake morphometry. In particular, digital elevation models and hydrography have been shown to be predictive of several lake morphometry metrics. The R package lakemorpho has been developed to utilize these data and estimate the following morphometry metrics: surface area, shoreline length, major axis length, minor axis length, major and minor axis length ratio, shoreline development, maximum depth, mean depth, volume, maximum lake length, mean lake width, maximum lake width, and fetch. In this software tool article we describe the motivation behind developing lakemorpho , discuss the implementation in R, and describe the use of lakemorpho with an example of a typical use case.

  14. Study of pollution in Rawal lake

    International Nuclear Information System (INIS)

    Ahmad, M.; Khan, M.I.A.; Nisar, M.; Kaleem, M.Y.

    1999-01-01

    It was intended to establish effects of pollution on quality of water of Rawal Lake, Islamabad. Six stations were located for collection of water. The data collected and analyzed so far indicated increasing pollution in the lake Increase in growth of hydrophytes in quite evident, leading towards process of eutrophication of the lake. (author)

  15. Decline of the world's saline lakes

    Science.gov (United States)

    Wayne A. Wurtsbaugh; Craig Miller; Sarah E. Null; R. Justin DeRose; Peter Wilcock; Maura Hahnenberger; Frank Howe; Johnnie Moore

    2017-01-01

    Many of the world’s saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and...

  16. A reactive nitrogen budget for Lake Michigan

    Science.gov (United States)

    The reactive nitrogen budget for Lake Michigan was reviewed and updated, making use of recent estimates of watershed and atmospheric nitrogen loads. The updated total N load to Lake Michigan was approximately double the previous estimate from the Lake Michigan Mass Balance study ...

  17. Historical changes to Lake Washington and route of the Lake Washington Ship Canal, King County, Washington

    Science.gov (United States)

    Chrzastowski, Michael J.

    1983-01-01

    Lake Washington, in the midst of the greater Seattle metropolitan area of the Puget Sound region (fig. 1), is an exceptional commercial, recreational, and esthetic resource for the region . In the past 130 years, Lake Washington has been changed from a " wild " lake in a wilderness setting to a regulated lake surrounded by a growing metropolis--a transformation that provides an unusual opportunity to study changes to a lake's shoreline and hydrologic characteristics -resulting from urbanization.

  18. First evidence of successful natural reproduction by planted lake trout in Lake Huron

    Science.gov (United States)

    Nester, Robert T.; Poe, Thomas P.

    1984-01-01

    Twenty-two lake trout (Salvelinus namaycush) swim-up fry, 24-27 mm long, were captured with emergent fry traps and a tow net in northwestern Lake Huron on a small nearshore reef off Alpena, Michigan, between May 10 and June 1, 1982. These catches represent the first evidence of successful production of swim-up fry by planted, hatchery-reared lake trout in Lake Huron since the lake trout rehabilitation program began in 1973.

  19. Food Web Responses to Artificial Mixing in a Small Boreal Lake

    Directory of Open Access Journals (Sweden)

    Lauri Arvola

    2017-07-01

    Full Text Available In order to simulate food web responses of small boreal lakes to changes in thermal stratification due to global warming, a 4 year whole-lake manipulation experiment was performed. Within that time, period lake mixing was intensified artificially during two successive summers. Complementary data from a nearby lake of similar size and basic water chemistry were used as a reference. Phytoplankton biomass and chlorophyll a did not respond to the greater mixing depth but an increase was observed in the proportional abundance of diatoms, and the proportional abundance of cryptophytes also increased immediately after the onset of mixing. Obligate anoxic green sulphur bacteria vanished at the onset of mixing but gradually recovered after re-establishment of hypolimnetic anoxic conditions. No major effect on crustacean zooplankton was found, but their diversity increased in the metalimnion. During the mixing, the density of rotifers declined but protozoan density increased in the hypolimnion. Littoral benthic invertebrate density increased during the mixing due to Ephemeroptera, Asellus aquaticus and Chironomidae, whereas the density of Chaoborus larvae declined during mixing and lower densities were still recorded one year after the treatment. No structural changes in fish community were found although gillnet catches increased after the onset of the study. The early growth of perch (Perca fluviatilis increased compared to the years before the mixing and in comparison to the reference lake, suggesting improved food availability in the experimental lake. Although several food web responses to the greater mixing depth were found, their persistence and ecological significance were strongly dependent on the extent of the disturbance. To better understand the impacts of wind stress on small lakes, long term whole-lake experiments are needed.

  20. Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley, Central Himalayas

    Science.gov (United States)

    Wang, Weicai; Gao, Yang; Iribarren Anacona, Pablo; Lei, Yanbin; Xiang, Yang; Zhang, Guoqing; Li, Shenghai; Lu, Anxin

    2018-04-01

    Glacial lake outburst floods (GLOFs) have recently become one of the primary natural hazards in the Himalayas. There is therefore an urgent need to assess GLOF hazards in the region. Cirenmaco, a moraine-dammed lake located in the upstream portion of Zhangzangbo valley, Central Himalayas, has received public attention after its damaging 1981 outburst flood. Here, by combining remote sensing methods, bathymetric survey and 2D hydraulic modeling, we assessed the hazard posed by Cirenmaco in its current status. Inter-annual variation of Cirenmaco lake area indicates a rapid lake expansion from 0.10 ± 0.08 km2 in 1988 to 0.39 ± 0.04 km2 in 2013. Bathymetric survey shows the maximum water depth of the lake in 2012 was 115 ± 2 m and the lake volume was calculated to be 1.8 × 107 m3. Field geomorphic analysis shows that Cirenmaco glacial lake is prone to GLOFs as mass movements and ice and snow avalanches can impact the lake and the melting of the dead ice in the moraine can lower the dam level. HEC-RAS 2D model was then used to simulate moraine dam failure of the Cirenmaco and assess GLOF impacts downstream. Reconstruction of Cirenmaco 1981 GLOF shows that HEC-RAS can produce reasonable flood extent and water depth, thus demonstrate its ability to effectively model complex GLOFs. GLOF modeling results presented can be used as a basis for the implementation of disaster prevention and mitigation measures. As a case study, this work shows how we can integrate different methods to GLOF hazard assessment.

  1. [Estimation of DOC concentrations using CDOM absorption coefficients: a case study in Taihu Lake].

    Science.gov (United States)

    Jiang, Guang-Jia; Ma, Rong-Hua; Duan, Hong-Tao

    2012-07-01

    Dissolved organic carbon (DOC) is the largest organic carbon stock in water ecosystems, which plays an important role in the carbon cycle in water. Chromophoric dissolved organic matter (CDOM), an important water color variation, is the colored fraction of DOC and its absorption controls the instruction of light under water. The available linkage between DOC concentration and CDOM absorptions enables the determination of DOC accumulations using remote sensing reflectance or radiance in lake waters. The present study explored the multi-liner relationship between CDOM absorptions [a(g) (250) and a(g) (365)] and DOC concentrations in Taihu Lake, based on the available data in 4 cruises (201005, 201101, 201103, 201105) (totally 183 sampling sites). Meanwhile, the results were validated with the data of the experiment carried out from August 29 to September 2, 2011 in Taihu Lake (n = 27). Furthermore, a universal pattern of modeling from remote sensing was built for lake waters. The results demonstrated that this method provided more satisfying estimation of DOC concentrations in Taihu Lake. Except the data obtained in January 2011, the fitted results of which were not conductive to the winter dataset (201101) in Taihu Lake, due to the diverse sources and sinks of DOC and CDOM, the multi-liner relationship was robust for the data collected in the other three cruises (R2 = 0.64, RMSE = 14.31%, n = 164), which was validated using the 201108 sampling dataset (R2 = 0.67, RMSE = 10.58%, n = 27). In addition, the form of the statistic model is universal, to some extent, for other water areas, however, there is difference in the modeling coefficients. Further research should be focused on the parameterization using local data from different lakes, which provides effective methodology for the estimation of DOC concentrations in lakes and other water regions.

  2. Archaeal community changes in Lateglacial lake sediments: Evidence from ancient DNA

    Science.gov (United States)

    Ahmed, Engy; Parducci, Laura; Unneberg, Per; Ågren, Rasmus; Schenk, Frederik; Rattray, Jayne E.; Han, Lu; Muschitiello, Francesco; Pedersen, Mikkel W.; Smittenberg, Rienk H.; Yamoah, Kweku Afrifa; Slotte, Tanja; Wohlfarth, Barbara

    2018-02-01

    The Lateglacial/early Holocene sediments from the ancient lake at Hässeldala Port, southern Sweden provide an important archive for the environmental and climatic shifts at the end of the last ice age and the transition into the present Interglacial. The existing multi-proxy data set highlights the complex interplay of physical and ecological changes in response to climatic shifts and lake status changes. Yet, it remains unclear how microorganisms, such as Archaea, which do not leave microscopic features in the sedimentary record, were affected by these climatic shifts. Here we present the metagenomic data set of Hässeldala Port with a special focus on the abundance and biodiversity of Archaea. This allows reconstructing for the first time the temporal succession of major Archaea groups between 13.9 and 10.8 ka BP by using ancient environmental DNA metagenomics and fossil archaeal cell membrane lipids. We then evaluate to which extent these findings reflect physical changes of the lake system, due to changes in lake-water summer temperature and seasonal lake-ice cover. We show that variations in archaeal composition and diversity were related to a variety of factors (e.g., changes in lake water temperature, duration of lake ice cover, rapid sediment infilling), which influenced bottom water conditions and the sediment-water interface. Methanogenic Archaea dominated during the Allerød and Younger Dryas pollen zones, when the ancient lake was likely stratified and anoxic for large parts of the year. The increase in archaeal diversity at the Younger Dryas/Holocene transition is explained by sediment infilling and formation of a mire/peatbog.

  3. Assessment of land use/land cover dynamics of Tso Moriri Lake, a Ramsar site in India.

    Science.gov (United States)

    Gupta, Sharad Kumar; Shukla, Dericks Praise

    2016-12-01

    Wetlands accounts for 6% area of the Earth's land cover and nearly 17% of the Hindu Kush Himalayan region. They are of utmost importance to climate dynamics and are critical links between terrestrial and aquatic ecosystems. Despite the need of high attention towards conserving and managing wetland resources, mapping them is a least practiced activity. This study shows the temporal change in land use and land cover pattern of Tso Moriri Lake, the highest altitude lake in India and designated as Ramsar site in year 2002, using multi-sensor and multi-date imagery. Due to change in hydro-meteorological conditions of the region, this lake area has been reduced. Since the lake recharge is dependent on snowmelt, hence change in climatic conditions (less snowfall in winters), to a certain extent, is also responsible for the decrease in water level and water spread of the lake. The result shows that the lake area has reduced approximately 2 km 2 in the last 15 years, and also, agriculture, grasslands, and vegetation cover have increased to a significant extent. Agricultural land and grasslands have doubled while the vegetation cover has increased more than six times, showing the coupled effect of climate change and anthropogenic activities. Trend of temperature and precipitation corroborates the effects of climate change in this region.

  4. Restoration of Lost Lake, recovery of an impacted Carolina Bay

    International Nuclear Information System (INIS)

    Wike, L.D.; Gladden, J.B.; Mackey, H.E. Jr.; Rogers, V.A.

    1995-01-01

    Lost Lake is one of approximately 200 Carolina bays found on the Savannah River Site (SRS). Until 1984 Lost Lake was contaminated by heavy metals and solvents overflowing from a nearby settling basin. Up to 12 inches of surface soil and all vegetation was removed from the bay as part of a RCRA removal action. A plan for restoration was initiated in 1989 and implemented in 1990 and 1991. Extensive planning led to defined objectives, strategies, treatments, and monitoring programs allowing successful restoration of Lost Lake. The primary goal of the project was to restore the wetland ecosystem after a hazardous waste clean up operation. An additional goal was to study the progress of the project and the success of the restoration activity. Several strategy considerations were necessary in the restoration plan. The removal of existing organic soils had to have compensation, a treatment scheme for planting and the extent of manipulation of the substrate had to be considered, monitoring decisions had to be made, and the decision whether or not to actively control the hydrology of the restored system

  5. Horizontal drilling under Lake Erie

    Energy Technology Data Exchange (ETDEWEB)

    Meller, R.

    2001-07-01

    Drilling oil wells under Lake Erie calls for horizontal drilling wells to be drilled from shore out into the pay-zone under the lake. The nature and characteristics of horizontal wells as compared to vertical wells are explored. Considerations that have to be taken into account in drilling horizontal wells are explained (the degree of curvature, drilling fluid quality, geosteering in the pay-zone, steering instrumentation, measurements while drilling (MWD), logging while drilling (LWD)). The concept and reasons for extended reach wells are outlined, along with characteristic features of multilateral wells.

  6. The Lake and the City

    Directory of Open Access Journals (Sweden)

    Konstantin Lidin

    2013-09-01

    Full Text Available The article considers relations between the city of Irkutsk and Lake Baikal in terms of cultural geography. Baikal is included in the UNESCO world heritage list. Unlike the majority of lakes also included in this list, Baikal’s coast is inhabited, especially its southern part. Similar situation is, for example, in the cluster “the city of Bergen – Geiranger village – Geirangerfjord” in Norway. The comparative analysis shows how Norway’s positive experience of the system “a city – a village – a natural phenomenon” could be used in order to make Irkutsk more attractive for tourists and citizens.

  7. Protecting the endangered lake salmon

    International Nuclear Information System (INIS)

    Soimakallio, H.; Oesch, P.

    1997-01-01

    In addition to the Ringed Seal, the labyrinthine Saimaa lake system created after the Ice Age also trapped a species of salmon, whose entire life cycle became adapted to fresh water. In order to improve the living conditions of this lake salmon which - like the ringed seal - is today classified as an endangered species, an intensive research programme has been launched. The partners include the Finnish Game and Fisheries Research Institute, fishing and environmental authorities and - in collaboration with UPM-Kymmene Oy and Kuurnan Voima Oy - the IVO subsidiary Pamilo Oy

  8. LAKE BAIKAL: Underwater neutrino detector

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    A new underwater detector soon to be deployed in Lake Baikal in Siberia, the world's deepest lake with depths down to 1.7 kilometres, could help probe the deepest mysteries of physics. One of the big unsolved problems of astrophysics is the origin of very energetic cosmic rays. However there are many ideas on how particles could be accelerated by exotic concentrations of matter and provide the majority of the Galaxy's high energy particles. Clarification would come from new detectors picking up the energetic photons and neutrinos from these sources

  9. Protecting the endangered lake salmon

    Energy Technology Data Exchange (ETDEWEB)

    Soimakallio, H.; Oesch, P. [ed.

    1997-11-01

    In addition to the Ringed Seal, the labyrinthine Saimaa lake system created after the Ice Age also trapped a species of salmon, whose entire life cycle became adapted to fresh water. In order to improve the living conditions of this lake salmon which - like the ringed seal - is today classified as an endangered species, an intensive research programme has been launched. The partners include the Finnish Game and Fisheries Research Institute, fishing and environmental authorities and - in collaboration with UPM-Kymmene Oy and Kuurnan Voima Oy - the IVO subsidiary Pamilo Oy

  10. Post Audit of Lake Michigan Lake Trout PCB Model Forecasts

    Science.gov (United States)

    The Lake Michigan (LM) Mass Balance Study was conducted to measure and model polychlorinated biphenyls (PCBs) and other anthropogenic substances to gain a better understanding of the transport, fate, and effects of these substances within the system and to aid managers in the env...

  11. Feeding ecology of lake whitefish larvae in eastern Lake Ontario

    Science.gov (United States)

    Johnson, James H.; McKenna, James E.; Chalupnicki, Marc A.; Wallbridge, Tim; Chiavelli, Rich

    2009-01-01

    We examined the feeding ecology of larval lake whitefish (Coregonus clupeaformis) in Chaumont Bay, Lake Ontario, during April and May 2004-2006. Larvae were collected with towed ichthyoplankton nets offshore and with larval seines along the shoreline. Larval feeding periodicity was examined from collections made at 4-h intervals over one 24-h period in 2005. Inter-annual variation in diet composition (% dry weight) was low, as was spatial variation among collection sites within the bay. Copepods (81.4%), primarily cyclopoids (59.1%), were the primary prey of larvae over the 3-year period. Cladocerans (8.1%; mainly daphnids, 6.7%) and chironomids (7.3%) were the other major prey consumed. Larvae did not exhibit a preference for any specific prey taxa. Food consumption of lake whitefish larvae was significantly lower at night (i.e., 2400 and 0400 h). Substantial variation in diet composition occurred over the 24-h diel study. For the 24-h period, copepods were the major prey consumed (50.4%) and their contribution in the diet ranged from 29.3% (0400 h) to 85.9% (1200 h). Chironomids made up 33.4% of the diel diet, ranging from 8.0% (0800 h) to 69.9% (0400 h). Diel variation in the diet composition of lake whitefish larvae may require samples taken at several intervals over a 24-h period to gain adequate representation of their feeding ecology.

  12. A Global Geospatial Database of 5000+ Historic Flood Event Extents

    Science.gov (United States)

    Tellman, B.; Sullivan, J.; Doyle, C.; Kettner, A.; Brakenridge, G. R.; Erickson, T.; Slayback, D. A.

    2017-12-01

    A key dataset that is missing for global flood model validation and understanding historic spatial flood vulnerability is a global historical geo-database of flood event extents. Decades of earth observing satellites and cloud computing now make it possible to not only detect floods in near real time, but to run these water detection algorithms back in time to capture the spatial extent of large numbers of specific events. This talk will show results from the largest global historical flood database developed to date. We use the Dartmouth Flood Observatory flood catalogue to map over 5000 floods (from 1985-2017) using MODIS, Landsat, and Sentinel-1 Satellites. All events are available for public download via the Earth Engine Catalogue and via a website that allows the user to query floods by area or date, assess population exposure trends over time, and download flood extents in geospatial format.In this talk, we will highlight major trends in global flood exposure per continent, land use type, and eco-region. We will also make suggestions how to use this dataset in conjunction with other global sets to i) validate global flood models, ii) assess the potential role of climatic change in flood exposure iii) understand how urbanization and other land change processes may influence spatial flood exposure iv) assess how innovative flood interventions (e.g. wetland restoration) influence flood patterns v) control for event magnitude to assess the role of social vulnerability and damage assessment vi) aid in rapid probabilistic risk assessment to enable microinsurance markets. Authors on this paper are already using the database for the later three applications and will show examples of wetland intervention analysis in Argentina, social vulnerability analysis in the USA, and micro insurance in India.

  13. Extent of pyrolysis impacts on fast pyrolysis biochar properties.

    Science.gov (United States)

    Brewer, Catherine E; Hu, Yan-Yan; Schmidt-Rohr, Klaus; Loynachan, Thomas E; Laird, David A; Brown, Robert C

    2012-01-01

    A potential concern about the use of fast pyrolysis rather than slow pyrolysis biochars as soil amendments is that they may contain high levels of bioavailable C due to short particle residence times in the reactors, which could reduce the stability of biochar C and cause nutrient immobilization in soils. To investigate this concern, three corn ( L.) stover fast pyrolysis biochars prepared using different reactor conditions were chemically and physically characterized to determine their extent of pyrolysis. These biochars were also incubated in soil to assess their impact on soil CO emissions, nutrient availability, microorganism population growth, and water retention capacity. Elemental analysis and quantitative solid-state C nuclear magnetic resonance spectroscopy showed variation in O functional groups (associated primarily with carbohydrates) and aromatic C, which could be used to define extent of pyrolysis. A 24-wk incubation performed using a sandy soil amended with 0.5 wt% of corn stover biochar showed a small but significant decrease in soil CO emissions and a decrease in the bacteria:fungi ratios with extent of pyrolysis. Relative to the control soil, biochar-amended soils had small increases in CO emissions and extractable nutrients, but similar microorganism populations, extractable NO levels, and water retention capacities. Corn stover amendments, by contrast, significantly increased soil CO emissions and microbial populations, and reduced extractable NO. These results indicate that C in fast pyrolysis biochar is stable in soil environments and will not appreciably contribute to nutrient immobilization. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Detecting the Extent of Eutectoid Transformation in U-10Mo

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jana, Saumyadeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McInnis, Colleen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lombardo, Nicholas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sweet, Lucas E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Manandhar, Sandeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-31

    During eutectoid transformation of U-10Mo alloy, uniform metastable γ UMo phase is expected to transform to a mixture of α-U and γ’-U2Mo phase. The presence of transformation products in final U-10Mo fuel, especially the α phase is considered detrimental for fuel irradiation performance, so it is critical to accurately evaluate the extent of transformation in the final U-10Mo alloy. This phase transformation can cause a volume change that induces a density change in final alloy. To understand this density and volume change, we developed a theoretical model to calculate the volume expansion and resultant density change of U-10Mo alloy as a function of the extent of eutectoid transformation. Based on the theoretically calculated density change for 0 to 100% transformation, we conclude that an experimental density measurement system will be challenging to employ to reliably detect and quantify the extent of transformation. Subsequently, to assess the ability of various methods to detect the transformation in U-10Mo, we annealed U-10Mo alloy samples at 500°C for various times to achieve in low, medium, and high extent of transformation. After the heat treatment at 500°C, the samples were metallographically polished and subjected to optical microscopy and x-ray diffraction (XRD) methods. Based on our assessment, optical microscopy and image processing can be used to determine the transformed area fraction, which can then be correlated with the α phase volume fraction measured by XRD analysis. XRD analysis of U-10Mo aged at 500°C detected only α phase and no γ’ was detected. To further validate the XRD results, atom probe tomography (APT) was used to understand the composition of transformed regions in U-10Mo alloys aged at 500°C for 10 hours. Based on the APT results, the lamellar transformation product was found to comprise α phase with close to 0 at% Mo and γ phase with 28–32 at% Mo, and the Mo concentration was highest at the

  15. Extent of the Immirzi ambiguity in quantum general relativity

    International Nuclear Information System (INIS)

    Marugan, Guillermo A Mena

    2002-01-01

    The Ashtekar-Barbero formulation of general relativity admits a one-parameter family of canonical transformations that preserves the expressions of the Gauss and diffeomorphism constraints. The loop quantization of the connection formalism based on each of these canonical sets leads to different predictions. This phenomenon is called the Immirzi ambiguity. It has been recently argued that this ambiguity could be generalized to the extent of a spatially dependent function instead of a parameter. This would ruin the predictability of loop quantum gravity. We prove that such expectations are not realized, so that the Immirzi ambiguity introduces exclusively a freedom in the choice of a real number. (letter to the editor)

  16. Determination of extent of surgical intervention for endometrial carcinoma

    International Nuclear Information System (INIS)

    Smakhtina, O.L.; Nugmanova, M.I.; Nigaj, S.V.

    1986-01-01

    Clinical, cytologic, histologic and X-ray procedures were used in examining 120 patients with endometrial carcinoma. The results of pre- and intraoperative determination of clinical stage were compared in 65 cases of uterine extirpation with appendages and lymphadenectomy. Errors in preoperative identification of the extent of tumor expansion were made in 9 cases (13.8+-4.3%). It was found that determinations of the site and expansion of tumor make the case for hysterocervico-angiolymphography whereas identification of tumor pattern and degree of cell differentiation-for cytologic and histologic assays

  17. Detecting the Extent of Eutectoid Transformation in U-10Mo

    International Nuclear Information System (INIS)

    Devaraj, Arun; Jana, Saumyadeep; McInnis, Colleen A.; Lombardo, Nicholas J.; Joshi, Vineet V.; Sweet, Lucas E.; Manandhar, Sandeep; Lavender, Curt A.

    2016-01-01

    During eutectoid transformation of U-10Mo alloy, uniform metastable ? UMo phase is expected to transform to a mixture of ?-U and ?'-U_2Mo phase. The presence of transformation products in final U-10Mo fuel, especially the ? phase is considered detrimental for fuel irradiation performance, so it is critical to accurately evaluate the extent of transformation in the final U-10Mo alloy. This phase transformation can cause a volume change that induces a density change in final alloy. To understand this density and volume change, we developed a theoretical model to calculate the volume expansion and resultant density change of U-10Mo alloy as a function of the extent of eutectoid transformation. Based on the theoretically calculated density change for 0 to 100% transformation, we conclude that an experimental density measurement system will be challenging to employ to reliably detect and quantify the extent of transformation. Subsequently, to assess the ability of various methods to detect the transformation in U-10Mo, we annealed U-10Mo alloy samples at 500°C for various times to achieve in low, medium, and high extent of transformation. After the heat treatment at 500°C, the samples were metallographically polished and subjected to optical microscopy and x-ray diffraction (XRD) methods. Based on our assessment, optical microscopy and image processing can be used to determine the transformed area fraction, which can then be correlated with the ? phase volume fraction measured by XRD analysis. XRD analysis of U-10Mo aged at 500°C detected only ? phase and no ?' was detected. To further validate the XRD results, atom probe tomography (APT) was used to understand the composition of transformed regions in U-10Mo alloys aged at 500°C for 10 hours. Based on the APT results, the lamellar transformation product was found to comprise ? phase with close to 0 at% Mo and ? phase with 28-32 at% Mo, and the Mo concentration was highest at the ?/? interface.

  18. Measurement of extent of intense ion beam charge neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Engelko, V [Efremov Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Giese, H; Schalk, S [Forschungszentrum Karlsruhe (Germany). INR

    1997-12-31

    Various diagnostic tools were employed to study and optimize the extent of space charge neutralization in the pulsed intense proton beam facility PROFA, comprising Langmuir probes, capacitive probes, and a novel type of the three electrode collector. The latter does not only allow us to measure ion and electron beam current densities in a high magnetic field environment, but also to deduce the density spectrum of the beam electrons. Appropriate operating conditions were identified to attain a complete space charge neutralisation. (author). 5 figs., 4 refs.

  19. Rapid Estimates of Rupture Extent for Large Earthquakes Using Aftershocks

    Science.gov (United States)

    Polet, J.; Thio, H. K.; Kremer, M.

    2009-12-01

    The spatial distribution of aftershocks is closely linked to the rupture extent of the mainshock that preceded them and a rapid analysis of aftershock patterns therefore has potential for use in near real-time estimates of earthquake impact. The correlation between aftershocks and slip distribution has frequently been used to estimate the fault dimensions of large historic earthquakes for which no, or insufficient, waveform data is available. With the advent of earthquake inversions that use seismic waveforms and geodetic data to constrain the slip distribution, the study of aftershocks has recently been largely focused on enhancing our understanding of the underlying mechanisms in a broader earthquake mechanics/dynamics framework. However, in a near real-time earthquake monitoring environment, in which aftershocks of large earthquakes are routinely detected and located, these data may also be effective in determining a fast estimate of the mainshock rupture area, which would aid in the rapid assessment of the impact of the earthquake. We have analyzed a considerable number of large recent earthquakes and their aftershock sequences and have developed an effective algorithm that determines the rupture extent of a mainshock from its aftershock distribution, in a fully automatic manner. The algorithm automatically removes outliers by spatial binning, and subsequently determines the best fitting “strike” of the rupture and its length by projecting the aftershock epicenters onto a set of lines that cross the mainshock epicenter with incremental azimuths. For strike-slip or large dip-slip events, for which the surface projection of the rupture is recti-linear, the calculated strike correlates well with the strike of the fault and the corresponding length, determined from the distribution of aftershocks projected onto the line, agrees well with the rupture length. In the case of a smaller dip-slip rupture with an aspect ratio closer to 1, the procedure gives a measure

  20. Extent and application of patient diaries in Austria

    DEFF Research Database (Denmark)

    Heindl, Patrik; Bachlechner, Adelbert; Nydahl, Peter

    2017-01-01

    Background: Diaries written for patients in the intensive care unit (ICU) are offered in many European countries. In Austria, ICU diaries have been relatively unknown, but since 2012, they have started to emerge. Aim: The aim of this study was to explore the extent and application of ICU diaries...... in Austria in 2015. Method: The study had a prospective multiple methods design of survey and interviews. All ICUs in Austria were surveyed in 2015 to identify which ICUs used diaries. ICUs using diaries were selected for semi-structured key-informant telephone interviews on the application of ICU diaries...

  1. Integrating remotely sensed surface water extent into continental scale hydrology.

    Science.gov (United States)

    Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad

    2016-12-01

    In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R 2 , RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that

  2. Isotope techniques in lake water studies

    International Nuclear Information System (INIS)

    Gourcy, L.

    1999-01-01

    Freshwater lakes are among the most easily exploitable freshwater resources. Lakes are also recognized as major sedimentological features in which stored material can be used to study recent climate and pollution evolution. To adequately preserve these important landscape features, and to use them as climatic archives, an improved understanding of processes controlling their hydrologic and bio-geochemical environments if necessary. This article briefly describes the IAEA activities related to the study of lakes in such areas as lake budget, lake dynamics, water contamination, and paleolimnological investigations

  3. Effects of hurricanes Katrina and Rita on the chemistry of bottom sediments in Lake Pontchartrain, Louisiana, USA

    Science.gov (United States)

    Van Metre, P.C.; Horowitz, A.J.; Mahler, B.J.; Foreman, W.T.; Fuller, C.C.; Burkhardt, M.R.; Elrick, K.A.; Furlong, E.T.; Skrobialowski, S.C.; Smith, J.J.; Wilson, J.T.; Zaugg, S.D.

    2006-01-01

    The effects of Hurricanes Katrina and Rita and the subsequent unwatering of New Orleans, Louisiana, on the sediment chemistry of Lake Pontchartrain were evaluated by chemical analysis of samples of street mud and suspended and bottom sediments. The highest concentrations of urban-related elements and compounds (e.g., Pb, Zn, polycyclic aromatic hydrocarbons, and chlordane) in bottom sediments exceeded median concentrations in U.S. urban lakes and sediment-quality guidelines. The extent of the elevated concentrations was limited, however, to within a few hundred meters of the mouth of the 17th Street Canal, similar to results of historical assessments. Chemical and radionuclide analysis of pre- and post-Hurricane Rita samples indicates that remobilization of near-shore sediment by lake currents and storms is an ongoing process. The effects of Hurricanes Katrina and Rita on the sediment chemistry of Lake Pontchartrain are limited spatially and are most likely transitory. ?? 2006 American Chemical Society.

  4. Characteristics and ontogeny of oligotrophic hardwater lakes in the Forsmark area, central Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Brunberg, A.K.; Blomqvist, P. [Uppsala Univ. (Sweden). Dept. of Limnology

    1999-12-01

    This is the first part of a report characterising the lakes of Uppsala county, with special emphasis on the coastal lakes in the Forsmark area.The aim of the study is to characterise different main types of lakes within the Forsmark area and to create a basis for prediction of their ontogeny, that can be used also for new lakes which due to shoreline displacement will be formed during the next 10 000 years. Areas where future research is needed to fully understand the functioning of the lake ecosystems and their ontogeny should also be identified. This first part of the study identifies and describes one of the most common lake types in the area, the oligotrophic hardwater lake. The geology in the catchments of the Forsmark area includes a bedrock dominated by granites and gneisses, covered by calcareous glacial till and postglacial clay. The catchments are dominated by forest, and the oligotrophic hardwater lakes are to a large extent surrounded by mires. Inflow as well as outflow of water is often diffuse, via the surrounding mire. The lakes are small and shallow, with nutrient poor and highly alkaline water. Three key habitats have been identified within the lakes; the pelagic zone, characterised by low production of biota;, the presumably moderately productive emergent macrophyte zone, dominated by Sphagnum and Phragmites;, and the light exposed soft-bottom zone with Chara meadows and an unusually rich and presumably highly productive microbial sediment community. The oligotrophic hardwater lakes have their origin as depressions in the bottom of the Baltic Sea, which are successively transported upwards due to the land-rise process in the area. As the basins are isolated from the sea , a gradual change from a brackish to freshwater conditions occur. When the lakes have become completely isolated, the oligotrophic hardwater stage follows, due to inflow of carbonate-rich and well buffered groundwater. In the next successional stage, Sphagnum mosses start to

  5. Characteristics and ontogeny of oligotrophic hardwater lakes in the Forsmark area, central Sweden

    International Nuclear Information System (INIS)

    Brunberg, A.K.; Blomqvist, P.

    1999-12-01

    This is the first part of a report characterising the lakes of Uppsala county, with special emphasis on the coastal lakes in the Forsmark area.The aim of the study is to characterise different main types of lakes within the Forsmark area and to create a basis for prediction of their ontogeny, that can be used also for new lakes which due to shoreline displacement will be formed during the next 10 000 years. Areas where future research is needed to fully understand the functioning of the lake ecosystems and their ontogeny should also be identified. This first part of the study identifies and describes one of the most common lake types in the area, the oligotrophic hardwater lake. The geology in the catchments of the Forsmark area includes a bedrock dominated by granites and gneisses, covered by calcareous glacial till and postglacial clay. The catchments are dominated by forest, and the oligotrophic hardwater lakes are to a large extent surrounded by mires. Inflow as well as outflow of water is often diffuse, via the surrounding mire. The lakes are small and shallow, with nutrient poor and highly alkaline water. Three key habitats have been identified within the lakes; the pelagic zone, characterised by low production of biota;, the presumably moderately productive emergent macrophyte zone, dominated by Sphagnum and Phragmites;, and the light exposed soft-bottom zone with Chara meadows and an unusually rich and presumably highly productive microbial sediment community. The oligotrophic hardwater lakes have their origin as depressions in the bottom of the Baltic Sea, which are successively transported upwards due to the land-rise process in the area. As the basins are isolated from the sea , a gradual change from a brackish to freshwater conditions occur. When the lakes have become completely isolated, the oligotrophic hardwater stage follows, due to inflow of carbonate-rich and well buffered groundwater. In the next successional stage, Sphagnum mosses start to

  6. Stormwater Volume Control to Prevent Increases in Lake Flooding and Dam Failure Risk

    Science.gov (United States)

    Potter, K. W.

    2017-12-01

    Urban expansion is not often considered a major factor contributing to dam failure. But if urbanization occurs without mitigation of the hydrologic impacts, the risk of dam failure will increase. Of particular concern are increases in the volume of storm runoff resulting from increases in the extent of impervious surfaces. Storm runoff volumes are not regulated for much the U.S, and where they are, the required control is commonly less than 100%. Unmitigated increases in runoff volume due to urbanization can pose a risk to dams. A recent technical advisory committee of Dane County has recommended that the county require 100% control of stormwater volumes for new developments. The primary motivation was to prevent increases in the water levels in the Yahara Lakes, slowly draining lakes that are highly sensitive to runoff volume. The recommendations included the use of "volume trading" to achieve efficient compliance. Such recommendations should be considered for other slowly draining lakes, including those created by artificial structures.

  7. Reassessing the extent of the Q classification for containment paint

    International Nuclear Information System (INIS)

    Spires, G.

    1995-01-01

    A mounting number of site-specific paint debris transport and screen clogging analyses submitted to justify substandard containment paint work have been deemed persuasive by virtue of favorable U.S. Nuclear Regulatory Commission safety evaluation report (SER) findings. These lay a strong foundation for a standardized approach to redefining the extent to which paint in containment needs to be considered open-quotes Q.close quotes This information justifies an initiative by licensees to roll back paint work quality commitments made at the design phase. This paper questions the validity of the basic premise that all primary containment paint can significantly compromise core and containment cooling [emergency core cooling system/engineered safeguard feature (ECCS/ESF)]. It is posited that the physical extent of painted containment surfaces for which extant material qualification and quality control (QC) structures need apply can be limited to zones relatively proximate to ECCS/ESF suction points. For other painted containment surfaces, simplified criteria should be allowed

  8. The regional extent of suppression: strabismics versus nonstrabismics.

    Science.gov (United States)

    Babu, Raiju Jacob; Clavagnier, Simon R; Bobier, William; Thompson, Benjamin; Hess, Robert F

    2013-10-09

    Evidence is accumulating that suppression may be the cause of amblyopia rather than a secondary consequence of mismatched retinal images. For example, treatment interventions that target suppression may lead to better binocular and monocular outcomes. Furthermore, it has recently been demonstrated that the measurement of suppression may have prognostic value for patching therapy. For these reasons, the measurement of suppression in the clinic needs to be improved beyond the methods that are currently available, which provide a binary outcome. We describe a novel quantitative method for measuring the regional extent of suppression that is suitable for clinical use. The method involves a dichoptic perceptual matching procedure at multiple visual field locations. We compare a group of normal controls (mean age: 28 ± 5 years); a group with strabismic amblyopia (four with microesotropia, five with esotropia, and one with exotropia; mean age: 35 ± 10 years); and a group with nonstrabismic anisometropic amblyopia (mean age: 33 ± 12 years). The extent and magnitude of suppression was similar for observers with strabismic and nonstrabismic amblyopia. Suppression was strongest within the central field and extended throughout the 20° field that we measured. Suppression extends throughout the central visual field in both strabismic and anisometropic forms of amblyopia. The strongest suppression occurs within the region of the visual field corresponding to the fovea of the fixing eye.

  9. Corticocortical feedback increases the spatial extent of normalization.

    Science.gov (United States)

    Nassi, Jonathan J; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T

    2014-01-01

    Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a "normalization pool." Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing.

  10. Corticocortical feedback increases the spatial extent of normalization

    Science.gov (United States)

    Nassi, Jonathan J.; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T.

    2014-01-01

    Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a “normalization pool.” Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing. PMID:24910596

  11. Computational Fluid Dynamics simulations of the Late Pleistocene Lake Bonneville Flood

    Science.gov (United States)

    Abril-Hernández, José M.; Periáñez, Raúl; O'Connor, Jim E.; Garcia-Castellanos, Daniel

    2018-06-01

    At approximately 18.0 ka, pluvial Lake Bonneville reached its maximum level. At its northeastern extent it was impounded by alluvium of the Marsh Creek Fan, which breached at some point north of Red Rock Pass (Idaho), leading to one of the largest floods on Earth. About 5320 km3 of water was discharged into the Snake River drainage and ultimately into the Columbia River. We use a 0D model and a 2D non-linear depth-averaged hydrodynamic model to aid understanding of outflow dynamics, specifically evaluating controls on the amount of water exiting the Lake Bonneville basin exerted by the Red Rock Pass outlet lithology and geometry as well as those imposed by the internal lake geometry of the Bonneville basin. These models are based on field evidence of prominent lake levels, hypsometry and terrain elevations corrected for post-flood isostatic deformation of the lake basin, as well as reconstructions of the topography at the outlet for both the initial and final stages of the flood. Internal flow dynamics in the northern Lake Bonneville basin during the flood were affected by the narrow passages separating the Cache Valley from the main body of Lake Bonneville. This constriction imposed a water-level drop of up to 2.7 m at the time of peak-flow conditions and likely reduced the peak discharge at the lake outlet by about 6%. The modeled peak outlet flow is 0.85·106 m3 s-1. Energy balance calculations give an estimate for the erodibility coefficient for the alluvial Marsh Creek divide of ∼0.005 m y-1 Pa-1.5, at least two orders of magnitude greater than for the underlying bedrock at the outlet. Computing quasi steady-state water flows, water elevations, water currents and shear stresses as a function of the water-level drop in the lake and for the sequential stages of erosion in the outlet gives estimates of the incision rates and an estimate of the outflow hydrograph during the Bonneville Flood: About 18 days would have been required for the outflow to grow from 10

  12. Assessing element-specific patterns of bioaccumulation across New England lakes

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Darren M.; Mayes, Brandon; Sturup, Stefan; Folt, Carol L.; Chen, Celia Y., E-mail: celia.chen@dartmouth.edu

    2012-04-01

    Little is known about differences among trace elements in patterns of bioaccumulation in freshwater food webs. Our goal was to identify patterns in bioaccumulation of different elements that are large and consistent enough to discern despite variation across lakes. We measured methylmercury (MeHg) and trace element (As, Cd, Hg, Pb, and Zn) concentrations in food web components of seven New England lakes on 3-5 dates per lake, and contrasted patterns of bioaccumulation across lakes, metals and seasons. In each lake, trace element concentrations were compared across trophic levels, including three size fractions of zooplankton, planktivorous fish, and piscivorous fish. The trophic position of each food web component was estimated from N isotope analysis. Trace element concentrations varied widely among taxa, lakes and sampling dates. Yet, we identified four consistent patterns of bioaccumulation that were consistent across lakes: (1) MeHg concentration increased (i.e., was biomagnified) and Pb concentration decreased (i.e., was biodiminished) with increased trophic position. (2) Zinc concentration (as with MeHg) was higher in fish than in zooplankton, but overall variation in Zn concentration (unlike MeHg) was low. (3) Arsenic and Cd concentrations (as with Pb) were lower in fish than in zooplankton, but (unlike Pb) were not significantly correlated with trophic position within zooplankton or fish groups. (4) Average summer concentrations of As, Pb, Hg, and MeHg in zooplankton significantly predicted their concentrations in either planktivorous or piscivorous fish. Our secondary goal was to review sampling approaches in forty-five published studies to determine the extent to which current sampling programs facilitate cross-lake and cross-study comparisons of bioaccumulation. We found that studies include different components of the food web and sample too infrequently to enable strong cross-lake and cross-study comparisons. We discuss sampling strategies that would

  13. Computational fluid dynamics simulations of the Late Pleistocene Lake Bonneville flood

    Science.gov (United States)

    Abril-Hernández, José M.; Periáñez, Raúl; O'Connor, Jim E.; Garcia-Castellanos, Daniel

    2018-01-01

    At approximately 18.0 ka, pluvial Lake Bonneville reached its maximum level. At its northeastern extent it was impounded by alluvium of the Marsh Creek Fan, which breached at some point north of Red Rock Pass (Idaho), leading to one of the largest floods on Earth. About 5320 km3 of water was discharged into the Snake River drainage and ultimately into the Columbia River. We use a 0D model and a 2D non-linear depth-averaged hydrodynamic model to aid understanding of outflow dynamics, specifically evaluating controls on the amount of water exiting the Lake Bonneville basin exerted by the Red Rock Pass outlet lithology and geometry as well as those imposed by the internal lake geometry of the Bonneville basin. These models are based on field evidence of prominent lake levels, hypsometry and terrain elevations corrected for post-flood isostatic deformation of the lake basin, as well as reconstructions of the topography at the outlet for both the initial and final stages of the flood. Internal flow dynamics in the northern Lake Bonneville basin during the flood were affected by the narrow passages separating the Cache Valley from the main body of Lake Bonneville. This constriction imposed a water-level drop of up to 2.7 m at the time of peak-flow conditions and likely reduced the peak discharge at the lake outlet by about 6%. The modeled peak outlet flow is 0.85·106 m3 s−1. Energy balance calculations give an estimate for the erodibility coefficient for the alluvial Marsh Creek divide of ∼0.005 m y−1 Pa−1.5, at least two orders of magnitude greater than for the underlying bedrock at the outlet. Computing quasi steady-state water flows, water elevations, water currents and shear stresses as a function of the water-level drop in the lake and for the sequential stages of erosion in the outlet gives estimates of the incision rates and an estimate of the outflow hydrograph during the Bonneville Flood: About 18 days would have been required for the

  14. Surficial geology and stratigraphy of Pleistocene Lake Manix, San Bernardino County, California

    Science.gov (United States)

    Reheis, Marith C.; Redwine, Joanna R.; Wan, Elmira; McGeehin, John P.; VanSistine, D. Paco

    2014-01-01

    Pluvial Lake Manix and its surrounding drainage basin, in the central Mojave Desert of California, has been a focus of paleoclimate, surficial processes, and neotectonic studies by the U.S. Geological Survey (USGS) since about 2004. The USGS initiated studies of Lake Manix deposits to improve understanding of the paleoclimatic record and the shifts in atmospheric circulation that controlled precipitation in the Mojave Desert. Until approximately 25,000 years ago, Lake Manix was the terminus of the Mojave River, which drains northeasterly from the San Bernardino Mountains; the river currently terminates in the Soda Lake and Silver Lake playas. Pleistocene Lake Manix occupied several subbasins at its maximum extent. This map focuses on the extensive exposures created by incision of the Mojave River and its tributaries into the interbedded lacustrine and alluvial deposits within the central (Cady) and northeastern (Afton) subbasins of Lake Manix, and extends from the head of Afton Canyon to Manix Wash. The map illuminates the geomorphic development and depositional history of the lake and alluvial fans within the active tectonic setting of the eastern California shear zone, especially interactions with the left-lateral Manix fault. Lake Manix left an extraordinarily detailed but complex record of numerous transgressive-regressive sequences separated by desiccation and deposition of fan, eolian, and fluvial deposits, and punctuated by tectonic movements and a catastrophic flood that reconfigured the lake basin. Through careful observation of the intercalated lacustrine and fan sequences and by determining the precise elevations of unit contacts, this record was decoded to understand the response of the lake and river system to the interplay of climatic, geomorphic, and tectonic forces. These deposits are exposed in steep badland topography. Mapping was carried out mostly at scales of 1:12,000, although the map is presented at 1:24,000 scale, and employs custom unit

  15. Assessing element-specific patterns of bioaccumulation across New England lakes

    International Nuclear Information System (INIS)

    Ward, Darren M.; Mayes, Brandon; Sturup, Stefan; Folt, Carol L.; Chen, Celia Y.

    2012-01-01

    Little is known about differences among trace elements in patterns of bioaccumulation in freshwater food webs. Our goal was to identify patterns in bioaccumulation of different elements that are large and consistent enough to discern despite variation across lakes. We measured methylmercury (MeHg) and trace element (As, Cd, Hg, Pb, and Zn) concentrations in food web components of seven New England lakes on 3–5 dates per lake, and contrasted patterns of bioaccumulation across lakes, metals and seasons. In each lake, trace element concentrations were compared across trophic levels, including three size fractions of zooplankton, planktivorous fish, and piscivorous fish. The trophic position of each food web component was estimated from N isotope analysis. Trace element concentrations varied widely among taxa, lakes and sampling dates. Yet, we identified four consistent patterns of bioaccumulation that were consistent across lakes: (1) MeHg concentration increased (i.e., was biomagnified) and Pb concentration decreased (i.e., was biodiminished) with increased trophic position. (2) Zinc concentration (as with MeHg) was higher in fish than in zooplankton, but overall variation in Zn concentration (unlike MeHg) was low. (3) Arsenic and Cd concentrations (as with Pb) were lower in fish than in zooplankton, but (unlike Pb) were not significantly correlated with trophic position within zooplankton or fish groups. (4) Average summer concentrations of As, Pb, Hg, and MeHg in zooplankton significantly predicted their concentrations in either planktivorous or piscivorous fish. Our secondary goal was to review sampling approaches in forty-five published studies to determine the extent to which current sampling programs facilitate cross-lake and cross-study comparisons of bioaccumulation. We found that studies include different components of the food web and sample too infrequently to enable strong cross-lake and cross-study comparisons. We discuss sampling strategies that would

  16. Decline of the world's saline lakes

    Science.gov (United States)

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  17. Ohio Lake Erie Commission Homepage

    Science.gov (United States)

    management of Lake Erie: including, water quality protection, fisheries management, wetlands restoration over 365 projects since 1993. Projects have focused on an array of issues critical to the effective quality of its waters and ecosystem, and to promote economic development of the region by ensuring the

  18. Schistosomiasis in Lake Malawi villages

    DEFF Research Database (Denmark)

    Madsen, Henry; Bloch, Paul; Makaula, Peter

    2011-01-01

    Historically, open shorelines of Lake Malawi were free from schistosome, Schistosoma haematobium, transmission, but this changed in the mid-1980s, possibly as a result of over-fishing reducing density of molluscivore fishes. Very little information is available on schistosome infections among...

  19. Pollutant transformations over Lake Michigan

    International Nuclear Information System (INIS)

    Alkezweeny, A.J.; Arbuthnot, D.R.; Busness, K.M.; Easter, R.C.; Hales, J.M.; Lee, R.N.; Young, J.M.

    1979-01-01

    An aircraft, a chartered boat, and a constant altitude balloon were used to study pollutant transformations over Lake Michigan in a Lagrangian frame of reference. The experiments were conducted during the summer under strong atmospheric stability where diffusion and dry deposition of pollutants can be neglected

  20. Prey partitioning and use of insects by juvenile sockeye salmon and a potential competitor, threespine stickleback, in Afognak Lake, Alaska

    Science.gov (United States)

    Richardson, Natura; Beaudreau, Anne H.; Wipfli, Mark S.; Finkle, Heather

    2017-01-01

    Freshwater growth of juvenile sockeye salmon (Oncorhynchus nerka) depends upon the quality and quantity of prey and interactions with potential competitors in the foraging environment. To a large extent, knowledge about the ecology of lake-rearing juvenile sockeye salmon has emerged from studies of commercially important runs returning to deep nursery lakes, yet information from shallow nursery lakes (mean depth ≤ 10 m) is limited. We examined seasonal and ontogenetic variation in diets of juvenile sockeye salmon (N = 219, 30–85 mm) and an abundant potential competitor, threespine stickleback (Gasterosteus aculeatus; N = 198, 42–67 mm), to understand their foraging ecology and potential trophic interactions in a shallow Alaska lake. This study revealed that adult insects made up 74% of all sockeye salmon diets by weight and were present in 98% of all stomachs in Afognak Lake during the summer of 2013. Diets varied temporally for all fishes, but small sockeye salmon (insects in late summer. We found significant differences in diet composition between sockeye salmon and threespine stickleback and the origin of their prey indicated that they also separated their use of habitat on a fine scale; however, the two species showed overlap in size selectivity of zooplankton prey. Considering that aquatic insects can be a primary resource for juvenile sockeye salmon in Afognak Lake, we encourage the development of nursery lake carrying capacity models that include aquatic insects as a prey source for sockeye salmon.

  1. Spatial distribution and risk assessment of heavy metals and As pollution in the sediments of a shallow lake.

    Science.gov (United States)

    Deng, Jiancai; Wang, Yuansheng; Liu, Xin; Hu, Weiping; Zhu, Jinge; Zhu, Lin

    2016-05-01

    The concentrations and spatial distributions of eight heavy metals in surface sediments and sediment core samples from a shallow lake in China were investigated to evaluate the extent of the contamination and potential ecological risks. The results showed that the heavy metal concentrations were higher in the northern and southwestern lake zones than those in the other lake zones, with lower levels of As, Hg, Zn, Cu, Pb, Cr, and Ni primarily observed in the central and eastern lake regions and Cd primarily confined to areas surrounding the lake. The concentrations of the eight heavy metals in the sediment profiles tended to decrease with increasing sediment depth. The contents of Ni, Cu, Zn, Pb, and Cd in the surface sediment were approximately 1.23-18.41-fold higher than their background values (BVs), whereas the contents of Cr, As, and Hg were nearly identical to their BVs. The calculated pollution load index (PLI) suggested that the surface sediments of this lake were heavily polluted by these heavy metals and indicated that Cd was a predominant contamination factor. The comprehensive potential ecological risk index (PERI) in the surface sediments ranged from 99.2 to 2882.1, with an average of 606.1. Cd contributed 78.7 % to the PERI, and Hg contributed 8.4 %. Multivariate statistical analyses revealed that the surface sediment pollution with heavy metals mainly originated from industrial wastewater discharged by rivers located in the western and northwestern portion of the lake.

  2. The lakes of the Jordan Rift Valley

    International Nuclear Information System (INIS)

    Gat, J.R.

    2001-01-01

    This paper presents a summary of the proceedings of a workshop on the Lakes of the Jordan Rift Valley that was held in conjunction with the CRP on The Use of Isotope Techniques in Lake Dynamics Investigations. The paper presents a review of the geological, hydrogeological and physical limnological setting of the lakes in the Jordan Rift Valley, Lake Hula, Lake Kinneret and the Dead Sea. This is complemented by a description of the isotope hydrology of the system that includes the use of a wide range of isotopes: oxygen-18, deuterium, tritium, carbon-14, carbon-13, chlorine isotopes, boron-11 and helium-3/4. Environmental isotope aspects of the salt balances of the lakes, their palaeolimnology and biogeochemical tracers are also presented. The scope of application of isotopic tracers is very broad and provides a clear insight into many aspects of the physical, chemical and biological limnology of the Rift Valley Lakes. (author)

  3. Eutrophication potential of Payette Lake, Idaho

    Science.gov (United States)

    Woods, Paul F.

    1997-01-01

    Payette Lake was studied during water years 1995-96 to determine the 20.5-square-kilometer lake's assimilative capacity for nutrients and, thus, its eutrophication potential. The study included quantification of hydrologic and nutrient budgets, characterization of water quality in the limnetic and littoral zones, development of an empirical nutrient load/lake response model, and estimation of the limnological effects of a large-scale forest fire in the lake's 373-square-kilometer watershed during the autumn of 1994. Streamflow from the North Fork Payette River, the lake's primary tributary, delivered about 73 percent of the lake's inflow over the 2 years. Outflow from the lake, measured since 1908, was 128 and 148 percent of the long-term average in 1995 and 1996, respectively. The larger volumes of outflow reduced the long-term average water-

  4. Contaminant Monitoring Strategy for Henrys Lake, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    John S. Irving; R. P. Breckenridge

    1992-12-01

    Henrys Lake, located in southeastern Idaho, is a large, shallow lake (6,600 acres, {approx} 17.1 feet maximum depth) located at 6,472 feet elevation in Fremont Co., Idaho at the headwaters of the Henrys Fork of the Snake River. The upper watershed is comprised of high mountains of the Targhee National Forest and the lakeshore is surrounded by extensive flats and wetlands, which are mostly privately owned. The lake has been dammed since 1922, and the upper 12 feet of the lake waters are allocated for downriver use. Henrys Lake is a naturally productive lake supporting a nationally recognized ''Blue Ribbon'' trout fishery. There is concern that increasing housing development and cattle grazing may accelerate eutrophication and result in winter and early spring fish kills. There has not been a recent thorough assessment of lake water quality. However, the Department of Environmental Quality (DEQ) is currently conducting a study of water quality on Henrys Lake and tributary streams. Septic systems and lawn runoff from housing developments on the north, west, and southwest shores could potentially contribute to the nutrient enrichment of the lake. Many houses are on steep hillsides where runoff from lawns, driveways, etc. drain into wetland flats along the lake or directly into the lake. In addition, seepage from septic systems (drainfields) drain directly into the wetlands enter groundwater areas that seep into the lake. Cattle grazing along the lake margin, riparian areas, and uplands is likely accelerating erosion and nutrient enrichment. Also, cattle grazing along riparian areas likely adds to nutrient enrichment of the lake through subsurface flow and direct runoff. Stream bank and lakeshore erosion may also accelerate eutrophication by increasing the sedimentation of the lake. Approximately nine streams feed the lake (see map), but flows are often severely reduced or completely eliminated due to irrigation diversion. In addition, subsurface

  5. Cold Lake-Beaver River water management study update: Report of the Cold Lake Regional Water Management Task Force

    International Nuclear Information System (INIS)

    1994-01-01

    The Cold Lake Regional Water Management Task Force was formed in 1992, comprising representatives from local governments, aboriginal groups, the oil industry, and the public. The Task Force's mandate was to advise Alberta Environmental Protection on updating the Cold Lake-Beaver River Water Management Plan, taking into acocunt the views and concerns of the public, industry, and local governments. Industrial water use was found to be the key issue to be addressed in the plan update, so the Task Force focused on reviewing industrial water supply options and developing recommendations on the appropriate water supply to meet long-term requirements. A subcommittee was established to monitor groundwater use by the heavy oil industry. This committee took readings at Imperial Oil's water production and observation wells on a biweekly basis. Nine options for supplying industrial water requirements were examined and evaluated using criteria including supply reliability, economic factors, and impacts on other users and the environment. The Task Force found that the preferred source of water for industrial use is the North Saskatchewan River, to be accessed by a water pipeline. The second and less desirable source of water for industrial use would be a system of weirs on Cold or Primrose Lakes and Wolf Lake, supplemented by the use of brackish water to the maximum extent possible. In the interim, industry was recommended to maximize its use of brackish water and continue to use surface and ground water within existing license limits. Other recommendations were to form provincial or regional boards to oversee water use and issue water licenses, to treat water as a resource, and to establish a fee for industrial use of water. 3 figs., 5 tabs

  6. Restoration of Shallow Lakes in Subtropical and Tropical China: Response of Nutrients and Water Clarity to Biomanipulation by Fish Removal and Submerged Plant Transplantation

    Directory of Open Access Journals (Sweden)

    Jinlei Yu

    2016-10-01

    Full Text Available Fish removal has been used to restore temperate lakes, and positive effects on ecological state and water clarity have frequently been recorded in many lakes. Recently, a supplementary measure, transplantation of submerged macrophytes after fish removal, has been applied to restore warm Chinese shallow lakes in order to compensate for the expected lack of increasing grazing control of phytoplankton after the biomanipulation. These measures have successfully shifted turbid warm lakes to a clear water state, but little is known about the responses to restoration of key physico-chemical variables. We analyzed the seasonal variation in nutrient concentrations in two subtropical and one tropical biomanipulated shallow Chinese lakes subjected to restoration. In all three lakes, a marked decline occurred in the concentrations of lake total nitrogen (TN, total phosphorus (TP, total suspended solids (TSS, and chlorophyll a (Chl a, while the transparency (SD:WD ratio, Secchi depth to water depth ratio increased. A clear water state was established, lasting so far for 7 to 23 months, and TN, TP, Chl a, and TSS levels in the three restored lakes decreased to, on average, 49%, 58%, 41%, and 18% of the level prior to restoration and/or the level in a reference lake, respectively, while the annual mean SD:WD ratio exhibited a 1.5–4 fold increase. In conclusion, lake restoration by transplantation of submerged macrophytes after fish removal had major positive effects on the physico-chemical variables in our study lakes. However, continuous control of omnivorous and herbivorous fish biomass is recommended as the fish typically present in warm, shallow lakes to some extent feed on submerged macrophytes, when available.

  7. Life history of lake herring of Green Bay, Lake Michigan

    Science.gov (United States)

    Smith, Stanford H.

    1956-01-01

    Although the lake herring has been an important contributor to the commercial fish production of Green Bay, little has been known about it. This study is based on field observations and data from about 6,500 lake herring collected over the period 1948 to 1952. Relatively nonselective commercial pound nets were a primary source of material for the study of age and growth. Commercial and experimental gill nets were used to obtain data on gear selectivity and vertical distribution. Scales were employed to investigate age and growth. Age group IV normally dominated commercial catches during the first half of the calendar year and age group III the last half. At these ages the fish averaged about 10.5 inches in length. The season's growth started in May, was most rapid in July, and terminated near the end of October. The sexes grew at the same rate. Selectivity of fishing gear was found to influence the estimation of growth. Geographical and annual differences in growth are shown. Factors that might contribute to discrepancies in calculated growth are evaluated. Possible real and apparent causes of growth compensation are given. The relation between length and weight is shown to vary with sex, season, year, and method of capture. Females were relatively more plentiful in commercial catches in February than in May through December. The percentage of females decreased with increase in age in pound-net catches but increased with age in gill-net samples. Within a year class the percentage of females decreased with increase in age. Most Green Bay lake herring mature during their second or third year of life. They are pelagic spawners with most intensive spawning over shallow areas. Spawning takes place between mid-November and mid-December, and eggs hatch in April and May. Lake herring ovaries contained from 3,500 to 11,200 eggs (averaged 6,375). Progress of spawning by age, sex, and length is given. Lake herring were distributed at all depths in Green Bay in early May, were

  8. Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie

    Science.gov (United States)

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Hartman, Travis; Johnson, Jim; Roseman, Edward F.

    2013-01-01

    Lake whitefish (Coregonus clupeaformis (Mitchill)) are important commercially, culturally, and ecologically in the Laurentian Great Lakes. Stocks of lake whitefish in the Great Lakes have recovered from low levels of abundance in the 1960s. Reductions in abundance, loss of habitat and environmental degradation can be accompanied by losses of genetic diversity and overall fitness that may persist even as populations recover demographically. Therefore, it is important to be able to identify stocks that have reduced levels of genetic diversity. In this study, we investigated patterns of genetic diversity at microsatellite DNA loci in lake whitefish collected between 1927 and 1929 (historical period) and between 1997 and 2005 (contemporary period) from Lake Huron and Lake Erie. Genetic analysis of lake whitefish from Lakes Huron and Erie shows that the amount of population structuring varies from lake to lake. Greater genetic divergences among collections from Lake Huron may be the result of sampling scale, migration patterns and demographic processes. Fluctuations in abundance of lake whitefish populations may have resulted in periods of increased genetic drift that have resulted in changes in allele frequencies over time, but periodic genetic drift was not severe enough to result in a significant loss of genetic diversity. Migration among stocks may have decreased levels of genetic differentiation while not completely obscuring stock boundaries. Recent changes in spatial boundaries to stocks, the number of stocks and life history characteristics of stocks further demonstrate the potential of coregonids for a swift and varied response to environmental change and emphasise the importance of incorporating both spatial and temporal considerations into management plans to ensure that diversity is preserved.

  9. Calculation and visualisation of future glacier extent in the Swiss Alps by means of hypsographic modelling

    Science.gov (United States)

    Paul, F.; Maisch, M.; Rothenbühler, C.; Hoelzle, M.; Haeberli, W.

    2007-02-01

    The observed rapid glacier wastage in the European Alps during the past 20 years already has strong impacts on the natural environment (rock fall, lake formation) as well as on human activities (tourism, hydro-power production, etc.) and poses several new challenges also for glacier monitoring. With a further increase of global mean temperature in the future, it is likely that Alpine glaciers and the high-mountain environment as an entire system will further develop into a state of imbalance. Hence, the assessment of future glacier geometries is a valuable prerequisite for various impact studies. In order to calculate and visualize in a consistent manner future glacier extent for a large number of individual glaciers (> 100) according to a given climate change scenario, we have developed an automated and simple but robust approach that is based on an empirical relationship between glacier size and the steady-state accumulation area ratio (AAR 0) in the Alps. The model requires digital glacier outlines and a digital elevation model (DEM) only and calculates new glacier geometries from a given shift of the steady-state equilibrium line altitude (ELA 0) by means of hypsographic modelling. We have calculated changes in number, area and volume for 3062 individual glacier units in Switzerland and applied six step changes in ELA 0 (from + 100 to + 600 m) combined with four different values of the AAR 0 (0.5, 0.6, 0.67, 0.75). For an AAR 0 of 0.6 and an ELA 0 rise of 200 m (400 m) we calculate a total area loss of - 54% (- 80%) and a corresponding volume loss of - 50% (- 78%) compared to the 1973 glacier extent. In combination with a geocoded satellite image, the future glacier outlines are also used for automated rendering of perspective visualisations. This is a very attractive tool for communicating research results to the general public. Our study is illustrated for a test site in the Upper Engadine (Switzerland), where landscape changes above timberline play an

  10. Extent and application of ICU diaries in Germany in 2014

    DEFF Research Database (Denmark)

    Nydahl, Peter; Knueck, Dirk; Egerod, Ingrid

    2015-01-01

    in keeping ICU diaries. CONCLUSION: Six years after the introduction of ICU diaries, ICU nurses in Germany are becoming familiar with the concept. Nursing shortage and bureaucratic challenges have impeded the process of implementation, but the adaption of ICU diaries to German conditions appears......, newsletters, newspapers, lectures and publications in German nursing journals. AIM: The aim of the study was to update our knowledge of the extent and application of ICU diaries in Germany in 2014. DESIGN: The study had a prospective mixed methods multicenter design. METHOD: All 152 ICUs in the two German...... of Germany had implemented diaries and three units were planning to do so. Interviews were conducted with nurses at 14 selected ICUs. Informants reported successful adaption of the diary concept to their culture, but variability in application. No units were identified where all nursing staff participated...

  11. Lymphadenectomy in bladder cancer: What should be the extent?

    Directory of Open Access Journals (Sweden)

    K Muruganandham

    2010-01-01

    Full Text Available The extent of Lymh node dissection (LND during radical cystectomy is a subject of increasing importance with several studies suggesting that an extended LND may improve staging accuracy and outcome. Significant numbers of patients have lymph node metastasis above the boundaries of standard LND. Extended LND yields higher number of lymph nodes which may result in better staging. Various retrospective studies have reported better oncological outcomes with extended LND compared to limited LND. No difference in the mortality and the incidence of lymphocele formation has been found between ′standard′ and ′extended′ LND. Till we have a well-designed randomized controlled trial to address these issues for level 1 evidence, it is not justified to deny our patients the advantages of ′extended′ lymphadenectomy based on the current level of evidence.

  12. Peritoneum and mesenterium. Radiological anatomy and extent of peritoneal diseases

    International Nuclear Information System (INIS)

    Ba-Ssalamah, A.; Bastati, N.; Uffmann, M.; Schima, W.

    2009-01-01

    The abdominal cavity is subdivided into the peritoneal cavity, lined by the parietal peritoneum, and the extraperitoneal space. It extends from the diaphragm to the pelvic floor. The visceral peritoneum covers the intraperitoneal organs and part of the pelvic organs. The parietal and visceral layers of the peritoneum are in sliding contact; the potential space between them is called the peritoneal cavity and is a part of the embryologic abdominal cavity or primitive coelomic duct. To understand the complex anatomical construction of the different variants of plicae and recesses of the peritoneum, an appreciation of the embryologic development of the peritoneal cavity is crucial. This knowledge reflects the understanding of the peritoneal anatomy, deep knowledge of which is very important in determining the cause and extent of peritoneal diseases as well as in decision making when choosing the appropriate therapeutic approach, whether surgery, conservative treatment, or interventional radiology. (orig.) [de

  13. Obesity and extent of emphysema depicted at CT

    International Nuclear Information System (INIS)

    Gu, S.; Li, R.; Leader, J.K.; Zheng, B.; Bon, J.; Gur, D.; Sciurba, F.; Jin, C.; Pu, J.

    2015-01-01

    Aim: To investigate the underlying relationship between obesity and the extent of emphysema depicted at CT. Methods and materials: A dataset of 477 CT examinations was retrospectively collected from a study of chronic obstructive pulmonary disease (COPD). The low attenuation areas (LAAs; ≤950 HU) of the lungs were identified. The extent of emphysema (denoted as %LAA) was defined as the percentage of LAA divided by the lung volume. The association between log-transformed %LAA and body mass index (BMI) adjusted for age, sex, the forced expiratory volume in one second as percent predicted value (FEV1% predicted), and smoking history (pack years) was assessed using multiple linear regression analysis. Results: After adjusting for age, gender, smoking history, and FEV1% predicted, BMI was negatively associated with severe emphysema in patients with COPD. Specifically, one unit increase in BMI is associated with a 0.93-fold change (95% CI: 0.91–0.96, p < 0.001) in %LAA; the estimated %LAA for males was 1.75 (95% CI: 1.36–2.26, p < 0.001) times that of females; per 10% increase in FEV1% predicated is associated with a 0.72-fold change (95% CI: 0.69–0.76, p < 0.001) in %LAA. Conclusion: Increasing obesity is negatively associated with severity of emphysema independent of gender, age, and smoking history. - Highlights: • BMI is inversely associated with emphysema depicted on CT. • Emphysema severity in men was higher than that in women. • ∼50% of the subjects with COPD in our dataset were either overweight or obese. • Age and smoking status are not significantly associated with %LAA

  14. Measuring the extent of overlaps in protected area designations.

    Science.gov (United States)

    Deguignet, Marine; Arnell, Andy; Juffe-Bignoli, Diego; Shi, Yichuan; Bingham, Heather; MacSharry, Brian; Kingston, Naomi

    2017-01-01

    Over the past decades, a number of national policies and international conventions have been implemented to promote the expansion of the world's protected area network, leading to a diversification of protected area strategies, types and designations. As a result, many areas are protected by more than one convention, legal instrument, or other effective means which may result in a lack of clarity around the governance and management regimes of particular locations. We assess the degree to which different designations overlap at global, regional and national levels to understand the extent of this phenomenon at different scales. We then compare the distribution and coverage of these multi-designated areas in the terrestrial and marine realms at the global level and among different regions, and we present the percentage of each county's protected area extent that is under more than one designation. Our findings show that almost a quarter of the world's protected area network is protected through more than one designation. In fact, we have documented up to eight overlapping designations. These overlaps in protected area designations occur in every region of the world, both in the terrestrial and marine realms, but are more common in the terrestrial realm and in some regions, notably Europe. In the terrestrial realm, the most common overlap is between one national and one international designation. In the marine realm, the most common overlap is between any two national designations. Multi-designations are therefore a widespread phenomenon but its implications are not well understood. This analysis identifies, for the first time, multi-designated areas across all designation types. This is a key step to understand how these areas are managed and governed to then move towards integrated and collaborative approaches that consider the different management and conservation objectives of each designation.

  15. Estimating Global Cropland Extent with Multi-year MODIS Data

    Directory of Open Access Journals (Sweden)

    Christopher O. Justice

    2010-07-01

    Full Text Available This study examines the suitability of 250 m MODIS (MODerate Resolution Imaging Spectroradiometer data for mapping global cropland extent. A set of 39 multi-year MODIS metrics incorporating four MODIS land bands, NDVI (Normalized Difference Vegetation Index and thermal data was employed to depict cropland phenology over the study period. Sub-pixel training datasets were used to generate a set of global classification tree models using a bagging methodology, resulting in a global per-pixel cropland probability layer. This product was subsequently thresholded to create a discrete cropland/non-cropland indicator map using data from the USDA-FAS (Foreign Agricultural Service Production, Supply and Distribution (PSD database describing per-country acreage of production field crops. Five global land cover products, four of which attempted to map croplands in the context of multiclass land cover classifications, were subsequently used to perform regional evaluations of the global MODIS cropland extent map. The global probability layer was further examined with reference to four principle global food crops: corn, soybeans, wheat and rice. Overall results indicate that the MODIS layer best depicts regions of intensive broadleaf crop production (corn and soybean, both in correspondence with existing maps and in associated high probability matching thresholds. Probability thresholds for wheat-growing regions were lower, while areas of rice production had the lowest associated confidence. Regions absent of agricultural intensification, such as Africa, are poorly characterized regardless of crop type. The results reflect the value of MODIS as a generic global cropland indicator for intensive agriculture production regions, but with little sensitivity in areas of low agricultural intensification. Variability in mapping accuracies between areas dominated by different crop types also points to the desirability of a crop-specific approach rather than attempting

  16. Establishment patterns of water-elm at Catahoula Lake, Louisiana

    Science.gov (United States)

    Karen S. Doerr; Sanjeev Joshi; Richard F. Keim

    2015-01-01

    At Catahoula Lake in central Louisiana, an internationally important lake for water fowl, hydrologic alterations to the surrounding rivers and the lake itself have led to an expansion of water-elm (Planera aquatic J.F. Gmel.) into the lake bed. In this study, we used dendrochronology and aerial photography to quantify the expansion of water-elm in the lake and identify...

  17. Environmental Analysis of Lake Pontchartrain, Louisiana, Its Surrounding Wetlands, and Selected Land Uses. Volume 2.

    Science.gov (United States)

    1980-02-01

    CHAPTER 1: PRELIMINARY MODELING OF THE LAKE PONTCHARTRAIN ECOSYSTEM BY COMPUTER SIMULATIONS Janes H. Stone and Linda A. Deegan ...related to the extent and productivity of intertidal wetlands ( Craig et al. 1979). The role of coastal wetlands in estuarine areas has been well documented...site arid a bottomland harlwood stt c ill I Iouisiana swamp. Amer. J. Bot. 63 (10):1354-1364. Craig , N. J., R. E. Turner, aird J. W. Day, Jr. 197

  18. Mowing Submerged Macrophytes in Shallow Lakes with Alternative Stable States: Battling the Good Guys?

    Science.gov (United States)

    Kuiper, Jan J.; Verhofstad, Michiel J. J. M.; Louwers, Evelien L. M.; Bakker, Elisabeth S.; Brederveld, Robert J.; van Gerven, Luuk P. A.; Janssen, Annette B. G.; de Klein, Jeroen J. M.; Mooij, Wolf M.

    2017-04-01

    Submerged macrophytes play an important role in maintaining good water quality in shallow lakes. Yet extensive stands easily interfere with various services provided by these lakes, and harvesting is increasingly applied as a management measure. Because shallow lakes may possess alternative stable states over a wide range of environmental conditions, designing a successful mowing strategy is challenging, given the important role of macrophytes in stabilizing the clear water state. In this study, the integrated ecosystem model PCLake is used to explore the consequences of mowing, in terms of reducing nuisance and ecosystem stability, for a wide range of external nutrient loadings, mowing intensities and timings. Elodea is used as a model species. Additionally, we use PCLake to estimate how much phosphorus is removed with the harvested biomass, and evaluate the long-term effect of harvesting. Our model indicates that mowing can temporarily reduce nuisance caused by submerged plants in the first weeks after cutting, particularly when external nutrient loading is fairly low. The risk of instigating a regime shift can be tempered by mowing halfway the growing season when the resilience of the system is highest, as our model showed. Up to half of the phosphorus entering the system can potentially be removed along with the harvested biomass. As a result, prolonged mowing can prevent an oligo—to mesotrophic lake from becoming eutrophic to a certain extent, as our model shows that the critical nutrient loading, where the lake shifts to the turbid phytoplankton-dominated state, can be slightly increased.

  19. Use of wetlands for water quality improvement under the USEPA Region V Clean Lakes Program

    Science.gov (United States)

    Landers, Judith C.; Knuth, Barbara A.

    1991-03-01

    The United States Environmental Protection Agency (USEPA) Region V Clean Lakes Program employs artificial and modified natural wetlands in an effort to improve the water quality of selected lakes. We examined use of wetlands at seven lake sites and evaluated the physical and institutional means by which wetland projects are implemented and managed, relative to USEPA program goals and expert recommendations on the use of wetlands for water quality improvement. Management practices recommended by wetlands experts addressed water level and retention, sheet flow, nutrient removal, chemical treatment, ecological and effectiveness monitoring, and resource enhancement. Institutional characteristics recommended included local monitoring, regulation, and enforcement and shared responsibilities among jurisdictions. Institutional and ecological objectives of the National Clean Lakes Program were met to some degree at every site. Social objectives were achieved to a lesser extent. Wetland protection mechanisms and appropriate institutional decentralization were present at all sites. Optimal management techniques were employed to varying degrees at each site, but most projects lack adequate monitoring to determine adverse ecological impacts and effectiveness of pollutant removal and do not extensively address needs for recreation and wildlife habitat. There is evidence that the wetland projects are contributing to improved lake water quality; however, more emphasis needs to be placed on wetland protection and long-term project evaluation.

  20. Methylmercury exposure in a subsistence fishing community in Lake Chapala, Mexico: an ecological approach

    Directory of Open Access Journals (Sweden)

    Abercrombie Mary I

    2010-01-01

    Full Text Available Abstract Background Elevated concentrations of mercury have been documented in fish in Lake Chapala in central Mexico, an area that is home to a large subsistence fishing community. However, neither the extent of human mercury exposure nor its sources and routes have been elucidated. Methods Total mercury concentrations were measured in samples of fish from Lake Chapala; in sections of sediment cores from the delta of Rio Lerma, the major tributary to the lake; and in a series of suspended-particle samples collected at sites from the mouth of the Lerma to mid-Lake. A cross-sectional survey of 92 women ranging in age from 18-45 years was conducted in three communities along the Lake to investigate the relationship between fish consumption and hair mercury concentrations among women of child-bearing age. Results Highest concentrations of mercury in fish samples were found in carp (mean 0.87 ppm. Sediment data suggest a pattern of moderate ongoing contamination. Analyses of particles filtered from the water column showed highest concentrations of mercury near the mouth of the Lerma. In the human study, 27.2% of women had >1 ppm hair mercury. On multivariable analysis, carp consumption and consumption of fish purchased or captured from Lake Chapala were both associated with significantly higher mean hair mercury concentrations. Conclusions Our preliminary data indicate that, despite a moderate level of contamination in recent sediments and suspended particulate matter, carp in Lake Chapala contain mercury concentrations of concern for local fish consumers. Consumption of carp appears to contribute significantly to body burden in this population. Further studies of the consequences of prenatal exposure for child neurodevelopment are being initiated.

  1. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes.

    Science.gov (United States)

    Czekalski, Nadine; Sigdel, Radhika; Birtel, Julia; Matthews, Blake; Bürgmann, Helmut

    2015-08-01

    Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water. Copyright © 2015 Elsevier Ltd. All rights

  2. Study of Morphologic Change in Poyang Lake Basin Caused by Sand Dredging Using Multi-temporal Landsat Images and DEMs

    Science.gov (United States)

    Qi, S.; Zhang, X.; Wang, D.; Zhu, J.; Fang, C.

    2014-11-01

    Sand dredging has been practiced in rivers, lakes, harbours and coastal areas in recent years in China mostly because of demand from construction industry as building material. Sand dredging has disturbed aquatic ecosystems by affecting hydrological processes, increasing content of suspended sediments and reducing water clarity. Poyang Lake, connecting with Yangtze River in the lower reaches of the Yangtze River, is the largest fresh water lake in China. Sand dredging in Poyang Lake has been intensified since 2001 because such practice was banned in Yangtze River and profitable. In this study, the morphologic change caused by sand dredging in Poyang Lake basin was analysed by overlaying two DEMs acquired in 1952 and 2010 respectively. Since the reflectance of middle infrared band for sand dredging vessel is much higher than that of water surface, sand dredging vessels were showed as isolated grey points and can be counted in the middle infrared band in 12 Landsat images acquired in flooding season during 2000~2010. Another two Landsat images (with low water level before 2000 and after 2010) were used to evaluate the morphologic change by comparing inundation extent and shoreline shape. The following results was obtained: (1) vessels for sand dredging are mainly distributed in the north of Poyang Lake before 2007, but the dredging area was enlarged to the central region and even to Gan River; (2) sand dredging area reached to about 260.4 km2 and is mainly distributed in the north of Songmen Mountain and has been enlarged to central of Poyang Lake from the distribution of sand vessels since 2007. Sand dredged from Poyang Lake was about 1.99 × 109 m3 or 2448 Mt assuming sediment bulk density of 1.23 t m-3. It means that the magnitude of sand mining during 2001-2010 is almost ten times of sand depositions in Poyang Lake during 1955-2010; (3) Sand dredging in Poyang Lake has alternated the lake capacity and discharge section area, some of the watercourse in the

  3. Significance of microscopic extention from 1162 esophageal carcinoma specimens

    International Nuclear Information System (INIS)

    Wang Jun; Zhu Shuchai; Han Chun; Zhang Xin; Xiao Aiqin; Ma Guoxin

    2007-01-01

    Objective: To examine the subclinical microscopic tumor extention along the long axis in 1162 specimens of esophageal carcinoma so as to help define the clinical target volume(CTV) according to the degree of microscopic extention(ME) for radiotherapy for esophageal carcinoma. Methods: 1162 resected esophageal carcinoma specimens originally located in the neck and thorax were studied with special reference to the correlation between upper and lower resection length from the tumor and positive microscopic margin. Another 52 resected esophageal carcinoma specimens were made into pathological giant sections: the actual resection length of upper and para-esophageal normal tissues was compared with that of the lower nor- mal tissues from the tumor, there by, the ratio of shrinkage was obtained and compared. Results: After fixation, microscopic positive margin ratio of the upper resection border in length ≤0.5 cm group was higher than that in length > 0.5 cm group (16.4% vs 4.1%, P=0.000). Microscopic positive margin ratio of the lower resection border in length ≤1.5 cm group was higher than that in length > 1.5 cm group( 8.1% vs 0.4%, P = 0.000). This showed that the positive margin ratio of the upper border was higher than that of the lower border in resection length > 1.5 cm group(3.5% vs 0.4%, P=0. 000). The actual length of upper and lower normal esophageal tissue after having been made into pathological giant sections in 52 patients, was 30% ± 14% and 44% ± 19% of that measured in the operation. Conclusions: Considering the shrinkage of the normal esophagus during fixation, a CTV margin of 2.0 cm along the upper long axis and 3.5 cm along the lower long axis should be chosen for radiotherapy for esophageal carcinoma, according to the ratio of shrinkage. Ascending invasion proportion is higher than the descending invasion in that tumor. (authors)

  4. Magnetic Signature of Glacial Flour in Sediments From Bear Lake, Utah/Idaho

    Science.gov (United States)

    Rosenbaum, J. G.; Dean, W. E.; Colman, S. M.; Reynolds, R. L.

    2002-12-01

    of glacial flour probably varies closely with the areal extent of glaciation. In the absence of post-depositional alteration of magnetic minerals, magnetic measurements can provide a highly sensitive tool for assessing variations in glacial flour content if glacial and non-glacial materials have contrasting magnetic properties. For Bear Lake, the required contrast is produced by differences in bedrock underlying glaciated and unglaciated areas.

  5. Dust Generation Resulting from Desiccation of Playa Systems: Studies on Mono and Owens Lakes, California

    Science.gov (United States)

    Gill, Thomas Edward

    1995-01-01

    Playas, evaporites, and aeolian sediments frequently are linked components within the Earth system. Anthropogenic water diversions from terminal lakes form playas that release fugitive dust. These actions, documented worldwide, simulate aeolian processes activated during palaeoclimatic pluvial/interpluvial transitions, and have significant environmental impacts. Pluvial lakes Russell and Owens in North America's Great Basin preceded historic Mono and Owens Lakes, now desiccated by water diversions into dust-generating, evaporite -encrusted playas. Geochemical and hydrologic cycles acting on the Owens (Dry) Lake playa form three distinct crust types each year. Although initial dust production results from deflation of surface efflorescences after the playa dries, most aerosols are created by saltation abrasion of salt/silt/clay crusts at crust/ sand sheet contacts. The warm-season, clastic "cemented" crust is slowest to degrade into dust. If the playa surface is stabilized by an unbroken, non-efflorescent crust, dust formation is discouraged. When Mono Lake's surFace elevation does not exceed 1951 meters (6400 feet), similar processes will also generate dust from its saline lower playa. Six factors--related to wind, topography, groundwater, and sediments--control dust formation at both playas. These factors were combined into a statistical model relating suspended dust concentrations to playa/lake morphometry. The model shows the extent and severity of Mono Lake dust storms expands significantly below the surface level 6376 feet (1943.5 meters). X-ray diffraction analysis of Mono Basin soils, playa sediments, and aerosols demonstrates geochemical cycling of materials through land, air and water during Mono Lake's 1982 low stand. Soils and clastic playa sediments contain silicate minerals and tephra. Saline groundwater deposited calcite, halite, thenardite, gaylussite, burkeite and glauberite onto the lower playa. Aerosols contained silicate minerals (especially

  6. A Spaceborne Multisensory, Multitemporal Approach to Monitor Water Level and Storage Variations of Lakes

    Directory of Open Access Journals (Sweden)

    Alireza Taravat

    2016-10-01

    Full Text Available Lake Urmia, the second largest saline Lake on earth and a highly endangered ecosystem, is on the brink of a serious environmental disaster similar to the catastrophic death of the Aral Sea. Progressive drying has been observed during the last decade, causing dramatic changes to Lake Urmia’s surface and its regional water supplies. The present study aims to improve monitoring of spatiotemporal changes of Lake Urmia in the period 1975–2015 using the multi-temporal satellite altimetry and Landsat (5-TM, 7-ETM+ and 8-OLI images. In order to demonstrate the impacts of climate change and human pressure on the variations in surface extent and water level, Lake Sevan and Van Lake with different characteristics were studied along with the Urmia Lake. Normalized Difference Water Index-Principal Components Index (NDWI-PCs, Normalized Difference Water Index (NDWI, Modified NDWI (MNDWI, Normalized Difference Moisture Index (NDMI, Water Ratio Index (WRI, Normalized Difference Vegetation Index (NDVI, Automated Water Extraction Index (AWEI, and MultiLayer Perceptron Neural Networks (MLP NNs classifier were investigated for the extraction of surface water from Landsat data. The presented results revealed that MLP NNs has a better performance in the cases where the other models generate poor accuracy. The results show that the area of Lake Sevan and Van Lake have increased while the area of Lake Urmia has decreased by ~65.23% in the past decades, far more than previously reported (~25% to 50%. Urmia Lake’s shoreline has been receding severely between 2010 and 2015 with no sign of recovery, which has been partly blamed on prolonged droughts, aggressive regional water resources development plans, intensive agricultural activities, and anthropogenic changes to the system. The results also indicated that (among the proposed factors changes in inflows due to overuse of surface water resources and constructing dams (mostly during 1995–2005 are the main reasons

  7. 75 FR 22620 - Upper Klamath, Lower Klamath, Tule Lake, Bear Valley, and Clear Lake National Wildlife Refuges...

    Science.gov (United States)

    2010-04-29

    ...] Upper Klamath, Lower Klamath, Tule Lake, Bear Valley, and Clear Lake National Wildlife Refuges, Klamath..., Bear Valley, and Clear Lake National Wildlife Refuges (Refuges) located in Klamath County, Oregon, and..., Tule Lake, Bear Valley, and Clear Lake Refuges located in Klamath County, Oregon, and Siskiyou and...

  8. Large Lakes Dominate CO2 Evasion From Lakes in an Arctic Catchment

    Science.gov (United States)

    Rocher-Ros, Gerard; Giesler, Reiner; Lundin, Erik; Salimi, Shokoufeh; Jonsson, Anders; Karlsson, Jan

    2017-12-01

    CO2 evasion from freshwater lakes is an important component of the carbon cycle. However, the relative contribution from different lake sizes may vary, since several parameters underlying CO2 flux are size dependent. Here we estimated the annual lake CO2 evasion from a catchment in northern Sweden encompassing about 30,000 differently sized lakes. We show that areal CO2 fluxes decreased rapidly with lake size, but this was counteracted by the greater overall coverage of larger lakes. As a result, total efflux increased with lake size and the single largest lake in the catchment dominated the CO2 evasion (53% of all CO2 evaded). By contrast, the contribution from the smallest ponds (about 27,000) was minor (evasion at the landscape scale.

  9. Great Lakes Restoration Initiative Great Lakes Mussel Watch(2009-2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Following the inception of the Great Lakes Restoration Initiative (GLRI) to address the significant environmental issues plaguing the Great Lakes region, the...

  10. From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes

    DEFF Research Database (Denmark)

    Vadeboncoeur, Y.; Jeppesen, E.; Zanden, M. J. V.

    2003-01-01

    Benthic community responses to lake eutrophication are poorly understood relative to pelagic responses. We compared phytoplankton and periphyton productivity along a eutrophication gradient in Greenland, U.S., and Danish lakes. Phytoplankton productivity increased along the phosphorus gradient (t...

  11. Lake Morphometry for NHD Lakes in Upper Colorado Region 14 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  12. Lake Morphometry for NHD Lakes in North East Region 1 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  13. Lake Morphometry for NHD Lakes in Souris Red Rainy Region 9 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  14. Lake Morphometry for NHD Lakes in Lower Colorado Region 15 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  15. Lake Morphometry for NHD Lakes in Upper Mississippi Region 7 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  16. Lake Morphometry for NHD Lakes in the Upper Portion of the Missouri Region 10 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  17. Lake Morphometry for NHD Lakes in Rio Grande Region 13 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  18. Lake Morphometry for NHD Lakes in Arkansas White Red Region 11 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  19. Lake Morphometry for NHD Lakes in Pacific Northwest Region 17 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  20. Lake Morphometry for NHD Lakes in Lower Mississippi Region 8 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  1. Lake Morphometry for NHD Lakes in Texas-Gulf Region 12 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  2. Lake Morphometry for NHD Lakes in the Lower Portion of the Missouri Region 10 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  3. Expanding models of lake trophic state to predict cyanobacteria in lakes

    Science.gov (United States)

    Background/Question/Methods: Cyanobacteria are a primary taxonomic group associated with harmful algal blooms in lakes. Understanding the drivers of cyanobacteria presence has important implications for lake management and for the protection of human and ecosystem health. Chlor...

  4. Bubbles in a freshwater lake.

    Science.gov (United States)

    Thorpe, S A; Stubbs, A R

    1979-05-31

    WHEN the wind is strong enough to produce whitecaps on Loch Ness, patchy 'clouds' of acoustic reflectors are detected well below the surface, the depth to which they penetrate increasing with wind speed (Fig. 1). No seasonal variation in the occurrence of the reflectors has been detected. A biological explanation is therefore discounted and we suggest here that they are bubbles caused by waves breaking and forming whitecaps in deep water. Similar bubble clouds may occur in other lakes and in the sea.

  5. Lake Nasser evaporation reduction study

    Directory of Open Access Journals (Sweden)

    Hala M.I. Ebaid

    2010-10-01

    Full Text Available This study aims to evaluate the reduction of evaporation of Lake Nasser’s water caused by disconnecting (fully or partially some of its secondary channels (khors. This evaluation integrates remote sensing, Geographic Information System (GIS techniques, aerodynamic principles, and Landsat7 ETM+ images. Three main procedures were carried out in this study; the first derived the surface temperature from Landsat thermal band; the second derived evaporation depth and approximate evaporation volume for the entire lake, and quantified evaporation loss to the secondary channels’ level over one month (March by applied aerodynamic principles on surface temperature of the raster data; the third procedure applied GIS suitability analysis to determine which of these secondary channels (khors should be disconnected. The results showed evaporation depth ranging from 2.73 mm/day at the middle of the lake to 9.58 mm/day at the edge. The evaporated water-loss value throughout the entire lake was about 0.86 billion m3/month (March. The analysis suggests that it is possible to save an approximate total evaporation volume loss of 19.7 million m3/month (March, and thus 2.4 billion m3/year, by disconnecting two khors with approximate construction heights of 8 m and 15 m. In conclusion, remote sensing and GIS are useful for applications in remote locations where field-based information is not readily available and thus recommended for decision makers remotely planning in water conservation and management.

  6. Distracted walking: Examining the extent to pedestrian safety problems

    Directory of Open Access Journals (Sweden)

    Judith Mwakalonge

    2015-10-01

    Full Text Available Pedestrians, much like drivers, have always been engaged in multi-tasking like using hand-held devices, listening to music, snacking, or reading while walking. The effects are similar to those experienced by distracted drivers. However, distracted walking has not received similar policies and effective interventions as distracted driving to improve pedestrian safety. This study reviewed the state-of-practice on policies, campaigns, available data, identified research needs, and opportunities pertaining to distracted walking. A comprehensive review of literature revealed that some of the agencies/organizations disseminate useful information about certain distracting activities that pedestrians should avoid while walking to improve their safety. Various walking safety rules/tips have been given, such as not wearing headphones or talking on a cell phone while crossing a street, keeping the volume down, hanging up the phone while walking, being aware of traffic, and avoiding distractions like walking with texting. The majority of the past observational-based and experimental-based studies reviewed in this study on distracted walking is in agreement that there is a positive correlation between distraction and unsafe walking behavior. However, limitations of the existing crash data suggest that distracted walking may not be a severe threat to the public health. Current pedestrian crash data provide insufficient information for researchers to examine the extent to which distracted walking causes and/or contributes to actual pedestrian safety problems.

  7. Estimation of steam-chamber extent using 4D seismic

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M. [Waseda Univ., Waseda (Japan); Endo, K. [Japan Canada Oil Sands Ltd., Calgary, AB (Canada); Onozuka, S. [Japan Oil, Gas and Metals National Corp., Tokyo (Japan)

    2009-07-01

    The steam-assisted gravity drainage (SAGD) technique is among the most effective steam injection methods and is widely applied in Canadian oil-sand reservoirs. The SAGD technology uses hot steam to decrease bitumen viscosity and allow it to flow. Japan Canada Oil Sands Limited (JACOS) has been developing an oil-sand reservoir in the Alberta's Hangingstone area since 1997. This paper focused on the western area of the reservoir and reported on a study that estimated the steam-chamber extent generated by horizontal well pairs. It listed steam injection start time for each well of the western area. Steam-chamber distribution was determined by distinguishing high temperature and high pore-pressure zones from low temperature and high pore-pressure zones. The bitumen recovery volume in the steam-chamber zone was estimated and compared with the actual cumulative production. This paper provided details of the methodology and interpretation procedures for the quantitative method to interpret 4D-seismic data for a SAGD process. A procedure to apply a petrophysical model was demonstrated first by scaling laboratory measurements to field-scale applications, and then by decoupling pressure and temperature effects. The first 3D seismic data in this study were already affected by higher pressures and temperatures. 11 refs., 3 tabs., 12 figs.

  8. The extent and nature of alcohol advertising on Australian television.

    Science.gov (United States)

    Pettigrew, Simone; Roberts, Michele; Pescud, Melanie; Chapman, Kathy; Quester, Pascale; Miller, Caroline

    2012-09-01

    Current alcohol guidelines in Australia recommend minimising alcohol consumption, especially among minors. This study investigated (i) the extent to which children and the general population are exposed to television advertisements that endorse alcohol consumption and (ii) the themes used in these advertisements. A content analysis was conducted on alcohol advertisements aired over two months in major Australian cities. The advertisements were coded according to the products that were promoted, the themes that were employed, and the time of exposure. Advertising placement expenditure was also captured. In total, 2810 alcohol advertisements were aired, representing one in 10 beverage advertisements. Advertisement placement expenditure for alcohol products in the five cities over the two months was $15.8 million. Around half of all alcohol advertisements appeared during children's popular viewing times. The most common themes used were humour, friendship/mateship and value for money. Children and adults are regularly exposed to advertisements that depict alcohol consumption as fun, social and inexpensive. Such messages may reinforce existing alcohol-related cultural norms that prevent many Australians from meeting current intake guidelines. © 2012 Australasian Professional Society on Alcohol and other Drugs.

  9. The nature and extent of college student hazing.

    Science.gov (United States)

    Allan, Elizabeth J; Madden, Mary

    2012-01-01

    This study explored the nature and extent of college student hazing in the USA. Hazing, a form of interpersonal violence, can jeopardize the health and safety of students. Using a web-based survey, data were collected from 11,482 undergraduate students, aged 18-25 years, who attended one of 53 colleges and universities. Additionally, researchers interviewed 300 students and staff at 18 of the campuses. Results reveal hazing among USA college students is widespread and involves a range of student organizations and athletic teams. Alcohol consumption, humiliation, isolation, sleep-deprivation and sex acts are hazing practices common across student groups. Furthermore, there is a large gap between the number of students who report experience with hazing behaviors and those that label their experience as hazing. To date, hazing prevention efforts in post-secondary education have focused largely on students in fraternities/sororities and intercollegiate athletes. Findings from this study can inform development of more comprehensive and research-based hazing prevention efforts that target a wider range of student groups. Further, data can serve as a baseline from which to measure changes in college student hazing over time.

  10. Extent and modes of physics instruction in European dental schools.

    Science.gov (United States)

    Letić, Milorad; Popović, Gorjana

    2013-01-01

    Changes in dental education towards integration of sciences and convergence of curricula have affected instruction in physics. Earlier studies of undergraduate curricula make possible comparisons in physics instruction. For this study, the websites of 245 European dental schools were explored, and information about the curriculum was found on 213 sites. Physics instruction in the form of a separate course was found in 63 percent of these schools, with eighty-two hours and 5.9 European Credit Transfer and Accumulation System (ECTS) credits on average. Physics integrated with other subjects or into modules was found in 19 percent of these schools. Half of these schools had on average sixty-one hours and 6.9 ECTS credits devoted to physics. Eighteen percent of the schools had no noticeable obligatory physics instruction, but in half of them physics was found to be required or accepted on admission, included in other subjects, or appeared as an elective course. In 122 dental schools, the extent of physics instruction was found to be between forty and 120 contact hours. Physics instruction has been reduced by up to 14 percent in the last fourteen years in the group of eleven countries that were members of the European Union (EU) in 1997, but by approximately 30 percent in last five years in the group of ten Accession Countries to the EU.

  11. Decomposition of lake phytoplankton. 1

    International Nuclear Information System (INIS)

    Hansen, L.; Krog, G.F.; Soendergaard, M.

    1986-01-01

    Short-time (24 h) and long-time (4-6 d) decomposition of phytoplankton cells were investigasted under in situ conditions in four Danish lakes. Carbon-14-labelled, dead algae were exposed to sterile or natural lake water and the dynamics of cell lysis and bacterial utilization of the leached products were followed. The lysis process was dominated by an initial fast water extraction. Within 2 to 4 h from 4 to 34% of the labelled carbon leached from the algal cells. After 24 h from 11 to 43% of the initial particulate carbon was found as dissolved carbon in the experiments with sterile lake water; after 4 to 6 d the leaching was from 67 to 78% of the initial 14 C. The leached compounds were utilized by bacteria. A comparison of the incubations using sterile and natural water showed that a mean of 71% of the lysis products was metabolized by microorganisms within 24 h. In two experiments the uptake rate equalled the leaching rate. (author)

  12. Mapping Lake Michigan Fish Catch Data

    OpenAIRE

    Wodd, Jacob; Doucette, Jarrod; Höök, Tomas O.

    2014-01-01

    The only Great Lake completely contained in the U.S., Lake Michigan offers an abundance of recreational fishing. This project takes 20 years’ worth of salmonid fish catch data, and uses GIS to organize and visually represent the data in a way that is meaningful and helpful to local fisherman and researchers. Species represented included Brown Trout, Lake Trout, Rainbow Trout, Chinook Salmon, and Coho Salmon. The species are organized by both decadal and yearly spans, as well as catch per t...

  13. Pacific salmonines in the Great Lakes Basin

    Science.gov (United States)

    Claramunt, Randall M.; Madenjian, Charles P.; Clapp, David; Taylor, William W.; Lynch, Abigail J.; Léonard, Nancy J.

    2012-01-01

    Pacific salmon (genus Oncorhynchus) are a valuable resource, both within their native range in the North Pacific rim and in the Great Lakes basin. Understanding their value from a biological and economic perspective in the Great Lakes, however, requires an understanding of changes in the ecosystem and of management actions that have been taken to promote system stability, integrity, and sustainable fisheries. Pacific salmonine introductions to the Great Lakes are comprised mainly of Chinook salmon, coho salmon, and steelhead and have accounted for 421, 177, and 247 million fish, respectively, stocked during 1966-2007. Stocking of Pacific salmonines has been effective in substantially reducing exotic prey fish abundances in several of the Great Lakes (e.g., lakes Michigan, Huron, and Ontario). The goal of our evaluation was to highlight differences in management strategies and perspectives across the basin, and to evaluate policies for Pacific salmonine management in the Great Lakes. Currently, a potential conflict exists between Pacific salmonine management and native fish rehabilitation goals because of the desire to sustain recreational fisheries and to develop self-sustaining populations of stocked Pacific salmonines in the Great Lakes. We provide evidence that suggests Pacific salmonines have not only become naturalized to the food webs of the Great Lakes, but that their populations (specifically Chinook salmon) may be fluctuating in concert with specific prey (i.e., alewives) whose populations are changing relative to environmental conditions and ecosystem disturbances. Remaining questions, however, are whether or not “natural” fluctuations in predator and prey provide enough “stability” in the Great Lakes food webs, and even more importantly, would a choice by managers to attempt to reduce the severity of predator-prey oscillations be antagonistic to native fish restoration efforts. We argue that, on each of the Great Lakes, managers are pursuing

  14. Impact of land use changes on hydrology of Mt. Kilimanjaro. The case of Lake Jipe catchment

    Science.gov (United States)

    Ngugi, Keziah; Ogindo, Harun; Ertsen, Maurits

    2015-04-01

    Mt. Kilimanjaro is an important water tower in Kenya and Tanzania. Land degradation and land use changes have contributed to dwindling surface water resources around Mt. Kilimanjaro. This study focuses on Lake Jipe catchment of about 451Km2 (Ndetei 2011) which is mainly drained by River Lumi, a tributary of river Pangani. River Lumi starts from Mt. Kilimanjaro and flows North east wards to cross the border from Tanzania to Kenya eventually flowing into Lake Jipe which is a trans-boundary lake. The main purpose of this study was to investigate historical land use changes and relate this to reduction in surface water resources. The study will propose measures that could restore the catchment thereby enhancing surface water resources feeding Lake Jipe. A survey was conducted to document community perspectives of historical land use changes. This information was corroborated using Landsat remote sensed images spanning the period 1985-2013 to determine changes in the land cover due to human activities on Lake Jipe Catchment. River Lumi flow data was obtained from Water Resources Management Authority and analyzed for flow trends. The dwindling extent of the Lake was obtained from the community's perspective survey and by Landsat images. Community survey and remote sensing indicated clearing of the forest on the mountain and conversion of the same to crop production fields; damming of river Lumi in Tanzania, conversion of bush land to crop production fields further downstream of river Lumi and irrigation. There is heavy infestation of the invasive species Prosopis juliflora which had aggressively colonized grazing land and blocked irrigation canals. Other land use changes include land fragmentation due to subdivision. Insecure land tenure was blamed for failure by farmers to develop soil and water conservation infrastructure. Available River gauging data showed a general decline in river flow. Heavy flooding occurred during rainy seasons. Towards Lake Jipe after the river

  15. Environmental Monitoring, Water Quality - Lakes Assessments - Non Attaining

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This layer shows only non attaining lakes of the Integrated List. The Lakes Integrated List represents lake assessments in an integrated format for the Clean Water...

  16. Antarctic Active Subglacial Lake Inventory from ICESat Altimetry, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains lake boundaries, volume changes, and gridded elevations for 124 active subglacial lakes beneath the Antarctic ice sheet. Lakes were identified...

  17. 75 FR 6354 - NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes Restoration...

    Science.gov (United States)

    2010-02-09

    ...-04] RIN 0648-ZC10 NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes... Atmospheric Administration (NOAA), Department of Commerce. ACTION: Notice of funding availability; Date... on January 19, 2010. That notice announced the NOAA Great Lakes Habitat Restoration Program Project...

  18. Crustacean plankton communities in forty-five lakes in the experimental lakes area, northwestern Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Patalas, K

    1971-01-01

    Zooplankton communities were characterized on the basis of samples taken in summer as vertical net hauls in the central part of lakes. Twenty-eight species of crustaceans were found in the 45 lakes studied. The highest number of species as well as the highest numbers of individuals (per unit of area) usually occurred in the largest deepest lakes with most transparent water.

  19. Human impact on lake ecosystems: the case of Lake Naivasha, Kenya

    African Journals Online (AJOL)

    Lake Naivasha is a wetland of national and international importance. However, it is under constant anthropogenic pressures, which include the quest for socioeconomic development within the lake ecosystem itself as well as other activities within the catchment. The lake is an important source of fresh water in an otherwise ...

  20. Clearing lakes : an ecosystem approach to the restoration and management of shallow lakes in the Netherlands

    NARCIS (Netherlands)

    Hosper, H.

    1997-01-01

    In the 1950 s and 1960 s, most shallow lakes in the Netherlands shifted from macrophyte-dominated clear water lakes, towards algae-dominated turbid water lakes. Eutrophication, i.e. increased nutrient loading, is the main cause of the deterioration

  1. Lake Michigan lake trout PCB model forecast post audit (oral presentation)

    Science.gov (United States)

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents an...

  2. Clastic sediment flux to tropical Andean lakes: records of glaciation and soil erosion

    Science.gov (United States)

    Rodbell, Donald T.; Seltzer, Geoffrey O.; Mark, Bryan G.; Smith, Jacqueline A.; Abbott, Mark B.

    2008-08-01

    We developed records of clastic sediment flux to 13 alpine lakes in Peru, Ecuador, and Bolivia, and compared these with independently dated records of regional glaciation. Our objectives are to determine whether a strong relationship exists between the extent of ice cover in the region and the rate of clastic sediment delivery to alpine lakes, and thus whether clastic sediment records serve as reliable proxies for glaciation during the late Pleistocene. We isolated the clastic component in lake sediment cores by removing the majority of the biogenic and authigenic components from the bulk sediment record, and we dated cores by a combination of radiocarbon and tephrochronology. In order to partially account for intra-basin differences in sediment focusing, bedrock erosivity, and sediment availability, we normalized each record to the weighted mean value of clastic sediment flux for each respective core. This enabled the stacking of all 13 lake records to produce a composite record that is generally representative of the tropical Andes. There is a striking similarity between the composite record of clastic sediment flux and the distribution of ˜100 cosmogenic radionuclide (CRN) exposure ages for erratics on moraine crests in the central Peruvian and northern Bolivian Andes. The extent of ice cover thus appears to be the primary variable controlling the delivery of clastic sediment to alpine lakes in the region, which bolsters the increasing use of clastic sediment flux as a proxy for the extent of ice cover in the region. The CRN moraine record and the stacked lake core composite record together indicate that the expansion of ice cover and concomitant increase in clastic sediment flux began at least 40 ka, and the local last glacial maximum (LLGM) culminated between 30 and 20 ka. A decline in clastic sediment flux that began ˜20 ka appears to mark the onset of deglaciation from the LLGM, at least one millennium prior to significant warming in high latitude regions

  3. Lake Titicaca: History and current studies

    International Nuclear Information System (INIS)

    Paredes Riveros, M.A.; Gonfiantini, R.

    1999-01-01

    This article summarizes results of Titicaca lake water balance studies including the findings of the IAEA Technical Cooperation Project RLA/08/022. Direct precipitation over the lake accounts for about 55% of the water inflow and rivers and streams provide about 45% of the water inflow. Diffuse groundwater leakage into the lake from coastal aquifers is believed to represent a negligible term of water balance. Evaporation from the lake is strong and accounts for more than 95% of the water losses. The isotopic and chemical composition data obtained within the frameworks of the IAEA Technical Cooperation Project RLA/08/022 are discussed

  4. Lake Titicaca: History and current studies

    Energy Technology Data Exchange (ETDEWEB)

    Paredes Riveros, M A [PELT, Puno (Peru); Gonfiantini, R [Istituto di Geocronologia e Geochimica Isotopica del CNR, Pisa (Italy)

    1999-12-01

    This article summarizes results of Titicaca lake water balance studies including the findings of the IAEA Technical Cooperation Project RLA/08/022. Direct precipitation over the lake accounts for about 55% of the water inflow and rivers and streams provide about 45% of the water inflow. Diffuse groundwater leakage into the lake from coastal aquifers is believed to represent a negligible term of water balance. Evaporation from the lake is strong and accounts for more than 95% of the water losses. The isotopic and chemical composition data obtained within the frameworks of the IAEA Technical Cooperation Project RLA/08/022 are discussed.

  5. Diatoms in Liyu Lake, Eastern Taiwan

    Directory of Open Access Journals (Sweden)

    Liang-Chi Wang

    2010-09-01

    Full Text Available This study described the diatoms appeared in the sediments of Liyu Lake, a lowland natural lake situated at Hualen, eastern Taiwan. A total of 50 species was found in the sediments of this eutrophic lake. In them, 8 species were reported for the first time in Taiwan. They are: Cymbella thienemannii, Navicula absoluta, Navicula bacillum, Frustulia rhomboides var. crassinervia, Gyrosigma procerum, Nitzschia paleacea Epithemia smithii and Eunotia subarcuatioides. The ultrastructures of each species were described on the basis of observations under a scanning electron microscope. The ecological implications of the occurrence of these diatom species in this lake were inferred.

  6. Fish impingement at Lake Michigan power plants

    International Nuclear Information System (INIS)

    Sharma, R.K.; Freeman, R.F.; Spigarelli, S.A.

    1976-01-01

    A study was initiated in 1974 to survey the magnitude and to evaluate the impact of fish impingement at 20 power plants on the Great Lakes. Data on impingement rates, site characteristics, intake designs and operational features have been collected and analyzed. Interpretive analyses of these data are in progress. The objectives of this study were: to summarize fish impingement data for Lake Michigan (16/20 plants surveyed are on Lake Michigan); to assess the significance of total and source-related mortalities on populations of forage and predator species; and to expand the assessment of power plant impingement to include all water intakes on Lake Michigan. Data are tabulated

  7. Residence time and physical processes in lakes

    Directory of Open Access Journals (Sweden)

    Nicoletta SALA

    2003-09-01

    Full Text Available The residence time of a lake is highly dependent on internal physical processes in the water mass conditioning its hydrodynamics; early attempts to evaluate this physical parameter emphasize the complexity of the problem, which depends on very different natural phenomena with widespread synergies. The aim of this study is to analyse the agents involved in these processes and arrive at a more realistic definition of water residence time which takes account of these agents, and how they influence internal hydrodynamics. With particular reference to temperate lakes, the following characteristics are analysed: 1 the set of the lake's caloric components which, along with summer heating, determine the stabilizing effect of the surface layers, and the consequent thermal stratification, as well as the winter destabilizing effect; 2 the wind force, which transfers part of its momentum to the water mass, generating a complex of movements (turbulence, waves, currents with the production of active kinetic energy; 3 the water flowing into the lake from the tributaries, and flowing out through the outflow, from the standpoint of hydrology and of the kinetic effect generated by the introduction of these water masses into the lake. These factors were studied in the context of the general geographical properties of the lake basin and the watershed (latitude, longitude, morphology, also taking account of the local and regional climatic situation. Also analysed is the impact of ongoing climatic change on the renewal of the lake water, which is currently changing the equilibrium between lake and atmosphere, river and lake, and relationships

  8. Study on the relationship between the lake area variations of Qinghai-Tibetan Plateau and the corresponding climate change in their basins

    Science.gov (United States)

    Guozhuang, Shen; Jingjuan, Liao; Huadong, Guo; Yingkui, Li

    2014-03-01

    Qinghai-Tibetan Plateau is the largest lake area in China, with a total area of existing lakes of 36,900km2, accounting for 52% of the total lake area of China. Lakes on the Tibetan Plateau play critical roles in the water cycle and ecological and environment systems of the Plateau. The global trend of warming up is increasing obviously, which has led to major changes in the climate conditions in China, even in the world. Whereas, when they analyse the relationship they just use the weather station's recording data, without any spatial analysis of the climate data. Here, we will do some researches on the relationship between the 10 selected lakes' area variation and the corresponding climate change in their drainage basin and discuss how the lakes changes in recent 40 years using the climate data processed using the spatial kriging. Thus, the drainage area can be taken into account and a real relationship can be pointed out. In order to study the relationship, Landsat MSS data, Landsat TM, Landsat ETM images, the topographic map have been collected to extract the variation of lake area. The 131 weather stations climate data, including precipitation, temperature, sun shine duration, evaporation are chosen to study the relationship. After extraction of the area of the lakes, a multivariate statistical analysis method was used to test the relationship between the area of the lakes and the global climate change, including the change of the temperature, the precipitation, and other factors. The variation of lakes in Qinghai-Tibetan Plateau is related to the mean temperature, the precipitation and saturation vapour pressure. But the frozen soil may affect the lake area variation to some extent.

  9. Study on the relationship between the lake area variations of Qinghai-Tibetan Plateau and the corresponding climate change in their basins

    International Nuclear Information System (INIS)

    Guozhuang, Shen; Jingjuan, Liao; Huadong, Guo; Yingkui, Li

    2014-01-01

    Qinghai-Tibetan Plateau is the largest lake area in China, with a total area of existing lakes of 36,900km 2 , accounting for 52% of the total lake area of China. Lakes on the Tibetan Plateau play critical roles in the water cycle and ecological and environment systems of the Plateau. The global trend of warming up is increasing obviously, which has led to major changes in the climate conditions in China, even in the world. Whereas, when they analyse the relationship they just use the weather station's recording data, without any spatial analysis of the climate data. Here, we will do some researches on the relationship between the 10 selected lakes' area variation and the corresponding climate change in their drainage basin and discuss how the lakes changes in recent 40 years using the climate data processed using the spatial kriging. Thus, the drainage area can be taken into account and a real relationship can be pointed out. In order to study the relationship, Landsat MSS data, Landsat TM, Landsat ETM images, the topographic map have been collected to extract the variation of lake area. The 131 weather stations climate data, including precipitation, temperature, sun shine duration, evaporation are chosen to study the relationship. After extraction of the area of the lakes, a multivariate statistical analysis method was used to test the relationship between the area of the lakes and the global climate change, including the change of the temperature, the precipitation, and other factors. The variation of lakes in Qinghai-Tibetan Plateau is related to the mean temperature, the precipitation and saturation vapour pressure. But the frozen soil may affect the lake area variation to some extent

  10. Extent of lymph node dissection for adenocarcinoma of the stomach.

    Science.gov (United States)

    Mocellin, Simone; McCulloch, Peter; Kazi, Hussain; Gama-Rodrigues, Joaquin J; Yuan, Yuhong; Nitti, Donato

    2015-08-12

    The impact of lymphadenectomy extent on the survival of patients with primary resectable gastric carcinoma is debated. We aimed to systematically review and meta-analyze the evidence on the impact of the three main types of progressively more extended lymph node dissection (that is, D1, D2 and D3 lymphadenectomy) on the clinical outcome of patients with primary resectable carcinoma of the stomach. The primary objective was to assess the impact of lymphadenectomy extent on survival (overall survival [OS], disease specific survival [DSS] and disease free survival [DFS]). The secondary aim was to assess the impact of lymphadenectomy on post-operative mortality. We searched CENTRAL, MEDLINE and EMBASE until 2001, including references from relevant articles and conference proceedings. We also contacted known researchers in the field. For the updated review, CENTRAL, MEDLINE and EMBASE were searched from 2001 to February 2015. We considered randomized controlled trials (RCTs) comparing the three main types of lymph node dissection (i.e., D1, D2 and D3 lymphadenectomy) in patients with primary non-metastatic resectable carcinoma of the stomach. Two authors independently extracted data from the included studies. Hazard ratios (HR) and relative risks (RR) along with their 95% confidence intervals (CI) were used to measure differences in survival and mortality rates between trial arms, respectively. Potential sources of between-study heterogeneity were investigated by means of subgroup and sensitivity analyses. The same two authors independently assessed the risk of bias of eligible studies according to the standards of the Cochrane Collaboration and the quality of the overall evidence based on the GRADE (Grades of Recommendation, Assessment, Development and Evaluation) criteria. Eight RCTs (enrolling 2515 patients) met the inclusion criteria. Three RCTs (all performed in Asian countries) compared D3 with D2 lymphadenectomy: data suggested no significant difference in OS

  11. Assessing the extent of non-stationary biases in GCMs

    Science.gov (United States)

    Nahar, Jannatun; Johnson, Fiona; Sharma, Ashish

    2017-06-01

    General circulation models (GCMs) are the main tools for estimating changes in the climate for the future. The imperfect representation of climate models introduces biases in the simulations that need to be corrected prior to their use for impact assessments. Bias correction methods generally assume that the bias calculated over the historical period does not change and can be applied to the future. This study investigates this assumption by considering the extent and nature of bias non-stationarity using 20th century precipitation and temperature simulations from six CMIP5 GCMs across Australia. Four statistics (mean, standard deviation, 10th and 90th quantiles) in monthly and seasonal biases are obtained for three different time window lengths (10, 25 and 33 years) to examine the properties of bias over time. This approach is repeated for two different phases of the Interdecadal Pacific Oscillation (IPO), which is known to have strong influences on the Australian climate. It is found that bias non-stationarity at decadal timescales is indeed an issue over some of Australia for some GCMs. When considering interdecadal variability there are significant difference in the bias between positive and negative phases of the IPO. Regional analyses confirmed these findings with the largest differences seen on the east coast of Australia, where IPO impacts tend to be the strongest. The nature of the bias non-stationarity found in this study suggests that it will be difficult to modify existing bias correction approaches to account for non-stationary biases. A more practical approach for impact assessments that use bias correction maybe to use a selection of GCMs where the assumption of bias non-stationarity holds.

  12. The extent of continental crust beneath the Seychelles

    Science.gov (United States)

    Hammond, J. O. S.; Kendall, J.-M.; Collier, J. S.; Rümpker, G.

    2013-11-01

    The granitic islands of the Seychelles Plateau have long been recognised to overlie continental crust, isolated from Madagascar and India during the formation of the Indian Ocean. However, to date the extent of continental crust beneath the Seychelles region remains unknown. This is particularly true beneath the Mascarene Basin between the Seychelles Plateau and Madagascar and beneath the Amirante Arc. Constraining the size and shape of the Seychelles continental fragment is needed for accurate plate reconstructions of the breakup of Gondwana and has implications for the processes of continental breakup in general. Here we present new estimates of crustal thickness and VP/VS from H-κ stacking of receiver functions from a year long deployment of seismic stations across the Seychelles covering the topographic plateau, the Amirante Ridge and the northern Mascarene Basin. These results, combined with gravity modelling of historical ship track data, confirm that continental crust is present beneath the Seychelles Plateau. This is ˜30-33 km thick, but with a relatively high velocity lower crustal layer. This layer thins southwards from ˜10 km to ˜1 km over a distance of ˜50 km, which is consistent with the Seychelles being at the edge of the Deccan plume prior to its separation from India. In contrast, the majority of the Seychelles Islands away from the topographic plateau show no direct evidence for continental crust. The exception to this is the island of Desroche on the northern Amirante Ridge, where thicker low density crust, consistent with a block of continental material is present. We suggest that the northern Amirantes are likely continental in nature and that small fragments of continental material are a common feature of plume affected continental breakup.

  13. Migratory decisions in birds: Extent of genetic versus environmental control

    Science.gov (United States)

    Ogonowski, M.S.; Conway, C.J.

    2009-01-01

    Migration is one of the most spectacular of animal behaviors and is prevalent across a broad array of taxa. In birds, we know much about the physiological basis of how birds migrate, but less about the relative contribution of genetic versus environmental factors in controlling migratory tendency. To evaluate the extent to which migratory decisions are genetically determined, we examined whether individual western burrowing owls (Athene cunicularia hypugaea) change their migratory tendency from one year to the next at two sites in southern Arizona. We also evaluated the heritability of migratory decisions by using logistic regression to examine the association between the migratory tendency of burrowing owl parents and their offspring. The probability of migrating decreased with age in both sexes and adult males were less migratory than females. Individual owls sometimes changed their migratory tendency from one year to the next, but changes were one-directional: adults that were residents during winter 2004-2005 remained residents the following winter, but 47% of adults that were migrants in winter 2004-2005 became residents the following winter. We found no evidence for an association between the migratory tendency of hatch-year owls and their male or female parents. Migratory tendency of hatch-year owls did not differ between years, study sites or sexes or vary by hatching date. Experimental provision of supplemental food did not affect these relationships. All of our results suggest that heritability of migratory tendency in burrowing owls is low, and that intraspecific variation in migratory tendency is likely due to: (1) environmental factors, or (2) a combination of environmental factors and non-additive genetic variation. The fact that an individual's migratory tendency can change across years implies that widespread anthropogenic changes (i.e., climate change or changes in land use) could potentially cause widespread changes in the migratory tendency of

  14. Rate and extent of aqueous perchlorate removal by iron surfaces.

    Science.gov (United States)

    Moore, Angela M; De Leon, Corinne H; Young, Thomas M

    2003-07-15

    The rate and extent of perchlorate reduction on several types of iron metal was studied in batch and column reactors. Mass balances performed on the batch experiments indicate that perchlorate is initially sorbed to the iron surface, followed by a reduction to chloride. Perchlorate removal was proportional to the iron dosage in the batch reactors, with up to 66% removal in 336 h in the highest dosage system (1.25 g mL(-1)). Surface-normalized reaction rates among three commercial sources of iron filings were similar for acid-washed samples. The most significant perchlorate removal occurred in solutions with slightly acidic or near-neutral initial pH values. Surface mediation of the reaction is supported by the absence of reduction in batch experiments with soluble Fe2+ and also by the similarity in specific reaction rate constants (kSA) determined for three different iron types. Elevated soluble chloride concentrations significantly inhibited perchlorate reduction, and lower removal rates were observed for iron samples with higher amounts of background chloride contamination. Perchlorate reduction was not observed on electrolytic sources of iron or on a mixed-phase oxide (Fe3O4), suggesting that the reactive iron phase is neither pure zerovalent iron nor the mixed oxide alone. A mixed valence iron hydr(oxide) coating or a sorbed Fe2+ surface complex represent the most likely sites for the reaction. The observed reaction rates are too slow for immediate use in remediation system design, but the findings may provide a basis for future development of cost-effective abiotic perchlorate removal techniques.

  15. The extent of use of online pharmacies in Saudi Arabia.

    Science.gov (United States)

    Abanmy, Norah

    2017-09-01

    Online pharmacies sell medicine over the Internet and deliver them by mail. The main objective of this study is to explore the extent of use of online pharmacies in Saudi Arabia which will be useful for the scientific community and regulators. An Arabic survey questionnaire was developed for this study. The questionnaire was distributed via email and social media. Four sections were created to cover the objectives: experience with online shopping in general, demographics, awareness of the existence and customer experiences of buying medicine online, and reasons for buying/not buying medicine online. A total of 633 responses were collected. Around 69% (437) of them were female and the majority (256, 40.4%) was in the age range 26-40. Only 23.1% (146) were aware of the existence of online pharmacies where 2.7% (17) of them had bought a medicine over the Internet and 15 (88.2%) respondents out of the 17 was satisfied with the process. Lack of awareness of the availability of such services was the main reason for not buying medicines online. Many respondents (263, 42.7%) were willing to try an online pharmacy, although majorities (243, 45.9%) were unable to differentiate between legal and illegal online pharmacies. The largest categories of products respondents were willing to buy them online were nonprescription medicines and cosmetics. The popularity of purchasing medicines over the Internet is still low in Saudi Arabia. However, because the majority of respondents are willing to purchase medicines online, efforts should be made by the Saudi FDA to set regulations and monitor this activity.

  16. A Dynamical Downscaling study over the Great Lakes Region Using WRF-Lake: Historical Simulation

    Science.gov (United States)

    Xiao, C.; Lofgren, B. M.

    2014-12-01

    As the largest group of fresh water bodies on Earth, the Laurentian Great Lakes have significant influence on local and regional weather and climate through their unique physical features compared with the surrounding land. Due to the limited spatial resolution and computational efficiency of general circulation models (GCMs), the Great Lakes are geometrically ignored or idealized into several grid cells in GCMs. Thus, the nested regional climate modeling (RCM) technique, known as dynamical downscaling, serves as a feasible solution to fill the gap. The latest Weather Research and Forecasting model (WRF) is employed to dynamically downscale the historical simulation produced by the Geophysical Fluid Dynamics Laboratory-Coupled Model (GFDL-CM3) from 1970-2005. An updated lake scheme originated from the Community Land Model is implemented in the latest WRF version 3.6. It is a one-dimensional mass and energy balance scheme with 20-25 model layers, including up to 5 snow layers on the lake ice, 10 water layers, and 10 soil layers on the lake bottom. The lake scheme is used with actual lake points and lake depth. The preliminary results show that WRF-Lake model, with a fine horizontal resolution and realistic lake representation, provides significantly improved hydroclimates, in terms of lake surface temperature, annual cycle of precipitation, ice content, and lake-effect snowfall. Those improvements suggest that better resolution of the lakes and the mesoscale process of lake-atmosphere interaction are crucial to understanding the climate and climate change in the Great Lakes region.

  17. Refuge Lake Reclassification in 620 Minnesota Cisco Lakes under Future Climate Scenarios

    Directory of Open Access Journals (Sweden)

    Liping Jiang

    2017-09-01

    Full Text Available Cisco (Coregonus artedi is the most common coldwater stenothermal fish in Minnesota lakes. Water temperature (T and dissolved oxygen (DO in lakes are important controls of fish growth and reproduction and likely change with future climate warming. Built upon a previous study, this study uses a modified method to identify which of 620 cisco lakes in Minnesota can still support cisco populations under future climate and therefore be classified as cisco refuge lakes. The previous study used oxythermal stress parameter TDO3, the temperature at DO of 3 mg/L, simulated only from deep virtual lakes to classify 620 cisco lakes. Using four categories of virtual but representative cisco lakes in modified method, a one-dimensional water quality model MINLAKE2012 was used to simulate daily T and DO profiles in 82 virtual lakes under the past (1961–2008 and two future climate scenarios. A multiyear average of 31-day largest TDO3 over variable benchmark (VB periods, AvgATDO3VB, was calculated from simulated T and DO profiles using FishHabitat2013. Contour plots of AvgATDO3VB for four categories of virtual lakes were then developed to reclassify 620 cisco lakes into Tier 1 (AvgATDO3VB < 11 °C or Tier 2 refuge lakes, and Tier 3 non-refuge lakes (AvgATDO3VB > 17 °C. About 20% of 620 cisco lakes are projected to be refuge lakes under future climate scenarios, which is a more accurate projection (improving the prediction accuracy by ~6.5% from the previous study since AvgATDO3VB was found to vary by lake categories.

  18. Environmental isotope signatures of the largest freshwater lake in Kerala

    International Nuclear Information System (INIS)

    Unnikrishnan Warrier, C.

    2007-01-01

    Sasthamkotta lake, the largest freshwater lake in Kerala, serves as a source for drinking water for more than half a million people. Environmental 137 Cs analysis done on undisturbed sediment core samples reveals that the recent rate of sedimentation is not uniform in the lake. The useful life of lake is estimated as about 800 years. The δD and δ 18 O values of the lake waters indicate that the lake is well mixed with a slight variation horizontally. The stable isotope studies on well waters from the catchment indicate hydraulic communication with the lake and lake groundwater system is flow-through type. Analytical model also supports this view. (author)

  19. Otolith microchemistry of modern versus well-dated ancient naked carp Gymnocypris przewalskii: Implication for water evolution of Lake Qinghai

    Science.gov (United States)

    Zhou, Ling; Jin, Zhangdong; Wang, Chia-Hui; Li, Fuchun; Wang, Yujiao; Wang, Xulong; Zhang, Fei; Chen, Liumei; Du, Jinhua

    2015-06-01

    There is ongoing debate over how the water level and composition of the water in Lake Qinghai changed in the past and might change in future. This study of the microchemistry of otoliths from ancient naked carp explores the chemistry of a relict lake isolated from Lake Qinghai during the Little Ice Age (LIA). A close correlation between the ages measured on fish bone and otoliths by AMS-14C, and by optically stimulated luminescence on overlying sediments, confirms a high water level in Lake Qinghai before 680-300 years ago. The contrasting compositions of the ancient otoliths relative to modern otoliths and waters indicate that the relict lake became enriched in 18O, Mg, Li, B and to a lesser extent Ba, but depleted in 13C, owing to strong evaporation, authigenic carbonates precipitation, (micro-)organism activity, and less fresh water input after it was isolated. If there were long-term fresh water input, however, a reverse trend might occur. The most important observation is that, because the waters have been supersaturated with respect to carbonates, authigenic carbonate precipitation would result in low but consistent Sr/Ca ratios in the lakes, as recorded by both the ancient and modern otoliths. The geochemical records of ancient versus modern biogenic carbonates provide insights into the long-term hydroclimatic evolution processes of an inland water body.

  20. The widespread influence of Great Lakes microseisms across the United States revealed by the 2014 polar vortex

    Science.gov (United States)

    Anthony, Robert; Ringler, Adam; Wilson, David

    2018-01-01

    During the winter of 2014, a weak polar vortex brought record cold temperatures to the north‐central (“Midwest”) United States, and the Great Lakes reached the highest extent of ice coverage (92.5%) since 1979. This event shut down the generation of seismic signals caused by wind‐driven wave action within the lakes (termed “lake microseisms”), giving an unprecedented opportunity to isolate and characterize these novel signals through comparison with nonfrozen time periods. Using seismic records at 72 broadband stations, we observe Great Lakes microseism signals at distances >300 km from the lakes. In contrast to conventional oceanic microseisms, there is no clear relationship between the frequency content of the seismic signals (observed from ~0.5–5‐s period) and the dominant swell period or resonance periods of the lakes based on their bathymetric profiles. Thus, the exact generation mechanism is not readily explained by conventional microseism theory and warrants further investigation.

  1. Anaerobic Psychrophiles from Lake Zub and Lake Untersee, Antarctica

    Science.gov (United States)

    Townsend, Alisa; Pikuta, Elena V.; Guisler, Melissa; Stahl, Sarah; Hoover, Richard B.

    2009-01-01

    The study of samples from Antarctica 2008 and 2009 expeditions organized and successfully conducted by Richard Hoover led to the isolation of diverse anaerobic strains with psychrotolerant and psychrophilic physiology. Due to the fact that Lake Untersee has never been subject to microbiological study, this work with the samples has significant and pioneering impact to the knowledge about the biology of this unique ecosystem. Also, the astrobiological significance for the study of these ecosystems is based on new findings of ice covered water systems on other bodies of our solar system. Anaerobic psychrotolerant strain LZ-22 was isolated from a frozen sample of green moss with soils around the rhizosphere collected near Lake Zub in Antarctica. Morphology of strain LZ-22 was observed to be motile, rod shaped and spore-forming cells with sizes 1 x 5-10 micron. This new isolate is a mesophile with the maximum temperature of growth at 40C. Strain LZ-22 is able to live on media without NaCl and in media with up to 7% (w/v) NaCl. It is catalase negative and grows only on sugars with the best growth rate being on lactose. The strain is a neutrophile and grows between pH 5 and 9.0 with the optimum at 7.8. Another two strains UL7-96mG and LU-96m7P were isolated from deep water samples of Lake Untersee. Proteolytic strain LU-96m7P had a truly psychrophilic nature and refused to grow at room temperature. Sugarlytic strain UL7-96mG was found to be psychrotolerant, but its rate of growth at 3C was very high compared with other mesophiles. Two homoacetogenic psychrophilic strains A7AC-96m and AC-DS7 were isolated and purified from samples of Lake Untersee; both of them are able to grow chemolithotrophically on H2+CO2. In the presence of lactate, these strains are able to grow only at 0-18C, and growth at 22C was observed only with yeast extract stimulation. In this paper, physiological and morphological characteristics of novel psychrophilic and psychrotolerant isolates from

  2. Stable isotope and hydrogeochemical studies of Beaver Lake and Radok Lake, MacRobertson Land, East Antarctica

    International Nuclear Information System (INIS)

    Wand, U.; Hermichen, W.D.

    1988-01-01

    Beaver Lake and Radok Lake, the largest known epishelf lake and the deepest freshwater lake on the Antarctic continent, respectively, were isotopically (δ 2 H, δ 18 O) and hydrogeochemically studied. Radok Lake is an isothermal and nonstratified, i.e. homogeneous water body, while Beaver Lake is stratified with respect to temperature, salinity and isotopic composition. The results for the latter attest to freshwater (derived from snow and glacier melt) overlying seawater. (author)

  3. Watershed vs. within-lake drivers of nitrogen: phosphorus dynamics in shallow lakes.

    Science.gov (United States)

    Ginger, Luke J; Zimmer, Kyle D; Herwig, Brian R; Hanson, Mark A; Hobbs, William O; Small, Gaston E; Cotner, James B

    2017-10-01

    Research on lake eutrophication often identifies variables affecting amounts of phosphorus (P) and nitrogen (N) in lakes, but understanding factors influencing N:P ratios is important given its influence on species composition and toxin production by cyanobacteria. We sampled 80 shallow lakes in Minnesota (USA) for three years to assess effects of watershed size, proportion of watershed as both row crop and natural area, fish biomass, and lake alternative state (turbid vs. clear) on total N : total P (TN : TP), ammonium, total dissolved phosphorus (TDP), and seston stoichiometry. We also examined N:P stoichiometry in 20 additional lakes that shifted states during the study. Last, we assessed the importance of denitrification by measuring denitrification rates in sediment cores from a subset of 34 lakes, and by measuring seston δ 15 N in four additional experimental lakes before and after they were experimentally manipulated from turbid to clear states. Results showed alternative state had the largest influence on overall N:P stoichiometry in these systems, as it had the strongest relationship with TN : TP, seston C:N:P, ammonium, and TDP. Turbid lakes had higher N at given levels of P than clear lakes, with TN and ammonium 2-fold and 1.4-fold higher in turbid lakes, respectively. In lakes that shifted states, TN was 3-fold higher in turbid lakes, while TP was only 2-fold higher, supporting the notion N is more responsive to state shifts than is P. Seston δ 15 N increased after lakes shifted to clear states, suggesting higher denitrification rates may be important for reducing N levels in clear states, and potential denitrification rates in sediment cores were among the highest recorded in the literature. Overall, our results indicate lake state was a primary driver of N:P dynamics in shallow lakes, and lakes in clear states had much lower N at a given level of P relative to turbid lakes, likely due to higher denitrification rates. Shallow lakes are often

  4. Remotely Sensed Based Lake/Reservoir Routing in Congo River Basin

    Science.gov (United States)

    Raoufi, R.; Beighley, E.; Lee, H.

    2017-12-01

    Lake and reservoir dynamics can influence local to regional water cycles but are often not well represented in hydrologic models. One challenge that limits their inclusion in models is the need for detailed storage-discharge behavior that can be further complicated in reservoirs where specific operation rules are employed. Here, the Hillslope River Routing (HRR) model is combined with a remotely sensed based Reservoir Routing (RR) method and applied to the Congo River Basin. Given that topographic data are often continuous over the entire terrestrial surface (i.e., does not differentiate between land and open water), the HRR-RR model integrates topographic derived river networks and catchment boundaries (e.g., HydroSHEDs) with water boundary extents (e.g., Global Lakes and Wetlands Database) to develop the computational framework. The catchments bordering lakes and reservoirs are partitioned into water and land portions, where representative flowpath characteristics are determined and vertical water balance and lateral routings is performed separately on each partition based on applicable process models (e.g., open water evaporation vs. evapotranspiration). To enable reservoir routing, remotely sensed water surface elevations and extents are combined to determine the storage change time series. Based on the available time series, representative storage change patterns are determined. Lake/reservoir routing is performed by combining inflows from the HRR-RR model and the representative storage change patterns to determine outflows. In this study, a suite of storage change patterns derived from remotely sensed measurements are determined representative patterns for wet, dry and average conditions. The HRR-RR model dynamically selects and uses the optimal storage change pattern for the routing process based on these hydrologic conditions. The HRR-RR model results are presented to highlight the importance of lake attenuation/routing in the Congo Basin.

  5. Extent of Cropland and Related Soil Erosion Risk in Rwanda

    Directory of Open Access Journals (Sweden)

    Fidele Karamage

    2016-06-01

    Full Text Available Land conversion to cropland is one of the major causes of severe soil erosion in Africa. This study assesses the current cropland extent and the related soil erosion risk in Rwanda, a country that experienced the most rapid population growth and cropland expansion in Africa over the last decade. The land cover land use (LCLU map of Rwanda in 2015 was developed using Landsat-8 imagery. Based on the obtained LCLU map and the spatial datasets of precipitation, soil properties and elevation, the soil erosion rate of Rwanda was assessed at 30-m spatial resolution, using the Revised Universal Soil Loss Equation (RUSLE model. According to the results, the mean soil erosion rate was 250 t·ha−1·a−1 over the entire country, with a total soil loss rate of approximately 595 million tons per year. The mean soil erosion rate over cropland, which occupied 56% of the national land area, was estimated at 421 t·ha−1·a−1 and was responsible for about 95% of the national soil loss. About 24% of the croplands in Rwanda had a soil erosion rate larger than 300 t·ha−1·a−1, indicating their unsuitability for cultivation. With a mean soil erosion rate of 1642 t·ha−1·a−1, these unsuitable croplands were responsible for 90% of the national soil loss. Most of the unsuitable croplands are distributed in the Congo Nile Ridge, Volcanic Range mountain areas in the west and the Buberuka highlands in the north, regions characterized by steep slopes (>30% and strong rainfall. Soil conservation practices, such as the terracing cultivation method, are paramount to preserve the soil. According to our assessment, terracing alone could reduce the mean cropland soil erosion rate and the national soil loss by 79% and 75%, respectively. After terracing, only a small proportion of 7.6% of the current croplands would still be exposed to extreme soil erosion with a rate >300 t·ha−1·a−1. These irremediable cropland areas should be returned to mountain forest to

  6. Evaluation of nature and extent of injuries during Dahihandi festival.

    Science.gov (United States)

    Nemade, P; Wade, R; Patwardhan, A R; Kale, S

    2012-01-01

    Injuries related to the Hindu festival of Dahihandi where a human pyramid is formed and a pot of money kept at a height is broken, celebrated in the state of Maharashtra, have seen a significant rise in the past few years. The human pyramid formed is multi-layered and carries with it a high risk of injury including mortality. To evaluate the nature, extent and influencing factors of injuries related to Dahihandi festival. We present a retrospective analysis of patients who presented in a tertiary care center with injuries during the Dahihandi festival in the year 2010. 124 patients' records were evaluated for timing of injury, height of the Dahihandi pyramid, position of the patient in the multi-layered pyramid, mode of pyramid collapse and mechanism of an injury. A binary regression logistic analysis for risk factors was done at 5% significance level. Univariate and multi-variate binary logistic regression of the risk factors for occurrence of a major or minor injury was done using Minitab™ version 16.0 at 5% significance. Out of 139 patients presented to the center, 15 were not involved directly in the formation of pyramid, rest 124 were included in the analysis. A majority of the patients were above 15 years of age [110 (83.6%)]. 46 (37.1%) patients suffered major injuries. There were 39 fractures, 3 cases of chest wall trauma with 10 cases of head injuries and 1 death. More than half of the patients [78 (56.1%)] were injured after 1800 hours. 73 (58.9%) injured participants were part of the pyramid constructed to reach the Dahihandi placed at 30 feet or more above the ground. 72 (51.8%) participants were part of the middle layers of the pyramid. Fall of a participant from upstream layers on the body was the main mechanism of injury, and majority [101 (81.5%)] of the patients suffered injury during descent phase of the pyramid. There is a considerable risk of serious, life-threatening injuries inherent to human pyramid formation and descent in the Dahihandi

  7. Geographic extent and variation of a coral reef trophic cascade.

    Science.gov (United States)

    McClanahan, T R; Muthiga, N A

    2016-07-01

    Trophic cascades caused by a reduction in predators of sea urchins have been reported in Indian Ocean and Caribbean coral reefs. Previous studies have been constrained by their site-specific nature and limited spatial replication, which has produced site and species-specific understanding that can potentially preclude larger community-organization nuances and generalizations. In this study, we aimed to evaluate the extent and variability of the cascade community in response to fishing across ~23° of latitude and longitude in coral reefs in the southwestern Indian Ocean. The taxonomic composition of predators of sea urchins, the sea urchin community itself, and potential effects of changing grazer abundance on the calcifying benthic organisms were studied in 171 unique coral reef sites. We found that geography and habitat were less important than the predator-prey relationships. There were seven sea urchin community clusters that aligned with a gradient of declining fishable biomass and the abundance of a key predator, the orange-lined triggerfish (Balistapus undulatus). The orange-lined triggerfish dominated where sea urchin numbers and diversity were low but the relative abundance of wrasses and emperors increased where sea urchin numbers were high. Two-thirds of the study sites had high sea urchin biomass (>2,300 kg/ha) and could be dominated by four different sea urchin species, Echinothrix diadema, Diadema savignyi, D. setosum, and Echinometra mathaei, depending on the community of sea urchin predators, geographic location, and water depth. One-third of the sites had low sea urchin biomass and diversity and were typified by high fish biomass, predators of sea urchins, and herbivore abundance, representing lightly fished communities with generally higher cover of calcifying algae. Calcifying algal cover was associated with low urchin abundance where as noncalcifying fleshy algal cover was not clearly associated with herbivore abundance. Fishing of the orange

  8. A Fully Automated Classification for Mapping the Annual Cropland Extent

    Science.gov (United States)

    Waldner, F.; Defourny, P.

    2015-12-01

    Mapping the global cropland extent is of paramount importance for food security. Indeed, accurate and reliable information on cropland and the location of major crop types is required to make future policy, investment, and logistical decisions, as well as production monitoring. Timely cropland information directly feed early warning systems such as GIEWS and, FEWS NET. In Africa, and particularly in the arid and semi-arid region, food security is center of debate (at least 10% of the population remains undernourished) and accurate cropland estimation is a challenge. Space borne Earth Observation provides opportunities for global cropland monitoring in a spatially explicit, economic, efficient, and objective fashion. In the both agriculture monitoring and climate modelling, cropland maps serve as mask to isolate agricultural land for (i) time-series analysis for crop condition monitoring and (ii) to investigate how the cropland is respond to climatic evolution. A large diversity of mapping strategies ranging from the local to the global scale and associated with various degrees of accuracy can be found in the literature. At the global scale, despite efforts, cropland is generally one of classes with the poorest accuracy which make difficult the use for agricultural. This research aims at improving the cropland delineation from the local scale to the regional and global scales as well as allowing near real time updates. To that aim, five temporal features were designed to target the key- characteristics of crop spectral-temporal behavior. To ensure a high degree of automation, training data is extracted from available baseline land cover maps. The method delivers cropland maps with a high accuracy over contrasted agro-systems in Ukraine, Argentina, China and Belgium. The accuracy reached are comparable to those obtained with classifiers trained with in-situ data. Besides, it was found that the cropland class is associated with a low uncertainty. The temporal features

  9. Hazards of volcanic lakes: analysis of Lakes Quilotoa and Cuicocha, Ecuador

    Directory of Open Access Journals (Sweden)

    G. Gunkel

    2008-01-01

    Full Text Available Volcanic lakes within calderas should be viewed as high-risk systems, and an intensive lake monitoring must be carried out to evaluate the hazard of potential limnic or phreatic-magmatic eruptions. In Ecuador, two caldera lakesLakes Quilotoa and Cuicocha, located in the high Andean region >3000 a.s.l. – have been the focus of these investigations. Both volcanoes are geologically young or historically active, and have formed large and deep calderas with lakes of 2 to 3 km in diameter, and 248 and 148 m in depth, respectively. In both lakes, visible gas emissions of CO2 occur, and an accumulation of CO2 in the deep water body must be taken into account.

    Investigations were carried out to evaluate the hazards of these volcanic lakes, and in Lake Cuicocha intensive monitoring was carried out for the evaluation of possible renewed volcanic activities. At Lake Quilotoa, a limnic eruption and diffuse CO2 degassing at the lake surface are to be expected, while at Lake Cuicocha, an increased risk of a phreatic-magmatic eruption exists.

  10. Rubidium-strontium ages from the Oxford Lake-Knee Lake greenstone belt, northern Manitoba

    International Nuclear Information System (INIS)

    Clark, G.S.; Cheung, S.-P.

    1980-01-01

    Rb-Sr whole-rock ages have been determined for rocks from the Oxford Lake-Knee Lake-Gods Lake geenstone belt in the Superior Province of northeastern Manitoba. The age of the Magill Lake Pluton is 2455 +- 35 Ma(lambda 87 Rb = 1.42 x 10 -11 yr -1 ), with an initial 87 Sr/ 86 Sr ratio of 0.7078 +- 0.0043. This granite stock intrudes the Oxford Lake Group, so it is post-tectonic and probably related to the second, weaker stage of metamorphism. The age of the Bayly Lake Pluton is 2424 +- 74 Ma, with an initial 87 Sr/ 86 Sr ratio of 0.7029 +- 0.0001. This granodioritic batholith complex does not intrude the Oxford Lake Group. It is syn-tectonic and metamorphosed. The age of volcanic rocks of the Hayes River Group, from Goose Lake (30 km south of Gods Lake Narrows), is 2680 +- 125 Ma, with an initial 87 Sr/ 86 Sr ratio of 0.7014 +- 0.0009. The age for the Magill Lake and Bayly Lake Plutons can be interpreted as the minimum ages of granite intrusion in the area. The age for the Hayes River Group volcanic rocks is consistent with Rb-Sr ages of volcanic rocks from other Archean greenstone belts within the northwestern Superior Province. (auth)

  11. Extreme drought decouples silicon and carbon geochemical linkages in lakes.

    Science.gov (United States)

    Li, Tianyang; Li, Siyue; Bush, Richard T; Liang, Chuan

    2018-09-01

    Silicon and carbon geochemical linkages were usually regulated by chemical weathering and organism activity, but had not been investigated under the drought condition, and the magnitude and extent of drought effects remain poorly understood. We collected a comprehensive data set from a total of 13 sampling sites covering the main water body of the largest freshwater lake system in Australia, the Lower Lakes. Changes to water quality during drought (April 2008-September 2010) and post-drought (October 2010-October 2013) were compared to reveal the effects of drought on dissolved silica (DSi) and bicarbonate (HCO 3 - ) and other environmental factors, including sodium (Na + ), pH, electrical conductivity (EC), chlorophyll a (Chl-a), total dissolved solids (TDS), dissolved inorganic nitrogen (DIN), total nitrogen (TN), total phosphorus (TP) and water levels. Among the key observations, concentrations of DSi and DIN were markedly lower in drought than in post-drought period while pH, EC and concentrations of HCO 3 - , Na + , Chl-a, TDS, TN, TP and the ratio TN:TP had inverse trends. Stoichiometric ratios of DSi:HCO 3 - , DSi:Na + and HCO 3 - :Na + were significantly lower in the drought period. DSi exhibited significantly negative relationships with HCO 3 - , and DSi:Na + was strongly correlated with HCO 3 - :Na + in both drought and post-drought periods. The backward stepwise regression analysis that could avoid multicollinearity suggested that DSi:HCO 3 - ratio in drought period had significant relationships with fewer variables when compared to the post-drought, and was better predictable using nutrient variables during post-drought. Our results highlight the drought effects on variations of water constituents and point to the decoupling of silicon and carbon geochemical linkages in the Lower Lakes under drought conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Semi-automated Digital Imaging and Processing System for Measuring Lake Ice Thickness

    Science.gov (United States)

    Singh, Preetpal

    Canada is home to thousands of freshwater lakes and rivers. Apart from being sources of infinite natural beauty, rivers and lakes are an important source of water, food and transportation. The northern hemisphere of Canada experiences extreme cold temperatures in the winter resulting in a freeze up of regional lakes and rivers. Frozen lakes and rivers tend to offer unique opportunities in terms of wildlife harvesting and winter transportation. Ice roads built on frozen rivers and lakes are vital supply lines for industrial operations in the remote north. Monitoring the ice freeze-up and break-up dates annually can help predict regional climatic changes. Lake ice impacts a variety of physical, ecological and economic processes. The construction and maintenance of a winter road can cost millions of dollars annually. A good understanding of ice mechanics is required to build and deem an ice road safe. A crucial factor in calculating load bearing capacity of ice sheets is the thickness of ice. Construction costs are mainly attributed to producing and maintaining a specific thickness and density of ice that can support different loads. Climate change is leading to warmer temperatures causing the ice to thin faster. At a certain point, a winter road may not be thick enough to support travel and transportation. There is considerable interest in monitoring winter road conditions given the high construction and maintenance costs involved. Remote sensing technologies such as Synthetic Aperture Radar have been successfully utilized to study the extent of ice covers and record freeze-up and break-up dates of ice on lakes and rivers across the north. Ice road builders often used Ultrasound equipment to measure ice thickness. However, an automated monitoring system, based on machine vision and image processing technology, which can measure ice thickness on lakes has not been thought of. Machine vision and image processing techniques have successfully been used in manufacturing

  13. Anaglyph, Salt Lake City, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This anaglyph image provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.The stereoscopic effect of this anaglyph was created by first draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed

  14. The Lake Charles CCS Project

    Energy Technology Data Exchange (ETDEWEB)

    Doug Cathro

    2010-06-30

    The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas and Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.

  15. Current and temperature structure of Rihand Lake

    Digital Repository Service at National Institute of Oceanography (India)

    Suryanarayana, A.; Swamy, G.N.; Sadhuram, Y.

    The environmental parameters such as wind, water and air temperatures, and currents were measured in Rihand Lake, Madhya Pradesh, India during the hotest months, May-June of 1983. Rihand is an artificial lake having an area of 300 km super(2...

  16. Preparation of aluminium lakes by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Prapai Pradabkham

    2008-07-01

    Full Text Available Aluminium lakes have been prepared by electrocoagulation employing aluminium as electrodes. The electrocoagulation is conducted in an aqueous alcoholic solution and is completed within one hour. The dye content in the lake ranges approximately between 4-32%.

  17. Lake-tilting investigations in southern Sweden

    International Nuclear Information System (INIS)

    Paasse, T.

    1996-04-01

    The main aim of lake-tilting investigations is to determine the course of the glacio-isostatic uplift, i.e. to find a formula for the uplift. Besides the lake-tilting graphs, knowledge of the recent relative uplift and the gradient of some marine shorelines are used for solving this problem. This paper summarizes four investigations. 23 refs, 10 figs

  18. Cryptanalysis of the LAKE Hash Family

    DEFF Research Database (Denmark)

    Biryukov, Alex; Gauravaram, Praveen; Guo, Jian

    2009-01-01

    We analyse the security of the cryptographic hash function LAKE-256 proposed at FSE 2008 by Aumasson, Meier and Phan. By exploiting non-injectivity of some of the building primitives of LAKE, we show three different collision and near-collision attacks on the compression function. The first attac...

  19. Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity

    Science.gov (United States)

    McCullough, Ian M.; Loftin, Cyndy; Sader, Steven A.

    2012-01-01

    Water clarity is a reliable indicator of lake productivity and an ideal metric of regional water quality. Clarity is an indicator of other water quality variables including chlorophyll-a, total phosphorus and trophic status; however, unlike these metrics, clarity can be accurately and efficiently estimated remotely on a regional scale. Remote sensing is useful in regions containing a large number of lakes that are cost prohibitive to monitor regularly using traditional field methods. Field-assessed lakes generally are easily accessible and may represent a spatially irregular, non-random sample of a region. We developed a remote monitoring program for Maine lakes >8 ha (1511 lakes) to supplement existing field monitoring programs. We combined Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) brightness values for TM bands 1 (blue) and 3 (red) to estimate water clarity (secchi disk depth) during 1990–2010. Although similar procedures have been applied to Minnesota and Wisconsin lakes, neither state incorporates physical lake variables or watershed characteristics that potentially affect clarity into their models. Average lake depth consistently improved model fitness, and the proportion of wetland area in lake watersheds also explained variability in clarity in some cases. Nine regression models predicted water clarity (R2 = 0.69–0.90) during 1990–2010, with separate models for eastern (TM path 11; four models) and western Maine (TM path 12; five models that captured differences in topography and landscape disturbance. Average absolute difference between model-estimated and observed secchi depth ranged 0.65–1.03 m. Eutrophic and mesotrophic lakes consistently were estimated more accurately than oligotrophic lakes. Our results show that TM bands 1 and 3 can be used to estimate regional lake water clarity outside the Great Lakes Region and that the accuracy of estimates is improved with additional model variables that reflect

  20. Synchronous dynamics of zooplankton competitors prevail in temperate lake ecosystems.

    Science.gov (United States)

    Vasseur, David A; Fox, Jeremy W; Gonzalez, Andrew; Adrian, Rita; Beisner, Beatrix E; Helmus, Matthew R; Johnson, Catherine; Kratina, Pavel; Kremer, Colin; de Mazancourt, Claire; Miller, Elizabeth; Nelson, William A; Paterson, Michael; Rusak, James A; Shurin, Jonathan B; Steiner, Christopher F

    2014-08-07

    Although competing species are expected to exhibit compensatory dynamics (negative temporal covariation), empirical work has demonstrated that competitive communities often exhibit synchronous dynamics (positive temporal covariation). This has led to the suggestion that environmental forcing dominates species dynamics; however, synchronous and compensatory dynamics may appear at different length scales and/or at different times, making it challenging to identify their relative importance. We compiled 58 long-term datasets of zooplankton abundance in north-temperate and sub-tropical lakes and used wavelet analysis to quantify general patterns in the times and scales at which synchronous/compensatory dynamics dominated zooplankton communities in different regions and across the entire dataset. Synchronous dynamics were far more prevalent at all scales and times and were ubiquitous at the annual scale. Although we found compensatory dynamics in approximately 14% of all combinations of time period/scale/lake, there were no consistent scales or time periods during which compensatory dynamics were apparent across different regions. Our results suggest that the processes driving compensatory dynamics may be local in their extent, while those generating synchronous dynamics operate at much larger scales. This highlights an important gap in our understanding of the interaction between environmental and biotic forces that structure communities. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Stennis visits Lake Cormorant school

    Science.gov (United States)

    2010-01-01

    Alexis Harry, assistant director of Astro Camp at NASA's John C. Stennis Space Center, talks with students at Lake Cormorant (Miss.) Elementary School during a 'Living and Working in Space' presentation March 30. Stennis hosted the school presentation during a visit to the Oxford area. Harry, who also is a high school biology teacher in Slidell, La., spent time discussing space travel with students and answering questions they had about the experience, including queries about how astronauts eat, sleep and drink in space. The presentation was sponsored by the NASA Office of External Affairs and Education at Stennis. For more information about NASA education initiatives, visit: http://education.ssc.nasa.gov/.

  2. Extent and kinetics of recovery of occult spinal cord injury

    International Nuclear Information System (INIS)

    Ang, K. Kian; Jiang, G.-L.; Feng Yan; Stephens, L. Clifton; Tucker, Susan L.; Price, Roger E.

    2001-01-01

    Purpose: To obtain clinically useful quantitative data on the extent and kinetics of recovery of occult radiation injury in primate spinal cord, after a commonly administered elective radiation dose of 44 Gy, given in about 2 Gy per fraction. Methods and Materials: A group of 56 rhesus monkeys was assigned to receive two radiation courses to the cervical and upper thoracic spinal cord, given in 2.2 Gy per fraction. The dose of the initial course was 44 Gy in all monkeys. Reirradiation dose was 57.2 Gy, given after 1-year (n 16) or 2-year (n = 20) intervals, or 66 Gy, given after 2-year (n = 4) or 3-year (n = 14) intervals. Two animals developed intramedullary tumors before reirradiation and, therefore, did not receive a second course. The study endpoint was myeloparesis, manifesting predominantly as lower extremity weakness and decrease in balance, occurring within 2.5 years after reirradiation, complemented by histologic examination of the spinal cord. The data obtained were analyzed along with data from a previous study addressing single-course tolerance, and data from a preliminary study of reirradiation tolerance. Results: Only 4 of 45 monkeys completing the required observation period (2-2.5 years after reirradiation, 3-5.5 years total) developed myeloparesis. The data revealed a substantial recovery of occult injury induced by 44 Gy within the first year, and suggested additional recovery between 1 and 3 years. Fitting the data with a model, assuming that all (single course and reirradiation) dose-response curves were parallel, yielded recovery estimates of 33.6 Gy (76%), 37.6 Gy (85%), and 44.6 Gy (101%) of the initial dose, after 1, 2, and 3 years, respectively, at the 5% incidence (D 5 ) level. The most conservative estimate, using a model in which it was assumed that there was no recovery between 1 and 3 years following initial irradiation and that the combined reirradiation curve was not necessarily parallel to the single-course curve, still showed an

  3. Pleistocene lake level changes in Western Mongolia

    Science.gov (United States)

    Borodavko, P. S.

    2009-04-01

    Global cooling in the Early Pleistocene caused extensive continental glaciation in the northern hemisphere including the arid areas of Central Asia. The reduction of temperatures (particularly summer temperatures) reduced evaporation and strengthened the importance of precipitation. The simultaneity of "lakes periods" (pluvials) and stages of glaciation is established experience confirmed by investigations in the west of North America and Russia. In the Mongolian Great Lakes Depression new evidence for similar conditions is found. The Great Lakes Depression is one of the largest in Central Asia, and is divided into 2 main Lakes basins: Hyargas Lake Basin and Uvs Lake Basin. The basin is 600-650 km in length with a width of 200-250 km in the north and 60-100 km in the south. Total catchment area is about 186600 km2. The elevation of the basin floor is from 1700 m a.s.l. to 760 m a.s.l., decreasing to the north and south-east. The depression extends south-north and is bounded by mountains: Tannu-Ola to the north, Hangai to the east; Gobi Altai to the south and Mongolian Altay to the west. The maximum elevation of the mountains is 4000 m a.s.l. There are some mountains with an elevation between 2000 and 3000 m a.s.l in the lake catchment. These mountains are not glaciated today. The geological record [1] suggests the Great Lakes Depression already existed in the Mesozoic, but assumed its modern form only during the Pliocene-Quaternary when tectonic movements caused the uplift of the surrounding mountains. A phase of tectonic stability occurred during the Late Quaternary. The depression is filled by Quaternary fluvial, aeolian and lacustrine deposits (e.g. sand, pebbles). The Neogene deposits are represented by coloured clay, marl, sand and sandstone [1]. Hyargas Lake is the end base level of erosion of the lake group consisting of the Hara-Us Nur, Dorgon, Hara Nur and Airag lakes. Hyargas is one of the largest lakes in Mongolia, with a water surface of 1,407 km2. The

  4. Investigation of landscape and lake acidification relationships

    Energy Technology Data Exchange (ETDEWEB)

    Rush, R.M.; Honea, R.B.; Krug, E.C.; Peplies, R.W.; Dobson, J.E.; Baxter, F.P.

    1985-10-01

    This interim report presents the rationale and initial results for a program designed to gather and analyze information essential to a better understanding of lake acidification in the northeastern United States. The literature pertinent to a study of landscape and lake acidification relationships is reviewed and presented as the rationale for a landscape/lake acidification study. The results of a study of Emmons Pond in northwestern Connecticut are described and lead to the conclusion that a landscape change was a contributor to the acidification of this pond. A regional study of sixteen lakes in southern New England using Landsat imagery is described, and preliminary observations from a similar study in the Adirondack Mountains are given. These results indicate that satellite imagery can be useful in identifying types of ground cover important to landscape/lake acidification relationships.

  5. Residues of Organochlorine Pesticides in Lake Mariut

    International Nuclear Information System (INIS)

    Saad, M.A.H.; Abu-Elamayem, M.M.; El-Sebae, A.B.; Sharaf, I.P.

    1981-01-01

    Lake Mariut, a brackish water lake adjoining the Mediterranean Coast of Egypt, has suffered much from intensive pollution in recent years due to the successive increase of human population and industry around it (Saad, 1980). The occurrence and distribution of organochlorine pesticides in the water of Lake Mariut during a period of one year were studied. This study represents an essential part of a pilot project on pollution of Lake Mariut supported by IAEA. The major organochlorine pesticides detected in the water of Lake Mariut were Lindane, p, p'-DDE, o,p'-DDT and p, p'-DDT. The mean concentrations of these pesticides were 2.091, 4.493, 0.009 and 0.134 ppb, respectively. The mean concentration of the calculated total DDT (Σ DDT) was 5.1 PPb

  6. Comparative limnology of strip-mine lakes

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, J D

    1964-01-01

    Lakes were classified according to chemical properties. The concentration of the ferric iron oxides was responsible for a reddish-black turbidity which, in turn, played a major role in the thermal stratification of red strip-mine lakes. Owing to the lack of measurable turbidity and as a result of selective absorption of visible solar radiation, other strip-mine lakes appeared blue in color. The annual heat budget and the summer heat budget are essentially equivalent under saline conditions. Regardless of the physical and chemical conditions of the strip-mine lakes, heat income was a function of the circulating water mass. The progressive oxidation and precipitation of the iron oxides is the key to the classification of strip-mine lakes.

  7. Stochastic and cyclic deposition of multiple subannual laminae in an urban lake (Twin Lake, Golden Valley, Minnesota, USA)

    Science.gov (United States)

    Myrbo, A.; Ustipak, K.; Demet, B.

    2013-12-01

    Twin Lake, a small, deep, meromictic urban lake in Minneapolis, Minnesota, annually deposits two to 10 laminae that are distinguished from one another by composition and resulting color. Sediment sources are both autochthonous and allochthonous, including pure and mixed laminae of authigenic calcite, algal organic matter, and diatoms, as well as at least three distinct types of sediment gravity flow deposits. Diagenetic iron sulfide and iron phosphate phases are minor components, but can affect color out of proportion to their abundance. We used L*a*b* color from digital images of a freeze core slab, and petrographic smear slides of individual laminae, to categorize 1080 laminae deposited between 1963 and 2010 CE (based on lead-210 dating). Some causal relationships exist between the ten categories identified: diatom blooms often occur directly above the debris of gravity flows that probably disrupt the phosphate-rich monimolomnion and fertilize the surface waters; calcite whitings only occur after diatom blooms that increase calcite saturation. Stochastic events, as represented by laminae rich in siliciclastics and other terrigenous material, or shallow-water microfossils and carbonate morphologies, are the dominant sediment source. The patterns of cyclic deposition (e.g., summer and winter sedimentation) that produce 'normal' varve couplets in some lakes are continually interrupted by these stochastic events, to such an extent that spectral analysis finds only a weak one-year cycle. Sediments deposited before about 1900, and extending through the entire Holocene sequence (~10m) are varve couplets interrupted by thick (20-90 cm) debris layers, indicating that gravity flows were lower in frequency but greater in magnitude before the historical period, probably due to an increased frequency of disturbance under urban land-use.

  8. International Planning for Subglacial Lake Exploration

    Science.gov (United States)

    Kennicutt, M.; Priscu, J.

    2003-04-01

    As one of the last unexplored frontiers on our planet, subglacial lakes offer a unique and exciting venue for exploration and research. Over the past several years, subglacial lakes have captured the imagination of the scientific community and public, evoking images of potential exotic life forms surviving under some of the most extreme conditions on earth. Various planning activities have recognized that due to the remote and harsh conditions, that a successful subglacial lake exploration program will entail a concerted effort for a number of years. It will also require an international commitment of major financial and human resources. To begin a detailed planning process, the Scientific Committee on Antarctic Research (SCAR) convened the Subglacial Antarctic Lake Exploration Group of Specialists (SALEGOS) in Tokyo in 2000. The group was asked to build on previous workshops and meetings to develop a plan to explore subglacial lake environments. Its mandate adopted the guiding principles as agreed in Cambridge in 1999 that the program would be interdisciplinary in scope, be designed for minimum contamination and disturbance of the subglacial lake environment, have as a goal lake entry and sample retrieval, and that the ultimate target of the program should be Lake Vostok exploration. Since its formation SALEGOS has met three times and addressed some of the more intractable issues related to subglacial lake exploration. Topics under discussion include current state-of-the-knowledge of subglacial environments, technological needs, international management and organizational strategies, a portfolio of scientific projects, "clean" requirements, and logistical considerations. In this presentation the actvities of SALEGOS will be summarized and recommendations for an international subglacial lake exploration program discussed.

  9. Zooplankton as an early warning system of persistent organic pollutants contamination in a deep lake (lake Iseo, Northern Italy

    Directory of Open Access Journals (Sweden)

    Silvia Quadroni

    2012-07-01

    Full Text Available The lake Iseo has been recently contaminated by DDT residues, originated from the melting of a glacier that released the pollutants accumulated in the past. Because of this recent input, DDT residues concentrations rose more quickly in zooplankton than in fish during 2009. In autumn 2010 the ratio drastically dropped to one–two for all the compounds indicating that the glacial DDT load should have been ceased. The situation was different for PCBs that were released to a much lower extent from glaciers. The PCB 138 ratio between zooplankton and fish was always around one–two in both years. As the zooplankton response to pollution changes resulted particularly prompt, our research highlights the importance of this component as an early warning bioindicator of hydrophobic pollutants.

  10. Oblique map showing maximum extent of 20,000-year-old (Tioga) glaciers, Yosemite National Park, central Sierra Nevada, California

    Science.gov (United States)

    Alpha, T.R.; Wahrhaftig, Clyde; Huber, N.K.

    1987-01-01

    This map shows the alpine ice field and associated valley glaciers at their maximum extent during the Tioga glaciation. The Tioga glaciation, which peaked about 15,000-20,OOO years ago, was the last major glaciation in the Sierra Nevada. The Tuolumne ice field fed not only the trunk glacier that moved down the Tuolumne River canyon through the present-day Hetch Hetchy Reservoir, but it also overflowed major ridge crests into many adjoining drainage systems. Some of the ice flowed over low passes to augment the flows moving from the Merced basin down through little Yosemite Valley. Tuolumne ice flowed southwest down the Tuolumne River into the Tenaya Lake basin and then down Tenaya Canyon to join the Merced glacier in Yosemite Valley. During the Tioga glaciation, the glacier in Yosemite Valley reached only as far as Bridalveil Meadow, although during a much earlier glaciation, a glacier extended about 10 miles farther down the Merced River to the vicinity of El Portal. Ice of the Tioga glaciation also flowed eastward from the summit region to cascade down the canyons that cut into the eastern escarpment of the Sierra Nevada [see errata, below]. Southeast of the present-day Yosemite Park, glaciers formed in the Mount Lyell region flowed east onto the Mono lowland and southeast and south down the Middle and North Forks of the San Joaquin River. In the southern part of the park, glaciers nearly reached to the present-day site of Wawona along the South Fork of the Merced River. At the time of the maximum extent of the Tioga glaciation, Lake Russell (Pleistocene Mono Lake) had a surface elevation of 6,800 feet, 425 feet higher than the 1980 elevation and 400 feet lower than its maximum level at the end of the Tioga glaciation. Only a few volcanic domes of the Mono Craters existed at the time of the Tioga glaciation. The distribution of vegetation, as suggested by the green overprint, is based on our interpretation. Forests were restricted to lower elevations than present

  11. Using Satellite Imagery to Monitor the Major Lakes; Case Study Lake Hamun

    Science.gov (United States)

    Norouzi, H.; Islam, R.; Bah, A.; AghaKouchak, A.

    2015-12-01

    Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes would provide invaluable information for policy-makers and local people. As part of a comprehensive study, we aim to monitor the land-cover/ land-use changes in the world's major lakes using satellite observations. As a case study, Hamun Lake which is a pluvial Lake, also known as shallow Lake, located on the south-east of Iran and adjacent to Afghanistan, and Pakistan borders is investigated. The Lake is the main source of resources (agriculture, fishing and hunting) for the people around it and politically important in the region since it is shared among three different countries. The purpose of the research is to find the Lake's area from 1972 to 2015 and to see if any drought or water resources management has affected the lake. Analyzing satellites imagery from Landsat shows that the area of the Lake changes seasonally and intra-annually. Significant seasonal effects are found in 1975,1977, 1987, 1993, 1996, 1998, 2000, 2009 and 2011, as well as, substantial amount of shallow water is found throughout the years. The precipitation records as well as drought historical records are studied for the lake's basin. Meteorological studies suggest that the drought, decrease of rainfalls in the province and the improper management of the Lake have caused environmental, economic and geographical consequences. The results reveal that lake has experienced at least two prolong dryings since 1972 which drought cannot solely be blamed as main forcing factor.Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes

  12. Decomposition of lake phytoplankton. 2

    International Nuclear Information System (INIS)

    Hansen, L.; Krog, G.F.; Soendergaard, M.

    1986-01-01

    The lysis process of phytoplankton was followed in 24 h incubations in three Danish lakes. By means of gel-chromatography it was shown that the dissolved carbon leaching from different algal groups differed in molecular weight composition. Three distinct molecular weight classes (>10,000; 700 to 10,000 and < 700 Daltons) leached from blue-green algae in almost equal proportion. The lysis products of spring-bloom diatoms included only the two smaller size classes, and the molecules between 700 and 10,000 Daltons dominated. Measurements of cell content during decomposition of the diatoms revealed polysaccharides and low molecular weight compounds to dominate the lysis products. No proteins were leached during the first 24 h after cell death. By incubating the dead algae in natural lake water, it was possible to detect a high bacterial affinity towards molecules between 700 and 10,000 Daltons, although the other size classes were also utilized. Bacterial transformation of small molecules to larger molecules could be demonstrated. (author)

  13. Lake Roosevelt fisheries monitoring program

    International Nuclear Information System (INIS)

    Griffith, J.R.; Scholz, A.T