Development of a thermodynamic data base for selected heavy metals
International Nuclear Information System (INIS)
Hageman, Sven; Scharge, Tina; Willms, Thomas
2015-07-01
The report on the development of a thermodynamic data base for selected heavy metals covers the description of experimental methods, the thermodynamic model for chromate, the thermodynamic model for dichromate, the thermodynamic model for manganese (II), the thermodynamic model for cobalt, the thermodynamic model for nickel, the thermodynamic model for copper (I), the thermodynamic model for copper(II), the thermodynamic model for mercury (0) and mercury (I), the thermodynamic model for mercury (III), the thermodynamic model for arsenate.
Thermodynamic data-base for metal fluorides
Energy Technology Data Exchange (ETDEWEB)
Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho and others
2001-05-01
This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project.
Thermodynamic data-base for metal fluorides
International Nuclear Information System (INIS)
Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho and others
2001-05-01
This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project
Thermodynamic principles governing metabolic operation : inference, analysis, and prediction
Niebel, Bastian
2015-01-01
The principles governing metabolic flux are poorly understood. Because diverse organisms show similar metabolic flux patterns, we hypothesized that fundamental thermodynamic constraints might shape cellular metabolism. We developed a constraint-based model for Saccharomyces cerevisiae that included
Metal dusting: kinetically or thermodynamically controlled?
Hermse, C.G.M.
2011-01-01
The current paper determines whether the rate of the metal dusting reaction is kinetically or thermodynamically controlled at 600 degrees Celsius. This is done by varying the gas composition, specifically the CO partial pressure and the carbon activity, and comparing the degradation rates of alloy
Universality of thermodynamic constants governing biological growth rates.
Corkrey, Ross; Olley, June; Ratkowsky, David; McMeekin, Tom; Ross, Tom
2012-01-01
Mathematical models exist that quantify the effect of temperature on poikilotherm growth rate. One family of such models assumes a single rate-limiting 'master reaction' using terms describing the temperature-dependent denaturation of the reaction's enzyme. We consider whether such a model can describe growth in each domain of life. A new model based on this assumption and using a hierarchical Bayesian approach fits simultaneously 95 data sets for temperature-related growth rates of diverse microorganisms from all three domains of life, Bacteria, Archaea and Eukarya. Remarkably, the model produces credible estimates of fundamental thermodynamic parameters describing protein thermal stability predicted over 20 years ago. The analysis lends support to the concept of universal thermodynamic limits to microbial growth rate dictated by protein thermal stability that in turn govern biological rates. This suggests that the thermal stability of proteins is a unifying property in the evolution and adaptation of life on earth. The fundamental nature of this conclusion has importance for many fields of study including microbiology, protein chemistry, thermal biology, and ecological theory including, for example, the influence of the vast microbial biomass and activity in the biosphere that is poorly described in current climate models.
Universality of thermodynamic constants governing biological growth rates.
Directory of Open Access Journals (Sweden)
Ross Corkrey
Full Text Available BACKGROUND: Mathematical models exist that quantify the effect of temperature on poikilotherm growth rate. One family of such models assumes a single rate-limiting 'master reaction' using terms describing the temperature-dependent denaturation of the reaction's enzyme. We consider whether such a model can describe growth in each domain of life. METHODOLOGY/PRINCIPAL FINDINGS: A new model based on this assumption and using a hierarchical Bayesian approach fits simultaneously 95 data sets for temperature-related growth rates of diverse microorganisms from all three domains of life, Bacteria, Archaea and Eukarya. Remarkably, the model produces credible estimates of fundamental thermodynamic parameters describing protein thermal stability predicted over 20 years ago. CONCLUSIONS/SIGNIFICANCE: The analysis lends support to the concept of universal thermodynamic limits to microbial growth rate dictated by protein thermal stability that in turn govern biological rates. This suggests that the thermal stability of proteins is a unifying property in the evolution and adaptation of life on earth. The fundamental nature of this conclusion has importance for many fields of study including microbiology, protein chemistry, thermal biology, and ecological theory including, for example, the influence of the vast microbial biomass and activity in the biosphere that is poorly described in current climate models.
Energy Technology Data Exchange (ETDEWEB)
Hageman, Sven; Scharge, Tina; Willms, Thomas
2015-07-15
The report on the development of a thermodynamic data base for selected heavy metals covers the description of experimental methods, the thermodynamic model for chromate, the thermodynamic model for dichromate, the thermodynamic model for manganese (II), the thermodynamic model for cobalt, the thermodynamic model for nickel, the thermodynamic model for copper (I), the thermodynamic model for copper(II), the thermodynamic model for mercury (0) and mercury (I), the thermodynamic model for mercury (III), the thermodynamic model for arsenate.
The kinetics and thermodynamics of adsorption of heavy metal ions ...
African Journals Online (AJOL)
Titanium-Pillared and Un-Pillared bentonite clays were studied in order to evaluate the thermodynamics and kinetics of heavy metal ion removal from aqueous solutions. The results showed that the maximum sorption of Cu, Cd, Hg and Pb ions occurred within 30 minutes. A pseudo-second order kinetic model was used to ...
Thermodynamic properties of alkaline earth metal oxides
International Nuclear Information System (INIS)
Chekhovskoj, V.Ya.; Irgashov, Kh.
1990-01-01
Analysis of the known experimental data on enthalpy and heat capacity of CaO, SrO, BaO and RaO above 300 K is performed. New results of experimental study: enthalpy and heat capacity in solid and liquid states of BaO up to 2500 K, SrO up to 3000 K, CaO - up to 3100 K, as well as melting points, melting heats and entropies, heat capacity of melts and formation energy of anion and cation vacancy pair are presented. For Ra evaluations of temperature, melting heat and entropy, melt heat capacity, Debye point and formation energy of anion and cation vacancy pairs are made. On the basis of high-temperature data on enthalpy and low-temperature literature data on heat capacity the tables of thermodynamic functions in the range of 0-2500 K for BaO, 0-1300 K for SrO and 0-3128 K for CaO are calculated
Composition and thermodynamic properties of dense alkali metal plasmas
Energy Technology Data Exchange (ETDEWEB)
Gabdullin, M.T. [NNLOT, al-Farabi Kazakh National University, 71 al-Farabi Str., Almaty 050035 (Kazakhstan); Ramazanov, T.S.; Dzhumagulova, K.N. [IETP, al-Farabi Kazakh National University, 71 al-Farabi Str., Almaty 050035 (Kazakhstan)
2012-04-15
In this work composition and thermodynamic properties of dense alkali metal plasmas (Li, Na) were investigated. Composition was derived by solving the Saha equations with corrections due to nonideality. The lowering of the ionization potentials was calculated on the basis of pseudopotentials by taking screening and quantum effects into account (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics
Energy Technology Data Exchange (ETDEWEB)
Argun, Mehmet Emin [Department of Environmental Engineering, Engineering and Architecture Faculty, Selcuk University, 42031 Selcuklu-Konya (Turkey)]. E-mail: argun@selcuk.edu.tr; Dursun, Sukru [Department of Environmental Engineering, Engineering and Architecture Faculty, Selcuk University, 42031 Selcuklu-Konya (Turkey); Ozdemir, Celalettin [Department of Environmental Engineering, Engineering and Architecture Faculty, Selcuk University, 42031 Selcuklu-Konya (Turkey); Karatas, Mustafa [Department of Environmental Engineering, Engineering and Architecture Faculty, Selcuk University, 42031 Selcuklu-Konya (Turkey)
2007-03-06
This paper describes the adsorption of heavy metal ions from aqueous solutions by oak (Quercus coccifera) sawdust modified by means of HCl treatment. Our study tested the removal of three heavy metals: Cu, Ni, and Cr. The optimum shaking speed, adsorbent mass, contact time, and pH were determined, and adsorption isotherms were obtained using concentrations of the metal ions ranging from 0.1 to 100 mg L{sup -1}. The adsorption process follows pseudo-second-order reaction kinetics, as well as Langmuir and D-R adsorption isotherms. The paper discusses the thermodynamic parameters of the adsorption (the Gibbs free energy, entropy, and enthalpy). Our results demonstrate that the adsorption process was spontaneous and endothermic under natural conditions. The maximum removal efficiencies were 93% for Cu(II) at pH 4, 82% for Ni(II) at pH 8, and 84% for Cr(VI) at pH 3.
Simulation of Cu-Mg metallic glass: Thermodynamics and structure
DEFF Research Database (Denmark)
Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel
2004-01-01
We have obtained effective medium theory interatomic potential parameters suitable for studying Cu-Mg metallic glasses. We present thermodynamic and structural results from simulations of such glasses over a range of compositions. We have produced low-temperature configurations by cooling from...... may be determined. We have also carried out structural analyses using the radial distribution function (RDF) and common neighbor analysis (CNA). Our analysis suggests that the splitting of the second peak, commonly associated with metallic glasses, in fact, has little to do with the glass transition...... and the amorphous alloys of similar composition. We have also investigated the diffusivity in the supercooled regime. Its temperature dependence indicates fragile-liquid behavior, typical of binary metallic glasses. On the other hand, the relatively low specific-heat jump of around 1.5k(B)/atom indicates apparent...
International Nuclear Information System (INIS)
Richard T. Scalettar; Warren E. Pickett
2005-01-01
This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals
Energy Technology Data Exchange (ETDEWEB)
Scalettar, Richard T.; Pickett, Warren E.
2004-07-01
This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals.
Energy Technology Data Exchange (ETDEWEB)
Richard T. Scalettar; Warren E. Pickett
2005-08-02
This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.
Thermodynamic screening of metal-substituted MOFs for carbon capture.
Koh, Hyun Seung; Rana, Malay Kumar; Hwang, Jinhyung; Siegel, Donald J
2013-04-07
Metal-organic frameworks (MOFs) have emerged as promising materials for carbon capture applications due to their high CO2 capacities and tunable properties. Amongst the many possible MOFs, metal-substituted compounds based on M-DOBDC and M-HKUST-1 have demonstrated amongst the highest CO2 capacities at the low pressures typical of flue gasses. Here we explore the possibility for additional performance tuning of these compounds by computationally screening 36 metal-substituted variants (M = Be, Mg, Ca, Sr, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, W, Sn, and Pb) with respect to their CO2 adsorption enthalpy, ΔH(T=300K). Supercell calculations based on van der Waals density functional theory (vdW-DF) yield enthalpies in good agreement with experimental measurements, out-performing semi-empirical (DFT-D2) and conventional (LDA & GGA) functionals. Our screening identifies 13 compounds having ΔH values within the targeted thermodynamic window -40 ≤ ΔH ≤ -75 kJ mol(-1): 8 are based on M-DODBC (M = Mg, Ca, Sr, Sc, Ti, V, Mo, and W), and 5 on M-HKUST-1 (M = Be, Mg, Ca, Sr and Sc). Variations in the electronic structure and the geometry of the structural building unit are examined and used to rationalize trends in CO2 affinity. In particular, the partial charge on the coordinatively unsaturated metal sites is found to correlate with ΔH, suggesting that this property may be used as a simple performance descriptor. The ability to rapidly distinguish promising MOFs from those that are "thermodynamic dead-ends" will be helpful in guiding synthesis efforts towards promising compounds.
Thermodynamic studies on molybdenum-noble metal alloys
International Nuclear Information System (INIS)
Yamawaki, M.; Kanno, M.
1979-01-01
Electromotive force cells have been used to determine the activities of molybdenum for Mo-Pd, Mo-Rh and Mo-Ru-Pd alloys over the temperature range 1200-1300K, and thermodynamic functions were derived from the results. Solid ZrO 2 -11 mol-% CaO was used as the electrolyte. In ternary Mo-Rud-Pd alloy the ratio Ru:Pd was fixed to 72,5:27.5 in atomic % in order to simulate the white metallic inclusions in irradiated (U, Pu)O 2 fuel. Activities of molybdenum showed negative deviations from Raoult's law in the composition range where the atomic fraction of molybdenum Nsub(Mo) being less than about 0.3, and then positive deviations in the intermediate Nsub(Mo) range. It was shown that the estimation of activities of molybdenum in the white metallic inclusions based on the regular solution approximation were generally fairly good, but might lead to error in the intermediate and higher Nsub(Mo) ranges. Standard Gibbs energy of formation of Mo-Rh intermetallic epsilon phase was shown to be negatively larger than those of some other Mo intermetallic phases, showing higher thermodynamic stability of this phase. (orig.) [de
Simulation of Cu-Mg metallic glass: Thermodynamics and structure
International Nuclear Information System (INIS)
Bailey, Nicholas P.; Schioetz, Jakob; Jacobsen, Karsten W.
2004-01-01
We have obtained effective medium theory interatomic potential parameters suitable for studying Cu-Mg metallic glasses. We present thermodynamic and structural results from simulations of such glasses over a range of compositions. We have produced low-temperature configurations by cooling from the melt at as slow a rate as practical, using constant temperature and pressure molecular dynamics. During the cooling process we have carried out thermodynamic analyses based on the temperature dependence of the enthalpy and its derivative, the specific heat, from which the glass transition temperature may be determined. We have also carried out structural analyses using the radial distribution function (RDF) and common neighbor analysis (CNA). Our analysis suggests that the splitting of the second peak, commonly associated with metallic glasses, in fact, has little to do with the glass transition itself, but is simply a consequence of the narrowing of peaks associated with structural features present in the liquid state. In fact, the splitting temperature for the Cu-Cu RDF is well above T g . The CNA also highlights a strong similarity between the structure of the intermetallic alloys and the amorphous alloys of similar composition. We have also investigated the diffusivity in the supercooled regime. Its temperature dependence indicates fragile-liquid behavior, typical of binary metallic glasses. On the other hand, the relatively low specific-heat jump of around 1.5k B /atom indicates apparent strong-liquid behavior, but this can be explained by the width of the transition due to the high cooling rates
Metal viscoplasticity with two-temperature thermodynamics and two dislocation densities
Roy Chowdhury, Shubhankar; Kar, Gurudas; Roy, Debasish; Reddy, J. N.
2018-03-01
Posed within the two-temperature theory of non-equilibrium thermodynamics, we propose a model for thermoviscoplastic deformation in metals. We incorporate the dynamics of dislocation densities-mobile and forest—that play the role of internal state variables in the formulation. The description based on two temperatures appears naturally when one recognizes that the thermodynamic system undergoing viscoplastic deformation is composed of two weakly interacting subsystems, viz. a kinetic-vibrational subsystem of the vibrating atomic lattices and a configurational subsystem of the slower degrees of freedom relating to defect motion, each with its own temperature. Starting with a basic model that involves only homogeneous deformation, a three-dimensional model for inhomogeneous viscoplasticity applicable to finite deformation is charted out in an overstress driven viscoplastic deformation framework. The model shows how the coupled evolutions of mobile and forest dislocation densities, which are critically influenced by the dynamics of configurational temperature, govern the strength and ductility of the metal. Unlike most contemporary models, the current proposal also affords a prediction of certain finer details as observed in the experimental data on stress-strain behaviour of metals and this in turn enhances the understanding of the evolving and interacting dislocation densities.
Metal viscoplasticity with two-temperature thermodynamics and two dislocation densities
Roy Chowdhury, Shubhankar; Kar, Gurudas; Roy, Debasish; Reddy, J. N.
2017-12-01
Posed within the two-temperature theory of non-equilibrium thermodynamics, we propose a model for thermoviscoplastic deformation in metals. We incorporate the dynamics of dislocation densities-mobile and forest—that play the role of internal state variables in the formulation. The description based on two temperatures appears naturally when one recognizes that the thermodynamic system undergoing viscoplastic deformation is composed of two weakly interacting subsystems, viz. a kinetic-vibrational subsystem of the vibrating atomic lattices and a configurational subsystem of the slower degrees of freedom relating to defect motion, each with its own temperature. Starting with a basic model that involves only homogeneous deformation, a three-dimensional model for inhomogeneous viscoplasticity applicable to finite deformation is charted out in an overstress driven viscoplastic deformation framework. The model shows how the coupled evolutions of mobile and forest dislocation densities, which are critically influenced by the dynamics of configurational temperature, govern the strength and ductility of the metal. Unlike most contemporary models, the current proposal also affords a prediction of certain finer details as observed in the experimental data on stress-strain behaviour of metals and this in turn enhances the understanding of the evolving and interacting dislocation densities.
On the thermodynamics of phase transitions in metal hydrides
di Vita, Andrea
2012-02-01
Metal hydrides are solutions of hydrogen in a metal, where phase transitions may occur depending on temperature, pressure etc. We apply Le Chatelier's principle of thermodynamics to a particular phase transition in TiH x , which can approximately be described as a second-order phase transition. We show that the fluctuations of the order parameter correspond to fluctuations both of the density of H+ ions and of the distance between adjacent H+ ions. Moreover, as the system approaches the transition and the correlation radius increases, we show -with the help of statistical mechanics-that the statistical weight of modes involving a large number of H+ ions (`collective modes') increases sharply, in spite of the fact that the Boltzmann factor of each collective mode is exponentially small. As a result, the interaction of the H+ ions with collective modes makes a tiny suprathermal fraction of the H+ population appear. Our results hold for similar transitions in metal deuterides, too. A violation of an -insofar undisputed-upper bound on hydrogen loading follows.
Electronic and thermodynamic properties of transition metal elements and compounds
International Nuclear Information System (INIS)
Haeglund, J.
1993-01-01
This thesis focuses on the use of band-structure calculations for studying thermodynamic properties of solids. We discuss 3d-, 4d- and 5d-transition metal carbides and nitrides. Through a detailed comparison between theoretical and experimental results, we draw conclusions on the character of the atomic bonds in these materials. We show how electronic structure calculations can be used to give accurate predictions for bonding energies. Part of the thesis is devoted to the application of the generalized gradient approximation in electronic structure calculations on transition metals. For structures with vibrational disorder, we present a method for calculating averaged phonon frequencies without using empirical information. For magnetic excitations, we show how a combined use of theoretical results and experimental data can yield information on magnetic fluctuations at high temperatures. The main results in the thesis are: Apart for an almost constant shift, theoretically calculated bonding energies for transition metal carbides and nitrides agree with experimental data or with values from analysis of thermochemical information. The electronic spectrum of transition metal carbides and nitrides can be separated into bonding, antibonding and nonbonding electronic states. The lowest enthalpy of formation for substoichiometric vanadium carbide VC 1-X at zero temperature and pressure occurs for a structure containing vacancies (x not equal to 0). The generalized gradient approximation improves theoretical calculated cohesive energies for 3d-transition metals. Magnetic phase transitions are sensitive to the description of exchange-correlation effects in electronic structure calculations. Trends in Debye temperatures can be successfully analysed in electronic structure calculations on disordered lattices. For the elements, there is a clear dependence on the crystal structure (e.g., bcc, fcc or hcp). Chromium has fluctuating local magnetic moments at temperatures well above
Thermodynamic properties of some metal oxide-zirconia systems
Jacobson, Nathan S.
1989-01-01
Metal oxide-zirconia systems are a potential class of materials for use as structural materials at temperatures above 1900 K. These materials must have no destructive phase changes and low vapor pressures. Both alkaline earth oxide (MgO, CaO, SrO, and BaO)-zirconia and some rare earth oxide (Y2O3, Sc2O3, La2O3, CeO2, Sm2O3, Gd2O3, Yb2O3, Dy2O3, Ho2O3, and Er2O3)-zirconia system are examined. For each system, the phase diagram is discussed and the vapor pressure for each vapor species is calculated via a free energy minimization procedure. The available thermodynamic literature on each system is also surveyed. Some of the systems look promising for high temperature structural materials.
Thermodynamic and structural basis for electrochemical response of Cu–Zr based metallic glass
International Nuclear Information System (INIS)
Zhang, Chunzhi; Qiu, Nannan; Kong, Lingliang; Yang, Xiaodan; Li, Huiping
2015-01-01
Highlights: • Thermodynamic and structural basis for electrochemical response were proposed. • La improves the corrosion resistance by inhibition of the selective dissolution. • Corrosion of the MG responses well with thermodynamic and structural parameters. - Abstract: Cu–Zr based metallic glasses were prepared by hyperquenching strategy to explore the thermodynamic and structural basis for electrochemical response. The thermodynamic parameters and the local atomic structure were obtained. Corrosion resistance in seawater was investigated via potentiodynamic polarization curve. The results indicate that increasing thermodynamic parameter values improves the corrosion resistance. The topological instability represented by the nearest neighbor atomic distance yields same tendency as the corrosion resistance with La addition
Phase transformations and thermodynamics of aluminum-based metallic glasses
Gao, Changhua (Michael)
This thesis examines the thermodynamics and associated kinetics and phase transformations of the glass forming Al-Ni-Gd and Al-Fe-Gd systems. In order to fully understand the unique glass forming ability (GFA) of Al-based metallic glasses, the ternary Al-Fe-Gd and Al-Ni-Gd systems in their Al-rich corners were examined experimentally to assist in a thermodynamic assessment. The solid-state phase equilibria are determined using XRD and TEM-EDS techniques. While this work basically confirms the solid-state equilibria in Al-Fe-Gd reported previously, the ternary phase in Al-Ni-Gd system has been identified to be Al15Ni3Gd2 rather than Al16Ni 3Gd reported in the literature. DTA analysis of 24 alloys in the Al-Fe-Gd system and 42 alloys in the Al-Ni-Gd system have yielded critical temperatures pertaining to the solid-liquid transition. Based on these data and information from the literature, a self-consistent thermodynamic database for these systems has been developed using the CALPHAD technique. Parameters describing the Gibbs free energy for various phases of the Al-Gd, Al-Fe-Gd and Al-Ni-Gd systems are manually optimized in this study. Once constructed, the database is used to calculate driving forces for nucleation of crystalline phases which can qualitatively explain the phase formation sequence during crystallization at low temperatures. It was also confirmed that alloy compositions with the lowest Gibbs free energy difference between the equilibrium state and undercooled liquid state exhibit better GFA than other chemistries. Based on 250°C isothermal devitrification phase transformations of 17 Al-Ni-Gd alloys, a phase formation sequence map is constructed. Fcc-Al nanocrystals are formed first in most of the alloys studied, but eutectic crystallization of a metastable phase and fcc-Al is also observed. Addition of Al or Ni promotes fcc-Al phase formation, while increasing Gd suppresses it. The continuous heating DSC scans revealed that crystallization in Al
Fermi, Enrico
1956-01-01
Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr
Key parameters governing metallic nanoparticle electrocatalysis.
Tang, Yue; Cheng, Wenlong
2015-10-21
Engineering metallic nanoparticles constitutes a powerful route to design next-generation electrocatalysts to be used in future energy and environmental industries. In this mini review, we cover recent advances in metallic nanoparticle electrocatalysis, with a focus on understanding how the parameters such as particle sizes, crystalline structures, shapes, compositions, nanoscale alloying and interfaces influence their electrocatalytic activity and selectivity. In addition, this review highlights viable approaches for fabrication of nanoparticle-based electrocatalytic electrodes and discusses their influences on the overall catalytic performances. Finally, we discuss the opportunities and challenges ahead to program these key parameters to achieve highly durable designer electrocatalysts in future.
Thermodynamics analysis of the rare earth metals and their alloys with indium in solid state
International Nuclear Information System (INIS)
Vassiliev, V.P.; Benaissa, Ablazeze; Taldrik, A.F.
2013-01-01
Graphical abstract: Gibbs energies of formation vs. RE atomic numbers in REIn 3 . Highlights: •Set of experimental values was collected for REIn 3 phases. •Thermodynamic functions of formation were calculated at 298 K and 775 K. •Experimental and calculated values were compared. -- Abstract: Nonlinear correlative analyses between thermodynamic and some physico-chemical properties of rare-earth metals (RE) and their alloys with indium are performed for the isostructural phases RE and REIn 3 . The thermodynamics values (Gibbs energies of formation, enthalpies of formation, and entropies of formation at 298 K and 775 K and standard entropies) of LnIn 3 phases are calculated on the basis of calorimetry and potentiometry results. The proposed correlation between physico-chemical and thermodynamic properties agrees for all the isostructural phases REX (X are others elements of the periodic table). The resulting thermodynamic data are recommended for metallurgical handbook
International Nuclear Information System (INIS)
Miller, R.L.; Reimann, G.A.
1993-05-01
An equilibrium thermodynamic model for melting mixed waste was evaluated using the STEPSOL computer code. STEPSOL uses free energy minimization techniques to predict equilibrium composition from input species and user selected species in the output. The model assumes equilibrium between gas, slag, and metallic phases. Input for the model was developed using compositional data from Pit 9 of the Subsurface Disposal Area at the Idaho National Engineering Laboratory. Thermodynamic data were primarily from compilations published by the US Government. The results of model evaluation indicate that the amount of plutonium chloride or plutonium oxyhydroxide that would be evaporated into the vapor phase would be minor. Relatively more uranium chloride and uranium oxyhydroxide would be vaporized. However, a hazards analysis was not part of the present task. Minor amounts of plutonium and uranium would be reduced to the metallic state, but these amounts should alloy with the iron-chromium-nickel metallic phase. The vast majority of the plutonium and uranium are in the slag phase as oxides. Results of the calculations show that silica and silicates dominate the products and that the system is very reducing. The major gases are carbon monoxide and hydrogen, with lesser amounts of carbon dioxide and water. High vapor pressure metals are considered but were not analyzed using STEPSOL. STEPSOL does not make predictions of distribution of species between phases
International Nuclear Information System (INIS)
Zanchini, E.
1988-01-01
The definition of energy, in thermodynamics, is dependent by starting operative definitions of the basic concepts of physics on which it rests, such as those of isolated systems, ambient of a system, separable system and set of separable states. Then the definition of energy is rigorously extended to open systems. The extension gives a clear physical meaning to the concept of energy difference between two states with arbitrary different compositions
Sustainable governance of scarce metals: The case of lithium
International Nuclear Information System (INIS)
Prior, Timothy; Wäger, Patrick A.; Stamp, Anna; Widmer, Rolf; Giurco, Damien
2013-01-01
Minerals and metals are finite resources, and recent evidence suggests that for many, primary production is becoming more difficult and more expensive. Yet these resources are fundamentally important for society—they support many critical services like infrastructure, telecommunications and energy generation. A continued reliance on minerals and metals as service providers in modern society requires dedicated and concerted governance in relation to production, use, reuse and recycling. Lithium provides a good example to explore possible sustainable governance strategies. Lithium is a geochemically scarce metal (being found in a wide range of natural systems, but in low concentrations that are difficult to extract), yet recent studies suggest increasing future demand, particularly to supply the lithium in lithium-ion batteries, which are used in a wide variety of modern personal and commercial technologies. This paper explores interventions for sustainable governance and handling of lithium for two different supply and demand contexts: Australia as a net lithium producer and Switzerland as a net lithium consumer. It focuses particularly on possible nation-specific issues for sustainable governance in these two countries' contexts, and links these to the global lithium supply chain and demand scenarios. The article concludes that innovative business models, like ‘servicizing’ the lithium value chain, would hold sustainable governance advantages for both producer and consumer countries. - Highlights: • Lithium is a geochemically scare metal, but demand is forecast to increase in future • We explore sustainable lithium governance implications for Australia and Switzerland • One governance mechanism is the ‘servicization’ of the lithium value chain • We explore one actual, and two hypothetical lithium service business models • ‘Servicizing’ a commodity would require fundamental innovations in minerals policy
Investigation on thermodynamics of solvent extraction of metals: Pt.6
International Nuclear Information System (INIS)
Lu Jiufang; Zhou Xunan; Li Yigui; Teng Teng
1986-01-01
The extraction of UO 2 Cl 2 from HCl solution with 30%, 40% and 50% (V/V) trioctyl amine-toluene is studied. The activity coefficients of HCl and UO 2 Cl 2 in aqueous phase are calculated by Pitzer's equation and improved Frank-Thompson's equation. The activity coefficients of each compound in organic phase are obtained as follows: water-by Karl Fischer titration method and Pitzer's equation; diluent-by head space method; extractant and extracted compounds-by thermodynamic method. From the data obtained, the extraction thermodynamic equilibrium constants are calculated to be 1.46 x 10 3 and (2.48-3.79) x 10 5 for HCl respectively
Sustainable governance of scarce metals: the case of lithium.
Prior, Timothy; Wäger, Patrick A; Stamp, Anna; Widmer, Rolf; Giurco, Damien
2013-09-01
Minerals and metals are finite resources, and recent evidence suggests that for many, primary production is becoming more difficult and more expensive. Yet these resources are fundamentally important for society--they support many critical services like infrastructure, telecommunications and energy generation. A continued reliance on minerals and metals as service providers in modern society requires dedicated and concerted governance in relation to production, use, reuse and recycling. Lithium provides a good example to explore possible sustainable governance strategies. Lithium is a geochemically scarce metal (being found in a wide range of natural systems, but in low concentrations that are difficult to extract), yet recent studies suggest increasing future demand, particularly to supply the lithium in lithium-ion batteries, which are used in a wide variety of modern personal and commercial technologies. This paper explores interventions for sustainable governance and handling of lithium for two different supply and demand contexts: Australia as a net lithium producer and Switzerland as a net lithium consumer. It focuses particularly on possible nation-specific issues for sustainable governance in these two countries' contexts, and links these to the global lithium supply chain and demand scenarios. The article concludes that innovative business models, like 'servicizing' the lithium value chain, would hold sustainable governance advantages for both producer and consumer countries. Copyright © 2013 Elsevier B.V. All rights reserved.
The Thermodynamics of Proteins Interactions with Essential First Raw Transition Metals
Bou-Abdallah, Fadi; Giffune, Thomas
2015-01-01
Background The binding of metal ions to proteins is a crucial process required for their catalytic activity, structural stability and/or functional regulation. Isothermal titration calorimetry provides a wealth of fundamental information which when combined with structural data allow for a much deeper understanding of the underlying molecular mechanism. Scope of review A rigorous understanding of any molecular interaction requires in part an in-depth quantification of its thermodynamic properties. Here, we provide an overview of recent studies that have used ITC to quantify the interaction of essential first raw transition metals with relevant proteins and highlight major findings from these thermodynamic studies. General significance The thermodynamic characterization of metal ions-proteins interactions is one important step to understanding the role that metal ions play in living systems. Such characterization has important implications not only to elucidating proteins’ structure-function relationships and biological properties but also in the biotechnology sector, medicine and drug design particularly since a number of metal ions are involved in several neurodegenerative diseases. Major conclusions Isothermal titration calorimetry measurements can provide complete thermodynamic profiles of any molecular interaction through the simultaneous determination of the reaction binding stoichiometry, binding affinity as well as the enthalpic and entropic contributions to the free energy change thus enabling a more in-depth understanding of the nature of these interactions. PMID:26569121
The thermodynamics of protein interactions with essential first row transition metals.
Bou-Abdallah, Fadi; Giffune, Thomas R
2016-05-01
The binding of metal ions to proteins is a crucial process required for their catalytic activity, structural stability and/or functional regulation. Isothermal titration calorimetry provides a wealth of fundamental information which when combined with structural data allow for a much deeper understanding of the underlying molecular mechanism. A rigorous understanding of any molecular interaction requires in part an in-depth quantification of its thermodynamic properties. Here, we provide an overview of recent studies that have used ITC to quantify the interaction of essential first row transition metals with relevant proteins and highlight major findings from these thermodynamic studies. The thermodynamic characterization of metal ion-protein interactions is one important step to understanding the role that metal ions play in living systems. Such characterization has important implications not only to elucidating proteins' structure-function relationships and biological properties but also in the biotechnology sector, medicine and drug design particularly since a number of metal ions are involved in several neurodegenerative diseases. Isothermal titration calorimetry measurements can provide complete thermodynamic profiles of any molecular interaction through the simultaneous determination of the reaction binding stoichiometry, binding affinity as well as the enthalpic and entropic contributions to the free energy change thus enabling a more in-depth understanding of the nature of these interactions. Copyright © 2015 Elsevier B.V. All rights reserved.
Huang, M.; Rivera-Diaz-del-Castillo, P.E.J.; Bouaziz, O.; Van der Zwaag, S.
2009-01-01
Based on the theory of irreversible thermodynamics, the present work proposes a dislocation-based model to describe the plastic deformation of FCC metals over wide ranges of strain rates. The stress-strain behaviour and the evolution of the average dislocation density are derived. It is found that
The use of molecular dynamics for the thermodynamic properties of simple and transition metals
International Nuclear Information System (INIS)
Straub, G.K.
1987-04-01
The technique of computer simulation of the molecular dynamics in metallic systems to calculate thermodynamic properties is discussed. The nature of a metal as determined by its electronic structure is used to determine the total adiabatic potential. The effective screened ion-ion interaction can then be used in a molecular dynamics simulation. The method for the construction of a molecular dynamics ensemble, its relation to the canonical ensemble, and the definition of thermodynamic functions from the Helmholtz free energy is given. The method for the analysis of the molecular dynamics results from quasiharmonic lattice dynamics and the decomposition in terms of harmonic and anharmonic contributions is given for solids. For fluid phase metals, procedures for calculating the thermodynamics and determining the constant of entropy are presented. The solid-fluid phase boundary as a function of pressure and temperature is determined using the results of molecular dynamics. Throughout, examples and results for metallic sodium are used. The treatment of the transition metal electronic d-states in terms of an effective pair-wise interaction is also discussed and the phonon dispersion curves of Al, Ni, and Cu are calculated
Precision measurements of thermodynamic parameters of heavy alkali metals
Blagonravov, L. A.; Modenov, A. A.
2017-11-01
On the temperature dependences of a number of one-component liquids, regions of anomalous behavior in the form of kinks and also in the form of limited areas of forced growth have been previously observed (LA Blagonravov, LA Orlov, et al., TVT 2000, vol. 38, No. 4, p.566-572). However, the interpretation of these anomalies is complicated by the small magnitude of the effects themselves (the magnitude of the observed effect was 5%, a random error of 2-3%). An increase in the accuracy of measurements is required for a more confident determination of the detailed shape of the anomalies. In the proposed work, thermodynamic parameters are studied using a technique that uses the elastic-thermal effect. The adiabatic thermal coefficient of pressure (a.t.p.c.) is measured: χ = (1/T)(∂T/∂p)S. An installation in which the pressure change is carried out in a periodic mode is used for measurements. The software allows simultaneous averaging of the values of the amplitude of pressure oscillations and the amplitude of temperature response oscillations with the subsequent determination of their ratio. The facility uses an advanced pressure modulator, which allows creating pressure oscillations of the shape close to sinusoidal (the value of the second harmonic is not more than 10%) and a precision SR-810 nanovoltmeter with a synchronous digital detector. The currently used technique provides an acceptable measurement accuracy (error in the region of 0.5-1%). However, to further increase the accuracy, it was decided to make changes in the measuring path. Namely, by developing and applying a scheme of a precision low-noise preamplifier based on the instrument amplifier INA333, a circuit allowing simultaneous measurement of not only the two above parameters but also the current temperature of the sample (to exclude the effect of temperature drift.) Preliminary results of measurements of the temperature dependence of the a.t.p.c. of liquid cesium in the temperature range up to
The thermodynamics of pyrochemical processes for liquid metal reactor fuel cycles
Johnson, Irving
1988-06-01
The thermodynamic basis for pyrochemical processes for the recovery and purification of metallic fuel from liquid metal cooled reactors is described. These processes involve the transport of the uranium and plutonium from one liquid alloy to another through a molten salt. The processes discussed use liquid alloys of cadmium, zinc, and magnesium and molten chloride salts. The oxidation-reduction steps are done either chemically by the use of an auxiliary redox couple or electrochemically by the use of an external electrical supply. The same basic thermodynamics apply to both the salt transport and the electrotransport processes. Large deviations from ideal solution behavior of the actinides and lanthanides in the liquid alloys have a major influence on the solubilities and the performance of both the salt transport and electrotransport processes. Separation of plutonium and uranium from each other and decontamination from the more noble and the alkali metal and alkaline earth fission-product elements can be achieved using both transport processes. The thermodynamic analysis is used to make process design computations for different process conditions.
The thermodynamics of latent fingerprint corrosion of metal elements and alloys.
Bond, John W
2008-11-01
Redox reactions taking place between the surface of a metal and fingerprint residue have been expressed thermodynamically in terms of both the Nernst equation for reduction potential and the complexation constant for the formation of complex metal halide ions in aqueous solution. These expressions are used to explain experimental results for the corrosion of 10 different metal elements by fingerprint residue in air at room temperature. Corrosion of noble metals, such as silver and gold, supports the proposition that the degree of metal corrosion is enhanced by the presence of chloride ions in eccrine sweat. Extending the experiments to include 10 metal alloys enabled the construction of a fingerprint corrosion series for 20 different metals. Fingerprint corrosion on metals alloyed with > approximately 40% copper was found to display third level fingerprint detail. A comparison of both conventional ink on paper and digital (Livescan) fingerprinting techniques with fingerprints deposited on 9 Karat gold alloy has shown that gold alloy depositions are least susceptible to third level detail obliteration by poor fingerprint capturing techniques.
Prasad, A.; Howells, A. E.; Shock, E.
2017-12-01
The biological fate of any metal depends on its chemical form in the environment. Arsenic for example, is extremely toxic in the form of inorganic As+3 but completely benign in the organic form of arsenobetaine. Thus, given an exhaustive set of reactions and their equilibrium constants (logK), the bioavailability of any metal can be obtained for blood plasma, hydrothermal fluids or any system of interest. While many data exist for metal-inorganic ligands, logK data covering the temperature range of life for metal-organic complexes are sparse. Hence, we decided to estimate metal-organic logK values from correlations with the commonly available values of ligand pKa. Metal ion specific correlations were made with ligands classified according to their electron donor atoms, denticity and other chemical factors. While this approach has been employed before (Carbonaro et al. 2007, GCA 71, 3958-3968), new correlations were developed that provide estimates even when no metal-organic logK is available. In addition, we have used the same methods to make estimates of metal-organic entropy of association (ΔaS), which can provide logK for any temperature of biological relevance. Our current correlations employ logK and ΔaS data from 30 metal ions (like the biologically relevant Fe+3 & Zn+2) and 74 ligands (like formate and ethylenediamine), which can be expanded to estimate the metal-ligand reaction properties for these 30 metal ions with a possibly limitless number of ligands that may belong to our categories of ligands. With the help of such data, copper speciation was obtained for a defined growth medium for methanotrophs employed by Morton et al. (2000, AEM 66, 1730-1733) that agrees with experimental measurements showing that the free metal ion may not be the bioavailable form in all conditions. These results encourage us to keep filling the gaps in metal-organic logK data and continue finding relationships between biological responses (like metal-accumulation ratios
Measuring Thermodynamic Properties of Metals and Alloys With Knudsen Effusion Mass Spectrometry
Copland, Evan H.; Jacobson, Nathan S.
2010-01-01
This report reviews Knudsen effusion mass spectrometry (KEMS) as it relates to thermodynamic measurements of metals and alloys. First, general aspects are reviewed, with emphasis on the Knudsen-cell vapor source and molecular beam formation, and mass spectrometry issues germane to this type of instrument are discussed briefly. The relationship between the vapor pressure inside the effusion cell and the measured ion intensity is the key to KEMS and is derived in detail. Then common methods used to determine thermodynamic quantities with KEMS are discussed. Enthalpies of vaporization, the fundamental measurement, are determined from the variation of relative partial pressure with temperature using the second-law method or by calculating a free energy of formation and subtracting the entropy contribution using the third-law method. For single-cell KEMS instruments, measurements can be used to determine the partial Gibbs free energy if the sensitivity factor remains constant over multiple experiments. The ion-current ratio method and dimer-monomer method are also viable in some systems. For a multiple-cell KEMS instrument, activities are obtained by direct comparison with a suitable component reference state or a secondary standard. Internal checks for correct instrument operation and general procedural guidelines also are discussed. Finally, general comments are made about future directions in measuring alloy thermodynamics with KEMS.
The thermodynamic approach of the pilot-scale purification of refractory metals
International Nuclear Information System (INIS)
Accary, A.
1967-06-01
The author shows how the thermodynamic can be applied to the prediction of the evolution of impurities from a metal or an alloy being melted and cast at the pilot-scale using electron bombardment and continuous casting in a water cooled copper. He studies this possibility on two examples: - the melting vanadium, - the melting of the uranium monocarbide. He shows using only the constants available in the literature and a few special runs in the pilot-equipment itself it is possible to determine: - the possibility of elimination of anyone impurity by keeping the material in the melting state under vacuum as well as the limit of purification which is achievable under given technological conditions, - the proportion of an impure metal which should be vaporized in order to bring the level of a given impurity down to a predetermined level and the necessary duration of heating. (author) [fr
International Nuclear Information System (INIS)
Khaleque, M.A.; Bhuiyan, G.M.; Rashid, R.I.M.A.
1998-01-01
Thermodynamic properties such as entropy, specific heat capacity at constant pressure and isothermal compressibility have been calculated for liquid 3d, 4d and 5d transition metals near melting temperature. The hard sphere diameter for all such systems is estimated from the potential profile generated from the Wills and Harrison's prescription using linearized WCA theory of liquid. Evaluated values of entropy and specific heat capacity are found to be in good agreement with the experimental data. Transport property like shear viscosity for these liquid metals is obtained using the same potential profile. Lack of experimental data at melting temperatures hampers detailed comparison for all such systems. However, for the case of transport property, the results obtained are found to compare qualitatively well with the available experimental data. (author)
Equation of state for thermodynamic properties of pure and mixtures liquid alkali metals
International Nuclear Information System (INIS)
Mousazadeh, M.H.; Faramarzi, E.; Maleki, Z.
2010-01-01
We developed an equation of state based on statistical-mechanical perturbation theory for pure and mixtures alkali metals. Thermodynamic properties were calculated by the equation of state, based on the perturbed-chain statistical associating fluid theory (PC-SAFT). The model uses two parameters for a monatomic system, segment size, σ, and segment energy, ε. In this work, we calculate the saturation and compressed liquid density, heat capacity at constant pressure and constant volume, isobaric expansion coefficient, for which accurate experimental data exist in the literatures. Results on the density of binary and ternary alkali metal alloys of Cs-K, Na-K, Na-K-Cs, at temperatures from the freezing point up to several hundred degrees above the boiling point are presented. The calculated results are in good agreement with experimental data.
International Nuclear Information System (INIS)
Pashinkin, A.S.; Buketov, E.A.; Isabaeva, S.M.; Kasenov, B.K.
1985-01-01
The thermodynamic analysis of solid-phase reactions of alkali metal carbonates with arsenic pentoxide showing the possibility of formation of all arsenates at a higher than the room temperature is performed. Energetically most advantageous is formation of meta-arsenates. It is shown that temperature increase favours the reaction process. By Gibbs standard energy decrease the reactions form the Li>Na>K>Rb>Cs series. On the base of calculation data linear dependence of Gibbs standard energy in reactions on the atomic number of alkali metalis established. By the continuous weighing method the kinetics of interaction of alkali metal carbonates with arsenic pentoxide under isothermal conditions in the 450-500 deg C range is studied. Studies is the dependence of apparent energy of interaction of carbonates wih As 2 0 5 an atomic parameters of al
Thermodynamics of Pore Filling Metal Clusters in Metal Organic Frameworks: Pd in UiO-66
DEFF Research Database (Denmark)
Vilhelmsen, Lasse; Sholl, David S.
2012-01-01
Metal organic frameworks (MOFs) have experimentally been demonstrated to be capable of supporting isolated transition-metal clusters, but the stability of these clusters with respect to aggregation is unclear. In this letter we use a genetic algorithm together with density functional theory...... calculations to predict the structure of Pd clusters in UiO-66. The cluster sizes examined are far larger than those in any previous modeling studies of metal clusters in MOFs and allow us to test the hypothesis that the physically separated cavities in UiO-66 could stabilize isolated Pd clusters. Our...
International Nuclear Information System (INIS)
Fang Zheng; Qiu Guanzhou
2007-01-01
A metallic solution model with adjustable parameter k has been developed to predict thermodynamic properties of ternary systems from those of its constituent three binaries. In the present model, the excess Gibbs free energy for a ternary mixture is expressed as a weighted probability sum of those of binaries and the k value is determined based on an assumption that the ternary interaction generally strengthens the mixing effects for metallic solutions with weak interaction, making the Gibbs free energy of mixing of the ternary system more negative than that before considering the interaction. This point is never considered in the models currently reported, where the only difference in a geometrical definition of molar values of components is considered that do not involve thermodynamic principles but are completely empirical. The current model describes the results of experiments very well, and by adjusting the k value also agrees with those from models used widely in the literature. Three ternary systems, Mg-Cu-Ni, Zn-In-Cd, and Cd-Bi-Pb are recalculated to demonstrate the method of determining k and the precision of the model. The results of the calculations, especially those in Mg-Cu-Ni system, are better than those predicted by the current models in the literature
International Nuclear Information System (INIS)
Evans, R.; Kumaravadivel, R.
1976-01-01
A simple scheme for determining the ion density profile and the surface tension of a liquid metal is described. Assuming that the interaction between metallic pseudo-ions is of the form introduced by Evans, an approximate expression for the excess free energy of the system is derived using the thermodynamic perturbation theory of Weeks, Chandler and Anderson. This excess free energy is then minimized with respect to a parameter which specifies the ion density profile, and the surface tension is given directly. From a consideration of the dependence of the interionic forces on the electron density it is predicted that the ions should take up a very steep density profile at the liquid metal surface. This behaviour is contrasted with that to be expected for rare-gas fluids in which the interatomic forces are density-independent. The values of the surface tension calculated for liquid Na, K and Al from a simplified version of the theory are in reasonable agreement with experiment. (author)
Isotherms and thermodynamics for the sorption of heavy metal ions onto functionalized sporopollenin
Energy Technology Data Exchange (ETDEWEB)
Gubbuk, Ilkay Hilal, E-mail: ihilalg@gmail.com [Selcuk University, Department of Chemistry, Campus, 42031 Konya (Turkey)
2011-02-15
In this study, sporopollenin of Lycopodium clavatum spores was used for the sorption experiment. Glutaraldehyde (GA) immobilized sporopollenin (Sp), is employed as a sorbent in sorption of selected heavy metal ions. The sorbent prepared by sequential treatment of sporopollenin by silanazing compound and glutaraldehyde is suggested for sorption of Cu(II), Zn(II) and Co(II) from aqueous solutions. Experimental conditions for effective sorption of heavy metal ions were optimized with respect to different experimental parameters using batch method in detail. Optimum pH range of Cu(II) has occurred at pH {>=} 5.5 and Zn(II), Co(II) at pH {>=} 5.0, for the batch method. All of the metal ions can be desorbed with 10 cm{sup 3} of 0.5 mol dm{sup -3} of ethylenediaminetetraacetic acid (EDTA) solution. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm equations were applied to the experimental data. Thermodynamic parameters such as free energy ({Delta}G{sup o}), entropy ({Delta}S{sup o}) and enthalpy ({Delta}H{sup o}) were also calculated from the sorption results used to explain the mechanism of the sorption. The results indicated that this sorbent is successfully employed in the separation of trace Cu(II), Zn(II) and Co(II) from the aqueous solutions.
International Nuclear Information System (INIS)
Fortin, Xavier
1971-01-01
The effects of thermal excitation are introduced in the study of a simple electronic structure model for condensed media. The choice of a particle-interaction potential leads to a self-consistent calculation performed on a computer. This calculation gives a metal - nonmetal transition similar to the MOTT transition. We consider the effects of temperature and density variations upon this transition. It is possible to make use of this electronic structure to obtain the thermodynamic properties near the transition: pressure, free energy, sound velocity. The numerical results of this simple model are satisfactory. Particularly, if a dielectric constant is taken into account, the transition temperature and density are of the same order of magnitude as those observed experimentally in semiconductors. (author) [fr
Bembel, A. G.
2017-02-01
Size dependences of the nanocrystal sublimation and the evaporation heats of the corresponding nanodrops are investigated using the isothermal molecular dynamics and the tight-binding potential (on examples of Ni and Au nanoparticles). Results of computer simulation demonstrating linear dependences of the evaporation and sublimation heats on the particle reciprocal radius are compared with results of thermodynamic calculations as well as with experimental data for bulk phases of the same metals. It has been found that the size dependences of the evaporation and sublimation heats are directly related with the behavior of the size dependence of the melting heat that in its turn correlates with structural transformations in nanoparticles induced by the change of their size. The conclusion is drawn that there is some characteristic nanoparticle size (of the order of 1 nm) at which its crystal and liquid states become indistinguishable.
Sekiguchi, Kazuki; Shirakawa, Hiroki; Chokawa, Kenta; Araidai, Masaaki; Kangawa, Yoshihiro; Kakimoto, Koichi; Shiraishi, Kenji
2018-04-01
We analyzed the decomposition of Ga(CH3)3 (TMG) during the metal organic vapor phase epitaxy (MOVPE) of GaN on the basis of first-principles calculations and thermodynamic analysis. We performed activation energy calculations of TMG decomposition and determined the main reaction processes of TMG during GaN MOVPE. We found that TMG reacts with the H2 carrier gas and that (CH3)2GaH is generated after the desorption of the methyl group. Next, (CH3)2GaH decomposes into (CH3)GaH2 and this decomposes into GaH3. Finally, GaH3 becomes GaH. In the MOVPE growth of GaN, TMG decomposes into GaH by the successive desorption of its methyl groups. The results presented here concur with recent high-resolution mass spectroscopy results.
International Nuclear Information System (INIS)
Ackermann, R.J.; Chandrasekharaiah, M.S.
1975-01-01
The thermodynamic data for the actinide metals and oxides (thorium to curium ) have been assessed, examined for consistency, and compared with the lanthanides. Correlations relating the enthalpies of formation of the solid oxides with the corresponding aquo ions make possible the estimation of the thermodynamic properties of AmO 2 (s) and Am 2 O 3 (s) which are in accordance with vaporization data. The known thermodynamic properties of the substoichiometric dioxides MOsub(2-x)(s) at high temperatures demonstrate the relative stabilities of valence states less than 4+ and lead to the examination of stability requirements for the sesquioxides M 2 O 3 (s) and the monoxides MO(s). Sequential trends in the gaseous metals, monoxides and dioxides are examined, compared, and contrasted with the lanthanides. (author)
Controls Over Government-Furnished Precious Metal at J.F. Jelenko and Company
National Research Council Canada - National Science Library
1992-01-01
.... We randomly selected J. F. Jelenko and Company and Yardney Technical Products, Inc., for review. J. F. Jelenko and Company contracts contained Government-furnished precious metals valued at approximately...
Directory of Open Access Journals (Sweden)
Tomi Laurila
2009-11-01
Full Text Available In this paper we will demonstrate how a thermodynamic-kinetic method can be utilized to rationalize a wide range of interfacial phenomena between Sn-based lead-free solders and Ni metallizations. First, the effect of P on the interfacial reactions, and thus on the reliability, between Sn-based solders and electroless Ni/immersion Au (ENIG metallizations, will be discussed. Next, the effect of small amounts of Cu in Sn-based solders on the intermetallic compound (IMC, which forms first on top of Ni metallization, will be covered. With the help of thermodynamic arguments a so called critical Cu concentration for the formation of (Cu,Ni6Sn5 can be determined as a function of temperature. Then the important phenomenon of redeposition of (Au,NiSn4 layer on top of Ni3Sn4 IMC will be discussed in detail. The reasons leading to this behaviour will be rationalized with the help of thermodynamic information and an explanation of why this phenomenon does not occur when an appropriate amount of Cu is present in the soldering system will be given. Finally, interfacial reaction issues related to low temperature Sn-Zn and Sn-Bi based solders and Ni metallization will be discussed.
International Nuclear Information System (INIS)
Fang Zheng; Zhang Quanru
2006-01-01
A model has been derived to predict thermodynamic properties of ternary metallic systems from those of its three binaries. In the model, the excess Gibbs free energies and the interaction parameter ω 123 for three components of a ternary are expressed as a simple sum of those of the three sub-binaries, and the mole fractions of the components of the ternary are identical with the sub-binaries. This model is greatly simplified compared with the current symmetrical and asymmetrical models. It is able to overcome some shortcomings of the current models, such as the arrangement of the components in the Gibbs triangle, the conversion of mole fractions between ternary and corresponding binaries, and some necessary processes for optimizing the various parameters of these models. Two ternary systems, Mg-Cu-Ni and Cd-Bi-Pb are recalculated to demonstrate the validity and precision of the present model. The calculated results on the Mg-Cu-Ni system are better than those in the literature. New parameters in the Margules equations expressing the excess Gibbs free energies of three binary systems of the Cd-Bi-Pb ternary system are also given
Thermodynamic analysis on heavy metals partitioning impacted by moisture during the MSW incineration
International Nuclear Information System (INIS)
Zhang Yanguo; Li Qinghai; Jia Jinyan; Meng Aihong
2012-01-01
Highlights: ► Partitioning of HMs affected by moisture was investigated by thermodynamic analysis. ► Increase in moisture and in temperature was opposite impact on HMs contribution. ► The extent of temperature decreased by increase in moisture determines the impact. - Abstract: A thermodynamic calculation was carried out to predict the behavior and speciation of heavy metals (HMs), Pb, Zn, Cu, and Cd, during municipal solid waste (MSW) incineration with the different moisture levels. The calculation was based on the minimization of the total Gibbs free energy of the multi-components and multi-phases closed system reaching chemical equilibrium. The calculation also indicated the reaction directions and tendencies of HMs components. The impacts of chlorine additives (No PVC, 1%PVC, and 5%PVC) and moisture on the behavior of HMs were investigated at different temperature levels in the system (750 °C, 950 °C, and 1150 °C). Furthermore, because the incineration temperature falls down with the increase in moisture in waste, the co-influence of moisture and temperature in combusting MSW on the HMs was also studied with the given chlorine (as 1%PVC + 0.5%NaCl). The results showed that in the non-chlorine system, the impact of the moisture on Pb, Zn, and Cu was not significant, and the ratio of compound transformation was less than 10%, except the Cd compounds at 950 °C and 1150 °C. In the system with low chlorine (as 1%PVC) at constant temperature, the chlorides of HMs (Cd, Pb, Zn, and Cu) transferred to oxides, and when the content of chlorine rose up (as 5%PVC), the ratio of the chlorides of HMs (Cd, Pb, Zn, and Cu) transferring to oxides fell down noticeably. When the moisture varied together with the temperature, the Zn and Cu compounds transferred from chlorides to oxides with increase in moisture as well as decrease in temperature. At the temperature of 700–1000 °C, the impact of temperature on Pb and Cd was little and the moisture was the main factor
Grossoehme, Nicholas E; Akilesh, Shreeram; Guerinot, Mary Lou; Wilcox, Dean E
2006-10-16
The widespread ZIP family of transmembrane metal-transporting proteins is characterized by a large intracellular loop that contains a histidine-rich sequence whose biological role is unknown. To provide a chemical basis for this role, we prepared and studied a peptide corresponding to this sequence from the first iron-regulated transporter (IRT1) of Arabidopsis thaliana, which transports Fe2+ as well as Mn2+, Co2+, Zn2+, and Cd2+. Isothermal titration calorimetry (ITC) measurements, which required novel experiments and data analysis, and supporting spectroscopic methods were used to quantify IRT1's metal-binding affinity and associated thermodynamics. The peptide, PHGHGHGHGP, binds metal ions with 1:1 stoichiometry and stabilities that are consistent with the Irving-Williams series. Comparison of the metal-binding thermodynamics of the peptide with those of trien provides new insight about enthalpic and entropic contributions to the stability of the metal-peptide complex. Although Fe2+ and other IRT1-transported metal ions do not bind very tightly, this His-rich sequence has a very high entropy-driven affinity for Fe3+, which may have biological significance.
Dudev, Minko; Wang, Jonathan; Dudev, Todor; Lim, Carmay
2006-02-02
The metal coordination number (CN) is a key determinant of the structure and properties of metal complexes. It also plays an important role in metal selectivity in certain metalloproteins. Despite its central role, the preferred CN for several metal cations remains ambiguous, and the factors determining the metal CN are not fully understood. Here, we evaluate how the CN depends on (1) the metal's size, charge, and charge-accepting ability for a given set of ligands, and (2) the ligand's size, charge, charge-donating ability, and denticity for a given metal by analyzing the Cambridge Structural Database (CSD) structures of metal ions in the periodic table. The results show that for a given ligand type, the metal's size seems to affect its CN more than its charge, especially if the ligand is neutral, whereas, for a given metal type, the ligand's charge and charge-donating ability appear to affect the metal CN more than the ligand's size. Interestingly, all 98 metal cations surveyed could adopt more than than one CN, and most of them show an apparent preference toward even rather than odd CNs. Furthermore, as compared to the preferred metal CNs observed in the CSD, those in protein binding sites generally remain the same. This implies that the protein matrix (excluding amino acid residues in the metal's first and second coordination shell) does not impose severe geometrical restrictions on the bound metal cation.
Lachenmann, Marcel J; Ladbury, John E; Dong, Jian; Huang, Kun; Carey, Paul; Weiss, Michael A
2004-11-09
The zinc finger, a motif of protein-nucleic acid recognition broadly conserved among eukaryotes, is a globular minidomain containing a tetrahedral metal-binding site. Preferential coordination of Zn(2+) (relative to Co(2+)) is proposed to reflect differences in ligand-field stabilization energies (LFSEs) due to complete or incomplete occupancy of d orbitals. LFSE predicts that the preference for Zn(2+) should be purely enthalpic in accord with calorimetric studies of a high-affinity consensus peptide (CP-1; Blasie, C. A., and Berg, J. (2002) Biochemistry 41, 15068-73). Despite its elegance, the general predominance of LFSE is unclear as (i) the magnitude by which CP-1 prefers Zn(2+) is greater than that expected and (ii) the analogous metal ion selectivity of a zinc metalloenzyme (carbonic anhydrase) is driven by changes in entropy rather than enthalpy. Because CP-1 was designed to optimize zinc binding, we have investigated the NMR structure and metal ion selectivity of a natural finger of lower stability derived from human tumor-suppressor protein WT1. Raman spectroscopy suggests that the structure of the WT1 domain is unaffected by interchange of Zn(2+) and Co(2+). As in CP-1, preferential binding of Zn(2+) (relative to Co(2+)) is driven predominantly by differences in enthalpy, but in this case the enthalpic advantage is less than that predicted by LFSE. A theoretical framework is presented to define the relationship between LFSE and other thermodynamic factors, such as metal ion electroaffinities, enthalpies of hydration, and the topography of the underlying folding landscape. The contribution of environmental coupling to entropy-enthalpy compensation is delineated in a formal thermodynamic cycle. Together, these considerations indicate that LFSE provides an important but incomplete description of the stringency and thermodynamic origin of metal-ion selectivity.
Directory of Open Access Journals (Sweden)
Shorouq I. Alghanmi
2015-09-01
Full Text Available Urban soils polluted with heavy metals are of increasing concern because it is greatly affecting human health and the ecological systems. Hence, it is mandatory to understand the reasons behind this pollution and remediate the contaminated solid. The removal of heavy metals from contaminated soil samples collected from the vicinity of the sewage lake in Jeddah, Saudi Arabia, was explored. The leaching process was studied kinetically and thermodynamically for better understanding of the remediation process. The results showed that the soil samples were slightly basic in nature, and tend to be more neutral away from the main contaminated sewage lake area. The total metal content in the soil samples was measured using the aqua regia extractions by ICP-OES and the results showed that many of the heavy metals present have significant concentrations above the tolerable limits. In general, the metal concentrations at different sites indicated that the heavy metal pollution is mainly due to the sewage discharge to the lake. The results showed excellent correlation between the concentrations of Co, As, and Hg with the distance from the main contaminated area. The leaching of Co, As, and Hg using 1.0 M hydrochloric acid from the soil was studied kinetically at different temperatures and the experimental results were fitted using different kinetics models. The experimental data were best described with two-constant rate and Elovich equation kinetic models. Also, the thermodynamic study showed that the leaching process was spontaneous, endothermic and accompanied with increase in the entropy. In general, the polluted soil could be remediated successfully from the heavy metals using the acid leaching procedure in a short period of time.
International Nuclear Information System (INIS)
Gurvich, L.V.; Bergman, G.A.; Gorokhov, L.N.; Iorish, V.S.; Leonidov, V.Y.; Yungman, V.S.
1997-01-01
The data on thermodynamic and molecular properties of the potassium, rubidium and cesium hydroxides have been collected, critically reviewed, analyzed, and evaluated. Tables of the thermodynamic properties [C p circ , Φ=-(G -H(0)/T, S, H -H(0), Δ f H, Δ f G)] of these hydroxides in the condensed and gaseous states have been calculated using the results of the analysis and some estimated values. The recommendations are compared with earlier evaluations given in the JANAF Thermochemical Tables and Thermodynamic Properties of Individual Substances. The properties considered are: the temperature and enthalpy of phase transitions and fusion, heat capacities, spectroscopic data, structures, bond energies, and enthalpies of formation at 298.15 K. The thermodynamic functions in solid, liquid, and gaseous states are calculated from T=0 to 2000 K for substances in condensed phase and up to 6000 K for gases. copyright 1997 American Institute of Physics and American Chemical Society
McTee, Michael R; Gibbons, Sean M; Feris, Kevin; Gordon, Nathan S; Gannon, James E; Ramsey, Philip W
2013-10-01
Predation rates were measured for two Acanthamoeba castellanii strains feeding on metal-tolerant and metal-sensitive strains of Pseudomonas putida and compared with cellular thermodynamic data. Predation rates by A. castellanii strain ATCC 30010 correlated with cell volume of the prey. To explore whether this observation could be environmentally relevant, pseudomonad species were isolated from a pristine and a metal-contaminated river and were paired based on phylogenetic and physiological relatedness. Then, cellular thermodynamics and predation rates were measured on the most similar pseudomonad pair. Under cadmium stress, the strain from contaminated river sediments, Pseudomonas sp. CF150, exited metabolic dormancy faster than its pair from pristine sediments, Pseudomonas sp. N9, but consumed available resources less efficiently (more energy was lost as heat). Predation rates by both strains of ameba were greater on Pseudomonas sp. CF150 than on Pseudomonas sp. N9 at the highest cadmium concentration. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Reichel, Friederike
2007-11-19
This thesis addresses the effect of the parent metal-substrate orientation on the thermodynamics and kinetics of ultra-thin oxide-film growth on bare metals upon their exposure to oxygen gas at low temperatures (up to 650 K). A model description has been developed to predict the thermodynamically stable microstructure of a thin oxide film grown on its bare metal substrate as function of the oxidation conditions and the substrate orientation. For Mg and Ni, the critical oxide-film thickness is less than 1 oxide monolayer and therefore the initial development of an amorphous oxide phase on these metal substrates is unlikely. Finally, for Cu and densely packed Cr and Fe metal surfaces, oxide overgrowth is predicted to proceed by the direct formation and growth of a crystalline oxide phase. Further, polished Al single-crystals with {l_brace}111{r_brace}, {l_brace}100{r_brace} and {l_brace}110{r_brace} surface orientations were introduced in an ultra-high vacuum system for specimen processing and analysis. After surface cleaning and annealing, the bare Al substrates have been oxidized by exposure to pure oxygen gas. During the oxidation, the oxide-film growth kinetics has been established by real-time in-situ spectroscopic ellipsometry. After the oxidation, the oxide-film microstructures were investigated by angle-resolved X-ray photoelectron spectroscopy and low energy electron diffraction. Finally, high-resolution transmission electron microscopic analysis was applied to study the microstructure and morphology of the grown oxide films on an atomic scale. (orig.)
Yan, Peng; Xia, Jia-Shuai; Chen, You-Peng; Liu, Zhi-Ping; Guo, Jin-Song; Shen, Yu; Zhang, Cheng-Cheng; Wang, Jing
2017-05-01
Extracellular polymeric substances (EPS) play a crucial role in heavy metal bio-adsorption using activated sludge, but the interaction mechanism between heavy metals and EPS remains unclear. Isothermal titration calorimetry was employed to illuminate the mechanism in this study. The results indicate that binding between heavy metals and EPS is spontaneous and driven mainly by enthalpy change. Extracellular proteins in EPS are major participants in the binding process. Environmental conditions have significant impact on the adsorption performance. Divalent and trivalent cations severely impeded the binding of heavy metal ions to EPS. Electrostatic interaction mainly attributed to competition between divalent cations and heavy metal ions; trivalent cations directly competed with heavy metal ions for EPS binding sites. Trivalent cations were more competitive than divalent cations for heavy metal ion binding because they formed complexing bonds. This study facilitates a better understanding about the interaction between heavy metals and EPS in wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mamatkulov, Shavkat; Schwierz, Nadine
2018-02-01
Metal cations are essential in many vital processes. In order to capture the role of different cations in all-atom molecular dynamics simulations of biological processes, an accurate parametrization is crucial. Here, we develop force field parameters for the metal cations Li+, Na+, K+, Cs+, Mg2+, Ca2+, Sr2+, and Ba2+ in combination with the TIP3P water model that is frequently used in biomolecular simulations. In progressing toward improved force fields, the approach presented here is an extension of previous efforts and allows us to simultaneously reproduce thermodynamic and kinetic properties of aqueous solutions. We systematically derive the parameters of the 12-6 Lennard-Jones potential which accurately reproduces the experimental solvation free energy, the activity derivative, and the characteristics of water exchange from the first hydration shell of the metal cations. In order to reproduce all experimental properties, a modification of the Lorentz-Berthelot combination rule is required for Mg2+. Using a balanced set of solution properties, the optimized force field parameters aim to capture the fine differences between distinct metal cations including specific ion binding affinities and the kinetics of cation binding to biologically important anionic groups.
Thermodynamic characteristics of sorption of metal-ions by ion exchangers
ABBASOV ALIADDIN DAYYAN; JAFARLI MAHNUR MOYSUN; MEMMEDOVA FIZZA SADIKH; HEYDEROVA FARAH FARMAN
2016-01-01
Conditions of sorption equilibrium of copper, zinc, cadmium and lead-ions by chelatforming resins Diaion CR 11, Dowex M 4195 and Duolite C 467 depending on the degree of neutralization of their ionogenic groups, the acidity of the medium and concentration of solutions are studied; corresponding equations expressing the isotherms of sorption are offered. Kinetics of these processes is studied; on the basis of equilibrium and kinetic parameters are calculated thermodynamic quantities. It is sho...
Kinetic and thermodynamic bases to resolve issues regarding conditioning of uranium metal fuels
International Nuclear Information System (INIS)
Johnson, A.B.; Ballinger, R.G.; Simpson, K.A.
1994-12-01
Numerous uranium - bearing fuels are corroding in fuel storage pools in several countries. At facilities where reprocessing is no longer available, dry storage is being evaluated to preclude aqueous corrosion that is ongoing. It is essential that thermodynamic and kinetic factors are accounted for in transitions of corroding uranium-bearing fuels to dry storage. This paper addresses a process that has been proposed to move Hanford N-Reactor fuel from wet storage to dry storage
International Nuclear Information System (INIS)
Koukkari, P.; Olin, M.; Laitinen, T.; Sippola, H.
1999-04-01
The oxide films formed on primary circuit surfaces incorporate radioactive species from the coolant and influence different corrosion phenomena in nuclear power plants. One approach to improve the understanding on the formation and properties of these oxide films is to evaluate their thermodynamic stability. The aim of this work was to compare and demonstrate the applicability of different commercial thermodynamic computer programs to model the deposition of oxides containing iron, chromium and/or nickel in various nuclear power plant environments. The programs considered in this evaluation comprised the EQ3/6 program and a product group including such products as ChemSage, HSC (including SOLGASMIX and GIBBS), H+PLUS and ChemSheet. In the group the transfer of data between different products is relatively easy. The goal was to find out which programs can be applied to evaluate the stability of oxide films, but not to assess the absolute accuracy of the calculations. The evaluation was done by means of applying the programs to calculate the stability of pure and mixed oxides of iron, nickel and chromium on stainless steel both in WWER and BWR conditions at different temperatures and coolant compositions. The comparison showed that EQ3/6 is suitable for most thermodynamic calculations. EQ3/6 can be characterised as a professional tool, for which no commercial training is available. ChemSage is a versatile and reliable program, which can be well used together with HSC and H+PLUS. ChemSage is mainly a professional tool, while HSC is easier to operate by an occasional user. Commercial training and support is available for both ChemSage and HSC. ChemSheet has been designed to utilise the properties of ChemSage in a user-friendly spreadsheet environment. All the products tested calculate thermodynamic equilibrium. Thus they are suitable to characterise such conditions in which the formation of a certain phase is or becomes possible. On the other hand, the modelling of the
Rational extended thermodynamics
Müller, Ingo
1998-01-01
Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...
Abdolali, Atefeh; Ngo, Huu Hao; Guo, Wenshan; Lu, Shaoyong; Chen, Shiao-Shing; Nguyen, Nguyen Cong; Zhang, Xinbo; Wang, Jie; Wu, Yun
2016-01-15
A breakthrough biosorbent namely multi-metal binding biosorbent (MMBB) made from a combination of tea wastes, maple leaves and mandarin peels, was prepared to evaluate their biosorptive potential for removal of Cd(II), Cu(II), Pb(II) and Zn(II) from multi-metal aqueous solutions. FTIR and SEM were conducted, before and after biosorption, to explore the intensity and position of the available functional groups and changes in adsorbent surface morphology. Carboxylic, hydroxyl and amine groups were found to be the principal functional groups for the sorption of metals. MMBB exhibited best performance at pH 5.5 with maximum sorption capacities of 31.73, 41.06, 76.25 and 26.63 mg/g for Cd(II), Cu(II), Pb(II) and Zn(II), respectively. Pseudo-first and pseudo-second-order models represented the kinetic experimental data in different initial metal concentrations very well. Among two-parameter adsorption isotherm models, the Langmuir equation gave a better fit of the equilibrium data. For Cu(II) and Zn(II), the Khan isotherm describes better biosorption conditions while for Cd(II) and Pb(II), the Sips model was found to provide the best correlation of the biosorption equilibrium data. The calculated thermodynamic parameters indicated feasible, spontaneous and exothermic biosorption process. Overall, this novel MMBB can effectively be utilized as an adsorbent to remove heavy metal ions from aqueous solutions. Copyright © 2015 Elsevier B.V. All rights reserved.
Janssen, Camiel H C; Sánchez, Antonio; Kobrak, Mark N
2014-11-10
The selective extraction of metals from aqueous mixtures has generally relied on the use of selective ionophores. We present an alternative strategy that exploits a recently developed approach to extraction into an ionic liquid phase, and show that a high degree of control over selectivity can be obtained by tuning the relative concentrations of extraction agents. A thermodynamic model for the approach is presented, and an experimental separation of strontium and potassium ions is performed. It is shown that tuning the concentrations of the species involved can shift the ratio of potassium to strontium in the ionic liquid phase from 4:1 to 3:4. This extraction is performed under mild conditions with relatively common reagents. The result is a proof-of-concept for a novel separations scheme that could have great importance in a wide range of technological applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
Nilgün Şen
2016-10-01
Full Text Available The B3LYP/6-311++G(2df,2p density functional theory (DFT method was used to investigate molecular geometry and thermodynamic properties of RDX and RDX derivatives containing Al and B metals. The detonation velocity (D and detonation pressure (P, estimated by using Kamlet–Jacobs and in literature equations, respectively. Total energies (Et, frontier orbital energy (EHOMO, ELOMO, energy gap (ΔELUMO–HOMO and theoretical molecular density (ρ were calculated with Spartan 14 software package program. It was shown that the presence of aluminum and boron atoms affects the good thermal stabilities. The results show that the composite RDX-Al, RDX-B derivatives have higher detonation performance and higher density than RDX. RDX-Al derivatives appeared to be superior to RDX-B mixtures in terms of these parameters. These results provide information on the moleculer design of new energetic materials.
Thallam Thattai, A.; Wittebrood, B.J.; Woudstra, T.; Geerlings, J.J.C.; Aravind, P.V.
2014-01-01
Flexibility in natural gas combined cycle power plants (NGCC) with pre-combustion CO2 capture could be introduced with co-production of hydrogen and subsequent hydrogen storage with metal hydrides (MH). The current work presents a thermodynamic analysis and comparison between steady state ASPEN Plus
Marin, Dolores; Mendicuti, Francisco
1988-01-01
Describes a laboratory experiment designed to encourage laboratory cooperation among individual undergraduate students or groups. Notes each student contributes results individually and the exchange of data is essential to obtain final results. Uses the polarographic method for determining complex metal ions. (MVL)
Metal-hydrogen systems with an exceptionally large and tunable thermodynamic destabilization
Ngene, Peter; Longo, Alessandro; Mooij, L.P.A.; Bras, Wim; Dam, B.
2017-01-01
Hydrogen is a key element in the energy transition. Hydrogen-metal systems have been studied for various energy-related applications, e.g., for their use in reversible hydrogen storage, catalysis, hydrogen sensing, and rechargeable batteries. These applications depend strongly on the
DEFF Research Database (Denmark)
Bergemann, Maria; Collet, Remo; Schönrich, Ralph
2016-01-01
We have analysed high-resolution spectra of 328 stars and derived Mg abundances using non-local thermodynamic equilibrium (NLTE) spectral line formation calculations and plane-parallel model stellar atmospheres derived from the mean stratification of 3D hydrodynamical surface convection simulations...... of late-type stars. The distribution of Mg abundances in the Galactic disk is analysed from the perspective of Galactic chemical evolution. We find that the trend of [Mg/Fe] shows a mild decline with decreasing metallicity below [Fe/H]~-1.2 and that a significant fraction of low-metallicity stars have [Mg....../Fe] ratios close to solar even at [Fe/H] ~ -2. This is at variance with results of classical abundance analyses based on local thermodynamic equilibrium (LTE) and 1D model stellar atmospheres, which argue for a constant elevated [Mg/Fe] in metal-poor stars of the Galactic thick disk and halo....
Zhang, Shengjun
2006-12-01
of aluminum and magnesium alloys. As the first step of the thermodynamic description of the high-order system, the constitutive-binary systems were modeled in the present work using the CALPHAD technique combined with first-principles calculations. Then, ternaries and higher order systems can be modeled. For ternary systems without experimental data, the thermodynamic description is extrapolated by combining three constitutive-binary systems. Alkali-metal induced high temperature embrittlement (HTE) and loss of ductility were investigated in Al-Li, Al-Mg and Mg-Li alloys. It was discovered that the alkali-metal-rich liquid-2 phase is the cause of HTE and the loss of ductility is proportional to the mole fraction of the liquid phase and the grain size. The calculated results are consistent with experimental observations in the literature and were used to determine HTE safe and sensitive zones, maximum and critical hot-rolling temperatures and the maximum allowable Na content in alloys, which can be used to industrial processing of Al and Mg alloys. The degree of HTE is proportional to the mole fraction of the liquid-2 phase and the grain size.
Masubuchi, Tsugunosuke; Eckhard, Jan F.; Lange, Kathrin; Visser, Bradley; Tschurl, Martin; Heiz, Ulrich
2018-02-01
A laser vaporization cluster source that has a room for cluster aggregation and a reactor volume, each equipped with a pulsed valve, is presented for the efficient gas-phase production of chemically modified metal clusters. The performance of the cluster source is evaluated through the production of Ta and Ta oxide cluster cations, TaxOy+ (y ≥ 0). It is demonstrated that the cluster source produces TaxOy+ over a wide mass range, the metal-to-oxygen ratio of which can easily be controlled by changing the pulse duration that influences the amount of reactant O2 introduced into the cluster source. Reaction kinetic modeling shows that the generation of the oxides takes place under thermalized conditions at less than 300 K, whereas metal cluster cores are presumably created with excess heat. These characteristics are also advantageous to yield "reaction intermediates" of interest via reactions between clusters and reactive molecules in the cluster source, which may subsequently be mass selected for their reactivity measurements.
International Nuclear Information System (INIS)
Reichl, Ch.; Schneider, R.; Hohenauer, W.; Grabner, F.; Grant, R.J.
2017-01-01
Highlights: • Thermodynamic processes for cryogenic sheet metal forming tools were examined. • Static and transient temperature field simulations are evaluated on a Nakajima tool. • Differently arranged cooling loops lead to homogeneous temperature distribution. • Scaling of the geometry leads to significantly increased heat transfer times. • The temperature management of complex forming tools can be developed numerically. - Abstract: Forming at cryogenic temperatures provides a significant improvement in formability of aluminum sheets. This offers the potential for light, complex and highly integrated one-piece components to be produced out of aluminum alloys at sub-zero temperatures. This would allow weight reduction, environmental conservation and cost reduction of a car body to give one example in the automotive industry. For temperature supported processes special forming tools and cooling strategies are required to be able to reach and maintain process stability. Time dependent numerical simulations of the thermodynamic processes of cryogenic sheet metal forming covering all aspects of heat transfer through conduction, convection and radiation play a vital role in the design and development of future tools and are presented for several geometries. Cooling (and heating) strategies (including selection of the number of cooling loops and their relative positioning) in a Nakajima testing tool were evaluated using computational fluid dynamics. These simulations were performed with static and transient solvers to demonstrate the extraction of tool surface temperature distributions on different forming tool geometries. Comparisons of predicted temperature characteristics of an aluminum sheet and experimentally determined temperature distributions were made. The temperature distribution of the surface of an aluminum sheet could be predicted with high accuracy. Further, the influence of the tool size on the parameters temperature transfer times and
Wang, Vincent C-C
2016-08-10
Finding fundamental and general mechanisms for electrochemical reactions, such as the oxygen evolution reaction (OER) from water and reduction of CO2, plays vital roles in developing the desired electrocatalysts for facilitating solar fuel production. Recently, density functional theory (DFT) calculations have shown that there is a universal scaling relation of adsorption energy between key intermediate species, HO(ad) and HOO(ad), on the surface of metal oxides as OER electrocatalysts. In this paper, a kinetic and thermodynamic model for the four-electron electrochemical reaction based on previous OER mechanisms proposed by DFT calculations is developed to further investigate the electrocatalytic properties over a wide range of metal oxides and photosystem II. The OER activity of metal oxides (i.e. electrocatalytic current) calculated from the DFT-calculated equilibrium potentials with kinetic properties, such as the rate constants for interfacial electron transfer and catalytic turnover, can lead to a volcano-shaped trend that agrees with the results observed in experiments. In addition, the kinetic aspects of the impact on the electrocatalysts are evaluated. Finally, comparing the results of metal oxides and photosystem II, and fitting experimental voltammograms give further insights into kinetic and thermodynamic roles. Here, the general guidelines for designing OER electrocatalysts with unified kinetic and thermodynamic properties are presented.
Mechanisms governing the interaction of metallic particles with nanosecond laser pulses.
Demos, Stavros G; Negres, Raluca A; Raman, Rajesh N; Shen, Nan; Rubenchik, Alexander M; Matthews, Manyalibo J
2016-04-04
The interaction of nanosecond laser pulses at 1064- and 355-nm with micro-scale, nominally spherical metallic particles is investigated in order to elucidate the governing interaction mechanisms as a function of material and laser parameters. The experimental model used involves the irradiation of metal particles located on the surface of transparent plates combined with time-resolved imaging capable of capturing the dynamics of particle ejection, plume formation and expansion along with the kinetics of the dispersed material from the liquefied layer of the particle. The mechanisms investigated in this work are informative and relevant across a multitude of materials and irradiation geometries suitable for the description of a wide range of specific applications. The experimental results were interpreted using physical models incorporating specific processes to assess their contribution to the overall observed behaviors. Analysis of the experimental results suggests that the induced kinetic properties of the particle can be adequately described using the concept of momentum coupling introduced to explain the interaction of plane metal targets to large-aperture laser beams. The results also suggest that laser energy deposition on the formed plasma affects the energy partitioning and the material modifications to the substrate.
March, N. H.
A brief discussion on local coordination in expanded alkalis will be followed by a short review of recent progress in determining electronic correlation functions by combining experiment using diffraction techniques with computer simulation. Then both critical point properties and melting temperatures of liquid sp metals will be discussed. In the latter case, the main topic will be on a metal model which will be used to correlate the ratio of surface tension to shear viscosity with a characteristic velocity. Conventional choice is to take this velocity as the thermal value (kBT / M)1/2. This choice has some merit. However an alternative is to use the velocity of sound, and a different formula then emerges which depends on the valency Z. Reference to some experimental support for such a formula is given. Finally, connection with diffusion, and with bulk viscosity, is discussed with some involvement of a collective mode model, such as prompted by early neutron inelastic scattering results on Rb near its melting point.
Tolentino, Terezinha Alves; Bertoli, Alexandre Carvalho; dos Santos Pires, Maíra; Carvalho, Ruy; Labory, Claudia Regina Gontijo; Nunes, Janaira Santana; Bastos, Ana Rosa Ribeiro; de Freitas, Matheus Puggina
2015-01-01
Lead (Pb) is known by its toxicity both for animals and plants. In order to evaluate its toxicity, plants of Brachiaria brizantha were cultivated on nutritive solution of Hoagland during 90 days and submitted to different concentrations of Pb. The content of macro and micronutrients was evaluated and there was a reduction on root content of Ca, besides the lowest dosages of Pb had induced an increase of N, S, Mn, Cu, Zn and Fe. The cell ultrastructure of leaves and roots were analyzed by transmission electronic microscopy (TEM). Among the main alterations occurred there were invaginations on cell walls, the presence of crystals on the root cells, accumulation of material on the interior of cells and vacuolar compartmentalization. On the leaves the degradation of chloroplasts was observed, as well as the increase of vacuoles. Structures for the formation of oxalate crystals were proposed through molecular modeling and thermodynamic stability. Calculi suggest the formation of highly stable metal-oxalate complexes. Copyright © 2015 Elsevier B.V. All rights reserved.
Thallam Thattai, A.; Wittebrood, B.J.; Woudstra, T.; Geerlings, J.J.C.; Aravind, P.V.
2014-01-01
Flexibility in natural gas combined cycle power plants (NGCC) with pre-combustion CO2 capture could be introduced with co-production of hydrogen and subsequent hydrogen storage with metal hydrides (MH). The current work presents a thermodynamic analysis and comparison between steady state ASPEN Plus models of a reference case NGCC plant with no capture and H2 storage, an NGCC plant with pre-combustion capture using gas heated - auto thermal reformer (GHR-ATR) combined with a sorption enhanced...
Stevenson, Michael James
Copper(I) is the predominant oxidation state of this essential metal in living cells due to reducing intracellular conditions. Because of deleterious copper-mediated Fenton chemistry, intracellular copper trafficking pathways involve strict regulation by metallochaperone proteins. Previous studies of the 68-residue metallochaperone, HAH1, have shown that it coordinates Cu(I) with two cysteines for transport from Ctr1 in the cell membrane to ATPases in the Golgi network. Using isothermal titration calorimetry (ITC), and methods to suppress oxidation and disproportionation of Cu(I), the thermodynamics of Cu(I), as well as other metal ions, binding to HAH1 have been accurately quantified. During the course of this study, the Cu(I) binding thermodynamics with the stabilizing ligand hexamethyltrien were determined in order to accurately quantify the Cu(I) binding thermodynamics with proteins, and revealed an unexpected Cu(I) coordination chemistry with this ligand. In addition, HAH1 binding the Cu(I) analogue Ag(I), the abundant cellular metal ion Zn(II), and the thiophilic toxic metal ion Hg(II), have been quantified. The binding thermodynamics of these metal ions were also determined in the presence of glutathione to more accurately model physiological conditions. HAH1 has a high affinity for Cu(I), which is both enthalpically and entropically favorable. It has a substantially lower affinity for Zn(II), which is entropically favored, suggesting that Zn(II) is not able to compete with Cu(I) for HAH1 in vivo. However, HAH1 has an exceptionally high affinity for Hg(II), with its larger thiophilicity, and it will displace Cu(I). Mercury(II) and particularly organomercurial compounds are very toxic, yet proteins from the bacterial mer operon provide resistance to this toxicity. In particular, the organomercurial lyase MerB, whose only known structural homologue is a putative copper metallochaperone, is responsible for cleavage of the carbon-mercury bond of MeHg(II) and
International Nuclear Information System (INIS)
Hwang, Jeong Ui; Jang, Jong Jae; Jee, Jong Gi
1987-01-01
The contents of this book are thermodynamics on the law of thermodynamics, classical thermodynamics and molecule thermodynamics, basics of molecule thermodynamics, molecule and assembly partition function, molecule partition function, classical molecule partition function, thermodynamics function for ideal assembly in fixed system, thermodynamics function for ideal assembly in running system, Maxwell-Boltzmann's law of distribution, chemical equilibrium like calculation of equilibrium constant and theory of absolute reaction rate.
Directory of Open Access Journals (Sweden)
Riddhish R. Bhatt
2015-05-01
Full Text Available Terpolymeric resin has been synthesized by condensing salicylic acid with catechol employing formaldehyde as a cross linking agent at 80 ± 5 °C using DMF as a solvent. The resin was characterized by elemental analysis, FTIR, XRD and thermal analysis (TGA, DTA and DTG. The morphology of the resin was studied by optical photographs and scanning electron micrographs (SEM at different magnifications. The physico-chemical properties have been studied. The uptake behavior of various metal ions viz. Ni(II, Cu(II, Zn(II, Cd(II and Pb(II towards synthesized resin has been studied depending on contact time, pH and temperature. The selectivity order found is: Cu(II > Zn(II > Pb(II > Ni(II > Cd(II. The sorption data obtained at optimized conditions were analyzed by six two parameter isotherm models like Langmuir, Freundlich, Temkin, Dubinin–Radushkevich (D–R, Halsey and Harkins–Jura. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R isotherms were found better to describe the sorption data with high correlation for the adsorption with a low SSE value for all the metals under study. The adsorption capacities of the SFC resin for removal of Ni(II, Cu(II, Zn(II, Cd(II and Pb(II were determined with the Langmuir equation and found to be 0.815, 1.104, 1.215, 0.498, and 0.931 mmol/g respectively. The adsorption process follows first order kinetics and specific rate constant Kr was obtained by the application of Lagergren equation. Thermodynamic parameters viz. ΔGads, ΔSads and ΔHads have also been calculated for the metal-resin systems. The external diffusion rate constant (Ks and intra-particle diffusion rate constant (Kid were calculated by Spahn–Schlunder and Weber–Morris models respectively. Desorption studies were done using various desorbing agents viz. de-ionized water, boiled water, various concentrations of HCl, ammonia, thiourea, citric acid and tartaric acid.
Energy Technology Data Exchange (ETDEWEB)
Hug, Alexander
2011-05-04
Knowledge of basic physical properties of matter in high-energy-density (HED) states such as the equation-of-state (EOS) is of fundamental importance for various branches of basic and applied physics. However, such matter under extreme conditions of temperature and pressure - also called ''warm dense matter'' (WDM) - can only be generated in dynamic experiments employing the most powerful drivers. At the high temperature experimental area HHT of the GSI Helmholtzzentrum fuer Schwerionenforschung (Darmstadt, Germany), intense beams of energetic heavy ions are used for this purpose. The aim of this work is to study thermophysical properties of refractory metals in hot solid and liquid states by precise temperature measurements. In order to identify the melting plateau and to limit the maximum target temperature to the region of interest, relatively long (one microsecond) bunches of uranium and xenon ions have been used to heat initially solid samples. The intense ion beams were focused on a millimetre spot at the target in order to achieve uniform conditions. The temperature on the target surface was determined by analysing thermal radiation emitted from a 0.03 mm{sup 2} area at five different wavelengths. In order to obtain the physical temperature, one has to measure not only the thermal radiation but also the emissivity, ε(T,λ) of the target surface which is not known ab initio. For this purpose, a set-up for direct target reflection measurement was designed and embedded into the fast multichannel pyrometer system. The reflection signal provides the necessary information about modifications of the target surface properties during the interaction with the ion beam. Beside the pyrometric and reflection measurement set-ups, various hardware and software components of the data acquisition system for the heavy-ion beam driven experiments were substantially enhanced. The emissivity was also obtained by identifying the melting plateau and using the
Directory of Open Access Journals (Sweden)
Saidi Temitope Sabitu
2012-06-01
Full Text Available The influence of transition metal oxide catalysts (ZrO2, CeO2, Fe3O4 and Nb2O5 on the hydrogen desorption kinetics of MgH2 was investigated using constant pressure thermodynamic driving forces in which the ratio of the equilibrium plateau pressure (pm to the opposing plateau (pop was the same in all the reactions studied. The results showed Nb2O5 to be vastly superior to other catalysts for improving the thermodynamics and kinetics of MgH2. The modeling studies showed reaction at the phase boundary to be likely process controlling the reaction rates of all the systems studied.
Statistical thermodynamics of alloys
Gokcen, N A
1986-01-01
This book is intended for scientists, researchers, and graduate students interested in solutions in general, and solutions of metals in particular. Readers are assumed to have a good background in thermodynamics, presented in such books as those cited at the end of Chapter 1, "Thermo dynamic Background." The contents of the book are limited to the solutions of metals + metals, and metals + metalloids, but the results are also appli cable to numerous other types of solutions encountered by metallurgists, materials scientists, geologists, ceramists, and chemists. Attempts have been made to cover each topic in depth with numerical examples whenever necessary. Chapter 2 presents phase equilibria and phase diagrams as related to the thermodynamics of solutions. The emphasis is on the binary diagrams since the ternary diagrams can be understood in terms of the binary diagrams coupled with the phase rule, and the Gibbs energies of mixing. The cal culation of thermodynamic properties from the phase diagrams is ...
International Nuclear Information System (INIS)
Azad, A.M.; Sreedharan, O.M.; Gnanamoorthy, J.B.
1986-01-01
An emf technique was adopted for the first time for direct determination of thermodynamic activities of all major metallic components, namely Fe, Cr, Ni an Mn in a commercial grade AISI 316 stainless steel in the temperature range of approximately 800 to 1200 K. The viability of this method was initially established in the case of chromium activity measurements which could be compared with literature values. For this purpose galvanic cells with M/MF 2 and Msub(316ss)/MF 2 (M=Fe, Cr, Ni, or Mn) were used, employing single crystal CaF 2 as the electrolyte. In addition, Mo activity in this alloy was measured using the emf of the galvanic cell, Pt, Mo, MoO 2 /7 YDT/MoO 2 , Mosub(316ss), Pt. The activities determined by these galvanic cells could be represented as: log asub(Cr)(±0.02) = -0.577 + 69.1/T, log asub(Ni)(±0.02)=0.589-800.31/T, log asub(Fe)(±0.01)=0.179-248.54/T, log asub(Mn)(±0.01)=0.742-2581.40/T, log asub(Mo)(±0.05)=-4.548+3148.48/T These activities were used to compute the threshold oxygen levels in Na/AISI 31 stainless steel system for the formation of the corrosion products, viz., NaCrO 2 , Na 4 FeO 3 , MnO and NaMnO 2 . These data in conjunction with the carbon activity in this alloy reported in the literature and initial compositio of M 23 C 6 phase, could lead to the estimation of the Gibbs energy change for a typical reaction, 2.571 Cr + 0.732 Fe + 0.303 Mo + 0.226 Ni + C=Msub(23sub(6))C as: Gsub(f,T)sup(o)(Msub(23sub(6))C,s)(kJ)=-29.16-0.0522 T (K). (author). 40 refs., 6 figs
International Nuclear Information System (INIS)
Lim, Gyeong Hui
2008-03-01
This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics
Veiko, V. P.; Slobodov, A. A.; Odintsova, G. V.
2013-06-01
A computational thermodynamic approach to determining the phase-chemical composition of films formed on the surface of metals and alloys under laser oxidation in the normal atmosphere, depending on their bulk composition, laser exposure conditions, and composition of the atmosphere, is suggested. It is demonstrated for the example of a complex alloy (alloyed steel of Russian brand 12X18H10T) subjected to laser heating in air that, among the wide variety of different possible reactions of iron, nickel, or chromium with the components of air (oxygen, nitrogen, carbon, its compounds, atmospheric moisture, etc), only strictly defined reactions can occur. First of all these are metal oxidation processes with the formation of an oxide film whose phase and chemical composition is determined by temperature and heating duration. Simulated results are confirmed by the experimental data provided by energy-dispersive x-ray spectroscopy.
Thermodynamics of nuclear materials
International Nuclear Information System (INIS)
1979-01-01
Full text: The science of chemical thermodynamics has substantially contributed to the understanding of the many problems encountered in nuclear and reactor technology. These problems include reaction of materials with their surroundings and chemical and physical changes of fuels. Modern reactor technology, by its very nature, has offered new fields of investigations for the scientists and engineers concerned with the design of nuclear fuel elements. Moreover, thermodynamics has been vital in predicting the behaviour of new materials for fission as well as fusion reactors. In this regard, the Symposium was organized to provide a mechanism for review and discussion of recent thermodynamic investigations of nuclear materials. The Symposium was held in the Juelich Nuclear Research Centre, at the invitation of the Government of the Federal Republic of Germany. The International Atomic Energy Agency has given much attention to the thermodynamics of nuclear materials, as is evidenced by its sponsorship of four international symposia in 1962, 1965, 1967, and 1974. The first three meetings were primarily concerned with the fundamental thermodynamics of nuclear materials; as with the 1974 meeting, this last Symposium was primarily aimed at the thermodynamic behaviour of nuclear materials in actual practice, i.e., applied thermodynamics. Many advances have been made since the 1974 meeting, both in fundamental and applied thermodynamics of nuclear materials, and this meeting provided opportunities for an exchange of new information on this topic. The Symposium dealt in part with the thermodynamic analysis of nuclear materials under conditions of high temperatures and a severe radiation environment. Several sessions were devoted to the thermodynamic studies of nuclear fuels and fission and fusion reactor materials under adverse conditions. These papers and ensuing discussions provided a better understanding of the chemical behaviour of fuels and materials under these
International Nuclear Information System (INIS)
Soto-Varela, F.; Rodríguez-Blanco, M.L.; Taboada-Castro, M.M.; Taboada-Castro, M.T.
2014-01-01
Highlights: • All metals occur in association with suspended sediment. • DOC and SS appeared to influence the partitioning of metals. • The SS was a good predictor of particulate metal levels. • The most important variable to explain storm-event K D for Al and Fe is DOC. • Enrichment factor values suggest a natural origin for the particulate metals. - Abstract: Headwater stream, draining from a rural catchment in NW Spain, was sampled during baseflow and storm-event conditions to investigate the temporal variability in dissolved and particulate Al, Fe, Mn, Cu and Zn concentrations and the role of discharge (Q), pH, dissolved organic carbon (DOC) and suspended sediment (SS) in the transport of dissolved and particulate metals. Under baseflow and storm-event conditions, concentrations of the five metals were highly variable. The results of this study reveal that all metal concentrations are correlated with SS. DOC and SS appeared to influence both the metal concentrations and the partitioning of metals between dissolved and particulate. The SS was a good predictor of particulate metal levels. Distribution coefficients (K D ) were similar between metals (4.72–6.55) and did not change significantly as a function of discharge regime. Stepwise multiple linear regression analysis reveals that the most important variable to explain storm-event K D for Al and Fe is DOC. The positive relationships found between metals, in each fraction, indicate that these elements mainly come from the same source. Metal concentrations in the stream were relatively low
International Nuclear Information System (INIS)
Garcia-Moliner, F.
1975-01-01
Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions
Sheehan, D. P.; Garamella, J. T.; Mallin, D. J.; Sheehan, W. F.
2012-11-01
Differences in gas reaction rates between disparate surfaces have been proposed as a means to achieve steady-state pressure and temperature gradients within a single blackbody cavity, thereby challenging the second law of thermodynamics (Sheehan 1998 Phys. Rev. E 57 6660; Sheehan 2001 Phys. Lett. A 280 185; Capek and Sheehan 2005 Challenges to the Second Law of Thermodynamics (Theory and Experiment) (Fundamental Theories of Physics Series vol 146) (Dordrecht: Springer)). This paper reports on laboratory tests of this hypothesis; specifically, molecular hydrogen is found to dissociate preferentially on rhenium surfaces versus tungsten at identical elevated temperatures and reduced pressures (T ⩽ 2100 K {\\cal P} \\leqslant 30\\,{ {Torr}} ). Steady-state nonequilibrium H/H2 ratios over the surfaces suggest that temperature gradients could be maintained under blackbody cavity conditions. Preliminary results from bimetallic blackbody cavity experiments are discussed.
The contamination of soils by toxic metals is a widespread, serious problem that demands immediate action either by removal or immobilization, which is defined as a process which puts the metal into a chemical form, probably as a mineral, which will be inert and highly insoluble ...
Energy Technology Data Exchange (ETDEWEB)
Vlcek, Lukas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Uhlik, Filip [Charles Univ., Prague (Czech Republic); Moucka, Filip [Purkinje Univ. (Czech Republic); Nezbeda, Ivo [Purkinje Univ. (Czech Republic); Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic); Chialvo, Ariel A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-12-16
We evaluate the ability of selected classical molecular models to describe the thermodynamic and structural aspects of gas-phase hydration of alkali halide ions and the formation of small water clusters. To understand the effect of many-body interactions (polarization) and charge penetration effects on the accuracy of a force field, we perform Monte Carlo simulations with three rigid water models using different functional forms to account for these effects: (i) point charge non-polarizable SPC/E, (ii) Drude point charge polarizable SWM4- DP, and (iii) Drude Gaussian charge polarizable BK3. Model predictions are compared with experimental Gibbs free energies and enthalpies of ion hydration, and with microscopic structural properties obtained from quantum DFT calculations. We find that all three models provide comparable predictions for pure water clusters and cation hydration, but differ significantly in their description of anion hydration. None of the investigated classical force fields can consistently and quantitatively reproduce the experimental gas phase hydration thermodynamics. The outcome of this study highlights the relation between the functional form that describes the effective intermolecular interactions and the accuracy of the resulting ion hydration properties.
Müller, Ingo
1993-01-01
Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...
Thermodynamics: The Unique Universal Science
Directory of Open Access Journals (Sweden)
Wassim M. Haddad
2017-11-01
Full Text Available Thermodynamics is a physical branch of science that governs the thermal behavior of dynamical systems from those as simple as refrigerators to those as complex as our expanding universe. The laws of thermodynamics involving conservation of energy and nonconservation of entropy are, without a doubt, two of the most useful and general laws in all sciences. The first law of thermodynamics, according to which energy cannot be created or destroyed, merely transformed from one form to another, and the second law of thermodynamics, according to which the usable energy in an adiabatically isolated dynamical system is always diminishing in spite of the fact that energy is conserved, have had an impact far beyond science and engineering. In this paper, we trace the history of thermodynamics from its classical to its postmodern forms, and present a tutorial and didactic exposition of thermodynamics as it pertains to some of the deepest secrets of the universe.
48 CFR 252.208-7000 - Intent to furnish precious metals as Government-furnished material.
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Intent to furnish precious... SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions And Clauses 252.208-7000 Intent to furnish... to furnish precious metals required in the manufacture of items to be delivered under the contract if...
Olander, Donald
2007-01-01
The book’s methodology is unified, concise, and multidisciplinary, allowing students to understand how the principles of thermodynamics apply to all technical fields that touch upon this most fundamental of scientific theories. It also offers a rigorous approach to the quantitative aspects of thermodynamics, accompanied by clear explanations to help students transition smoothly from the physical concepts to their mathematical representations
Martirez, John Mark P; Carter, Emily A
2016-02-23
The Haber-Bosch process for NH3 synthesis is arguably one of the greatest inventions of the 20th century, with a massive footprint in agriculture and, historically, warfare. Current catalysts for this reaction use Fe for N2 activation, conducted at high temperatures and pressures to improve conversion rate and efficiency. A recent finding shows that plasmonic metal nanoparticles can either generate highly reactive electrons and holes or induce resonant surface excitations through plasmonic decay, which catalyze dissociation and redox reactions under mild conditions. It is therefore appealing to consider AuM (M = Fe, Co, Ni, and Mo) alloys to combine the strongly plasmonic nature of Au and the catalytic nature of M metals toward N2 dissociation, which together might facilitate ammonia production. To this end, through density functional theory, we (i) explore the feasibility of forming these surface alloys, (ii) find a pathway that may stabilize/deactivate surface M substituents during fabrication, and (iii) define a complementary route to reactivate them under operational conditions. Finally, we evaluate their reactivity toward N2, as well as their ability to support a pathway for N2 dissociation with a low thermodynamic barrier. We find that AuFe possesses similar appealing qualities, including relative stability with respect to phase separation, reversibility of Fe oxidation and reduction, and reactivity toward N2. While AuMo achieves the best affinity toward N2, its strong propensity toward oxidation could greatly limit its use.
International Nuclear Information System (INIS)
Jahangir, Vafa; Riahifar, Reza; Sahba Yaghmaee, Maziar
2016-01-01
In order to predict as well as study the surface melting phenomena in contradiction to surface overheating, a generalized thermodynamics model including the surface free energy of solid and the melt state along with the interfacial energy of solid–liquid (melt on substrate) has been introduced. In addition, the effect of different crystal structures of surfaces in fcc, bcc and hcp metals was included in surface energies as well as in the atomistic model. These considerations lead us to predict surface melting and overheating as two contradictory melting phenomena. The results of the calculation are demonstrated on the example of Pb and Al thin films in three groups of (100), (110) and (111) surface planes. Our conclusions show good agreement with experimental results and other theoretical investigations. Moreover, a computational algorithm has been developed which enables users to investigate the surface melt or overheating of single component metallic thin film with variable crystal structures and different crystalline planes. This model and developed software can be used for studying all related surface phenomena. - Highlights: • Investigating the surface melting and overheating phenomena • Effect of crystal orientations, surface energies, geometry and different atomic surface layers • Developing a computational algorithm and its related code (free-software SMSO-Ver1) • Thickness and orientation of surface plane dominate the surface melting or overheating. • Total excess surface energy as a function of thickness and temperature explains melting.
Thermodynamics of Crystalline States
Fujimoto, Minoru
2010-01-01
Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. This book is divided into three parts. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. In the third part, the multi-electron system is discussed theoretically, as a quantum-mechanical example, for the superconducting state in metallic crystals. Throughout the book, the role played by the lattice is emphasized and examined in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on meso...
ARTICLES: Physical laws governing the interaction of pulse-periodic CO2 laser radiation with metals
Vedenov, A. A.; Gladush, G. G.; Drobyazko, S. V.; Pavlovich, Yu V.; Senatorov, Yu M.
1985-01-01
It is shown theoretically and experimentally that the efficiency of welding metals with a pulse-periodic CO2 laser beam of low duty ratio, at low velocities, can exceed that of welding with cw lasers and with electron beams. For the first time an investigation was made of the influence of the laser radiation parameters (energy and frequency) and of the welding velocity on the characteristics of the weld and on the shape of the weldpool. The influence of the laser radiation polarization on the efficiency of deep penetration was analyzed.
Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao
2015-10-19
The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics.
Energy Technology Data Exchange (ETDEWEB)
Cengel, Y.A. [Nevada Univ., Reno, NV (United States). Dept. of Mechanical Engineering
2006-07-01
Green components of thermodynamics were identified and general aspects of green practices associated with thermodynamics were assessed. Energy uses associated with fossil fuels were reviewed. Green energy sources such as solar, wind, geothermal and hydropower were discussed, as well as biomass plantations. Ethanol production practices were reviewed. Conservation practices in the United States were outlined. Energy efficiency and exergy analyses were discussed. Energy intensity measurements and insulation products for houses were also reviewed. Five case studies were presented to illustrate aspects of green thermodynamics: (1) light in a classroom; (2) fuel saved by low-resistance tires; and (3) savings with high-efficiency motors; (4) renewable energy; and (5) replacing a valve with a turbine at a cryogenic manufacturing facility. It was concluded that the main principles of green thermodynamics are to ensure that all material and energy inputs minimize the depletion of energy resources; prevent waste; and improve or innovate technologies that achieve sustainability. 17 refs., 2 tabs., 9 figs.
Iribarne, J V
1973-01-01
The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...
Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao
2015-01-01
The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214
Energy Technology Data Exchange (ETDEWEB)
Ozkanlar, Abdullah; Cape, Jonathan L.; Hurst, James K.; Clark, Aurora E.
2011-09-05
Density functional theory (DFT) has been used to investigate the plausibility of water addition to the simple mononuclear ruthenium complexes, [(NH{sub 3}){sub 3}(bpy)Ru=O]{sup 2+}/{sup 3+} and [(NH{sub 3}){sub 3}(bpy)RuOH]{sup 3+}, in which the OH fragment adds to the 2,2{prime}-bipyridine (bpy) ligand. Activation of bpy toward water addition has frequently been postulated within the literature, although there exists little definitive experimental evidence for this type of 'covalent hydration'. In this study, we examine the energetic dependence of the reaction upon metal oxidation state, overall spin state of the complex, as well as selectivity for various positions on the bipyridine ring. The thermodynamic favorability is found to be highly dependent upon all three parameters, with free energies of reaction that span favorable and unfavorable regimes. Aqueous addition to [(NH{sub 3}){sub 3}(bpy)Ru=O]{sup 3+} was found to be highly favorable for the S = 1/2 state, while reduction of the formal oxidation state on the metal center makes the reaction highly unfavorable. Examination of both facial and meridional isomers reveals that when bipyridine occupies the position trans to the ruthenyl oxo atom, reactivity toward OH addition decreases and the site preferences are altered. The electronic structure and spectroscopic signatures (EPR parameters and simulated spectra) have been determined to aid in recognition of 'covalent hydration' in experimental systems. EPR parameters are found to uniquely characterize the position of the OH addition to the bpy as well as the overall spin state of the system.
International Nuclear Information System (INIS)
Peng Bin; Cheng Feng; Li Qianshu; Xie Yaoming; King, R. Bruce; Schaefer, Henry F.
2011-01-01
Graphical abstract: Density functional theory indicates that for Cp 4 M the S 4 structures are saddle points and the minima have C 1 symmetry with all η 5 -Cp rings for M = Ce and Th, three η 5 -Cp rings and one η 5 -Cp ring for M = Zr, and two η 5 -Cp rings and two η 5 -Cp rings for M = Ti and Hf. The dissociation energies for Cp 4 M → Cp 3 M + Cp · increase in the sequence Ti 3h structures with all η 5 -Cp rings are genuine minima for most of the Cp 3 M compounds except for Cp 3 Ti, which has a Cs symmetry minimum with two η 5 -Cp rings and one η 2 -Cp ring. The dissociation energies for Cp 3 M → Cp 2 M + Cp · increase in the sequence V 4 M the S 4 structures are saddle points. → The minima for Cp 4 M have all η 5 -Cp rings for M = Ce and Th, three η 5 -Cp rings and one η 1 -Cp ring for M = Zr, and two η 5 -Cp rings and two η 5 -Cp rings for M = Ti and Hf. → The dissociation energies for Cp 4 M → Cp 3 M + Cp · increase in the sequence Ti 3h structures with all η 5 -Cp rings are genuine minima for all of the Cp 3 M compounds except for Cp 3 Ti. → The dissociation energies for Cp 3 M → Cp 2 M + Cp · increase in the sequence V 4 M (M = Ti, Zr, Ce, Hf, Th), Cp 3 M (M = Sc, Y, most lanthanides, Ti, Zr, Hf, Th), and Cp 2 M (M = Ti, V). Density functional theory shows that the Cp 4 M structures with unusual S 4 symmetry are saddle points for the d-block metals Ti, Zr, Hf but genuine minima for the f-block metals Ce and Th. The true equilibrium Cp 4 M geometries have C 1 symmetry with two η 5 -Cp rings and two η 1 -Cp rings for M = Ti and Hf but three η 5 -Cp rings and one η 1 -Cp ring for M = Zr. The dissociation energies for Cp 4 M → Cp 3 M + Cp · are substantial and in the order Ti 3h structures with all η 5 -Cp rings are genuine minima for most of the Cp 3 M compounds except for Cp 3 Ti, which has a C s symmetry minimum with two η 5 -Cp rings and one η 2 -Cp ring, and Cp 3 V, which has two η 5 -Cp rings and one η 1 -Cp ring
Yin, Jiuren; Wu, Bozhao; Wang, Yanggang; Li, Zhimi; Yao, Yuanpeng; Jiang, Yong; Ding, Yanhuai; Xu, Fu; Zhang, Ping
2018-04-01
Recently, there has been a surge of interest in the research of two-dimensional (2D) phosphides due to their unique physical properties and wide applications. Transition metal phosphides 2H-M 2Ps (Mo2P, W2P, Nb2P and Ta2P) show considerable catalytic activity and energy storage potential. However, the electronic structure and mechanical properties of 2D 2H-M 2Ps are still unrevealed. Here, first-principles calculations are employed to investigate the lattice dynamics, elasticity and thermodynamic properties of 2H-M 2Ps. Results show that M 2Ps with lower stiffness exhibit remarkable lateral deformation under unidirectional loads. Due to the largest average Grüneisen parameter, single-layer Nb2P has the strongest anharmonic vibrations, resulting in the highest thermal expansion coefficient. The lattice thermal conductivities of Ta2P, W2P and Nb2P contradict classical theory, which would predict a smaller thermal conductivity due to the much heavier atom mass. Moreover, the calculations also demonstrate that the thermal conductivity of Ta2P is the highest as well as the lowest thermal expansion, owing to its weak anharmonic phonon scattering and the lowest average Grüneisen parameter. The insight provided by this study may be useful for future experimental and theoretical studies concerning 2D transition metal phosphide materials.
Notis, Michael R.; Oh, Min-Seok
1990-01-01
Superconducting ceramic materials, no matter what their form, size or shape, must eventually make contact with non-superconducting materials in order to accomplish current transfer to other parts of a real operating system, or for testing and measurement of properties. Thus, whether the configuration is a clad wire, a bulk superconducting disc, tape, or a thick or thin superconducting film on a substrate, the physical and mechanical behavior of interface (interconnections, joints, etc.) between superconductors and normal conductor materials of all kinds is of extreme importance to the technological development of these systems. Fabrication heat treatments associated with the particular joining process allow possible reactions between the superconducting ceramic and the contact to occur, and consequently influence properties at the interface region. The nature of these reactions is therefore of great broad interest, as these may be a primary determinant for the real capability of these materials. Research related both to fabrication of composite sheathed wire products, and the joining contacts for physical property measurements, as well as, a review of other related literature in the field are described. Comparison are made between 1-2-3, Bi-, and Tl-based ceramic superconductors joined to a variety of metals including Cu, Ni, Fe, Cr, Ag, Ag-Pd, Au, In, and Ga. The morphology of reaction products and the nature of interface degradation as a function of time will be highlighted.
Eichhorn, Ralf; Aurell, Erik
2014-04-01
'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response
Ben-Naim, Arieh
2017-01-01
This textbook introduces thermodynamics with a modern approach, starting from four fundamental physical facts (the atomic nature of matter, the indistinguishability of atoms and molecules of the same species, the uncertainty principle, and the existence of equilibrium states) and analyzing the behavior of complex systems with the tools of information theory, in particular with Shannon's measure of information (or SMI), which can be defined on any probability distribution. SMI is defined and its properties and time evolution are illustrated, and it is shown that the entropy is a particular type of SMI, i.e. the SMI related to the phase-space distribution for a macroscopic system at equilibrium. The connection to SMI allows the reader to understand what entropy is and why isolated systems follow the Second Law of Thermodynamics. The Second Llaw is also formulated for other systems, not thermally isolated and even open with respect to the transfer of particles. All the fundamental aspects of thermodynamics are d...
International Nuclear Information System (INIS)
Blaise, Philippe
1998-01-01
The aim of this thesis is to study metallic sodium clusters by numerical simulation. We have developed two ab initio molecular dynamics programs within the formalism of density functional theory. The first is based on the semi-classical extended Thomas-Fermi approach. We use a real-space grid and a Car-Parrinello-like scheme. The computational cost is O(N), and we have built a pseudopotential that speeds up the calculations. By neglecting quantum shell effects, we are able to study a very large set of clusters. We show that sodium cluster energies fit well a liquid drop formula, by adjusting a few parameters. We have investigated breathing modes, surface oscillations and the net charge density. We have shown that the surface energy varies strongly with temperature, and that clusters have a lower melting point than bulk material. We have calculated fission barriers by a constraint method. The second program is based on the quantum Kohn-Sham approach. We use a real-space grid, and combine a generalized Broyden scheme for assuring self-consistency with an iterative Davidson-Lanczos algorithm for solving the Eigen-problem. The cost of the method is much higher. First of all, we have calculated some stable structures for small clusters and their energetics. We obtained very good agreement with previous works. Then, we have investigated highly charged cluster dynamics. We have identified a chaotic fission process. For high fissility systems, we observe a multi-fragmentation dynamics and we find preferential emission of monomers on a characteristic time scale less than a pico-second. This has been simulated for the first time, with the help of our adaptive grid method which follows each fragment as they move apart during the fragmentation. (author)
Ke, Haochen; van der Linde, Christian; Lisy, James M.
2014-06-01
Alkali metal cations play vital roles in chemical and biochemical systems. Lithium is widely used in psychiatric treatment of manic states and bipolar disorder; Sodium and potassium are essential elements, having major biological roles as electrolytes, balancing osmotic pressure on body cells and assisting the electroneurographic signal transmission; Rubidium has seen increasing usage as a supplementation for manic depression and depression treatment; Cesium doped compounds are used as essential catalysts in chemical production and organic synthesis. Since hydrated alkali metal cations are ubiquitous and the basic form of the alkali metal cations in chemical and biochemical systems, their structural and thermodynamic properties serve as the foundation for modeling more complex chemical and biochemical processes, such as ion transport and ion size-selectivity of ionophores and protein channels. By combining mass spectrometry and infrared photodissociation spectroscopy, we have characterized the structures and thermodynamic properties of the hydrated alkali metal cations, i.e. M+(H2O)nAr, (M = Li, Na, K, Rb and Cs, n = 3-5). Ab initio calculations and RRKM-EE (evaporative ensemble) calculations were used to assist in the spectral assignments and thermodynamic analysis. Results showed that the structures of hydrated alkali metal cations were determined predominantly by the competition between non-covalent interactions, i.e. the water---water hydrogen bonding interactions and the water---cation electrostatic interactions. This balance, however, is very delicate and small changes, i.e. different cations, different levels of hydration and different effective temperatures clearly impact the balance.
Schrödinger, Erwin
1952-01-01
Nobel Laureate's brilliant attempt to develop a simple, unified standard method of dealing with all cases of statistical thermodynamics - classical, quantum, Bose-Einstein, Fermi-Dirac, and more.The work also includes discussions of Nernst theorem, Planck's oscillator, fluctuations, the n-particle problem, problem of radiation, much more.
Thermodynamics of Crystalline States
Fujimoto, Minoru
2013-01-01
Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium with the surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattice, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. New to this edition is the examination of magnetic crystals, where magnetic symmetry is essential for magnetic phase transitions. The multi-electron system is also discussed theoretically, as a quantum-mechanical example, for superconductivity in metallic crystals. Throughout the book, the role played by the lattice is emphasized and studied in-depth. Thermod...
Sokolova, Tatiana S.; Dorogokupets, Peter I.; Dymshits, Anna M.; Danilov, Boris S.; Litasov, Konstantin D.
2016-09-01
We present Microsoft Excel spreadsheets for calculation of thermodynamic functions and P-V-T properties of MgO, diamond and 9 metals, Al, Cu, Ag, Au, Pt, Nb, Ta, Mo, and W, depending on temperature and volume or temperature and pressure. The spreadsheets include the most common pressure markers used in in situ experiments with diamond anvil cell and multianvil techniques. The calculations are based on the equation of state formalism via the Helmholtz free energy. The program was developed using Visual Basic for Applications in Microsoft Excel and is a time-efficient tool to evaluate volume, pressure and other thermodynamic functions using T-P and T-V data only as input parameters. This application is aimed to solve practical issues of high pressure experiments in geosciences and mineral physics.
Ben-Naim, Arieh
1987-01-01
This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther modynamics alone. However, solvation is inherently a molecular pro cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 b...
Thermodynamic basis for cluster kinetics
DEFF Research Database (Denmark)
Hu, Lina; Bian, Xiufang; Qin, Xubo
2006-01-01
Due to the inaccessibility of the supercooled region of marginal metallic glasses (MMGs) within the experimental time window, we study the cluster kinetics above the liquidus temperature, Tl, to acquire information on the fragility of the MMG systems. Thermodynamic basis for the stability...
Navrotsky, Alexandra
Thermodynamics of Crystals is a gold mine of a references bargain with more derivations of useful equations per dollar, or per page, than almost any other book I know. Useful to whom? To the solid state physicist, the solid state chemist working the geophysicist, the rock mechanic, the mineral physicist. Useful for what? For lattice dynamics, crystal potentials, band structure. For elegant, rigorous, and concise derivations of fundamental equations. For comparison of levels of approximation. For some data and physical insights, especially for metals and simple halides. This book is a reissue, with some changes and additions, of a 1970 treatise. It ages well, since the fundamentals do not change.
The discovery of thermodynamics
Weinberger, Peter
2013-07-01
Based on the idea that a scientific journal is also an "agora" (Greek: market place) for the exchange of ideas and scientific concepts, the history of thermodynamics between 1800 and 1910 as documented in the Philosophical Magazine Archives is uncovered. Famous scientists such as Joule, Thomson (Lord Kelvin), Clausius, Maxwell or Boltzmann shared this forum. Not always in the most friendly manner. It is interesting to find out, how difficult it was to describe in a scientific (mathematical) language a phenomenon like "heat", to see, how long it took to arrive at one of the fundamental principles in physics: entropy. Scientific progress started from the simple rule of Boyle and Mariotte dating from the late eighteenth century and arrived in the twentieth century with the concept of probabilities. Thermodynamics was the driving intellectual force behind the industrial revolution, behind the enormous social changes caused by this revolution. The history of thermodynamics is a fascinating story, which also gives insights into the mechanism that seem to govern science.
International Nuclear Information System (INIS)
Gomez Palacio, German Rau
1998-01-01
Ecology is no more a descriptive and self-sufficient science. Many viewpoints are needed simultaneously to give a full coverage of such complex systems: ecosystems. These viewpoints come from physics, chemistry, and nuclear physics, without a new far from equilibrium thermodynamics and without new mathematical tools such as catastrophe theory, fractal theory, cybernetics and network theory, the development of ecosystem science would never have reached the point of today. Some ideas are presented about the importance that concept such as energy, entropy, exergy information and none equilibrium have in the analysis of processes taking place in ecosystems
Song, Ki-Hoon; Choi, Ki-Young; Kim, Chang-Joon; Kim, Young-Il; Chung, Chang-Soo
2015-12-01
As with many countries, the Korea government has made a variety of efforts to meet the precautionary principle under the London Convention and Protocol acceded in 1994 and 2009. However, new strategies for the suitable marine dumping of waste materials have since been developed. In this study, the distribution and contamination of heavy metals including Al, Fe, Mn, Li, Co, Cr, Ni, Cu, Zn, As, Cd, Pb and Hg in bottom sediments were analyzed and compared to various criteria in order to evaluate the effectiveness of the management of the East Sea-Jung (ES-Jung) dumping site by the Korea government. The results indicate that the average metal concentrations were significantly lower than Effects Range Low (ERL) values, and generally similar to or lower than the Threshold Effect Levels (TEL) from the Sediment Quality Guidelinces (SQGs). According to analyses of various metal contamination indexes (Enrichment Factor: EF, Pollution Load Index: PLI and the Index of Geoaccumulation: Igeo), most areas were found to be uncontaminated by heavy metals with the exception of several moderately contaminated stations (ESJ 33, 54, 64 and ESJR 20). Heavy metal concentrations in areas grouped as G1, G2, DMDA, N-Ref and S-Ref which showed similar characteristics between 2007-2013 and 2014, were compared. Unexpectedly, most concentrations in the northern reference area (N-Ref) were much higher than those in the actual dumping areas (G1 and G2), may be due to the influences from nearby cities to the west of the ES-Jung site, rather than from the dumping site itself. Additionally, heavy metal concentrations in the dredged material dumping area (DMDA) were found to be low although they have slightly increased over time and those in the southern reference area (S-Ref) were found to have gradually decreased with year. The concentrations of most metals in the East Sea-Jung dumping site were similar to or less than those in the Earth's crust and approximately the same as those in continental
Hristovski, Kiril D; Markovski, Jasmina
2017-11-15
To create an integrative foundation for engineering of the next generation inexpensive sorbent systems, this critical review addresses the existing knowledge gap in factor/performance relationships between weak-acid oxyanion contaminants and metal (hydr)oxide sorbents. In-depth understanding of fundamental thermodynamics and kinetics mechanisms, material fabrication, and analytical and characterization techniques, is necessary to engineer sorbent that exhibit high capacity, selectivity, stability, durability and mass transport of contaminants under a wide range of operating and water matrix conditions requirements. From the perspective of thermodynamics and kinetics, this critical review examines the factors affecting sorbent performances and analyzes the existing research to elucidate future directions aimed at developing novel sorbents for removal of weak-acid oxyanion contaminants from water. Only sorbents that allow construction of simple and inexpensive water treatment systems adapted to overcome fiscal and technological barriers burdening small communities could pave the road for providing inexpensive potable water to millions of people. Novel sorbents, which exhibit (1) poor performances in realistic operating and water matrix conditions and/or (2) do not comply with the purely driven economics factors of production scalability or cost expectations, are predestined to never be commercialized. Copyright © 2017 Elsevier B.V. All rights reserved.
Microbial diversity arising from thermodynamic constraints
Großkopf, Tobias; Soyer, Orkun S
2016-01-01
The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments. PMID:27035705
Microbial diversity arising from thermodynamic constraints.
Großkopf, Tobias; Soyer, Orkun S
2016-11-01
The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments.
Yang, Xue-min; Li, Jin-yan; Chai, Guo-ming; Duan, Dong-ping; Zhang, Jian
2016-08-01
A thermodynamic model for predicting phosphorus partition L P between a CaO-based slags and hot metal during hot metal dephosphorization pretreatment process has been developed based on the ion and molecule coexistence theory (IMCT), i.e., the IMCT- L P model. The reaction abilities of structural units or ion couples in the CaO-based slags have been represented by the calculated mass action concentrations N i through the developed IMCT- N i model based on the IMCT. The developed IMCT- L P model has been verified to be valid through comparing with the measured L P as well as the predicted L P by two reported L P models from the literature. Besides the total phosphorus partition L P between the CaO-based slag and hot metal, the respective phosphorus partitions L P, i of nine dephosphorization products as P2O5, 3FeO·P2O5, 4FeO·P2O5, 2CaO·P2O5, 3CaO·P2O5, 4CaO·P2O5, 2MgO·P2O5, 3MgO·P2O5, and 3MnO·P2O5 can also be accurately predicted by the developed IMCT- L P model. The formed 3CaO·P2O5 accounts for 99.20 pct of dephosphorization products comparing with the generated 4CaO·P2O5 for 0.08 pct. The comprehensive effect of CaO+Fe t O, which can be described by the mass percentage ratio (pct Fe t O)/(pct CaO) or the mass action concentration ratio N_{Fe}t O/N_{Fe}t O N_{CaO}. N_{CaO}} as well as the mass percentage product (pct Fe t O) × (pct CaO) or the mass action concentration product N_{{{{Fe}}t {{O}}}}5 × N_{{CaO}}3 , controls dephosphorization ability of the CaO-based slags. A linear relationship of L P against (pct Fe t O)/(pct CaO) can be correlated compared with a parabolic relationship of L P against N_{Fe}t O/N_{Fe}t O N_{CaO}. N_{CaO}, while the linear relationship of L P against (pct Fe t O) × (pct CaO) or N_{Fe}t O5 × N_{CaO}3 can be established. Thus, the mass percentage product (pct Fe t O) × (pct CaO) and the mass action concentration product N_{Fe}t O5 × N_{CaO}3 are recommended to represent the comprehensive effect of CaO+Fe t O on
de Oliveira, Mário J
2017-01-01
This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edit...
Statistical thermodynamics of clustered populations.
Matsoukas, Themis
2014-08-01
We present a thermodynamic theory for a generic population of M individuals distributed into N groups (clusters). We construct the ensemble of all distributions with fixed M and N, introduce a selection functional that embodies the physics that governs the population, and obtain the distribution that emerges in the scaling limit as the most probable among all distributions consistent with the given physics. We develop the thermodynamics of the ensemble and establish a rigorous mapping to regular thermodynamics. We treat the emergence of a so-called giant component as a formal phase transition and show that the criteria for its emergence are entirely analogous to the equilibrium conditions in molecular systems. We demonstrate the theory by an analytic model and confirm the predictions by Monte Carlo simulation.
Coherence and measurement in quantum thermodynamics.
Kammerlander, P; Anders, J
2016-02-26
Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.
Thermodynamics of Radiation Modes
Pina, Eduardo; de la Selva, Sara Maria Teresa
2010-01-01
We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…
Mathematical foundations of thermodynamics
Giles, R; Stark, M; Ulam, S
2013-01-01
Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn
Torigoe, Hidetaka; Okamoto, Itaru; Dairaku, Takenori; Tanaka, Yoshiyuki; Ono, Akira; Kozasa, Tetsuo
2012-11-01
Metal ion-nucleic acid interactions have attracted considerable interest for their involvement in structure formation and catalytic activity of nucleic acids. Although interactions between metal ion and mismatched base pair duplex are important to understand mechanism of gene mutations related to heavy metal ions, they have not been well-characterized. We recently found that the Ag(+) ion stabilized a C:C mismatched base pair duplex DNA. A C-Ag-C metal-mediated base pair was supposed to be formed by the binding between the Ag(+) ion and the C:C mismatched base pair to stabilize the duplex. Here, we examined specificity, thermodynamics and structure of possible C-Ag-C metal-mediated base pair. UV melting indicated that only the duplex with the C:C mismatched base pair, and not of the duplexes with the perfectly matched and other mismatched base pairs, was specifically stabilized on adding the Ag(+) ion. Isothermal titration calorimetry demonstrated that the Ag(+) ion specifically bound with the C:C base pair at 1:1 molar ratio with a binding constant of 10(6) M(-1), which was significantly larger than those for nonspecific metal ion-DNA interactions. Electrospray ionization mass spectrometry also supported the specific 1:1 binding between the Ag(+) ion and the C:C base pair. Circular dichroism spectroscopy and NMR revealed that the Ag(+) ion may bind with the N3 positions of the C:C base pair without distorting the higher-order structure of the duplex. We conclude that the specific formation of C-Ag-C base pair with large binding affinity would provide a binding mode of metal ion-DNA interactions, similar to that of the previously reported T-Hg-T base pair. The C-Ag-C base pair may be useful not only for understanding of molecular mechanism of gene mutations related to heavy metal ions but also for wide variety of potential applications of metal-mediated base pairs in various fields, such as material, life and environmental sciences. Copyright © 2012 Elsevier
International Nuclear Information System (INIS)
Scott Fendorf; Phil Jardine
2006-01-01
The goal of this research was to provide an improved understanding and predictive capability of coupled hydrological and geochemical mechanisms that are responsible for the accelerated migration and immobilization of radionuclides and toxic metals in the vadose zone beneath the Hanford Tank Farms
International Nuclear Information System (INIS)
Liu, Zhicen; Koerwer, Joel; Nemoto, Jiro; Imura, Hidefumi
2008-01-01
Energy supply is mandatory for the production of economic value. Nevertheless, tradition dictates that an enigmatic 'invisible hand' governs economic valuation. Physical scientists have long proposed alternative but testable energy cost theories of economic valuation, and have shown the gross correlation between energy consumption and economic output at the national level through input-output energy analysis. However, due to the difficulty of precise energy analysis and highly complicated real markets, no decisive evidence directly linking energy costs to the selling prices of individual commodities has yet been found. Over the past century, the US metal market has accumulated a huge body of price data, which for the first time ever provides us the opportunity to quantitatively examine the direct energy-value correlation. Here, by analyzing the market price data of 65 purified chemical elements (mainly metals) relative to the total energy consumption for refining them from naturally occurring geochemical conditions, we found a clear correlation between the energy cost and their market prices. The underlying physics we proposed has compatibility with conventional economic concepts such as the ratio between supply and demand or scarcity's role in economic valuation. It demonstrates how energy cost serves as the 'invisible hand' governing economic valuation. Thorough understanding of this energy connection between the human economic and the Earth's biogeochemical metabolism is essential for improving the overall energy efficiency and furthermore the sustainability of the human society. (author)
Thermodynamic tables to accompany Modern engineering thermodynamics
Balmer, Robert T
2011-01-01
This booklet is provided at no extra charge with new copies of Balmer's Modern Engineering Thermodynamics. It contains two appendices. Appendix C contains 40 thermodynamic tables, and Appendix D consists of 6 thermodynamic charts. These charts and tables are provided in a separate booklet to give instructors the flexibility of allowing students to bring the tables into exams. The booklet may be purchased separately if needed.
Classical and statistical thermodynamics
Rizk, Hanna A
2016-01-01
This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.
Muhammad Ashraf Shaheen; Rehana Akram; Abdul Karim; Tahir Mehmood; Robina Farooq; Mudassir Iqbal
2016-01-01
The peach nut shells potential as a low cost biosorbent for separation of certain metal ions from aqueous media was investigated. The effects of different parameters such as pH, shaking speed, initial metal ions concentration and their contact time with adsorbent on sorption efficiency of biosorbent was investigated to optimize the parameters for maximum sorption. The FT–IR spectroscopy and TGA were used to characterize the biosorbent. A significant increase in sorption was noted with rise i...
Reassessing SERS enhancement factors: using thermodynamics to drive substrate design.
Guicheteau, J A; Tripathi, A; Emmons, E D; Christesen, S D; Fountain, Augustus W
2017-12-04
Over the past 40 years fundamental and application research into Surface-Enhanced Raman Scattering (SERS) has been explored by academia, industry, and government laboratories. To date however, SERS has achieved little commercial success as an analytical technique. Researchers are tackling a variety of paths to help break through the commercial barrier by addressing the reproducibility in both the SERS substrates and SERS signals as well as continuing to explore the underlying mechanisms. To this end, investigators use a variety of methodologies, typically studying strongly binding analytes such as aromatic thiols and azarenes, and report SERS enhancement factor calculations. However a drawback of the traditional SERS enhancement factor calculation is that it does not yield enough information to understand substrate reproducibility, application potential with another analyte, or the driving factors behind the molecule-metal interaction. Our work at the US Army Edgewood Chemical Biological Center has focused on these questions and we have shown that thermodynamic principles play a key role in the SERS response and are an essential factor in future designs of substrates and applications. This work will discuss the advantages and disadvantages of various experimental techniques used to report SERS enhancement with planar SERS substrates and present our alternative SERS enhancement value. We will report on three types of analysis scenarios that all yield different information concerning the effectiveness of the SERS substrate, practical application of the substrate, and finally the thermodynamic properties of the substrate. We believe that through this work a greater understanding for designing substrates will be achieved, one that is based on both thermodynamic and plasmonic properties as opposed to just plasmonic properties. This new understanding and potential change in substrate design will enable more applications for SERS based methodologies including targeting
Directory of Open Access Journals (Sweden)
Muhammad Ashraf Shaheen
2016-06-01
Full Text Available The peach nut shells potential as a low cost biosorbent for separation of certain metal ions from aqueous media was investigated. The effects of different parameters such as pH, shaking speed, initial metal ions concentration and their contact time with adsorbent on sorption efficiency of biosorbent was investigated to optimize the parameters for maximum sorption. The FT–IR spectroscopy and TGA were used to characterize the biosorbent. A significant increase in sorption was noted with rise in pH of metal ions solution and maximum sorption was observed at pH 6. The isothermal data was fitted to Langmuir, Dubinin–Radushkevich (D–R, Freundlich isotherms and equilibrium process was best fitted to Langmuir isotherm. The removal efficiency of chemically activated samples was found to be ~35 to 45% greater than raw sample. The results showed that peach nut shell was an effective biosorbent for the remediation of the contaminated water with lead (II, Nickle (II and Chromium (III ions. Being low cost material, PNS has a potential to be exploited in waste water treatment technologies. This study shows that activated PNS exhibited appreciable sorption for Pb, Cr and Ni metals ions (97%, 95% and 94% respectively from aqueous solution even at very low concentration of sorbent. The chemical and thermal activation of peach nut shells enhances the removal efficiency for all the metal ions and from the reported data; it was found that the adsorption ability of Pb ions was greater than nickel and chromium.
Thermodynamics in Einstein's thought
International Nuclear Information System (INIS)
Klein, M.J.
1983-01-01
The role of the thermodynamical approach in the Einstein's scientific work is analyzed. The Einstein's development of a notion about statistical fluctuations of thermodynamical systems that leads him to discovery of corpuscular-wave dualism is retraced
Thermodiffusion in Multicomponent Mixtures Thermodynamic, Algebraic, and Neuro-Computing Models
Srinivasan, Seshasai
2013-01-01
Thermodiffusion in Multicomponent Mixtures presents the computational approaches that are employed in the study of thermodiffusion in various types of mixtures, namely, hydrocarbons, polymers, water-alcohol, molten metals, and so forth. We present a detailed formalism of these methods that are based on non-equilibrium thermodynamics or algebraic correlations or principles of the artificial neural network. The book will serve as single complete reference to understand the theoretical derivations of thermodiffusion models and its application to different types of multi-component mixtures. An exhaustive discussion of these is used to give a complete perspective of the principles and the key factors that govern the thermodiffusion process.
Merrill, Danielle; Harrington, James M; Lee, Hee-Seung; Hancock, Robert D
2011-09-05
Some metal ion complexing properties of the ligand PDAM (1,10-phenanthroline-2,9-dicarboxamide) in aqueous solution are reported. Using UV-visible spectroscopy to follow the intense π-π* transitions of PDAM as a function of metal ion concentration, log K(1) values in 0.1 M NaClO(4) and at 25 °C are, for Cu(II), 3.56(5); Ni(II), 3.06(5); Zn(II), 3.77(5); Co(II), 3.8(1); Mg(II), 0.1(1); Ca(II), 1.94(4); and Ba(II), 0.7(1). For more strongly bound metal ions, competition reactions between PDAM and EDTA (ethylenedinitrilo-tetraacetic acid) or tetren (1,4,7,10,13-pentaazatridecane), monitored following the UV spectrum of PDAM, gave the following log K(1) values in 0.1 M NaClO(4) and at 25 °C: Cd(II), 7.1(1); Pb(II), 5.82(5); In(III), 9.4(1); and Bi(III), 9.4(1). The very low log K(1)(PDAM) values for small metal ions such as Cu(II) or Zn(II) are unprecedented for a phen-based ligand (phen = 1,10-phenanthroline), which is rationalized in terms of the low basicity of the N donors of the ligand (pK(a) = 0.6) and the fact that PDAM has a best-fit size corresponding to large metal ions of ionic radius ~1.0 Å. Large metal ions with ionic radius ≥1.0 Å show large increases in log K(1) relative to their phen complexes, which in turn produces unparalleled selectivities, such as a 3.5 log units greater log K(1)(PDAM) for Cd(II) than for Cu(II). PDAM shows strong fluorescence in aqueous solution, suggesting that its carboxamide groups do not produce a fluorescence-quenching photon-induced electron transfer (PET) effect. Only Ca(II) produces a weak CHEF (chelation enhanced fluorescence) effect with PDAM, while all other metal ions tested produce a decrease in fluorescence, a CHEQ (chelation enhanced quenching effect). The production of the CHEQ effect is rationalized in terms of the idea that coordination of metal ions to PDAM stabilizes a canonical form of the carboxamide groups that promotes a PET effect.
Systemic analysis of thermodynamic properties of lanthanide halides
International Nuclear Information System (INIS)
Mirsaidov, U.; Badalov, A.; Marufi, V.K.
1992-01-01
System analysis of thermodynamic characteristics of lanthanide halides was carried out. A method making allowances for the influence of spin and orbital moments of momentum of the main states of lanthanide trivalent ions in their natural series was employed. Unknown in literature thermodynamic values were calculated and corrected for certain compounds. The character of lanthanide halide thermodynamic parameter change depending on ordinal number of the metals was ascertained. Pronouncement of tetrad-effect in series of compounds considered was pointed out
Czech Academy of Sciences Publication Activity Database
Ettler, V.; Mihaljevič, M.; Šebek, O.; Grygar, Tomáš
2007-01-01
Roč. 602, č. 1 (2007), s. 131-140 ISSN 0003-2670 Grant - others:GA ČR(CZ) GA526/06/0418 Institutional research plan: CEZ:AV0Z40320502 Keywords : metal * stream sediment Subject RIV: CA - Inorganic Chemistry Impact factor: 3.186, year: 2007
Introduction to applied thermodynamics
Helsdon, R M; Walker, G E
1965-01-01
Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o
Energy Technology Data Exchange (ETDEWEB)
Menard, Y.
2003-07-15
The present dissertation describes experimental and theoretical investigations undertaken for the mathematical modelling of municipal solid waste (MSW) incineration in a grate furnace and the thermodynamic study of the speciation of heavy metals (HM), originally contained into MSW, during combustion. Thermogravimetric and gaseous analysis (mass spectrometry and gas chromatography) experiments were performed on MSW samples to get pyrolysis kinetics and to quantify the gaseous species that evolve during the primary reactions of devolatilization. Other experiments were carried out in a fixed bed pilot-scale reactor: the combustion of two types of solids (wood chips and MSW) was studied, and the influence of operating conditions (flow rate, staging and temperature of the primary air) as well as fuel characteristics (moisture content, inert material fraction, lower calorific value) was investigated. A mathematical model was developed for simulating the combustion of a solid fuel, either in a fixed bed reactor or on the grate of an incineration plant. It has been validated by comparison of the calculated results and the experiments carried out on the pilot. Thanks to this model, we have been able to localize the different processes taking place in the fuel bed and to evaluate the influence of the operating conditions on the combustion efficiency. Numerical simulations of the gas flow and combustion in the post-combustion chamber and the heater of an incineration plant were performed using the CFD code FLUENT. The local thermal conditions as well as local gaseous species concentrations obtained from these simulations were eventually used to carry out thermodynamic calculations of the speciation of HM during incineration. (author)
Energy Technology Data Exchange (ETDEWEB)
Medouer, Hadria [L.E.P.C.M, Departement de physique, Faculte des sciences, Universite de Batna, B.P. C2045, Poste Hadj Lakhdar, Batna 05011 (Algeria); Messaadi, Saci [L.E.P.C.M, Departement de physique, Faculte des sciences, Universite de Batna, B.P. C2045, Poste Hadj Lakhdar, Batna 05011 (Algeria)], E-mail: messaadi_saci@yahoo.fr; Aiadi, Kamel Eddine [Departement de physique, Faculte des sciences et sciences de l' ingenieur, Universite de Ouargla (Algeria)
2009-03-20
The metallic compounds Sr(NH{sub 3}){sub 6} and Li(NH{sub 3}){sub 4} are prepared in vacuum within cells of quartz. The non-reproducibility of Jacobs' measurements of the heat capacity at high temperature of the compound Sr(NH{sub 3}){sub 6} led us to reconsider the thermal studies. Our measurements by differential thermal analysis (D.T.A.) were obtained by the analysis of the phase shift between the piloting and the differential signals. The metallic compound Li(NH{sub 3}){sub 4} was also examined by the mean of D.T.A. A detailed study has been carried out in a range of temperature 25-90 K, where the results obtained shows a second-order transition at 23 K, which can be compared with these observed in the case of deutered compound.
Kirkemo, Harold; Goudarzi, Gus H.
1978-01-01
There has been a general lag in minerals-exploration activity in the past few years. Government concern is reviewed in this article, along with significant developments that included the discovery of additional bauxite, copper, and molybdenum deposits and the reopening of different mining operations. (MA)
Energy Technology Data Exchange (ETDEWEB)
Yao, Yongxin [Iowa State Univ., Ames, IA (United States)
2009-01-01
Solidification of liquid is a very rich and complicated field, although there is always a famous homogeneous nucleation theory in a standard physics or materials science text book. Depending on the material and processing condition, liquid may solidify to single crystalline, polycrystalline with different texture, quasi-crystalline, amorphous solid or glass (Glass is a kind of amorphous solid in general, which has short-range and medium-range order). Traditional oxide glass may easily be formed since the covalent directional bonded network is apt to be disturbed. In other words, the energy landcape of the oxide glass is so complicated that system need extremely long time to explore the whole configuration space. On the other hand, metallic liquid usually crystalize upon cooling because of the metallic bonding nature. However, Klement et.al., (1960) reported that Au-Si liquid underwent an amorphous or “glassy” phase transformation with rapid quenching. In recent two decades, bulk metallic glasses have also been found in several multicomponent alloys[Inoue et al., (2002)]. Both thermodynamic factors (e.g., free energy of various competitive phase, interfacial free energy, free energy of local clusters, etc.) and kinetic factors (e.g., long range mass transport, local atomic position rearrangement, etc.) play important roles in the metallic glass formation process. Metallic glass is fundamentally different from nanocrystalline alloys. Metallic glasses have to undergo a nucleation process upon heating in order to crystallize. Thus the short-range and medium-range order of metallic glasses have to be completely different from crystal. Hence a method to calculate the energetics of different local clusters in the undercooled liquid or glasses become important to set up a statistic model to describe metalllic glass formation. Scattering techniques like x-ray and neutron have widely been used to study the structues of metallic glasses. Meanwhile, computer simulation
Energy Technology Data Exchange (ETDEWEB)
Zhao, X. J.; Xue, X. L.; Jia, Yu [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Guo, Z. X. [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Department of Chemistry and London Centre for Nanotechnology, University College London, London WC1H (United Kingdom); Li, S. F., E-mail: sflizzu@zzu.edu.cn [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Zhenyu, E-mail: zhangzy@ustc.edu.cn [ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Gao, Y. F., E-mail: ygao7@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
2015-11-07
Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal Pt{sub N} nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for Pt{sub N}, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D{sub 6h} symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). However, the magic number of Pt{sub N} clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt{sub 57} motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d{sup 9}6s{sup 1}) of Pt, which result in a delicate balance between the enhanced Pt–Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. These findings about Pt{sub N} clusters are also applicable to Ir{sub N} clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. The findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.
An introduction to equilibrium thermodynamics
Morrill, Bernard; Hartnett, James P; Hughes, William F
1973-01-01
An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a
Thermodynamics for scientists and engineers
International Nuclear Information System (INIS)
Lim, Gyeong Hui
2011-02-01
This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.
Thermodynamics of Bioreactions.
Held, Christoph; Sadowski, Gabriele
2016-06-07
Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.
Energy Technology Data Exchange (ETDEWEB)
Meyer, B.; Starke, A. [TU Bergakademie Freiberg (Germany). Inst. IEC
1998-09-01
Co-combustion plants, in which fuel is partly substituted by waste materials, are subject to the 17th BImSchV (Nuisance Control Ordinance) provided that the thermal fraction of 25% is not exceeded. Emission limits are calculated proportionately on the basis of limiting values for emissions from coal power stations (13th BImSchV) and waste incinerators (17th BImSchV). Compared to coal, waste has higher concentrations of heavy metals and halogens, which results in enhanced emissions of heavy metal compounds and chlorides with the flue gas and gasification gas. Plant operators intending to opt for co-combustion must check if the existing flue gas purification system is efficient enough to meet the specifications of the 17th BImSchV. In general, thermodynamic modelling is the most common method of evaluation and optimisation for high-temperature processes of this kind. (orig./SR) [Deutsch] Da bei der Mitverbrennung ein Teil des Brennstoffes durch den Reststoff substituiert wird, unterliegen diese Anlagen der Anteilsregelung nach 17. BImSchV, sofern ein thermischer Anteil von 25% nicht ueberschritten wird. Emissionsgrenzwerte werden anteilig aus den z.B. fuer Kohlekraftwerke gueltigen Grenzwerten nach TA Luft oder 13. BImSchV und denen fuer Abfaelle u.ae. nach 17 BImSchV ermittelt. Der hier betrachtete Reststoff Muell beinhaltet im Vergleich zur Kohle hohe Konzentrationen an Schwermetallen und Halogenen. Dies laesst eine erhoehte Emission von Schwermetallverbindungen und Chloriden mit dem Rauchgas bzw. Vergasungsgas erwarten. Es muss in jedem Fall ueberprueft werden, ob die vorhandene Rauchgasreinigung ausreicht, wenn bei der Mitverbrennung/-vergasung die Emissionsgrenzwerte der 17. BImSchV zur Anwendung kommen. Als Bewertungs- und Optimierungsmethode fuer derartige Hochtemperaturprozesse setzt sich die thermodynamische Modellierung zunehmend durch. (orig./SR)
Reiss, Howard
1997-01-01
Since there is no shortage of excellent general books on elementary thermodynamics, this book takes a different approach, focusing attention on the problem areas of understanding of concept and especially on the overwhelming but usually hidden role of ""constraints"" in thermodynamics, as well as on the lucid exposition of the significance, construction, and use (in the case of arbitrary systems) of the thermodynamic potential. It will be especially useful as an auxiliary text to be used along with any standard treatment.Unlike some texts, Methods of Thermodynamics does not use statistical m
Thermodynamics of nuclear materials
International Nuclear Information System (INIS)
Rand, M.H.
1975-01-01
A report is presented of the Fourth International Symposium on Thermodynamics of Nuclear Materials held in Vienna, 21-25 October 1974. The technological theme of the Symposium was the application of thermodynamics to the understanding of the chemistry of irradiated nuclear fuels and to safety assessments for hypothetical accident conditions in reactors. The first four sessions were devoted to these topics and they were followed by four more sessions on the more basic thermodynamics, phase diagrams and the thermodynamic properties of a wide range of nuclear materials. Sixty-seven papers were presented
Thermodynamics study of hydrogen storage materials
International Nuclear Information System (INIS)
Song Lifang; Wang Shuang; Jiao Chengli; Si Xiaoliang; Li Zhibao; Liu Shuang; Liu Shusheng; Jiang Chunhong; Li Fen; Zhang Jian; Sun Lixian; Xu Fen; Huang Fenglei
2012-01-01
Highlights: ► Chemical modification is an effective way to improve the thermodynamics. ► Nanodispersion can improve the thermodynamics of chemical storage system. ► Hybridization is an practicable strategy to improve the thermodynamics. ► Nanoconfinement is feasible to improve thermodynamics of chemical storage system. ► MOFs materials possess suitable interaction with H 2 molecule should be investigated. - Abstract: The growing use of conventional energy such as fossil fuels results in problems degrading our environment. Hydrogen is frequently discussed as a clean energy in the future without pollution. However, efficient and safe storage of hydrogen constitute a key challenge and unresolved problem. One of the main options is solid-state storage technology. A successful solid-state reversible storage material should meet the requirements of high storage capacity, suitable thermodynamic properties, reversibility and fast adsorption and desorption kinetics. This feature article focuses mainly on the development of thermodynamic improvement of hydrogen storage materials in the past few years including the complex hydride, ammonia borane, and metal-organic frameworks.
Thermodynamic and Quantum Thermodynamic Analyses of Brownian Movement
Gyftopoulos, Elias P.
2006-01-01
Thermodynamic and quantum thermodynamic analyses of Brownian movement of a solvent and a colloid passing through neutral thermodynamic equilibrium states only. It is shown that Brownian motors and E. coli do not represent Brownian movement.
International Nuclear Information System (INIS)
Sekerka, R.F.
1979-08-01
Some previous work on Internal Centrifugal Zone Growth was documented. New calculations have been made to show that for large rf skin depths, the temperature of the sample depends in a systematic way on only three dimensionless parameters; these characterize the rf power level, the surface heat transfer coefficient, and the ambient temperature. Critical values are given for the ambient temperature below which curves of sample temperature versus RF power level are S-shaped. Based on this improvement in understanding, our previous numerical results, valid for arbitrary skin depths, are being prepared for publication. Work continues toward the measurement of the solid-liquid surface tensions of non-metallic materials via the grain-boundary groove technique. Degassed samples of GeO 2 have been obtained, but the necessary temperature caused damage to the quartz tube in our present apparatus, necessitating a new design. While the new apparatus is under construction, sodium sulfate will be used as a prototype material to enable work on the optical system. Use of an astronomical telescope in conjunction with the optical viewpoint leads to poor image quality so we are considering the substitution of a microscope with a large working distance. Previous difficulties with numerical calculation of the temperature profiles in the system have been alleviated by using finer grid sizes for the finite difference scheme. Further effort has been expended to form the basis of new work on the application of Onsager's theory of reciprocity to transport phenomena in solids
Prado, Alexandre G S; Pescara, Igor C; Evangelista, Sheila M; Holanda, Matheus S; Andrade, Romulo D; Suarez, Paulo A Z; Zara, Luiz F
2011-05-15
Biodiesel and diesel-like have been obtained from soybean oil by transesterification and thermal cracking process, respectively. These biofuels were characterized as according to ANP standards by using specific ASTM methods. Ethanol, gasoline, and diesel were purchased from a gas station. Deacetylation degree of chitosan was determined by three distinct methods (conductimetry, FTIR and NMR), and the average degree was 78.95%. The chitosan microspheres were prepared from chitosan by split-coating and these spheres were crosslinked using glutaraldehyde. The surface area of microspheres was determined by BET method, and the surface area of crosslinked microspheres was 9.2m(2)g(-1). The adsorption isotherms of cooper, nickel and zinc on microspheres of chitosan were determined in petroleum derivatives (gasoline and diesel oil), as well as in biofuels (alcohol, biodiesel and diesel-like). The adsorption order in all fuels was: Cu>Ni>Zn. The elution tests presented the following preconcentration degrees: >4.5 to ethanol, >4.4 to gasoline, >4.0 to diesel, >3.8 to biodiesel and >3.6 to diesel-like. The application of chitosan microspheres in the metal ions preconcentration showed the potential of this biopolymer to enrich fuel sample in order to be analyzed by flame atomic absorption spectrometry. Copyright © 2011 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Muhammad Ashraf Shaheen
2016-12-01
Full Text Available The plant based renewable biosorbents have extensively been investigated for removing water pollutants. The present study describes the sequestering of metal ions by exploiting a low cost biomaterial derived from Tribulus tresstris as sorbent. The batch equilibrium studies have been carried out both with raw and chemically/thermally treated biomaterial as a function of pH, contact time, shaking speed and shaking time to decide the effectiveness of biosorbent. The sorbent was activated chemically by utilizing 0.1M HCl and 0.1M K2CO3. A close muffle furnace was used for thermal treatment of the sorbent. The adsorption capacity was enhanced to 25% by thermal treatment and 54% by chemical treatment because of increase in pore volume and surface area. The greatest sorption was found for particle size of 200 µm with a 0.5 g dosage at pH 6 for 20 min at shaking speed 100 rpm. The FT-IR and SEM study was performed to discover the adsorption capacity of various functional groups and their binding mechanism. The adsorption data demonstrates that Langmuir, Freundlich and Dubinin-Radushkevich isotherm models were very much fitted to describe the adsorption behavior
Granet, Irving
2014-01-01
Fundamental ConceptsIntroductionThermodynamic SystemsTemperatureForce and MassElementary Kinetic Theory of GasesPressureReviewKey TermsEquations Developed in This ChapterQuestionsProblemsWork, Energy, and HeatIntroductionWorkEnergyInternal EnergyPotential EnergyKinetic EnergyHeatFlow WorkNonflow WorkReviewKey TermsEquations Developed in This ChapterQuestionsProblemsFirst Law of ThermodynamicsIntroductionFirst Law of ThermodynamicsNonflow SystemSteady-Flow SystemApplications of First Law of ThermodynamicsReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Second Law of ThermodynamicsIntroductionReversibility-Second Law of ThermodynamicsThe Carnot CycleEntropyReviewKey TermsEquations Developed in This ChapterQuestionsProblemsProperties of Liquids and GasesIntroductionLiquids and VaporsThermodynamic Properties of SteamComputerized PropertiesThermodynamic DiagramsProcessesReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Ideal GasIntroductionBasic ConsiderationsSpecific Hea...
The thermodynamic solar energy
International Nuclear Information System (INIS)
Rivoire, B.
2002-04-01
The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)
Equilibrium thermodynamics - Callen's postulational approach
Jongschaap, R.J.J.; Öttinger, Hans Christian
2001-01-01
In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates
Applied chemical engineering thermodynamics
Tassios, Dimitrios P
1993-01-01
Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.
Thermodynamics an engineering approach
Cengel, Yunus A
2014-01-01
Thermodynamics, An Engineering Approach, eighth edition, covers the basic principles of thermodynamics while presenting a wealth of real-world engineering examples so students get a feel for how thermodynamics is applied in engineering practice. This text helps students develop an intuitive understanding by emphasizing the physics and physical arguments. Cengel and Boles explore the various facets of thermodynamics through careful explanations of concepts and use of numerous practical examples and figures, having students develop necessary skills to bridge the gap between knowledge and the confidence to properly apply their knowledge. McGraw-Hill is proud to offer Connect with the eighth edition of Cengel/Boles, Thermodynamics, An Engineering Approach. This innovative and powerful new system helps your students learn more efficiently and gives you the ability to assign homework problems simply and easily. Problems are graded automatically, and the results are recorded immediately. Track individual stude...
DEFF Research Database (Denmark)
Westerhoff, Hans V.; Jensen, Peter Ruhdal; Snoep, Jacky L.
1998-01-01
Thermodynamics has always been a remarkable science in that it studies macroscopic properties that are only partially determined by the properties of individual molecules. Entropy and free energy only exist in constellations of more than a single molecule (degree of freedom). They are the so...... understanding of this BioComplexity, modem thermodynamic concepts and methods (nonequilibrium thermodynamics, metabolic and hierarchical control analysis) will be needed. We shall propose to redefine nonequilibrium thermodynamics as: The science that aims at understanding the behaviour of nonequilibrium systems...... by taking into account both the molecular properties and the emergent properties that are due to (dys)organisation. This redefinition will free nonequilibrium thermodynamics from the limitations imposed by earlier near-equilibrium assumptions, resolve the duality with kinetics, and bridge the apparent gap...
Thermodynamic estimation: Ionic materials
International Nuclear Information System (INIS)
Glasser, Leslie
2013-01-01
Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy
In vitro thermodynamic dissection of human copper transfer from chaperone to target protein.
Niemiec, Moritz S; Weise, Christoph F; Wittung-Stafshede, Pernilla
2012-01-01
Transient protein-protein and protein-ligand interactions are fundamental components of biological activity. To understand biological activity, not only the structures of the involved proteins are important but also the energetics of the individual steps of a reaction. Here we use in vitro biophysical methods to deduce thermodynamic parameters of copper (Cu) transfer from the human copper chaperone Atox1 to the fourth metal-binding domain of the Wilson disease protein (WD4). Atox1 and WD4 have the same fold (ferredoxin-like fold) and Cu-binding site (two surface exposed cysteine residues) and thus it is not clear what drives metal transfer from one protein to the other. Cu transfer is a two-step reaction involving a metal-dependent ternary complex in which the metal is coordinated by cysteines from both proteins (i.e., Atox1-Cu-WD4). We employ size exclusion chromatography to estimate individual equilibrium constants for the two steps. This information together with calorimetric titration data are used to reveal enthalpic and entropic contributions of each step in the transfer process. Upon combining the equilibrium constants for both steps, a metal exchange factor (from Atox1 to WD4) of 10 is calculated, governed by a negative net enthalpy change of ∼10 kJ/mol. Thus, small variations in interaction energies, not always obvious upon comparing protein structures alone, may fuel vectorial metal transfer.
International Nuclear Information System (INIS)
Mansson, B.A.
1990-01-01
Economics, as the social science most concerned with the use and distribution of natural resources, must start to make use of the knowledge at hand in the natural sciences about such resources. In this, thermodynamics is an essential part. In a physicists terminology, human economic activity may be described as a dissipative system which flourishes by transforming and exchanging resources, goods and services. All this involves complex networks of flows of energy and materials. This implies that thermodynamics, the physical theory of energy and materials flows, must have implications for economics. On another level, thermodynamics has been recognized as a physical theory of value, with value concepts similar to those of economic theory. This paper discusses some general aspects of the significance of non-equilibrium thermodynamics for economics. The role of exergy, probably the most important of the physical measures of value, is elucidated. Two examples of integration of thermodynamics with economic theory are reviewed. First, a simple model of a steady-state production system is sued to illustrate the effects of thermodynamic process constraints. Second, the framework of a simple macroeconomic growth model is used to illustrate how some thermodynamic limitations may be integrated in macroeconomic theory
Modern engineering thermodynamics
Balmer, Robert T
2010-01-01
Designed for use in a standard two-semester engineering thermodynamics course sequence. The first half of the text contains material suitable for a basic Thermodynamics course taken by engineers from all majors. The second half of the text is suitable for an Applied Thermodynamics course in mechanical engineering programs. The text has numerous features that are unique among engineering textbooks, including historical vignettes, critical thinking boxes, and case studies. All are designed to bring real engineering applications into a subject that can be somewhat abstract and mathematica
Advanced thermodynamics engineering
Annamalai, Kalyan; Jog, Milind A
2011-01-01
Thermolab Excel-Based Software for Thermodynamic Properties and Flame Temperatures of Fuels IntroductionImportance, Significance and LimitationsReview of ThermodynamicsMathematical BackgroundOverview of Microscopic/NanothermodynamicsSummaryAppendix: Stokes and Gauss Theorems First Law of ThermodynamicsZeroth LawFirst Law for a Closed SystemQuasi Equilibrium (QE) and Nonquasi-equilibrium (NQE) ProcessesEnthalpy and First LawAdiabatic Reversible Process for Ideal Gas with Constant Specific HeatsFirst Law for an Open SystemApplications of First Law for an Open SystemIntegral and Differential Form
Non-equilibrium thermodynamics
De Groot, Sybren Ruurds
1984-01-01
The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn
REA, The Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics I includes review of properties and states of a pure substance, work and heat, energy and the first law of thermodynamics, entropy and the second law of thermodynamics
Viscometric and thermodynamic studies of interactions in ternary ...
Indian Academy of Sciences (India)
Viscometric and thermodynamic studies of interactions in ternary solutions containing sucrose and aqueous alkali metal halides at 293.15, 303.15 and 313.15 K. Reena Gupta Mukhtar Singh ... Keywords. Ternary solutions; interactions of ionic and nonionic solutes; partial molar volumes; sucrosealkali metal halide solutions.
A thermodynamic approach towards glass-forming ability of ...
Indian Academy of Sciences (India)
Home; Journals; Bulletin of Materials Science; Volume 38; Issue 7. A thermodynamic approach towards glass-forming ability of amorphous metallic alloys ... The driving force of crystallization () provides very important information about the glass-forming ability (GFA) of metallic glasses (MGs). Lesser the driving force of ...
Theoretical physics 5 thermodynamics
Nolting, Wolfgang
2017-01-01
This concise textbook offers a clear and comprehensive introduction to thermodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, defining macroscopic variables, such as internal energy, entropy and pressure,together with thermodynamic principles. The first part of the book introduces the laws of thermodynamics and thermodynamic potentials. More complex themes are covered in the second part of the book, which describes phases and phase transitions in depth. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cove...
Polyelectrolytes thermodynamics and rheology
P M, Visakh; Picó, Guillermo Alfredo
2014-01-01
This book discusses current development of theoretical models and experimental findings on the thermodynamics of polyelectrolytes. Particular emphasis is placed on the rheological description of polyelectrolyte solutions and hydrogels.
Workshop on Teaching Thermodynamics
1985-01-01
It seemed appropriate to arrange a meeting of teachers of thermodynamics in the United Kingdom, a meeting held in the pleasant surroundings of Emmanuel College, Cambridge, in Sept~mber, 1984. This volume records the ideas put forward by authors, the discussion generated and an account of the action that discussion has initiated. Emphasis was placed on the Teaching of Thermodynamics to degree-level students in their first and second years. The meeting, a workshop for practitioners in which all were expected to take part, was remarkably well supported. This was notable in the representation of essentially every UK university and polytechnic engaged in teaching engineering thermodynamics and has led to a stimulating spread of ideas. By intention, the emphasis for attendance was put on teachers of engineering concerned with thermodynamics, both mechanical and chemical engineering disciplines. Attendance from others was encouraged but limited as follows: non-engineering acad emics, 10%, industrialists, 10%. The ...
General and Statistical Thermodynamics
Tahir-Kheli, Raza
2012-01-01
This textbook explains completely the general and statistical thermodynamics. It begins with an introductory statistical mechanics course, deriving all the important formulae meticulously and explicitly, without mathematical short cuts. The main part of the book deals with the careful discussion of the concepts and laws of thermodynamics, van der Waals, Kelvin and Claudius theories, ideal and real gases, thermodynamic potentials, phonons and all the related aspects. To elucidate the concepts introduced and to provide practical problem solving support, numerous carefully worked examples are of great value for students. The text is clearly written and punctuated with many interesting anecdotes. This book is written as main textbook for upper undergraduate students attending a course on thermodynamics.
Elements of statistical thermodynamics
Nash, Leonard K
2006-01-01
Encompassing essentially all aspects of statistical mechanics that appear in undergraduate texts, this concise, elementary treatment shows how an atomic-molecular perspective yields new insights into macroscopic thermodynamics. 1974 edition.
Elements of chemical thermodynamics
Nash, Leonard K
2005-01-01
This survey of purely thermal data in calculating the position of equilibrium in a chemical reaction highlights the physical content of thermodynamics, as distinct from purely mathematical aspects. 1970 edition.
Electrochemical thermodynamic measurement system
Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA
2009-09-29
The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.
DEFF Research Database (Denmark)
Sørensen, Eva; Torfing, Jacob; Peters, B. Guy
, but all these forms represent means of governing involving mixtures of state action with the actions of other entities.This book explores thoroughly this meaning of governance, and links it to broader questions of governance. In the process of explicating this dimension of governance the authors also...... explore some of the more fundamental questions about governance theory. For example, although governance is talked about a great deal political science has done relatively little about how to measure this concept. Likewise, the term multi-level governance has become widely used but its important...... to understand that idea more fully and see how it functions in the context of interactive forms of governance. The authors also link governance to some very fundamental questions in political science and the social sciences more broadly. How is power exercised in interactive governance? How democratic...
Thermodynamics and quantum correlations
Perarnau Llobet, Martí
2016-01-01
Thermodynamics traditionally deals with macroscopic systems at thermal equilibrium. However, since the very beginning of the theory, its range of applicability has only increased, nowadays being applied to virtually every field of science, and to systems of extremely different size. This thesis is devoted to the study of thermodynamics in the quantum regime. It contains original results on topics that include: Work extraction from quantum systems, fluctuations of work, the energetic valu...
Banerjee, Soumya; Mukherjee, Shraboni; LaminKa-Ot, Augustine; Joshi, S R; Mandal, Tamal; Halder, Gopinath
2016-09-01
The adsorptive capability of superheated steam activated biochar (SSAB) produced from Colocasia esculenta was investigated for removal of Cu(2+), Fe(2+) and As(5+) from simulated coal mine wastewater. SSAB was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller analyser. Adsorption isotherm indicated monolayer adsorption which fitted best in Langmuir isotherm model. Thermodynamic study suggested the removal process to be exothermic, feasible and spontaneous in nature. Adsorption of Fe(2+), Cu(2+) and As(5+) on to SSAB was found to be governed by pseudo-second order kinetic model. Efficacy of SSAB in terms of metal desorption, regeneration and reusability for multiple cycles was studied. Regeneration of metal desorbed SSAB with 1 N sodium hydroxide maintained its effectiveness towards multiple metal adsorption cycles. Cost estimation of SSAB production substantiated its cost effectiveness as compared to commercially available activated carbon. Hence, SSAB could be a promising adsorbent for metal ions removal from aqueous solution.
Metal-induced crystallization fundamentals and applications
Wang, Zumin; Mittemeijer, Eric J
2014-01-01
Introduction to Metal-Induced CrystallizationAtomic Mechanisms and Interface Thermodynamics of Metal-Induced Crystallization of Amorphous Semiconductors at Low TemperaturesThermodynamics and Kinetics of Layer Exchange upon Low-Temperature Annealing Amorphous Si/Polycrystalline Al Layered StructuresMetal-Induced Crystallization by Homogeneous Insertion of Metallic Species in Amorphous SemiconductorsAluminum-Induced Crystallization: Applications in Photovoltaic TechnologiesApplications of Metal-Induced Crystallization for Advanced Flat-Panel DisplaysLaser-Assisted Meta
The thermodynamic basis of entransy and entransy dissipation
International Nuclear Information System (INIS)
Xu, Mingtian
2011-01-01
In the present work, the entransy and entransy dissipation are defined from the thermodynamic point of view. It is shown that the entransy is a state variable and can be employed to describe the second law of thermodynamics. For heat conduction, a principle of minimum entransy dissipation is established based on the second law of thermodynamics in terms of entransy dissipation, which leads to the governing equation of the steady Fourier heat conduction without heat source. Furthermore, we derive the expressions of the entransy dissipation in duct flows and heat exchangers from the second law of thermodynamics, which paves the way for applications of the entransy dissipation theory in heat exchanger design. -- Highlights: → The concepts of entransy and entransy dissipation are defined from the thermodynamic point of view. → We find that the entransy is a new thermodynamic property. → The second law of thermodynamics can be described by the entransy and entransy dissipation. → The expressions of entransy dissipation in duct flows and heat exchangers are derived from the second law of thermodynamics.
Ria Bronneman-Helmers
2011-01-01
Governing education. Trends in Dutch education policy 1990-2010 The Dutch government is responsible for e a cohesive and properly functioning education system. This report discusses the way in which the government fulfilled that responsibility in the period 1990-2010. The study is
Extended Irreversible Thermodynamics
Jou, David
2010-01-01
This is the 4th edition of the highly acclaimed monograph on Extended Irreversible Thermodynamics, a theory that goes beyond the classical theory of irreversible processes. In contrast to the classical approach, the basic variables describing the system are complemented by non-equilibrium quantities. The claims made for extended thermodynamics are confirmed by the kinetic theory of gases and statistical mechanics. The book covers a wide spectrum of applications, and also contains a thorough discussion of the foundations and the scope of the current theories on non-equilibrium thermodynamics. For this new edition, the authors critically revised existing material while taking into account the most recent developments in fast moving fields such as heat transport in micro- and nanosystems or fast solidification fronts in materials sciences. Several fundamental chapters have been revisited emphasizing physics and applications over mathematical derivations. Also, fundamental questions on the definition of non-equil...
DEFF Research Database (Denmark)
Westerhoff, Hans V.; Jensen, Peter Ruhdal; Snoep, Jacky L.
1998-01-01
the thesis that the aforesaid holds a fortiori for the living cell: Much of the essence of the live state depends more on the manner in which the molecules are organised than on the properties of single molecules. This is due to the phenomenon of 'Complexity'. BioComplexity is defined here as the phenomenon...... understanding of this BioComplexity, modem thermodynamic concepts and methods (nonequilibrium thermodynamics, metabolic and hierarchical control analysis) will be needed. We shall propose to redefine nonequilibrium thermodynamics as: The science that aims at understanding the behaviour of nonequilibrium systems...... with metabolic control analysis. Subsequently, the complexity of the control of the energy metabolism of E. coli will be analysed in detail. New control theorems will be derived for newly defined control coefficients. It will become transparent that molecular genetic experimentation will allow one to penetrate...
DEFF Research Database (Denmark)
Mols, Niels Peter; Menard, Claude
2014-01-01
Plural governance is a form of governance where a firm both makes and buys similar goods or services. Despite a widespread use of plural governance there are no transaction cost models of how plural governance affects performance. This paper reviews the literature about plural forms and proposes...... a model relating transaction cost and resource-based variables to the cost of the plural form. The model is then used to analyze when the plural form is efficient compared to alternative governance structures. We also use the model to discuss the strength of three plural form synergies....
Khan, Muhammad Ehsan
2014-01-01
FOUNDATION OF GOVERNANCEGovernanceDefining GovernanceGovernance at Multiple LevelsSummaryReferencesTransaction Cost EconomicsTransactions-Core Elements and Attributes Behavioral Assumptions Governance Structure AttributesHazards of Concern Incomplete Contracting Bilateral Dependency and Fundamental Transformation Adaptation or MaladaptationLinking Governance, Governance Structures, and ContractsThe Impact of Asset Specificity and Behavioral Assumptions on ContractsAp
Mechanics, Waves and Thermodynamics
Ranjan Jain, Sudhir
2016-05-01
Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.
Wong, Kaufui Vincent
2011-01-01
Praise for the First Edition from Students: "It is a great thermodynamics text…I loved it!-Mathew Walters "The book is comprehensive and easy to understand. I love the real world examples and problems, they make you feel like you are learning something very practical."-Craig Paxton"I would recommend the book to friends."-Faure J. Malo-Molina"The clear diction, as well as informative illustrations and diagrams, help convey the material clearly to the reader."-Paul C. Start"An inspiring and effective tool for any aspiring scientist or engineer. Definitely the best book on Classical Thermodynamics out."-Seth Marini.
Concise chemical thermodynamics
Peters, APH
2010-01-01
EnergyThe Realm of ThermodynamicsEnergy BookkeepingNature's Driving ForcesSetting the Scene: Basic IdeasSystem and SurroundingsFunctions of StateMechanical Work and Expanding GasesThe Absolute Temperature Scale Forms of Energy and Their Interconversion Forms of Renewable Energy Solar Energy Wind Energy Hydroelectric Power Geothermal Energy Biomass Energy References ProblemsThe First Law of Thermodynamics Statement of the First Law Reversible Expansion of an Ideal GasConstant-Volume ProcessesConstant-Pressure ProcessesA New Function: EnthalpyRelationship between ?H and ?UUses and Conventions of
Thermodynamics of ABC transporters
Directory of Open Access Journals (Sweden)
Xuejun C. Zhang
2015-09-01
Full Text Available ABSTRACT ABC transporters form the largest of all transporter families, and their structural study has made tremendous progress over recent years. However, despite such advances, the precise mechanisms that determine the energy-coupling between ATP hydrolysis and the conformational changes following substrate binding remain to be elucidated. Here, we present our thermodynamic analysis for both ABC importers and exporters, and introduce the two new concepts of differential-binding energy and elastic conformational energy into the discussion. We hope that the structural analysis of ABC transporters will henceforth take thermodynamic aspects of transport mechanisms into account as well.
REA, The Editors of
2013-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics II includes review of thermodynamic relations, power and refrigeration cycles, mixtures and solutions, chemical reactions, chemical equilibrium, and flow through nozzl
Thermodynamic potential in quantum electrodynamics
International Nuclear Information System (INIS)
Morley, P.D.
1978-01-01
The thermodynamic potential, Ω, in quantum electrodynamics (QED) is derived using the path-integral formalism. Renormalization of Ω is shown by proving the following theorem: Ω/sub B/(e/sub B/,m/sub B/,T,μ) - Ω/sub B/(e/sub B/,m/sub B/,T = 0,μ = 0) = Ω/sub R/(e/sub R/,m/sub R/,T,μ,S), where B and R refer to bare and renormalized quantities, respectively, and S is the Euclidean subtraction momentum squared. This theorem is proved explicitly to e/sub R/ 4 order and could be analogously extended to any higher order. Renormalization-group equations are derived for Ω/sub R/, and it is shown that perturbation theory in a medium is governed by effective coupling constants which are functions of the density. The behavior of the theory at high densities is governed by the Euclidean ultraviolet behavior of the theory in the vacuum
Experimental thermodynamics experimental thermodynamics of non-reacting fluids
Neindre, B Le
2013-01-01
Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids focuses on experimental methods and procedures in the study of thermophysical properties of fluids. The selection first offers information on methods used in measuring thermodynamic properties and tests, including physical quantities and symbols for physical quantities, thermodynamic definitions, and definition of activities and related quantities. The text also describes reference materials for thermometric fixed points, temperature measurement under pressures, and pressure measurements. The publicatio
Black Hole Thermodynamics in an Undergraduate Thermodynamics Course.
Parker, Barry R.; McLeod, Robert J.
1980-01-01
An analogy, which has been drawn between black hole physics and thermodynamics, is mathematically broadened in this article. Equations similar to the standard partial differential relations of thermodynamics are found for black holes. The results can be used to supplement an undergraduate thermodynamics course. (Author/SK)
Correct thermodynamic forces in Tsallis thermodynamics: connection with Hill nanothermodynamics
International Nuclear Information System (INIS)
Garcia-Morales, Vladimir; Cervera, Javier; Pellicer, Julio
2005-01-01
The equivalence between Tsallis thermodynamics and Hill's nanothermodynamics is established. The correct thermodynamic forces in Tsallis thermodynamics are pointed out. Through this connection we also find a general expression for the entropic index q which we illustrate with two physical examples, allowing in both cases to relate q to the underlying dynamics of the Hamiltonian systems
A Hamiltonian approach to Thermodynamics
International Nuclear Information System (INIS)
Baldiotti, M.C.; Fresneda, R.; Molina, C.
2016-01-01
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.
A Hamiltonian approach to Thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)
2016-10-15
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.
Thermodynamics and statistical mechanics
Landsberg, Peter T
1990-01-01
Exceptionally articulate treatment combines precise mathematical style with strong physical intuition. Wide range of applications includes negative temperatures, negative heat capacities, special and general relativistic effects, black hole thermodynamics, gravitational collapse, more. Over 100 problems with worked solutions. Advanced undergraduate, graduate level. Table of applications. Useful formulas and other data.
Thermodynamics applied. Where? Why?
Hirs, Gerard
2003-01-01
In recent years, thermodynamics has been applied in a number of new fields leading to a greater societal impact. This paper gives a survey of these new fields and the reasons why these applications are important. In addition, it is shown that the number of fields could be even greater in the future
Debbasch, F.
2011-01-01
The logical structure of classical thermodynamics is presented in a modern, geometrical manner. The first and second law receive clear, operatively oriented statements and the Gibbs free energy extremum principle is fully discussed. Applications relevant to chemistry, such as phase transitions, dilute solutions theory and, in particular, the law…
Thermodynamics, applied. : Where? why?
Hirs, Gerard
1999-01-01
In recent years thermodynamics has been applied in a number of new fields leading to a greater societal impact. The paper gives a survey of these new fields and the reasons why these applications are important. In addition it is shown that the number of fields could be even greater in the future and
Thermodynamical Arguments against Evolution
Rosenhouse, Jason
2017-01-01
The argument that the second law of thermodynamics contradicts the theory of evolution has recently been revived by anti-evolutionists. In its basic form, the argument asserts that whereas evolution implies that there has been an increase in biological complexity over time, the second law, a fundamental principle of physics, shows this to be…
Thermodynamics of meat proteins
Sman, van der R.G.M.
2012-01-01
We describe the water activity of meat, being a mixture of proteins, salts and water, by the Free-Volume-Flory–Huggins (FVFH) theory augmented with the equation. Earlier, the FVFH theory is successfully applied to describe the thermodynamics to glucose homopolymers like starch, dextrans and
Nonequilibrium thermodynamics of nucleation
Schweizer, M.; Sagis, L.M.C.
2014-01-01
We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a
FORMATION CONSTANTS AND THERMODYNAMIC ...
African Journals Online (AJOL)
, Ni(II), Cu(II) and Zn(II) ions has been ... A good deal of work has been reported on the preparation and structural investigation of. Schiff base ... Formation constants and thermodynamic parameters of Co, Ni, Cu and Zn complexes. Bull. Chem.
New perspectives in thermodynamics
International Nuclear Information System (INIS)
Serrin, J.
1986-01-01
The last decade has seen a unity of method and approach in the foundations of thermodynamics and continuum mechanics, in which rigorous laws of thermodynamics have been combined with invariance notions of mechanics to produce new and deep understanding. Real progress has been made in finding a set of appropriate concepts for classical thermodynamics, by which energy conservation and the Clausius inequality can be given well-defined meanings for arbitrary processes and which allow an approach to the entropy concept which is free of traditional ambiguities. There has been, moreover, a careful scrutiny of long established but nevertheless not sharply defined concepts such as the Maxwell equal-area rule, the famous Gibbs phase rule, and the equivalence of work and heat. The thirteen papers in this volume accordingly gather together for the first time the many ideas and concepts which have raised classical thermodynamics from a heuristic and intuitive science to the level of precision presently demanded of other branches of mathematical physics
Thermodynamics Far from the Thermodynamic Limit.
de Miguel, Rodrigo; Rubí, J Miguel
2017-11-16
Understanding how small systems exchange energy with a heat bath is important to describe how their unique properties can be affected by the environment. In this contribution, we apply Landsberg's theory of temperature-dependent energy levels to describe the progressive thermalization of small systems as their spectrum is perturbed by a heat bath. We propose a mechanism whereby the small system undergoes a discrete series of excitations and isentropic spectrum adjustments leading to a final state of thermal equilibrium. This produces standard thermodynamic results without invoking system size. The thermal relaxation of a single harmonic oscillator is analyzed as a model example of a system with a quantized spectrum than can be embedded in a thermal environment. A description of how the thermal environment affects the spectrum of a small system can be the first step in using environmental factors, such as temperature, as parameters in the design and operation of nanosystem properties.
Thermodynamics for the practicing engineer
Theodore, Louis; Vanvliet, Timothy
2009-01-01
This book concentrates specifically on the applications of thermodynamics, rather than the theory. It addresses both technical and pragmatic problems in the field, and covers such topics as enthalpy effects, equilibrium thermodynamics, non-ideal thermodynamics and energy conversion applications. Providing the reader with a working knowledge of the principles of thermodynamics, as well as experience in their application, it stands alone as an easy-to-follow self-teaching aid to practical applications and contains worked examples.
Choice of the thermodynamic variables
International Nuclear Information System (INIS)
Balian, R.
1985-09-01
Some basic ideas of thermodynamics and statistical mechanics, both at equilibrium and off equilibrium, are recalled. In particular, the selection of relevant variables which underlies any macroscopic description is discussed, together with the meaning of the various thermodynamic quantities, in order to set the thermodynamic approaches used in nuclear physics in a general prospect [fr
Sabel, C.F.; Zeitlin, J.; Levi-Faur, D.
2012-01-01
A secular rise in volatility and uncertainty is overwhelming the capacities of conventional hierarchical governance and ‘command-and-control’ regulation in many settings. One significant response is the emergence of a novel, ‘experimentalist’ form of governance that establishes deliberately
DEFF Research Database (Denmark)
Bang, Henrik
2016-01-01
and growth. However, interactive governance is not a property or effect of institutions; nor does it apply solely to those individuals who seek success above everything else. It is connective more than individualistic or collectivistic in nature; and it manifests a governability capacity which...
Contact symmetries and Hamiltonian thermodynamics
International Nuclear Information System (INIS)
Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.
2015-01-01
It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production
Dynamically tunable transformation thermodynamics
International Nuclear Information System (INIS)
García-Meca, Carlos; Barceló, Carlos
2016-01-01
Recently, the introduction of transformation thermodynamics has provided a way to design thermal media that alter the flow of heat according to any spatial deformation, enabling the construction of novel devices such as thermal cloaks or concentrators. However, in its current version, this technique only allows static deformations of space. Here, we develop a space–time theory of transformation thermodynamics that incorporates the possibility of performing time-varying deformations. This extra freedom greatly widens the range of achievable effects, providing an additional degree of control for heat management applications. As an example, we design a reconfigurable thermal cloak that can be opened and closed dynamically, therefore being able to gradually adjust the temperature distribution of a given region. (paper)
Thermodynamic problems on HCPWR
International Nuclear Information System (INIS)
Akiyama, Mie
1986-01-01
A HCPWR design uses the high compact lattice core of 1 to 2 mm fuel rod pitch in order to decrease the water volume fraction to fuel. But such high compactness is considered to cause the decrease of coolant flow rate due to the increase of core pressure loss. And the high compactness also affects the DNB phenomena itself which is directly related to the output performance. Moreover, the coolability of the reactor core is considered to be affected at an accident. It is one of the most important problems for realizing a HCPWR plant whether or not we can design a reactor that preserves the output performance under the consideration of such thermodynamic affections. The thermodynamic affections caused by high compactness are arranged in this report, and the further research problems on HCPWR are also considered on presently available knowledge. (author)
Demtröder, Wolfgang
2017-01-01
This introduction to classical mechanics and thermodynamics provides an accessible and clear treatment of the fundamentals. Starting with particle mechanics and an early introduction to special relativity this textbooks enables the reader to understand the basics in mechanics. The text is written from the experimental physics point of view, giving numerous real life examples and applications of classical mechanics in technology. This highly motivating presentation deepens the knowledge in a very accessible way. The second part of the text gives a concise introduction to rotational motion, an expansion to rigid bodies, fluids and gases. Finally, an extensive chapter on thermodynamics and a short introduction to nonlinear dynamics with some instructive examples intensify the knowledge of more advanced topics. Numerous problems with detailed solutions are perfect for self study.
International Nuclear Information System (INIS)
Bernhoeft, N.; Lander, G.H.; Colineau, E.
2003-01-01
An asymmetric shift in the position of the magnetic Bragg peak with respect to the fiducial lattice has been observed by resonant X-ray scattering in a diverse series of antiferromagnetic compounds. This apparent violation of Bragg's law is interpreted in terms of a dynamically phased order parameter. We demonstrate the use of this effect as a novel probe of fragile or dynamic thermodynamic order in strongly correlated electronic systems. In particular, fresh light is shed on the paradoxical situation encountered in URu 2 Si 2 where the measured entropy gain on passing through T Neel is incompatible with the ground state moment estimated by neutron diffraction. The intrinsic space-time averaging of the probe used to characterise the thermodynamic macroscopic state may play a crucial and previously neglected role. In turn, this suggests the further use of resonant X-ray scattering in investigations of systems dominated by quantum fluctuations. (author)
Thermodynamical quantum information sharing
International Nuclear Information System (INIS)
Wiesniak, M.; Vedral, V.; Brukner, C.
2005-01-01
Full text: Thermodynamical properties fully originate from classical physics and can be easily measured for macroscopic systems. On the other hand, entanglement is a widely spoken feature of quantum physics, which allows to perform certain task with efficiency unavailable with any classical resource. Therefore an interesting question is whether we can witness entanglement in a state of a macroscopic sample. We show, that some macroscopic properties, in particular magnetic susceptibility, can serve as an entanglement witnesses. We also study a mutual relation between magnetic susceptibility and magnetisation. Such a complementarity exhibits quantum information sharing between these two thermodynamical quantities. Magnetization expresses properties of individual spins, while susceptibility might reveal non-classical correlations as a witness. Therefore, a rapid change of one of these two quantities may mean a phase transition also in terms of entanglement. The complementarity relation is demonstrated by an analytical solution of an exemplary model. (author)
Work reservoirs in thermodynamics
Anacleto, Joaquim
2010-05-01
We stress the usefulness of the work reservoir in the formalism of thermodynamics, in particular in the context of the first law. To elucidate its usefulness, the formalism is then applied to the Joule expansion and other peculiar and instructive experimental situations, clarifying the concepts of configuration and dissipative work. The ideas and discussions presented in this study are primarily intended for undergraduate students, but they might also be useful to graduate students, researchers and teachers.
Neergaard, Gregers; Bondorf, Jakob P.; Mishustin, Igor N.
2000-01-01
We present our first attempts to formulate a thermodynamics-like description of explosions. The motivation is partly a fundamental interest in non-equilibrium statistical physics, partly the resemblance of an explosion to the late stages of a heavy-ion collision. We perform numerical simulations on a microscopic model of interacting billiard-ball like particles, and we analyse the results of such simulations trying to identify collective variables describing the degree of equilibrium during t...
Loos, Gregory P
2003-01-01
Globalization's profound influence on social and political institutions need not be negative. Critics of globalization have often referred to the "Impossible Trinity" because decision-making must 1. respect national sovereignty, 2. develop and implement firm regulation, and 3. allow capital markets to be as free as possible. To many, such goals are mutually exclusive because history conditions us to view policy-making and governance in traditional molds. Thus, transnational governance merely appears impossible because current forms of governance were not designed to provide it. The world needs new tools for governing, and its citizens must seize the opportunity to help develop them. The rise of a global society requires a greater level of generality and inclusion than is found in most policy bodies today. Politicians need to re-examine key assumptions about government. States must develop ways to discharge their regulatory responsibilities across borders and collaborate with neighboring jurisdictions, multilateral bodies, and business. Concepts such as multilateralism and tripartism show great promise. Governments must engage civil society in the spirit of shared responsibility and democratic decision-making. Such changes will result in a renewal of the state's purpose and better use of international resources and expertise in governance.
DEFF Research Database (Denmark)
Kjær, Poul F.; Vetterlein, Antje
2018-01-01
, legal and cultural, on a global scale. Against this background, this special issue sets out to explore the multifaceted meaning, potential and impact as well as the social praxis of regulatory governance. Under the notions rules, resistance and responsibility the special issue pins out three overall......Regulatory governance frameworks have become essential building blocks of world society. From supply chains to the regimes surrounding international organizations, extensive governance frameworks have emerged which structure and channel a variety of social exchanges, including economic, political...
Heavy metals binding properties of esterified lemon
International Nuclear Information System (INIS)
Arslanoglu, Hasan; Altundogan, Hamdi Soner; Tumen, Fikret
2009-01-01
Sorption of Cd 2+ , Cr 3+ , Cu 2+ , Ni 2+ , Pb 2+ and Zn 2+ onto a carboxyl groups-rich material prepared from lemon was investigated in batch systems. The results revealed that the sorption is highly pH dependent. Sorption kinetic data indicated that the equilibrium was achieved in the range of 30-240 min for different metal ions and sorption kinetics followed the pseudo-second-order model for all metals studied. Relative sorption rate of various metal cations was found to be in the general order of Ni 2+ > Cd 2+ > Cu 2+ > Pb 2+ > Zn 2+ > Cr 3+ . The binding characteristics of the sorbent for heavy metal ions were analyzed under various conditions and isotherm data was accurately fitted to the Langmuir equation. The metal binding capacity order calculated from Langmuir isotherm was Pb 2+ > Cu 2+ > Ni 2+ > Cd 2+ > Zn 2+ > Cr 3+ . The mean free energy of metal sorption process calculated from Dubinin-Radushkevich parameter and the Polanyi potential was found to be in the range of 8-11 kJ mol -1 for the metals studied showing that the main mechanism governing the sorption process seems to be ion exchange. The basic thermodynamic parameters of metals ion sorption process were calculated by using the Langmuir constants obtained from equilibration study. The ΔG o and ΔH o values for metals ion sorption on the lemon sorbent showed the process to be spontaneous and exothermic in nature. Relatively low ΔH o values revealed that physical adsorption significantly contributed to the mechanism.
Heavy metals binding properties of esterified lemon.
Arslanoglu, Hasan; Altundogan, Hamdi Soner; Tumen, Fikret
2009-05-30
Sorption of Cd(2+), Cr(3+), Cu(2+), Ni(2+), Pb(2+) and Zn(2+) onto a carboxyl groups-rich material prepared from lemon was investigated in batch systems. The results revealed that the sorption is highly pH dependent. Sorption kinetic data indicated that the equilibrium was achieved in the range of 30-240 min for different metal ions and sorption kinetics followed the pseudo-second-order model for all metals studied. Relative sorption rate of various metal cations was found to be in the general order of Ni(2+)>Cd(2+)>Cu(2+)>Pb(2+)>Zn(2+)>Cr(3+). The binding characteristics of the sorbent for heavy metal ions were analyzed under various conditions and isotherm data was accurately fitted to the Langmuir equation. The metal binding capacity order calculated from Langmuir isotherm was Pb(2+)>Cu(2+)>Ni(2+)>Cd(2+)>Zn(2+)>Cr(3+). The mean free energy of metal sorption process calculated from Dubinin-Radushkevich parameter and the Polanyi potential was found to be in the range of 8-11 kJ mol(-1) for the metals studied showing that the main mechanism governing the sorption process seems to be ion exchange. The basic thermodynamic parameters of metals ion sorption process were calculated by using the Langmuir constants obtained from equilibration study. The DeltaG degrees and DeltaH degrees values for metals ion sorption on the lemon sorbent showed the process to be spontaneous and exothermic in nature. Relatively low DeltaH degrees values revealed that physical adsorption significantly contributed to the mechanism.
Heavy metals binding properties of esterified lemon
Energy Technology Data Exchange (ETDEWEB)
Arslanoglu, Hasan; Altundogan, Hamdi Soner [Department of Chemical Engineering, Firat University, 23279 Elazig (Turkey); Tumen, Fikret, E-mail: ftumen@firat.edu.tr [Department of Chemical Engineering, Firat University, 23279 Elazig (Turkey)
2009-05-30
Sorption of Cd{sup 2+}, Cr{sup 3+}, Cu{sup 2+}, Ni{sup 2+}, Pb{sup 2+} and Zn{sup 2+} onto a carboxyl groups-rich material prepared from lemon was investigated in batch systems. The results revealed that the sorption is highly pH dependent. Sorption kinetic data indicated that the equilibrium was achieved in the range of 30-240 min for different metal ions and sorption kinetics followed the pseudo-second-order model for all metals studied. Relative sorption rate of various metal cations was found to be in the general order of Ni{sup 2+} > Cd{sup 2+} > Cu{sup 2+} > Pb{sup 2+} > Zn{sup 2+} > Cr{sup 3+}. The binding characteristics of the sorbent for heavy metal ions were analyzed under various conditions and isotherm data was accurately fitted to the Langmuir equation. The metal binding capacity order calculated from Langmuir isotherm was Pb{sup 2+} > Cu{sup 2+} > Ni{sup 2+} > Cd{sup 2+} > Zn{sup 2+} > Cr{sup 3+}. The mean free energy of metal sorption process calculated from Dubinin-Radushkevich parameter and the Polanyi potential was found to be in the range of 8-11 kJ mol{sup -1} for the metals studied showing that the main mechanism governing the sorption process seems to be ion exchange. The basic thermodynamic parameters of metals ion sorption process were calculated by using the Langmuir constants obtained from equilibration study. The {Delta}G{sup o} and {Delta}H{sup o} values for metals ion sorption on the lemon sorbent showed the process to be spontaneous and exothermic in nature. Relatively low {Delta}H{sup o} values revealed that physical adsorption significantly contributed to the mechanism.
DEFF Research Database (Denmark)
Krause Hansen, Hans; Salskov-Iversen, Dorte
2017-01-01
This entry is concerned with demonstrating the increasingly important interface between government organization and communication. Government organization can be approached in terms of state centrism, where the emphasis is on government organization understood as state authority and power......, with clearly defined boundaries between the public and private; and in terms of polycentrism, where power and authority are seen as dispersed among state and nonstate organizations, including business and civil society organizations. Globalization and new media technologies imply changes in the relationship...... between power, communication, and organizational forms, and suggest the usefulness of viewing government organization in terms of polycentrism, highlighting communication and organizing processes in a wider perspective. The entry focuses particularly on two major strands of literature: deliberative...
Kinetic and Thermodynamic Studies on Adsorption of Sulphate from ...
African Journals Online (AJOL)
DELL USER
Kinetic and Thermodynamic Studies on Adsorption of Sulphate from Aqueous Solution by. Magnetite, Activated .... membrane separation, reverse osmosis, chemical ... removal, high energy consumption, reagents cost, disposal of large volume of organic solvents and inefficiency when the metal concentrations are 10 mg/l. 6.
Corrosion in waste-fired boilers: A thermodynamic study
DEFF Research Database (Denmark)
Becidan, Michael; Sørum, Lars; Frandsen, Flemming
2009-01-01
A twofold study using thermodynamic equilibrium calculations was carried out to study corrosion in MSW incinerators. Corrosion was associated with the amount of alkalis and trace metals gaseous chlorides. Firstly, a two-level factorial experimental design combined with a data analysis were used...
DEFF Research Database (Denmark)
Foss, Nicolai Juul; Klein, Peter G.
This chapter reviews and discusses rational-choice approaches to organizational governance. These approaches are found primarily in organizational economics (virtually no rational-choice organizational sociology exists), particularly in transaction cost economics, principal-agent theory, and the ......This chapter reviews and discusses rational-choice approaches to organizational governance. These approaches are found primarily in organizational economics (virtually no rational-choice organizational sociology exists), particularly in transaction cost economics, principal-agent theory...
Vasil'chenko, Zh V.; Azharonok, V. V.; Filatova, I. I.; Shimanovich, V. D.; Golubev, V. S.; Zabelin, A. M.
1996-09-01
Emission spectroscopy methods were used in an investigation of thermodynamic parameters of a surface plasma formed by the action of cw CO2 laser radiation of (2-5)×106 W cm-2 intensity on stainless steel in a protective He or Ar atmosphere. The spatiotemporal structure and pulsation characteristics of the plasma plume were used to determine the fields of the plasma electron density and temperature.
Thermodynamics of adaptive molecular resolution.
Delgado-Buscalioni, R
2016-11-13
A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U (1) -U (0) The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al, J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as 'real' thermodynamic variablesThis article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).
Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics
Altaner, Bernhard
2017-11-01
Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. , which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Bernhard Altaner was selected by the Editorial Board of J. Phys. A as an Emerging Talent.
RNA Thermodynamic Structural Entropy.
Directory of Open Access Journals (Sweden)
Juan Antonio Garcia-Martin
Full Text Available Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs. However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http
RNA Thermodynamic Structural Entropy.
Garcia-Martin, Juan Antonio; Clote, Peter
2015-01-01
Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http
Non-Asymptotic Thermodynamic Ensembles
Niven, Robert K.
2008-01-01
Boltzmann's principle is used to select the "most probable" realization (macrostate) of an isolated or closed thermodynamic system, containing a small number of particles ($N \\llsp \\infty$), for both classical and quantum statistics. The inferred probability distributions provide the means to define intensive variables and construct thermodynamic relationships for small microcanonical systems, which do not satisfy the thermodynamic limit. This is of critical importance to nanoscience and quan...
Studying Thermodynamics of Metastable States
Kornyushin, Yuri
2007-01-01
Simple classical thermodynamic approach to the general description of metastable states is presented. It makes it possible to calculate the explicit dependence of the Gibbs free energy on temperature, to calculate the heat capacity, the thermodynamic barrier, dividing metastable and more stable states, and the thermal expansion coefficient. Thermodynamic stability under mechanical loading is considered. The influence of the heating (cooling) rate on the measured dynamic heat capacity is inves...
On thermodynamic and microscopic reversibility
International Nuclear Information System (INIS)
Crooks, Gavin E
2011-01-01
The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa
Kirkland, Kyle
2007-01-01
Temperature is vital to the health and welfare of all living beings, and Earth's temperature varies considerably from place to place. Early humans could only live in warm areas such as the tropics. Although modern humans have the technology to keep their houses and offices warm even in cold environments, the growth and development of civilization has created unintentional effects. Cities are warmer than their surrounding regions, and on a global scale, Earth is experiencing rising temperatures. Thus, the science of thermodynamics offers an important tool to study these effects. "Time and
Kaufman, Myron
2002-01-01
Ideal for one- or two-semester courses that assume elementary knowledge of calculus, This text presents the fundamental concepts of thermodynamics and applies these to problems dealing with properties of materials, phase transformations, chemical reactions, solutions and surfaces. The author utilizes principles of statistical mechanics to illustrate key concepts from a microscopic perspective, as well as develop equations of kinetic theory. The book provides end-of-chapter question and problem sets, some using Mathcad™ and Mathematica™; a useful glossary containing important symbols, definitions, and units; and appendices covering multivariable calculus and valuable numerical methods.
Thermodynamics of Accelerating Black Holes.
Appels, Michael; Gregory, Ruth; Kubizňák, David
2016-09-23
We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.
Molecular thermodynamics of nonideal fluids
Lee, Lloyd L
2013-01-01
Molecular Thermodynamics of Nonideal Fluids serves as an introductory presentation for engineers to the concepts and principles behind and the advances in molecular thermodynamics of nonideal fluids. The book covers related topics such as the laws of thermodynamics; entropy; its ensembles; the different properties of the ideal gas; and the structure of liquids. Also covered in the book are topics such as integral equation theories; theories for polar fluids; solution thermodynamics; and molecular dynamics. The text is recommended for engineers who would like to be familiarized with the concept
DEFF Research Database (Denmark)
Flak, Leif Skiftenes; Rose, Jeremy
2005-01-01
The e-government field, like most young fields, lacks a strong body of well-developed theory. One strategy for coping with theoretical immaturity is to import and adapt theories from other, more mature fields. This study reviews Stakeholder Theory (ST) and investigates its potential in relation...... to e-Government. Originally a management theory, stakeholder theory advocates addressing the concerns of all stakeholders in a firm, as opposed to concentration on the interests of senior managers and stockholders. Apart from the original profit focus, there is no serious conceptual mismatch between...... stakeholder theory and government’s objective of providing policy and services for citizens and organizations – society’s stakeholders. Potential problems with adapting a management theory to a government setting are discussed. The paper further discusses how information technology impacts a stakeholder model...
Becker, Katie
Government regulation of food products, food processing, and food preparation is imperative in bringing an unadulterated, nonmisleading, and safe food product to market and is relevant to all areas of food science, including engineering, processing, chemistry, and microbiology. The liability associated with providing consumers with an adulterated or substandard product cannot only tarnish a company's name and reputation, but also impose substantial financial repercussions on the company and those individuals who play an active role in the violation. In order for a company to fully comply with the relevant food laws (both federal and state), an intimate knowledge of food science is required. Individuals knowledgeable in food science play an integral role not only in implementing and counseling food companies/processors to ensure compliance with government regulations, but these individuals are also necessary to the state and federal governments that make and enforce the relevant laws and regulators.
DEFF Research Database (Denmark)
Wang, Cancan; Medaglia, Rony; Jensen, Tina Blegind
2016-01-01
The nature of inter-organizational collaboration between government and other stakeholders is rapidly changing with the introduction of open social media (OSM) platforms. Characterized by a high degree of informality as well as a blurred personal/professional nature, OSM can potentially introduce...... changes and tensions in the well-established routines of the public sector. This paper aims at shedding light on such changes, presenting findings from a study on the use of an OSM platform, WeChat, in an interorganizational collaboration project between government, university, and industry stakeholders...... rather than on organizational affiliation; and a transition from formal to informal as well as from professional to private collaboration....
Thermodynamics and statistical physics. 2. rev. ed.
International Nuclear Information System (INIS)
Schnakenberg, J.
2002-01-01
This textbook covers tthe following topics: Thermodynamic systems and equilibrium, irreversible thermodynamics, thermodynamic potentials, stability, thermodynamic processes, ideal systems, real gases and phase transformations, magnetic systems and Landau model, low temperature thermodynamics, canonical ensembles, statistical theory, quantum statistics, fermions and bosons, kinetic theory, Bose-Einstein condensation, photon gas
De Lorenzo, Tommaso; Perez, Alejandro
2018-02-01
We show that null surfaces defined by the outgoing and infalling wave fronts emanating from and arriving at a sphere in Minkowski spacetime have thermodynamical properties that are in strict formal correspondence with those of black hole horizons in curved spacetimes. Such null surfaces, made of pieces of light cones, are bifurcate conformal Killing horizons for suitable conformally stationary observers. They can be extremal and nonextremal depending on the radius of the shining sphere. Such conformal Killing horizons have a constant light cone (conformal) temperature, given by the standard expression in terms of the generalization of surface gravity for conformal Killing horizons. Exchanges of conformally invariant energy across the horizon are described by a first law where entropy changes are given by 1 /(4 ℓp2) of the changes of a geometric quantity with the meaning of horizon area in a suitable conformal frame. These conformal horizons satisfy the zeroth to the third laws of thermodynamics in an appropriate way. In the extremal case they become light cones associated with a single event; these have vanishing temperature as well as vanishing entropy.
Chemical thermodynamic representation of
International Nuclear Information System (INIS)
Lindemer, T.B.; Besmann, T.M.
1984-01-01
The entire data base for the dependence of the nonstoichiometry, x, on temperature and chemical potential of oxygen (oxygen potential) was retrieved from the literature and represented. This data base was interpreted by least-squares analysis using equations derived from the classical thermodynamic theory for the solid solution of a solute in a solvent. For hyperstoichiometric oxide at oxygen potentials more positive than -266700 + 16.5T kJ/mol, the data were best represented by a [UO 2 ]-[U 3 O 7 ] solution. For O/U ratios above 2 and oxygen potentials below this boundary, a [UO 2 ]-[U 2 O 4 . 5 ] solution represented the data. The data were represented by a [UO 2 ]-[U 1 / 3 ] solution. The resulting equations represent the experimental ln(PO 2 ) - ln(x) behavior and can be used in thermodynamic calculations to predict phase boundary compositions consistent with the literature. Collectively, the present analysis permits a mathematical representation of the behavior of the total data base
Thermodynamics of geothermal fluids
Energy Technology Data Exchange (ETDEWEB)
Rogers, P.S.Z.
1981-03-01
A model to predict the thermodynamic properties of geothermal brines, based on a minimum amount of experimental data on a few key systems, is tested. Volumetric properties of aqueous sodium chloride, taken from the literature, are represented by a parametric equation over the range 0 to 300{sup 0}C and 1 bar to 1 kbar. Density measurements at 20 bar needed to complete the volumetric description also are presented. The pressure dependence of activity and thermal properties, derived from the volumetric equation, can be used to complete an equation of state for sodium chloride solutions. A flow calorimeter, used to obtain heat capacity data at high temperatures and pressures, is described. Heat capacity measurements, from 30 to 200{sup 0}C and 1 bar to 200 bar, are used to derive values for the activity coefficient and other thermodynamic properties of sodium sulfate solutions as a function of temperature. Literature data on the solubility of gypsum in mixed electrolyte solutions have been used to evaluate model parameters for calculating gypsum solubility in seawater and natural brines. Predictions of strontium and barium sulfate solubility in seawater also are given.
Light element thermodynamics related to actinide separations
International Nuclear Information System (INIS)
Johnson, I.; Johnson, C.E.
1997-01-01
The accumulation of waste from the last five decades of nuclear reactor development has resulted in large quantities of materials of very diverse chemical composition. An electrometallurgical (EM) method is being developed to separate the components of the waste into several unique streams suitable for permanent disposal and an actinide stream suitable for retrievable storage. The principal types of nuclear wastes are spent oxide or metallic fuel. Since the EM module requires a metallic feed, and oxygen interferes with its operation, the oxide fuel has to be reduced prior to EM treatment. Further, the wastes contain, in addition to oxygen, other light elements (first- and second-row elements) that may also interfere with the operation of the EM module. The extent that these light elements interfere with the operation of the EM module has been determined by chemical thermodynamic calculations. (orig.)
Thermodynamic Properties and Thermodynamic Geometries of Black p-Branes
International Nuclear Information System (INIS)
Yi-Huan Wei; Xiao Cui; Jia-Xin Zhao
2016-01-01
The heat capacity and the electric capacitance of the black p-branes (BPB) are generally defined, then they are calculated for some special processes. It is found that the Ruppeiner thermodynamic geometry of BPB is flat. Finally, we give some discussions for the flatness of the Ruppeiner thermodynamic geometry of BPB and some black holes. (paper)
Hou, Cheng; Jiang, Jingxing; Li, Yinwu; Zhang, Zhihan; Zhao, Cunyuan; Ke, Zhuofeng
2015-10-07
The mimic of hydrogenases has unleashed a myriad of bifunctional catalysts, which are widely used in the catalytic hydrogenation of polar multiple bonds. With respect to ancillary ligands, the bifunctional mechanism is generally considered to proceed via the metal-ligand cooperation transition state. Inspired by the interesting study conducted by Hanson et al. (Chem Commun., 2013, 49, 10151), we present a computational study of a distinctive example, where a Co(II)-PNP catalyst with an ancillary ligand exhibits efficient transfer hydrogenation through a non-bifunctional mechanism. Both the bifunctional and non-bifunctional mechanisms are discussed. The calculated results, which are based on a full model of the catalyst, suggest that the inner-sphere non-bifunctional mechanism is more favorable (by ∼11 kcal mol(-1)) than the outer-sphere bifunctional mechanism, which is in agreement with the experimental observations. The origin of this mechanistic preference of the Co(II)-PNP catalyst can be attributed to its preference for the square planar geometry. A traditional bifunctional mechanism is less plausible for Co(II)-PNP due to the high distortion energy caused by the change in electronic configuration with the varied ligand field. Considering previous studies that focus on the development of ligands more often, this computational study indicates that the catalytic hydrogenation mechanism is controlled not only by the structure of the ligand but also by the electronic configuration of the metal center.
DEFF Research Database (Denmark)
Wimmer, Maria A.; Traunmüller, Roland; Grönlund, Åke
This book constitutes the refereed proceedings of the 4th International Conference on Electronic Government, EGOV 2005, held in Copenhagen, Denmark, in August 2005. The 30 revised papers presented were carefully reviewed and selected from numerous submissions, and assess the state-of-the-art in e...
Laura Ard; Alexander Berg
2010-01-01
Principles of good governance have been a major component of international financial standards and are seen as essential to the stability and integrity of financial systems. Over the past 10 years much energy and attention have gone to improving the ability of company boards, managers, and owners to prudently navigate rapidly changing and volatile market conditions. So, how to explain the ...
Cook, Andrew
2003-12-01
BUPA HOSPITALS LIMITED took an early stand at a corporate level by championing the value of clinical governance for independent hospitals. The challenge this presented was never underestimated but was seen as a means to improve quality, patient outcomes and accountability, and ultimately to create a firm platform for the delivery of business objectives.
Thermodynamic stability studies of Ce-Sb compounds with Fe
Xie, Yi; Zhang, Jinsuo; Benson, Michael T.; Mariani, Robert D.
2018-02-01
Lanthanide fission products can migrate to the fuel periphery and react with cladding, causing fuel-cladding chemical interaction (FCCI). Adding a fuel additive dopant, such as Sb, can bind lanthanide, such as Ce, into metallic compounds and thus prevent migration. The present study focuses on the thermodynamic stability of Ce-Sb compounds when in contact with the major cladding constituent Fe by conducting diffusion couple tests. Ce-Sb compounds have shown high thermodynamic stability as they did not react with Fe. When Fe-Sb compounds contacted with Ce, Sb was separated out of Fe-Sb compounds and formed the more stable Ce-Sb compounds.
Conformational thermodynamics guided structural reconstruction of biomolecular fragments.
Sikdar, Samapan; Chakrabarti, J; Ghosh, Mahua
2016-02-01
Computational prediction of structure for macromolecular fragments is a formidable challenge. Here we show that the differences in conformational thermodynamics, computed using the equilibrium distribution of dihedral angles from molecular dynamics simulation, can identify the better model for the missing residues in the metal ion free (apo) skeletal muscle Troponin C (TnC). We use the model to understand Troponin I interaction with calcium (Ca(2+)) ion bound TnC. Our method to compare conformational thermodynamics between different models can be easily generalized to any macromolecule to understand the structure and function even if experimental structures are not resolved.
Thermodynamic study of selected monoterpenes
Czech Academy of Sciences Publication Activity Database
Štejfa, V.; Fulem, Michal; Růžička, K.; Červinka, C.; Rocha, M.A.A.; Santos, L.M.N.B.F.; Schröder, B.
2013-01-01
Roč. 60, MAY (2013), 117-125 ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : monoterpenes * pinene * vapor pressure * heat capacity * vaporization and sublimation enthalpy * ideal - gas thermodynamic Subject RIV: BJ - Thermodynamics Impact factor: 2.423, year: 2013
Thermodynamics of negative absolute pressures
International Nuclear Information System (INIS)
Lukacs, B.; Martinas, K.
1984-03-01
The authors show that the possibility of negative absolute pressure can be incorporated into the axiomatic thermodynamics, analogously to the negative absolute temperature. There are examples for such systems (GUT, QCD) processing negative absolute pressure in such domains where it can be expected from thermodynamical considerations. (author)
Thermodynamics from Car to Kitchen
Auty, Geoff
2014-01-01
The historical background to the laws of thermodynamics is explained using examples we can all observe in the world around us, focusing on motorised transport, refrigeration and solar heating. This is not to be considered as an academic article. The purpose is to improve understanding of thermodynamics rather than impart new knowledge, and for…
Ch. 33 Modeling: Computational Thermodynamics
International Nuclear Information System (INIS)
Besmann, Theodore M.
2012-01-01
This chapter considers methods and techniques for computational modeling for nuclear materials with a focus on fuels. The basic concepts for chemical thermodynamics are described and various current models for complex crystalline and liquid phases are illustrated. Also included are descriptions of available databases for use in chemical thermodynamic studies and commercial codes for performing complex equilibrium calculations.
The Thermodynamics of Black Holes
Directory of Open Access Journals (Sweden)
Wald Robert M.
2001-01-01
Full Text Available We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.
Applied thermodynamics: A new frontier for biotechnology
DEFF Research Database (Denmark)
Mollerup, Jørgen
2006-01-01
The scientific career of one of the most outstanding scientists in molecular thermodynamics, Professor John M. Prausnitz at Berkeley, reflects the change in the agenda of molecular thermodynamics, from hydrocarbon chemistry to biotechnology. To make thermodynamics a frontier for biotechnology...
Thermodynamic cost of acquiring information.
Micadei, Kaonan; Serra, Roberto M; Céleri, Lucas C
2013-12-01
Connections between information theory and thermodynamics have proven to be very useful to establish bounding limits for physical processes. Ideas such as Landauer's erasure principle and information-assisted work extraction have greatly contributed not only to broadening our understanding about the fundamental limits imposed by nature, but also paving the way for practical implementations of information-processing devices. The intricate information-thermodynamics relation also entails a fundamental limit on parameter estimation, establishing a thermodynamic cost for information acquisition. We show that the amount of information that can be encoded in a physical system by means of a unitary process is limited by the dissipated work during the implementation of the process. This includes a thermodynamic tradeoff for information acquisition. Likewise, the information acquisition process is ultimately limited by the second law of thermodynamics. This tradeoff for information acquisition may find applications in several areas of knowledge.
Thermodynamic properties of cryogenic fluids
Leachman, Jacob; Lemmon, Eric; Penoncello, Steven
2017-01-01
This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...
Thermodynamics in Loop Quantum Cosmology
International Nuclear Information System (INIS)
Li, L.F.; Zhu, J.Y.
2009-01-01
Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. Moreover, the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but also are actually found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.
Kovalenko, Nikolai P; Krey, Uwe
2008-01-01
The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling
Thermodynamics of anisotropic branes
Energy Technology Data Exchange (ETDEWEB)
Ávila, Daniel [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Fernández, Daniel [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Patiño, Leonardo [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Trancanelli, Diego [Institute of Physics, University of São Paulo,05314-970 São Paulo (Brazil)
2016-11-22
We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a ‘Minkowski embedding’, in which they lie outside of the horizon, and a ‘black hole embedding’, in which they fall into the horizon. This transition depends on the black hole temperature, its degree of anisotropy, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.
Thermodynamics and energy conversion
Struchtrup, Henning
2014-01-01
This textbook gives a thorough treatment of engineering thermodynamics with applications to classical and modern energy conversion devices. Some emphasis lies on the description of irreversible processes, such as friction, heat transfer and mixing, and the evaluation of the related work losses. Better use of resources requires high efficiencies, therefore the reduction of irreversible losses should be seen as one of the main goals of a thermal engineer. This book provides the necessary tools. Topics include: car and aircraft engines, including Otto, Diesel and Atkinson cycles, by-pass turbofan engines, ramjet and scramjet; steam and gas power plants, including advanced regenerative systems, solar tower, and compressed air energy storage; mixing and separation, including reverse osmosis, osmotic powerplants, and carbon sequestration; phase equilibrium and chemical equilibrium, distillation, chemical reactors, combustion processes, and fuel cells; the microscopic definition of entropy. The book i...
Applied statistical thermodynamics
Lucas, Klaus
1991-01-01
The book guides the reader from the foundations of statisti- cal thermodynamics including the theory of intermolecular forces to modern computer-aided applications in chemical en- gineering and physical chemistry. The approach is new. The foundations of quantum and statistical mechanics are presen- ted in a simple way and their applications to the prediction of fluid phase behavior of real systems are demonstrated. A particular effort is made to introduce the reader to expli- cit formulations of intermolecular interaction models and to show how these models influence the properties of fluid sy- stems. The established methods of statistical mechanics - computer simulation, perturbation theory, and numerical in- tegration - are discussed in a style appropriate for newcom- ers and are extensively applied. Numerous worked examples illustrate how practical calculations should be carried out.
Structural thermodynamics of alloys
Manenc, Jack
1973-01-01
Technical progress has for a very long time been directly dependent on progress in metallurgy, which is itself connected with improvements in the technology of alloys. Metals are most frequently used in the form of alloys for several reasons: the quantity of pure metal in its native state in the earth's crust is very limited; pure metals must be extracted from ores which are themselves impure. Finally, the methods of treatment used lead more easily to alloys than to pure metals. The most typical case is that of iron, where a pure ore may be found, but which is the starting point for cast iron or steel, alloys of iron and carbon. In addition, the properties of alloys are in general superior to those of pure metals and modem metallurgy consists of controlling these properties so as to make them conform to the requirements of the design office. Whilst the engineer was formerly compelled to adapt his designs and constructions to the materials available, such as wood, stone, bronze, iron, cast iron and ordinary st...
Equilibrium sampling for a thermodynamic assessment of contaminated sediments
DEFF Research Database (Denmark)
) govern diffusive uptake and partitioning. Equilibrium sampling of sediment was introduced 15 years ago to measure Cfree, and it has since developed into a straightforward, precise and sensitive approach for determining Cfree and other exposure parameters that allow for thermodynamic assessment...... of the biota relative to the sediment. Furthermore, concentrations in lipid at thermodynamic equilibrium with sediment (Clip?Sed) can be calculated via lipid/silicone partition ratios CSil × KLip:Sil, which has been done in studies with limnic, river and marine sediments. The data can then be compared to lipid...... will focus at the latest developments in equilibrium sampling concepts and methods. Further, we will explain how these approaches can provide a new basis for a thermodynamic assessment of polluted sediments....
Zhai, Yujia; Hunting, Ellard R; Wouterse, Marja; Peijnenburg, Willie J G M; Vijver, Martina G
2017-11-01
Metal-based engineered nanomaterials (ENMs) are known to affect bacterial processes and metabolic activities. While testing their negative effects on biological components, studies traditionally rely on initial exposure concentrations and thereby do not take into consideration the dynamic behavior of ENMs that ultimately determines exposure and toxicity (e.g. ion release). Moreover, functional responses of soil microbial communities to ENMs exposure can be caused by both the particulate forms and the ionic forms, yet their relative contributions remain poorly understood. Therefore, we investigated the dynamic changes of exposure concentrations of three different types of ENMs (nano-ZnO, -Cu and -Pb) and submicron particles (SMPs) in relation to their impact on the capacity of soil bacterial communities to utilize carbon substrates. The different ENMs were chosen to differ in dissolution potential. The dynamic exposures of ENMs were considered using a time weighted average (TWA) approach. The joint toxicity of the particulate forms and the ionic forms of ENMs was evaluated using a response addition model. Our results showed that the effect concentrations of spherical nano-ZnO, -Cu and SMPs, and Pb-based perovskites expressed as TWA were lower than expressed as initial concentrations. Both particulate forms and ionic forms of spherical 18nm, 43nm nano-ZnO and 50nm, 100nm nano-Cu contribute to the overall response at the EC 50 levels. The particulate forms for 150nm, 200nm and 900nm ZnO SMPs and rod-shaped 78nm nano-Cu mainly affected the soil microbial metabolic potential, while the Cu ions released from spherical 25nm nano-Cu, 500nm Cu SMPs and Pb ions released from perovskites mainly described the effects to bacterial communities. Our results indicate that the dynamic exposure of ENMs and relative contributions of particles and ions require consideration in order to pursue a naturally realistic assessment of environmental risks of metal-based ENMs. Copyright
DEFF Research Database (Denmark)
Harste, Gorm
It would seem as though warfare has gotten out of control, not only in Iraq and Afghanistan, but also in Central Africa. The paper outlines the strategic history of politically controlled warfare since the early Enlightenment. The argument is that control is implausible. The idea of control has...... the risks of lacking unity and displays the organisational trap to the fatal political myth of controlled warfare: Does it come from the military organisation system itself, from political ideologies of goal-rational governance, or from the chameleonic logic of wars? ...
Thermodynamic analysis of biochemical systems
International Nuclear Information System (INIS)
Yuan, Y.; Fan, L.T.; Shieh, J.H.
1989-01-01
Introduction of the concepts of the availability (or exergy), datum level materials, and the dead state has been regarded as some of the most significant recent developments in classical thermodynamics. Not only the available energy balance but also the material and energy balances of a biological system may be established in reference to the datum level materials in the dead state or environment. In this paper these concepts are illustrated with two examples of fermentation and are shown to be useful in identifying sources of thermodynamic inefficiency, thereby leading naturally to the rational definition of thermodynamic efficiency of a biochemical process
Statistical Thermodynamics of Disperse Systems
DEFF Research Database (Denmark)
Shapiro, Alexander
1996-01-01
Principles of statistical physics are applied for the description of thermodynamic equilibrium in disperse systems. The cells of disperse systems are shown to possess a number of non-standard thermodynamic parameters. A random distribution of these parameters in the system is determined....... On the basis of this distribution, it is established that the disperse system has an additional degree of freedom called the macro-entropy. A large set of bounded ideal disperse systems allows exact evaluation of thermodynamic characteristics. The theory developed is applied to the description of equilibrium...
Some aspects of plasma thermodynamics
International Nuclear Information System (INIS)
Gorgoraki, V.I.
1986-01-01
The objective reasons which have inhibited the development of a plasma-thermodynamics theory are discussed and the authors formulate the fundamental principles which can be the basis of a common plasma-thermodynamics theory. Two kinds of thermodynamic equilibrium plasmas are discussed, an isothermal plasma and a nonisothermal plasma. An isothermal plasma is a high-temperature plasma; the Saha-Eggert equation describes its behavior. A nonisothermal plasma is a low-temperature plasma, and the reactions taking place therein are purely plasma-chemical. The ionization equilibrium and the composition of such a plasma can be found with the aid of the equations presented in this paper
Computing Thermodynamic And Transport Properties
Mcbride, B.; Gordon, Sanford
1993-01-01
CET89 calculates compositions in chemical equilibrium and properties of mixtures of any chemical system for which thermodynamic data available. Provides following options: obtains chemical-equilibrium compositions and corresponding thermodynamic mixture properties for assigned thermodynamic states; calculates dilute-gas transport properties of complex chemical mixtures; obtains Chapman-Jouguet detonation properties for gaseous mixtures; calculates properties of incident and reflected shocks in terms of assigned velocities; and calculates theoretical performance of rocket for both equilibrium and frozen compositions during expansion. Rocket performance based on optional models of finite or infinite area combustor.
Thermodynamic Metrics and Optimal Paths
Energy Technology Data Exchange (ETDEWEB)
Sivak, David; Crooks, Gavin
2012-05-08
A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.
DEFF Research Database (Denmark)
Greeley, Jeffrey Philip; Nørskov, Jens Kehlet
2007-01-01
A simple procedure is introduced to use periodic Density Functional Theory calculations to estimate trends in the thermodynamics of surface alloy dissolution in acidic media. With this approach, the dissolution potentials for solute metal atoms embedded in the surface layer of various host metals...
Thermodynamics of the hot BIon
Grignani, Gianluca; Harmark, Troels; Marini, Andrea; Obers, Niels A.; Orselli, Marta
2011-10-01
We investigate the thermodynamics of the recently obtained finite temperature BIon solution of [G. Grignani, T. Harmark, A. Marini, N.A. Obers, M. Orselli, Heating up the BIon, arXiv:1012.1494 [hep-th
THERMODYNAMIC PARAMETERS OF SOLUTIONS OF ...
African Journals Online (AJOL)
2014-06-30
Jun 30, 2014 ... THERMODYNAMIC PARAMETERS OF SOLUTIONS OF SILDENAFIL CITRATE. IN SOME ORGANIC SOLVENTS AT DIFFERENT TEMPERATURES. S. Baluja* and K. Bhesaniya. Physical Chemistry Laboratory, Department of Chemistry,. Saurashtra University, Rajkot-360005 (Gujarat), India. Received: 24 ...
Experimental approaches to membrane thermodynamics
DEFF Research Database (Denmark)
Westh, Peter
2009-01-01
Thermodynamics describes a system on the macroscopic scale, yet it is becoming an important tool for the elucidation of many specific molecular aspects of membrane properties. In this note we discuss this application of thermodynamics, and give a number of examples on how thermodynamic measuremen...... have contributed to the understanding of specific membrane phenomena. We mainly focus on non-specific interactions of bilayers and small molecules (water and solutes) in the surrounding solvent, and the changes in membrane properties they bring about. Differences between thermodynamic...... and stoichiometric (structural) definitions of non-specific binding or partitioning are emphasized, and it is concluded that this distinction is important for weak, but not for strong, interactions....
Thermodynamic Calculations for Systems Biocatalysis
DEFF Research Database (Denmark)
Abu, Rohana; Gundersen, Maria T.; Woodley, John M.
2015-01-01
on the basis of kinetics. However, many of the most interesting non-natural chemical reactions which could potentially be catalysed by enzymes, are thermodynamically unfavourable and are thus limited by the equilibrium position of the reaction. A good example is the enzyme ω-transaminase, which catalyses...... the transamination of a pro-chiral ketone into a chiral amine (interesting in many pharmaceutical applications). Here, the products are often less energetically stable than the reactants, meaning that the reaction may be thermodynamically unfavourable. As in nature, such thermodynamically-challenged reactions can...... be altered by coupling with other reactions. For instance, in the case of ω-transaminase, such a coupling could be with alanine dehydrogenase. Herein, the aim of this work is to identify thermodynamic bottlenecks within a multi-enzyme process, using group contribution method to calculate the Gibbs free...
Shock Thermodynamic Applied Research Facility
Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...
Thermodynamic theory of transport in magnetized plasmas
International Nuclear Information System (INIS)
Misguich, J.H.
1990-10-01
Transport laws relating thermodynamic flows to forces by means of transport coefficients in a magnetized plasma are derived here from basic plasmadynamics and nonequilibrium thermodynamics. Macroscopic balance equations are derived in the first part, taking into account the energy of relative diffusion between species in an exact way. The resulting plasmadynamical equations appear to be more general than the usual ones. In the second part, the particular features of a two-temperature diffusing plasma are taken into account in deriving the balance equation for the entropy density, the differences with thermodynamics of neutral fluid mixtures or metals are explained. The general expressions obtained for the entropy production rate are used in part III to derive transport laws. Onsager symmetry relations are applied to interrelate crossed transport coefficients. Basic transport coefficients are the electrical conductivity, the thermo-electric coefficient, along with the thermal conductivities and the viscosities for each species. The slight difference between thermo-electric effect and thermo-diffusion is explained. An important resistive thermo-electric effect appears which describes crossed transport coefficients between thermal and electric flows. Because of the anisotropy introduced by the magnetic field, the transport coefficients are tensors, with non diagonal elements associated with the Hall, Nernst and Ettinghausen effects in the plasma. The field geometry and applications to several particular cases are treated explicitly in part IV, namely the neo-classical transport laws. The Ettinghausen effect appears to play an important role in the transport laws for radial electron heat flow and particle flow in confined plasmas. Practical prescriptions are given to apply the Onsager symmetry relations in a correct way
Thermodynamics from concepts to applications
Shavit, Arthur
2008-01-01
The book presents a logical methodology for solving problems in the context of conservation laws and property tables or equations. The authors elucidate the terms around which thermodynamics has historically developed, such as work, heat, temperature, energy, and entropy. Using a pedagogical approach that builds from basic principles to laws and eventually corollaries of the laws, the text enables students to think in clear and correct thermodynamic terms as well as solve real engineering problems.
THERRP: a thermodynamic properties program
Energy Technology Data Exchange (ETDEWEB)
Deeds, R.S.
1977-05-01
The computer program THERPP, a program that calculates the thermodynamic properties of light hydrocarbons and mixtures of light hydrocarbons is documented. A specific pressure--temperature or pressure--enthalpy grid is input to obtain properties in the desired region. THERPP is a modification of the program HSGC. Thermodynamic properties are calculated using Starling's modification to the Benedict-Webb-Rubin equation of state.
Generalization of Gibbs Entropy and Thermodynamic Relation
Park, Jun Chul
2010-01-01
In this paper, we extend Gibbs's approach of quasi-equilibrium thermodynamic processes, and calculate the microscopic expression of entropy for general non-equilibrium thermodynamic processes. Also, we analyze the formal structure of thermodynamic relation in non-equilibrium thermodynamic processes.
Mesoscopic hydro-thermodynamics of phonons
Directory of Open Access Journals (Sweden)
Aurea R. Vasconcellos
2013-07-01
Full Text Available A generalized Hydrodynamics, referred to as Mesoscopic Hydro-Thermodynamics, of phonons in semiconductors is presented. It involves the descriptions of the motion of the quasi-particle density and of the energy density. The hydrodynamic equations, which couple both types of movement via thermo-elastic processes, are derived starting with a generalized Peierls-Boltzmann kinetic equation obtained in the framework of a Non-Equilibrium Statistical Ensemble Formalism, providing such Mesoscopic Hydro-Thermodynamics. The case of a contraction in first order is worked out in detail. The associated Maxwell times are derived and discussed. The densities of quasi-particles and of energy are found to satisfy coupled Maxwell-Cattaneo-like (hyperbolic equations. The analysis of thermo-elastic effects is done and applied to investigate thermal distortion in silicon mirrors under incidence of high intensity X-ray pulses in FEL facilities. The derivation of a generalized Guyer-Krumhansl equation governing the flux of heat and the associated thermal conductivity coefficient is also presented.
DEFF Research Database (Denmark)
Buch, Anders
2012-01-01
Most people agree that our world face daunting problems and, correctly or not, technological solutions are seen as an integral part of an overall solution. But what exactly are the problems and how does the engineering ‘mind set’ frame these problems? This chapter sets out to unravel dominant...... perspectives in challenge per-ception in engineering in the US and Denmark. Challenge perception and response strategies are closely linked through discursive practices. Challenge perceptions within the engineering community and the surrounding society are thus critical for the shaping of engineering education...... and the engineering profession. Through an analysis of influential reports and position papers on engineering and engineering education the chapter sets out to identify how engineering is problematized and eventually governed. Drawing on insights from governmentality studies the chapter strives to elicit the bodies...
DEFF Research Database (Denmark)
Buch, Anders
2011-01-01
Abstract: Most people agree that our world faces daunting problems and, correctly or not, technological solutions are seen as an integral part of an overall solution. But what exactly are the problems and how does the engineering ‘mind set’ frame these problems? This chapter sets out to unravel...... dominant perspectives in challenge perception in engineering in the US and Denmark. Challenge perception and response strategies are closely linked through discursive practices. Challenge perceptions within the engineering community and the surrounding society are thus critical for the shaping...... of engineering education and the engineering profession. Through an analysis of influential reports and position papers on engineering and engineering education the chapter sets out to identify how engineering is problematized and eventually governed. Drawing on insights from governmentality studies the chapter...
Thermodynamic Analysis of Biodegradation Pathways
Finley, Stacey D.; Broadbelt, Linda J.
2014-01-01
Microorganisms provide a wealth of biodegradative potential in the reduction and elimination of xenobiotic compounds in the environment. One useful metric to evaluate potential biodegradation pathways is thermodynamic feasibility. However, experimental data for the thermodynamic properties of xenobiotics is scarce. The present work uses a group contribution method to study the thermodynamic properties of the University of Minnesota Biocatalysis/Biodegradation Database. The Gibbs free energies of formation and reaction are estimated for 914 compounds (81%) and 902 reactions (75%), respectively, in the database. The reactions are classified based on the minimum and maximum Gibbs free energy values, which accounts for uncertainty in the free energy estimates and a feasible concentration range relevant to biodegradation. Using the free energy estimates, the cumulative free energy change of 89 biodegradation pathways (51%) in the database could be estimated. A comparison of the likelihood of the biotransformation rules in the Pathway Prediction System and their thermodynamic feasibility was then carried out. This analysis revealed that when evaluating the feasibility of biodegradation pathways, it is important to consider the thermodynamic topology of the reactions in the context of the complete pathway. Group contribution is shown to be a viable tool for estimating, a priori, the thermodynamic feasibility and the relative likelihood of alternative biodegradation reactions. This work offers a useful tool to a broad range of researchers interested in estimating the feasibility of the reactions in existing or novel biodegradation pathways. PMID:19288443
Dynamics and Thermodynamics of Molecular Machines
DEFF Research Database (Denmark)
Golubeva, Natalia
2014-01-01
Molecular machines, or molecular motors, are small biophysical devices that perform a variety of essential metabolic processes such as DNA replication, protein synthesis and intracellular transport. Typically, these machines operate by converting chemical energy into motion and mechanical work. Due...... to their microscopic size, molecular motors are governed by principles fundamentally different from those describing the operation of man-made motors such as car engines. In this dissertation the dynamic and thermodynamic properties of molecular machines are studied using the tools of nonequilibrium statistical...... transport, move on crowded tracks where they can encounter other motors, a phenomenon referred to as molecular motor traffic. In the second part, traffic models of kinesin motors under an external mechanical load are considered, and the efficiency at maximum power (EMP) is calculated as a convenient measure...
Dynamics and Thermodynamics of Molecular Machines
DEFF Research Database (Denmark)
Golubeva, Natalia
2014-01-01
mechanics. The first part focuses on noninteracting molecular machines described by a paradigmatic continuum model with the aim of comparing and contrasting such a description to the one offered by the widely used discrete models. Many molecular motors, for example, kinesin involved in cellular cargo......Molecular machines, or molecular motors, are small biophysical devices that perform a variety of essential metabolic processes such as DNA replication, protein synthesis and intracellular transport. Typically, these machines operate by converting chemical energy into motion and mechanical work. Due...... to their microscopic size, molecular motors are governed by principles fundamentally different from those describing the operation of man-made motors such as car engines. In this dissertation the dynamic and thermodynamic properties of molecular machines are studied using the tools of nonequilibrium statistical...
Thermodynamic binding constants for gallium transferrin
Energy Technology Data Exchange (ETDEWEB)
Harris, W.R.; Pecoraro, V.L.
1983-01-18
Gallium-67 is widely used as an imaging agent for tumors and inflammatory abscesses. It is well stablished that Ga/sup 3 +/ travels through the circulatory system bound to the serum iron transport protein transferrin and that this protein binding is an essential step in tumor localization. However, there have been conflicting reports on the magnitude of the gallium-transferrin binding constants. Therefore, thermodynamic binding constants for gallium complexation at the two specific metal binding sites of human serum transferrin at pH 7.4 and 5 mM NaHCO/sub 3/ have been determined by UV difference spectroscopy. The conditional constants calculated for 27 mM NaHCO/sub 3/ are log K/sub 1/* = 20.3 and log K/sub 2/* = 19.3. These results are discussed in relation to the thermodynamics of transferrin binding of Fe/sup 3 +/ and to previous reports on gallium binding. The strength of transferrin complexation is also compared to that of a series of low molecular weight ligands by using calculated pM values (pM = -log (Ga(H/sub 2/O)/sub 6/)) to express the effective binding strength at pH 7.4.
Thermodynamics of firms' growth
Zambrano, Eduardo; Hernando, Alberto; Hernando, Ricardo; Plastino, Angelo
2015-01-01
The distribution of firms' growth and firms' sizes is a topic under intense scrutiny. In this paper, we show that a thermodynamic model based on the maximum entropy principle, with dynamical prior information, can be constructed that adequately describes the dynamics and distribution of firms' growth. Our theoretical framework is tested against a comprehensive database of Spanish firms, which covers, to a very large extent, Spain's economic activity, with a total of 1 155 142 firms evolving along a full decade. We show that the empirical exponent of Pareto's law, a rule often observed in the rank distribution of large-size firms, is explained by the capacity of economic system for creating/destroying firms, and that can be used to measure the health of a capitalist-based economy. Indeed, our model predicts that when the exponent is larger than 1, creation of firms is favoured; when it is smaller than 1, destruction of firms is favoured instead; and when it equals 1 (matching Zipf's law), the system is in a full macroeconomic equilibrium, entailing ‘free’ creation and/or destruction of firms. For medium and smaller firm sizes, the dynamical regime changes, the whole distribution can no longer be fitted to a single simple analytical form and numerical prediction is required. Our model constitutes the basis for a full predictive framework regarding the economic evolution of an ensemble of firms. Such a structure can be potentially used to develop simulations and test hypothetical scenarios, such as economic crisis or the response to specific policy measures. PMID:26510828
Critical evaluation and thermodynamic optimization of the U-Pb and U-Sb binary systems
International Nuclear Information System (INIS)
Wang, Jian; Jin, Liling; Chen, Chuchu; Rao, Weifeng; Wang, Cuiping; Liu, Xingjun
2016-01-01
A complete literature review, critical evaluation and thermodynamic optimization of the phase diagrams and thermodynamic properties of U-Pb and U-Sb binary systems are presented. The CALculation of PHAse Diagrams (CALPHAD) method was used for the thermodynamic optimization, the results of which can reproduce all available reliable experimental phase equilibria and thermodynamic data. The modified quasi-chemical model in the pair approximation (MQMPA) was used for modeling the liquid solution. The Gibbs energies of all terminal solid solutions and intermetallic compounds were described by the compound energy formalism (CEF) model. All reliable experimental data of the U-Pb and U-Sb systems have been reproduced. A self-consistent thermodynamic database has been constructed for these binary systems; this database can be used in liquid-metal fuel reactor (LMFR) research.
The thermodynamics and kinetics of interstitial solid solutions
International Nuclear Information System (INIS)
Silva, J.R.G. da.
1976-04-01
Studies of hydrogen metal systems where the hidrogen is disolved in a solid solution are presented. Particular items of interest are: the thermodynamics of the hydrogen-iron system; the solubility of hidrogen in super pure iron single crytals; the thermodinamic functions of hydrogen in solid solutions of Nb, Ta and V; and the solubility of hydrogen in α-manganese. The diffusion of carbon and nitrogen in BCC iron is also studied
Directory of Open Access Journals (Sweden)
V. A. Cherepanov
2015-12-01
Full Text Available Review is dedicated studies of phase equilibria in the systems based on rare earth elements and 3d transition metals. It’s highlighted several structural families of these compounds and is shown that many were found interesting properties for practical application, such as high conductivity up to the superconducting state, magnetic properties, catalytic activity of the processes of afterburning of exhaust gases, the high mobility in the oxygen sublattice and more.
Computational thermodynamics in electric current metallurgy
DEFF Research Database (Denmark)
Bhowmik, Arghya; Qin, R.S.
2015-01-01
A priori derivation for the extra free energy caused by the passing electric current in metal is presented. The analytical expression and its discrete format in support of the numerical calculation of thermodynamics in electric current metallurgy have been developed. This enables the calculation...... of electric current distribution, current induced temperature distribution and free energy sequence of various phase transitions in multiphase materials. The work is particularly suitable for the study of magnetic materials that contain various magnetic phases. The latter has not been considered in literature....... The method has been validated against the analytical solution of current distribution and experimental observation of microstructure evolution. It provides a basis for the design, prediction and implementation of the electric current metallurgy. The applicability of the theory is discussed in the derivations....
Nickel Solubility and Precipitation in Soils: A Thermodynamic Study
International Nuclear Information System (INIS)
Peltier, E.; Allada, R.; Navrotsky, A.; Sparks, D.
2006-01-01
The formation of mixed-metal-Al layered double hydroxide (LDH) phases similar to hydrotalcite has been identified as a significant mechanism for immobilization of trace metals in some environmental systems. These precipitate phases become increasingly stable as they age, and their formation may therefore be an important pathway for sequestration of toxic metals in contaminated soils. However, the lack of thermodynamic data for LDH phases makes it difficult to model their behavior in natural systems. In this work, enthalpies of formation for Ni LDH phases with nitrate and sulfate interlayers were determined and compared to recently published data on carbonate interlayer LDHs. Differences in the identity of the anion interlayer resulted in substantial changes in the enthalpies of formation of the LDH phases, in the order of increasing enthalpy carbonate
International Nuclear Information System (INIS)
Kritskaya, E.B.; Burylev, B.P.; Mojsov, L.P.; Kritskij, V.E.
2005-01-01
Relaying on the experimentally ascertained linear dependence of the Gibbs excessive mole energies on alkali metal ordinal number in the systems MnBr 2 -MBr (M=Na, K, Rb), thermodynamic properties of the melts in binary systems MBr 2 -M'Br (M'=Li, Cs, Fr) were prepared. Concentration dependences of the Gibbs energies, and thermodynamic activities of compounds in the above systems at 1125 K were calculated [ru
Chemical Thermodynamics Vol. 12 - Chemical Thermodynamics of tin
International Nuclear Information System (INIS)
Gamsjaeger, Heinz; GAJDA, Tamas; Sangster, James; Saxena, Surendra K.; Voigt, Wolfgang; Perrone, Jane
2012-01-01
This is the 12th volume of a series of expert reviews of the chemical thermodynamics of key chemical elements in nuclear technology and waste management. This volume is devoted to the inorganic species and compounds of tin. The tables contained in Chapters III and IV list the currently selected thermodynamic values within the NEA TDB Project. The database system developed at the NEA Data Bank, see Section II.6, assures consistency among all the selected and auxiliary data sets. The recommended thermodynamic data are the result of a critical assessment of published information. The values in the auxiliary data set, see Tables IV-1 and IV-2, have been adopted from CODATA key values or have been critically reviewed in this or earlier volumes of the series
Novoselova, A.; Smolenski, V.; Volkovich, V. A.; Ivanov, A. B.; Osipenko, A.; Griffiths, T. R.
2015-11-01
The electrochemical behaviour of lanthanum and uranium was studied in fused 3LiCl-2KCl eutectic and Ga-Al eutectic liquid metal alloy between 723 and 823 K. Electrode potentials were recorded vs. Cl-/Cl2 reference electrode and the temperature dependencies of the apparent standard potentials of La-(Ga-Al) and U-(Ga-Al) alloys were determined. Lanthanum and uranium activity coefficients and U/La couple separation factor were calculated. Partial excess free Gibbs energy, partial enthalpy of mixing and partial excess entropy of La-(Ga-Al) and U-(Ga-Al) alloys were estimated.
Thermodynamic Database for Zirconium Alloys
International Nuclear Information System (INIS)
Jerlerud Perez, Rosa
2003-05-01
For many decades zirconium alloys have been commonly used in the nuclear power industry as fuel cladding material. Besides their good corrosion resistance and acceptable mechanical properties the main reason of using these alloys is the low neutron absorption. Zirconium alloys are exposed to a very severe environment during the nuclear fission process and there is a demand for better design of this material. To meet this requirement a thermodynamic database is developed to support material designers. In this thesis some aspects about the development of a thermodynamic database for zirconium alloys are presented. A thermodynamic database represents an important facility in applying thermodynamic equilibrium calculations for a given material providing: 1) relevant information about the thermodynamic properties of the alloys e.g. enthalpies, activities, heat capacity, and 2) significant information for the manufacturing process e.g. heat treatment temperature. The basic information in the database is first the unary data, i.e. pure elements; those are taken from the compilation of the Scientific Group Thermodata Europe (SGTE) and then the binary and ternary systems. All phases present in those binary and ternary systems are described by means of the Gibbs energy dependence on composition and temperature. Many of those binary systems have been taken from published or unpublished works and others have been assessed in the present work. All the calculations have been made using Thermo C alc software and the representation of the Gibbs energy obtained by applying Calphad technique
Nonequilibrium thermodynamics of an interface
Schweizer, Marco; Öttinger, Hans Christian; Savin, Thierry
2016-05-01
Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport theories. We present a formulation of local equilibrium for interfaces that extends the thermodynamics of the "dividing surface," as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom, we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The model is verified under stringent conditions by employing high-precision nonequilibrium molecular-dynamics simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is determined using the surface tension as a "thermometer," and it can be significantly different from the temperatures of the adjacent phases. Our findings lay foundations for nonequilibrium interfacial thermodynamics.
Complexation thermodynamics of modified cyclodextrins
DEFF Research Database (Denmark)
Schönbeck, Jens Christian Sidney; Westh, Peter; Holm, Rene
2014-01-01
Inclusion complexes between two bile salts and a range of differently methylated β-cyclodextrins were studied in an attempt to rationalize the complexation thermodynamics of modified cyclodextrins. Calorimetric titrations at a range of temperatures provided precise values of the enthalpies (ΔH......°), entropies (ΔS°), and heat capacities (ΔCp) of complexation, while molecular dynamics simulations assisted the interpretation of the obtained thermodynamic parameters. As previously observed for several types of modified cyclodextrins, the substituents at the rims of the cyclodextrin induced large changes......° and then a strong decrease when the degree of substitution exceeded some threshold. Exactly the same trend was observed for ΔCp. The dehydration of nonpolar surface, as quantified by the simulations, can to a large extent explain the variation in the thermodynamic parameters. The methyl substituents form additional...
The Thermodynamic Machinery of Life
Kurzynski, Michal
2006-01-01
Living organisms are open thermodynamic systems whose functional structure has developed and been kinetically frozen during the historical process of biological evolution. A thermodynamics of both nonequilibrium and complex systems is needed for their description. In this book, the foundations of such a thermodynamics are presented. Biological processes at the cellular level are considered as coupled chemical reactions and transport processes across internal and the cytoplasmic membrane. All these processes are catalyzed by specific enzymes hence the kinetics of enzymatic catalysis and its control are described here in detail. The coupling of several processes through a common enzyme is considered in the context of free energy or signal transduction. Special attention is paid to evidence for a rich stochastic internal dynamics of native proteins and its possible role in the control of enzyme activity and in the action of biological molecular machines.
Thermodynamics a complete undergraduate course
Steane, Andrew M
2016-01-01
This is an undergraduate textbook in thermodynamics—the science of heat, work, temperature, and entropy. The text presents thermodynamics in and of itself, as an elegant and powerful set of ideas and methods. These methods open the way to understanding a very wide range of phenomena in physics, chemistry, engineering, and biology. Starting out from an introduction of concepts at first year undergraduate level, the roles of temperature, internal energy, and entropy are explained via the laws of thermodynamics. The text employs a combination of examples, exercises, and careful discussion, with a view to conveying the feel of the subject as well as avoiding common misunderstandings. The Feynman–Smuluchowski ratchet, Szilard’s engine, and Maxwell’s daemon are used to elucidate entropy and the second law. Free energy and thermodynamic potentials are discussed at length, with applications to solids as well as fluids and flow processes. Thermal radiation is discussed, and the main ideas significant to global...
Non-hermitian quantum thermodynamics
Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh
2016-03-01
Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Furthermore, we propose two setups to test our predictions, namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.
Applied Thermodynamics: Grain Boundary Segregation
Directory of Open Access Journals (Sweden)
Pavel Lejček
2014-03-01
Full Text Available Chemical composition of interfaces—free surfaces and grain boundaries—is generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs energy of segregation. Various components of the Gibbs energy of segregation, the standard and the excess ones as well as other thermodynamic state functions—enthalpy, entropy and volume—of interfacial segregation are derived and their physical meaning is elucidated. The importance of the thermodynamic state functions of grain boundary segregation, their dependence on volume solid solubility, mutual solute–solute interaction and pressure effect in ferrous alloys is demonstrated.
Thermodynamics of the hot BIon
DEFF Research Database (Denmark)
Grignani, Gianluca; Harmark, Troels; Marini, Andrea
2011-01-01
We investigate the thermodynamics of the recently obtained nite temperature BIon solution of arXiv:1012.1494, focusing on two aspects. The first concerns comparison of the free energy of the three available phases for the finite temperature brane-antibrane wormhole configuration. Based on this we...... is the possibility of constructing a finite temperature generalization of the infinite spike configuration of the extremal BIon. To this end we identify a correspondence point at the end of the throat where the thermodynamics of the D3-F1 blackfold configuration can be matched to that of k non-extremal black...
Thermodynamics of Dipolar Chain Systems
DEFF Research Database (Denmark)
R. Armstrong, J.; Zinner, Nikolaj Thomas; V. Fedorov, D.
2012-01-01
The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects...... numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments....
Nuclear thermodynamics below particle threshold
International Nuclear Information System (INIS)
Schiller, A.; Agvaanluvsan, U.; Algin, E.; Bagheri, A.; Chankova, R.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Voinov, A.
2005-01-01
From a starting point of experimentally measured nuclear level densities, we discuss thermodynamical properties of nuclei below the particle emission threshold. Since nuclei are essentially mesoscopic systems, a straightforward generalization of macroscopic ensemble theory often yields unphysical results. A careful critique of traditional thermodynamical concepts reveals problems commonly encountered in mesoscopic systems. One of which is the fact that microcanonical and canonical ensemble theory yield different results, another concerns the introduction of temperature for small, closed systems. Finally, the concept of phase transitions is investigated for mesoscopic systems
Thermodynamics and kinetics of molecular motors.
Astumian, R Dean
2010-06-02
Molecular motors are first and foremost molecules, governed by the laws of chemistry rather than of mechanics. The dynamical behavior of motors based on chemical principles can be described as a random walk on a network of states. A key insight is that any molecular motor in solution explores all possible motions and configurations at thermodynamic equilibrium. By using input energy and chemical design to prevent motion that is not wanted, what is left behind is the motion that is desired. This review is focused on two-headed motors such as kinesin and Myosin V that move on a polymeric track. By use of microscopic reversibility, it is shown that the ratio between the number of forward steps and the number of backward steps in any sufficiently long time period does not directly depend on the mechanical properties of the linker between the two heads. Instead, this ratio is governed by the relative chemical specificity of the heads in the front-versus-rear position for the fuel, adenosine triphosphate and its products, adenosine diphosphate and inorganic phosphate. These insights have been key factors in the design of biologically inspired synthetic molecular walkers constructed out of DNA or out of small organic molecules. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Thermodynamic characterisation of urban nocturnal cooling
Directory of Open Access Journals (Sweden)
Zhi-Hua Wang
2017-04-01
Full Text Available Nocturnal cooling of urban areas governs the evolution of thermal state and many thermal-driven environmental issues in cities, especially those suffer strong urban heat island (UHI effect. Advances in the fundamental understanding of the underlying physics of nighttime UHI involve disentangling complex contributing effects and remains an open challenge. In this study, we develop new numerical algorithms to characterize the thermodynamics of urban nocturnal cooling based on solving the energy balance equations for both the landscape surface and the overlying atmosphere. Further, a scaling law is proposed to relate the UHI intensity to a range of governing mechanisms, including the vertical and horizontal transport of heat in the surface layer, the urban-rural breeze, and the possible urban expansion. The accuracy of proposed methods is evaluated against in-situ urban measurements collected in cities with different geographic and climatic conditions. It is found that the vertical and horizontal contributors modulate the nocturnal UHI at distinct elevation in the atmospheric boundary layer.
Thermodynamics of Minerals Stable Near the Earth's Surface
International Nuclear Information System (INIS)
Navrotsky, Alexandra
2003-01-01
OAK B262 Research and Education Activities We are working on developing calorimetric techniques for sulfide minerals. We have completed calorimetric studies of (Na, K, H3O) jarosites, of Na and K jarosite -alunite solid solutions, and of Cr6+ - containing jarosites. We are now working on phases containing As and Pb. These studies are important to issues of heavy metal pollution in the environment. A number of postdocs, graduate students, and undergrads have participated in the research. We have active collaboration with Dirk Baron, faculty at California State University, Bakersfield. In a collaboration with Peter Burns, Notre Dame University, we are working on thermochemistry of U6+ minerals. Navrotsky has participated in a number of national workshops that are helping to define the interfaces between nanotechnology and earth/environmental science. Major Findings Our first finding on uranyl minerals shows that studtite, a phase containing structural peroxide ion, is thermodynamically unstable in the absence of a source of aqueous peroxide ion but is thermodynamically stable in contact with a solution containing peroxide concentrations expected for the radiolysis of water in contact with spent nuclear fuel. This work is in press in Science. We have a consistent thermodynamic data set for the (Na, K, H3O) (Al, Fe) jarosite, alunite minerals and for Cr6+ substituting for S6+ in jarosite. The latter phases represent one of the few solid sinks for trapping toxic Cr6+ in groundwater. Contributions within Discipline Better understanding of thermodynamic driving for and constraints on geochemical and environmental processes
Review of the synthesis of layered double hydroxides: a thermodynamic approach
Directory of Open Access Journals (Sweden)
Bravo-Suárez Juan J.
2004-01-01
Full Text Available The synthesis of layered double hydroxides (LDHs by hydrothermal-LDH reconstruction and coprecipitation methods is reviewed using a thermodynamic approach. A mixture model was used for the estimation of the thermodynamics of formation of LDHs. The synthesis and solubility of LDHs are discussed in terms of standard molar Gibbs free energy change of reaction. Data for numerous divalent and trivalent metals as well as for some monovalent and tetravalent metals that may be part of the LDH structure have been compiled. Good agreement is found between theoretical and experimental data. Diagrams and tables for the prediction of possible new LDH materials are provided.
On thermodynamic limits of entropy densities
Moriya, H; Van Enter, A
We give some sufficient conditions which guarantee that the entropy density in the thermodynamic limit is equal to the thermodynamic limit of the entropy densities of finite-volume (local) Gibbs states.
Quantum and thermodynamic aspects of Black Holes
International Nuclear Information System (INIS)
Sande e Lemos, J.P. de; Videira, A.L.L.
1983-01-01
The main results originating from the attempts of trying to incorporate quantum and thermodynamic properties and concepts to the gravitational system black hole, essentially the Hawking effect and the four laws of thermodynamics are reviewed. (Author) [pt
Methods of obtaining thermodynamic data
International Nuclear Information System (INIS)
Brewer, L.
1987-10-01
The types of thermodynamic data needed to predict behavior of high temperature systems such as an overheated nuclear reactor in which the fuel has been exposed to water and oxygen are discussed. Procedures for obtaining the needed data are reviewed. 14 refs
Thermodynamics of freezing and melting
DEFF Research Database (Denmark)
Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas
2016-01-01
phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...
Simulating metabolism with statistical thermodynamics.
Cannon, William R
2014-01-01
New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed.
THERMODYNAMICS USED IN ENVIRONMENTAL ENGINEERING
Thermodynamics is a science in which energy transformations are studied as well as their relationships to the changes in the chemical properties of a system. It is the fundamental basis of many engineering fields. The profession of environmental engineering is no exception. In pa...
Thermodynamics on the Molality Scale
Canagaratna, Sebastian G.; Maheswaran, M.
2013-01-01
For physical measurements, the compositions of solutions, especially electrolyte solutions, are expressed in terms of molality rather than mole fractions. The development of the necessary thermodynamic equations directly in terms of molality is not common in textbooks, and the treatment in the literature is not very systematic. We develop a…
Thermodynamics of asymptotically safe theories
DEFF Research Database (Denmark)
Rischke, Dirk H.; Sannino, Francesco
2015-01-01
We investigate the thermodynamic properties of a novel class of gauge-Yukawa theories that have recently been shown to be completely asymptotically safe, because their short-distance behaviour is determined by the presence of an interacting fixed point. Not only do all the coupling constants freeze...
A Simple Statistical Thermodynamics Experiment
LoPresto, Michael C.
2010-01-01
Comparing the predicted and actual rolls of combinations of both two and three dice can help to introduce many of the basic concepts of statistical thermodynamics, including multiplicity, probability, microstates, and macrostates, and demonstrate that entropy is indeed a measure of randomness, that disordered states (those of higher entropy) are…
One Antimatter— Two Possible Thermodynamics
Directory of Open Access Journals (Sweden)
Alexander Y. Klimenko
2014-02-01
Full Text Available Conventional thermodynamics, which is formulated for our world populated by radiation and matter, can be extended to describe physical properties of antimatter in two mutually exclusive ways: CP-invariant or CPT-invariant. Here we refer to invariance of physical laws under charge (C, parity (P and time reversal (T transformations. While in quantum field theory CPT invariance is a theorem confirmed by experiments, the symmetry principles applied to macroscopic phenomena or to the whole of the Universe represent only hypotheses. Since both versions of thermodynamics are different only in their treatment of antimatter, but are the same in describing our world dominated by matter, making a clear experimentally justified choice between CP invariance and CPT invariance in context of thermodynamics is not possible at present. This work investigates the comparative properties of the CP- and CPT-invariant extensions of thermodynamics (focusing on the latter, which is less conventional than the former and examines conditions under which these extensions can be experimentally tested.
THERMODYNAMIC ASSESSMENT OF ANIONIC LIGANDS ...
African Journals Online (AJOL)
DJFLEX
2010-06-30
Jun 30, 2010 ... The presence of the ligands (ethylenediaminettraacetic acid, EDTA, enthylenediamine, en,and chloride ion, Cl-) generally improved the sorption capacity for the adsorbent, the best being. Cl- at optimum pH of 2.0 (for Co2+) and 5.0 (for Ni2+ and Cd2+). The thermodynamic studies reveal that the adsorption.
Thermodynamics of statistical inference by cells.
Lang, Alex H; Fisher, Charles K; Mora, Thierry; Mehta, Pankaj
2014-10-03
The deep connection between thermodynamics, computation, and information is now well established both theoretically and experimentally. Here, we extend these ideas to show that thermodynamics also places fundamental constraints on statistical estimation and learning. To do so, we investigate the constraints placed by (nonequilibrium) thermodynamics on the ability of biochemical signaling networks to estimate the concentration of an external signal. We show that accuracy is limited by energy consumption, suggesting that there are fundamental thermodynamic constraints on statistical inference.
Contact Geometry of Mesoscopic Thermodynamics and Dynamics
Directory of Open Access Journals (Sweden)
Miroslav Grmela
2014-03-01
Full Text Available The time evolution during which macroscopic systems reach thermodynamic equilibrium states proceeds as a continuous sequence of contact structure preserving transformations maximizing the entropy. This viewpoint of mesoscopic thermodynamics and dynamics provides a unified setting for the classical equilibrium and nonequilibrium thermodynamics, kinetic theory, and statistical mechanics. One of the illustrations presented in the paper is a new version of extended nonequilibrium thermodynamics with fluxes as extra state variables.
Directory of Open Access Journals (Sweden)
Soumya Banerjee
2016-09-01
Full Text Available The adsorptive capability of superheated steam activated biochar (SSAB produced from Colocasia esculenta was investigated for removal of Cu2+, Fe2+ and As5+ from simulated coal mine wastewater. SSAB was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and Brunauer–Emmett–Teller analyser. Adsorption isotherm indicated monolayer adsorption which fitted best in Langmuir isotherm model. Thermodynamic study suggested the removal process to be exothermic, feasible and spontaneous in nature. Adsorption of Fe2+, Cu2+ and As5+ on to SSAB was found to be governed by pseudo-second order kinetic model. Efficacy of SSAB in terms of metal desorption, regeneration and reusability for multiple cycles was studied. Regeneration of metal desorbed SSAB with 1 N sodium hydroxide maintained its effectiveness towards multiple metal adsorption cycles. Cost estimation of SSAB production substantiated its cost effectiveness as compared to commercially available activated carbon. Hence, SSAB could be a promising adsorbent for metal ions removal from aqueous solution.
The thermodynamic cube: A mnemonic and learning device for students of classical thermodynamics
Pate, Stephen F.
1999-12-01
The "thermodynamic cube," a mnemonic device for learning and recalling thermodynamic relations, is introduced. The cube is an extension of the familiar "thermodynamic square" seen in many textbooks. The cube reproduces the functions of the usual thermodynamic squares and incorporates the Euler relations which are not as well known.
Status of the Fundamental Laws of Thermodynamics
Salem, Walid K. Abou; Fröhlich, Jürg
2007-03-01
We describe recent progress towards deriving the Fundamental Laws of thermodynamics (the 0th, 1st, and 2nd Law) from nonequilibrium quantum statistical mechanics in simple, yet physically relevant models. Along the way, we clarify some basic thermodynamic notions and discuss various reversible and irreversible thermodynamic processes from the point of view of quantum statistical mechanics.
Equilibrium sampling for a thermodynamic assessment of contaminated sediments
DEFF Research Database (Denmark)
Mayer, Philipp; Nørgaard Schmidt, Stine; Mäenpää, Kimmo
) govern diffusive uptake and partitioning. Equilibrium sampling of sediment was introduced 15 years ago to measure Cfree, and it has since developed into a straightforward, precise and sensitive approach for determining Cfree and other exposure parameters that allow for thermodynamic assessment...... valid equilibrium sampling (method incorporated QA/QC). The measured equilibrium concentrations in silicone (Csil) can then be divided by silicone/water partition ratios to yield Cfree. CSil can also be compared to CSil from silicone equilibrated with biota in order to determine the equilibrium status...... of the biota relative to the sediment. Furthermore, concentrations in lipid at thermodynamic equilibrium with sediment (Clip?Sed) can be calculated via lipid/silicone partition ratios CSil × KLip:Sil, which has been done in studies with limnic, river and marine sediments. The data can then be compared to lipid...
Chemical thermodynamics of iron - Part 1 - Chemical thermodynamics volume 13a
International Nuclear Information System (INIS)
Lemire, Robert J.; Berner, Urs; Musikas, Claude; Palmer, Donald A.; Taylor, Peter; Tochiyama, Osamu; Perrone, Jane
2013-01-01
Volume 13a of the 'Chemical Thermodynamics' (TDB) series, is the first of two volumes describing the selection of chemical thermodynamic data for species of iron. Because of the voluminous information in the literature, it has been more efficient to prepare the review in two (unequal) parts. This larger first part contains assessments of data for the metal, simple ions, aqueous hydroxido, chlorido, sulfido, sulfato and carbonato complexes, and for solid oxides and hydroxides, halides, sulfates, carbonates and simple silicates. The second part will provide assessments of data for other aqueous halido species, sulfide solids, and solid and solution species with nitrate, phosphate and arsenate, as well as some aspects of solid solutions in iron-oxide and iron-sulfide systems. The database system developed at the OECD/NEA Data Bank ensures consistency not only within the recommended data sets of iron, but also among all the data sets published in the series. This volume will be of particular interest to scientists carrying out performance assessments of deep geological disposal sites for radioactive waste
Hidayat, Taufiq; Shishin, Denis; Decterov, Sergei A.; Hayes, Peter C.; Jak, Evgueni
2017-01-01
Uncertainty in the metal price and competition between producers mean that the daily operation of a smelter needs to target high recovery of valuable elements at low operating cost. Options for the improvement of the plant operation can be examined and decision making can be informed based on accurate information from laboratory experimentation coupled with predictions using advanced thermodynamic models. Integrated high-temperature experimental and thermodynamic modelling research on phase equilibria and thermodynamics of copper-containing systems have been undertaken at the Pyrometallurgy Innovation Centre (PYROSEARCH). The experimental phase equilibria studies involve high-temperature equilibration, rapid quenching and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA). The thermodynamic modelling deals with the development of accurate thermodynamic database built through critical evaluation of experimental data, selection of solution models, and optimization of models parameters. The database covers the Al-Ca-Cu-Fe-Mg-O-S-Si chemical system. The gas, slag, matte, liquid and solid metal phases, spinel solid solution as well as numerous solid oxide and sulphide phases are included. The database works within the FactSage software environment. Examples of phase equilibria data and thermodynamic models of selected systems, as well as possible implementation of the research outcomes to selected copper making processes are presented.
Towards sustainability: energy efficiency, thermodynamic analysis, and the 'two cultures'
International Nuclear Information System (INIS)
Hammond, G.P.
2004-01-01
The UK Government is committed by their 2003 Energy White Paper to developing a sustainable energy economy in the 21st Century, and to taking a lead in reducing CO 2 emissions amongst the industrialised (OECD) countries. A target of reducing these emissions to 60% of their existing figure by 2050 has been adopted. The only way in which this fall could be achieved is by significantly reducing primary energy consumption to between 45% and 75% of the present demand; depending on the energy technology mix. This requires the widespread adoption of energy-saving measures across the economy. It is in this area that thermodynamic analysis can make a major contribution to identifying where the improvement potential lies. Energy options are inevitably constrained by thermodynamic limits on individual plant and the sector as a whole. Nevertheless, energy policy advice to Governments, particularly that in the UK, tends to be dominated by views from the humanities and social sciences. Thermodynamic ideas, by contrast, often appear rather esoteric to the non-specialist; this dichotomy is arguably a manifestation of C.P. Snow's 'two cultures' (the apparent divide between the arts and social sciences on the one hand, and engineering and the natural sciences on the other). Other methods for generating policy advice, including that from the discipline of economics, will not provide substitute insights to those of energy and exergy analysis. However, thermodynamic techniques such as these should not be used alone, but as part of a broader interdisciplinary 'toolkit' of sustainability assessment methods. They cannot determine, for example, the economic consequences or the environmental (ecotoxicological) impact of different energy technologies
Thermodynamic analysis of black hole solutions in gravitating nonlinear electrodynamics
Diaz-Alonso, J.; Rubiera-Garcia, D.
2013-10-01
We perform a general study of the thermodynamic properties of static electrically charged black hole solutions of nonlinear electrodynamics minimally coupled to gravitation in three space dimensions. The Lagrangian densities governing the dynamics of these models in flat space are defined as arbitrary functions of the gauge field invariants, constrained by some requirements for physical admissibility. The exhaustive classification of these theories in flat space, in terms of the behaviour of the Lagrangian densities in vacuum and on the boundary of their domain of definition, defines twelve families of admissible models. When these models are coupled to gravity, the flat space classification leads to a complete characterization of the associated sets of gravitating electrostatic spherically symmetric solutions by their central and asymptotic behaviours. We focus on nine of these families, which support asymptotically Schwarzschild-like black hole configurations, for which the thermodynamic analysis is possible and pertinent. In this way, the thermodynamic laws are extended to the sets of black hole solutions of these families, for which the generic behaviours of the relevant state variables are classified and thoroughly analyzed in terms of the aforementioned boundary properties of the Lagrangians. Moreover, we find universal scaling laws (which hold and are the same for all the black hole solutions of models belonging to any of the nine families) running the thermodynamic variables with the electric charge and the horizon radius. These scale transformations form a one-parameter multiplicative group, leading to universal "renormalization group"-like first-order differential equations. The beams of characteristics of these equations generate the full set of black hole states associated to any of these gravitating nonlinear electrodynamics. Moreover the application of the scaling laws allows to find a universal finite relation between the thermodynamic variables
Thermodynamic data development using the solubility method (Joint research)
International Nuclear Information System (INIS)
Rai, Dhanpat; Yui, Mikazu
2013-05-01
The solubility method is one of the most powerful tools to obtain reliable thermodynamic data for 1) solubility products of discrete solids and double salts, 2) complexation constants for various ligands, 3) development of data in a wide range of pH values, 4) evaluation of data for metals that form very insoluble solids (e.g. tetravalent actinides), 5) determining solubility-controlling solids in different types of wastes and 6) elevated temperatures for redox sensitive systems. This document is focused on describing various aspects of obtaining thermodynamic data using the solubility method. This manuscript deals with various aspects of conducting solubility studies, including selecting the study topic, modeling to define important variables, selecting the range of variables and experimental parameters, anticipating results, general equipment requirements, conducting experiments, and interpreting experimental data. (author)
Engineering governance: introducing a governance meta framework.
Brand, N.; Beens, B.; Vuuregge, E.; Batenburg, R.
2011-01-01
There is a need for a framework that depicts strategic choices within an organisation with regard to potential governance structures. The governance meta framework provides the necessary structure in the current developments of governance. Performance as well as conformance are embedded in this
Government and governance strategies in medical tourism
Ormond, M.E.; Mainil, T.
2015-01-01
This chapter provides an overview of current government and governance strategies relative to medical tourism development and management around the world. Most studies on medical tourism have privileged national governments as key actors in medical tourism regulation and, in some cases, even
The thermodynamic-buffer enzymes.
Stucki, J W
1980-08-01
Oxidative phosphorylation operates at optimal efficiency if and only if the condition of conductance matching L33/L11 = square root 1-q2 is fulfilled. In this relation L11 is the phenomenological conductance of phosphorylation, L33 the phenomenological conductance of the load, i.e. the irreversible ATP-utilizing processes in the cell, and q the degree of coupling of oxidative phosphorylation driven by respiration. Since during short time intervals L11 and q are constant whereas L33 fluctuates in the cell, oxidative phosphorylation would only rarely operate at optimal efficiency due to violation of conductance matching. This paper demonstrates that the reversible ATP-utilizing reaction catalyzed by adenylate kinase can effectively compensate deviations from conductance matching in the presence of a fluctuating L33 and hence allows oxidative phosphorylation to operate at optimal efficiency in the cell. Since the adenylate kinase reaction was found to buffer a thermodynamic potential, i.e. the phosphate potential, this finding was generalized to the concept of thermodynamic buffering. The thermodynamic buffering ability of the adenylate kinase reaction was demonstrated by experiments with incubated rat-liver mitochondria. Considerations of changes introduced in the entropy production by the adenylate kinase reaction allowed to establish the theoretical framework for thermodynamic buffering. The ability of thermodynamic buffering to compensate deviations from conductance matching in the presence of fluctuating loads was demonstrated by computer simulations. The possibility of other reversible ATP-utilizing reactions, like the ones catalyzed by creatine kinase and arginine kinase, to contribute to thermodynamic buffering is discussed. Finally, the comparison of the theoretically calculated steady-stae cytosolic adenine nucleotide concentrations with experimental data from perfused livers demonstrated that in livers from fed rats conductance matching is fulfilled on a
Thermodynamic model of nonequilibrium phase transitions.
Martyushev, L M; Konovalov, M S
2011-07-01
Within the scope of a thermodynamic description using the maximum entropy production principle, transitions from one nonequilibrium (kinetic) regime to another are considered. It is shown that in the case when power-law dependencies of thermodynamic flux on force are similar for two regimes, only a transition accompanied by a positive jump of thermodynamic flux is possible between them. It is found that the difference in powers of the dependencies of thermodynamic fluxes on forces results in a number of interesting nonequilibrium transitions between kinetic regimes, including the reentrant one with a negative jump of thermodynamic flux.
Classical thermodynamics of non-electrolyte solutions
Van Ness, H C
1964-01-01
Classical Thermodynamics of Non-Electrolyte Solutions covers the historical development of classical thermodynamics that concerns the properties of vapor and liquid solutions of non-electrolytes. Classical thermodynamics is a network of equations, developed through the formal logic of mathematics from a very few fundamental postulates and leading to a great variety of useful deductions. This book is composed of seven chapters and begins with discussions on the fundamentals of thermodynamics and the thermodynamic properties of fluids. The succeeding chapter presents the equations of state for
An Improved Mnemonic Device for Thermodynamic Relations
Directory of Open Access Journals (Sweden)
Younghun Kim
2016-12-01
Full Text Available An improved mnemonic device for thermodynamic relations between state variables and potentials was proposed in the form of a thermodynamic circle. Based on separating the Born square into an inner square (T, P, V, and S and an outer circle (G, A, U, and H, relations such as Legendre transforms, Maxwell equations, equations to compute variables, and differential equations for thermodynamic variables can be recalled easily. The thermodynamic circle has a cross-arrow at its center and can be used to intuitively determine the sign of all thermodynamic relations.
International Nuclear Information System (INIS)
Wu, Wei; Wang, Jin
2014-01-01
We have established a general non-equilibrium thermodynamic formalism consistently applicable to both spatially homogeneous and, more importantly, spatially inhomogeneous systems, governed by the Langevin and Fokker-Planck stochastic dynamics with multiple state transition mechanisms, using the potential-flux landscape framework as a bridge connecting stochastic dynamics with non-equilibrium thermodynamics. A set of non-equilibrium thermodynamic equations, quantifying the relations of the non-equilibrium entropy, entropy flow, entropy production, and other thermodynamic quantities, together with their specific expressions, is constructed from a set of dynamical decomposition equations associated with the potential-flux landscape framework. The flux velocity plays a pivotal role on both the dynamic and thermodynamic levels. On the dynamic level, it represents a dynamic force breaking detailed balance, entailing the dynamical decomposition equations. On the thermodynamic level, it represents a thermodynamic force generating entropy production, manifested in the non-equilibrium thermodynamic equations. The Ornstein-Uhlenbeck process and more specific examples, the spatial stochastic neuronal model, in particular, are studied to test and illustrate the general theory. This theoretical framework is particularly suitable to study the non-equilibrium (thermo)dynamics of spatially inhomogeneous systems abundant in nature. This paper is the second of a series
Thermodynamic assessment of the palladium-tellurium (Pd-Te) system
International Nuclear Information System (INIS)
Gosse, S.; Gueneau, C.
2011-01-01
Among the fission products formed in nuclear fuels, the platinum-group metal palladium and the chalcogen element tellurium exhibit strong interaction. It is therefore of interest to be able to predict the chemical equilibria involving the Pd and Te fission products. A thermodynamic assessment is carried out using the Calphad (Calculation of Phase Diagram) method to investigate the behaviour of Pd-Te alloy system in nuclear fuels under irradiation and under waste disposal conditions. The Pd-Te binary description was optimized using experimental data found in literature including thermodynamic properties and phase diagram data. To validate the calculated phase diagram and thermodynamic properties, the results are compared with data from the literature. Both calculated and experimental phase diagrams and thermodynamic properties are in good agreement in the whole Pd-Te composition range. (authors)
The thermodynamical foundation of electronic conduction in solids
Bringuier, E.
2018-03-01
In elementary textbooks, the microscopic justification of Ohm’s local law in a solid medium starts with Drude’s classical model of electron transport and next discusses the quantum-dynamical and statistical amendments. In this paper, emphasis is laid instead upon the thermodynamical background motivated by the Joule-Lenz heating effect accompanying conduction and the fact that the conduction electrons are thermalized at the lattice temperature. Both metals and n-type semiconductors are considered; but conduction under a magnetic field is not. Proficiency in second-year thermodynamics and vector analysis is required from an undergraduate university student in physics so that the content of the paper can be taught to third-year students. The necessary elements of quantum mechanics are posited in this paper without detailed justification. We start with the equilibrium-thermodynamic notion of the chemical potential of the electron gas, the value of which distinguishes metals from semiconductors. Then we turn to the usage of the electrochemical potential in the description of near-equilibrium electron transport. The response of charge carriers to the electrochemical gradient involves the mobility, which is the reciprocal of the coefficient of the effective friction force opposing the carrier drift. Drude’s calculation of mobility is restated with the dynamical requirements of quantum physics. Where the carrier density is inhomogeneous, there appears diffusion, the coefficient of which is thermodynamically related to the mobility. Next, it is remarked that the release of heat was ignored in Drude’s original model. In this paper, the flow of Joule heat is handled thermodynamically within an energy balance where the voltage generator, the conduction electrons and the host lattice are involved in an explicit way. The notion of dissipation is introduced as the rate of entropy creation in a steady state. The body of the paper is restricted to the case of one
Small metal particles and the ideal Fermi gas
International Nuclear Information System (INIS)
Barma, Mustanpir
1991-01-01
Kubo's theoretical model of a small metal particle consists of a number of noninteraction electrons (an ideal Fermi gas) confined to a finite volume. By 'small' it meant that the size of the particle is intermediate between that of a few atoms cluster and the bulk solid, the radius of the particle being 5 to 50 Angstroms. The model is discussed and size dependence of various energy scales is studied. For a fermi gas confined in a sphere or a cube, two size-dependent energy scales are important. The inner scale δ is the mean spacing between successive energy levels. It governs the very low temperature behaviour. The outer scale Δ is associated with the shell structure when δ ≤T<Δ, thermodynamic properties show an oscillatory fluctuations around a smooth background as the size or energy is varied. (M.G.B.) 23 refs
The OpenCalphad thermodynamic software interface
Sundman, Bo; Kattner, Ursula R; Sigli, Christophe; Stratmann, Matthias; Le Tellier, Romain; Palumbo, Mauro; Fries, Suzana G
2017-01-01
Thermodynamic data are needed for all kinds of simulations of materials processes. Thermodynamics determines the set of stable phases and also provides chemical potentials, compositions and driving forces for nucleation of new phases and phase transformations. Software to simulate materials properties needs accurate and consistent thermodynamic data to predict metastable states that occur during phase transformations. Due to long calculation times thermodynamic data are frequently pre-calculated into “lookup tables” to speed up calculations. This creates additional uncertainties as data must be interpolated or extrapolated and conditions may differ from those assumed for creating the lookup table. Speed and accuracy requires that thermodynamic software is fully parallelized and the Open-Calphad (OC) software is the first thermodynamic software supporting this feature. This paper gives a brief introduction to computational thermodynamics and introduces the basic features of the OC software and presents four different application examples to demonstrate its versatility. PMID:28260838
Liquid state properties of certain noble and transition metals
International Nuclear Information System (INIS)
Bhuiyan, G.M.; Rahman, A.; Khaleque, M.A.; Rashid, R.I.M.A.; Mujibur Rahman, S.M.
1998-07-01
Certain structural, thermodynamic and atomic transport properties of a number of liquid noble and transition metals are reported. The underlying theory combines together a simple form of the N-body potential and the thermodynamically self-consistent variational modified hypernetted chain (VMHNC) theory of liquid. The static structure factors calculated by using the VMHNC resemble the hard sphere (HS) values. Consequently the HS model is used to calculate the thermodynamic properties viz. specific heat, entropy, isothermal compressibility and atomic transport properties. (author)
Thermodynamic Geometry and Hawking Radiation
Bellucci, S
2010-01-01
This work explores the role of thermodynamic fluctuations in the two parameter Hawking radiating black hole configurations. The system is characterized by an ensemble of arbitrary mass and radiation frequency of the black holes. In the due course of the Hawking radiations, we find that the intrinsic geometric description exhibits an intriguing set of exact pair correction functions and global correlation lengths. We investigate the nature of the constant amplitude radiation and find that it's not stable under fluctuations of the mass and frequency. Subsequently, the consideration of the York model decreasing amplitude radiation demonstrates that thermodynamic fluctuations are globally stable in the small frequency region. In connection with quantum gravity refinements, we take an account of the logarithmic correction into the constant amplitude and York amplitude over the Hawking radiation. In both considerations, we notice that the nature of the possible parametric fluctuations may precisely be ascertained w...
Modern Thermodynamics with Statistical Mechanics
Helrich, Carl S
2009-01-01
With the aim of presenting thermodynamics in as simple and as unified a form as possible, this textbook starts with an introduction to the first and second laws and then promptly addresses the complete set of the potentials in a subsequent chapter and as a central theme throughout. Before discussing modern laboratory measurements, the book shows that the fundamental quantities sought in the laboratory are those which are required for determining the potentials. Since the subjects of thermodynamics and statistical mechanics are a seamless whole, statistical mechanics is treated as integral part of the text. Other key topics such as irreversibility, the ideas of Ilya Prigogine, chemical reaction rates, equilibrium of heterogeneous systems, and transition-state theory serve to round out this modern treatment. An additional chapter covers quantum statistical mechanics due to active current research in Bose-Einstein condensation. End-of-chapter exercises, chapter summaries, and an appendix reviewing fundamental pr...
Statistical Thermodynamics of Economic Systems
Directory of Open Access Journals (Sweden)
Hernando Quevedo
2011-01-01
Full Text Available We formulate the thermodynamics of economic systems in terms of an arbitrary probability distribution for a conserved economic quantity. As in statistical physics, thermodynamic macroeconomic variables emerge as the mean value of microeconomic variables, and their determination is reduced to the computation of the partition function, starting from an arbitrary function. Explicit hypothetical examples are given which include linear and nonlinear economic systems as well as multiplicative systems such as those dominated by a Pareto law distribution. It is shown that the macroeconomic variables can be drastically changed by choosing the microeconomic variables in an appropriate manner. We propose to use the formalism of phase transitions to study severe changes of macroeconomic variables.
The 4th Thermodynamic Principle?
International Nuclear Information System (INIS)
Montero Garcia, Jose de la Luz; Novoa Blanco, Jesus Francisco
2007-01-01
It should be emphasized that the 4th Principle above formulated is a thermodynamic principle and, at the same time, is mechanical-quantum and relativist, as it should inevitably be and its absence has been one of main the theoretical limitations of the physical theory until today.We show that the theoretical discovery of Dimensional Primitive Octet of Matter, the 4th Thermodynamic Principle, the Quantum Hexet of Matter, the Global Hexagonal Subsystem of Fundamental Constants of Energy and the Measurement or Connected Global Scale or Universal Existential Interval of the Matter is that it is possible to be arrived at a global formulation of the four 'forces' or fundamental interactions of nature. The Einstein's golden dream is possible
Statistical thermodynamics of nonequilibrium processes
Keizer, Joel
1987-01-01
The structure of the theory ofthermodynamics has changed enormously since its inception in the middle of the nineteenth century. Shortly after Thomson and Clausius enunciated their versions of the Second Law, Clausius, Maxwell, and Boltzmann began actively pursuing the molecular basis of thermo dynamics, work that culminated in the Boltzmann equation and the theory of transport processes in dilute gases. Much later, Onsager undertook the elucidation of the symmetry oftransport coefficients and, thereby, established himself as the father of the theory of nonequilibrium thermodynamics. Com bining the statistical ideas of Gibbs and Langevin with the phenomenological transport equations, Onsager and others went on to develop a consistent statistical theory of irreversible processes. The power of that theory is in its ability to relate measurable quantities, such as transport coefficients and thermodynamic derivatives, to the results of experimental measurements. As powerful as that theory is, it is linear and...
Governance, decentralisation and deforestation
Suwarno, Aritta; Hein, Lars; Sumarga, Elham
2015-01-01
The implementation of the decentralisation policies in Indonesia, which started in 2000, has fundamentally changed the country's forest governance framework. This study investigates how decentralisation has influenced forest governance, and links the forest governance to deforestation rates at
Voluntary Environmental Governance Arrangements
van der Heijden, J.
2012-01-01
Voluntary environmental governance arrangements have focal attention in studies on environmental policy, regulation and governance. The four major debates in the contemporary literature on voluntary environmental governance arrangements are studied. The literature falls short of sufficiently
Developing digital forensic governance
CSIR Research Space (South Africa)
Grobler, M
2010-03-01
Full Text Available This paper presents a Digital Forensic (DF) governance framework and its mapping on the SANS ISO/IEC 38500:2009 Corporate governance of information technology structure. DF governance assists organisations in guiding the management team...
Thermodynamic data for uranium fluorides
International Nuclear Information System (INIS)
Leitnaker, J.M.
1983-03-01
Self-consistent thermodynamic data have been tabulated for uranium fluorides between UF 4 and UF 6 , including UF 4 (solid and gas), U 4 F 17 (solid), U 2 F 9 (solid), UF 5 (solid and gas), U 2 F 10 (gas), and UF 6 (solid, liquid, and gas). Included are thermal function - the heat capacity, enthalpy, and free energy function, heats of formation, and vaporization behavior
Thermodynamics of freezing and melting
Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas; Schrøder, Thomas; Dyre, Jeppe C.
2016-01-01
Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature?pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variatio...
Chiral thermodynamics of nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Fiorilla, Salvatore
2012-10-23
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Chiral thermodynamics of nuclear matter
International Nuclear Information System (INIS)
Fiorilla, Salvatore
2012-01-01
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Thermodynamics of quasi-particles
Energy Technology Data Exchange (ETDEWEB)
Gardim, F.G. [Instituto de Fisica Teorica-Universidade Estadual Paulista, Rua Pamplona 145, 01405-900, Sao Paulo, SP (Brazil); Steffens, F.M. [Instituto de Fisica Teorica-Universidade Estadual Paulista, Rua Pamplona 145, 01405-900, Sao Paulo, SP (Brazil); NFC-CCH-Universidade Presbiteriana Mackenzie, Rua da Consolacao 930, 01302-907, Sao Paulo, SP (Brazil)], E-mail: fsteffen@ift.unesp.br
2007-12-01
We present in this work a generalization of the solution of Gorenstein and Yang for a consistent thermodynamics for systems with a temperature dependent Hamiltonian. We show that there is a large class of solutions, work out three particular ones, and discuss their physical relevance. We apply the particular solutions for an ideal gas of quasi-gluons, and compare the calculation to lattice and perturbative QCD results.
Thermodynamic properties of sea air
Directory of Open Access Journals (Sweden)
R. Feistel
2010-02-01
Full Text Available Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS, and have been adopted in 2009 for oceanography by IOC/UNESCO.
In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as "sea air" here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well.
The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.
Statistics and thermodynamics of fracture
Chudnovsky, A.
1984-01-01
A probabilistic model of the fracture processes unifying the phenomenological study of long term strength of materials, fracture mechanics and statistical approaches to fracture is briefly outlined. The general framework of irreversible thermodynamics is employed to model the deterministic side of the failure phenomenon. The stochastic calculus is used to account for thg failure mechanisms controlled by chance; particularly, the random roughness of fracture surfaces.
International Nuclear Information System (INIS)
Sutton, S.B.; Stein, W.; Reitter, T.A.; Hindmarsh, A.C.
1983-01-01
A numerical model for calculating the thermodynamic behavior of the MFTF-B cryogenic cooling system is described. Nine component types are discussed with governing equations given. The algorithm for solving the coupled set of algebraic and ordinary differential equations is described. The model and its application to the MFTF-B cryogenic cooling system has not been possible due to lack of funding
Rosiyadi, Didi; Suryana, Nana; Cahyana, Ade; Nuryani, Nuryani
2007-01-01
Makalah ini mengemukakan E-Government Dimension yang merupakan salah satu hasil TahapanPengumpulan Data, dimana tahapan ini adalah bagian dari penelitian kompetitif di Lembaga Ilmu PengetahuanIndonesia 2007 yang sekarang sedang dilakukan. Data E-Government Dimension ini didapatkan dari berbagaisumber yang meliputi E-Government beberapa Negara di dunia, E-Government yang dibangun oleh beberapapenyedia aplikasi E-Government. E-Government Dimension terdiri dari tiga dimensi yaitu DemocraticDimen...
Thermodynamics and Kinetics of Advanced Separations Systems - FY 2010 Summary Report
International Nuclear Information System (INIS)
Martin, Leigh R.; Zalupski, Peter R.
2010-01-01
This report presents a summary of the work performed in the area of thermodynamics and kinetics of advanced separations systems under the Fuel Cycle Research and Development (FCR and D) program during FY 2010. Thermodynamic investigations into metal extraction dependencies on lactate and HDEHP have been performed. These metal distribution studies indicate a substantial deviation from the expected behavior at conditions that are typical of TALSPEAK process operational platform. These studies also identify that no thermodynamically stable mixed complexes exist in the aqueous solutions and increasing the complexity of the organic medium appears to influence the observed deviations. Following on from this, the first calorimetric measurement of the heat of extraction of americium across a liquid-liquid boundary was performed.
Thermodynamics and Kinetics of Advanced Separations Systems – FY 2010 Summary Report
Energy Technology Data Exchange (ETDEWEB)
Leigh R. Martin; Peter R. Zalupski
2010-09-01
This report presents a summary of the work performed in the area of thermodynamics and kinetics of advanced separations systems under the Fuel Cycle Research and Development (FCR&D) program during FY 2010. Thermodynamic investigations into metal extraction dependencies on lactate and HDEHP have been performed. These metal distribution studies indicate a substantial deviation from the expected behavior at conditions that are typical of TALSPEAK process operational platform. These studies also identify that no thermodynamically stable mixed complexes exist in the aqueous solutions and increasing the complexity of the organic medium appears to influence the observed deviations. Following on from this, the first calorimetric measurement of the heat of extraction of americium across a liquid-liquid boundary was performed.
VT Certified Local Governments
Vermont Center for Geographic Information — Vermont established its Certified Local Government (CLG) program in 1985 to better help local governments integrate historic preservation concerns with planning and...
PAD: a one-dimensional, coupled neutronic-thermodynamic-hydrodynamic computer code
International Nuclear Information System (INIS)
Peterson, D.M.; Stratton, W.R.; McLaughlin, T.P.
1976-12-01
Theoretical and numerical foundations, utilization guide, sample problems, and program listing and glossary are given for the PAD computer code which describes dynamic systems with interactive neutronics, thermodynamics, and hydrodynamics in one-dimensional spherical, cylindrical, and planar geometries. The code has been applied to prompt critical excursions in various fissioning systems (solution, metal, LMFBR, etc.) as well as to nonfissioning systems
Singular limits in thermodynamics of viscous fluids
Feireisl, Eduard
2017-01-01
This book is about singular limits of systems of partial differential equations governing the motion of thermally conducting compressible viscous fluids. "The main aim is to provide mathematically rigorous arguments how to get from the compressible Navier-Stokes-Fourier system several less complex systems of partial differential equations used e.g. in meteorology or astrophysics. However, the book contains also a detailed introduction to the modelling in mechanics and thermodynamics of fluids from the viewpoint of continuum physics. The book is very interesting and important. It can be recommended not only to specialists in the field, but it can also be used for doctoral students and young researches who want to start to work in the mathematical theory of compressible fluids and their asymptotic limits." Milan Pokorný (zbMATH) "This book is of the highest quality from every point of view. It presents, in a unified way, recent research material of fundament al importance. It is self-contained, thanks to Chapt...
Thermodynamic Studies for Drug Design and Screening
Garbett, Nichola C.; Chaires, Jonathan B.
2012-01-01
Introduction A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. Areas covered This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 – 2011 using the Science Citation Index and PUBMED and the keywords listed below. Expert opinion The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically-driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development towards an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. PMID:22458502
Thermodynamic studies for drug design and screening.
Garbett, Nichola C; Chaires, Jonathan B
2012-04-01
A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 - 2011 using the Science Citation Index and PUBMED and the keywords listed below. The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development toward an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in the design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. © 2012 Informa UK, Ltd.
Free energy of formation of Mo2C and the thermodynamic properties of carbon in solid molybdenum
Seigle, L. L.; Chang, C. L.; Sharma, T. P.
1979-01-01
As part of a study of the thermodynamical properties of interstitial elements in refractory metals, the free energy of formation of Mo2C is determined, and the thermodynamical properties of C in solution in solid Mo evaluated. The activity of C in the two-phase region Mo + Mo2C is obtained from the C content of iron rods equilibrated with metal + carbide powder mixtures. The free energy of formation of alpha-Mo2C is determined from the activity data. The thermodynamic properties of C in the terminal solid solution are calculated from available data on the solid solubility of C in Mo. Lattice distortion due to misfit of the C atoms in the interstitial sites appears to play a significant role in determining the thermodynamic properties of C in solid Mo.
Chemical and Thermodynamic Properties at High Temperatures: A Symposium
Walker, Raymond F.
1961-01-01
This book contains the program and all available abstracts of the 90' invited and contributed papers to be presented at the TUPAC Symposium on Chemical and Thermodynamic Properties at High Temperatures. The Symposium will be held in conjunction with the XVIIIth IUPAC Congress, Montreal, August 6 - 12, 1961. It has been organized, by the Subcommissions on Condensed States and on Gaseous States of the Commission on High Temperatures and Refractories and by the Subcommission on Experimental Thermodynamics of the Commission on Chemical Thermodynamics, acting in conjunction with the Organizing Committee of the IUPAC Congress. All inquiries concerning participation In the Symposium should be directed to: Secretary, XVIIIth International Congress of Pure and Applied Chemistry, National Research Council, Ottawa, 'Canada. Owing to the limited time and facilities available for the preparation and printing of the book, it has not been possible to refer the proofs of the abstracts to the authors for checking. Furthermore, it has not been possible to subject the manuscripts to a very thorough editorial examination. Some obvious errors in the manuscripts have been corrected; other errors undoubtedly have been introduced. Figures have been redrawn only when such a step was essential for reproduction purposes. Sincere apologies are offered to authors and readers for any errors which remain; however, in the circumstances neither the IUPAC Commissions who organized the Symposium, nor the U. S. Government Agencies who assisted in the preparation of this book can accept responsibility for the errors.
Public management and governance
National Research Council Canada - National Science Library
Bovaird, A. G; Löffler, Elke
2009-01-01
... how the process of governing needs to be fundamentally altered if a government is to retain public trust and make better use of society's resources. Key themes covered include: ■ ■ ■ ■ the challenges and pressures which governments experience in an international context; the changing functions of modern government in the global economy; the 'mixed ec...
DEFF Research Database (Denmark)
Knudsen, Jette Steen; Brown, Dana
2015-01-01
Why are national governments increasingly adopting policies on corporate social responsibility (CSR)? Government CSR policies have been explained either as a means of substituting or supporting (mirroring) domestic political-economic institutions and policies, or as a means for government...... that government goals in this regard are not necessarily pre-defined....
Transforming government service
DEFF Research Database (Denmark)
Pedersen, Keld
2017-01-01
The Danish government has defined an ambitious e-government strategy aiming to increase both citizen centricity and the efficiency of government service production and delivery. This research uses dynamic capability theory to compare a highly successful and a less successful e-government program...
Thermodynamics for Chemists, Physicists and Engineers
Hołyst, Robert
2012-01-01
Thermodynamics is an essential part of chemical physics and is of fundamental importance in physics, chemistry and engineering courses. This textbook takes an interdisciplinary approach to the subject and is therefore suitable for undergraduates in all those courses. The book is an introduction to phenomenological thermodynamics and its applications to phase transitions and chemical reactions, with some references to statistical mechanics. It strikes the balance between the rigorousness of the Callen text and phenomenological approach of the Atkins text. The book is divided in three parts. The first introduces the postulates and laws of thermodynamics and complements these initial explanations with practical examples. The second part is devoted to applications of thermodynamics to phase transitions in pure substances and mixtures. The third part covers thermodynamic systems in which chemical reactions take place. There are some sections on more advanced topics such as thermodynamic potentials, natural variabl...
Geometric description of BTZ black hole thermodynamics
International Nuclear Information System (INIS)
Quevedo, Hernando; Sanchez, Alberto
2009-01-01
We study the properties of the space of thermodynamic equilibrium states of the Banados-Teitelboim-Zanelli (BTZ) black hole in (2+1) gravity. We use the formalism of geometrothermodynamics to introduce in the space of equilibrium states a two-dimensional thermodynamic metric whose curvature is nonvanishing, indicating the presence of thermodynamic interaction, and free of singularities, indicating the absence of phase transitions. Similar results are obtained for generalizations of the BTZ black hole which include a Chern-Simons term and a dilatonic field. Small logarithmic corrections of the entropy turn out to be represented by small corrections of the thermodynamic curvature, reinforcing the idea that thermodynamic curvature is a measure of thermodynamic interaction.
Relativistic thermodynamics of Fluids. l
International Nuclear Information System (INIS)
Havas, P.; Swenson, R.J.
1979-01-01
In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of nonnegative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor T/sup alphabeta/ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and seven possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of T/sup alphabeta/. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail
Thermodynamics and life span estimation
International Nuclear Information System (INIS)
Kuddusi, Lütfullah
2015-01-01
In this study, the life span of people living in seven regions of Turkey is estimated by applying the first and second laws of thermodynamics to the human body. The people living in different regions of Turkey have different food habits. The first and second laws of thermodynamics are used to calculate the entropy generation rate per unit mass of a human due to the food habits. The lifetime entropy generation per unit mass of a human was previously found statistically. The two entropy generations, lifetime entropy generation and entropy generation rate, enable one to determine the life span of people living in seven regions of Turkey with different food habits. In order to estimate the life span, some statistics of Turkish Statistical Institute regarding the food habits of the people living in seven regions of Turkey are used. The life spans of people that live in Central Anatolia and Eastern Anatolia regions are the longest and shortest, respectively. Generally, the following inequality regarding the life span of people living in seven regions of Turkey is found: Eastern Anatolia < Southeast Anatolia < Black Sea < Mediterranean < Marmara < Aegean < Central Anatolia. - Highlights: • The first and second laws of thermodynamics are applied to the human body. • The entropy generation of a human due to his food habits is determined. • The life span of Turks is estimated by using the entropy generation method. • Food habits of a human have effect on his life span
Comprehensive thermodynamic study of methylprednisolone
International Nuclear Information System (INIS)
Knyazev, A.V.; Emel'yanenko, V.N.; Smirnova, N.N.; Zaitsau, D.H.; Stepanova, O.V.; Shipilova, A.S.; Markin, A.V.; Gusarova, E.V.; Knyazeva, S.S.; Verevkin, S.P.
2017-01-01
Highlights: • Temperature dependence of heat capacity of methylprednisolone has been measured by precision adiabatic vacuum calorimetry. • The thermodynamic functions of the methylprednisolone have been determined for the range from T → 0 to 350 K. • Enthalpy of combustion of the methylprednisolone was measured using high-precision combustion calorimeter. • The standard molar enthalpy of sublimation was measured by using the quartz-crystal microbalance. - Abstract: In the present work the temperature dependence of heat capacity for methylprednisolone has been measured for the first time over the temperature range from 6 to 350 K using by precision adiabatic vacuum calorimetry. Based on the experimental data, the thermodynamic functions of the methylprednisolone, namely, the heat capacity, enthalpy H°(T) − H°(0), entropy S°(T) − S°(0) and Gibbs function G°(T) − H°(0) have been evaluated from the experimental values for the range from T → 0 to 350 K. Standard molar enthalpy of combustion (−11898.9 ± 6.7) kJ·mol"−"1 of the methylprednisolone was measured for the first time using high-precision combustion calorimeter. The standard molar enthalpy of formation in the crystalline state (−1045.8 ± 7.3) kJ·mol"−"1 of compound at 298.15 K was derived from the combustion experiments. The standard molar enthalpy of sublimation at 298.15 K (194.5 ± 2.2) kJ·mol"−"1 was measured by using the quartz-crystal microbalance (QCM). Using combination of the adiabatic and combustion calorimetry with the result from QCM, the thermodynamic functions of the methylprednisolone at T = 298.15 K and p = 0.1 MPa have been calculated.
Thermodynamically Feasible Kinetic Models of Reaction Networks
Ederer, Michael; Gilles, Ernst Dieter
2007-01-01
The dynamics of biological reaction networks are strongly constrained by thermodynamics. An holistic understanding of their behavior and regulation requires mathematical models that observe these constraints. However, kinetic models may easily violate the constraints imposed by the principle of detailed balance, if no special care is taken. Detailed balance demands that in thermodynamic equilibrium all fluxes vanish. We introduce a thermodynamic-kinetic modeling (TKM) formalism that adapts th...
Thermal physics kinetic theory and thermodynamics
Singh, Devraj; Yadav, Raja Ram
2016-01-01
THERMAL PHYSICS: Kinetic Theory and Thermodynamics is designed for undergraduate course in Thermal Physics and Thermodynamics. The book provides thorough understanding of the fundamental principles of the concepts in Thermal Physics. The book begins with kinetic theory, then moves on liquefaction, transport phenomena, the zeroth, first, second and third laws, thermodynamics relations and thermal conduction. The book concluded with radiation phenomenon. KEY FEATURES: * Include exercises * Short Answer Type Questions * Long Answer Type Questions * Numerical Problems * Multiple Choice Questions
Thermodynamics of Enzyme-Catalyzed Reactions Database
SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access) The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.
Unified geometric description of black hole thermodynamics
International Nuclear Information System (INIS)
Alvarez, Jose L.; Quevedo, Hernando; Sanchez, Alberto
2008-01-01
In the space of thermodynamic equilibrium states we introduce a Legendre invariant metric which contains all the information about the thermodynamics of black holes. The curvature of this thermodynamic metric becomes singular at those points where, according to the analysis of the heat capacities, phase transitions occur. This result is valid for the Kerr-Newman black hole and all its special cases and, therefore, provides a unified description of black hole phase transitions in terms of curvature singularities.
Thermodynamic data for uranium fluorides
Energy Technology Data Exchange (ETDEWEB)
Leitnaker, J.M.
1983-03-01
Self-consistent thermodynamic data have been tabulated for uranium fluorides between UF/sub 4/ and UF/sub 6/, including UF/sub 4/ (solid and gas), U/sub 4/F/sub 17/ (solid), U/sub 2/F/sub 9/ (solid), UF/sub 5/ (solid and gas), U/sub 2/F/sub 10/ (gas), and UF/sub 6/ (solid, liquid, and gas). Included are thermal function - the heat capacity, enthalpy, and free energy function, heats of formation, and vaporization behavior.
Thermodynamics of High Temperature Plasmas
Directory of Open Access Journals (Sweden)
Ettore Minardi
2009-03-01
Full Text Available In this work we discuss how and to what extent the thermodynamic concepts and the thermodynamic formalism can be extended to the description of high temperature states of the plasma not necessarily associated with a Boltzmann distribution and with thermal equilibrium.The discussion is based on the “magnetic or electrostatic entropy concept”, an interpretative and predictive tool based on probability and information, defined in a suitably coarse-grained possibility space of all current density or of all electric charge density distributions under testable constraints, and whose variation properties are proven to be related under certain conditions to the equilibrium and the stability of the system. In the case of magnetic equilibrium the potentiality of the magnetic entropy concept is illustrated by comparing the predictions of the current density and pressure profiles with the observations in different tokamak machines and different tokamak regimes, as well as by showing how the equilibrium and the stability in devices as different as the reversed field pinch or the magnetic well are described by the variation properties of the same entropy functional applied to the different situations. In fact it emerges that the maximum of the entropy can be seen in these different cases as an optimization constraint for the minimum of the magnetic energy. The application of the entropy concept to the electrostatic processes shows in particular that the so-called reactive instabilities (non-dissipative, non-resonant instabilities with a marginal point admit a neighboring state with higher entropy and are therefore of special relevance from the point of view of the physical evolution of the system. In this case the thermodynamic formalism allows the introduction of the concept of “thermodynamic fluctuations” of the macroscopic charge density and provides a method for the calculation of the “thermodynamic” fluctuation levels both on the stable as
Thermodynamic properties of yttrium cuprate
Matskevich, N. I.; Minenkov, Yu. F.; Berezovskii, G. A.
2014-01-01
The standard formation enthalpy and enthalpy from binary oxide of yttrium cuprate have been determined by solution calorimetry combining the solution enthalpies of Y2Cu2O5 and Y2O3 + 2CuO mixture in 6 M HCl at 323.15 K and literature data. The heat capacity of Y2Cu2O5 has been measured by adiabatic calorimetry from 8 up to 303 K. Smoothed values of heat capacities, entropies and enthalpies were calculated on the basis of experimental data. The thermodynamic functions (heat capacity, entropy a...
Commonly Asked Questions in Thermodynamics
Assael, Marc J
2011-01-01
Have you ever had a question that keeps persisting and for which you cannot find a clear answer? Is the question seemingly so "simple" that the problem is glossed over in most resources, or skipped entirely? CRC Press/Taylor and Francis is pleased to introduce Commonly Asked Questions in Thermodynamics, the first in a new series of books that address the questions that frequently arise in today's major scientific and technical disciplines. Designed for a wide audience, from students and researchers to practicing professionals in related areas, the books are organized in a user friend
An introduction to statistical thermodynamics
Hill, Terrell L
1987-01-01
""A large number of exercises of a broad range of difficulty make this book even more useful…a good addition to the literature on thermodynamics at the undergraduate level."" - Philosophical MagazineAlthough written on an introductory level, this wide-ranging text provides extensive coverage of topics of current interest in equilibrium statistical mechanics. Indeed, certain traditional topics are given somewhat condensed treatment to allow room for a survey of more recent advances.The book is divided into four major sections. Part I deals with the principles of quantum statistical mechanics a
Leisure, Government and Governance: A Swedish Perspective
Lindstrom, Lisbeth
2011-01-01
The leisure sector has witnessed a tremendous expansion since 1960. The purpose of this article is to analyse the decisions and goals of Swedish government policy during the period 1962 to 2005. The empirical analysis covers government Propositions and governmental investigations. The fields covered are sports, culture, exercise, tourism and…
Yourgrau, Wolfgang; Raw, Gough
2002-01-01
Extensively revised edition of a much-respected work examines thermodynamics of irreversible processes, general principles of statistical thermodynamics, assemblies of noninteracting structureless particles, and statistical theory. 1966 edition.
Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.
Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur
2016-04-06
Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.
Surface dependency in thermodynamics of ideal gases
International Nuclear Information System (INIS)
Sisman, Altug
2004-01-01
The Casimir-like size effect rises in ideal gases confined in a finite domain due to the wave character of atoms. By considering this effect, thermodynamic properties of an ideal gas confined in spherical and cylindrical geometries are derived and compared with those in rectangular geometry. It is seen that an ideal gas exhibits an unavoidable quantum surface free energy and surface over volume ratio becomes a control variable on thermodynamic state functions in microscale. Thermodynamics turns into non-extensive thermodynamics and geometry difference becomes a driving force since the surface over volume ratio depends on the geometry
Thermodynamic assessment of the Pd−Rh−Ru system using calphad and first-principles methods
Energy Technology Data Exchange (ETDEWEB)
Gossé, S., E-mail: stephane.gosse@cea.fr [DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Dupin, N. [Calcul Thermodynamique, Rue de l' avenir, 63670, Orcet (France); Guéneau, C. [DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Crivello, J.-C.; Joubert, J.-M. [Chimie Métallurgique des Terres Rares, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, F-94320, Thiais (France)
2016-06-15
Palladium, rhodium and ruthenium are abundant fission products that form in oxide fuels in nuclear reactors. Under operating conditions, these Platinum-Group Metal (PGM) fission products accumulate in high concentration at the rim of the oxide fuel and mainly precipitate into metallic solid solutions. Their thermochemistry is of significant interest to predict the high temperature chemical interactions between the fuel and the cladding or the possible precipitation of PGM phases in high level nuclear waste glasses. To predict the thermodynamic properties of these PGM fission products, a thermodynamic modeling is being developed on the ternary Pd−Rh−Ru system using the Calphad method. Because experimental thermodynamic data are scarce, Special Quasirandom Structures coupled with Density Functional Theory methods were used to calculate mixing enthalpy data in the solid solutions. The resulting thermodynamic description based on only binary interaction parameters is in good agreement with the few data on the ternary system. - Highlights: • The mixing enthalpy of solid solutions in the Pd−Rh−Ru system was calculated using the DFT and SQS methods. • A thermodynamic assessment of the Pd−Rh−Ru ternary system was performed using the Calphad method. • The extrapolation based on only binary interaction parameters leads to a good agreement with the data on the ternary.
Thermodynamic Origin of the Vitreous Transition
Directory of Open Access Journals (Sweden)
Robert Tournier F.
2011-05-01
Full Text Available The vitreous transition is characterized by a freezing of atomic degrees of freedom at a temperature Tg depending on the heating and cooling rates. A kinetic origin is generally attributed to this phenomenon instead of a thermodynamic one which we develop here. Completed homogeneous nucleation laws reflecting the energy saving due to Fermi energy equalization of nascent crystals and their melt are used. They are applied to bulk metallic glasses and extended to inorganic glasses and polymers. A transition T*g among various Tg corresponds to a crystal homogeneous nucleation temperature, leading to a preliminary formation of a cluster distribution during the relaxation time preceding the long steady-state nucleation time of crystals in small samples. The thermally-activated energy barrier ΔG*2ls/kBT at T*g for homogeneous nucleation is nearly the same in all glass-forming melts and determined by similar values of viscosity and a thermally-activated diffusion barrier from melt to cluster. The glass transition T*g is a material constant and a linear function of the energy saving associated with charge transfers from nascent clusters to the melt. The vitreous transition and the melting temperatures alone are used to predict the free-volume disappearance temperature equal to the Vogel-Fulcher-Tammann temperature of fragile glass-forming melts, in agreement with many viscosity measurements. The reversible thermodynamic vitreous transition is determined by the disappearance temperature T*g of the fully-relaxed enthalpy Hr that is not time dependent; the observed specific heat jump at T*g is equal to the proportionality coefficient of Hr with (T*g − Ta for T ≤ T*g as expected from the enthalpy excess stored by a quenched undercooled melt at the annealing temperature Ta and relaxed towards an equilibrium vitreous state. However, the heat flux measurements found in literature over the last 50 years only gave an out-of-equilibrium Tg since the enthalpy
Toward understanding the thermodynamics of TALSPEAK process. Medium effects on actinide complexation
Energy Technology Data Exchange (ETDEWEB)
Peter R Zalupski; Leigh R Martin; Ken Nash; Yoshinobu Nakamura; Masahiko Yamamoto
2009-07-01
The ingenious combination of lactate and diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) as an aqueous actinide-complexing medium forms the basis of the successful separation of americium and curium from lanthanides known as the TALSPEAK process. While numerous reports in the prior literature have focused on the optimization of this solvent extraction system, considerably less attention has been devoted to the understanding of the basic thermodynamic features of the complex fluids responsible for the separation. The available thermochemical information of both lactate and DTPA protonation and metal complexation reactions are representative of the behavior of these ions under idealized conditions. Our previous studies of medium effects on lactate protonation suggest that significant departures from the speciation predicted based on reported thermodynamic values should be expected in the TALSPEAK aqueous environment. Thermodynamic parameters describing the separation chemistry of this process thus require further examination at conditions significantly removed from conventional ideal systems commonly employed in fundamental solution chemistry. Such thermodynamic characterization is the key to predictive modelling of TALSPEAK. Improved understanding will, in principle, allow process technologists to more efficiently respond to off-normal conditions during large scale process operation. In this report, the results of calorimetric and potentiometric investigations of the effects of aqueous electrolytes on the thermodynamic parameters for lactate protonation and lactate complexation of americium and neodymium will be presented. Studies on the lactate protonation equilibrium will clearly illustrate distinct thermodynamic variations between strong electrolyte aqueous systems and buffered lactate environment.
Thermodynamics of the hot BIon
Energy Technology Data Exchange (ETDEWEB)
Grignani, Gianluca, E-mail: grignani@pg.infn.it [Dipartimento di Fisica, Universita di Perugia, I.N.F.N. Sezione di Perugia, Via Pascoli, I-06123 Perugia (Italy); Harmark, Troels, E-mail: harmark@nordita.org [NORDITA, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Marini, Andrea, E-mail: andrea.marini@fisica.unipg.it [Dipartimento di Fisica, Universita di Perugia, I.N.F.N. Sezione di Perugia, Via Pascoli, I-06123 Perugia (Italy); Obers, Niels A., E-mail: obers@nbi.dk [Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen O (Denmark); Orselli, Marta, E-mail: orselli@nbi.dk [Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen O (Denmark)
2011-10-21
We investigate the thermodynamics of the recently obtained finite temperature BIon solution of [G. Grignani, T. Harmark, A. Marini, N.A. Obers, M. Orselli, Heating up the BIon, (arXiv:1012.1494 [hep-th])], focusing on two aspects. The first concerns comparison of the free energy of the three available phases for the finite-temperature brane-antibrane-wormhole configuration. Based on this we propose a heuristic picture for the dynamics of the phases that involves a critical temperature below which a stable phase exists. This stable phase is the finite temperature analogue of the thin throat branch of the extremal brane-antibrane-wormhole configuration. The second aspect that we consider is the possibility of constructing a finite temperature generalization of the infinite spike configuration of the extremal BIon. To this end we identify a correspondence point at the end of the throat where the thermodynamics of the D3-F1 blackfold configuration can be matched to that of k non-extremal black fundamental strings.
Departures from Local Thermodynamic Equilibrium
International Nuclear Information System (INIS)
McWhirter, R.W.P.
1968-01-01
This paper starts with a definition of local thermodynamic equilibrium and points out the relationship between local and complete thermodynamic equilibrium. It is shown that electron collisions are essential for the establishment of LTE and a relationship is derived for the minimum electron density at which collision processes are just sufficiently frequent to cause the plasma to be in LTE in face of the competing radiative processes. This relationship is derived for an optically thin plasma. The effect of radiation trapping is considered and some figures given by which the effect of this can be taken into account in assessing the validity of LTE in such cases. Account is now taken of the finite time required for the atomic collision processes to establish the plasma in LTE. A numerical example is worked out which shows that these considerations can be very important for plasmas of rapidly varying temperature. Mention is also made of departures from LTE caused by inhomogeneities in the plasma and by the positive ions having a different kinetic temperature from the electrons. Finally, it is remarked that even if the criteria for LTE to be valid are not met then the Saha and Boltzmann equations may still be applied to describe the population densities of the upper levels of individual species of atoms or ions. (author)
Thermodynamic features of dioxins’ adsorption
Energy Technology Data Exchange (ETDEWEB)
Prisciandaro, Marina [Department of Industrial and Information Engineering and of Economics, University of L’Aquila, Viale Giovanni Gronchi 18, L’Aquila 67100 (Italy); Piemonte, Vincenzo, E-mail: v.piemonte@unicampus.it [Faculty of Engineering, University Campus Biomedico of Rome, Via Alvaro del Portillo 21, Rome 00128 (Italy); Mazziotti di Celso, Giuseppe [Faculty of Bioscience, University of Teramo, Via R. Balzarini, 1, 64100 Teramo (Italy); Ronconi, Silvia [Arta Abruzzo, Department of L’Aquila, Bazzano (AQ), 67100 L’Aquila (Italy); Capocelli, Mauro [Faculty of Engineering, University Campus Biomedico of Rome, Via Alvaro del Portillo 21, Rome 00128 (Italy)
2017-02-15
Highlights: • We develop the P-T diagram for six PCDD. • We derive theoretical adsorption isotherms according to the Langmuir’s model. • We calculate K and w{sub max} values for several temperatures. • We estimate the adsorption heat with a good agreement with literature data. - Abstract: In this paper, the six more poisonous species among all congeners of dioxin group are taken into account, and the P-T diagram for each of them is developed. Starting from the knowledge of vapour tensions and thermodynamic parameters, the theoretical adsorption isotherms are calculated according to the Langmuir’s model. In particular, the Langmuir isotherm parameters (K and w{sub max}) have been validated through the estimation of the adsorption heat (ΔH{sub ads}), which varies in the range 20–24 kJ/mol, in agreement with literature values. This result will allow to put the thermodynamical basis for a rational design of different process units devoted to dioxins removal.
Thermodynamical description of excited nuclei
International Nuclear Information System (INIS)
Bonche, P.
1989-01-01
In heavy ion collisions it has been possible to obtain composite systems at rather high excitation energies corresponding to temperatures of several MeV. The theoretical studies of these systems are based on concepts borrowed from thermodynamics or statistical physics, such as the temperature. In these lectures, we present the concepts of statistical physics which are involved in the physics of heavy ion as they are produced nowadays in the laboratory and also during the final stage of a supernova collapse. We do not attempt to describe the reaction mechanisms which yield such nuclear systems nor their decay by evaporation or fragmentation. We shall only study their static properties. The content of these lectures is organized in four main sections. The first one gives the basic features of statistical physics and thermodynamics necessary to understand quantum mechanics at finite temperature. In the second one, we present a study of the liquid-gas phase transition in nuclear physics. A phenomenological approach of the stability of hot nuclei follows. The microscopic point of view is proposed in the third part. Starting from the basic concepts derived in the first part, it provides a description of excited or hot nuclei which confirms the qualitative results of the second part. Furthermore it gives a full description of most properties of these nuclei as a function of temperature. Finally in the last part, a microscopic derivation of the equation of state of nuclear matter is proposed to study the collapse of a supernova core
Statistical black-hole thermodynamics
International Nuclear Information System (INIS)
Bekenstein, J.D.
1975-01-01
Traditional methods from statistical thermodynamics, with appropriate modifications, are used to study several problems in black-hole thermodynamics. Jaynes's maximum-uncertainty method for computing probabilities is used to show that the earlier-formulated generalized second law is respected in statistically averaged form in the process of spontaneous radiation by a Kerr black hole discovered by Hawking, and also in the case of a Schwarzschild hole immersed in a bath of black-body radiation, however cold. The generalized second law is used to motivate a maximum-entropy principle for determining the equilibrium probability distribution for a system containing a black hole. As an application we derive the distribution for the radiation in equilibrium with a Kerr hole (it is found to agree with what would be expected from Hawking's results) and the form of the associated distribution among Kerr black-hole solution states of definite mass. The same results are shown to follow from a statistical interpretation of the concept of black-hole entropy as the natural logarithm of the number of possible interior configurations that are compatible with the given exterior black-hole state. We also formulate a Jaynes-type maximum-uncertainty principle for black holes, and apply it to obtain the probability distribution among Kerr solution states for an isolated radiating Kerr hole
Thermodynamics of quasideterministic digital computers
Chu, Dominique
2018-02-01
A central result of stochastic thermodynamics is that irreversible state transitions of Markovian systems entail a cost in terms of an infinite entropy production. A corollary of this is that strictly deterministic computation is not possible. Using a thermodynamically consistent model, we show that quasideterministic computation can be achieved at finite, and indeed modest cost with accuracies that are indistinguishable from deterministic behavior for all practical purposes. Concretely, we consider the entropy production of stochastic (Markovian) systems that behave like and and a not gates. Combinations of these gates can implement any logical function. We require that these gates return the correct result with a probability that is very close to 1, and additionally, that they do so within finite time. The central component of the model is a machine that can read and write binary tapes. We find that the error probability of the computation of these gates falls with the power of the system size, whereas the cost only increases linearly with the system size.
Bioengineering thermodynamics of biological cells.
Lucia, Umberto
2015-12-01
Cells are open complex thermodynamic systems. They can be also regarded as complex engines that execute a series of chemical reactions. Energy transformations, thermo-electro-chemical processes and transports phenomena can occur across the cells membranes. Moreover, cells can also actively modify their behaviours in relation to changes in their environment. Different thermo-electro-biochemical behaviours occur between health and disease states. But, all the living systems waste heat, which is no more than the result of their internal irreversibility. This heat is dissipated into the environment. But, this wasted heat represent also a sort of information, which outflows from the cell toward its environment, completely accessible to any observer. The analysis of irreversibility related to this wasted heat can represent a new approach to study the behaviour of the cells themselves and to control their behaviours. So, this approach allows us to consider the living systems as black boxes and analyze only the inflows and outflows and their changes in relation to the modification of the environment. Therefore, information on the systems can be obtained by analyzing the changes in the cell heat wasted in relation to external perturbations. The bioengineering thermodynamics bases are summarized and used to analyse possible controls of the calls behaviours based on the control of the ions fluxes across the cells membranes.
Ab Initio Thermodynamic Modeling of Electrified Metal-Oxide Interfaces
DEFF Research Database (Denmark)
Zeng, Zhenhua; Hansen, Martin Hangaard; Greeley, Jeff
2015-01-01
Solid oxide fuel cells are attractive devices in a sustainable energy context because of their fuel flexibility and potentially highly efficient conversion of chemical to electrical energy. The performance of the device is to a large extent determined by the atomic structure of the electrode...... the structural information can be used as a starting point for accurate calculations of the kinetics of fuel oxidation reactions, in particular the hydrogen oxidation reaction. More generally, we anticipate that the scheme will be a valuable theoretical tool to describe solid-solid interfaces. [Figure]...
Some thermodynamical properties of normal (or ferromagnetic) metal / superconductor heterojunctions
International Nuclear Information System (INIS)
Cayssol, Jerome
2003-01-01
We have investigated the orbital magnetism of a ballistic hybrid normal-superconductor ring. We have obtained the flux dependent excitation spectrum for arbitrary normal and superconductor lengths. We have introduced a new method to evaluate the current harmonics. We have described the cross-over from the, 'h/eh/e-periodic persistent current to the', h/2e-periodic Josephson current. In a second study, we have calculated the effect of intrinsic ordinary reflexion on the Josephson current in a ballistic superconductor-ferromagnetic-superconductor. The spectrum is strongly modified by gap openings but the current and the 0-π transition are only slightly modified up to very high spin polarisation. In a third study, we analyse the contain of some solutions of Usadel equation. The standard perturbation theory dressed by cooperons enables us to interpret those solutions in terms of diffusive paths connecting Andreev reflexion events. (author) [fr
Modeling the thermodynamic response of metallic first walls
International Nuclear Information System (INIS)
Merrill, B.J.; Jones, J.L.
1982-01-01
The first wall material of a fusion device must have a high resistance to the erosion resulting from plasma disruptions. This erosion is a consequence of melting and surface vaporization produced by the energy deposition of the disrupting plasma. Predicting the extent of erosion has been the subject of various investigations, and as a result, the thermal modeling has evolved to include material melting, kinetics of surface evaporation, vaporized material transport, and plasma-vaporized material interactions. The significance of plasma-vapor interaction has yet to be fully resolved. The model presented by Hassanein suggests that the vapor attenuates the plasma ions, thereby shielding the wall surface and reducing the extent of vaporization. The erosion model developed by EG and G Idaho, Inc., has been extended to include a detailed model for plasma-vaporized material interaction. This paper presents the model, as well as predictions for plasma, vaporized material and first wall conditions during a disruption
thermodynamic and kinetic evaluations of some heavy metal ions on ...
African Journals Online (AJOL)
CHIDEXCOM
Department of Pure and Industrial Chemistry,Faculty of Chemical Sciences, University of Port Harcourt,. P.M.B. 5323, Choba, Port Harcourt. Rivers State. Nigeria. Email: zarasexcom@yahoo.com. KEYWORDS: Naphthalene, equilibrium, kinetics, sorption, acid – modified bentonite. ABSTRACT: Kinetic evaluation of ...
Thermodynamics of Pb(ii) and Zn(ii) binding to MT-3, a neurologically important metallothionein.
Carpenter, M C; Shami Shah, A; DeSilva, S; Gleaton, A; Su, A; Goundie, B; Croteau, M L; Stevenson, M J; Wilcox, D E; Austin, R N
2016-06-01
Isothermal titration calorimetry (ITC) was used to quantify the thermodynamics of Pb(2+) and Zn(2+) binding to metallothionein-3 (MT-3). Pb(2+) binds to zinc-replete Zn7MT-3 displacing each zinc ion with a similar change in free energy (ΔG) and enthalpy (ΔH). EDTA chelation measurements of Zn7MT-3 and Pb7MT-3 reveal that both metal ions are extracted in a tri-phasic process, indicating that they bind to the protein in three populations with different binding thermodynamics. Metal binding is entropically favoured, with an enthalpic penalty that reflects the enthalpic cost of cysteine deprotonation accompanying thiolate ligation of the metal ions. These data indicate that Pb(2+) binding to both apo MT-3 and Zn7MT-3 is thermodynamically favourable, and implicate MT-3 in neuronal lead biochemistry.
Wolery, Thomas J.; Jové Colón, Carlos F.
2017-09-01
Chemical thermodynamic data remain a keystone for geochemical modeling and reactive transport simulation as applied to an increasing number of applications in the earth sciences, as well as applications in other areas including metallurgy, material science, and industrial process design. The last century has seen the development of a large body of thermodynamic data and a number of major compilations. The past several decades have seen the development of thermodynamic databases in digital form designed to support computer calculations. However, problems with thermodynamic data appear to be persistent. One problem pertains to the use of inconsistent primary key reference data. Such data pertain to elemental reference forms and key, stoichiometrically simple chemical species including metal oxides, CO2, water, and aqueous species such as Na+ and Cl-. A consistent set of primary key data (standard Gibbs energies, standard enthalpies, and standard entropies for key chemical species) for 298.15 K and 1 bar pressure is essential. Thermochemical convention is to define the standard Gibbs energy and the standard enthalpy of an individual chemical species in terms of formation from reference forms of the constituent chemical elements. We propose a formal concept of ;links; to the elemental reference forms. This concept involves a documented understanding of all reactions and calculations leading to values for a formation property (standard Gibbs energy or enthalpy). A valid link consists of two parts: (a) the path of reactions and corrections and (b) the associated data, which are key data. Such a link differs from a bare ;key; or ;reference; datum in that it requires additional information. Some or all of its associated data may also be key data. In evaluating a reported thermodynamic datum, one should identify the links to the chemical elements, a process which can be time-consuming and which may lead to a dead end (an incomplete link). The use of two or more inconsistent
Riemannian geometry in thermodynamic fluctuation theory
International Nuclear Information System (INIS)
Ruppeiner, G.
1995-01-01
Although thermodynamic fluctuation theory originated from statistical mechanics, it may be put on a completely thermodynamic basis, in no essential need of any microscopic foundation. This review views the theory from the macroscopic perspective, emphasizing, in particular, notions of covariance and consistency, expressed naturally using the language of Riemannian geometry. Coupled with these concepts is an extension of the basic structure of thermodynamic fluctuation theory beyond the classical one of a subsystem in contact with an infinite uniform reservoir. Used here is a hierarchy of concentric subsystems, each of which samples only the thermodynamic state of the subsystem immediately larger than it. The result is a covariant thermodynamic fluctuation theory which is plausible beyond the standard second-order entropy expansion. It includes the conservation laws and is mathematically consistent when applied to fluctuations inside subsystems. Tests on known models show improvements. Perhaps most significantly, the covariant theory offers a qualitatively new tool for the study of fluctuation phenomena: the Riemannian thermodynamic curvature. The thermodynamic curvature gives, for any given thermodynamic state, a lower bound for the length scale where the classical thermodynamic fluctuation theory based on a uniform environment could conceivably hold. Straightforward computation near the critical point reveals that the curvature equals the correlation volume, a physically appealing finding. The combination of the interpretation of curvature with a well-known proportionality between the free energy and the inverse of the correlation volume yields a purely thermodynamic theory of the critical point. The scaled equation of state follows from the values of the critical exponents. The thermodynamic Riemannian metric may be put into the broader context of information theory
Thermodynamic Optimality criteria for biological systems in linear irreversible thermodynamics
International Nuclear Information System (INIS)
Chimal, J C; Sánchez, N; Ramírez, PR
2017-01-01
In this paper the methodology of the so-called Linear Irreversible Thermodynamics (LIT) is applied; although traditionally used locally to study general systems in non-equilibrium states in which it is consider both internal and external contributions to the entropy increments in order to analyze the efficiency of two coupled processes with generalized fluxes J 1 , J 2 and their corresponding forces X 1 , X 2 . We extend the former analysis to takes into account two different operating regimes namely: Omega Function and Efficient Power criterion, respectively. Results show analogies in the optimal performance between and we can say that there exist a criteria of optimization which can be used specially for biological systems where a good design of the biological parameters made by nature at maximum efficient power conditions lead to more efficient engines than those at the maximum power conditions or ecological conditions. (paper)
DEFF Research Database (Denmark)
Ahmadi, M.; Behafarid, F.; Holse, Christian
2015-01-01
Colloidal chemistry, in combination with nanoparticle (NP)/support epitaxial interactions is used here to synthesize shape-selected and thermodynamically stable metallic NPs over a broad range of NP sizes. The morphology of three-dimensional palladium and platinum NPs supported on TiO2(110) was i......Colloidal chemistry, in combination with nanoparticle (NP)/support epitaxial interactions is used here to synthesize shape-selected and thermodynamically stable metallic NPs over a broad range of NP sizes. The morphology of three-dimensional palladium and platinum NPs supported on TiO2...... rows and was found to be responsible for the shape control. The ability of synthesizing thermally stable shape-selected metal NPs demonstrated here is expected to be of relevance for applications in the field of catalysis, since the activity and selectivity of NP catalysts has been shown to strongly...
Directory of Open Access Journals (Sweden)
Maxim V. Kharkevich
2014-01-01
Full Text Available Global governance as a concept defines the meaning of contemporary world politics both as a discipline and as reality. Interdependent and globalized world requires governance, and a global government has not been formed yet. The theoretical possibility of global governance without global government is proved and justified. The purpose of this article is to analytically identify possible forms of global governance. Three such forms of global governance are identified: hierarchical, market and network. In a hierarchy the governance is due to the asymmetry of power between the parties. Market control happens via anonymous pricing mechanism. Network, in contrast to the market is characterized by a closer value link between the actors, but unlike the hierarchical relationship actors are free to leave the network. Global governance takes three forms and is being implemented by different actors. To determine the most efficient form of global governance is impossible. Efficiency depends on the match between a form and an object of government. It should be noted that meta governance is likely to remain a monopoly of institutionally strong states in global governance.
DEFF Research Database (Denmark)
Bhowmik, Arghya; Vegge, Tejs; Hansen, Heine Anton
2016-01-01
A detailed understanding of the electrochemical reduction of CO2 into liquid fuels on rutile metal oxide surfaces is developed by using DFT calculations. We consider oxide overlayer structures on RuO2(1 1 0) surfaces as model catalysts to elucidate the trends and limitations in the CO2 reduction...... reaction (CO2RR) based on thermodynamic analysis. We aim to specify the requirements for CO2RR catalysts to establish adsorbate scaling relations and use these to derive activity volcanoes. Computational results show that the OH* binding free energy is a good descriptor of the thermodynamic limitations...
International Nuclear Information System (INIS)
Alliot, C.
2003-01-01
This work comes within studies of nuclear waste disposal. The sorption of radionuclide onto mineral is very important to understand their migration. So this work deals with the influence of ligands like oxalic, acetic and carbonic acids on lanthanides and actinides sorption onto alumina. Two complementary approaches were carried out: thermodynamic (determination of chemical reactions and associated constants). So we obtain a thermodynamic database for the ternary systems metal/ligand/alumina which we use to define the experimental conditions to observe by spectroscopy sorbed species. Then the identification of surface complexes was carried out using two spectroscopies, XPS and TRLIFS. (author)
Thermodynamics and statistical mechanics of some hydrides of the lanthanides and actinides
International Nuclear Information System (INIS)
Mintz, M.H.
1976-06-01
This work deals mainly with the thermodynamic and physical properties of the hydrides of the lanthanides and actinides. In addition, statistical models have been developed and applied to metal-hydrogen systems. A kinetic study of the uranium-hydrogen system was performed. The thermodynamic properties of the hydrides of neptunium, thorium, praseodymium, neodymium, samarium and europium were determined. In addition the samarium-europium-hydrogen ternary system was investigated. Moessbauer effect measurements of cubic neptunium hydrides were interpreted according to a model presented. A comparison. (author)
An Experimental Determination of Thermodynamic Values
Antony, Erling; Muccianti, Christine; Vogel, Tracy
2012-01-01
Measurements have been added to an old demonstration of chemical equilibria allowing the determination of thermodynamic constants. The experiment allows the students an opportunity to merge qualitative observations associated with Le Chatelier's principle and thermodynamic calculations using graphical techniques. (Contains 4 figures.)
The thermodynamic solar energy; Le solaire thermodynamique
Energy Technology Data Exchange (ETDEWEB)
Rivoire, B. [Centre National de la Recherche Scientifique (CNRS-IMP), 66 - Perpignan (France)
2002-04-01
The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)
Thermodynamics of gas adsorption on solid adsorbents
International Nuclear Information System (INIS)
Budrugeac, P.
1979-01-01
Starting with several hypotheses about the adsorbtion system and the adsorption phenomenon, a thermodynamic treatment of gas adsorption on solid adsorbants is presented. The relationships for determination from isotherms and calorimetric data of thermodynamic functions are derived. The problem of the phase changes in adsorbed layer is discussed. (author)
Understanding the Thermodynamics of Biological Order
Peterson, Jacob
2012-01-01
By growth in size and complexity (i.e., changing from more probable to less probable states), plants and animals appear to defy the second law of thermodynamics. The usual explanation describes the input of nutrient and sunlight energy into open thermodynamic systems. However, energy input alone does not address the ability to organize and create…
A Vector Representation for Thermodynamic Relationships
Pogliani, Lionello
2006-01-01
The existing vector formalism method for thermodynamic relationship maintains tractability and uses accessible mathematics, which can be seen as a diverting and entertaining step into the mathematical formalism of thermodynamics and as an elementary application of matrix algebra. The method is based on ideas and operations apt to improve the…
Thermodynamic and transport properties of fluids
Fessler, T. E.
1980-01-01
Computer program subroutine FLUID calculates thermodynamic and transport properties of pure fluids in liquid, gas, or two-phase (liquid/gas) conditions. Program determines thermodynamic state from assigned values for temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy.
Investigations on nucleation thermodynamical parameters of ...
Indian Academy of Sciences (India)
Investigations on nucleation thermodynamical parameters are very essential for the successful growth of good quality single crystals from high temperature solution. A theoretical estimation of the nucleation thermodynamical parameters like interfacial energy between the solid Nd123 and its flux BaO–CuO, metastable ...
Statistical thermodynamics of supercapacitors and blue engines
van Roij, R.H.H.G.
2013-01-01
We study the thermodynamics of electrode-electrolyte systems, for instance supercapacitors filled with an ionic liquid or blue-energy devices filled with river- or sea water. By a suitable mapping of thermodynamic variables, we identify a strong analogy with classical heat engines. We introduce
Warming to ecocide a thermodynamic diagnosis
Sangster, Alan J
2011-01-01
Suggests a route to avoiding runaway climate change by reinstating the greenhouse thermostat to its full operational capacity Addresses mankind's contribution to climate change from a thermodynamic perspective Describes and illustrates the power of thermodynamics to furnish insights into the thermal behaviour of complex physical systems
Quantum quenches in the thermodynamic limit.
Rigol, M
2014-05-02
We introduce a linked-cluster based computational approach that allows one to study quantum quenches in lattice systems in the thermodynamic limit. This approach is used to study quenches in one-dimensional lattices. We provide evidence that, in the thermodynamic limit, thermalization occurs in the nonintegrable regime but fails at integrability. A phase transitionlike behavior separates the two regimes.
Friction Force: From Mechanics to Thermodynamics
Ferrari, Christian; Gruber, Christian
2010-01-01
We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of…
An open-source thermodynamic software library
DEFF Research Database (Denmark)
Ritschel, Tobias Kasper Skovborg; Gaspar, Jozsef; Capolei, Andrea
This is a technical report which accompanies the article ”An open-source thermodynamic software library” which describes an efficient Matlab and C implementation for evaluation of thermodynamic properties. In this technical report we present the model equations, that are also presented in the paper...
Thermodynamic Property Needs for the Oleochemical Industry
DEFF Research Database (Denmark)
Ana Perederic, Olivia; Kalakul, Sawitree; Sarup, Bent
and/or reliable thermodynamic models for the chemicals involved. Limited availability ofconsistent physical and thermodynamic properties of lipids compounds and their mixtures lead to difficulties with the use of process simulators for process synthesis and design, since all themodels to be used...
Thermodynamic Ground States of Complex Oxide Heterointerfaces
DEFF Research Database (Denmark)
Gunkel, F.; Hoffmann-Eifert, S.; Heinen, R. A.
2017-01-01
The formation mechanism of 2-dimensional electron gases (2DEGs) at heterointerfaces between nominally insulating oxides is addressed with a thermodynamical approach. We provide a comprehensive analysis of the thermodynamic ground states of various 2DEG systems directly probed in high temperature...
Black hole chemistry: thermodynamics with Lambda
International Nuclear Information System (INIS)
Kubizňák, David; Mann, Robert B; Teo, Mae
2017-01-01
We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities; in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality—an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at extending the AdS/CFT dictionary in this setting, discuss the connections with horizon thermodynamics, applications to Lifshitz spacetimes, and outline possible future directions in this field. (topical review)
Teaching Differentials in Thermodynamics Using Spatial Visualization
Wang, Chih-Yueh; Hou, Ching-Han
2012-01-01
The greatest difficulty that is encountered by students in thermodynamics classes is to find relationships between variables and to solve a total differential equation that relates one thermodynamic state variable to two mutually independent state variables. Rules of differentiation, including the total differential and the cyclic rule, are…
Detonation Jet Engine. Part 1--Thermodynamic Cycle
Bulat, Pavel V.; Volkov, Konstantin N.
2016-01-01
We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…
Understanding First Law of Thermodynamics through Activities
Pathare, Shirish; Huli, Saurabhee; Ladage, Savita; Pradhan, H. C.
2018-01-01
The first law of thermodynamics involves several types of energies and many studies have shown that students lack awareness of them. They have difficulties in applying the law to different thermodynamic processes. These observations were confirmed in our pilot studies, carried out with students from undergraduate colleges across the whole of…
Nordic Corporate Governance Revisited
DEFF Research Database (Denmark)
Thomsen, Steen
2016-01-01
This paper reviews the key elements of the Nordic governance model, which include a distinct legal system, high governance ratings and low levels of corruption. Other characteristics include concentrated ownership, foundation ownership, semi two-tier board structures, employee representation...
DEFF Research Database (Denmark)
Campbell, John L.
2015-01-01
There is a vast literature about the relationships between government and business in advanced capitalist societies.......There is a vast literature about the relationships between government and business in advanced capitalist societies....
Transformative environmental governance
Chaffin, Brian C.; Garmestani, Ahjond S.; Gunderson, Lance H.; Harm Benson, Melinda; Angeler, David G.; Arnold, Craig Anthony (Tony); Cosens, Barbara; Kundis Craig, Robin; Ruhl, J.B.; Allen, Craig R.
2016-01-01
Transformative governance is an approach to environmental governance that has the capacity to respond to, manage, and trigger regime shifts in coupled social-ecological systems (SESs) at multiple scales. The goal of transformative governance is to actively shift degraded SESs to alternative, more desirable, or more functional regimes by altering the structures and processes that define the system. Transformative governance is rooted in ecological theories to explain cross-scale dynamics in complex systems, as well as social theories of change, innovation, and technological transformation. Similar to adaptive governance, transformative governance involves a broad set of governance components, but requires additional capacity to foster new social-ecological regimes including increased risk tolerance, significant systemic investment, and restructured economies and power relations. Transformative governance has the potential to actively respond to regime shifts triggered by climate change, and thus future research should focus on identifying system drivers and leading indicators associated with social-ecological thresholds.
The Knowledge Governance Approach
DEFF Research Database (Denmark)
Foss, Nicolai J.
An attempt is made to characterize a `knowledge governance approach' as a distinctive, emerging field that cuts across the fields of knowledge management, organisation studies, strategy and human resource management. Knowledge governance is taken up with how the deployment of administrative...... with diverse capabilities of handling these transactions. Various open research issues that a knowledge governance approach may illuminate are sketched. Although knowledge governance draws clear inspiration from organizational economics and `rational' organization theory, it recognizes that knowledge...
Project governance: selected South African government experiments
Directory of Open Access Journals (Sweden)
G. van der Walt
2008-07-01
Full Text Available Some form of accountability and power structure binds all organisations. Such structures are typically referred to as the “governance” structure of the organisation. In organisations that have relatively mature project applications and methodologies in place, governance mechanisms are established on more permanent bases. With its focus on performance, results and outcomes, project governance establishes decision-making structures, as well as accountability and responsibility mechanisms in public institutions to oversee projects. As government institutions increasingly place emphasis on project applications for policy implementation and service delivery initiatives, mechanisms or structures should be established to facilitate clear interfaces between the permanent organisation and the temporary project organisation. Such mechanisms or structures should enhance the governance of projects, that is, the strategic alignment of projects, the decentralisation of decision- making powers, rapid resource allocation, and the participation of external stakeholders. The purpose of this article is to explore the concept “project governance”, and to highlight examples of project governance as applied in selected government departments in provincial and national spheres. This would enable the establishment of best practice examples and assist to develop benchmarks for effective project applications for service delivery improvement.
An introduction to thermodynamics and statistical mechanics
Saxena, A K
2016-01-01
An Introduction to Thermodynamics and Statistical Mechanics aims to serve as a text book for undergraduate hons.and postgraduate students of physics. The book covers First Law of Thermodynamics, Entropy and Second Law ofThermodynamics, Thermodynamic Relations, The Statistical Basis of Thermodynamics, Microcanonical Ensemble,Classical Statistical and Canonical Distribution, Grand Canonical Ensemble, Quantum Statistical Mechanics, PhaseTransitions, Fluctuations, Irreversible Processes and Transport Phenomena (Diffusion).SALIENT FEATURES:iC* Offers students a conceptual development of the subjectiC* Review questions at the end of chapters.NEW TO THE SECOND EDITIONiC* PVT SurfacesiC* Real Heat EnginesiC* Van der Waals Models (Qualitative Considerations)iC* Cluster ExpansioniC* Brownian Motion (Einstein's Theory)
Nonequilibrium thermodynamics of restricted Boltzmann machines
Salazar, Domingos S. P.
2017-08-01
In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.
Horizon thermodynamics in fourth-order gravity
Directory of Open Access Journals (Sweden)
Meng-Sen Ma
2017-03-01
Full Text Available In the framework of horizon thermodynamics, the field equations of Einstein gravity and some other second-order gravities can be rewritten as the thermodynamic identity: dE=TdS−PdV. However, in order to construct the horizon thermodynamics in higher-order gravity, we have to simplify the field equations firstly. In this paper, we study the fourth-order gravity and convert it to second-order gravity via a so-called “Legendre transformation” at the cost of introducing two other fields besides the metric field. With this simplified theory, we implement the conventional procedure in the construction of the horizon thermodynamics in 3 and 4 dimensional spacetime. We find that the field equations in the fourth-order gravity can also be written as the thermodynamic identity. Moreover, we can use this approach to derive the same black hole mass as that by other methods.
Optima and bounds for irreversible thermodynamic processes
International Nuclear Information System (INIS)
Hoffmann, K.H.
1990-01-01
In this paper bounds and optima for irreversible thermodynamic processes and their application in different fields are discussed. The tools of finite time thermodynamics are presented and especially optimal control theory is introduced. These methods are applied to heat engines, including models of the Diesel engine and a light-driven engine. Further bounds for irreversible processes are introduced, discussing work deficiency and its relation to thermodynamic length. Moreover the problem of dissipation in systems composed of several subsystems is studied. Finally, the methods of finite time thermodynamics are applied to thermodynamic processes described on a more microscopic level. The process used as an example is simulated annealing. It is shown how optimal control theory is applied to find the optimal cooling schedule for this important stochastic optimization method
eQuilibrator—the biochemical thermodynamics calculator
Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron
2012-01-01
The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use. PMID:22064852
Application of Statistical Thermodynamics in Refrigeration
International Nuclear Information System (INIS)
Avsec, J.; Marcic, M.
1999-01-01
The paper presents the mathematical model for computing the thermodynamical properties in the liquid, gas and two-phase domain by means of statistical thermodynamics. The paper features all important components (translation, rotation, internal rotation, vibration, intermolecular potential energy and influence of electron and nuclei excitation). To calculate the thermodynamic properties of real gases, we have developed the cluster theory, which yields better results than the virial equation. In case of real liquids, the Johnson-Zollweg-Gubbins model based on the modified Benedict-Webb-Rubin (BWR) equation was applied. The Lennard-Jones intermolecular potential was used. The analytical results are compared with the thermodynamical data and models obtained from classical thermodynamics, and they show relatively good agreement. (author)
Introduction to the thermodynamics of solids
International Nuclear Information System (INIS)
Ericksen, J.L.
1992-01-01
This book addresses issues of thermodynamics associated with solids from a unique point of view. Professor Ericksen provides a perspective of thermodynamics which is based in material science and solid mechanics, and attempts to apply basic thermodynamics to a wide range of phenomena. The book is not written as a text-book, as it does not contain example problems or exercises, is directed primarily at researchers in solids. The author states that much of the book is controversial, and that many of his treatments of thermodynamics are not traditional. The author's assessment is accurate on both counts. However, there are several reasons to believe that many of the issues raised in the book are not so much controversial, but rather simply not well described, either by the author or by thermodynamicists, in general. The primary references for much of the thermodynamics in the book are historic in nature, and certainly worthy of consideration, but only a few current references are provided
Transformative environmental governance
Transformative governance is an approach to environmental governance that has the capacity to respond to, manage, and trigger regime shifts in coupled social-ecological systems (SESs) at multiple scales. The goal of transformative governance is to actively shift degraded SESs to ...
Government failure : four types
Dolfsma, W.A.
Economists tend to see the market as a default option for social order and a role for government only when markets fail. Developing a convincing analysis of the role of government in economic processes, however, needs to start by considering government failure in its own terms. Drawing on insights
Gupta, J.; Falkner, R.
2013-01-01
Although (fresh) water challenges are primarily local in nature, globalization has led to feedback effects that make many water challenges global in nature. This chapter examines global water governance. It discusses four phases of water governance, argues that water governance is dispersed and
Advanced working fluids: Thermodynamic properties
Lee, Lloyd L.; Gering, Kevin L.
1990-10-01
Electrolytes are used as working fluids in gas fired heat pump chiller engine cycles. To find out which molecular parameters of the electrolytes impact on cycle performance, a molecular theory is developed for calculating solution properties, enthalpies, vapor-liquid equilibria, and engine cycle performance. Aqueous and ammoniac single and mixed salt solutions in single and multisolvent systems are investigated. An accurate correlation is developed to evaluate properties for concentrated electrolyte solutions. Sensitivity analysis is used to determine the impact of molecular parameters on the thermodynamic properties and cycle performance. The preferred electrolytes are of 1-1 valence type, small ion size, high molecular weight, and in strongly colligative cosolvent. The operating windows are determined for a number of absorption fluids of industrial importance.
Entropy: From Thermodynamics to Hydrology
Directory of Open Access Journals (Sweden)
Demetris Koutsoyiannis
2014-02-01
Full Text Available Some known results from statistical thermophysics as well as from hydrology are revisited from a different perspective trying: (a to unify the notion of entropy in thermodynamic and statistical/stochastic approaches of complex hydrological systems and (b to show the power of entropy and the principle of maximum entropy in inference, both deductive and inductive. The capability for deductive reasoning is illustrated by deriving the law of phase change transition of water (Clausius-Clapeyron from scratch by maximizing entropy in a formal probabilistic frame. However, such deductive reasoning cannot work in more complex hydrological systems with diverse elements, yet the entropy maximization framework can help in inductive inference, necessarily based on data. Several examples of this type are provided in an attempt to link statistical thermophysics with hydrology with a unifying view of entropy.
Thermodynamic modeling of complex systems
DEFF Research Database (Denmark)
Liang, Xiaodong
. Contrary to earlier theories, the oil is not only present on the surface, but also in great volumes both in the water column and on the seafloor, which indicates that we do not know enough about how oil behaves in water and interacts with it. Sonar detection is one of the most important and necessary...... after an oil spill. Engineering thermodynamics could be applied in the state-of-the-art sonar products through advanced artificial technology, if the speed of sound, solubility and density of oil-seawater systems could be satisfactorily modelled. The addition of methanol or glycols into unprocessed well...... streams during subsea pipelines is necessary to inhibit gas hydrate formation, and the offshore reservoirs often mean complicated temperature and pressure conditions. Accurate description of the phase behavior and thermalphysical properties of complex systems containing petroleum fluids and polar...
Thermodynamics and mechanisms of sintering
International Nuclear Information System (INIS)
Pask, J.A.
1978-10-01
A phenomenological overview and exploration of the thermodynamic and geometric factors play a role in the process of densification of model compact systems consisting of crystalline spheres of uniform size in regular and irregular packing that form grain boundaries at every contact point. A further assumption is the presence of isotropic surface and grain boundary energies. Although such systems are unrealistic in comparison with normal powder compacts, their potential sintering behavior can be analyzed and provided with a limiting set of behavior conditions which can be looked upon as one boundary condition. This approach is logically realistic since it is easier to understand and provide a basis for understanding the more complex real powder systems
Thermodynamics of the near field
International Nuclear Information System (INIS)
Apps, J.A.
1985-01-01
The near field is normally taken to mean the part of the geologic setting of a repository that is affected by mechanical or thermal perturbations resulting from repository excavations and emplacement of radioactive waste. The near-field host rocks, the waste package, and the intervening backfill constitute a series of engineered and natural barriers that should be designed to initially prevent and subsequently control radionuclide release. Nuclear Regulatory Commission regulations 10 CFR part 60 specify that the waste package must not allow any release of radionuclides for at least 300 years, and preferably 1000 years. Thereafter, the release rate of any radionuclide is not to exceed on part in 100,000 per year of the inventory that is calculated to be present 1000 years after closure. In this paper, the author briefly outlines recent developments and identifies important fundamental research in thermodynamics and related areas that is needed to resolve some of the current uncertainties
Thermodynamic condition for ''Gamma'' flotation
International Nuclear Information System (INIS)
Kaoma, J.; Yarar, B.
1989-01-01
Using the definition of the critical surface tension of wetting solids (Γc) and Gibb's adsorption isotherm, coupled with Young-Dupre's equation, the equilibrium thermodynamic condition for 'GAMMA' flotation has been derived. It is defined by the relation, Cos Oe=Γc/Γlg. At equilibrium for 'Gamma' flotation to occur, the liquid/gas interfacial tension (9γlg) should be larger than the critical surface tension of wetting of the solid surface, meaning that the equilibrium contact angle (Oe) should be greater than Zero, or cos Oe < 1, a Pre- requisite for the solid/gas bubble attachment. This definition holds for solid surfaces in the absence of any specific adsorption at the solid/liquid and solid/gas inter faces. Contact angle and flotation data are presented to sustain this definition. (author)., 15 refs., 9 figs
Thermodynamic properties of lithium polyvanadatomolybdate
International Nuclear Information System (INIS)
Volkov, V.L.; Zakharova, G.S.
1989-01-01
Equilibrium vapor pressures and some thermodynamic water characteristics depending on the composition of lithium depending on the composition of lithium polyvanadatomolybdate are determined. The dependences lg p H 2 O and ΔG H 2 O as f (T, nH 2 O) of Li 2 V 12-x Mo x O 31± ynH 2 O, where 0 ≤ x ≤ 3 are determined in the 295-343 K temperature range. The lg p H 2 O and ΔH H 2 O values of lithium polyvanadomolybdates depend on the content of molybdenym and water in the compound in a complex manner. At x=0.5 the extreme values of lg p H 2 O and ΔH H 2 O are observed, and at x=2 lg p H 2 O increases due to electron and structural phase variations
Nanoparticle shape, thermodynamics and kinetics
International Nuclear Information System (INIS)
Marks, L D; Peng, L
2016-01-01
Nanoparticles can be beautiful, as in stained glass windows, or they can be ugly as in wear and corrosion debris from implants. We estimate that there will be about 70 000 papers in 2015 with nanoparticles as a keyword, but only one in thirteen uses the nanoparticle shape as an additional keyword and research focus, and only one in two hundred has thermodynamics. Methods for synthesizing nanoparticles have exploded over the last decade, but our understanding of how and why they take their forms has not progressed as fast. This topical review attempts to take a critical snapshot of the current understanding, focusing more on methods to predict than a purely synthetic or descriptive approach. We look at models and themes which are largely independent of the exact synthetic method whether it is deposition, gas-phase condensation, solution based or hydrothermal synthesis. Elements are old dating back to the beginning of the 20th century—some of the pioneering models developed then are still relevant today. Others are newer, a merging of older concepts such as kinetic-Wulff constructions with methods to understand minimum energy shapes for particles with twins. Overall we find that while there are still many unknowns, the broad framework of understanding and predicting the structure of nanoparticles via diverse Wulff constructions, either thermodynamic, local minima or kinetic has been exceedingly successful. However, the field is still developing and there remain many unknowns and new avenues for research, a few of these being suggested towards the end of the review. (topical review)
Nanoparticle shape, thermodynamics and kinetics
Marks, L. D.; Peng, L.
2016-02-01
Nanoparticles can be beautiful, as in stained glass windows, or they can be ugly as in wear and corrosion debris from implants. We estimate that there will be about 70 000 papers in 2015 with nanoparticles as a keyword, but only one in thirteen uses the nanoparticle shape as an additional keyword and research focus, and only one in two hundred has thermodynamics. Methods for synthesizing nanoparticles have exploded over the last decade, but our understanding of how and why they take their forms has not progressed as fast. This topical review attempts to take a critical snapshot of the current understanding, focusing more on methods to predict than a purely synthetic or descriptive approach. We look at models and themes which are largely independent of the exact synthetic method whether it is deposition, gas-phase condensation, solution based or hydrothermal synthesis. Elements are old dating back to the beginning of the 20th century—some of the pioneering models developed then are still relevant today. Others are newer, a merging of older concepts such as kinetic-Wulff constructions with methods to understand minimum energy shapes for particles with twins. Overall we find that while there are still many unknowns, the broad framework of understanding and predicting the structure of nanoparticles via diverse Wulff constructions, either thermodynamic, local minima or kinetic has been exceedingly successful. However, the field is still developing and there remain many unknowns and new avenues for research, a few of these being suggested towards the end of the review.
Modeling the thermodynamics of QCD
Energy Technology Data Exchange (ETDEWEB)
Hell, Thomas
2010-07-26
Strongly interacting (QCD) matter is expected to exhibit a multifaceted phase structure: a hadron gas at low temperatures, a quark-gluon plasma at very high temperatures, nuclear matter in the low-temperature and high-density region, color superconductors at asymptotically high densities. Most of the conjectured phases cannot yet be scrutinized by experiments. Much of the present picture - particularly concerning the intermediate temperature and density area of the phase diagram of QCD matter - is based on model calculations. Further insights come from Lattice-QCD computations. The present thesis elaborates a nonlocal covariant extension of the Nambu and Jona-Lasinio (NJL) model with built-in constraints from the running coupling of QCD at high-momentum and instanton physics at low-momentum scales. We present this model for two and three quark flavors (in the latter case paying particular attention to the axial anomaly). At finite temperatures and densities, gluon dynamics is incorporated through a gluonic background field, expressed in terms of the Polyakov loop (P). The thermodynamics of this nonlocal PNJL model accounts for both chiral and deconfinement transitions. We obtain results in mean-field approximation and beyond, including additional pionic and kaonic contributions to the chiral condensate, the pressure and other thermodynamic quantities. Finally, the nonlocal PNJL model is applied to the finite-density region of the QCD phase diagram; for three quark flavors we investigate, in particular, the dependence of the critical point appearing in the models on the axial anomaly. The thesis closes with a derivation of the nonlocal PNJL model from first principles of QCD. (orig.)
Glycosylation and thermodynamic versus kinetic stability of horseradish peroxidase
DEFF Research Database (Denmark)
Tams, J.W.; Welinder, Karen G.
1998-01-01
Glycoprotein stability, glycoprotein unfolding, horseradish peroxidase, thermodynamic stability, kinetik stability......Glycoprotein stability, glycoprotein unfolding, horseradish peroxidase, thermodynamic stability, kinetik stability...
Generic Natural Systems Evaluation - Thermodynamic Database Development and Data Management
International Nuclear Information System (INIS)
Wolery, T.W.; Sutton, M.
2011-01-01
Thermodynamic data are essential for understanding and evaluating geochemical processes, as by speciation-solubility calculations, reaction-path modeling, or reactive transport simulation. These data are required to evaluate both equilibrium states and the kinetic approach to such states (via the affinity term or its equivalent in commonly used rate laws). These types of calculations and the data needed to carry them out are a central feature of geochemistry in many applications, including water-rock interactions in natural systems at low and high temperatures. Such calculations are also made in engineering studies, for example studies of interactions involving man-made materials such as metal alloys and concrete. They are used in a fairly broad spectrum of repository studies where interactions take place among water, rock, and man-made materials (e.g., usage on YMP and WIPP). Waste form degradation, engineered barrier system performance, and near-field and far-field transport typically incorporate some level of thermodynamic modeling, requiring the relevant supporting data. Typical applications of thermodynamic modeling involve calculations of aqueous speciation (which is of great importance in the case of most radionuclides), solubilities of minerals and related solids, solubilities of gases, and stability relations among the various possible phases that might be present in a chemical system at a given temperature and pressure. If a phase can have a variable chemical composition, then a common calculational task is to determine that composition. Thermodynamic modeling also encompasses ion exchange and surface complexation processes. Any and all of these processes may be important in a geochemical process or reactive transport calculation. Such calculations are generally carried out using computer codes. For geochemical modeling calculations, codes such as EQ3/6 and PHREEQC, are commonly used. These codes typically provide 'full service' geochemistry, meaning that
Generic Natural Systems Evaluation - Thermodynamic Database Development and Data Management
Energy Technology Data Exchange (ETDEWEB)
Wolery, T W; Sutton, M
2011-09-19
Thermodynamic data are essential for understanding and evaluating geochemical processes, as by speciation-solubility calculations, reaction-path modeling, or reactive transport simulation. These data are required to evaluate both equilibrium states and the kinetic approach to such states (via the affinity term or its equivalent in commonly used rate laws). These types of calculations and the data needed to carry them out are a central feature of geochemistry in many applications, including water-rock interactions in natural systems at low and high temperatures. Such calculations are also made in engineering studies, for example studies of interactions involving man-made materials such as metal alloys and concrete. They are used in a fairly broad spectrum of repository studies where interactions take place among water, rock, and man-made materials (e.g., usage on YMP and WIPP). Waste form degradation, engineered barrier system performance, and near-field and far-field transport typically incorporate some level of thermodynamic modeling, requiring the relevant supporting data. Typical applications of thermodynamic modeling involve calculations of aqueous speciation (which is of great importance in the case of most radionuclides), solubilities of minerals and related solids, solubilities of gases, and stability relations among the various possible phases that might be present in a chemical system at a given temperature and pressure. If a phase can have a variable chemical composition, then a common calculational task is to determine that composition. Thermodynamic modeling also encompasses ion exchange and surface complexation processes. Any and all of these processes may be important in a geochemical process or reactive transport calculation. Such calculations are generally carried out using computer codes. For geochemical modeling calculations, codes such as EQ3/6 and PHREEQC, are commonly used. These codes typically provide 'full service' geochemistry
Governance and organizational theory
Directory of Open Access Journals (Sweden)
Carlos E. Quintero Castellanos
2017-07-01
Full Text Available The objective of this essay is to propose a way to link the theoretical body that has been weaved around governance and organizational theory. For this, a critical exposition is done about what is the theoretical core of governance, the opportunity areas are identified for the link of this theory with organizational theory. The essay concludes with a proposal for the organizational analysis of administrations in governance. The essay addresses with five sections. The first one is the introduction. In the second one, I present a synthesis of the governance in its current use. In the next one are presented the work lines of the good governance. In the fourth part, I show the organizational and managerial limits in the governance theory. The last part develops the harmonization proposal for the governance and organizational theories.
International Nuclear Information System (INIS)
Noh, Seunghyo; Kwak, Dohyun; Lee, Juseung; Kang, Joonhee; Han, Byungchan
2014-01-01
We utilized first-principles density-functional-theory (DFT) calculations to evaluate the thermodynamic feasibility of a pyroprocessing methodology for reducing the volume of high-level radioactive materials and recycling spent nuclear fuels. The thermodynamic properties of transuranium elements (Pu, Np and Cm) were obtained in electrochemical equilibrium with a LiCl-KCl molten salt as ionic phases and as adsorbates on a W(110) surface. To accomplish the goal, we rigorously calculated the double layer interface structures on an atomic resolution, on the thermodynamically most stable configurations on W(110) surfaces and the chemical activities of the transuranium elements for various coverages of those elements. Our results indicated that the electrodeposition process was very sensitive to the atomic level structures of Cl ions at the double-layer interface. Our studies are easily expandable to general electrochemical applications involving strong redox reactions of transition metals in non-aqueous solutions.
Thermodynamic geometry, condensation and Debye model of two-parameter deformed statistics
Mohammadzadeh, Hosein; Azizian-Kalandaragh, Yashar; Cheraghpour, Narges; Adli, Fereshteh
2017-08-01
We consider the statistical distribution function of a two parameter deformed system, namely qp-deformed bosons and fermions. Using a thermodynamic geometry approach, we derive the thermodynamic curvature of an ideal gas with particles obeying qp-bosons and qp-fermions. We show that the intrinsic statistic interaction of qp-bosons is attractive in all physical ranges, while it is repulsive for qp-fermions. Also, the thermodynamic curvature of qp-boson gas is singular at a specified value of fugacity and therefore, a phase transition such as Bose-Einstein condensation can take place. In the following, we compare the experimental and theoretical results of temperature-dependent specific heat capacity of some metallic materials in the framework of q and qp-deformed algebras.
Reduction of tungstates and molybdates by hydrogen and thermodynamic properties of these salts
International Nuclear Information System (INIS)
Gerasimov, Ya.I.; Rezukhina, T.N.; Simanov, Yu.P.; Vasil'eva, I.A.; Kurshakova, R.D.
1988-01-01
Study of thermodynamic properties of a series of tungstates of bivalent metals (Mg, Ca, Sr, Ba, Mn, Co, Fe, Ni, Cu, Zn, Cd and Pb) as well as of some molybdates- of Mg, Ca, Sr, Ba is carried out. The obtained values are compared with magnetic characteristics of compounds and parameters of their crystal lattices. Thermodynamic properties were studied by measuring constants of their reduction with hydrogen in the 500-1350 deg C temperature range. It is concluded that dependence of thermodynamic values on geometric parameters of the lattice is not definitive. Comparison of salt formation atomic entropies with deviations of salt magnetic moments from theoretical ionic moments points to the fact of existence of some accordance between these two series of values. 25 refs.; 10 figs.; 6 tabs
Microcanonical ensemble extensive thermodynamics of Tsallis statistics
International Nuclear Information System (INIS)
Parvan, A.S.
2005-01-01
The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics.The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ = 1/q - 1 in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z bar = 1/(q - 1)N = const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit
Microcanonical ensemble extensive thermodynamics of Tsallis statistics
International Nuclear Information System (INIS)
Parvan, A.S.
2006-01-01
The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics. The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ=1/(q-1) in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z-bar =1/(q-1)N=const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit
Governance or Governing – the Missing Link?
Directory of Open Access Journals (Sweden)
Luminiţa Maria Crăciun
2010-07-01
Full Text Available Governance and governing are two distinct concepts, but they intertwine. “Good governing” exercises good influence on development. “Good governance” supposes first a relationship of power focused on a series of reforms structured at three levels: the political – administrative level, the economic level, and the level of civil society. As this dimension is difficult to measure, the qualitative evaluation of the governing act raised the interest of the World Bank researchers, who elaborated and monitored the dynamics of a set of indicators, which includes six major dimensions of the governing. A retrospective concerning the image of governing in Romania during the period from 1996 to 2005 suggests a modest increase of the score: from -0.138 (1996 to 0.008 (2002; that was partially achieved based on the voice and responsibility index and on the political stability index, not on those that measure more directly the administrative performance or the integrity of the governing act. For a comparative study, we chose seven countries for the purposes of analysis (two new European Union member states: Romania and Bulgaria; two older member countries of the European Union: Slovenia and Latvia; three non-member states: Moldova, Ukraine, and Georgia, which reveal the quality of the governing from a comparative perspective. Corruption control completes the image created by the analyzed indicators. The mere formal accomplishment of commitments made in the pre-accession activity, doubled by recent internal evolutions, bring doubts about the credibility of the anticorruption reforms, as Romania continues to be considered the country with the highest CPI in the European Union. The pessimism of public opinion and the fact that only 34% of the Romanian people consider that the level of corruption will decrease in the following three years constitutes an alarm signal addressed to the governance, in view of the real reformation of the administration system
Misuse of thermodynamic entropy in economics
International Nuclear Information System (INIS)
Kovalev, Andrey V.
2016-01-01
The direct relationship between thermodynamic entropy and economic scarcity is only valid for a thermodynamically isolated economy. References to the second law of thermodynamics in economics within the context of scarcity ignore the fact that the earth is not an isolated system. The earth interacts with external sources and sinks of entropy and the resulting total entropy fluctuates around a constant. Even if the mankind finally proves unable to recycle industrial waste and close the technological cycle, the economic disruption caused by the depletion of natural resources may happen while the total thermodynamic entropy of the ecosystem remains essentially at the present level, because the transfer of chemically refined products may not increase significantly the total entropy, but it may decrease their recyclability. The inutility of industrial waste is not connected with its entropy, which may be exemplified with the case of alumina production. The case also demonstrates that industrially generated entropy is discharged into surroundings without being accumulated in ‘thermodynamically unavailable matter’. Material entropy, as a measure of complexity and economic dispersal of resources, can be a recyclability metric, but it is not a thermodynamic parameter, and its growth is not equivalent to the growth of thermodynamic entropy. - Highlights: • Entropy cannot be used as a measure of economic scarcity. • There is no anthropogenic entropy separate from the entropy produced naturally. • Inutility of industrial waste is not connected with its thermodynamic entropy. • Industrially generated entropy may or may not be accumulated in industrial waste. • Recyclability is more important than thermodynamic entropy of a product.
Thermodynamic assessment of the rhodium-ruthenium-oxygen (Rh-Ru-O) system
Gossé, S.; Bordier, S.; Guéneau, C.; Brackx, E.; Domenger, R.; Rogez, J.
2018-03-01
Ruthenium (Ru) and rhodium (Rh) are abundant platinum-group metals formed during burn-up of nuclear fuels. Under normal operating conditions, Rh and Ru accumulate and predominantly form metallic precipitates with other fission products like Mo, Pd and Tc. In the framework of vitrification of high-level nuclear waste, these fission products are poorly soluble in molten glasses. They precipitate as metallic particles and oxide phases. Moreover, these Ru and Rh rich phases strongly depend on temperature and the oxygen fugacity of the glass melt. In case of severe accidental conditions with air ingress, oxidation of the Ru and Rh is possible. At low temperatures (T 1422 K for rhodium sesquioxide and T > 1815 K for ruthenium dioxide), they may decompose into (Rh)-FCC or (Ru)-HCP metallic phases and radiotoxic volatile gaseous species. A thermodynamic assessment of the Rh-Ru-O system will enable the prediction of: (1) the metallic and oxide phases that form during the vitrification of high-level nuclear wastes and (2) the release of volatile gaseous species during a severe accident. The Calphad method developed herein employs a thermodynamic approach in the investigation of the thermochemistry of rhodium and ruthenium at high temperatures. Current literature on the thermodynamic properties and phase diagram data enables preliminary thermodynamic assessments of the Rh-O and Ru-O systems. Additionally, select compositions in the ternary Rh-Ru-O system underwent experimental tests to complement data found in literature and to establish the phase equilibria in the ternary system.
Experimental investigation and thermodynamic re-assessment of the Al–Mo–Ni system
Energy Technology Data Exchange (ETDEWEB)
Peng, Jian, E-mail: jian.peng@kit.edu [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Franke, Peter [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Manara, Dario; Watkins, Tyson; Konings, Rudy J.M. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Seifert, Hans J. [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
2016-07-25
NiAl-based alloys have been investigated, because they are promising alternative materials for high temperature structural applications. Recent advancements in directional solidification offer the opportunity to manufacture metal-matrix composites of NiAl strengthened by embedded fibers of refractory metals such as Mo. The mechanical properties of these composites can be considerably improved, compared to NiAl, at least in fiber direction. The Al–Mo–Ni system has been thermodynamically assessed by several authors. However, none of them can reproduce a satisfactory description along the section NiAl–Mo. In the present work, liquidus and solidus temperatures of the NiAl–Mo system were measured by a laser heating-fast pyrometry apparatus. The results agree well with literature data. The thermodynamic descriptions of the Al–Ni and Al–Mo systems from the literature were refined and a new thermodynamic dataset of the Al–Mo–Ni system was established. The ordered B2 phase and its disordered A2 (bcc) parent phase were described by a single Gibbs energy function. Very good agreement between the calculated phase diagram and the experimental data is obtained. The description of the section NiAl–Mo is considerably improved and we conclude that this section does not represent a quasi-binary phase diagram. - Highlights: • The liquidus and solidus temperatures of the NiAl–Mo system were measured. • The Gibbs energy of vacancies in the bcc phase was considered in the modeling. • The thermodynamic descriptions of the Al–Ni and Al–Mo systems were refined. • A new thermodynamic database of the Al–Mo–Ni system was established. • The thermodynamic description of the NiAl–Mo system was considerably improved.
Thermodynamic analysis of elastic-plastic deformation
International Nuclear Information System (INIS)
Lubarda, V.
1981-01-01
The complete set of constitutive equations which fully describes the behaviour of material in elastic-plastic deformation is derived on the basis of thermodynamic analysis of the deformation process. The analysis is done after the matrix decomposition of the deformation gradient is introduced into the structure of thermodynamics with internal state variables. The free energy function, is decomposed. Derive the expressions for the stress response, entropy and heat flux, and establish the evolution equation. Finally, we establish the thermodynamic restrictions of the deformation process. (Author) [pt
Canonical operator formulation of nonequilibrium thermodynamics
International Nuclear Information System (INIS)
Mehrafarin, M.
1992-09-01
A novel formulation of nonequilibrium thermodynamics is proposed which emphasises the fundamental role played by the Boltzmann constant k in fluctuations. The equivalence of this and the stochastic formulation is demonstrated. The k → 0 limit of this theory yields the classical deterministic description of nonequilibrium thermodynamics. The new formulation possesses unique features which bear two important results namely the thermodynamic uncertainty principle and the quantisation of entropy production rate. Such a theory becomes indispensable whenever fluctuations play a significant role. (author). 7 refs
Improved thermodynamics of SU(2) gauge theory
Energy Technology Data Exchange (ETDEWEB)
Giudice, Pietro [University of Muenster, Institute for Theoretical Physics, Muenster (Germany); Piemonte, Stefano [University of Regensburg, Institute for Theoretical Physics, Regensburg (Germany)
2017-12-15
In this work we present the results of our investigation of the thermodynamics of SU(2) gauge theory. We employ a Symanzik improved action to reduce strongly the discretisations effects, and we use the scaling relations to take into account the finite volume effects close to the critical temperature. We determine the β-function for this particular theory and we use it in the determination of different thermodynamic observables. Finally we compare our results with previous work where only the standard Wilson action was considered. We confirm the relevance of using the improved action to access easily the correct continuum thermodynamics of the theory. (orig.)
Entropy and energy quantization: Planck thermodynamic calculation
International Nuclear Information System (INIS)
Mota e Albuquerque, Ivone Freire da.
1988-01-01
This dissertation analyses the origins and development of the concept of entropy and its meaning of the second Law of thermodynamics, as well as the thermodynamics derivation of the energy quantization. The probabilistic interpretation of that law and its implication in physics theory are evidenciated. Based on Clausius work (which follows Carnot's work), we analyse and expose in a original way the entropy concept. Research upon Boltzmann's work and his probabilistic interpretation of the second Law of thermodynamics is made. The discuss between the atomistic and the energeticist points of view, which were actual at that time are also commented. (author). 38 refs., 3 figs
Introduction to physics mechanics, hydrodynamics thermodynamics
Frauenfelder, P
2013-01-01
Introduction of Physics: Mechanics , Hydrodynamics, Thermodynamics covers the principles of matter and its motion through space and time, as well as the related concepts of energy and force. This book is composed of eleven chapters, and begins with an introduction to the basic principles of mechanics, hydrodynamics, and thermodynamics. The subsequent chapters deal with the statics of rigid bodies and the dynamics of particles and rigid bodies. These topics are followed by discussions on elasticity, mechanics of fluids, the basic concept of thermodynamic, kinetic theory, and crystal structure o
Wafer-Scale Aluminum Nanoplasmonic Resonators with Optimized Metal Deposition
2016-01-04
plasmonics. Unlike plasmonic devices based on coinage metals , such as gold and silver , which are effectively banned from silicon semiconductor fabrication...necessarily represent the view of the United States Government. Wafer-scale Aluminum Nanoplasmonic Resonators with Optimized Metal Deposition...method of aluminum deposition. Three-layer metal -dielectric- metal nanopillar arrays were fabricated in a complementary metal -oxide semiconductor (CMOS
Thermodynamics of cosmological matter creation.
Prigogine, I; Geheniau, J; Gunzig, E; Nardone, P
1988-10-01
A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the