WorldWideScience

Sample records for thermodynamic observation sheds

  1. Fragile Thermodynamic Order

    International Nuclear Information System (INIS)

    Bernhoeft, N.; Lander, G.H.; Colineau, E.

    2003-01-01

    An asymmetric shift in the position of the magnetic Bragg peak with respect to the fiducial lattice has been observed by resonant X-ray scattering in a diverse series of antiferromagnetic compounds. This apparent violation of Bragg's law is interpreted in terms of a dynamically phased order parameter. We demonstrate the use of this effect as a novel probe of fragile or dynamic thermodynamic order in strongly correlated electronic systems. In particular, fresh light is shed on the paradoxical situation encountered in URu 2 Si 2 where the measured entropy gain on passing through T Neel is incompatible with the ground state moment estimated by neutron diffraction. The intrinsic space-time averaging of the probe used to characterise the thermodynamic macroscopic state may play a crucial and previously neglected role. In turn, this suggests the further use of resonant X-ray scattering in investigations of systems dominated by quantum fluctuations. (author)

  2. Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Wagner, David; Nistelkas, Vasilios; Spieß, Antje C

    2017-01-01

    The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent. Substrate concentrations and substrate thermodynamic activities were varied separately to identify the individual thermodynamic and kinetic effects on the enzyme activity. Microkinetic parameters based on concentration and thermodynamic activity were derived to successfully identify a positive effect of MTBE on the availability of the substrate to the enzyme, but a negative effect on the enzyme performance. In conclusion, thermodynamic activity-based kinetic modeling might be a suitable tool to initially curtail the type of enzyme-solvent interactions and thus, a powerful first step to potentially understand the phenomena that occur in nonconventional media in more detail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:96-103, 2017. © 2016 American Institute of Chemical Engineers.

  3. Deconstructing thermodynamic parameters of a coupled system from site-specific observables.

    Science.gov (United States)

    Chowdhury, Sandipan; Chanda, Baron

    2010-11-02

    Cooperative interactions mediate information transfer between structural domains of a protein molecule and are major determinants of protein function and modulation. The prevalent theories to understand the thermodynamic origins of cooperativity have been developed to reproduce the complex behavior of a global thermodynamic observable such as ligand binding or enzyme activity. However, in most cases the measurement of a single global observable cannot uniquely define all the terms that fully describe the energetics of the system. Here we establish a theoretical groundwork for analyzing protein thermodynamics using site-specific information. Our treatment involves extracting a site-specific parameter (defined as χ value) associated with a structural unit. We demonstrate that, under limiting conditions, the χ value is related to the direct interaction terms associated with the structural unit under observation and its intrinsic activation energy. We also introduce a site-specific interaction energy term (χ(diff)) that is a function of the direct interaction energy of that site with every other site in the system. When combined with site-directed mutagenesis and other molecular level perturbations, analyses of χ values of site-specific observables may provide valuable insights into protein thermodynamics and structure.

  4. Clausius’ Disgregation: A Conceptual Relic that Sheds Light on the Second Law

    Directory of Open Access Journals (Sweden)

    Emilio Marco Pellegrino

    2015-06-01

    Full Text Available The present work analyzes the cognitive process that led Clausius towards the translation of the Second Law of Thermodynamics into mathematical expressions. We show that Clausius’ original formal expression of the Second Law was achieved by making extensive use of the concept of disgregation, a quantity which has subsequently disappeared from the thermodynamic language. Our analysis demonstrates that disgregation stands as a crucial logical step of such process and sheds light on the comprehension of such fundamental relation. The introduction of entropy—which occurred three years after the first formalization of the Second Law—was aimed at making the Second Law exploitable in practical contexts. The reasons for the disappearance of disgregation, as well as of other “pre-modern” quantities, from the thermodynamics language are discussed.

  5. Coxiella burnetii shedding by dairy cows.

    Science.gov (United States)

    Guatteo, Raphaël; Beaudeau, François; Joly, Alain; Seegers, Henri

    2007-01-01

    While shedding routes of Coxiella burnetii are identified, the characteristics of Coxiella shedding are still widely unknown, especially in dairy cattle. However, this information is crucial to assess the natural course of Coxiella burnetii infection within a herd and then to elaborate strategies to limit the risks of transmission between animals and to humans. The present study aimed at (i) describing the characteristics of Coxiella burnetii shedding by dairy cows (in milk, vaginal mucus, faeces) in five infected dairy herds, and at (ii) investigating the possible relationships between shedding patterns and serological responses. A total of 145 cows were included in a follow-up consisting of seven concomitant samplings of milk, vaginal mucus, faeces and blood (Day 0, D7, D14, D21, D28, D63, D90). Detection and quantification of Coxiella burnetii titres were performed in milk, vaginal mucus and faeces samples using real-time PCR assay, while antibodies against Coxiella were detected using an ELISA technique. For a given shedding route, and a given periodicity (weekly or monthly), cows were gathered into different shedding kinetic patterns according to the sequence of PCR responses. Distribution of estimated titres in Coxiella burnetii was described according to shedding kinetic patterns. Coxiella burnetii shedding was found scarcely and sporadically in faeces. Vaginal mucus shedding concerned almost 50% of the cows studied and was found intermittently or sporadically, depending on the periodicity considered. Almost 40% of cows were detected as milk shedders, with two predominant shedding patterns: persistent and sporadic, regardless of the sampling periodicity. Significantly higher estimated titres in Coxiella burnetii were observed in cows with persistent shedding patterns suggesting the existence of heavy shedder cows. These latter cows were mostly, persistently highly-seropositive, suggesting that repeated serological testings could be a reliable tool to screen

  6. Circadian disc shedding in Xenopus retina in vitro

    International Nuclear Information System (INIS)

    Flannery, J.G.; Fisher, S.K.

    1984-01-01

    To further examine the endogenous rhythm of disc shedding and phagocytosis observed in several species, adult Xenopus were entrained to a 12 hr light/12 hr dark cycle and then placed in constant darkness. At various times during a 3-day period of constant darkness, eyes were explanted and placed into culture medium, then processed for light and electron microscopy. A clear rhythmicity of disc shedding was observed, with pronounced peaks at the times light onset occurred in the original entrainment cycle. Modification of the HCO 3 - ion concentration in the medium was found to raise the amplitude of the peak of endogenous disc shedding. Explants maintained in culture medium containing deuterium oxide (a compound known to perturb circadian oscillators) were found to shed with a longer interval between peaks. The addition of the protein synthesis inhibitor, anisomycin, to this preparation suppressed the shedding rhythm. The action of anisomycin was investigated by autoradiographic examination of the pattern of 3 H-leucine uptake and protein synthesis by the explant. The findings suggest the presence of a circadian oscillator for rhythmic disc shedding within the amphibian eye

  7. Vibrational thermodynamics of Fe90Zr7B3 nanocrystalline alloy from nuclear inelastic scattering

    DEFF Research Database (Denmark)

    Stankov, S.; Miglierini, M.; Chumakov, A. I.

    2010-01-01

    Recently we determined the iron-partial density of vibrational states (DOS) of nanocrystalline Fe(90)Zr(7)B(3) (Nanoperm), synthesized by crystallization of an amorphous precursor, for various stages of nanocrystallization separating the DOS of the nanograins from that of the interfaces [S. Stank......, vibrational entropy, and lattice specific heat as the material transforms from amorphous, through nanocrystalline, to fully crystallized state. The reported results shed new light on the previously observed anomalies in the vibrational thermodynamics of nanocrystalline materials....

  8. Bound on viscosity and the generalized second law of thermodynamics

    International Nuclear Information System (INIS)

    Fouxon, Itzhak; Betschart, Gerold; Bekenstein, Jacob D.

    2008-01-01

    We describe a new paradox for ideal fluids. It arises in the accretion of an ideal fluid onto a black hole, where, under suitable boundary conditions, the flow can violate the generalized second law of thermodynamics. The paradox indicates that there is in fact a lower bound to the correlation length of any real fluid, the value of which is determined by the thermodynamic properties of that fluid. We observe that the universal bound on entropy, itself suggested by the generalized second law, puts a lower bound on the correlation length of any fluid in terms of its specific entropy. With the help of a new, efficient estimate for the viscosity of liquids, we argue that this also means that viscosity is bounded from below in a way reminiscent of the conjectured Kovtun-Son-Starinets lower bound on the ratio of viscosity to entropy density. We conclude that much light may be shed on the Kovtun-Son-Starinets bound by suitable arguments based on the generalized second law

  9. Thermodynamic modeling and kinetics simulation of precipitate phases in AISI 316 stainless steels

    International Nuclear Information System (INIS)

    Yang, Y.; Busby, J.T.

    2014-01-01

    This work aims at utilizing modern computational microstructural modeling tools to accelerate the understanding of phase stability in austenitic steels under extended thermal aging. Using the CALPHAD approach, a thermodynamic database OCTANT (ORNL Computational Thermodynamics for Applied Nuclear Technology), including elements of Fe, C, Cr, Ni, Mn, Mo, Si, and Ti, has been developed with a focus on reliable thermodynamic modeling of precipitate phases in AISI 316 austenitic stainless steels. The thermodynamic database was validated by comparing the calculated results with experimental data from commercial 316 austenitic steels. The developed computational thermodynamics was then coupled with precipitation kinetics simulation to understand the temporal evolution of precipitates in austenitic steels under long-term thermal aging (up to 600,000 h) at a temperature regime from 300 to 900 °C. This study discusses the effect of dislocation density and difusion coefficients on the precipitation kinetics at low temperatures, which shed a light on investigating the phase stability and transformation in austenitic steels used in light water reactors

  10. An introduction to equilibrium thermodynamics

    CERN Document Server

    Morrill, Bernard; Hartnett, James P; Hughes, William F

    1973-01-01

    An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a

  11. Cloud characteristics, thermodynamic controls and radiative impacts during the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment

    International Nuclear Information System (INIS)

    Giangrande, Scott E.; Feng, Zhe; Jensen, Michael P.; Comstock, Jennifer M.; Johnson, Karen L.

    2017-01-01

    Routine cloud, precipitation and thermodynamic observations collected by the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Aerial Facility (AAF) during the 2-year US Department of Energy (DOE) ARM Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign are summarized. These observations quantify the diurnal to large-scale thermodynamic regime controls on the clouds and precipitation over the undersampled, climatically important Amazon basin region. The extended ground deployment of cloud-profiling instrumentation enabled a unique look at multiple cloud regimes at high temporal and vertical resolution. This longer-term ground deployment, coupled with two short-term aircraft intensive observing periods, allowed new opportunities to better characterize cloud and thermodynamic observational constraints as well as cloud radiative impacts for modeling efforts within typical Amazon wet and dry seasons.

  12. Experimental investigation on cavitating flow shedding over an axisymmetric blunt body

    Science.gov (United States)

    Hu, Changli; Wang, Guoyu; Huang, Biao

    2015-03-01

    Nowadays, most researchers focus on the cavity shedding mechanisms of unsteady cavitating flows over different objects, such as 2D/3D hydrofoils, venturi-type section, axisymmetric bodies with different headforms, and so on. But few of them pay attention to the differences of cavity shedding modality under different cavitation numbers in unsteady cavitating flows over the same object. In the present study, two kinds of shedding patterns are investigated experimentally. A high speed camera system is used to observe the cavitating flows over an axisymmetric blunt body and the velocity fields are measured by a particle image velocimetry (PIV) technique in a water tunnel for different cavitation conditions. The U-type cavitating vortex shedding is observed in unsteady cavitating flows. When the cavitation number is 0.7, there is a large scale cavity rolling up and shedding, which cause the instability and dramatic fluctuation of the flows, while at cavitation number of 0.6, the detached cavities can be conjunct with the attached part to induce the break-off behavior again at the tail of the attached cavity, as a result, the final shedding is in the form of small scale cavity and keeps a relatively steady flow field. It is also found that the interaction between the re-entrant flow and the attached cavity plays an important role in the unsteady cavity shedding modality. When the attached cavity scale is insufficient to overcome the re-entrant flow, it deserves the large cavity rolling up and shedding just as that at cavitation number of 0.7. Otherwise, the re-entrant flow is defeated by large enough cavity to induce the cavity-combined process and small scale cavity vortexes shedding just as that of the cavitation number of 0.6. This research shows the details of two different cavity shedding modalities which is worthful and meaningful for the further study of unsteady cavitation.

  13. Wake shed by an accelerating carangiform fish

    Science.gov (United States)

    Ting, Shang-Chieh; Yang, Jing-Tang

    2008-11-01

    We reveal an important fact that momentum change observed in the wake of an accelerating carangiform fish does not necessarily elucidate orientations of propulsive forces produced. An accelerating Crucian Carp (Carassius auratus) was found to shed a wake with net forward fluid momentum, which seemed drag-producing. Based on Newton's law, however, an accelerating fish is expected to shed a thrust wake with net rearward fluid momentum, rather than a drag wake. The unusual wake pattern observed is considered to be resulted primarily from the effect of pressure gradient created by accelerating movements of the fish. Ambient fluids tend to be sucked into low pressure zones behind an accelerating fish, resulting in forward orientations of jets recognizable in the wake. Accordingly, as to an accelerating fish, identifying force orientations from the wake requires considering also the effect of pressure gradient.

  14. 77 FR 53884 - Automatic Underfrequency Load Shedding and Load Shedding Plans Reliability Standards; Notice of...

    Science.gov (United States)

    2012-09-04

    ... Underfrequency Load Shedding and Load Shedding Plans Reliability Standards; Notice of Compliance Filing Take notice that on August 9, 2012, North American Electric Reliability Corporation submitted a compliance... Load Shedding Plans Reliability Standards, 139 FERC ] 61,098, (Order No. 763) (2012). Any person...

  15. A review of marine anthropogenic CO2 definitions: introducing a thermodynamic approach based on observations

    International Nuclear Information System (INIS)

    Friis, Karsten

    2006-01-01

    A review of existing methods that define anthropogenic CO 2 as deduced from total inorganic carbon is presented. A refined approach to define anthropogenic CO 2 is introduced that has a stronger thermodynamic orientation than current methods, and is based on a back-calculation technique by Chen and Millero and Poisson and Chen. Anthropogenic CO 2 results of the new technique are compared with results from the original technique as well as with results of the technique of Gruber et al. The new technique is furthermore applied to three time-separated data sets in the subpolar North Atlantic and shows consistent results with regard to available data quality and anthropogenic CO 2 quantities. The difference between the new thermodynamic approach and the anthropogenic CO 2 definition of Gruber et al., which is termed mechanistic, is discussed. Here likely changes in the CO 2 solubility pump are a thermodynamic property of this definition, whereas it is a separate phenomenon in the mechanistic definition. The thermodynamic approach is not without caveats, but points to improvements by the synergistic use of model results and those from observations. Future improvements are considered for the initial saturation state of oxygen and CO 2 , at the instant the surface water loses contact with the atmosphere and for variations in the Redfield ratio

  16. Pathway Thermodynamics Highlights Kinetic Obstacles in Central Metabolism

    Science.gov (United States)

    Flamholz, Avi; Reznik, Ed; Liebermeister, Wolfram; Milo, Ron

    2014-01-01

    In metabolism research, thermodynamics is usually used to determine the directionality of a reaction or the feasibility of a pathway. However, the relationship between thermodynamic potentials and fluxes is not limited to questions of directionality: thermodynamics also affects the kinetics of reactions through the flux-force relationship, which states that the logarithm of the ratio between the forward and reverse fluxes is directly proportional to the change in Gibbs energy due to a reaction (ΔrG′). Accordingly, if an enzyme catalyzes a reaction with a ΔrG′ of -5.7 kJ/mol then the forward flux will be roughly ten times the reverse flux. As ΔrG′ approaches equilibrium (ΔrG′ = 0 kJ/mol), exponentially more enzyme counterproductively catalyzes the reverse reaction, reducing the net rate at which the reaction proceeds. Thus, the enzyme level required to achieve a given flux increases dramatically near equilibrium. Here, we develop a framework for quantifying the degree to which pathways suffer these thermodynamic limitations on flux. For each pathway, we calculate a single thermodynamically-derived metric (the Max-min Driving Force, MDF), which enables objective ranking of pathways by the degree to which their flux is constrained by low thermodynamic driving force. Our framework accounts for the effect of pH, ionic strength and metabolite concentration ranges and allows us to quantify how alterations to the pathway structure affect the pathway's thermodynamics. Applying this methodology to pathways of central metabolism sheds light on some of their features, including metabolic bypasses (e.g., fermentation pathways bypassing substrate-level phosphorylation), substrate channeling (e.g., of oxaloacetate from malate dehydrogenase to citrate synthase), and use of alternative cofactors (e.g., quinone as an electron acceptor instead of NAD). The methods presented here place another arrow in metabolic engineers' quiver, providing a simple means of evaluating

  17. Review of the Phenomenon of Ice Shedding from Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    H Xue

    2016-08-01

    Full Text Available Wind power is a sustainable source of energy. However, there are certain challenges to be  overcome. One of the operational challenges is the phenomenon of ice shedding. Icing happens on wind turbine blades in cold regions. When ice grows to a certain size, it separates from the wind turbine blades resulting in the phenomenon of ice shedding. This phenomenon is of significantly dangerous for equipment and personnel in the region. Ice shedding may happen either because of vibrations or bending in blades. However, it was noticed by operators at Nygårdsfjell wind park, Narvik, Norway that ice shedding is more probable to happen when blades are stopped and turned back on. This observation reveals the fact that bending of blades (from loaded to unloaded positions allows the ice to separate and hence result in ice shedding. This can be linked to the phenomenon of icing, mechanical and adhesive properties of ice. This paper reviews above in detail.

  18. Microbial diversity arising from thermodynamic constraints

    Science.gov (United States)

    Großkopf, Tobias; Soyer, Orkun S

    2016-01-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments. PMID:27035705

  19. Microbial diversity arising from thermodynamic constraints.

    Science.gov (United States)

    Großkopf, Tobias; Soyer, Orkun S

    2016-11-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments.

  20. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    theory for small deviations from equilibrium, in which a general framework is constructed from the analysis of non-equilibrium states close to equilibrium. In a next step, Prigogine and others developed linear irreversible thermodynamics, which establishes relations between transport coefficients and entropy production on a phenomenological level in terms of thermodynamic forces and fluxes. However, beyond the realm of linear response no general theoretical results were available for quite a long time. This situation has changed drastically over the last 20 years with the development of stochastic thermodynamics, revealing that the range of validity of thermodynamic statements can indeed be extended deep into the non-equilibrium regime. Early developments in that direction trace back to the observations of symmetry relations between the probabilities for entropy production and entropy annihilation in non-equilibrium steady states [5-8] (nowadays categorized in the class of so-called detailed fluctuation theorems), and the derivations of the Bochkov-Kuzovlev [9, 10] and Jarzynski relations [11] (which are now classified as so-called integral fluctuation theorems). Apart from its fundamental theoretical interest, the developments in stochastic thermodynamics have experienced an additional boost from the recent experimental progress in fabricating, manipulating, controlling and observing systems on the micro- and nano-scale. These advances are not only of formidable use for probing and monitoring biological processes on the cellular, sub-cellular and molecular level, but even include the realization of a microscopic thermodynamic heat engine [12] or the experimental verification of Landauer's principle in a colloidal system [13]. The scientific program Stochastic Thermodynamics held between 4 and 15 March 2013, and hosted by The Nordic Institute for Theoretical Physics (Nordita), was attended by more than 50 scientists from the Nordic countries and elsewhere, amongst them

  1. Capacity building in indigenous men's groups and sheds across Australia.

    Science.gov (United States)

    Southcombe, Amie; Cavanagh, Jillian; Bartram, Timothy

    2015-09-01

    This article presents an investigation into capacity building, at the community level, in Aboriginal and Torres Strait Islander Men's Groups and Sheds. As safe men's spaces, Men's Groups and Sheds represent an ever-growing social, and health and well-being community service across Australia. The study is qualitative and employs 'yarning circles' (focus groups), semi-structured interviews and observations to gather data from 15 Groups/Sheds involving 45 men from urban, regional and remote communities. We found that capacity building is primarily about securing relationships between Group Leaders/Shed Co-ordinators and Government services. Capacity building establishes links to services such as Centrelink, Medicare, Department of Housing, Probation and Control, and positive outcomes such as Indigenous men securing housing and Centrelink payments. Capacity building results in better health outcomes and, educates and empowers men to improve their social, cultural, emotional and economic well-being. It helps men to better connect with family and community. The current research paves the way for countries worldwide to explore the conceptual and empirical approach of capacity building applicable to other Indigenous [and non-Indigenous] Men's Groups/Sheds. We recommend feasibilities studies, on approaches to capacity building in Indigenous Groups/Sheds, be carried out within urban, regional and remote regions across the country. © The Author (2014). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Subclinical herpesvirus shedding among HIV-1-infected men on antiretroviral therapy.

    Science.gov (United States)

    Agudelo-Hernandez, Arcadio; Chen, Yue; Bullotta, Arlene; Buchanan, William G; Klamar-Blain, Cynthia R; Borowski, Luann; Riddler, Sharon A; Rinaldo, Charles R; Macatangay, Bernard J C

    2017-09-24

    We evaluated the subclinical shedding of six different herpesviruses in antiretroviral drug-treated HIV-positive [HIV(+)] MSM, and determined how this is associated with markers of inflammation and immune activation. We obtained blood, semen, throat washing, urine, and stool from 15 antiretroviral-treated HIV-1-infected MSM with CD4 T-cell reconstitution, and 12 age-matched HIV-negative [HIV (-)] MSM from the Multicenter AIDS Cohort Study at four timepoints over 24 weeks to measure DNA levels of cytomegalovirus (CMV), Epstein-Barr virus (EBV), herpes simplex virus 1 and 2, human herpesvirus 6 (HHV6), and HHV8. T-cell activation and plasma levels of soluble markers of inflammation and activation were also measured at the corresponding timepoints. HIV(+) participants had a trend for higher total herpesvirus shedding rate. HIV(+) participants also had a significantly higher rate of shedding EBV and CMV compared with the HIV(-) group. Herpesvirus shedding was mostly seen in throat washings. In the HIV(+) group, herpesvirus shedding rate inversely correlated with plasma levels of interferon γ-induced protein 10 and soluble CD163. CMV DNA levels negatively correlated with levels of T-cell activation. There was a trend for a positive correlation between EBV shedding rate and plasma soluble CD14. HHV6 shedding rate negatively correlated with plasma levels of interleukin-6, soluble CD163, and interferon gamma-induced protein 10. Correlations were not observed among HIV(-) individuals. Among treated HIV-infected MSM, there are higher subclinical shedding rates of some herpesviruses that occur in different body compartments and negatively correlate with levels of inflammation and immune activation.

  3. Influence of particle shedding from silicone tubing on antibody stability.

    Science.gov (United States)

    Saller, Verena; Hediger, Constanze; Matilainen, Julia; Grauschopf, Ulla; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2018-05-01

    Peristaltic pumps are increasingly employed during fill & finish operations of a biopharmaceutical drug, due to sensitivity of many biological products to rotary piston pump-related stresses. Yet, possibly also unit operations using peristaltic pumps may shed particulates into the final product due to abrasion from the employed tubing. It was the aim of this study to elucidate the potential influence of particles shed from peristaltic pump tubing on the stability of a drug product. Spiking solutions containing shed silicone particles were prepared via peristaltic pumping of placebo under recirculating conditions and subsequently characterized. Two formulated antibodies were spiked with two realistic, but worst-case levels of particles and a 6-month accelerated stability study with storage at 2-8, 25 and 40°C were conducted. Regarding the formation of aggregates and fragments, both mAbs degraded at their typically expected rates and no additional impact of spiked particles was observed. No changes were discerned however in turbidity, subvisible and visible particle assessments. Flow imaging data for one of the mAb formulations with spiked particles suggested limited colloidal stability of shed particles as indicated by a similar increase in spiked placebo. Shed silicone particles from peristaltic pump tubing are assumed to not impair drug product stability. © 2016 Royal Pharmaceutical Society.

  4. The Gamma-Ray Burst ToolSHED is Open for Business

    Science.gov (United States)

    Giblin, Timothy W.; Hakkila, Jon; Haglin, David J.; Roiger, Richard J.

    2004-09-01

    The GRB ToolSHED, a Gamma-Ray Burst SHell for Expeditions in Data-Mining, is now online and available via a web browser to all in the scientific community. The ToolSHED is an online web utility that contains pre-processed burst attributes of the BATSE catalog and a suite of induction-based machine learning and statistical tools for classification and cluster analysis. Users create their own login account and study burst properties within user-defined multi-dimensional parameter spaces. Although new GRB attributes are periodically added to the database for user selection, the ToolSHED has a feature that allows users to upload their own burst attributes (e.g. spectral parameters, etc.) so that additional parameter spaces can be explored. A data visualization feature using GNUplot and web-based IDL has also been implemented to provide interactive plotting of user-selected session output. In an era in which GRB observations and attributes are becoming increasingly more complex, a utility such as the GRB ToolSHED may play an important role in deciphering GRB classes and understanding intrinsic burst properties.

  5. Effects of ethanol on plasma protein shedding in the human stomach

    International Nuclear Information System (INIS)

    Brassinne, A.

    1979-01-01

    Plasma protein shedding in the stomach was measured in 23 normal individuals before and after intragastric administration of a 30% solution of ethyl alcohol. Two different methods were used to assess plasma protein shedding. The first technique utilizes [ 131 I] albumin and requires neutralization of the gastric juice. It was used in 12 subjects and failed to demonstrate any increase of plasma protein shedding under the influence of ethanol. The second technique which utilizes [ 51 Cr] chloride was used in 11 subjects. It demonstrated a significant increase of the gastric clearance of plasma protein which reached 2.5 times the control values. The [ 51 Cr] chloride technique does not require prior neutralization of gastric acidity. It is concluded that, in normal man, ethanol administration increases plasma protein shedding in the stomach when it is given in the presence of an acid gastric juice. The effect is not observed when the gastric acidity is neutralized

  6. Ab initio relaxation times and time-dependent Hamiltonians within the steepest-entropy-ascent quantum thermodynamic framework

    Science.gov (United States)

    Kim, Ilki; von Spakovsky, Michael R.

    2017-08-01

    Quantum systems driven by time-dependent Hamiltonians are considered here within the framework of steepest-entropy-ascent quantum thermodynamics (SEAQT) and used to study the thermodynamic characteristics of such systems. In doing so, a generalization of the SEAQT framework valid for all such systems is provided, leading to the development of an ab initio physically relevant expression for the intrarelaxation time, an important element of this framework and one that had as of yet not been uniquely determined as an integral part of the theory. The resulting expression for the relaxation time is valid as well for time-independent Hamiltonians as a special case and makes the description provided by the SEAQT framework more robust at the fundamental level. In addition, the SEAQT framework is used to help resolve a fundamental issue of thermodynamics in the quantum domain, namely, that concerning the unique definition of process-dependent work and heat functions. The developments presented lead to the conclusion that this framework is not just an alternative approach to thermodynamics in the quantum domain but instead one that uniquely sheds new light on various fundamental but as of yet not completely resolved questions of thermodynamics.

  7. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jieliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Su, Zhengliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Department of Automotive Engineering, Tsinghua University, Beijing 100084 (China); Yan, Shaoze, E-mail: yansz@mail.tsinghua.edu.cn [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China)

    2015-12-01

    Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  8. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    International Nuclear Information System (INIS)

    Zhao, Jieliang; Su, Zhengliang; Yan, Shaoze

    2015-01-01

    Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  9. Complexation thermodynamics of modified cyclodextrins

    DEFF Research Database (Denmark)

    Schönbeck, Jens Christian Sidney; Westh, Peter; Holm, Rene

    2014-01-01

    Inclusion complexes between two bile salts and a range of differently methylated β-cyclodextrins were studied in an attempt to rationalize the complexation thermodynamics of modified cyclodextrins. Calorimetric titrations at a range of temperatures provided precise values of the enthalpies (ΔH......°), entropies (ΔS°), and heat capacities (ΔCp) of complexation, while molecular dynamics simulations assisted the interpretation of the obtained thermodynamic parameters. As previously observed for several types of modified cyclodextrins, the substituents at the rims of the cyclodextrin induced large changes......° and then a strong decrease when the degree of substitution exceeded some threshold. Exactly the same trend was observed for ΔCp. The dehydration of nonpolar surface, as quantified by the simulations, can to a large extent explain the variation in the thermodynamic parameters. The methyl substituents form additional...

  10. Thermodynamics from Car to Kitchen

    Science.gov (United States)

    Auty, Geoff

    2014-01-01

    The historical background to the laws of thermodynamics is explained using examples we can all observe in the world around us, focusing on motorised transport, refrigeration and solar heating. This is not to be considered as an academic article. The purpose is to improve understanding of thermodynamics rather than impart new knowledge, and for…

  11. An Experimental Determination of Thermodynamic Values

    Science.gov (United States)

    Antony, Erling; Muccianti, Christine; Vogel, Tracy

    2012-01-01

    Measurements have been added to an old demonstration of chemical equilibria allowing the determination of thermodynamic constants. The experiment allows the students an opportunity to merge qualitative observations associated with Le Chatelier's principle and thermodynamic calculations using graphical techniques. (Contains 4 figures.)

  12. The statistical-inference approach to generalized thermodynamics

    International Nuclear Information System (INIS)

    Lavenda, B.H.; Scherer, C.

    1987-01-01

    Limit theorems, such as the central-limit theorem and the weak law of large numbers, are applicable to statistical thermodynamics for sufficiently large sample size of indipendent and identically distributed observations performed on extensive thermodynamic (chance) variables. The estimation of the intensive thermodynamic quantities is a problem in parametric statistical estimation. The normal approximation to the Gibbs' distribution is justified by the analysis of large deviations. Statistical thermodynamics is generalized to include the statistical estimation of variance as well as mean values

  13. ADAM15 is involved in MICB shedding and mediates the effects of gemcitabine on MICB shedding in PANC-1 pancreatic cancer cells.

    Science.gov (United States)

    Duan, Xiaohui; Mao, Xianhai; Sun, Weijia

    2013-03-01

    The aim of this study was to investigate the role of ADAM15 in MHC class I polypeptide-related sequence B (MICB) protein ectodomain shedding and observe whether or not gemcitabine affects MICB shedding from PANC-1 cells. In this study, immunohistochemistry of MICB and ADAM15 were performed on tumor samples obtained from 93 patients with pancreatic ductal adenocarcinoma (PDAC). The expression of MICB and ADAM15 in the PDAC tissues was significantly higher compared with that in the normal tissues of the pancreas. Statistical analysis showed a significant correlation between the expression of MICB and certain classic clinicopathological characteristics (i.e., histological grade and TNM stage). ADAM15 expression was found to correlate with lymph node metastasis and TNM stage. The Spearman's rank test suggested that the expression of MICB was inversely correlated with that of ADAM15 in PDAC tissues. Knockdown of ADAM15 in PANC-1 cells clearly upregulated MICB expression on the cellular surface and downregulated soluble MICB (sMICB) levels in the culture supernatants. A non-toxic dose of 0.5 µmol/l gemcitabine suppresses ADAM15 expression leading, at the same time, to an increase in MICB expression and a decrease in sMICB production in PANC-1 cells. The mRNA levels of MICB did not change following PANC-1 exposure to gemcitabine. Further study suggests that the suppressive effect of gemcitabine on MICB shedding in PANC-1 cells is mediated by ADAM15 downregulation. In conclusion, the results of the present study support the hypothesis that ADAM15 is involved in MICB shedding of PANC-1 cells and that gemcitabine inhibits MICB ectodomain shedding through the suppression of ADAM15.

  14. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Hwang, Jeong Ui; Jang, Jong Jae; Jee, Jong Gi

    1987-01-01

    The contents of this book are thermodynamics on the law of thermodynamics, classical thermodynamics and molecule thermodynamics, basics of molecule thermodynamics, molecule and assembly partition function, molecule partition function, classical molecule partition function, thermodynamics function for ideal assembly in fixed system, thermodynamics function for ideal assembly in running system, Maxwell-Boltzmann's law of distribution, chemical equilibrium like calculation of equilibrium constant and theory of absolute reaction rate.

  15. Comparison of three nonlinear models to describe long-term tag shedding by lake trout

    Science.gov (United States)

    Fabrizio, Mary C.; Swanson, Bruce L.; Schram, Stephen T.; Hoff, Michael H.

    1996-01-01

    We estimated long-term tag-shedding rates for lake trout Salvelinus namaycush using two existing models and a model we developed to account for the observed permanence of some tags. Because tag design changed over the course of the study, we examined tag-shedding rates for three types of numbered anchor tags (Floy tags FD-67, FD-67C, and FD-68BC) and an unprinted anchor tag (FD-67F). Lake trout from the Gull Island Shoal region, Lake Superior, were double-tagged, and subsequent recaptures were monitored in annual surveys conducted from 1974 to 1992. We modeled tag-shedding rates, using time at liberty and probabilities of tag shedding estimated from fish released in 1974 and 1978–1983 and later recaptured. Long-term shedding of numbered anchor tags in lake trout was best described by a nonlinear model with two parameters: an instantaneous tag-shedding rate and a constant representing the proportion of tags that were never shed. Although our estimates of annual shedding rates varied with tag type (0.300 for FD-67, 0.441 for FD-67C, and 0.656 for FD-68BC), differences were not significant. About 36% of tags remained permanently affixed to the fish. Of the numbered tags that were shed (about 64%), two mechanisms contributed to tag loss: disintegration and dislodgment. Tags from about 11% of recaptured fish had disintegrated, but most tags were dislodged. Unprinted tags were shed at a significant but low rate immediately after release, but the long-term, annual shedding rate of these tags was only 0.013. Compared with unprinted tags, numbered tags dislodged at higher annual rates; we hypothesized that this was due to the greater frictional drag associated with the larger cross-sectional area of numbered tags.

  16. Stochastic deformation of a thermodynamic symplectic structure

    OpenAIRE

    Kazinski, P. O.

    2008-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transform...

  17. Vortex Shedding Inside a Baffled Air Duct

    Science.gov (United States)

    Davis, Philip; Kenny, R. Jeremy

    2010-01-01

    Common in the operation of both segmented and un-segmented large solid rocket motors is the occurrence of vortex shedding within the motor chamber. A portion of the energy within a shed vortex is converted to acoustic energy, potentially driving the longitudinal acoustic modes of the motor in a quasi-discrete fashion. This vortex shedding-acoustic mode excitation event occurs for every Reusable Solid Rocket Motor (RSRM) operation, giving rise to subsequent axial thrust oscillations. In order to better understand this vortex shedding/acoustic mode excitation phenomena, unsteady CFD simulations were run for both a test geometry and the full scale RSRM geometry. This paper covers the results from the subscale geometry runs, which were based on work focusing on the RSRM hydrodynamics. Unsteady CFD simulation parameters, including boundary conditions and post-processing returns, are reviewed. The results were further post-processed to identify active acoustic modes and vortex shedding characteristics. Probable locations for acoustic energy generation, and subsequent acoustic mode excitation, are discussed.

  18. Goodbye, solar shed; Pfiat di, Solarstadl

    Energy Technology Data Exchange (ETDEWEB)

    Diermann, Ralph

    2012-07-01

    In southern Germany, farmers and conservationalists are fighting over new sheds equipped with photovoltaic roofs. The impending amendment of the EEG is expected to solve the conflict. The losers of the game will be the farmers as reimbursement for solar roofs on sheds will be lowered.

  19. Entropy and black-hole thermodynamics

    International Nuclear Information System (INIS)

    Wald, R.M.

    1979-01-01

    The concept of entropy is examined with an eye toward gaining insight into the nature of black-hole thermodynamics. Definitions of entropy are given for ordinary classical and quantum-mechanical systems which lead to plausibility arguments for the ordinary laws of thermodynamics. The treatment of entropy for a classical system is in the spirit of the information-theory viewpoint, but by explicitly incorporating the coarse-grained observable into the definition of entropy, we eliminate any nonobjective features. The definition of entropy for a quantum-mechanical system is new, but directly parallels the classical treatment. We then apply these ideas to a self-gravitating quantum system which contains a black hole. Under some assumptions: which, although nontrivial, are by no means exotic: about the nature of such a system, it is seen that the same plausibility arguments which lead to the ordinary laws of thermodynamics for ordinary systems now lead to the laws of black-hole mechanics, including the generalized second law of thermodynamics. Thus, it appears perfectly plausible that black-hole thermodynamics is nothing more than ordinary thermodynamics applied to a self-gravitating quantum system

  20. CRISP. Intelligent load shedding. Deliverable 1.5

    International Nuclear Information System (INIS)

    Gajic, Z.; Karlsson, D.; Ullah, N.R.; Okuboye, S.; Andrieu, C.; Carlsson, P.

    2005-08-01

    Load shedding has been used to mitigate the consequences of large disturbances in electric power systems, since the beginning of the electrification era. The way to execute the load shedding, i.e. open a circuit breaker, has hardly developed at all for a 100-year period. The modern society dependence on reliable electricity supply is continuously increasing. This means that the consequences of traditional load shedding are not acceptable. In the meantime computer and communication technology has developed tremendously. There is also a trend to use more and more intelligent control and less hardware, such as lines and generators, to provide the required level of reliability for the electric supply. Especially in power systems, and parts of power systems, comprising distributed generation, there seems to be a great potential to improve the overall cost/benefit-ratio for the desired level of reliability, by the use of intelligent load shedding. Intelligent load shedding is a means to improve power system stability, by providing an adapted load control along the distribution network, in situations where the power system otherwise would go unstable. The work with intelligent load shedding in this work package results in various technical principles of dedicated algorithms. These algorithms intend to bring a support tool for the operating system during critical situations. The main aspects are evaluating the right amount and location of power response for a given disturbance, and evaluating the right time response expected in order to comply with an acceptable stability recover. This time response is a main object in order to define appropriate ICT network enabling such a reliable implementation. A main problem of the intelligent load shedding is how to choose load to shed conveniently and quickly. There is a technical problem of finding the right level and location of the load to shed, and also an economical problem of giving incentives in order to have enough remote

  1. Replication, pathogenicity, shedding, and transmission of Zaire ebolavirus in pigs.

    Science.gov (United States)

    Kobinger, Gary P; Leung, Anders; Neufeld, James; Richardson, Jason S; Falzarano, Darryl; Smith, Greg; Tierney, Kevin; Patel, Ami; Weingartl, Hana M

    2011-07-15

    (See the editorial commentary by Bausch, on pages 179-81.) Reston ebolavirus was recently detected in pigs in the Philippines. Specific antibodies were found in pig farmers, indicating exposure to the virus. This important observation raises the possibility that pigs may be susceptible to Ebola virus infection, including from other species, such as Zaire ebolavirus (ZEBOV), and can transmit to other susceptible hosts. This study investigated whether ZEBOV, a species commonly reemerging in central Africa, can replicate and induce disease in pigs and can be transmitted to naive animals. Domesticated Landrace pigs were challenged through mucosal exposure with a total of 1 ×10(6) plaque-forming units of ZEBOV and monitored for virus replication, shedding, and pathogenesis. Using similar conditions, virus transmission from infected to naive animals was evaluated in a second set of pigs. Following mucosal exposure, pigs replicated ZEBOV to high titers (reaching 10(7) median tissue culture infective doses/mL), mainly in the respiratory tract, and developed severe lung pathology. Shedding from the oronasal mucosa was detected for up to 14 days after infection, and transmission was confirmed in all naive pigs cohabiting with inoculated animals. These results shed light on the susceptibility of pigs to ZEBOV infection and identify an unexpected site of virus amplification and shedding linked to transmission of infectious virus.

  2. Thermodynamics

    CERN Document Server

    Fermi, Enrico

    1956-01-01

    Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr

  3. Improved Load Shedding Scheme considering Distributed Generation

    DEFF Research Database (Denmark)

    Das, Kaushik; Nitsas, Antonios; Altin, Müfit

    2017-01-01

    With high penetration of distributed generation (DG), the conventional under-frequency load shedding (UFLS) face many challenges and may not perform as expected. This article proposes new UFLS schemes, which are designed to overcome the shortcomings of traditional load shedding scheme...

  4. Nonequilibrium thermodynamics of restricted Boltzmann machines

    Science.gov (United States)

    Salazar, Domingos S. P.

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  5. Nonequilibrium thermodynamics of restricted Boltzmann machines.

    Science.gov (United States)

    Salazar, Domingos S P

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  6. Veje ind og ud af hjemløshed

    DEFF Research Database (Denmark)

    Benjaminsen, Lars; Enemark, Morten Holm

    Hjemløsheden i Danmark har været stigende i de seneste år. Denne rapport beskriver forløbene op mod hjemløshed, vejene gennem hjemløshed og chancerne for at komme ud af hjemløshed igen. På baggrund af data fra hjemløsetællingerne og fra landets herberger (§ 110-boformer) i perioden 2009-2015 anal...

  7. Understanding First Law of Thermodynamics through Activities

    Science.gov (United States)

    Pathare, Shirish; Huli, Saurabhee; Ladage, Savita; Pradhan, H. C.

    2018-01-01

    The first law of thermodynamics involves several types of energies and many studies have shown that students lack awareness of them. They have difficulties in applying the law to different thermodynamic processes. These observations were confirmed in our pilot studies, carried out with students from undergraduate colleges across the whole of…

  8. Thermodynamics of the variable modified Chaplygin gas

    Energy Technology Data Exchange (ETDEWEB)

    Panigrahi, D. [Sree Chaitanya College, Habra 743268 (India); Chatterjee, S., E-mail: dibyendupanigrahi@yahoo.co.in, E-mail: chat_sujit1@yahoo.com [Relativity and Cosmology Research Centre, Jadavpur University, Kolkata – 700032 (India)

    2016-05-01

    A cosmological model with a new variant of Chaplygin gas obeying an equation of state (EoS), P = A ρ − B /ρ{sup α} where B = B {sub 0} a {sup n} is investigated in the context of its thermodynamical behaviour. Here B {sub 0} and n are constants and a is the scale factor. We show that the equation of state of this 'Variable Modified Chaplygin gas' (VMCG) can describe the current accelerated expansion of the universe. Following standard thermodynamical criteria we mainly discuss the classical thermodynamical stability of the model and find that the new parameter, n introduced in VMCG plays a crucial role in determining the stability considerations and should always be negative. We further observe that although the earlier model of Lu explains many of the current observational findings of different probes it fails the desirable tests of thermodynamical stability. We also note that for 0 n < our model points to a phantom type of expansion which, however, is found to be compatible with current SNe Ia observations and CMB anisotropy measurements. Further the third law of thermodynamics is obeyed in our case. Our model is very general in the sense that many of earlier works in this field may be obtained as a special case of our solution. An interesting point to note is that the model also apparently suggests a smooth transition from the big bang to the big rip in its whole evaluation process.

  9. HydroSHEDS: A global comprehensive hydrographic dataset

    Science.gov (United States)

    Wickel, B. A.; Lehner, B.; Sindorf, N.

    2007-12-01

    The Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS) is an innovative product that, for the first time, provides hydrographic information in a consistent and comprehensive format for regional and global-scale applications. HydroSHEDS offers a suite of geo-referenced data sets, including stream networks, watershed boundaries, drainage directions, and ancillary data layers such as flow accumulations, distances, and river topology information. The goal of developing HydroSHEDS was to generate key data layers to support regional and global watershed analyses, hydrological modeling, and freshwater conservation planning at a quality, resolution and extent that had previously been unachievable. Available resolutions range from 3 arc-second (approx. 90 meters at the equator) to 5 minute (approx. 10 km at the equator) with seamless near-global extent. HydroSHEDS is derived from elevation data of the Shuttle Radar Topography Mission (SRTM) at 3 arc-second resolution. The original SRTM data have been hydrologically conditioned using a sequence of automated procedures. Existing methods of data improvement and newly developed algorithms have been applied, including void filling, filtering, stream burning, and upscaling techniques. Manual corrections were made where necessary. Preliminary quality assessments indicate that the accuracy of HydroSHEDS significantly exceeds that of existing global watershed and river maps. HydroSHEDS was developed by the Conservation Science Program of the World Wildlife Fund (WWF) in partnership with the U.S. Geological Survey (USGS), the International Centre for Tropical Agriculture (CIAT), The Nature Conservancy (TNC), and the Center for Environmental Systems Research (CESR) of the University of Kassel, Germany.

  10. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2008-03-01

    This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics

  11. Reduction of Salmonella Shedding by Sows during Gestation in Relation to Its Fecal Microbiome

    Directory of Open Access Journals (Sweden)

    Guillaume Larivière-Gauthier

    2017-11-01

    also observed for the first time a significant change in the microbiota during sow gestation and identified interesting taxa which could be linked to a reduced Salmonella shedding.

  12. Thermodynamic and Quantum Thermodynamic Analyses of Brownian Movement

    OpenAIRE

    Gyftopoulos, Elias P.

    2006-01-01

    Thermodynamic and quantum thermodynamic analyses of Brownian movement of a solvent and a colloid passing through neutral thermodynamic equilibrium states only. It is shown that Brownian motors and E. coli do not represent Brownian movement.

  13. Basic Thermodynamics

    International Nuclear Information System (INIS)

    Duthil, P

    2014-01-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered

  14. Basic Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Duthil, P [Orsay, IPN (France)

    2014-07-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered.

  15. Experimental thermodynamics experimental thermodynamics of non-reacting fluids

    CERN Document Server

    Neindre, B Le

    2013-01-01

    Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids focuses on experimental methods and procedures in the study of thermophysical properties of fluids. The selection first offers information on methods used in measuring thermodynamic properties and tests, including physical quantities and symbols for physical quantities, thermodynamic definitions, and definition of activities and related quantities. The text also describes reference materials for thermometric fixed points, temperature measurement under pressures, and pressure measurements. The publicatio

  16. Phthalate SHEDS-HT runs

    Data.gov (United States)

    U.S. Environmental Protection Agency — Inputs and outputs for SHEDS-HT runs of DiNP, DEHP, DBP. This dataset is associated with the following publication: Moreau, M., J. Leonard, K. Phillips, J. Campbell,...

  17. Lysophosphatidic acid stimulates thrombomodulin lectin-like domain shedding in human endothelial cells

    International Nuclear Information System (INIS)

    Wu Hualin; Lin ChiIou; Huang Yuanli; Chen, Pin-Shern; Kuo, Cheng-Hsiang; Chen, Mei-Shing; Wu, G.C.-C.; Shi, G.-Y.; Yang, H.-Y.; Lee Hsinyu

    2008-01-01

    Thrombomodulin (TM) is an anticoagulant glycoprotein highly expressed on endothelial cell surfaces. Increased levels of soluble TM in circulation have been widely accepted as an indicator of endothelial damage or dysfunction. Previous studies indicated that various proinflammatory factors stimulate TM shedding in various cell types such as smooth muscle cells and epithelial cells. Lysophosphatidic acid (LPA) is a bioactive lipid mediator present in biological fluids during endothelial damage or injury. In the present study, we first observed that LPA triggered TM shedding in human umbilical vein endothelial cells (HUVECs). By Cyflow analysis, we showed that the LPA-induced accessibility of antibodies to the endothelial growth factor (EGF)-like domain of TM is independent of matrix metalloproteinases (MMPs), while LPA-induced TM lectin-like domain shedding is MMP-dependent. Furthermore, a stable cell line expressing TM without its lectin-like domain exhibited a higher cell proliferation rate than a stable cell line expressing full-length TM. These results imply that LPA induces TM lectin-like domain shedding, which might contribute to the exposure of its EGF-like domain for EGF receptor (EGFR) binding, thereby stimulating subsequent cell proliferation. Based on our findings, we propose a novel mechanism for the exposure of TM EGF-like domain, which possibly mediates LPA-induced EGFR transactivation

  18. Counter and Complicit Masculine Discourse Among Men's Shed Members.

    Science.gov (United States)

    Mackenzie, Corey S; Roger, Kerstin; Robertson, Steve; Oliffe, John L; Nurmi, Mary Anne; Urquhart, James

    2017-07-01

    Men's Sheds is a growing international movement aimed at providing men with places and activities that facilitate social connectedness. Despite Men's Sheds' focus on males, little attention has been paid to masculinities within the specific context of these settings. The current study used a gender relations framework to explore the ways in which attendees discussed Men's Sheds, with particular attention to discussions that were complicit and counter to traditional, hegemonic views of masculinity, and diverse positions in between these binaries. The data consisted of transcripts and field notes from four focus groups comprising mostly older, White, retired male members of a Canadian shed ( N = 22). The analysis revealed three overall themes: (1) focus on work, (2) independence, and (3) need for male-focused spaces. These themes and associated subthemes suggest that shed members ascribe to dominant masculine values and ideals, but also support more fluid and flexible views of masculinity. Implications are discussed for how working with an array of masculinities within the Men's Sheds movement will be helpful with respect to their future growth in Canada and internationally.

  19. Surface thermodynamics

    International Nuclear Information System (INIS)

    Garcia-Moliner, F.

    1975-01-01

    Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions

  20. Numerical Simulations of Vortex Shedding in Hydraulic Turbines

    Science.gov (United States)

    Dorney, Daniel; Marcu, Bogdan

    2004-01-01

    Turbomachines for rocket propulsion applications operate with many different working fluids and flow conditions. Oxidizer boost turbines often operate in liquid oxygen, resulting in an incompressible flow field. Vortex shedding from airfoils in this flow environment can have adverse effects on both turbine performance and durability. In this study the effects of vortex shedding in a low-pressure oxidizer turbine are investigated. Benchmark results are also presented for vortex shedding behind a circular cylinder. The predicted results are compared with available experimental data.

  1. HPLC retention thermodynamics of grape and wine tannins.

    Science.gov (United States)

    Barak, Jennifer A; Kennedy, James A

    2013-05-08

    The effect of grape and wine tannin structure on retention thermodynamics under reversed-phase high-performance liquid chromatography conditions on a polystyrene divinylbenzene column was investigated. On the basis of retention response to temperature, an alternative retention factor was developed to approximate the combined temperature response of the complex, unresolvable tannin mixture. This alternative retention factor was based upon relative tannin peak areas separated by an abrupt change in solvent gradient. Using this alternative retention factor, retention thermodynamics were calculated. Van't Hoff relationships of the natural log of the alternative retention factor against temperature followed Kirchoff's relationship. An inverse quadratic equation was fit to the data, and from this the thermodynamic parameters for tannin retention were calculated. All tannin fractions exhibited exothermic, spontaneous interaction, with enthalpy-entropy compensation observed. Normalizing for tannin size, distinct tannin compositional effects on thermodynamic parameters were observed. The results of this study indicate that HPLC can be valuable for measuring the thermodynamics of tannin interaction with a hydrophobic surface and provides a potentially valuable alternative to calorimetry. Furthermore, the information gathered may provide insight into understanding red wine astringency quality.

  2. Black Hole Thermodynamics in an Undergraduate Thermodynamics Course.

    Science.gov (United States)

    Parker, Barry R.; McLeod, Robert J.

    1980-01-01

    An analogy, which has been drawn between black hole physics and thermodynamics, is mathematically broadened in this article. Equations similar to the standard partial differential relations of thermodynamics are found for black holes. The results can be used to supplement an undergraduate thermodynamics course. (Author/SK)

  3. Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations

    Directory of Open Access Journals (Sweden)

    Jen-Tsung Hsiang

    2018-05-01

    Full Text Available Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir. For quantum thermodynamics at strong coupling, one needs to reexamine the meaning of the thermodynamic functions, the viability of the thermodynamic relations and the validity of the thermodynamic laws anew. After a brief motivation, this paper starts with a short overview of the quantum formulation based on Gelin & Thoss and Seifert. We then provide a quantum formulation of Jarzynski’s two representations. We show how to construct the operator thermodynamic potentials, the expectation values of which provide the familiar thermodynamic variables. Constructing the operator thermodynamic functions and verifying or modifying their relations is a necessary first step in the establishment of a viable thermodynamics theory for

  4. Thermodynamic tables to accompany Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2011-01-01

    This booklet is provided at no extra charge with new copies of Balmer's Modern Engineering Thermodynamics. It contains two appendices. Appendix C contains 40 thermodynamic tables, and Appendix D consists of 6 thermodynamic charts. These charts and tables are provided in a separate booklet to give instructors the flexibility of allowing students to bring the tables into exams. The booklet may be purchased separately if needed.

  5. Thermodynamics of Dipolar Chain Systems

    DEFF Research Database (Denmark)

    R. Armstrong, J.; Zinner, Nikolaj Thomas; V. Fedorov, D.

    2012-01-01

    The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects...... numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments....

  6. Thermodynamically consistent model calibration in chemical kinetics

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2011-05-01

    Full Text Available Abstract Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new

  7. Fly proof net shed for livestock: A novel concept of physical barrier for integrated management of Culicoides spp. (Diptera: Ceratopogonidae

    Directory of Open Access Journals (Sweden)

    B. W. Narladkar

    2014-11-01

    Full Text Available Aim: An age old and time tested technique of mosquito net requiring no energy, used by humans since prehistoric period was the inspiration behind this novel technique of fly proof net shed for livestock. With the aim to develop similar type of net shed for animals, which will protect them at night from biting of range of insects from Culicoides midges to mosquitoes, research was undertaken. Materials and Methods: Net shed with pitch roof (gable type was erected for use of livestock. The open inlet area was covered with 40 mesh size wire net. The roof at attic level was fitted with hurricane type of ventilator. Shed was used for animals at night hours only. vane anemometer was used for estimation of temperature and wind related parameters. Thermal humidity index (THI and air changes were calculated as per the standard formulas. Based on these parameters suitability of shed was judged. Results: It was observed that, due to netting of the shed population of Culicoides and other flies and incidences of their bites at night hours were considerably lowered. As a result, animals were found comfortable, and their body movements undertaken for wiping off these flies were significantly reduced from 196.50 to 22.16. All it accrued to increased milk yield to the tune of 18.97% in the net shed buffaloes as against control shed. Studies on suitability and comfort to animals were tested by estimating THI and air changes per hour in the net shed, which also revealed the estimates in comfortable regimen and ventilation, remained not much affected despite of netting. Other parameters studied for testing its more accuracy by taking other species of animals as kids, for them also, shed was found suitable through estimation of various physiological and behavioral parameters. Finally, the efficacy of shed was judged on the basis of cost effectiveness. Highly encouraging results on the above said parameters endorsed the effectiveness of the technique. Conclusion: A

  8. Load shedding scheme in the south/southeastern interconnected system

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Filho, Xisto; Couri, J J.G.; Gomes, P; Almeida, P C [ELETROBRAS, Rio de Janeiro, RJ (Brazil)

    1988-12-31

    This paper presents some characteristics of the Brazilian interconnected system and discusses the load shedding scheme in its different stages considering the beginning of operation of the Itaipu power plant. The present situation of the South and Southeastern load shedding scheme combination is also commented. Finally, the interconnected system evolution and the effects on the load shedding schemes are discussed. 4 refs., 5 figs., 2 tabs.

  9. Extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1993-01-01

    Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...

  10. Thermodynamic dissipation theory for the origin of life

    Science.gov (United States)

    Michaelian, K.

    2011-03-01

    Understanding the thermodynamic function of life may shed light on its origin. Life, as are all irreversible processes, is contingent on entropy production. Entropy production is a measure of the rate of the tendency of Nature to explore available microstates. The most important irreversible process generating entropy in the biosphere and, thus, facilitating this exploration, is the absorption and transformation of sunlight into heat. Here we hypothesize that life began, and persists today, as a catalyst for the absorption and dissipation of sunlight on the surface of Archean seas. The resulting heat could then be efficiently harvested by other irreversible processes such as the water cycle, hurricanes, and ocean and wind currents. RNA and DNA are the most efficient of all known molecules for absorbing the intense ultraviolet light that penetrated the dense early atmosphere and are remarkably rapid in transforming this light into heat in the presence of liquid water. From this perspective, the origin and evolution of life, inseparable from water and the water cycle, can be understood as resulting from the natural thermodynamic imperative of increasing the entropy production of the Earth in its interaction with its solar environment. A mechanism is proposed for the reproduction of RNA and DNA without the need for enzymes, promoted instead through UV light dissipation and diurnal temperature cycling of the Archean sea-surface.

  11. Nanoscale interfacial defect shedding in a growing nematic droplet.

    Science.gov (United States)

    Gurevich, Sebastian; Provatas, Nikolas; Rey, Alejandro

    2017-08-01

    Interfacial defect shedding is the most recent known mechanism for defect formation in a thermally driven isotropic-to-nematic phase transition. It manifests in nematic-isotropic interfaces going through an anchoring switch. Numerical computations in planar geometry established that a growing nematic droplet can undergo interfacial defect shedding, nucleating interfacial defect structures that shed into the bulk as +1/2 point defects. By extending the study of interfacial defect shedding in a growing nematic droplet to larger length and time scales, and to three dimensions, we unveil an oscillatory growth mode involving shape and anchoring transitions that results in a controllable regular distributions of point defects in planar geometry, and complex structures of disclination lines in three dimensions.

  12. Thermodynamics of strongly coupled repulsive Yukawa particles in ambient neutralizing plasma: Thermodynamic instability and the possibility of observation in fine particle plasmas

    International Nuclear Information System (INIS)

    Totsuji, Hiroo

    2008-01-01

    The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.

  13. Thermodynamics of strongly coupled repulsive Yukawa particles in ambient neutralizing plasma: Thermodynamic instability and the possibility of observation in fine particle plasmas

    Science.gov (United States)

    Totsuji, Hiroo

    2008-07-01

    The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.

  14. Velocity measurement by vortex shedding. Contribution to the mass-flow measurement

    International Nuclear Information System (INIS)

    Martinez Piquer, T.

    1988-01-01

    The phenomenon of vortex shedding has been known for centuries and has been the subject of scientific studies for about one hundred years. It is only in the ten last years that is has been applied to the measurement of fluids velocity. In 1878 F. Strouhal observed the vortex shedding phenomenon and shown that the shedding frequency of a wire vibrating in the wind was related to the wire diameter and the wind velocity. Rayleigh, who introduced the non-dimensional Strouhal number, von Karman and Rohsko, carried out extensive work or the subject which indicated that vortex shedding could form the basis for a new type of flowmeter. The thesis describes two parallel lines of investigation which study in depth the practical applications of vortex shedding. The first one deals with the measure of velocity and it presents the novelty of a bluff body with a cross-section which has not been used until this day. This body is a circular cylinder with a two-dimensional slit along the diameter and situated in crossdirection to the fluid's stream. It possesses excellent characteristics and it is the most stable as a vortex shedder, which gives it great advantage to the rest of the shapes used until now. The detection of the vortex has been performed by measuring the pressure changes generated by the vortex on two posts situated just beside the slit. To calculate the frequency of the vortex shedding, we obtain the difference of the mentioned signals, which are the same and 180 out of phase. Finding out the period of the autocorrelation function of this signal we can estimate the velocity of the fluid. A logical equipment based on a microprocessor has been designed for the calculation using a zero-crossing time algorithm implemented in assembler language. The second line of research refers to a new method of measure mass flow. The pressure signal generated by the vortex has an intensity which is proportional to the density and to the square of the velocity. Since we have already

  15. Improved thermodynamics of SU(2) gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Giudice, Pietro [University of Muenster, Institute for Theoretical Physics, Muenster (Germany); Piemonte, Stefano [University of Regensburg, Institute for Theoretical Physics, Regensburg (Germany)

    2017-12-15

    In this work we present the results of our investigation of the thermodynamics of SU(2) gauge theory. We employ a Symanzik improved action to reduce strongly the discretisations effects, and we use the scaling relations to take into account the finite volume effects close to the critical temperature. We determine the β-function for this particular theory and we use it in the determination of different thermodynamic observables. Finally we compare our results with previous work where only the standard Wilson action was considered. We confirm the relevance of using the improved action to access easily the correct continuum thermodynamics of the theory. (orig.)

  16. Coxiella burnetii shedding routes and antibody response after outbreaks of Q fever-induced abortion in dairy goat herds.

    Science.gov (United States)

    Rousset, Elodie; Berri, Mustapha; Durand, Benoit; Dufour, Philippe; Prigent, Myriam; Delcroix, Thibault; Touratier, Anne; Rodolakis, Annie

    2009-01-01

    Q fever is a zoonosis caused by Coxiella burnetii, a bacterium largely carried by ruminants and shed into milk, vaginal mucus, and feces. The main potential hazard to humans and animals is due to shedding of bacteria that can then persist in the environment and be aerosolized. The purpose of this study was to evaluate shedding after an outbreak of Q fever abortion in goat herds and to assess the relationship with the occurrence of abortions and antibody responses. Aborting and nonaborting goats were monitored by PCR for C. burnetii shedding 15 and 30 days after the abortion episodes. PCR analysis of all samples showed that 70% (n = 50) of the aborting and 53% (n = 70) of the nonaborting goats were positive. C. burnetii was shed into vaginal mucus, feces, and milk of 44%, 21%, and 38%, respectively, of goats that aborted and 27%, 20%, and 31%, respectively, of goats that delivered normally. Statistical comparison of these shedding results did not reveal any difference between these two groups. PCR results obtained for the vaginal and fecal routes were concordant in 81% of cases, whereas those for milk correlated with only 49% of cases with either vaginal or fecal shedding status. Serological analysis, using enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and complement fixation tests, showed that at least 24% of the seronegative goats shed bacteria. Positive vaginal and fecal shedding, unlike positive milk shedding, was observed more often in animals that were weakly positive or negative by ELISA or IFA. Two opposite shedding trends were thus apparent for the milk and vaginal-fecal routes. Moreover, this study showed that a nonnegligible proportion of seronegative animals that delivered normally could excrete C. burnetii.

  17. On Equivalence of Nonequilibrium Thermodynamic and Statistical Entropies

    Directory of Open Access Journals (Sweden)

    Purushottam D. Gujrati

    2015-02-01

    Full Text Available We review the concept of nonequilibrium thermodynamic entropy and observables and internal variables as state variables, introduced recently by us, and provide a simple first principle derivation of additive statistical entropy, applicable to all nonequilibrium states by treating thermodynamics as an experimental science. We establish their numerical equivalence in several cases, which includes the most important case when the thermodynamic entropy is a state function. We discuss various interesting aspects of the two entropies and show that the number of microstates in the Boltzmann entropy includes all possible microstates of non-zero probabilities even if the system is trapped in a disjoint component of the microstate space. We show that negative thermodynamic entropy can appear from nonnegative statistical entropy.

  18. Suppression of vortex shedding around a square cylinder using ...

    Indian Academy of Sciences (India)

    control of vortex shedding of square cylinders using blowing or suction. ... also showed complete suppression of vortex shedding if suction velocity falls between 0.40 .... equations such that mass balance (continuity) is satisfied simultaneously.

  19. Vortex Shedding Characteristics of the Wake of a Thin Flat Plate with a Circular Trailing Edge

    Science.gov (United States)

    Rai, Man Mohan

    2018-01-01

    The near and very near wake of a thin flat plate with a circular trailing edge are investigated with direct numerical simulations (DNS). Data obtained for two different Reynolds numbers (based on plate thickness, D) are the main focus of this study. The separating boundary layers are turbulent in both cases. An earlier investigation of one of the cases (Case F) showed shed vortices in the wake that were about 1.0 D to 4.0 D in spanwise length. Considerable variation in both the strength and frequency of these shed vortices was observed. One objective of the present investigation is to determine the important contributors to this variability in strength and frequency of shed vortices and their finite spanwise extent. Analysis of the data shows that streamwise vortices in the separating boundary layer play an important role in strengthening/weakening of the shed vortices and that high/low-speed streaks in the boundary layer are important contributors to variability in shedding frequency. Both these features of the boundary layer contribute to the finite extent of the vortices in the spanwise direction. The second plate DNS (Case G, with 40 percent of the plate thickness of Case F) shows that while shedding intensity is weaker than obtained in Case F, many of the wake features are similar to that of Case F. This is important in understanding the path to the wake of the thin plate with a sharp trailing edge where shedding is absent. Here we also test the efficacy of a functional relationship between the shedding frequency and the Reynolds numbers based on the boundary layer momentum thickness (Re (sub theta) and D (Re (sub D)); data for developing this behavioral model is from Cases F & G and five earlier DNSs of the flat plate wake.

  20. Consistent thermodynamic properties of lipids systems

    DEFF Research Database (Denmark)

    Cunico, Larissa; Ceriani, Roberta; Sarup, Bent

    different pressures, with azeotrope behavior observed. Available thermodynamic consistency tests for TPx data were applied before performing parameter regressions for Wilson, NRTL, UNIQUAC and original UNIFAC models. The relevance of enlarging experimental databank of lipids systems data in order to improve......Physical and thermodynamic properties of pure components and their mixtures are the basic requirement for process design, simulation, and optimization. In the case of lipids, our previous works[1-3] have indicated a lack of experimental data for pure components and also for their mixtures...... the performance of predictive thermodynamic models was confirmed in this work by analyzing the calculated values of original UNIFAC model. For solid-liquid equilibrium (SLE) data, new consistency tests have been developed [2]. Some of the developed tests were based in the quality tests proposed for VLE data...

  1. Secondary phases formed during nuclear waste glass-water interactions: Thermodynamic and derived properties

    International Nuclear Information System (INIS)

    McKenzie, W.F.

    1992-08-01

    The thermodynamic properties of secondary phases observed to form during nuclear waste glass-water interactions are of particular interest as it is with the application of these properties together with the thermodynamic properties of other solid phases, fluid phases, and aqueous species that one may predict the environmental consequences of introducing radionuclides contained in the glass into groundwater at a high-level nuclear waste repository. The validation of these predicted consequences can be obtained from laboratory experiments and field observations at natural analogue sites. The purpose of this report is to update and expand the previous compilation (McKenzie, 1991) of thermodynamic data retrieved from the literature and/or estimated for secondary phases observed to form (and candidate phases from observed chemical compositions) during nuclear waste glass-water interactions. In addition, this report includes provisionally recommended thermodynamic data of secondary phases

  2. Cell shedding from X-irradiated multicellular spheroids of human lung carcinomas

    International Nuclear Information System (INIS)

    Sakata, K.; Okada, S.; Suzuki, N.; Majima, H.

    1991-01-01

    We studied the effect of radiation on cell shedding from the surface of multicellular spheroids. Spheroids were produced from two human lung cell lines, one adenocarcinoma (LCT1) and the other small cell carcinoma (LCT2), by using a liquid overlay culture technique. The number of cells shed from both kinds of spheroids did not change significantly when they were irradiated. The number of clonogenic cells shed from both kinds of irradiated spheroids decreased sharply as the dose of irradiation increases. There were no significant differences in clonogenic cell shedding per spheroid between LCT1 and LCT2 spheroids. 400 μm spheroids were more radioresistant to inhibition of clonogenic cell shedding than 250 μm spheroids. Shed cells were more radiosensitive than speroid cells. In these experiments, we did not obtain any results indicating that radiation enchances metastasis. (orig.) [de

  3. A pressure-gradient mechanism for vortex shedding in constricted channels

    Science.gov (United States)

    Boghosian, M. E.; Cassel, K. W.

    2013-01-01

    Numerical simulations of the unsteady, two-dimensional, incompressible Navier–Stokes equations are performed for a Newtonian fluid in a channel having a symmetric constriction modeled by a two-parameter Gaussian distribution on both channel walls. The Reynolds number based on inlet half-channel height and mean inlet velocity ranges from 1 to 3000. Constriction ratios based on the half-channel height of 0.25, 0.5, and 0.75 are considered. The results show that both the Reynolds number and constriction geometry have a significant effect on the behavior of the post-constriction flow field. The Navier–Stokes solutions are observed to experience a number of bifurcations: steady attached flow, steady separated flow (symmetric and asymmetric), and unsteady vortex shedding downstream of the constriction depending on the Reynolds number and constriction ratio. A sequence of events is described showing how a sustained spatially growing flow instability, reminiscent of a convective instability, leads to the vortex shedding phenomenon via a proposed streamwise pressure-gradient mechanism. PMID:24399860

  4. The Thermodynamics of Internal Combustion Engines: Examples of Insights

    Directory of Open Access Journals (Sweden)

    Jerald A. Caton

    2018-05-01

    Full Text Available A major goal of the development of internal combustion (IC engines continues to be higher performance and efficiencies. A major aspect of achieving higher performance and efficiencies is based on fundamental thermodynamics. Both the first and second laws of thermodynamics provide strategies for and limits to the thermal efficiencies of engines. The current work provides three examples of the insights that thermodynamics provides to the performance and efficiencies of an IC engine. The first example evaluates low heat rejection engine concepts, and, based on thermodynamics, demonstrates the difficulty of this concept for increasing efficiencies. The second example compares and contrasts the thermodynamics associated with external and internal exhaust gas dilution. Finally, the third example starts with a discussion of the Otto cycle analysis and explains why this is an incorrect model for the IC engine. An important thermodynamic property that is responsible for many of the observed effects is specific heat.

  5. Thermodynamics of phase formation and heavy quasiparticles in Sr{sub 3}Ru{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Rost, Andreas W.; Bruin, Jan A.N.; Tian, Demian; Mackenzie, Andrew P. [SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY169SS (United Kingdom); Grigera, Santiago A. [SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY169SS (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, UNLP-CONICET, La Plata 1900 (Argentina); Perry, Robin S. [SUPA, School of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH93JZ (United Kingdom); Raghu, Sri [Department of Physics and Astronomy, Rice University, Houston, Texas, 77005 (United States); Kivelson, Steve A. [Department of Physics, Stanford University, Stanford, California, 94305 (United States)

    2012-07-01

    The itinerant metamagnet Sr{sub 3}Ru{sub 2}O{sub 7} has motivated a wide range of experimental and theoretical work in recent years because of the discovery of an unusual low temperature phase which is forming in the vicinity of a proposed quantum critical point. A major challenge is the investigation of the thermodynamic properties of both this unusual phase and the fluctuations associated with the quantum critical point. Here we report on new specific heat measurements extending previous work to the wider phase diagram. Our results shed light on two important aspects of the system. First we discuss the entropic details of the formation of heavy quasiparticles as a function of temperature in this compound relevant for a wide class of materials. Secondly we present thermodynamic evidence for the anomalous low temperature phase forming directly out of the critical high temperature phase.

  6. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    Science.gov (United States)

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  7. Rational extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1998-01-01

    Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high­ frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...

  8. Classical and statistical thermodynamics

    CERN Document Server

    Rizk, Hanna A

    2016-01-01

    This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.

  9. Systemic Immune Activation and HIV Shedding in the Female Genital Tract.

    Science.gov (United States)

    Spencer, LaShonda Y; Christiansen, Shawna; Wang, Chia-Hao H; Mack, Wendy J; Young, Mary; Strickler, Howard D; Anastos, Kathryn; Minkoff, Howard; Cohen, Mardge; Geenblatt, Ruth M; Karim, Roksana; Operskalski, Eva; Frederick, Toni; Homans, James D; Landay, Alan; Kovacs, Andrea

    2016-02-01

    Plasma HIV RNA is the most significant determinant of cervical HIV shedding. However, shedding is also associated with sexually transmitted infections (STIs) and cervical inflammation. The mechanism by which this occurs is poorly understood. There is evidence that systemic immune activation promotes viral entry, replication, and HIV disease progression. We hypothesized that systemic immune activation would be associated with an increase in HIV genital shedding. Clinical assessments, HIV RNA in plasma and genital secretions, and markers of immune activation (CD38(+)DR(+) and CD38(-)DR(-)) on CD4(+) and CD8(+) T cells in blood were evaluated in 226 HIV+ women enrolled in the Women's Interagency HIV Study. There were 569 genital evaluations of which 159 (28%) exhibited HIV RNA shedding, defined as HIV viral load >80 copies per milliliter. We tested associations between immune activation and shedding using generalized estimating equations with logit link function. In the univariate model, higher levels of CD4(+) and CD8(+) T-cell activation in blood were significantly associated with genital tract shedding. However, in the multivariate model adjusting for plasma HIV RNA, STIs, and genital tract infections, only higher levels of resting CD8(+) T cells (CD38(-)DR(-)) were significantly inversely associated with HIV shedding in the genital tract (odds ratios = 0.44, 95% confidence interval: 0.21 to 0.9, P = 0.02). The association of systemic immune activation with genital HIV shedding is multifactorial. Systemic T-cell activation is associated with genital tract shedding in univariate analysis but not when adjusting for plasma HIV RNA, STIs, and genital tract infections. In addition, women with high percentage of resting T cells are less likely to have HIV shedding compared with those with lower percentages. These findings suggest that a higher percentage of resting cells, as a result of maximal viral suppression with treatment, may decrease local genital activation, HIV

  10. 76 FR 66220 - Automatic Underfrequency Load Shedding and Load Shedding Plans Reliability Standards

    Science.gov (United States)

    2011-10-26

    .... I. Background A. Underfrequency Load Shedding 4. An interconnected electric power system must... generation and load within an interconnected electric power system is shown in the frequency of the system.\\4... Reliability Standards for the Bulk-Power System, Order No. 693, FERC Stats. & Regs. ] 31,242, order on reh'g...

  11. Thermodynamics of de Sitter black holes: Thermal cosmological constant

    International Nuclear Information System (INIS)

    Sekiwa, Y.

    2006-01-01

    We study the thermodynamic properties associated with the black hole event horizon and the cosmological horizon for black hole solutions in asymptotically de Sitter spacetimes. We examine thermodynamics of these horizons on the basis of the conserved charges according to Teitelboim's method. In particular, we have succeeded in deriving the generalized Smarr formula among thermodynamical quantities in a simple and natural way. We then show that cosmological constant must decrease when one takes into account the quantum effect. These observations have been obtained if and only if the cosmological constant plays the role of a thermodynamical state variable. We also touch upon the relation between inflation of our universe and a phase transition of black holes

  12. Periodic cavitation shedding in a cylindrical orifice

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, C.; Barber, T.; Milton, B.; Rosengarten, G. [University of New South Wales, School of Mechanical and Manufacturing Engineering, Sydney (Australia)

    2011-11-15

    Cavitation structures in a large-scale (D = 8.25 mm), plain orifice style nozzle within a unique experimental rig are investigated using high-speed visualisation and digital image processing techniques. Refractive index matching with an acrylic nozzle is achieved using aqueous sodium iodide for the test fluid. Cavitation collapse length, unsteady shedding frequency and spray angles are measured for cavitation conditions from incipient to supercavitation for a range of Reynolds numbers, for a fixed L/D ratio of 4.85. Periodic cavitation shedding was shown to occur with frequencies between 500 and 2,000 Hz for conditions in which cavitation occupied less than 30% of the nozzle length. A discontinuity in collapse length was shown to occur once the cavitation exceeded this length, coinciding with a loss of periodic shedding. A mechanism for this behaviour is discussed. Peak spray angles of approximately {theta} {approx} 14 were recorded for supercavitation conditions indicating the positive influence of cavitation bubble collapse on the jet atomisation process. (orig.)

  13. Quantum Coherence, Time-Translation Symmetry, and Thermodynamics

    Directory of Open Access Journals (Sweden)

    Matteo Lostaglio

    2015-04-01

    Full Text Available The first law of thermodynamics imposes not just a constraint on the energy content of systems in extreme quantum regimes but also symmetry constraints related to the thermodynamic processing of quantum coherence. We show that this thermodynamic symmetry decomposes any quantum state into mode operators that quantify the coherence present in the state. We then establish general upper and lower bounds for the evolution of quantum coherence under arbitrary thermal operations, valid for any temperature. We identify primitive coherence manipulations and show that the transfer of coherence between energy levels manifests irreversibility not captured by free energy. Moreover, the recently developed thermomajorization relations on block-diagonal quantum states are observed to be special cases of this symmetry analysis.

  14. The Role of Collaborative Learning on Training and Development Practices within the Australian Men's Shed Movement: A Study of Five Men's Sheds

    Science.gov (United States)

    Cavanagh, Jillian; Southcombe, Amie; Bartram, Tim

    2014-01-01

    This study examines the role and impact of collaborative learning on training and development practices in Australian Men's Sheds. We use a case study approach, underpinned by Peters and Armstrong's theoretical framework of collaborative learning in adult education, to investigate five Men's Sheds. Semi-structured interviews were carried out with…

  15. Replication and shedding kinetics of infectious hematopoietic necrosis virus in juvenile rainbow trout

    Science.gov (United States)

    Wargo, Andrew R.; Scott, Robert J.; Kerr, Benjamin; Kurath, Gael

    2017-01-01

    Viral replication and shedding are key components of transmission and fitness, the kinetics of which are heavily dependent on virus, host, and environmental factors. To date, no studies have quantified the shedding kinetics of infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss), or how they are associated with replication, making it difficult to ascertain the transmission dynamics of this pathogen of high agricultural and conservation importance. Here, the replication and shedding kinetics of two M genogroup IHNV genotypes were examined in their naturally co-evolved rainbow trout host. Within host virus replication began rapidly, approaching maximum values by day 3 post-infection, after which viral load was maintained or gradually dropped through day 7. Host innate immune response measured as stimulation of Mx-1 gene expression generally followed within host viral loads. Shedding also began very quickly and peaked within 2 days, defining a generally uniform early peak period of shedding from 1 to 4 days after exposure to virus. This was followed by a post-peak period where shedding declined, such that the majority of fish were no longer shedding by day 12 post-infection. Despite similar kinetics, the average shedding rate over the course of infection was significantly lower in mixed compared to single genotype infections, suggesting a competition effect, however, this did not significantly impact the total amount of virus shed. The data also indicated that the duration of shedding, rather than peak amount of virus shed, was correlated with fish mortality. Generally, the majority of virus produced during infection appeared to be shed into the environment rather than maintained in the host, although there was more retention of within host virus during the post-peak period. Viral virulence was correlated with shedding, such that the more virulent of the two genotypes shed more total virus. This fundamental understanding of IHNV

  16. Correct thermodynamic forces in Tsallis thermodynamics: connection with Hill nanothermodynamics

    International Nuclear Information System (INIS)

    Garcia-Morales, Vladimir; Cervera, Javier; Pellicer, Julio

    2005-01-01

    The equivalence between Tsallis thermodynamics and Hill's nanothermodynamics is established. The correct thermodynamic forces in Tsallis thermodynamics are pointed out. Through this connection we also find a general expression for the entropic index q which we illustrate with two physical examples, allowing in both cases to relate q to the underlying dynamics of the Hamiltonian systems

  17. Thermodynamics and heat power

    CERN Document Server

    Granet, Irving

    2014-01-01

    Fundamental ConceptsIntroductionThermodynamic SystemsTemperatureForce and MassElementary Kinetic Theory of GasesPressureReviewKey TermsEquations Developed in This ChapterQuestionsProblemsWork, Energy, and HeatIntroductionWorkEnergyInternal EnergyPotential EnergyKinetic EnergyHeatFlow WorkNonflow WorkReviewKey TermsEquations Developed in This ChapterQuestionsProblemsFirst Law of ThermodynamicsIntroductionFirst Law of ThermodynamicsNonflow SystemSteady-Flow SystemApplications of First Law of ThermodynamicsReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Second Law of ThermodynamicsIntroductionReversibility-Second Law of ThermodynamicsThe Carnot CycleEntropyReviewKey TermsEquations Developed in This ChapterQuestionsProblemsProperties of Liquids and GasesIntroductionLiquids and VaporsThermodynamic Properties of SteamComputerized PropertiesThermodynamic DiagramsProcessesReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Ideal GasIntroductionBasic ConsiderationsSpecific Hea...

  18. Nonequilibrium thermodynamics of dilute polymer solutions in flow.

    Science.gov (United States)

    Latinwo, Folarin; Hsiao, Kai-Wen; Schroeder, Charles M

    2014-11-07

    Modern materials processing applications and technologies often occur far from equilibrium. To this end, the processing of complex materials such as polymer melts and nanocomposites generally occurs under strong deformations and flows, conditions under which equilibrium thermodynamics does not apply. As a result, the ability to determine the nonequilibrium thermodynamic properties of polymeric materials from measurable quantities such as heat and work is a major challenge in the field. Here, we use work relations to show that nonequilibrium thermodynamic quantities such as free energy and entropy can be determined for dilute polymer solutions in flow. In this way, we determine the thermodynamic properties of DNA molecules in strong flows using a combination of simulations, kinetic theory, and single molecule experiments. We show that it is possible to calculate polymer relaxation timescales purely from polymer stretching dynamics in flow. We further observe a thermodynamic equivalence between nonequilibrium and equilibrium steady-states for polymeric systems. In this way, our results provide an improved understanding of the energetics of flowing polymer solutions.

  19. Thermodynamics and economics

    International Nuclear Information System (INIS)

    Mansson, B.A.

    1990-01-01

    Economics, as the social science most concerned with the use and distribution of natural resources, must start to make use of the knowledge at hand in the natural sciences about such resources. In this, thermodynamics is an essential part. In a physicists terminology, human economic activity may be described as a dissipative system which flourishes by transforming and exchanging resources, goods and services. All this involves complex networks of flows of energy and materials. This implies that thermodynamics, the physical theory of energy and materials flows, must have implications for economics. On another level, thermodynamics has been recognized as a physical theory of value, with value concepts similar to those of economic theory. This paper discusses some general aspects of the significance of non-equilibrium thermodynamics for economics. The role of exergy, probably the most important of the physical measures of value, is elucidated. Two examples of integration of thermodynamics with economic theory are reviewed. First, a simple model of a steady-state production system is sued to illustrate the effects of thermodynamic process constraints. Second, the framework of a simple macroeconomic growth model is used to illustrate how some thermodynamic limitations may be integrated in macroeconomic theory

  20. Heat and thermodynamics

    CERN Document Server

    Saxena, A K

    2014-01-01

    Heat and thermodynamics aims to serve as a textbook for Physics, Chemistry and Engineering students. The book covers basic ideas of Heat and Thermodynamics, Kinetic Theory and Transport Phenomena, Real Gases, Liquafaction and Production and Measurement of very Low Temperatures, The First Law of Thermodynamics, The Second and Third Laws of Thermodynamics and Heat Engines and Black Body Radiation. KEY FEATURES Emphasis on concepts Contains 145 illustrations (drawings), 9 Tables and 48 solved examples At the end of chapter exercises and objective questions

  1. Genital Herpes Simplex Virus Type 2 Shedding Among Adults With and Without HIV Infection in Uganda.

    Science.gov (United States)

    Phipps, Warren; Nakku-Joloba, Edith; Krantz, Elizabeth M; Selke, Stacy; Huang, Meei-Li; Kambugu, Fred; Orem, Jackson; Casper, Corey; Corey, Lawrence; Wald, Anna

    2016-02-01

    Despite the high prevalence of herpes simplex virus type 2 (HSV-2) in sub-Saharan Africa, the natural history of infection among Africans is not well characterized. We evaluated the frequency of genital HSV shedding in HIV-seropositive and HIV-seronegative men and women in Uganda. Ninety-three HSV-2-seropositive Ugandan adults collected anogenital swab specimens for HSV DNA quantification by polymerase chain reaction 3 times daily for 6 weeks. HSV-2 was detected from 2484 of 11 283 swab specimens collected (22%), with a median quantity of 4.3 log10 HSV copies/mL (range, 2.2-8.9 log10 HSV copies/mL). Genital lesions were reported on 749 of 3875 days (19%), and subclinical HSV shedding was detected from 1480 of 9113 swab specimens (16%) collected on days without lesions. Men had higher rates of total HSV shedding (relative risk [RR], 2.0 [95% confidence interval {CI}, 1.3-2.9]; P genital lesions (RR, 2.1 [95% CI, 1.2-3.4]; P = .005), compared with women. No differences in shedding rates or lesion frequency were observed based on HIV serostatus. HSV-2 shedding frequency and quantity are high among HSV-2-seropositive adults in sub-Saharan Africa, including persons with and those without HIV infection. Shedding rates were particularly high among men, which may contribute to the high prevalence of HSV-2 and early acquisition among African women. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  2. Thermodynamics of Bioreactions.

    Science.gov (United States)

    Held, Christoph; Sadowski, Gabriele

    2016-06-07

    Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.

  3. Intrinsic thermodynamics of inhibitor binding to human carbonic anhydrase IX.

    Science.gov (United States)

    Linkuvienė, Vaida; Matulienė, Jurgita; Juozapaitienė, Vaida; Michailovienė, Vilma; Jachno, Jelena; Matulis, Daumantas

    2016-04-01

    Human carbonic anhydrase 9th isoform (CA IX) is an important marker of numerous cancers and is increasingly interesting as a potential anticancer drug target. Various synthetic aromatic sulfonamide-bearing compounds are being designed as potent inhibitors of CA IX. However, sulfonamide compound binding to CA IX is linked to several reactions, the deprotonation of the sulfonamide amino group and the protonation of the CA active site Zn(II)-bound hydroxide. These linked reactions significantly affect the affinities and other thermodynamic parameters such as enthalpies and entropies of binding. The observed and intrinsic affinities of compound binding to CA IX were determined by the fluorescent thermal shift assay. The enthalpies and entropies of binding were determined by the isothermal titration calorimetry. The pKa of CA IX was determined to be 6.8 and the enthalpy of CA IX-Zn(II)-bound hydroxide protonation was -24 kJ/mol. These values enabled the analysis of intrinsic thermodynamics of a library of compounds binding to CA IX. The most strongly binding compounds exhibited the intrinsic affinity of 0.01 nM and the observed affinity of 2 nM. The intrinsic thermodynamic parameters of compound binding to CA IX helped to draw the compound structure to thermodynamics relationship. It is important to distinguish the intrinsic from observed parameters of any disease target protein interaction with its inhibitors as drug candidates when drawing detailed compound structure to thermodynamics correlations. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Design of thermodynamic experiments and analyses of thermodynamic relationships

    International Nuclear Information System (INIS)

    Oezer Arnas, A.

    2009-01-01

    In teaching of thermodynamics, a certain textbook is followed internationally whatever language it is written in. However, although some do a very good job, most are not correct and precise and furthermore NONE discuss at all the need for and importance of designing thermodynamic experiments although experimentation in engineering is considered to be the back bone of analyses, not pursued much these days, or numerical studies, so very predominant these days. Here some thermodynamic experiments along with physical interpretation of phenomena through simple mathematics will be discussed that are straightforward, meaningful and which can be performed by any undergraduate/graduate student. Another important topic for discussion is the fact that the thermodynamic state principle demands uniqueness of results. It has been found in literature that this fact is not well understood by those who attempt to apply it loosely and end up with questionable results. Thermodynamics is the fundamental science that clarifies all these issues if well understood, applied and interpreted. The attempt of this paper is to clarify these situations and offer alternative methods for analyses. (author)

  5. Determining Cloud Thermodynamic Phase from Micropulse Lidar Network Data

    Science.gov (United States)

    Lewis, Jasper R.; Campbell, James; Lolli, Simone; Tan, Ivy; Welton, Ellsworth J.

    2017-01-01

    Determining cloud thermodynamic phase is a critical factor in studies of Earth's radiation budget. Here we use observations from the NASA Micro Pulse Lidar Network (MPLNET) and thermodynamic profiles from the Goddard Earth Observing System, version 5 (GEOS-5) to distinguish liquid water, mixed-phase, and ice water clouds. The MPLNET provides sparse global, autonomous, and continuous measurements of clouds and aerosols which have been used in a number of scientific investigations to date. The use of a standardized instrument and a common suite of data processing algorithms with thorough uncertainty characterization allows for straightforward comparisons between sites. Lidars with polarization capabilities have recently been incorporated into the MPLNET project which allows, for the first time, the ability to infer a cloud thermodynamic phase. This presentation will look specifically at the occurrence of ice and mixed phase clouds in the temperature region of -10 C to -40 C for different climatological regions and seasons. We compare MPLNET occurrences of mixed-phase clouds to an historical climatology based on observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft.

  6. Thermodynamics for scientists and engineers

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2011-02-01

    This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.

  7. Methods of thermodynamics

    CERN Document Server

    Reiss, Howard

    1997-01-01

    Since there is no shortage of excellent general books on elementary thermodynamics, this book takes a different approach, focusing attention on the problem areas of understanding of concept and especially on the overwhelming but usually hidden role of ""constraints"" in thermodynamics, as well as on the lucid exposition of the significance, construction, and use (in the case of arbitrary systems) of the thermodynamic potential. It will be especially useful as an auxiliary text to be used along with any standard treatment.Unlike some texts, Methods of Thermodynamics does not use statistical m

  8. Mathematical foundations of thermodynamics

    CERN Document Server

    Giles, R; Stark, M; Ulam, S

    2013-01-01

    Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn

  9. Eternal inflation and a thermodynamic treatment of Einstein's equations

    Energy Technology Data Exchange (ETDEWEB)

    Ghersi, José Tomás Gálvez [Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima, Perú (Peru); Geshnizjani, Ghazal; Shandera, Sarah [Perimeter Institute for Theoretical Physics, Waterloo, Ontario (Canada); Piazza, Federico, E-mail: jotogalgher@gmail.com, E-mail: ggeshnizjani@perimeterinstitute.ca, E-mail: fpiazza@apc.univ-paris7.fr, E-mail: sshandera@perimeterinstitute.ca [PCCP and APC, CNRS (UMR7164), Université Denis Diderot Paris 7, Batiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris (France)

    2011-06-01

    In pursuing the intriguing resemblance of the Einstein equations to thermodynamic equations, most sharply seen in systems possessing horizons, we suggest that eternal inflation of the stochastic type may be a fruitful phenomenon to explore. We develop a thermodynamic first law for quasi-de Sitter space, valid on the horizon of a single observer's Hubble patch and explore consistancy with previous proposals for horizons of various types in dynamic and static situations. We use this framework to demonstrate that for the local observer fluctuations of the type necessary for stochastic eternal inflation fall within the regime where the thermodynamic approach is believed to apply. This scenario is interesting because of suggestive parallels with black hole evaporation.

  10. Thermodynamic Spectrum of Solar Flares Based on SDO/EVE Observations: Techniques and First Results

    Science.gov (United States)

    Wang, Yuming; Zhou, Zhenjun; Zhang, Jie; Liu, Kai; Liu, Rui; Shen, Chenglong; Chamberlin, Phillip C.

    2016-01-01

    The Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could potentially be useful for extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0 class, and reach the following statistical results. First, EUV peaks are always behind the soft X-ray (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections.

  11. THERMODYNAMIC SPECTRUM OF SOLAR FLARES BASED ON SDO/EVE OBSERVATIONS: TECHNIQUES AND FIRST RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuming; Zhou, Zhenjun; Liu, Kai; Liu, Rui; Shen, Chenglong [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Jie [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, MSN 6A2, Fairfax, VA 22030 (United States); Chamberlin, Phillip C., E-mail: ymwang@ustc.edu.cn [Solar Physics Laboratory, Heliophysics Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-03-15

    The Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could potentially be useful for extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0 class, and reach the following statistical results. First, EUV peaks are always behind the soft X-ray (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections.

  12. Thermodynamics of Radiation Modes

    Science.gov (United States)

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  13. A New Perspective on Thermodynamics

    CERN Document Server

    Lavenda, Bernard H

    2010-01-01

    Dr. Bernard H. Lavenda has written A New Perspective on Thermodynamics to combine an old look at thermodynamics with a new foundation. The book presents a historical perspective, which unravels the current presentation of thermodynamics found in standard texts, and which emphasizes the fundamental role that Carnot played in the development of thermodynamics. A New Perspective on Thermodynamics will: Chronologically unravel the development of the principles of thermodynamics and how they were conceived by their discoverers Bring the theory of thermodynamics up to the present time and indicate areas of further development with the union of information theory and the theory of means and their inequalities. New areas include nonextensive thermodynamics, the thermodynamics of coding theory, multifractals, and strange attractors. Reintroduce important, yet nearly forgotten, teachings of N.L. Sardi Carnot Highlight conceptual flaws in timely topics such as endoreversible engines, finite-time thermodynamics, geometri...

  14. Salmonella fecal shedding and immune responses are dose- and serotype- dependent in pigs.

    Directory of Open Access Journals (Sweden)

    Renata Ivanek

    Full Text Available Despite the public health importance of Salmonella infection in pigs, little is known about the associated dynamics of fecal shedding and immunity. In this study, we investigated the transitions of pigs through the states of Salmonella fecal shedding and immune response post-Salmonella inoculation as affected by the challenge dose and serotype. Continuous-time multistate Markov models were developed using published experimental data. The model for shedding had four transient states, of which two were shedding (continuous and intermittent shedding and two non-shedding (latency and intermittent non-shedding, and one absorbing state representing permanent cessation of shedding. The immune response model had two transient states representing responses below and above the seroconversion level. The effects of two doses [low (0.65×10(6 CFU/pig and high (0.65×10(9 CFU/pig] and four serotypes (Salmonella Yoruba, Salmonella Cubana, Salmonella Typhimurium, and Salmonella Derby on the models' transition intensities were evaluated using a proportional intensities model. Results indicated statistically significant effects of the challenge dose and serotype on the dynamics of shedding and immune response. The time spent in the specific states was also estimated. Continuous shedding was on average 10-26 days longer, while intermittent non-shedding was 2-4 days shorter, in pigs challenged with the high compared to low dose. Interestingly, among pigs challenged with the high dose, the continuous and intermittent shedding states were on average up to 10-17 and 3-4 days longer, respectively, in pigs infected with S. Cubana compared to the other three serotypes. Pigs challenged with the high dose of S. Typhimurium or S. Derby seroconverted on average up to 8-11 days faster compared to the low dose. These findings highlight that Salmonella fecal shedding and immune response following Salmonella challenge are dose- and serotype-dependent and that the detection of

  15. Contact symmetries and Hamiltonian thermodynamics

    International Nuclear Information System (INIS)

    Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.

    2015-01-01

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production

  16. Dynamics of Salmonella Shedding and Welfare of Hens in Free-Range Egg Production Systems

    Science.gov (United States)

    Gole, Vaibhav C.; Woodhouse, Rebecca; Caraguel, Charles; Moyle, Talia; Rault, Jean-Loup; Sexton, Margaret

    2016-01-01

    ABSTRACT The current study investigated the effect of environmental stressors (i.e., weather changes) on Salmonella shedding in free-range production systems and the correlations with behavioral and physiological measures (i.e., fecal glucocorticoid metabolites). This involved longitudinal and point-in-time surveys of Salmonella shedding and environmental contamination on four commercial free-range layer farms. The shedding of Salmonella was variable across free-range farms and in different seasons. There was no significant effect of season on the Salmonella prevalence during this investigation. In this study, the combined Salmonella most probable number (MPN) counts in environmental (including feces, egg belt, dust, nest box, and ramp) samples were highest in samples collected during the summer season (4th sampling, performed in February). The predominant serovars isolated during this study were Salmonella enterica serovar Mbandaka and Salmonella enterica serovar Typhimurium phage types 135 and 135a. These two phage types were involved in several egg product-related Salmonella outbreaks in humans. Multilocus variable-number tandem-repeat analysis (MLVA) results indicated that MLVA types detected from human food poisoning cases exhibited MLVA patterns similar to the strains isolated during this study. All Salmonella isolates (n = 209) were tested for 15 different genes involved in adhesion, invasion, and survival of Salmonella spp. We also observed variations for sopA, ironA, and misL. There were no positive correlations between fecal corticosterone metabolite (FCM) and Salmonella prevalence and/or shedding in feces. Also, there were no positive correlations between Salmonella prevalence and Salmonella count (log MPN) and any of the other welfare parameters. IMPORTANCE In this study, the welfare of laying hens and Salmonella shedding were compared over a prolonged period of time in field conditions. This study investigated the long-term shedding of Salmonella

  17. Dynamics of Salmonella Shedding and Welfare of Hens in Free-Range Egg Production Systems.

    Science.gov (United States)

    Gole, Vaibhav C; Woodhouse, Rebecca; Caraguel, Charles; Moyle, Talia; Rault, Jean-Loup; Sexton, Margaret; Chousalkar, Kapil

    2017-03-01

    The current study investigated the effect of environmental stressors (i.e., weather changes) on Salmonella shedding in free-range production systems and the correlations with behavioral and physiological measures (i.e., fecal glucocorticoid metabolites). This involved longitudinal and point-in-time surveys of Salmonella shedding and environmental contamination on four commercial free-range layer farms. The shedding of Salmonella was variable across free-range farms and in different seasons. There was no significant effect of season on the Salmonella prevalence during this investigation. In this study, the combined Salmonella most probable number (MPN) counts in environmental (including feces, egg belt, dust, nest box, and ramp) samples were highest in samples collected during the summer season (4th sampling, performed in February). The predominant serovars isolated during this study were Salmonella enterica serovar Mbandaka and Salmonella enterica serovar Typhimurium phage types 135 and 135a. These two phage types were involved in several egg product-related Salmonella outbreaks in humans. Multilocus variable-number tandem-repeat analysis (MLVA) results indicated that MLVA types detected from human food poisoning cases exhibited MLVA patterns similar to the strains isolated during this study. All Salmonella isolates ( n = 209) were tested for 15 different genes involved in adhesion, invasion, and survival of Salmonella spp. We also observed variations for sopA , ironA , and misL There were no positive correlations between fecal corticosterone metabolite (FCM) and Salmonella prevalence and/or shedding in feces. Also, there were no positive correlations between Salmonella prevalence and Salmonella count (log MPN) and any of the other welfare parameters. IMPORTANCE In this study, the welfare of laying hens and Salmonella shedding were compared over a prolonged period of time in field conditions. This study investigated the long-term shedding of Salmonella serovars in

  18. Counter and Complicit Masculine Discourse Among Men’s Shed Members

    Science.gov (United States)

    Mackenzie, Corey S.; Roger, Kerstin; Robertson, Steve; Oliffe, John L.; Nurmi, Mary Anne; Urquhart, James

    2017-01-01

    Men’s Sheds is a growing international movement aimed at providing men with places and activities that facilitate social connectedness. Despite Men’s Sheds’ focus on males, little attention has been paid to masculinities within the specific context of these settings. The current study used a gender relations framework to explore the ways in which attendees discussed Men’s Sheds, with particular attention to discussions that were complicit and counter to traditional, hegemonic views of masculinity, and diverse positions in between these binaries. The data consisted of transcripts and field notes from four focus groups comprising mostly older, White, retired male members of a Canadian shed (N = 22). The analysis revealed three overall themes: (1) focus on work, (2) independence, and (3) need for male-focused spaces. These themes and associated subthemes suggest that shed members ascribe to dominant masculine values and ideals, but also support more fluid and flexible views of masculinity. Implications are discussed for how working with an array of masculinities within the Men’s Sheds movement will be helpful with respect to their future growth in Canada and internationally. PMID:28068851

  19. Protoearth mass shedding and the origin of the moon

    Science.gov (United States)

    Boss, A. P.

    1986-01-01

    Darwin's (1980) theory of lunar formation from the earth by means of a rotationally driven dynamic fission instability is presently considered in view of viscous shear's maintenance of solid body rotation throughout the protoearth's accretion phase. Assuming the appropriateness of a polytropic account of the protoearth, it is unlikely that dynamic fission could have occurred; instantaneous spin-up following a giant impact would instead have led to mass shedding. The dynamical phenomenon of mass shedding is here explored on the basis of numerical models for a self-gravitating, axisymmetric, polytropic and dissipative protoearth. It is concluded that mass shedding from the protoearth mantle after a giant impact and explosion could have contributed substantial matter to a lunar disk.

  20. Systematic vibration thermodynamic properties of bromine

    Science.gov (United States)

    Liu, G. Y.; Sun, W. G.; Liao, B. T.

    2015-11-01

    Based on the analysis of the maturity and finiteness of vibrational levels of bromine molecule in ground state and evaluating the effect on statistical computation, according to the elementary principles of quantum statistical theorem, using the full set of bromine molecular vibrational levels determined with algebra method, the statistical contribution for bromine systematical macroscopic thermodynamic properties is discussed. Thermodynamic state functions Helmholtz free energy, entropy and observable vibration heat capacity are calculated. The results show that the determination of full set of vibrational levels and maximum vibrational quantum number is the key in the correct statistical analysis of bromine systematical thermodynamic property. Algebra method results are clearly different from data of simple harmonic oscillator and the related algebra method results are no longer analytical but numerical and are superior to simple harmonic oscillator results. Compared with simple harmonic oscillator's heat capacities, the algebra method's heat capacities are more consistent with the experimental data in the given temperature range of 600-2100 K.

  1. Introduction to applied thermodynamics

    CERN Document Server

    Helsdon, R M; Walker, G E

    1965-01-01

    Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o

  2. Twenty lectures on thermodynamics

    CERN Document Server

    Buchdahl, H A

    2013-01-01

    Twenty Lectures on Thermodynamics is a course of lectures, parts of which the author has given various times over the last few years. The book gives the readers a bird's eye view of phenomenological and statistical thermodynamics. The book covers many areas in thermodynamics such as states and transition; adiabatic isolation; irreversibility; the first, second, third and Zeroth laws of thermodynamics; entropy and entropy law; the idea of the application of thermodynamics; pseudo-states; the quantum-static al canonical and grand canonical ensembles; and semi-classical gaseous systems. The text

  3. Extended viral shedding of a low pathogenic avian influenza virus by striped skunks (Mephitis mephitis.

    Directory of Open Access Journals (Sweden)

    J Jeffrey Root

    Full Text Available BACKGROUND: Striped skunks (Mephitis mephitis are susceptible to infection with some influenza A viruses. However, the viral shedding capability of this peri-domestic mammal and its potential role in influenza A virus ecology are largely undetermined. METHODOLOGY/PRINCIPAL FINDINGS: Striped skunks were experimentally infected with a low pathogenic (LP H4N6 avian influenza virus (AIV and monitored for 20 days post infection (DPI. All of the skunks exposed to H4N6 AIV shed large quantities of viral RNA, as detected by real-time RT-PCR and confirmed for live virus with virus isolation, from nasal washes and oral swabs (maximum ≤ 10(6.02 PCR EID50 equivalent/mL and ≤ 10(5.19 PCR EID50 equivalent/mL, respectively. Some evidence of potential fecal shedding was also noted. Following necropsy on 20 DPI, viral RNA was detected in the nasal turbinates of one individual. All treatment animals yielded evidence of a serological response by 20 DPI. CONCLUSIONS/SIGNIFICANCE: These results indicate that striped skunks have the potential to shed large quantities of viral RNA through the oral and nasal routes following exposure to a LP AIV. Considering the peri-domestic nature of these animals, along with the duration of shedding observed in this species, their presence on poultry and waterfowl operations could influence influenza A virus epidemiology. For example, this species could introduce a virus to a naive poultry flock or act as a trafficking mechanism of AIV to and from an infected poultry flock to naive flocks or wild bird populations.

  4. Two-Stage Load Shedding for Secondary Control in Hierarchical Operation of Islanded Microgrids

    DEFF Research Database (Denmark)

    Zhou, Quan; Li, Zhiyi; Wu, Qiuwei

    2018-01-01

    A two-stage load shedding scheme is presented to cope with the severe power deficit caused by microgrid islanding. Coordinated with the fast response of inverter-based distributed energy resources (DERs), load shedding at each stage and the resulting power flow redistribution are estimated....... The first stage of load shedding will cease rapid frequency decline in which the measured frequency deviation is employed to guide the load shedding level and process. Once a new steady-state is reached, the second stage is activated, which performs load shedding according to the priorities of loads...

  5. Towards a common thermodynamic database for speciation models

    International Nuclear Information System (INIS)

    Lee, J. van der; Lomenech, C.

    2004-01-01

    Bio-geochemical speciation models and reactive transport models are reaching an operational stage, allowing simulation of complex dynamic experiments and description of field observations. For decades, the main focus has been on model performance but at present, the availability and reliability of thermodynamic data is the limiting factor of the models. Thermodynamic models applied to real and complex geochemical systems require much more extended thermodynamic databases with many minerals, colloidal phases, humic and fulvic acids, cementitious phases and (dissolved) organic complexing agents. Here we propose a methodological approach to achieve, ultimately, a common, operational database including the reactions and constants of these phases. Provided they are coherent with the general thermodynamic laws, sorption reactions are included as well. We therefore focus on sorption reactions and parameter values associated with specific sorption models. The case of sorption on goethite has been used to illustrate the way the methodology handles the problem of inconsistency and data quality. (orig.)

  6. Thermodynamic holography

    Science.gov (United States)

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-01-01

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214

  7. Stochastic oscillations induced by vortex shedding in wind

    DEFF Research Database (Denmark)

    Christensen, Claus

    1997-01-01

    As a fluid flows past a circular cylinder,vortices are shed alternately from each side at most values of the Reynolds number. Over a certain range of windspeeds, the periodicity in the wake is synchronized or captured by the mechanical system. The shedding abruptly deviates from the linear Strouhal...... dependence and stays constant at the mechanical natural frequency. This coupling between the velocity field and the motion of the mechanical system is referred to as the lock-in phenomenon. The lock-in phenomenon has importance in structural engineering for slightly damped slender structures exposed to wind...... in the wake is synchronized or captured by the mechanical system. The shedding abruptly deviates from the linear Strouhal dependence and stays constant at the mechanical natural frequency. This coupling between the velocity field and the motion of the mechanical system is referred to as the lock-in phenomenon...

  8. Advanced classical thermodynamics

    International Nuclear Information System (INIS)

    Emanuel, G.

    1987-01-01

    The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided. 38 references

  9. Thermodynamic theory of dislocation-enabled plasticity

    International Nuclear Information System (INIS)

    Langer, J. S.

    2017-01-01

    The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hypotheses. The first of these is that a system of dislocations, driven by external forces and irreversibly exchanging heat with its environment, must be characterized by a thermodynamically defined effective temperature that is not the same as the ordinary temperature. The second hypothesis is that the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated depinning of entangled pairs of dislocations. This paper consists of a systematic reformulation of this theory followed by examples of its use in analyses of experimentally observed phenomena including strain hardening, grain-size (Hall-Petch) effects, yielding transitions, and adiabatic shear banding.

  10. Modulation of statin-activated shedding of Alzheimer APP ectodomain by ROCK.

    Directory of Open Access Journals (Sweden)

    Steve Pedrini

    2005-01-01

    Full Text Available Statins are widely used cholesterol-lowering drugs that act by inhibiting HMGCoA reductase, the rate-limiting enzyme in cholesterol biosynthesis. Recent evidence suggests that statin use may be associated with a decreased risk for Alzheimer disease, although the mechanisms underlying this apparent risk reduction are poorly understood. One popular hypothesis for statin action is related to the drugs' ability to activate alpha-secretase-type shedding of the alpha-secretase-cleaved soluble Alzheimer amyloid precursor protein ectodomain (sAPP(alpha. Statins also inhibit the isoprenoid pathway, thereby modulating the activities of the Rho family of small GTPases-Rho A, B, and C-as well as the activities of Rac and cdc42. Rho proteins, in turn, exert many of their effects via Rho-associated protein kinases (ROCKs. Several cell-surface molecules are substrates for activated alpha-secretase-type ectodomain shedding, and regulation of shedding typically occurs via activation of protein kinase C or extracellular-signal-regulated protein kinases, or via inactivation of protein phosphatase 1 or 2A. However, the possibility that these enzymes play a role in statin-stimulated shedding has been excluded, leading us to investigate whether the Rho/ROCK1 protein phosphorylation pathway might be involved.We found that both atorvastatin and simvastatin stimulated sAPP(alpha shedding from a neuroblastoma cell line via a subcellular mechanism apparently located upstream of endocytosis. A farnesyl transferase inhibitor also increased sAPP(alpha shedding, as did a dominant negative form of ROCK1. Most conclusively, a constitutively active ROCK1 molecule inhibited statin-stimulated sAPP(alpha shedding.Together, these data suggest that statins exert their effects on shedding of sAPP(alpha from cultured cells, at least in part, by modulation of the isoprenoid pathway and ROCK1.

  11. Experimental investigation and thermodynamic calculation of the Mg-Sr-Zr system

    International Nuclear Information System (INIS)

    Zhou, Hua; Chen, Chong; Du, Yong; Central South Univ., Hunan; Gong, Haoran

    2016-01-01

    Both experimental investigation and thermodynamic calculation were performed for the Mg-Sr-Zr system. Four decisive alloys were firstly selected and prepared using a powder metallurgy method to measure the isothermal section at 400 C via a combination of X-ray diffraction and electron probe microanalysis. No ternary compound has been observed for this ternary system. Four three-phase regions, (Mg) + (αZr) + Mg 17 Sr 2 , Mg 17 Sr 2 + (αZr) + Mg 38 Sr 9 , Mg 38 Sr 9 + (αZr) + Mg 23 Sr 6 , and Mg 23 Sr 6 + (αZr) + Mg 2 Sr, have been identified at 400 C. No appreciable ternary solubility has been detected in the binary Mg-Sr compounds. Phase transition temperatures of the Mg-Sr-Zr alloys were measured by means of differential scanning calorimetry. The thermodynamic calculations match well with the experimental data in the present work, indicating that no ternary thermodynamic parameters are needed for the thermodynamic description of this ternary system. In order to verify the reliability of the current thermodynamic calculations of the Mg-Sr-Zr system, eight as-cast alloys in the Mg-rich corner were also prepared. The calculated liquidus projection is consistent with the observed primary phase regions. The present thermodynamic calculations are reliable and can be used in the development of Mg alloys.

  12. Ab initio thermodynamic model for magnesium carbonates and hydrates.

    Science.gov (United States)

    Chaka, Anne M; Felmy, Andrew R

    2014-09-04

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  13. Fluctuating Thermodynamics for Biological Processes

    Science.gov (United States)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  14. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: The science of chemical thermodynamics has substantially contributed to the understanding of the many problems encountered in nuclear and reactor technology. These problems include reaction of materials with their surroundings and chemical and physical changes of fuels. Modern reactor technology, by its very nature, has offered new fields of investigations for the scientists and engineers concerned with the design of nuclear fuel elements. Moreover, thermodynamics has been vital in predicting the behaviour of new materials for fission as well as fusion reactors. In this regard, the Symposium was organized to provide a mechanism for review and discussion of recent thermodynamic investigations of nuclear materials. The Symposium was held in the Juelich Nuclear Research Centre, at the invitation of the Government of the Federal Republic of Germany. The International Atomic Energy Agency has given much attention to the thermodynamics of nuclear materials, as is evidenced by its sponsorship of four international symposia in 1962, 1965, 1967, and 1974. The first three meetings were primarily concerned with the fundamental thermodynamics of nuclear materials; as with the 1974 meeting, this last Symposium was primarily aimed at the thermodynamic behaviour of nuclear materials in actual practice, i.e., applied thermodynamics. Many advances have been made since the 1974 meeting, both in fundamental and applied thermodynamics of nuclear materials, and this meeting provided opportunities for an exchange of new information on this topic. The Symposium dealt in part with the thermodynamic analysis of nuclear materials under conditions of high temperatures and a severe radiation environment. Several sessions were devoted to the thermodynamic studies of nuclear fuels and fission and fusion reactor materials under adverse conditions. These papers and ensuing discussions provided a better understanding of the chemical behaviour of fuels and materials under these

  15. The Transition from Thick to Thin Plate Wake Physics: Whither Vortex Shedding?

    Science.gov (United States)

    Rai, Man Mohan

    2016-01-01

    The near and very near wake of a flat plate with a circular trailing edge is investigated with data from direct numerical simulations. Computations were performed for six different combinations of the Reynolds numbers based on plate thickness (D) and boundary layer momentum thickness upstream of the trailing edge (theta). Unlike the case of the cylinder, these Reynolds numbers are independent parameters for the flat plate. The separating boundary layers are turbulent in all the cases investigated. One objective of the study is to understand the changes in the wake vortex shedding process as the plate thickness is reduced (increasing theta/D). The value of D varies by a factor of 16 and that of theta by approximately 5 in the computations. Vortex shedding is vigorous in the low theta/D cases with a substantial decrease in shedding intensity in the large theta/D cases. Other shedding characteristics are also significantly altered with increasing theta/D. A visualization of the shedding process in the different cases is provided and discussed. The basic shedding mechanism is explored in depth. The effect of changing theta/D on the time-averaged, near-wake velocity statistics is also discussed. A functional relationship between the shedding frequency and the Reynolds numbers mentioned above is obtained.

  16. A Thermodynamically General Theory for Convective Circulations and Vortices

    Science.gov (United States)

    Renno, N. O.

    2007-12-01

    Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.

  17. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  18. Men's Sheds function and philosophy: towards a framework for future research and men's health promotion.

    Science.gov (United States)

    Wilson, Nathan J; Cordier, Reinie; Doma, Kenji; Misan, Gary; Vaz, Sharmila

    2015-08-01

    The Men's Shed movement supports a range of men's health promotion initiatives. This paper examines whether a Men's Shed typology could inform future research and enable more efficient and targeted health promotion activities through Men's Sheds. The International Men's Shed Survey consisted of a cross-sectional exploration of sheds, their members, and health and social activities. Survey data about shed 'function' and 'philosophy' were analysed using descriptive and inferential statistics. A framework of Men's Sheds based on function and philosophy demonstrated that most sheds serve a primary utility function, a secondary social function, but most importantly a primary social opportunity philosophy. Sheds with a primary health philosophy participated in fewer health promotion activities when compared with sheds without a primary health philosophy. In addition to the uniform health promotion resources distributed by the Men's Shed associations, specific health promotion activities, such as prostate education, are being initiated from an individual shed level. This framework can potentially be used to enable future research and health promotion activities to be more efficiently and effectively targeted. SO WHAT? Men experience poorer health and well being outcomes than women. This framework offers a novel approach to providing targeted health promotion activities to men in an environment where it is okay to talk about men's health.

  19. Light cone thermodynamics

    Science.gov (United States)

    De Lorenzo, Tommaso; Perez, Alejandro

    2018-02-01

    We show that null surfaces defined by the outgoing and infalling wave fronts emanating from and arriving at a sphere in Minkowski spacetime have thermodynamical properties that are in strict formal correspondence with those of black hole horizons in curved spacetimes. Such null surfaces, made of pieces of light cones, are bifurcate conformal Killing horizons for suitable conformally stationary observers. They can be extremal and nonextremal depending on the radius of the shining sphere. Such conformal Killing horizons have a constant light cone (conformal) temperature, given by the standard expression in terms of the generalization of surface gravity for conformal Killing horizons. Exchanges of conformally invariant energy across the horizon are described by a first law where entropy changes are given by 1 /(4 ℓp2) of the changes of a geometric quantity with the meaning of horizon area in a suitable conformal frame. These conformal horizons satisfy the zeroth to the third laws of thermodynamics in an appropriate way. In the extremal case they become light cones associated with a single event; these have vanishing temperature as well as vanishing entropy.

  20. Genetic relationship between wool shedding in ewe-lambs and ewes

    Science.gov (United States)

    Interest in reducing labor costs related to shearing has led to the development of breeds that naturally shed their wool annually. This goal has been achieved by introducing hair-sheep genetics. These developments are relatively recent and thus the genetic underpinnings of wool shedding (WS) are not...

  1. Developing of the EV charging and parking shed of BIPV

    Institute of Scientific and Technical Information of China (English)

    Wu Shaobo; Wei Chuanchuan; Yu Jiang

    2013-01-01

    Building-integrated photovoltaic (BIPV) is an important application way of solar photovoltaic power. The electric vehicle (EV) charging and parking shed of BIPV is the regeneration energy intellectual integration demonstration application system collection of photovoltaic (PV) grid power,PV off-grid power,EV charging and parking shed,and any part of the functions and their combination will be engaged in practical application on demand. The paper describes the PV shed system structure and design in detail with the present of its actual photos. The shed is 50 m long and 5.5 m wide and capable of parking 18 cars. Under the control of system intellectual con-troller,the power produced by PV from sunlight will charge the parking EV car prior to charging the storage bat-tery,charging the storage battery prior to grid power,grid power at last,and charge the EV by utility grid when it is a cloudy or rainy day.

  2. Gravity as a thermodynamic phenomenon

    OpenAIRE

    Moustos, Dimitris

    2017-01-01

    The analogy between the laws of black hole mechanics and the laws of thermodynamics led Bekenstein and Hawking to argue that black holes should be considered as real thermodynamic systems that are characterised by entropy and temperature. Black hole thermodynamics indicates a deeper connection between thermodynamics and gravity. We review and examine in detail the arguments that suggest an interpretation of gravity itself as a thermodynamic theory.

  3. Quantum thermodynamics of the resonant-level model with driven system-bath coupling

    Science.gov (United States)

    Haughian, Patrick; Esposito, Massimiliano; Schmidt, Thomas L.

    2018-02-01

    We study nonequilibrium thermodynamics in a fermionic resonant-level model with arbitrary coupling strength to a fermionic bath, taking the wide-band limit. In contrast to previous theories, we consider a system where both the level energy and the coupling strength depend explicitly on time. We find that, even in this generalized model, consistent thermodynamic laws can be obtained, up to the second order in the drive speed, by splitting the coupling energy symmetrically between system and bath. We define observables for the system energy, work, heat, and entropy, and calculate them using nonequilibrium Green's functions. We find that the observables fulfill the laws of thermodynamics, and connect smoothly to the known equilibrium results.

  4. Understanding first law of thermodynamics through activities

    Science.gov (United States)

    Pathare, Shirish; Huli, Saurabhee; Ladage, Savita; Pradhan, H. C.

    2018-03-01

    The first law of thermodynamics involves several types of energies and many studies have shown that students lack awareness of them. They have difficulties in applying the law to different thermodynamic processes. These observations were confirmed in our pilot studies, carried out with students from undergraduate colleges across the whole of India. We, then, decided to develop an activity-based module to address students’ conceptual difficulties in this area. In particular, we took up the cases of both adiabatic and isothermal compression of an ideal gas. We tested, through a two-group pre and post test design, the effectiveness of the module.

  5. Thermodynamics of Dipolar Chain Systems

    International Nuclear Information System (INIS)

    Armstrong, J.R.; Zinner, N.T.; Fedorov, D.V.; Jensen, A.S.

    2013-01-01

    The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects of the intralayer repulsion and quantum statistical requirements in systems with more than one chain. Specifically, we consider the case of two chains and solve the problem analytically within the harmonic Hamiltonian approach which is accurate for large dipole moments. The case of three chains is calculated numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments. (author)

  6. Thermodynamic estimation: Ionic materials

    International Nuclear Information System (INIS)

    Glasser, Leslie

    2013-01-01

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  7. A Hamiltonian approach to Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)

    2016-10-15

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  8. A Hamiltonian approach to Thermodynamics

    International Nuclear Information System (INIS)

    Baldiotti, M.C.; Fresneda, R.; Molina, C.

    2016-01-01

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  9. Application of computational intelligence techniques for load shedding in power systems: A review

    International Nuclear Information System (INIS)

    Laghari, J.A.; Mokhlis, H.; Bakar, A.H.A.; Mohamad, Hasmaini

    2013-01-01

    Highlights: • The power system blackout history of last two decades is presented. • Conventional load shedding techniques, their types and limitations are presented. • Applications of intelligent techniques in load shedding are presented. • Intelligent techniques include ANN, fuzzy logic, ANFIS, genetic algorithm and PSO. • The discussion and comparison between these techniques are provided. - Abstract: Recent blackouts around the world question the reliability of conventional and adaptive load shedding techniques in avoiding such power outages. To address this issue, reliable techniques are required to provide fast and accurate load shedding to prevent collapse in the power system. Computational intelligence techniques, due to their robustness and flexibility in dealing with complex non-linear systems, could be an option in addressing this problem. Computational intelligence includes techniques like artificial neural networks, genetic algorithms, fuzzy logic control, adaptive neuro-fuzzy inference system, and particle swarm optimization. Research in these techniques is being undertaken in order to discover means for more efficient and reliable load shedding. This paper provides an overview of these techniques as applied to load shedding in a power system. This paper also compares the advantages of computational intelligence techniques over conventional load shedding techniques. Finally, this paper discusses the limitation of computational intelligence techniques, which restricts their usage in load shedding in real time

  10. Treatise on irreversible and statistical thermodynamics an introduction to nonclassical thermodynamics

    CERN Document Server

    Yourgrau, Wolfgang; Raw, Gough

    2002-01-01

    Extensively revised edition of a much-respected work examines thermodynamics of irreversible processes, general principles of statistical thermodynamics, assemblies of noninteracting structureless particles, and statistical theory. 1966 edition.

  11. Chemical Thermodynamics Vol. 12 - Chemical Thermodynamics of tin

    International Nuclear Information System (INIS)

    Gamsjaeger, Heinz; GAJDA, Tamas; Sangster, James; Saxena, Surendra K.; Voigt, Wolfgang; Perrone, Jane

    2012-01-01

    This is the 12th volume of a series of expert reviews of the chemical thermodynamics of key chemical elements in nuclear technology and waste management. This volume is devoted to the inorganic species and compounds of tin. The tables contained in Chapters III and IV list the currently selected thermodynamic values within the NEA TDB Project. The database system developed at the NEA Data Bank, see Section II.6, assures consistency among all the selected and auxiliary data sets. The recommended thermodynamic data are the result of a critical assessment of published information. The values in the auxiliary data set, see Tables IV-1 and IV-2, have been adopted from CODATA key values or have been critically reviewed in this or earlier volumes of the series

  12. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P

    1993-01-01

    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.

  13. Thermodynamic properties of sea air

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2010-02-01

    Full Text Available Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS, and have been adopted in 2009 for oceanography by IOC/UNESCO.

    In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as "sea air" here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well.

    The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  14. A Thermodynamic Point of View on Dark Energy Models

    Directory of Open Access Journals (Sweden)

    Vincenzo F. Cardone

    2017-07-01

    Full Text Available We present a conjugate analysis of two different dark energy models, namely the Barboza–Alcaniz parameterization and the phenomenologically-motivated Hobbit model, investigating both their agreement with observational data and their thermodynamical properties. We successfully fit a wide dataset including the Hubble diagram of Type Ia Supernovae, the Hubble rate expansion parameter as measured from cosmic chronometers, the baryon acoustic oscillations (BAO standard ruler data and the Planck distance priors. This analysis allows us to constrain the model parameters, thus pointing at the region of the wide parameters space, which is worth focusing on. As a novel step, we exploit the strong connection between gravity and thermodynamics to further check models’ viability by investigating their thermodynamical quantities. In particular, we study whether the cosmological scenario fulfills the generalized second law of thermodynamics, and moreover, we contrast the two models, asking whether the evolution of the total entropy is in agreement with the expectation for a closed system. As a general result, we discuss whether thermodynamic constraints can be a valid complementary way to both constrain dark energy models and differentiate among rival scenarios.

  15. The Thermodynamics of General and Local Anesthesia

    Science.gov (United States)

    Græsbøll, Kaare; Sasse-Middelhoff, Henrike; Heimburg, Thomas

    2014-05-01

    General anesthetics are known to cause depression of the freezing point of transitions in biomembranes. This is a consequence of ideal mixing of the anesthetic drugs in the membrane fluid phase and exclusion from the solid phase. Such a generic law provides physical justification of the famous Meyer-Overton rule. We show here that general anesthetics, barbiturates and local anesthetics all display the same effect on melting transitions. Their effect is reversed by hydrostatic pressure. Thus, the thermodynamic behavior of local anesthetics is very similar to that of general anesthetics. We present a detailed thermodynamic analysis of heat capacity profiles of membranes in the presence of anesthetics. This analysis is able to describe experimentally observed calorimetric profiles and permits prediction of the anesthetic features of arbitrary molecules. In addition, we discuss the thermodynamic origin of the cutoff-effect of long-chain alcohols and the additivity of the effect of general and local anesthetics.

  16. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    Rand, M.H.

    1975-01-01

    A report is presented of the Fourth International Symposium on Thermodynamics of Nuclear Materials held in Vienna, 21-25 October 1974. The technological theme of the Symposium was the application of thermodynamics to the understanding of the chemistry of irradiated nuclear fuels and to safety assessments for hypothetical accident conditions in reactors. The first four sessions were devoted to these topics and they were followed by four more sessions on the more basic thermodynamics, phase diagrams and the thermodynamic properties of a wide range of nuclear materials. Sixty-seven papers were presented

  17. Thermodynamic Properties and Thermodynamic Geometries of Black p-Branes

    International Nuclear Information System (INIS)

    Yi-Huan Wei; Xiao Cui; Jia-Xin Zhao

    2016-01-01

    The heat capacity and the electric capacitance of the black p-branes (BPB) are generally defined, then they are calculated for some special processes. It is found that the Ruppeiner thermodynamic geometry of BPB is flat. Finally, we give some discussions for the flatness of the Ruppeiner thermodynamic geometry of BPB and some black holes. (paper)

  18. General thermodynamics

    CERN Document Server

    Olander, Donald

    2007-01-01

    The book’s methodology is unified, concise, and multidisciplinary, allowing students to understand how the principles of thermodynamics apply to all technical fields that touch upon this most fundamental of scientific theories. It also offers a rigorous approach to the quantitative aspects of thermodynamics, accompanied by clear explanations to help students transition smoothly from the physical concepts to their mathematical representations

  19. Non-equilibrium thermodynamics

    CERN Document Server

    De Groot, Sybren Ruurds

    1984-01-01

    The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn

  20. Advanced thermodynamics engineering

    CERN Document Server

    Annamalai, Kalyan; Jog, Milind A

    2011-01-01

    Thermolab Excel-Based Software for Thermodynamic Properties and Flame Temperatures of Fuels IntroductionImportance, Significance and LimitationsReview of ThermodynamicsMathematical BackgroundOverview of Microscopic/NanothermodynamicsSummaryAppendix: Stokes and Gauss Theorems First Law of ThermodynamicsZeroth LawFirst Law for a Closed SystemQuasi Equilibrium (QE) and Nonquasi-equilibrium (NQE) ProcessesEnthalpy and First LawAdiabatic Reversible Process for Ideal Gas with Constant Specific HeatsFirst Law for an Open SystemApplications of First Law for an Open SystemIntegral and Differential Form

  1. Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2010-01-01

    Designed for use in a standard two-semester engineering thermodynamics course sequence. The first half of the text contains material suitable for a basic Thermodynamics course taken by engineers from all majors. The second half of the text is suitable for an Applied Thermodynamics course in mechanical engineering programs. The text has numerous features that are unique among engineering textbooks, including historical vignettes, critical thinking boxes, and case studies. All are designed to bring real engineering applications into a subject that can be somewhat abstract and mathematica

  2. Measurement on the cavitating vortex shedding behind rectangular obstacles

    International Nuclear Information System (INIS)

    Hegedus, F; Hos, C; Pandula, Z; Kullmann, L

    2010-01-01

    Measurement results on the cavitating vortex shedding behind sharp-edged rectangular bodies are presented, intended to provide benchmark cases for the validation of unsteady cavitation models of CFD codes. Rectangular bodies of increasing aspect ratio (1, 2, 3 and 4) were used with a constant 25mm height (12.5% blockage ratio). The water velocity in the 0.2x0.05m test section of the channel was varied between 1 and 12 m/s resulting in a Reynolds number in the range of (0.4-3.5)x105. Pressure signals were measured at several locations, notably in the wake. Dominant frequencies and Strouhal numbers are reported from cavitation-free flow (classic von Karman vortex shedding) up to supercavitation as a function of the free-stream Reynolds number. The results are in good agreement with the literature in case of the square cylinder. We experienced a slight increase of the dominant Strouhal number with increasing aspect ratio. This result is somewhat inconsistent with the literature, in which a fall of the Strouhal number can be observed at side ratio 2. This may be the consequence of the different ranges of Reynolds numbers. It was also found that between the inception of cavitation and the formation of supercavitation the Strouhal number is not affected by cavitation.

  3. Measurement on the cavitating vortex shedding behind rectangular obstacles

    Energy Technology Data Exchange (ETDEWEB)

    Hegedus, F; Hos, C; Pandula, Z; Kullmann, L, E-mail: hegedusf@hds.bme.h [Department of Hydrodynamic Systems, Budapest University of Technology and Economics Muegyetem rkp. 1, Budapest 1111 (Hungary)

    2010-08-15

    Measurement results on the cavitating vortex shedding behind sharp-edged rectangular bodies are presented, intended to provide benchmark cases for the validation of unsteady cavitation models of CFD codes. Rectangular bodies of increasing aspect ratio (1, 2, 3 and 4) were used with a constant 25mm height (12.5% blockage ratio). The water velocity in the 0.2x0.05m test section of the channel was varied between 1 and 12 m/s resulting in a Reynolds number in the range of (0.4-3.5)x105. Pressure signals were measured at several locations, notably in the wake. Dominant frequencies and Strouhal numbers are reported from cavitation-free flow (classic von Karman vortex shedding) up to supercavitation as a function of the free-stream Reynolds number. The results are in good agreement with the literature in case of the square cylinder. We experienced a slight increase of the dominant Strouhal number with increasing aspect ratio. This result is somewhat inconsistent with the literature, in which a fall of the Strouhal number can be observed at side ratio 2. This may be the consequence of the different ranges of Reynolds numbers. It was also found that between the inception of cavitation and the formation of supercavitation the Strouhal number is not affected by cavitation.

  4. Shedding of Ebola Virus Surface Glycoprotein Is a Mechanism of Self-regulation of Cellular Cytotoxicity and Has a Direct Effect on Virus Infectivity.

    Science.gov (United States)

    Dolnik, Olga; Volchkova, Valentina A; Escudero-Perez, Beatriz; Lawrence, Philip; Klenk, Hans-Dieter; Volchkov, Viktor E

    2015-10-01

    The surface glycoprotein (GP) is responsible for Ebola virus (EBOV) attachment and membrane fusion during virus entry. Surface expression of highly glycosylated GP causes marked cytotoxicity via masking of a wide range of cellular surface molecules, including integrins. Considerable amounts of surface GP are shed from virus-infected cells in a soluble truncated form by tumor necrosis factor α-converting enzyme. In this study, the role of GP shedding was investigated using a reverse genetics approach by comparing recombinant viruses possessing amino acid substitutions at the GP shedding site. Virus with an L635V substitution showed a substantial decrease in shedding, whereas a D637V substitution resulted in a striking increase in the release of shed GP. Variations in shedding efficacy correlated with observed differences in the amounts of shed GP in the medium, GP present in virus-infected cells, and GP present on virions. An increase in shedding appeared to be associated with a reduction in viral cytotoxicity, and, vice versa, the virus that shed less was more cytotoxic. An increase in shedding also resulted in a reduction in viral infectivity, whereas a decrease in shedding efficacy enhanced viral growth characteristics in vitro. Differences in shedding efficacy and, as a result, differences in the amount of mature GP available for incorporation into budding virions did not equate to differences in overall release of viral particles. Likewise, data suggest that the resulting differences in the amount of mature GP on the cell surface led to variations in the GP content of released particles and, as a consequence, in infectivity. In conclusion, fine-tuning of the levels of EBOV GP expressed at the surface of virus-infected cells via GP shedding plays an important role in EBOV replication by orchestrating the balance between optimal virion GP content and cytotoxicity caused by GP. © The Author 2015. Published by Oxford University Press on behalf of the Infectious

  5. Thermodynamic ocean-atmosphere Coupling and the Predictability of Nordeste rainfall

    Science.gov (United States)

    Chang, P.; Saravanan, R.; Giannini, A.

    2003-04-01

    The interannual variability of rainfall in the northeastern region of Brazil, or Nordeste, is known to be very strongly correlated with sea surface temperature (SST) variability, of Atlantic and Pacific origin. For this reason the potential predictability of Nordeste rainfall is high. The current generation of state-of-the-art atmospheric models can replicate the observed rainfall variability with high skill when forced with the observed record of SST variability. The correlation between observed and modeled indices of Nordeste rainfall, in the AMIP-style integrations with two such models (NSIPP and CCM3) analyzed here, is of the order of 0.8, i.e. the models explain about 2/3 of the observed variability. Assuming that thermodynamic, ocean-atmosphere heat exchange plays the dominant role in tropical Atlantic SST variability on the seasonal to interannual time scale, we analyze its role in Nordeste rainfall predictability using an atmospheric general circulation model coupled to a slab ocean model. Predictability experiments initialized with observed December SST show that thermodynamic coupling plays a significant role in enhancing the persistence of SST anomalies, both in the tropical Pacific and in the tropical Atlantic. We show that thermodynamic coupling is sufficient to provide fairly accurate forecasts of tropical Atlantic SST in the boreal spring that are significantly better than the persistence forecasts. The consequences for the prediction of Nordeste rainfall are analyzed.

  6. Men's re-placement: Social practices in a Men's Shed.

    Science.gov (United States)

    Anstiss, David; Hodgetts, Darrin; Stolte, Ottilie

    2018-05-06

    Transitions into retirement can be difficult at the best of times. Many men find themselves having to reflect on who they are and what their lives are about. Their access to social supports and material resources are often disrupted. Men's Sheds offer a space where retired men can actively pursue wellbeing, and respond to disruption and loneliness through emplaced community practices. This paper draws on ethnographic research in a Men's Shed in Auckland, New Zealand in order to explore the social practices through which men create a shared space for themselves in which they can engage in meaningful relationships with each other. We document how participants work in concert to create a space in which they can be together through collective labour. Their emplacement in the shed affords opportunities for supported transitions into retirement and for engaging healthy lives beyond paid employment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A thermodynamic model of sliding friction

    Directory of Open Access Journals (Sweden)

    Lasse Makkonen

    2012-03-01

    Full Text Available A first principles thermodynamic model of sliding friction is derived. The model predictions are in agreement with the observed friction laws both in macro- and nanoscale. When applied to calculating the friction coefficient the model provides a quantitative agreement with recent atomic force microscopy measurements on a number of materials.

  8. Thermodynamics I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics I includes review of properties and states of a pure substance, work and heat, energy and the first law of thermodynamics, entropy and the second law of thermodynamics

  9. Statistical Thermodynamics and Microscale Thermophysics

    Science.gov (United States)

    Carey, Van P.

    1999-08-01

    Many exciting new developments in microscale engineering are based on the application of traditional principles of statistical thermodynamics. In this text Van Carey offers a modern view of thermodynamics, interweaving classical and statistical thermodynamic principles and applying them to current engineering systems. He begins with coverage of microscale energy storage mechanisms from a quantum mechanics perspective and then develops the fundamental elements of classical and statistical thermodynamics. Subsequent chapters discuss applications of equilibrium statistical thermodynamics to solid, liquid, and gas phase systems. The remainder of the book is devoted to nonequilibrium thermodynamics of transport phenomena and to nonequilibrium effects and noncontinuum behavior at the microscale. Although the text emphasizes mathematical development, Carey includes many examples and exercises to illustrate how the theoretical concepts are applied to systems of scientific and engineering interest. In the process he offers a fresh view of statistical thermodynamics for advanced undergraduate and graduate students, as well as practitioners, in mechanical, chemical, and materials engineering.

  10. Thermodynamic products for Sen black hole

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Parthapratim [Vivekananda Satavarshiki Mahavidyalaya (Affiliated to Vidyasagar University), Department of Physics, Manikpara, West Bengal (India)

    2016-03-15

    We investigate the properties of inner and outer horizon thermodynamics of Sen black hole (BH) both in Einstein frame (EF) and string frame (SF). We also compute area (or entropy) product, area (or entropy) sum of the said BH in EF as well as SF. In the EF, we observe that the area (or entropy) product is universal, whereas area (or entropy) sum is not universal. On the other hand, in the SF, area (or entropy) product and area (or entropy) sum don't have any universal behaviour because they all are depends on Arnowitt-Deser-Misner (ADM) mass parameter. We also verify that the first law is satisfied at the Cauchy horizon as well as event horizon (EH). In addition, we also compute other thermodynamic products and sums in the EF as well as in the SF. We further compute the Smarr mass formula and Christodoulou's irreducible mass formula for Sen BH. Moreover, we compute the area bound and entropy bound for both the horizons. The upper area bound for EH is actually the Penrose like inequality, which is the first geometric inequality in BHs. Furthermore, we compute the central charges of the left and right moving sectors of the dual CFT in Sen/CFT correspondence using thermodynamic relations. These thermodynamic relations on the multi-horizons give us further understanding the microscopic nature of BH entropy (both interior and exterior). (orig.)

  11. A bankruptcy problem approach to load-shedding in multiagent-based microgrid operation.

    Science.gov (United States)

    Kim, Hak-Man; Kinoshita, Tetsuo; Lim, Yujin; Kim, Tai-Hoon

    2010-01-01

    A microgrid is composed of distributed power generation systems (DGs), distributed energy storage devices (DSs), and loads. To maintain a specific frequency in the islanded mode as an important requirement, the control of DGs' output and charge action of DSs are used in supply surplus conditions and load-shedding and discharge action of DSs are used in supply shortage conditions. Recently, multiagent systems for autonomous microgrid operation have been studied. Especially, load-shedding, which is intentional reduction of electricity use, is a critical problem in islanded microgrid operation based on the multiagent system. Therefore, effective schemes for load-shedding are required. Meanwhile, the bankruptcy problem deals with dividing short resources among multiple agents. In order to solve the bankruptcy problem, division rules, such as the constrained equal awards rule (CEA), the constrained equal losses rule (CEL), and the random arrival rule (RA), have been used. In this paper, we approach load-shedding as a bankruptcy problem. We compare load-shedding results by above-mentioned rules in islanded microgrid operation based on wireless sensor network (WSN) as the communication link for an agent's interactions.

  12. Circulation shedding in viscous starting flow past a flat plate

    International Nuclear Information System (INIS)

    Nitsche, Monika; Xu, Ling

    2014-01-01

    Numerical simulations of viscous flow past a flat plate moving in the direction normal to itself reveal details of the vortical structure of the flow. At early times, most of the vorticity is attached to the plate. This paper introduces a definition of the shed circulation at all times and shows that it indeed represents vorticity that separates and remains separated from the plate. During a large initial time period, the shed circulation satisfies the scaling laws predicted for self-similar inviscid separation. Various contributions to the circulation shedding rate are presented. The results show that during this initial time period, viscous diffusion of vorticity out of the vortex is significant but appears to be independent of the value of the Reynolds number. At later times, the departure of the shed circulation from its large Reynolds number behaviour is significantly affected by diffusive loss of vorticity through the symmetry axis. A timescale is proposed that describes when the viscous loss through the axis becomes relevant. The simulations provide benchmark results to evaluate simpler separation models such as point vortex and vortex sheet models. A comparison with vortex sheet results is included. (paper)

  13. Thermodynamically consistent Bayesian analysis of closed biochemical reaction systems

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2010-11-01

    Full Text Available Abstract Background Estimating the rate constants of a biochemical reaction system with known stoichiometry from noisy time series measurements of molecular concentrations is an important step for building predictive models of cellular function. Inference techniques currently available in the literature may produce rate constant values that defy necessary constraints imposed by the fundamental laws of thermodynamics. As a result, these techniques may lead to biochemical reaction systems whose concentration dynamics could not possibly occur in nature. Therefore, development of a thermodynamically consistent approach for estimating the rate constants of a biochemical reaction system is highly desirable. Results We introduce a Bayesian analysis approach for computing thermodynamically consistent estimates of the rate constants of a closed biochemical reaction system with known stoichiometry given experimental data. Our method employs an appropriately designed prior probability density function that effectively integrates fundamental biophysical and thermodynamic knowledge into the inference problem. Moreover, it takes into account experimental strategies for collecting informative observations of molecular concentrations through perturbations. The proposed method employs a maximization-expectation-maximization algorithm that provides thermodynamically feasible estimates of the rate constant values and computes appropriate measures of estimation accuracy. We demonstrate various aspects of the proposed method on synthetic data obtained by simulating a subset of a well-known model of the EGF/ERK signaling pathway, and examine its robustness under conditions that violate key assumptions. Software, coded in MATLAB®, which implements all Bayesian analysis techniques discussed in this paper, is available free of charge at http://www.cis.jhu.edu/~goutsias/CSS%20lab/software.html. Conclusions Our approach provides an attractive statistical methodology for

  14. Thermodynamics an engineering approach

    CERN Document Server

    Cengel, Yunus A

    2014-01-01

    Thermodynamics, An Engineering Approach, eighth edition, covers the basic principles of thermodynamics while presenting a wealth of real-world engineering examples so students get a feel for how thermodynamics is applied in engineering practice. This text helps students develop an intuitive understanding by emphasizing the physics and physical arguments. Cengel and Boles explore the various facets of thermodynamics through careful explanations of concepts and use of numerous practical examples and figures, having students develop necessary skills to bridge the gap between knowledge and the confidence to properly apply their knowledge. McGraw-Hill is proud to offer Connect with the eighth edition of Cengel/Boles, Thermodynamics, An Engineering Approach. This innovative and powerful new system helps your students learn more efficiently and gives you the ability to assign homework problems simply and easily. Problems are graded automatically, and the results are recorded immediately. Track individual stude...

  15. Lysozyme and bilirubin bind to ACE and regulate its conformation and shedding

    Science.gov (United States)

    Danilov, Sergei M.; Lünsdorf, Heinrich; Akinbi, Henry T.; Nesterovitch, Andrew B.; Epshtein, Yuliya; Letsiou, Eleftheria; Kryukova, Olga V.; Piegeler, Tobias; Golukhova, Elena Z.; Schwartz, David E.; Dull, Randal O.; Minshall, Richard D.; Kost, Olga A.; Garcia, Joe G. N.

    2016-01-01

    Angiotensin I-converting enzyme (ACE) hydrolyzes numerous peptides and is a critical participant in blood pressure regulation and vascular remodeling. Elevated tissue ACE levels are associated with increased risk for cardiovascular and respiratory disorders. Blood ACE concentrations are determined by proteolytic cleavage of ACE from the endothelial cell surface, a process that remains incompletely understood. In this study, we identified a novel ACE gene mutation (Arg532Trp substitution in the N domain of somatic ACE) that increases blood ACE activity 7-fold and interrogated the mechanism by which this mutation significantly increases blood ACE levels. We hypothesized that this ACE mutation disrupts the binding site for blood components which may stabilize ACE conformation and diminish ACE shedding. We identified the ACE-binding protein in the blood as lysozyme and also a Low Molecular Weight (LMW) ACE effector, bilirubin, which act in concert to regulate ACE conformation and thereby influence ACE shedding. These results provide mechanistic insight into the elevated blood level of ACE observed in patients on ACE inhibitor therapy and elevated blood lysozyme and ACE levels in sarcoidosis patients. PMID:27734897

  16. Adjoint sensitivity studies of loop current and eddy shedding in the Gulf of Mexico

    KAUST Repository

    Gopalakrishnan, Ganesh; Cornuelle, Bruce D.; Hoteit, Ibrahim

    2013-01-01

    Adjoint model sensitivity analyses were applied for the loop current (LC) and its eddy shedding in the Gulf of Mexico (GoM) using the MIT general circulation model (MITgcm). The circulation in the GoM is mainly driven by the energetic LC and subsequent LC eddy separation. In order to understand which ocean regions and features control the evolution of the LC, including anticyclonic warm-core eddy shedding in the GoM, forward and adjoint sensitivities with respect to previous model state and atmospheric forcing were computed using the MITgcm and its adjoint. Since the validity of the adjoint model sensitivities depends on the capability of the forward model to simulate the real LC system and the eddy shedding processes, a 5 year (2004–2008) forward model simulation was performed for the GoM using realistic atmospheric forcing, initial, and boundary conditions. This forward model simulation was compared to satellite measurements of sea-surface height (SSH) and sea-surface temperature (SST), and observed transport variability. Despite realistic mean state, standard deviations, and LC eddy shedding period, the simulated LC extension shows less variability and more regularity than the observations. However, the model is suitable for studying the LC system and can be utilized for examining the ocean influences leading to a simple, and hopefully generic LC eddy separation in the GoM. The adjoint sensitivities of the LC show influences from the Yucatan Channel (YC) flow and Loop Current Frontal Eddy (LCFE) on both LC extension and eddy separation, as suggested by earlier work. Some of the processes that control LC extension after eddy separation differ from those controlling eddy shedding, but include YC through-flow. The sensitivity remains stable for more than 30 days and moves generally upstream, entering the Caribbean Sea. The sensitivities of the LC for SST generally remain closer to the surface and move at speeds consistent with advection by the high-speed core of

  17. Adjoint sensitivity studies of loop current and eddy shedding in the Gulf of Mexico

    KAUST Repository

    Gopalakrishnan, Ganesh

    2013-07-01

    Adjoint model sensitivity analyses were applied for the loop current (LC) and its eddy shedding in the Gulf of Mexico (GoM) using the MIT general circulation model (MITgcm). The circulation in the GoM is mainly driven by the energetic LC and subsequent LC eddy separation. In order to understand which ocean regions and features control the evolution of the LC, including anticyclonic warm-core eddy shedding in the GoM, forward and adjoint sensitivities with respect to previous model state and atmospheric forcing were computed using the MITgcm and its adjoint. Since the validity of the adjoint model sensitivities depends on the capability of the forward model to simulate the real LC system and the eddy shedding processes, a 5 year (2004–2008) forward model simulation was performed for the GoM using realistic atmospheric forcing, initial, and boundary conditions. This forward model simulation was compared to satellite measurements of sea-surface height (SSH) and sea-surface temperature (SST), and observed transport variability. Despite realistic mean state, standard deviations, and LC eddy shedding period, the simulated LC extension shows less variability and more regularity than the observations. However, the model is suitable for studying the LC system and can be utilized for examining the ocean influences leading to a simple, and hopefully generic LC eddy separation in the GoM. The adjoint sensitivities of the LC show influences from the Yucatan Channel (YC) flow and Loop Current Frontal Eddy (LCFE) on both LC extension and eddy separation, as suggested by earlier work. Some of the processes that control LC extension after eddy separation differ from those controlling eddy shedding, but include YC through-flow. The sensitivity remains stable for more than 30 days and moves generally upstream, entering the Caribbean Sea. The sensitivities of the LC for SST generally remain closer to the surface and move at speeds consistent with advection by the high-speed core of

  18. Thermodynamics of adaptive molecular resolution.

    Science.gov (United States)

    Delgado-Buscalioni, R

    2016-11-13

    A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U (1) -U (0) The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al, J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as 'real' thermodynamic variablesThis article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  19. Experimental Investigation of Vortex Shedding in High Reynolds Number Flow Over Compressor Blades in Cascade

    National Research Council Canada - National Science Library

    Lim, Choon

    2003-01-01

    .... Vortex shedding was determined to be a leading edge phenomenon as periodic shedding was only detected on the pressure side of the wake, The relationship between vortex shedding frequency and Reynolds...

  20. Equilibrium thermodynamics - Callen's postulational approach

    NARCIS (Netherlands)

    Jongschaap, R.J.J.; Öttinger, Hans Christian

    2001-01-01

    In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates

  1. Community-based Men's Sheds: promoting male health, wellbeing and social inclusion in an international context.

    Science.gov (United States)

    Cordier, Reinie; Wilson, Nathan J

    2014-09-01

    Males experience greater mortality and morbidity than females in most Western countries. The Australian and Irish National Male Health Policies aim to develop a framework to address this gendered health disparity. Men's Sheds have a distinct community development philosophy and are thus identified in both policies as an ideal location to address social isolation and positively impact the health and wellbeing of males who attend. The aim of this international cross-sectional survey was to gather information about Men's Sheds, the people who attend Men's Sheds, the activities at Men's Sheds, and the social and health dimensions of Men's Sheds. Results demonstrate that Men's Sheds are contributing a dual health and social role for a range of male subgroups. In particular, Men's Sheds have an outward social focus, supporting the social and mental health needs of men; health promotion and health literacy are key features of Men's Sheds. Men's Sheds have an important role to play in addressing the gendered health disparity that males face. They serve as an exemplar to health promotion professionals of a community development context where the aims of male health policy can be actualized as one part of a wider suite of global initiatives to reduce the gendered health disparity. © The Author (2013). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Persistent genital herpes simplex virus-2 shedding years following the first clinical episode.

    Science.gov (United States)

    Phipps, Warren; Saracino, Misty; Magaret, Amalia; Selke, Stacy; Remington, Mike; Huang, Meei-Li; Warren, Terri; Casper, Corey; Corey, Lawrence; Wald, Anna

    2011-01-15

    Patients with newly acquired genital herpes simplex virus 2 (HSV-2) infection have virus frequently detected at the genital mucosa. Rates of genital shedding initially decrease over time after infection, but data on long-term viral shedding are lacking. For this study, 377 healthy adults with history of symptomatic genital HSV-2 infection collected anogenital swabs for HSV-2 DNA polymerase chain reaction for at least 30 consecutive days. Time since first genital herpes episode was significantly associated with reduced genital shedding. Total HSV shedding occurred on 33.6% of days in participants <1 year, 20.6% in those 1-9 years, and 16.7% in those ≥10 years from first episode. Subclinical HSV shedding occurred on 26.2% of days among participants <1 year, 13.1% in those 1-9 years, and 9.3% in those ≥10 years from first episode. On days with HSV detection, mean quantity was 4.9 log₁₀ copies/mL for those <1 year, 4.7 log₁₀ copies/mL among those 1-9 years, and 4.6 log₁₀ copies/mL among those ≥10 years since first episode. Rates of total and subclinical HSV-2 shedding decrease after the first year following the initial clinical episode. However, viral shedding persists at high rates and copy numbers years after infection, and therefore may pose continued risk of HSV-2 transmission to sexual partners.

  3. Virus and host-specific differences in oral human herpesvirus shedding kinetics among Ugandan women and children.

    Science.gov (United States)

    Matrajt, Laura; Gantt, Soren; Mayer, Bryan T; Krantz, Elizabeth M; Orem, Jackson; Wald, Anna; Corey, Lawrence; Schiffer, Joshua T; Casper, Corey

    2017-10-12

    Human herpesviruses (HHV) establish lifelong latent infection and are transmitted primarily via shedding at mucosal surfaces. Each HHV causes a unique spectrum of disease depending on the infected individual's age and immunity. We collected weekly oral swabs from young children and mothers in 32 Ugandan households for a median of one year. We characterized kinetics of oral shedding during primary and chronic infection for each virus. Cytomegalovirus (CMV), Epstein-Barr virus (EBV), and HHV-6 were shed at high rates following primary infection. The rate of oral herpes simplex virus (HSV) shedding was lower overall, and children and mothers with chronic HSV infection had lower shedding rates than children with primary infection. CMV shedding rate and viral load were higher in children with primary infection compared to children with chronic infection, and even lower in mothers with chronic infection. HHV-6 shedding rate and viral load were similar between children with primary or chronic infection, but lower in mothers. EBV shedding rate and quantity decreased less dramatically in mothers versus children, with HIV-positive mothers shedding at a higher rate than HIV-negative mothers. Each HHV has a distinct pattern of oral shedding which depends partially on the age and immune status of the host.

  4. Thermodynamics for the practicing engineer

    CERN Document Server

    Theodore, Louis; Vanvliet, Timothy

    2009-01-01

    This book concentrates specifically on the applications of thermodynamics, rather than the theory. It addresses both technical and pragmatic problems in the field, and covers such topics as enthalpy effects, equilibrium thermodynamics, non-ideal thermodynamics and energy conversion applications. Providing the reader with a working knowledge of the principles of thermodynamics, as well as experience in their application, it stands alone as an easy-to-follow self-teaching aid to practical applications and contains worked examples.

  5. Hamiltonian and Thermodynamic Modeling of Quantum Turbulence

    Science.gov (United States)

    Grmela, Miroslav

    2010-10-01

    The state variables in the novel model introduced in this paper are the fields playing this role in the classical Landau-Tisza model and additional fields of mass, entropy (or temperature), superfluid velocity, and gradient of the superfluid velocity, all depending on the position vector and another tree dimensional vector labeling the scale, describing the small-scale structure developed in 4He superfluid experiencing turbulent motion. The fluxes of mass, momentum, energy, and entropy in the position space as well as the fluxes of energy and entropy in scales, appear in the time evolution equations as explicit functions of the state variables and of their conjugates. The fundamental thermodynamic relation relating the fields to their conjugates is left in this paper undetermined. The GENERIC structure of the equations serves two purposes: (i) it guarantees that solutions to the governing equations, independently of the choice of the fundamental thermodynamic relation, agree with the observed compatibility with thermodynamics, and (ii) it is used as a guide in the construction of the novel model.

  6. Cosmological event horizons, thermodynamics, and particle creation

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Hawking, S.W.

    1977-01-01

    It is shown that the close connection between event horizons and thermodynamics which has been found in the case of black holes can be extended to cosmological models with a repulsive cosmological constant. An observer in these models will have an event horizon whose area can be interpreted as the entropy or lack of information of the observer about the regions which he cannot see. Associated with the event horizon is a surface gravity kappa which enters a classical ''first law of event horizons'' in a manner similar to that in which temperature occurs in the first law of thermodynamics. It is shown that this similarity is more than an analogy: An observer with a particle detector will indeed observe a background of thermal radiation coming apparently from the cosmological event horizon. If the observer absorbs some of this radiation, he will gain energy and entropy at the expense of the region beyond his ken and the event horizon will shrink. The derivation of these results involves abandoning the idea that particles should be defined in an observer-independent manner. They also suggest that one has to use something like the Everett-Wheeler interpretation of quantum mechanics because the back reaction and hence the spacetime metric itself appear to be observer-dependent, if one assumes, as seems reasonable, that the detection of a particle is accompanied by a change in the gravitational field

  7. A Bankruptcy Problem Approach to Load-shedding in Multiagent-based Microgrid Operation

    Directory of Open Access Journals (Sweden)

    Yujin Lim

    2010-09-01

    Full Text Available A microgrid is composed of distributed power generation systems (DGs, distributed energy storage devices (DSs, and loads. To maintain a specific frequency in the islanded mode as an important requirement,  the control of DGs’ output and charge action of DSs are used in supply surplus conditions and load-shedding and discharge action of DSs are used in supply shortage conditions. Recently, multiagent systems for autonomous microgrid operation have been studied. Especially, load-shedding, which is intentional reduction of electricity use, is a critical problem in islanded microgrid operation based on the multiagent system. Therefore, effective schemes for load-shedding are required. Meanwhile, the bankruptcy problem deals with dividing short resources among multiple agents. In order to solve the bankruptcy problem, division rules, such as the constrained equal awards rule (CEA, the constrained equal losses rule (CEL, and the random arrival rule (RA, have been used. In this paper, we approach load-shedding as a bankruptcy problem. We compare load-shedding results by above-mentioned rules in islanded microgrid operation based on wireless sensor network (WSN as the communication link for an agent’s interactions.

  8. Under-Frequency Load Shedding Technique Considering Event-Based for an Islanded Distribution Network

    Directory of Open Access Journals (Sweden)

    Hasmaini Mohamad

    2016-06-01

    Full Text Available One of the biggest challenge for an islanding operation is to sustain the frequency stability. A large power imbalance following islanding would cause under-frequency, hence an appropriate control is required to shed certain amount of load. The main objective of this research is to develop an adaptive under-frequency load shedding (UFLS technique for an islanding system. The technique is designed considering an event-based which includes the moment system is islanded and a tripping of any DG unit during islanding operation. A disturbance magnitude is calculated to determine the amount of load to be shed. The technique is modeled by using PSCAD simulation tool. A simulation studies on a distribution network with mini hydro generation is carried out to evaluate the UFLS model. It is performed under different load condition: peak and base load. Results show that the load shedding technique have successfully shed certain amount of load and stabilized the system frequency.

  9. Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    T.A. Semelsberger

    2004-10-01

    The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

  10. Zika Virus Shedding in Semen of Symptomatic Infected Men.

    Science.gov (United States)

    Mead, Paul S; Duggal, Nisha K; Hook, Sarah A; Delorey, Mark; Fischer, Marc; Olzenak McGuire, Dana; Becksted, Heidi; Max, Ryan J; Anishchenko, Michael; Schwartz, Amy M; Tzeng, Wen-Pin; Nelson, Christina A; McDonald, Erin M; Brooks, John T; Brault, Aaron C; Hinckley, Alison F

    2018-04-12

    Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that has been linked to adverse birth outcomes. Previous reports have shown that person-to-person transmission can occur by means of sexual contact. We conducted a prospective study involving men with symptomatic ZIKV infection to determine the frequency and duration of ZIKV shedding in semen and urine and to identify risk factors for prolonged shedding in these fluids. Specimens were obtained twice per month for 6 months after illness onset and were tested by real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay for ZIKV RNA and by Vero cell culture and plaque assay for infectious ZIKV. A total of 1327 semen samples from 184 men and 1038 urine samples from 183 men were obtained 14 to 304 days after illness onset. ZIKV RNA was detected in the urine of 7 men (4%) and in the semen of 60 (33%), including in semen samples from 22 of 36 men (61%) who were tested within 30 days after illness onset. ZIKV RNA shedding in semen decreased substantially during the 3 months after illness onset but continued for 281 days in 1 man (1%). Factors that were independently associated with prolonged RNA shedding included older age, less frequent ejaculation, and the presence of certain symptoms at the time of initial illness. Infectious ZIKV was isolated from 3 of 78 semen samples with detectable ZIKV RNA, all obtained within 30 days after illness onset and all with at least 7.0 log 10 ZIKV RNA copies per milliliter of semen. ZIKV RNA was commonly present in the semen of men with symptomatic ZIKV infection and persisted in some men for more than 6 months. In contrast, shedding of infectious ZIKV appeared to be much less common and was limited to the first few weeks after illness onset. (Funded by the Centers for Disease Control and Prevention.).

  11. Thermodynamics of a class of regular black holes with a generalized uncertainty principle

    Science.gov (United States)

    Maluf, R. V.; Neves, Juliano C. S.

    2018-05-01

    In this article, we present a study on thermodynamics of a class of regular black holes. Such a class includes Bardeen and Hayward regular black holes. We obtained thermodynamic quantities like the Hawking temperature, entropy, and heat capacity for the entire class. As part of an effort to indicate some physical observable to distinguish regular black holes from singular black holes, we suggest that regular black holes are colder than singular black holes. Besides, contrary to the Schwarzschild black hole, that class of regular black holes may be thermodynamically stable. From a generalized uncertainty principle, we also obtained the quantum-corrected thermodynamics for the studied class. Such quantum corrections provide a logarithmic term for the quantum-corrected entropy.

  12. Thermodynamic properties of a liquid crystal carbosilane dendrimer

    Science.gov (United States)

    Samosudova, Ya. S.; Markin, A. V.; Smirnova, N. N.; Ogurtsov, T. G.; Boiko, N. I.; Shibaev, V. P.

    2016-11-01

    The temperature dependence of the heat capacity of a first-generation liquid crystal carbosilane dendrimer with methoxyphenyl benzoate end groups is studied for the first time in the region of 6-370 K by means of precision adiabatic vacuum calorimetry. Physical transformations are observed in this interval of temperatures, and their standard thermodynamic characteristics are determined and discussed. Standard thermodynamic functions C p ° ( T), H°( T) - H°(0), S°( T) - S°(0), and G°( T) - H°(0) are calculated from the obtained experimental data for the region of T → 0 to 370 K. The standard entropy of formation of the dendrimer in the partially crystalline state at T = 298.15 K is calculated, and the standard entropy of the hypothetic reaction of its synthesis at this temperature is estimated. The thermodynamic properties of the studied dendrimer are compared to those of second- and fourth-generation liquid crystal carbosilane dendrimers with the same end groups studied earlier.

  13. Thermodynamics: The Unique Universal Science

    Directory of Open Access Journals (Sweden)

    Wassim M. Haddad

    2017-11-01

    Full Text Available Thermodynamics is a physical branch of science that governs the thermal behavior of dynamical systems from those as simple as refrigerators to those as complex as our expanding universe. The laws of thermodynamics involving conservation of energy and nonconservation of entropy are, without a doubt, two of the most useful and general laws in all sciences. The first law of thermodynamics, according to which energy cannot be created or destroyed, merely transformed from one form to another, and the second law of thermodynamics, according to which the usable energy in an adiabatically isolated dynamical system is always diminishing in spite of the fact that energy is conserved, have had an impact far beyond science and engineering. In this paper, we trace the history of thermodynamics from its classical to its postmodern forms, and present a tutorial and didactic exposition of thermodynamics as it pertains to some of the deepest secrets of the universe.

  14. Hot-Wire Calibration at Low Velocities: Revisiting the Vortex Shedding Method

    Directory of Open Access Journals (Sweden)

    Sohrab S. Sattarzadeh

    2013-01-01

    Full Text Available The necessity to calibrate hot-wire probes against a known velocity causes problems at low velocities, due to the inherent inaccuracy of pressure transducers at low differential pressures. The vortex shedding calibration method is in this respect a recommended technique to obtain calibration data at low velocities, due to its simplicity and accuracy. However, it has mainly been applied in a low and narrow Reynolds number range known as the laminar vortex shedding regime. Here, on the other hand, we propose to utilize the irregular vortex shedding regime and show where the probe needs to be placed with respect to the cylinder in order to obtain unambiguous calibration data.

  15. Surface tension and related thermodynamic quantities of aqueous electrolyte solutions

    CERN Document Server

    Matubayasi, Norihiro

    2013-01-01

    Surface tension provides a thermodynamic avenue for analyzing systems in equilibrium and formulating phenomenological explanations for the behavior of constituent molecules in the surface region. While there are extensive experimental observations and established ideas regarding desorption of ions from the surfaces of aqueous salt solutions, a more successful discussion of the theory has recently emerged, which allows the quantitative calculation of the distribution of ions in the surface region. Surface Tension and Related Thermodynamic Quantities of Aqueous Electrolyte Solutions provides a d

  16. Ideal thermodynamic processes of oscillatory-flow regenerative engines will go to ideal stirling cycle?

    Science.gov (United States)

    Luo, Ercang

    2012-06-01

    This paper analyzes the thermodynamic cycle of oscillating-flow regenerative machines. Unlike the classical analysis of thermodynamic textbooks, the assumptions for pistons' movement limitations are not needed and only ideal flowing and heat transfer should be maintained in our present analysis. Under such simple assumptions, the meso-scale thermodynamic cycles of each gas parcel in typical locations of a regenerator are analyzed. It is observed that the gas parcels in the regenerator undergo Lorentz cycle in different temperature levels, whereas the locus of all gas parcels inside the regenerator is the Ericson-like thermodynamic cycle. Based on this new finding, the author argued that ideal oscillating-flow machines without heat transfer and flowing losses is not the Stirling cycle. However, this new thermodynamic cycle can still achieve the same efficiency of the Carnot heat engine and can be considered a new reversible thermodynamic cycle under two constant-temperature heat sinks.

  17. Experimental approaches to membrane thermodynamics

    DEFF Research Database (Denmark)

    Westh, Peter

    2009-01-01

    Thermodynamics describes a system on the macroscopic scale, yet it is becoming an important tool for the elucidation of many specific molecular aspects of membrane properties. In this note we discuss this application of thermodynamics, and give a number of examples on how thermodynamic measurements...... have contributed to the understanding of specific membrane phenomena. We mainly focus on non-specific interactions of bilayers and small molecules (water and solutes) in the surrounding solvent, and the changes in membrane properties they bring about. Differences between thermodynamic...

  18. Black Holes and Thermodynamics

    OpenAIRE

    Wald, Robert M.

    1997-01-01

    We review the remarkable relationship between the laws of black hole mechanics and the ordinary laws of thermodynamics. It is emphasized that - in analogy with the laws of thermodynamics - the validity the laws of black hole mechanics does not appear to depend upon the details of the underlying dynamical theory (i.e., upon the particular field equations of general relativity). It also is emphasized that a number of unresolved issues arise in ``ordinary thermodynamics'' in the context of gener...

  19. The seroprevalence and salivary shedding of herpesviruses in Behçet's syndrome and recurrent aphthous stomatitis

    Directory of Open Access Journals (Sweden)

    Noha Seoudi

    2015-06-01

    Full Text Available Background: Behçet's syndrome (BS is one of the multisystemic diseases that presents with oral ulceration and several other systemic manifestations including genital ulceration, folliculitis, erythema nodosum-like lesions, uveitis, and arthropathy. Ocular manifestation, central nervous system involvement, and gastrointestinal manifestation account for most of the complications of this disease, whereas orogenital ulceration and dermatological involvement affects the quality of life. The cause of the disease is not fully elucidated; however, herpesviruses have long been thought to play a pivotal role in the disease pathogenesis. Objective: To investigate the seroprevalence and salivary shedding of herpesviruses in BS. Method: The levels of specific immunoglobulin G in six different herpesviruses in serum samples collected from 54 BS, 28 healthy controls (HC, and 7 recurrent aphthous stomatitis (RAS patients were investigated. Salivary viral load was also quantified for these viruses in matched saliva samples using quantitative real-time polymerase chain reaction. Results: The BS had lower cytomegalovirus (CMV IgG level in comparison to HC (p=0.0226 and RAS (p=0.0450. There was statistically significant higher salivary shedding of Epstein-Barr virus (EBV in BS in comparison to HC (p=0.0052, but not RAS (p=0.3318. Conclusions: A high EBV shedding was observed in both BS and RAS and a lower level of CMV IgG was observed in BS only. The reason for the observed lower level of CMV IgG in BS is not clear. However, one explanation might be a defect in the cross-talk between innate and adaptive immune responses which was suggested by a previously described defect in the toll-like receptor 1 and 2 heterodimer formation and function, this being the initial receptor sensing of CMV.

  20. Thermodynamics and statistical physics. 2. rev. ed.

    International Nuclear Information System (INIS)

    Schnakenberg, J.

    2002-01-01

    This textbook covers tthe following topics: Thermodynamic systems and equilibrium, irreversible thermodynamics, thermodynamic potentials, stability, thermodynamic processes, ideal systems, real gases and phase transformations, magnetic systems and Landau model, low temperature thermodynamics, canonical ensembles, statistical theory, quantum statistics, fermions and bosons, kinetic theory, Bose-Einstein condensation, photon gas

  1. Birds shed RNA-viruses according to the pareto principle.

    Directory of Open Access Journals (Sweden)

    Mark D Jankowski

    Full Text Available A major challenge in disease ecology is to understand the role of individual variation of infection load on disease transmission dynamics and how this influences the evolution of resistance or tolerance mechanisms. Such information will improve our capacity to understand, predict, and mitigate pathogen-associated disease in all organisms. In many host-pathogen systems, particularly macroparasites and sexually transmitted diseases, it has been found that approximately 20% of the population is responsible for approximately 80% of the transmission events. Although host contact rates can account for some of this pattern, pathogen transmission dynamics also depend upon host infectiousness, an area that has received relatively little attention. Therefore, we conducted a meta-analysis of pathogen shedding rates of 24 host (avian - pathogen (RNA-virus studies, including 17 bird species and five important zoonotic viruses. We determined that viral count data followed the Weibull distribution, the mean Gini coefficient (an index of inequality was 0.687 (0.036 SEM, and that 22.0% (0.90 SEM of the birds shed 80% of the virus across all studies, suggesting an adherence of viral shedding counts to the Pareto Principle. The relative position of a bird in a distribution of viral counts was affected by factors extrinsic to the host, such as exposure to corticosterone and to a lesser extent reduced food availability, but not to intrinsic host factors including age, sex, and migratory status. These data provide a quantitative view of heterogeneous virus shedding in birds that may be used to better parameterize epidemiological models and understand transmission dynamics.

  2. Birds shed RNA-viruses according to the pareto principle.

    Science.gov (United States)

    Jankowski, Mark D; Williams, Christopher J; Fair, Jeanne M; Owen, Jennifer C

    2013-01-01

    A major challenge in disease ecology is to understand the role of individual variation of infection load on disease transmission dynamics and how this influences the evolution of resistance or tolerance mechanisms. Such information will improve our capacity to understand, predict, and mitigate pathogen-associated disease in all organisms. In many host-pathogen systems, particularly macroparasites and sexually transmitted diseases, it has been found that approximately 20% of the population is responsible for approximately 80% of the transmission events. Although host contact rates can account for some of this pattern, pathogen transmission dynamics also depend upon host infectiousness, an area that has received relatively little attention. Therefore, we conducted a meta-analysis of pathogen shedding rates of 24 host (avian) - pathogen (RNA-virus) studies, including 17 bird species and five important zoonotic viruses. We determined that viral count data followed the Weibull distribution, the mean Gini coefficient (an index of inequality) was 0.687 (0.036 SEM), and that 22.0% (0.90 SEM) of the birds shed 80% of the virus across all studies, suggesting an adherence of viral shedding counts to the Pareto Principle. The relative position of a bird in a distribution of viral counts was affected by factors extrinsic to the host, such as exposure to corticosterone and to a lesser extent reduced food availability, but not to intrinsic host factors including age, sex, and migratory status. These data provide a quantitative view of heterogeneous virus shedding in birds that may be used to better parameterize epidemiological models and understand transmission dynamics.

  3. Entropy, related thermodynamic properties, and structure of methylisocyanate

    International Nuclear Information System (INIS)

    Davis, Phil S.; Kilpatrick, John E.

    2013-01-01

    Highlights: ► The thermodynamic properties of methylisocyanate have been determined by isothermal calorimetry from 15 to 298.15 K. ► The third law entropy has been compared with the entropy calculated by statistical thermodynamics. ► The comparisons are consistent with selected proposed molecular structures and vibrational frequencies. -- Abstract: The entropy and related thermodynamic properties of methylisocyanate, CH 3 NCO, have been determined by isothermal calorimetry. The entropy in the ideal gas state at 298.15 K and 1 atmosphere is S m o = 284.3 ± 0.6 J/K · mol. Other thermodynamic properties determined include: the heat capacity from 15 to 300 K, the temperature of fusion (T fus = 178.461 ± 0.024 K), the enthalpy of fusion (ΔH fus = 7455.2 ± 14.0 J/mol), the enthalpy of vaporization at 298.15 K (ΔH vap = 28768 ± 54 J/mol), and the vapor pressure from fusion to 300 K. Using statistical thermodynamics, the entropy in this same state has been calculated for various assumed structures for methylisocyante which have been proposed based on several spectroscopic and ab initio results. Comparisons between the experimental and calculated entropy have led to the following conclusions concerning historical differences among problematic structural properties: (1) The CNC/CNO angles can have the paired values of 140/180° or 135/173° respectively. It is not possible to distinguish between the two by this thermodynamic analysis. (2) The methyl group functions as a free rotor or near free rotor against the NCO rigid frame. The barrier to internal rotation is less than 2100 J/mol. (3) The CNC vibrational bending frequency is consistent with the more recently observed assignments at 165 and 172 cm −1 with some degree of anharmonicity or with a pure harmonic at about 158 cm −1

  4. Molecular thermodynamics of nonideal fluids

    CERN Document Server

    Lee, Lloyd L

    2013-01-01

    Molecular Thermodynamics of Nonideal Fluids serves as an introductory presentation for engineers to the concepts and principles behind and the advances in molecular thermodynamics of nonideal fluids. The book covers related topics such as the laws of thermodynamics; entropy; its ensembles; the different properties of the ideal gas; and the structure of liquids. Also covered in the book are topics such as integral equation theories; theories for polar fluids; solution thermodynamics; and molecular dynamics. The text is recommended for engineers who would like to be familiarized with the concept

  5. Finite-size polyelectrolyte bundles at thermodynamic equilibrium

    Science.gov (United States)

    Sayar, M.; Holm, C.

    2007-01-01

    We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite-size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite-size aggregates.

  6. Coherence and measurement in quantum thermodynamics.

    Science.gov (United States)

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  7. Solvation thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    1987-01-01

    This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen­ tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther­ modynamics alone. However, solvation is inherently a molecular pro­ cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 b...

  8. Modern thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    2017-01-01

    This textbook introduces thermodynamics with a modern approach, starting from four fundamental physical facts (the atomic nature of matter, the indistinguishability of atoms and molecules of the same species, the uncertainty principle, and the existence of equilibrium states) and analyzing the behavior of complex systems with the tools of information theory, in particular with Shannon's measure of information (or SMI), which can be defined on any probability distribution. SMI is defined and its properties and time evolution are illustrated, and it is shown that the entropy is a particular type of SMI, i.e. the SMI related to the phase-space distribution for a macroscopic system at equilibrium. The connection to SMI allows the reader to understand what entropy is and why isolated systems follow the Second Law of Thermodynamics. The Second Llaw is also formulated for other systems, not thermally isolated and even open with respect to the transfer of particles. All the fundamental aspects of thermodynamics are d...

  9. Middle East respiratory syndrome coronavirus (MERS-CoV viral shedding in the respiratory tract: an observational analysis with infection control implications

    Directory of Open Access Journals (Sweden)

    Ziad A. Memish

    2014-12-01

    Conclusions: Contacts cleared MERS-CoV earlier than ill patients. This finding could be related to the types of sample as well as the types of patient studied. More ill patients with significant comorbidities shed the virus for a significantly longer time. The results of this study could have critical implications for infection control guidance and its application in healthcare facilities handling positive cases.

  10. Thermodynamically efficient solar concentrators

    Science.gov (United States)

    Winston, Roland

    2012-10-01

    Non-imaging Optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence in this paper a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for design of thermal and even photovoltaic systems. This new way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory while "optics" in the conventional sense recedes into the background.

  11. Thermodynamics of quantum strings

    CERN Document Server

    Morgan, M J

    1994-01-01

    A statistical mechanical analysis of an ideal gas of non-relativistic quantum strings is presented, in which the thermodynamic properties of the string gas are calculated from a canonical partition function. This toy model enables students to gain insight into the thermodynamics of a simple 'quantum field' theory, and provides a useful pedagogical introduction to the more complicated relativistic string theories. A review is also given of the thermodynamics of the open bosonic string gas and the type I (open) superstring gas. (author)

  12. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  13. Thermodynamics in Loop Quantum Cosmology

    International Nuclear Information System (INIS)

    Li, L.F.; Zhu, J.Y.

    2009-01-01

    Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. Moreover, the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but also are actually found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.

  14. Choice of the thermodynamic variables

    International Nuclear Information System (INIS)

    Balian, R.

    1985-09-01

    Some basic ideas of thermodynamics and statistical mechanics, both at equilibrium and off equilibrium, are recalled. In particular, the selection of relevant variables which underlies any macroscopic description is discussed, together with the meaning of the various thermodynamic quantities, in order to set the thermodynamic approaches used in nuclear physics in a general prospect [fr

  15. Theory of the thermodynamic influence of solution-phase additives in shape-controlled nanocrystal synthesis.

    Science.gov (United States)

    Qi, Xin; Fichthorn, Kristen A

    2017-10-19

    Though many experimental studies have documented that certain solution-phase additives can play a key role in the shape-selective synthesis of metal nanocrystals, the origins and mechanisms of this shape selectivity are still unclear. One possible role of such molecules is to thermodynamically induce the equilibrium shape of a nanocrystal by altering the interfacial free energies of the facets. Using a multi-scheme thermodynamic integration method that we recently developed [J. Chem. Phys., 2016, 145, 194108], we calculate the solid-liquid interfacial free energies γ sl and investigate the propensity to achieve equilibrium shapes in such syntheses. We first apply this method to Ag(100) and Ag(111) facets in ethylene glycol solution containing polyvinylpyrrolidone (PVP), to mimic the environment in polyol synthesis of Ag nanocrystals. We find that although PVP has a preferred binding to Ag(100), its selectivity is not sufficient to induce a thermodynamic preference for {100}-faceted nanocubes, as has been observed experimentally. This indicates that PVP promotes Ag nanocube formation kinetically rather than thermodynamically. We further quantify the thermodynamic influence of adsorbed solution-phase additives for generic molecules, by building a γ sl ratio/nanocrystal shape map as a function of zero-temperature binding energies. This map can be used to gauge the efficacy of candidate additive molecules for producing targeted thermodynamic nanocrystal shapes. The results indicate that only additives with a strong facet selectivity can impart significant thermodynamic-shape change. Therefore, many of the nanocrystals observed in experiments are likely kinetic products.

  16. Secretome analysis to elucidate metalloprotease-dependent ectodomain shedding of glycoproteins during neuronal differentiation.

    Science.gov (United States)

    Tsumagari, Kazuya; Shirakabe, Kyoko; Ogura, Mayu; Sato, Fuminori; Ishihama, Yasushi; Sehara-Fujisawa, Atsuko

    2017-02-01

    Many membrane proteins are subjected to limited proteolyses at their juxtamembrane regions, processes referred to as ectodomain shedding. Shedding ectodomains of membrane-bound ligands results in activation of downstream signaling pathways, whereas shedding those of cell adhesion molecules causes loss of cell-cell contacts. Secreted proteomics (secretomics) using high-resolution mass spectrometry would be strong tools for both comprehensive identification and quantitative measurement of membrane proteins that undergo ectodomain shedding. In this study, to elucidate the ectodomain shedding events that occur during neuronal differentiation, we establish a strategy for quantitative secretomics of glycoproteins released from differentiating neuroblastoma cells into culture medium with or without GM6001, a broad-spectrum metalloprotease inhibitor. Considering that most of transmembrane and secreted proteins are N-glycosylated, we include a process of N-glycosylated peptides enrichment as well as isotope tagging in our secretomics workflow. Our results show that differentiating N1E-115 neurons secrete numerous glycosylated polypeptides in metalloprotease-dependent manners. They are derived from cell adhesion molecules such as NCAM1, CADM1, L1CAM, various transporters and receptor proteins. These results show the landscape of ectodomain shedding and other secretory events in differentiating neurons and/or during axon elongation, which should help elucidate the mechanism of neurogenesis and the pathogenesis of neurological disorders. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  17. Faecal Campylobacter shedding among dogs in animal shelters across Texas.

    Science.gov (United States)

    Leahy, A M; Cummings, K J; Rodriguez-Rivera, L D; Hamer, S A; Lawhon, S D

    2017-12-01

    Epidemiologic studies on faecal Campylobacter shedding among dogs in the United States have been limited, despite evidence that the incidence of human campylobacteriosis has increased over the last decade. Our objectives were to estimate the prevalence of faecal Campylobacter shedding among shelter dogs in Texas, to estimate the specific prevalence of Campylobacter jejuni and Campylobacter coli shedding, and to identify risk factors for Campylobacter-positive status. Using a cross-sectional study design, we collected faecal samples from dogs in six animal shelters across Texas between May and December, 2014. Quantitative PCR protocols were used to detect Campylobacter in samples and to specifically identify C. jejuni and C. coli. The prevalence of faecal Campylobacter shedding among sampled dogs was 75.7% (140/185). Prevalence varied significantly by shelter (p = .03), ranging from 57% to 93%. There was a marginal association (p = .06) between abnormal faecal consistency and positive Campylobacter status, after controlling for shelter as a random effect. However, approximately 70% of Campylobacter-positive dogs had grossly normal faeces. Campylobacter prevalence did not vary significantly by age group or sex. The prevalence of C. jejuni-positive samples was 5.4% (10/185), but C. coli was not detected in any samples. Dogs are a potential source of zoonotic Campylobacter transmission. © 2017 Blackwell Verlag GmbH.

  18. Thermodynamic model of natural, medieval and nuclear waste glass durability

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Plodinec, M.J.

    1983-01-01

    A thermodynamic model of glass durability based on hydration of structural units has been applied to natural glass, medieval window glasses, and glasses containing nuclear waste. The relative durability predicted from the calculated thermodynamics correlates directly with the experimentally observed release of structural silicon in the leaching solution in short-term laboratory tests. By choosing natural glasses and ancient glasses whose long-term performance is known, and which bracket the durability of waste glasses, the long-term stability of nuclear waste glasses can be interpolated among these materials. The current Savannah River defense waste glass formulation is as durable as natural basalt from the Hanford Reservation (10 6 years old). The thermodynamic hydration energy is shown to be related to the bond energetics of the glass. 69 references, 2 figures, 1 table

  19. Thermodynamics in Einstein's thought

    International Nuclear Information System (INIS)

    Klein, M.J.

    1983-01-01

    The role of the thermodynamical approach in the Einstein's scientific work is analyzed. The Einstein's development of a notion about statistical fluctuations of thermodynamical systems that leads him to discovery of corpuscular-wave dualism is retraced

  20. A Global Survey of Cloud Thermodynamic Phase using High Spatial Resolution VSWIR Spectroscopy, 2005-2015

    Science.gov (United States)

    Thompson, D. R.; Kahn, B. H.; Green, R. O.; Chien, S.; Middleton, E.; Tran, D. Q.

    2017-12-01

    Clouds' variable ice and liquid content significantly influences their optical properties, evolution, and radiative forcing potential (Tan and Storelvmo, J. Atmos. Sci, 73, 2016). However, most remote measurements of thermodynamic phase have spatial resolutions of 1 km or more and are insensitive to mixed phases. This under-constrains important processes, such as spatial partitioning within mixed phase clouds, that carry outsize radiative forcing impacts. These uncertainties could shift Global Climate Model (GCM) predictions of future warming by over 1 degree Celsius (Tan et al., Science 352:6282, 2016). Imaging spectroscopy of reflected solar energy from the 1.4 - 1.8 μm shortwave infrared (SWIR) spectral range can address this observational gap. These observations can distinguish ice and water absorption, providing a robust and sensitive measurement of cloud top thermodynamic phase including mixed phases. Imaging spectrometers can resolve variations at scales of tens to hundreds of meters (Thompson et al., JGR-Atmospheres 121, 2016). We report the first such global high spatial resolution (30 m) survey, based on data from 2005-2015 acquired by the Hyperion imaging spectrometer onboard NASA's EO-1 spacecraft (Pearlman et al., Proc. SPIE 4135, 2001). Estimated seasonal and latitudinal distributions of cloud thermodynamic phase generally agree with observations made by other satellites such as the Atmospheric Infrared Sounder (AIRS). Variogram analyses reveal variability at different spatial scales. Our results corroborate previously observed zonal distributions, while adding insight into the spatial scales of processes governing cloud top thermodynamic phase. Figure: Thermodynamic phase retrievals. Top: Example of a cloud top thermodynamic phase map from the EO-1/Hyperion. Bottom: Latitudinal distributions of pure and mixed phase clouds, 2005-2015, showing Liquid Thickness Fraction (LTF). LTF=0 corresponds to pure ice absorption, while LTF=1 is pure liquid. The

  1. Reinfusion of Shed Blood Following Pediatric Orthopaedic Surgery

    National Research Council Canada - National Science Library

    Blevins, Field

    1991-01-01

    .... The use of a system for salvage and reinfusion of nonwashed shed blood postoperatively is recommended as a safe method to minimize the need for homologous transfusion, especially when there is...

  2. The OpenCalphad thermodynamic software interface

    Science.gov (United States)

    Sundman, Bo; Kattner, Ursula R; Sigli, Christophe; Stratmann, Matthias; Le Tellier, Romain; Palumbo, Mauro; Fries, Suzana G

    2017-01-01

    Thermodynamic data are needed for all kinds of simulations of materials processes. Thermodynamics determines the set of stable phases and also provides chemical potentials, compositions and driving forces for nucleation of new phases and phase transformations. Software to simulate materials properties needs accurate and consistent thermodynamic data to predict metastable states that occur during phase transformations. Due to long calculation times thermodynamic data are frequently pre-calculated into “lookup tables” to speed up calculations. This creates additional uncertainties as data must be interpolated or extrapolated and conditions may differ from those assumed for creating the lookup table. Speed and accuracy requires that thermodynamic software is fully parallelized and the Open-Calphad (OC) software is the first thermodynamic software supporting this feature. This paper gives a brief introduction to computational thermodynamics and introduces the basic features of the OC software and presents four different application examples to demonstrate its versatility. PMID:28260838

  3. Hjemløshed i Danmark 2011

    DEFF Research Database (Denmark)

    Lauritzen, Heidi Hesselberg; Boje-Kovacs, Bence; Benjaminsen, Lars

    Rapporten fremlægger resultaterne af den tredje nationale kortlægning af hjemløshed i Danmark og giver et ajourført billede af omfanget og karakteren af hjemløsheden. Ligesom i de to forrige optællinger blev der i kortlægningsugen (uge 6) registreret ca. 5.000 hjemløse. Sammensætningen af gruppen...

  4. Black hole chemistry: thermodynamics with Lambda

    International Nuclear Information System (INIS)

    Kubizňák, David; Mann, Robert B; Teo, Mae

    2017-01-01

    We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities; in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality—an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at extending the AdS/CFT dictionary in this setting, discuss the connections with horizon thermodynamics, applications to Lifshitz spacetimes, and outline possible future directions in this field. (topical review)

  5. Particle shedding from peristaltic pump tubing in biopharmaceutical drug product manufacturing.

    Science.gov (United States)

    Saller, Verena; Matilainen, Julia; Grauschopf, Ulla; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2015-04-01

    In a typical manufacturing setup for biopharmaceutical drug products, the fill and dosing pump is placed after the final sterile filtration unit in order to ensure adequate dispensing accuracy and avoid backpressure peaks. Given the sensitivity of protein molecules, peristaltic pumps are often preferred over piston pumps. However, particles may be shed from the silicone tubing employed. In this study, particle shedding and a potential turbidity increase during peristaltic pumping of water and buffer were investigated using three types of commercially available silicone tubing. In the recirculates, mainly particles of around 200 nm next to a very small fraction of particles in the lower micrometer range were found. Using 3D laser scanning microscopy, surface roughness of the inner tubing surface was found to be a determining factor for particle shedding from silicone tubing. As the propensity toward particle shedding varied between tubing types and also cannot be concluded from manufacturer's specifications, individual testing with the presented methods is recommended during tubing qualification. Choosing low abrasive tubing can help to further minimize the very low particle counts to be expected in pharmaceutical drug products. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Effect of genital herpes on cervicovaginal HIV shedding in women co-infected with HIV AND HSV-2 in Tanzania.

    Directory of Open Access Journals (Sweden)

    Jim Todd

    Full Text Available To compare the presence and quantity of cervicovaginal HIV among HIV seropositive women with clinical herpes, subclinical HSV-2 infection and without HSV-2 infection respectively; to evaluate the association between cervicovaginal HIV and HSV shedding; and identify factors associated with quantity of cervicovaginal HIV.Four groups of HIV seropositive adult female barworkers were identified and examined at three-monthly intervals between October 2000 and March 2003 in Mbeya, Tanzania: (1 57 women at 70 clinic visits with clinical genital herpes; (2 39 of the same women at 46 clinic visits when asymptomatic; (3 55 HSV-2 seropositive women at 60 clinic visits who were never observed with herpetic lesions; (4 18 HSV-2 seronegative women at 45 clinic visits. Associations of genital HIV shedding with HIV plasma viral load (PVL, herpetic lesions, HSV shedding and other factors were examined.Prevalence of detectable genital HIV RNA varied from 73% in HSV-2 seronegative women to 94% in women with herpetic lesions (geometric means 1634 vs 3339 copies/ml, p = 0.03. In paired specimens from HSV-2 positive women, genital HIV viral shedding was similar during symptomatic and asymptomatic visits. On multivariate regression, genital HIV RNA (log10 copies/mL was closely associated with HIV PVL (β = 0.51 per log10 copies/ml increase, 95%CI:0.41-0.60, p<0.001 and HSV shedding (β = 0.24 per log10 copies/ml increase, 95% CI:0.16-0.32, p<0.001 but not the presence of herpetic lesions (β = -0.10, 95%CI:-0.28-0.08, p = 0.27.HIV PVL and HSV shedding were more important determinants of genital HIV than the presence of herpetic lesions. These data support a role of HSV-2 infection in enhancing HIV transmissibility.

  7. Thermodynamics of Accelerating Black Holes.

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  8. The Thermodynamic Structure of Arctic Coastal Fog Occurring During the Melt Season over East Greenland

    Science.gov (United States)

    Gilson, Gaëlle F.; Jiskoot, Hester; Cassano, John J.; Gultepe, Ismail; James, Timothy D.

    2018-05-01

    An automated method to classify Arctic fog into distinct thermodynamic profiles using historic in-situ surface and upper-air observations is presented. This classification is applied to low-resolution Integrated Global Radiosonde Archive (IGRA) soundings and high-resolution Arctic Summer Cloud Ocean Study (ASCOS) soundings in low- and high-Arctic coastal and pack-ice environments. Results allow investigation of fog macrophysical properties and processes in coastal East Greenland during melt seasons 1980-2012. Integrated with fog observations from three synoptic weather stations, 422 IGRA soundings are classified into six fog thermodynamic types based on surface saturation ratio, type of temperature inversion, fog-top height relative to inversion-base height and stability using the virtual potential temperature gradient. Between 65-80% of fog observations occur with a low-level inversion, and statically neutral or unstable surface layers occur frequently. Thermodynamic classification is sensitive to the assigned dew-point depression threshold, but categorization is robust. Despite differences in the vertical resolution of radiosonde observations, IGRA and ASCOS soundings yield the same six fog classes, with fog-class distribution varying with latitude and environmental conditions. High-Arctic fog frequently resides within an elevated inversion layer, whereas low-Arctic fog is more often restricted to the mixed layer. Using supplementary time-lapse images, ASCOS microwave radiometer retrievals and airmass back-trajectories, we hypothesize that the thermodynamic classes represent different stages of advection fog formation, development, and dissipation, including stratus-base lowering and fog lifting. This automated extraction of thermodynamic boundary-layer and inversion structure can be applied to radiosonde observations worldwide to better evaluate fog conditions that affect transportation and lead to improvements in numerical models.

  9. Thermodynamics of complexity

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Snoep, Jacky L.

    1998-01-01

    -called emergent properties. Tendency towards increased entropy is an essential determinant for the behaviour of ideal gas mixtures, showing that even in the simplest physical/chemical systems, (dys)organisation of components is crucial for the behaviour of systems. This presentation aims at illustrating...... that the behaviour of two functionally interacting biological components (molecules, protein domains, pathways, organelles) differs from the behaviour these components would exhibit in isolation from one another, where the difference should be essential for the maintenance and growth of the living state, For a true...... understanding of this BioComplexity, modem thermodynamic concepts and methods (nonequilibrium thermodynamics, metabolic and hierarchical control analysis) will be needed. We shall propose to redefine nonequilibrium thermodynamics as: The science that aims at understanding the behaviour of nonequilibrium systems...

  10. The effect of structural motifs on the ectodomain shedding of human angiotensin-converting enzyme.

    Science.gov (United States)

    Conrad, Nailah; Schwager, Sylva L U; Carmona, Adriana K; Sturrock, Edward D

    2016-12-02

    Somatic angiotensin converting enzyme (sACE) is comprised of two homologous domains (N and C domains), whereas the smaller germinal isoform (tACE) is identical to the C domain. Both isozymes share an identical stalk, transmembrane and cytoplasmic domain, and undergo ectodomain shedding by an as yet unknown protease. Here we present evidence for the role of regions distal and proximal to the cleavage site in human ACE shedding. First, because of intrinsic differences between the N and C domains, discrete secondary structures (α-helix 7 and 8) on the surface of tACE were replaced with their N domain counterparts. Surprisingly, neither α-helix 7 nor α-helix 8 proved to be an absolute requirement for shedding. In the proximal ectodomain of tACE residues H 610 -L 614 were mutated to alanines and this resulted in a decrease in ACE shedding. An N-terminal extension of this mutation caused a reduction in cellular ACE activity. More importantly, it affected the processing of the protein to the membrane, resulting in expression of an underglycosylated form of ACE. When E 608 -H 614 was mutated to the homologous region of the N domain, processing was normal and shedding only moderately decreased suggesting that this region is more crucial for the processing of ACE than it is for regulating shedding. Finally, to determine whether glycosylation of the asparagine proximal to the Pro1199-Leu polymorphism in sACE affected shedding, the equivalent P 623 L mutation in tACE was investigated. The P 623 L tACE mutant showed an increase in shedding and MALDI MS analysis of a tryptic digest indicated that N 620 WT was glycosylated. The absence of an N-linked glycan at N 620 , resulted in an even greater increase in shedding. Thus, the conformational flexibility that the leucine confers to the stalk, is increased by the lack of glycosylation reducing access of the sheddase to the cleavage site. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Classical or equilibrium thermodynamics: basic conceptual aspects

    Directory of Open Access Journals (Sweden)

    Luiz Augusto Calvo Tiritan

    2008-08-01

    Full Text Available The Classical or Equilibrium Thermodynamics is one of the most consolidated fields of Physics. It is synthesized by a well-known and self coherent knowledge structure. The essence of the Classical Thermodynamics theoretical structure consists of a set of natural laws that rule the macroscopic physical systems behavior. These laws were formulated based on observations generalizations and are mostly independent of any hypotheses concerning the microscopic nature of the matter. In general, the approaches established for the Classical Thermodynamics follow one of the following alternatives: the historical approach that describes chronologically the evolution of ideas, concepts and facts, and the postulational approach in which postulates are formulated but are not demonstrated a priori but can be confirmed a posteriori. In this work, a brief review of the pre-classical historical approach conceptual evolution is elaborated, from the beginning of the seventeenth century to the middle of the nineteenth century. As for this, the following themes are dealt with in an evolutionary and phenomenological way: heat nature, thermometry, calorimetry, Carnot’s heat engine, heat mechanical equivalent and the first and second laws. The Zeroth law that was formulated afterwards is included in the discussion.

  12. Thermodynamic Relations for Kiselev and Dilaton Black Hole

    International Nuclear Information System (INIS)

    Jamil, Mubasher; Pradhan, Parthapratim; Majeed, Bushra

    2015-01-01

    We investigate the thermodynamics and phase transition for Kiselev black hole and dilaton black hole. Specifically we consider Reissner-Nordström black hole surrounded by radiation and dust and Schwarzschild black hole surrounded by quintessence, as special cases of Kiselev solution. We have calculated the products relating the surface gravities, surface temperatures, Komar energies, areas, entropies, horizon radii, and the irreducible masses at the Cauchy and the event horizons. It is observed that the product of surface gravities, product of surface temperature, and product of Komar energies at the horizons are not universal quantities for the Kiselev solutions while products of areas and entropies at both the horizons are independent of mass of the above-mentioned black holes (except for Schwarzschild black hole surrounded by quintessence). For charged dilaton black hole, all the products vanish. The first law of thermodynamics is also verified for Kiselev solutions. Heat capacities are calculated and phase transitions are observed, under certain conditions

  13. Generalization of Gibbs Entropy and Thermodynamic Relation

    OpenAIRE

    Park, Jun Chul

    2010-01-01

    In this paper, we extend Gibbs's approach of quasi-equilibrium thermodynamic processes, and calculate the microscopic expression of entropy for general non-equilibrium thermodynamic processes. Also, we analyze the formal structure of thermodynamic relation in non-equilibrium thermodynamic processes.

  14. Genital HSV Shedding among Kenyan Women Initiating Antiretroviral Therapy.

    Directory of Open Access Journals (Sweden)

    Griffins O Manguro

    Full Text Available Genital ulcer disease (GUD prevalence increases in the first month of antiretroviral treatment (ART, followed by a return to baseline prevalence by month 3. Since most GUD is caused by herpes simplex virus type 2 (HSV-2, we hypothesized that genital HSV detection would follow a similar pattern after treatment initiation.We conducted a prospective cohort study of 122 HSV-2 and HIV-1 co-infected women with advanced HIV disease who initiated ART and were followed closely with collection of genital swab specimens for the first three months of treatment.At baseline, the HSV detection rate was 32%, without significant increase in genital HSV detection noted during the first month or the third month of ART. HIV-1 shedding declined during this period; no association was also noted between HSV and HIV-1 shedding during this period.Because other studies have reported increased HSV detection in women initiating ART and we have previously reported an increase in GUD during early ART, it may be prudent to counsel HIV-1 infected women initiating ART that HSV shedding in the genital tract may continue after ART initiation.

  15. Neisseria gonorrhoeae co-infection exacerbates vaginal HIV shedding without affecting systemic viral loads in human CD34+ engrafted mice.

    Directory of Open Access Journals (Sweden)

    Stacey X Xu

    Full Text Available HIV synergy with sexually transmitted co-infections is well-documented in the clinic. Co-infection with Neisseria gonorrhoeae in particular, increases genital HIV shedding and mucosal transmission. However, no animal model of co-infection currently exists to directly explore this relationship or to bridge the gap in understanding between clinical and in vitro studies of this interaction. This study aims to test the feasibility of using a humanized mouse model to overcome this barrier. Combining recent in vivo modelling advancements in both HIV and gonococcal research, we developed a co-infection model by engrafting immunodeficient NSG mice with human CD34+ hematopoietic stem cells to generate humanized mice that permit both systemic HIV infection and genital N. gonorrhoeae infection. Systemic plasma and vaginal lavage titres of HIV were measured in order to assess the impact of gonococcal challenge on viral plasma titres and genital shedding. Engrafted mice showed human CD45+ leukocyte repopulation in blood and mucosal tissues. Systemic HIV challenge resulted in 104-105 copies/mL of viral RNA in blood by week 4 post-infection, as well as vaginal shedding of virus. Subsequent gonococcal challenge resulted in unchanged plasma HIV levels but higher viral shedding in the genital tract, which reflects published clinical observations. Thus, human CD34+ stem cell-transplanted NSG mice represent an experimentally tractable animal model in which to study HIV shedding during gonococcal co-infection, allowing dissection of molecular and immunological interactions between these pathogens, and providing a platform to assess future therapeutics aimed at reducing HIV transmission.

  16. Neisseria gonorrhoeae co-infection exacerbates vaginal HIV shedding without affecting systemic viral loads in human CD34+ engrafted mice.

    Science.gov (United States)

    Xu, Stacey X; Leontyev, Danila; Kaul, Rupert; Gray-Owen, Scott D

    2018-01-01

    HIV synergy with sexually transmitted co-infections is well-documented in the clinic. Co-infection with Neisseria gonorrhoeae in particular, increases genital HIV shedding and mucosal transmission. However, no animal model of co-infection currently exists to directly explore this relationship or to bridge the gap in understanding between clinical and in vitro studies of this interaction. This study aims to test the feasibility of using a humanized mouse model to overcome this barrier. Combining recent in vivo modelling advancements in both HIV and gonococcal research, we developed a co-infection model by engrafting immunodeficient NSG mice with human CD34+ hematopoietic stem cells to generate humanized mice that permit both systemic HIV infection and genital N. gonorrhoeae infection. Systemic plasma and vaginal lavage titres of HIV were measured in order to assess the impact of gonococcal challenge on viral plasma titres and genital shedding. Engrafted mice showed human CD45+ leukocyte repopulation in blood and mucosal tissues. Systemic HIV challenge resulted in 104-105 copies/mL of viral RNA in blood by week 4 post-infection, as well as vaginal shedding of virus. Subsequent gonococcal challenge resulted in unchanged plasma HIV levels but higher viral shedding in the genital tract, which reflects published clinical observations. Thus, human CD34+ stem cell-transplanted NSG mice represent an experimentally tractable animal model in which to study HIV shedding during gonococcal co-infection, allowing dissection of molecular and immunological interactions between these pathogens, and providing a platform to assess future therapeutics aimed at reducing HIV transmission.

  17. Thermodynamics and Kinetics of Advanced Separations Systems - FY 2010 Summary Report

    International Nuclear Information System (INIS)

    Martin, Leigh R.; Zalupski, Peter R.

    2010-01-01

    This report presents a summary of the work performed in the area of thermodynamics and kinetics of advanced separations systems under the Fuel Cycle Research and Development (FCR and D) program during FY 2010. Thermodynamic investigations into metal extraction dependencies on lactate and HDEHP have been performed. These metal distribution studies indicate a substantial deviation from the expected behavior at conditions that are typical of TALSPEAK process operational platform. These studies also identify that no thermodynamically stable mixed complexes exist in the aqueous solutions and increasing the complexity of the organic medium appears to influence the observed deviations. Following on from this, the first calorimetric measurement of the heat of extraction of americium across a liquid-liquid boundary was performed.

  18. Thermodynamic properties of cryogenic fluids

    CERN Document Server

    Leachman, Jacob; Lemmon, Eric; Penoncello, Steven

    2017-01-01

    This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...

  19. CAD Instructor Designs Eco-Friendly Shed

    Science.gov (United States)

    Schwendau, Mark

    2013-01-01

    Dissatisfied with the options offered by big box stores--and wanting to save some money and go as green as possible--the author puts his design and construction skills to good use. In this article, he shares how he designed and built an eco-friendly shed. He says he is very pleased with the results of working with his own design, reducing waste,…

  20. [Blood conservation effect and safety of shed mediastinal blood autotransfusion after cardiac surgery].

    Science.gov (United States)

    Komiya, T; Ban, K; Yamazaki, K; Date, O; Nakamura, T; Kanzaki, Y

    1998-10-01

    Autotransfusion of shed mediastinal blood after cardiac surgery has been used to reduce risks related to homologous blood transfusions. To document the efficacy and safety of autotransfusion, we compared clinical findings of 80 patients receiving shed mediastinal blood (autotransfusion group) with those of the control group of 52 patients. The amount of the autotransfusion was limited to 800 ml, given the potentially harmful effects of shed blood transfusion. The mean transfused shed volume was 314 +/- 236 ml (S.D.). The serum levels of FDP-E, D-dimer and TAT after autotransfusion were higher in the autotransfusion group than in the control group (p = 0.01, p = 0.0004, p = 0.001, respectively). However, postoperative blood loss and the rate of reexploration for bleeding were similar in the two groups. The patients receiving blood products were fewer in the autotransfusion group than those in the control group (21% vs 44%; p = 0.005). Autotransfusion did not increase postoperative complications, including infection. Thus, although autotransfusion of mediastinal shed blood has the potential to affect hemostasis, unless the amount of autotransfusion exceeds 800 ml, it appears that this method is clinically safe and effective as a mean of blood conservation.

  1. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    Science.gov (United States)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  2. Theoretical physics 5 thermodynamics

    CERN Document Server

    Nolting, Wolfgang

    2017-01-01

    This concise textbook offers a clear and comprehensive introduction to thermodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, defining macroscopic variables, such as internal energy, entropy and pressure,together with thermodynamic principles. The first part of the book introduces the laws of thermodynamics and thermodynamic potentials. More complex themes are covered in the second part of the book, which describes phases and phase transitions in depth. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cove...

  3. Effect of antigen shedding on targeted delivery of immunotoxins in solid tumors from a mathematical model.

    Directory of Open Access Journals (Sweden)

    Youngshang Pak

    Full Text Available Most cancer-specific antigens used as targets of antibody-drug conjugates and immunotoxins are shed from the cell surface (Zhang & Pastan (2008 Clin. Cancer Res. 14: 7981-7986, although at widely varying rates and by different mechanisms (Dello Sbarba & Rovida (2002 Biol. Chem. 383: 69-83. Why many cancer-specific antigens are shed and how the shedding affects delivery efficiency of antibody-based protein drugs are poorly understood questions at present. Before a detailed numerical study, it was assumed that antigen shedding would reduce the efficacy of antibody-drug conjugates and immunotoxins. However, our previous study using a comprehensive mathematical model showed that antigen shedding can significantly improve the efficacy of the mesothelin-binding immunotoxin, SS1P (anti-mesothelin-Fv-PE38, and suggested that receptor shedding can be a general mechanism for enhancing the effect of inter-cellular signaling molecules. Here, we improved this model and applied it to both SS1P and another recombinant immunotoxin, LMB-2, which targets CD25. We show that the effect of antigen shedding is influenced by a number of factors including the number of antigen molecules on the cell surface and the endocytosis rate. The high shedding rate of mesothelin is beneficial for SS1P, for which the antigen is large in number and endocytosed rapidly. On the other hand, the slow shedding of CD25 is beneficial for LMB-2, for which the antigen is small in number and endocytosed slowly.

  4. Thermodynamic phase transition of a black hole in rainbow gravity

    Directory of Open Access Journals (Sweden)

    Zhong-Wen Feng

    2017-09-01

    Full Text Available In this letter, using the rainbow functions that were proposed by Magueijo and Smolin, we investigate the thermodynamics and the phase transition of rainbow Schwarzschild black hole. First, we calculate the rainbow gravity corrected Hawking temperature. From this modification, we then derive the local temperature, free energy, and other thermodynamic quantities in an isothermal cavity. Finally, we analyze the critical behavior, thermodynamic stability, and phase transition of the rainbow Schwarzschild black hole. The results show that the rainbow gravity can stop the Hawking radiation in the final stages of black holes' evolution and lead to the remnants of black holes. Furthermore, one can observe that the rainbow Schwarzschild black hole has one first-order phase transition, two second-order phase transitions, and three Hawking–Page-type phase transitions in the framework of rainbow gravity theory.

  5. High Shedding Potential and Significant Individual Heterogeneity in Naturally-Infected Alpine ibex (Capra ibex With Brucella melitensis

    Directory of Open Access Journals (Sweden)

    Sébastien Lambert

    2018-05-01

    Full Text Available Wildlife reservoirs of infectious diseases raise major management issues. In Europe, brucellosis has been eradicated in domestic ruminants from most countries and wild ruminants have not been considered important reservoirs so far. However, a high prevalence of Brucella melitensis infection has been recently identified in a French population of Alpine ibex (Capra ibex, after the emergence of brucellosis was confirmed in a dairy cattle farm and two human cases. This situation raised the need to identify the factors driving the persistence of Brucella infection at high prevalence levels in this ibex population. In the present paper, we studied the shedding pattern of B. melitensis in ibex from Bargy Massif, French Alps. Bacteriological examinations (1–15 tissues/samples per individual were performed on 88 seropositive, supposedly infected and euthanized individuals. Among them, 51 (58% showed at least one positive culture, including 45 ibex with at least one Brucella isolation from a urogenital sample or a lymph node in the pelvic area (active infection in organs in the pelvic area. Among these 45 ibex, 26 (30% of the total number of necropsied animals showed at least one positive culture for a urogenital organ and were considered as being at risk of shedding the bacteria at the time of capture. We observed significant heterogeneity between sex-and-age classes: seropositive females were most at risk to excrete Brucella before the age of 5 years, possibly corresponding to abortion during the first pregnancy following infection such as reported in the domestic ruminants. The high shedding potential observed in young females may have contributed to the self-sustained maintenance of infection in this population, whereas males are supposed to play a role of transmission between spatial units through venereal transmission during mating. This heterogeneity in the shedding potential of seropositive individuals should be considered in the future to

  6. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment.

    Science.gov (United States)

    Carney Almroth, Bethanie M; Åström, Linn; Roslund, Sofia; Petersson, Hanna; Johansson, Mats; Persson, Nils-Krister

    2018-01-01

    Microplastics in the environment are a subject of intense research as they pose a potential threat to marine organisms. Plastic fibers from textiles have been indicated as a major source of this type of contaminant, entering the oceans via wastewater and diverse non-point sources. Their presence is also documented in terrestrial samples. In this study, the amount of microfibers shedding from synthetic textiles was measured for three materials (acrylic, nylon, polyester), knit using different gauges and techniques. All textiles were found to shed, but polyester fleece fabrics shed the greatest amounts, averaging 7360 fibers/m -2 /L -1 in one wash, compared with polyester fabrics which shed 87 fibers/m -2 /L -1 . We found that loose textile constructions shed more, as did worn fabrics, and high twist yarns are to be preferred for shed reduction. Since fiber from clothing is a potentially important source of microplastics, we suggest that smarter textile construction, prewashing and vacuum exhaustion at production sites, and use of more efficient filters in household washing machines could help mitigate this problem.

  7. Thermodynamic optimization of the Cu-Nd system

    International Nuclear Information System (INIS)

    Wang Peisheng; Zhou Liangcai; Du Yong; Xu Honghui; Liu Shuhong; Chen Li; Ouyang Yifang

    2011-01-01

    Research highlights: → The enthalpies of formation of the compounds Cu 6 Nd, Cu 5 Nd, Cu 2 Nd and αCuNd were calculated using DFT. → The thermodynamic constraints to eliminate the artificial phase relations were imposed during the thermodynamic optimization procedure. → The Cu-Nd system was optimized under the thermodynamic constraints. - Abstract: The thermodynamic constraints to eliminate artificial phase relations were introduced with the Cu-Nd system as an example. The enthalpies of formation of the compounds Cu 6 Nd, Cu 5 Nd, Cu 2 Nd and αCuNd are calculated using density functional theory. Taking into account all the experimental data and the first-principles calculated enthalpies of formation of these compounds, the thermodynamic optimization of the Cu-Nd system was performed under the proposed thermodynamic constraints. It is demonstrated that the thermodynamic constraints are critical to obtain a set of thermodynamic parameters for the Cu-Nd system, which can avoid the appearance of all the artificial phase relations.

  8. Possible extended forms of thermodynamic entropy

    International Nuclear Information System (INIS)

    Sasa, Shin-ichi

    2014-01-01

    Thermodynamic entropy is determined by a heat measurement through the Clausius equality. The entropy then formalizes a fundamental limitation of operations by the second law of thermodynamics. The entropy is also expressed as the Shannon entropy of the microscopic degrees of freedom. Whenever an extension of thermodynamic entropy is attempted, we must pay special attention to how its three different aspects just mentioned are altered. In this paper, we discuss possible extensions of the thermodynamic entropy. (paper)

  9. Thermodynamics of statistical inference by cells.

    Science.gov (United States)

    Lang, Alex H; Fisher, Charles K; Mora, Thierry; Mehta, Pankaj

    2014-10-03

    The deep connection between thermodynamics, computation, and information is now well established both theoretically and experimentally. Here, we extend these ideas to show that thermodynamics also places fundamental constraints on statistical estimation and learning. To do so, we investigate the constraints placed by (nonequilibrium) thermodynamics on the ability of biochemical signaling networks to estimate the concentration of an external signal. We show that accuracy is limited by energy consumption, suggesting that there are fundamental thermodynamic constraints on statistical inference.

  10. Thermodynamics for Chemists, Physicists and Engineers

    CERN Document Server

    Hołyst, Robert

    2012-01-01

    Thermodynamics is an essential part of chemical physics and is of fundamental importance in physics, chemistry and engineering courses. This textbook takes an interdisciplinary approach to the subject and is therefore suitable for undergraduates in all those courses. The book is an introduction to phenomenological thermodynamics and its applications to phase transitions and chemical reactions, with some references to statistical mechanics. It strikes the balance between the rigorousness of the Callen text and phenomenological approach of the Atkins text. The book is divided in three parts. The first introduces the postulates and laws of thermodynamics and complements these initial explanations with practical examples. The second part is devoted to applications of thermodynamics to phase transitions in pure substances and mixtures. The third part covers thermodynamic systems in which chemical reactions take place. There are some sections on more advanced topics such as thermodynamic potentials, natural variabl...

  11. Thermodynamic study of selected monoterpenes III

    International Nuclear Information System (INIS)

    Štejfa, Vojtěch; Fulem, Michal; Růžička, Květoslav; Červinka, Ctirad

    2014-01-01

    Highlights: • (−)-trans-Pinane, (+)-Δ-carene, eucalyptol, and limonene were studied. • New thermodynamic data were measured and calculated. • Many of thermodynamic data are reported for the first time. - Abstract: A thermodynamic study of selected monoterpenes, (−)-trans-pinane, (+)-Δ-carene, eucalyptol, (+)-limonene, and (−)-limonene, is presented in this work. The vapor pressure measurements were performed using the static method over the environmentally important temperature range (238 to 308) K. Liquid heat capacities were measured by Tian–Calvet calorimetry in the temperature interval (258 to 355) K. The phase behavior was investigated by differential scanning calorimetry (DSC) from T = 183 K. The thermodynamic properties in the ideal-gas state were calculated by combining statistical thermodynamic and density functional theory (DFT) calculations. Calculated ideal-gas heat capacities and experimental data for vapor pressures and condensed phase heat capacities were treated simultaneously to obtain a consistent thermodynamic description

  12. On thermodynamic and microscopic reversibility

    International Nuclear Information System (INIS)

    Crooks, Gavin E

    2011-01-01

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa

  13. Misuse of thermodynamic entropy in economics

    International Nuclear Information System (INIS)

    Kovalev, Andrey V.

    2016-01-01

    The direct relationship between thermodynamic entropy and economic scarcity is only valid for a thermodynamically isolated economy. References to the second law of thermodynamics in economics within the context of scarcity ignore the fact that the earth is not an isolated system. The earth interacts with external sources and sinks of entropy and the resulting total entropy fluctuates around a constant. Even if the mankind finally proves unable to recycle industrial waste and close the technological cycle, the economic disruption caused by the depletion of natural resources may happen while the total thermodynamic entropy of the ecosystem remains essentially at the present level, because the transfer of chemically refined products may not increase significantly the total entropy, but it may decrease their recyclability. The inutility of industrial waste is not connected with its entropy, which may be exemplified with the case of alumina production. The case also demonstrates that industrially generated entropy is discharged into surroundings without being accumulated in ‘thermodynamically unavailable matter’. Material entropy, as a measure of complexity and economic dispersal of resources, can be a recyclability metric, but it is not a thermodynamic parameter, and its growth is not equivalent to the growth of thermodynamic entropy. - Highlights: • Entropy cannot be used as a measure of economic scarcity. • There is no anthropogenic entropy separate from the entropy produced naturally. • Inutility of industrial waste is not connected with its thermodynamic entropy. • Industrially generated entropy may or may not be accumulated in industrial waste. • Recyclability is more important than thermodynamic entropy of a product.

  14. Thermodynamics of an accelerated expanding universe

    International Nuclear Information System (INIS)

    Wang Bin; Gong Yungui; Abdalla, Elcio

    2006-01-01

    We investigate the laws of thermodynamics in an accelerating universe driven by dark energy with a time-dependent equation of state. In the case we consider that the physically relevant part of the Universe is that enveloped by the dynamical apparent horizon, we have shown that both the first law and second law of thermodynamics are satisfied. On the other hand, if the boundary of the Universe is considered to be the cosmological event horizon the thermodynamical description based on the definitions of boundary entropy and temperature breaks down. No parameter redefinition can rescue the thermodynamics laws from such a fate, rendering the cosmological event horizon unphysical from the point of view of the laws of thermodynamics

  15. Application of Statistical Thermodynamics in Refrigeration

    International Nuclear Information System (INIS)

    Avsec, J.; Marcic, M.

    1999-01-01

    The paper presents the mathematical model for computing the thermodynamical properties in the liquid, gas and two-phase domain by means of statistical thermodynamics. The paper features all important components (translation, rotation, internal rotation, vibration, intermolecular potential energy and influence of electron and nuclei excitation). To calculate the thermodynamic properties of real gases, we have developed the cluster theory, which yields better results than the virial equation. In case of real liquids, the Johnson-Zollweg-Gubbins model based on the modified Benedict-Webb-Rubin (BWR) equation was applied. The Lennard-Jones intermolecular potential was used. The analytical results are compared with the thermodynamical data and models obtained from classical thermodynamics, and they show relatively good agreement. (author)

  16. Thermodynamics and Kinetics of Advanced Separations Systems – FY 2010 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Leigh R. Martin; Peter R. Zalupski

    2010-09-01

    This report presents a summary of the work performed in the area of thermodynamics and kinetics of advanced separations systems under the Fuel Cycle Research and Development (FCR&D) program during FY 2010. Thermodynamic investigations into metal extraction dependencies on lactate and HDEHP have been performed. These metal distribution studies indicate a substantial deviation from the expected behavior at conditions that are typical of TALSPEAK process operational platform. These studies also identify that no thermodynamically stable mixed complexes exist in the aqueous solutions and increasing the complexity of the organic medium appears to influence the observed deviations. Following on from this, the first calorimetric measurement of the heat of extraction of americium across a liquid-liquid boundary was performed.

  17. New perspectives in thermodynamics

    International Nuclear Information System (INIS)

    Serrin, J.

    1986-01-01

    The last decade has seen a unity of method and approach in the foundations of thermodynamics and continuum mechanics, in which rigorous laws of thermodynamics have been combined with invariance notions of mechanics to produce new and deep understanding. Real progress has been made in finding a set of appropriate concepts for classical thermodynamics, by which energy conservation and the Clausius inequality can be given well-defined meanings for arbitrary processes and which allow an approach to the entropy concept which is free of traditional ambiguities. There has been, moreover, a careful scrutiny of long established but nevertheless not sharply defined concepts such as the Maxwell equal-area rule, the famous Gibbs phase rule, and the equivalence of work and heat. The thirteen papers in this volume accordingly gather together for the first time the many ideas and concepts which have raised classical thermodynamics from a heuristic and intuitive science to the level of precision presently demanded of other branches of mathematical physics

  18. Workshop on Teaching Thermodynamics

    CERN Document Server

    1985-01-01

    It seemed appropriate to arrange a meeting of teachers of thermodynamics in the United Kingdom, a meeting held in the pleasant surroundings of Emmanuel College, Cambridge, in Sept~mber, 1984. This volume records the ideas put forward by authors, the discussion generated and an account of the action that discussion has initiated. Emphasis was placed on the Teaching of Thermodynamics to degree-level students in their first and second years. The meeting, a workshop for practitioners in which all were expected to take part, was remarkably well supported. This was notable in the representation of essentially every UK university and polytechnic engaged in teaching engineering thermodynamics and has led to a stimulating spread of ideas. By intention, the emphasis for attendance was put on teachers of engineering concerned with thermodynamics, both mechanical and chemical engineering disciplines. Attendance from others was encouraged but limited as follows: non-engineering acad­ emics, 10%, industrialists, 10%. The ...

  19. New astrophysical school of thermodynamics. Space dynamics and gravitism

    Energy Technology Data Exchange (ETDEWEB)

    Gal-Or, B [Technion-Israel Inst. of Tech., Haifa. Dept. of Aeronautical Engineering

    1978-07-01

    Much verified information has been accumulated in recent years which shows that many fundamental concepts involving classical physics, thermodynamics, astrophysics and the general theory of relativity are strongly coupled together. This evidence is employed in this paper to explain principles of the astrophysical school of thermodynamics; a growing revolutionary school which deduces thermodynamics, energy dissipation, and time anisotropies from the Newtonian and Einsteinian theories of gravitation and from the dynamics of radiation in 'unsaturable' (intercluster) space. Accordingly, the density of radiation and the dynamics of ('unsaturable') outer space affect all processes in the galactic media, in the solar system, in the magnetosphere and on Earth. The origin of all observed irreversibilities in nature - of time, of all time anisotropics, of energy dissipation, of T-violations in 'elementary particles', of retarded potentials in electrodynamics, of the biological clocks, and of biological arrows of time - is one; it is the radiation unsaturability of space. But, since this unsaturability and gravitation are interconnected, the origin of asymmetries, structure, and thermodynamics is explained within the framework of the Newtonian and Einsteinian theories of gravitation. The theory presented here forms a part of a general approach called gravitism, which unifies some other disciplinary studies in the natural sciences with a unified approach to gravitation and the theory of time.

  20. Thermodynamic study of selected monoterpenes II

    International Nuclear Information System (INIS)

    Štejfa, Vojtěch; Fulem, Michal; Růžička, Květoslav; Červinka, Ctirad

    2014-01-01

    Highlights: • (−)-Borneol, (−)-camphor, (±)-camphene, and (+)-fenchone were studied. • New thermodynamic data were measured and calculated. • Most of thermodynamic data are reported for the first time. - Abstract: A thermodynamic study of selected monoterpenes, (−)-borneol, (−)-camphor, (±)-camphene, and (+)-fenchone is presented in this work. The vapor pressure measurements were performed using the static method over the environmentally important temperature range from (238 to 308) K. Heat capacities of condensed phases were measured by Tian–Calvet calorimetry in the temperature interval from (258 to 355) K. The phase behavior was investigated by differential scanning calorimetry (DSC) from subambient temperatures up to the fusion temperatures. The thermodynamic properties in the ideal-gas state were calculated by combining statistical thermodynamic and density functional theory (DFT) calculations. Calculated ideal-gas heat capacities and experimental data for vapor pressures and condensed phase heat capacities were treated simultaneously to obtain a consistent thermodynamic description

  1. Prolonged Shedding of Human Parechovirus in Feces of Young Children after Symptomatic Infection

    NARCIS (Netherlands)

    Wildenbeest, Joanne G; Benschop, Kimberley S M; Bouma-de Jongh, Saskia; Wolthers, Katja C; Pajkrt, Dasja

    2016-01-01

    After symptomatic human parechovirus (HPeV) infection in infants, the duration of (mostly asymptomatic) shedding in feces was 2-24 weeks (median 58 days). HPeV cycle threshold value could neither differentiate between symptomatic disease and asymptomatic shedding nor between severe and mild disease

  2. Reliability Constrained Priority Load Shedding for Aerospace Power System Automation

    Science.gov (United States)

    Momoh, James A.; Zhu, Jizhong; Kaddah, Sahar S.; Dolce, James L. (Technical Monitor)

    2000-01-01

    The need for improving load shedding on board the space station is one of the goals of aerospace power system automation. To accelerate the optimum load-shedding functions, several constraints must be involved. These constraints include congestion margin determined by weighted probability contingency, component/system reliability index, generation rescheduling. The impact of different faults and indices for computing reliability were defined before optimization. The optimum load schedule is done based on priority, value and location of loads. An optimization strategy capable of handling discrete decision making, such as Everett optimization, is proposed. We extended Everett method to handle expected congestion margin and reliability index as constraints. To make it effective for real time load dispatch process, a rule-based scheme is presented in the optimization method. It assists in selecting which feeder load to be shed, the location of the load, the value, priority of the load and cost benefit analysis of the load profile is included in the scheme. The scheme is tested using a benchmark NASA system consisting of generators, loads and network.

  3. Thermodynamic interactions of water-soluble homopolymers and double-hydrophilic diblock copolymer

    International Nuclear Information System (INIS)

    Yazici, D. Topaloglu; Askin, A.; Buetuen, V.

    2008-01-01

    Thermodynamic interaction parameters of water-soluble poly[2-(dimethylamino)ethyl methacrylate] (DMA) and poly[2-(N-morpholino)ethyl methacrylate] (MEMA) homopolymers and their diblock copolymer (DMA-MEMA) were investigated at the temperatures above their glass-transition temperatures (T g ) by inverse gas chromatography (IGC) method. Sorption thermodynamic parameters of some aliphatic, alicyclic and aromatic hydrocarbons, weight fraction activity coefficients, Flory-Huggins interaction parameters, and solubility parameters for hydrocarbons and polymers were calculated. It was observed that sorption thermodynamic parameters on (co)polymers depend on the molecular structures of hydrocarbons. Evaluating both the calculated values of the weight fraction activity coefficients and Flory-Huggins interaction parameters, the solving ability of the hydrocarbons for DMA, MEMA homopolymers, and DMA-MEMA diblock copolymer decreased in the following sequence: Aromatic > alicyclic > aliphatic hydrocarbons

  4. Geometric description of BTZ black hole thermodynamics

    International Nuclear Information System (INIS)

    Quevedo, Hernando; Sanchez, Alberto

    2009-01-01

    We study the properties of the space of thermodynamic equilibrium states of the Banados-Teitelboim-Zanelli (BTZ) black hole in (2+1) gravity. We use the formalism of geometrothermodynamics to introduce in the space of equilibrium states a two-dimensional thermodynamic metric whose curvature is nonvanishing, indicating the presence of thermodynamic interaction, and free of singularities, indicating the absence of phase transitions. Similar results are obtained for generalizations of the BTZ black hole which include a Chern-Simons term and a dilatonic field. Small logarithmic corrections of the entropy turn out to be represented by small corrections of the thermodynamic curvature, reinforcing the idea that thermodynamic curvature is a measure of thermodynamic interaction.

  5. New perspectives to the enterotoxigenic E. coli F4 porcine infection model: Susceptibility genotypes in relation to performance, diarrhoea and bacterial shedding.

    Science.gov (United States)

    Roubos-van den Hil, Petra J; Litjens, Ralph; Oudshoorn, Anna-Katharina; Resink, Jan Willem; Smits, Coen H M

    2017-04-01

    Enterotoxigenic E. coli (ETEC), causing post-weaning diarrhoea, is a major problem in weaned piglets. Individual animal responses to ETEC infection show high variability in animal experiments. Two studies were designed to optimize the ETEC F4ac infection model in piglets by combining the genotype susceptibility with performance, diarrhoea incidence and bacterial shedding. The studies were performed with respectively 120 and 80 male piglets that were tested for susceptibility or resistance towards ETEC O149:F4ac by a DNA marker based test. Three different genotypes were observed; resistant (RR), susceptible heterozygote (RS) and susceptible homozygote (SS). Piglets, were orally infected with an inoculum suspension (containing 1.5E8 CFU/ml ETEC F4ac) at day 0, 1 and 2 of the study. Performance, diarrhoea incidence and bacterial shedding were followed for 21days. In the first week after challenge a difference in average daily gain was observed between resistant and susceptible piglets in both studies. For the complete study period no significant differences were observed. Diarrhoea incidence was significantly higher in susceptible pigs compared to the resistant pigs in the first week after challenge. Bacterial shedding was much higher in the susceptible pigs and ETEC excretion lasted longer. ETEC was hardly detected in the faecal material of the resistant pigs. In conclusion, susceptible pigs showed higher diarrhoea incidence and higher numbers of faecal ETEC shedding in the first week after challenge compared to resistant pigs. The DNA marker based test can be used to select pigs that are susceptible for ETEC for inclusion in ETEC infection model, resulting in less animals needed to perform infection studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Braun-Le Chatelier principle in dissipative thermodynamics

    OpenAIRE

    Pavelka, Michal; Grmela, Miroslav

    2016-01-01

    Braun-Le Chatelier principle is a fundamental result of equilibrium thermodynamics, showing how stable equilibrium states shift when external conditions are varied. The principle follows from convexity of thermodynamic potential. Analogously, from convexity of dissipation potential it follows how steady non-equilibrium states shift when thermodynamic forces are varied, which is the extension of the principle to dissipative thermodynamics.

  7. Thermodynamic approach to biomass gasification

    International Nuclear Information System (INIS)

    Boissonnet, G.; Seiler, J.M.

    2003-01-01

    The document presents an approach of biomass transformation in presence of steam, hydrogen or oxygen. Calculation results based on thermodynamic equilibrium are discussed. The objective of gasification techniques is to increase the gas content in CO and H 2 . The maximum content in these gases is obtained when thermodynamic equilibrium is approached. Any optimisation action of a process. will, thus, tend to approach thermodynamic equilibrium conditions. On the other hand, such calculations can be used to determine the conditions which lead to an increase in the production of CO and H 2 . An objective is also to determine transformation enthalpies that are an important input for process calculations. Various existing processes are assessed, and associated thermodynamic limitations are evidenced. (author)

  8. Liquid Methane Testing With a Large-Scale Spray Bar Thermodynamic Vent System

    Science.gov (United States)

    Hastings, L. J.; Bolshinskiy, L. G.; Hedayat, A.; Flachbart, R. H.; Sisco, J. D.; Schnell. A. R.

    2014-01-01

    NASA's Marshall Space Flight Center conducted liquid methane testing in November 2006 using the multipurpose hydrogen test bed outfitted with a spray bar thermodynamic vent system (TVS). The basic objective was to identify any unusual or unique thermodynamic characteristics associated with densified methane that should be considered in the design of space-based TVSs. Thirteen days of testing were performed with total tank heat loads ranging from 720 to 420 W at a fill level of approximately 90%. It was noted that as the fluid passed through the Joule-Thompson expansion, thermodynamic conditions consistent with the pervasive presence of metastability were indicated. This Technical Publication describes conditions that correspond with metastability and its detrimental effects on TVS performance. The observed conditions were primarily functions of methane densification and helium pressurization; therefore, assurance must be provided that metastable conditions have been circumvented in future applications of thermodynamic venting to in-space methane storage.

  9. Gravitation, Thermodynamics, and Quantum Theory

    OpenAIRE

    Wald, Robert M.

    1999-01-01

    During the past 30 years, research in general relativity has brought to light strong hints of a very deep and fundamental relationship between gravitation, thermodynamics, and quantum theory. The most striking indication of such a relationship comes from black hole thermodynamics, where it appears that certain laws of black hole mechanics are, in fact, simply the ordinary laws of thermodynamics applied to a system containing a black hole. This article will review the present status of black h...

  10. Fuzzy Load-Shedding Strategy Considering Photovoltaic Output Fluctuation Characteristics and Static Voltage Stability

    Directory of Open Access Journals (Sweden)

    Sheng Li

    2018-03-01

    Full Text Available Based on the equilibrium point equations of a classic three-node system integrated with a large-scale photovoltaic cell (PV power plant, the impact of PV output fluctuation on the saddle-node bifurcation (SNB was derived and analyzed. When PV runs in a unity power factor and the PV output active power Ppv is not too large (several hundred MW and below, the PV output fluctuation has little effect on the SNB point position and load margin index, so that the load margin index can be calculated online using the SNB point at Ppv = 0 pu. On the other hand, the local reactive power compensation in the load center can effectively raise the load bus voltage and make the voltage stability problem become more concealed; the traditional under-voltage load-shedding (UVLS strategy only carries out load shedding when the bus voltage amplitude is below the specified value and cannot effectively maintain the system static voltage stability in some occasions. In this paper, a fuzzy load-shedding strategy considering the impact of PV output fluctuations for the large-scale PV grid-connected system was designed, taking the load bus voltage amplitude and load margin index as fuzzy input variables, and the load-shedding command as a fuzzy output variable. Nine fuzzy IF-THEN rules were extracted for the fuzzy controller and the corresponding practical calculation method of load-shedding quantity was put forward. The simulation results of the classic three-node system and IEEE 14-bus system, both with a 100 MW PV power plant, verified the effectiveness of the fuzzy load-shedding controller whose input variable load margin index was calculated using the SNB point when the PV active power output was 0. The designed fuzzy load-shedding strategy can compensate for the defect—that the traditional UVLS strategy cannot effectively guarantee the system static voltage stability—and it can be widely used in power grids integrated with PV power plants whose scales are at a

  11. The thermodynamic efficiency of ATP synthesis in oxidative phosphorylation.

    Science.gov (United States)

    Nath, Sunil

    2016-12-01

    As the chief energy source of eukaryotic cells, it is important to determine the thermodynamic efficiency of ATP synthesis in oxidative phosphorylation (OX PHOS). Previous estimates of the thermodynamic efficiency of this vital process have ranged from Lehninger's original back-of-the-envelope calculation of 38% to the often quoted value of 55-60% in current textbooks of biochemistry, to high values of 90% from recent information theoretic considerations, and reports of realizations of close to ideal 100% efficiencies by single molecule experiments. Hence this problem has been reinvestigated from first principles. The overall thermodynamic efficiency of ATP synthesis in the mitochondrial energy transduction OX PHOS process has been found to lie between 40 and 41% from four different approaches based on a) estimation using structural and biochemical data, b) fundamental nonequilibrium thermodynamic analysis, c) novel insights arising from Nath's torsional mechanism of energy transduction and ATP synthesis, and d) the overall balance of cellular energetics. The torsional mechanism also offers an explanation for the observation of a thermodynamic efficiency approaching 100% in some experiments. Applications of the unique, molecular machine mode of functioning of F 1 F O -ATP synthase involving direct inter-conversion of chemical and mechanical energies in the design and fabrication of novel, man-made mechanochemical devices have been envisaged, and some new ways to exorcise Maxwell's demon have been proposed. It is hoped that analysis of the fundamental problem of energy transduction in OX PHOS from a fresh perspective will catalyze new avenues of research in this interdisciplinary field. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Thermodynamic Studies for Drug Design and Screening

    Science.gov (United States)

    Garbett, Nichola C.; Chaires, Jonathan B.

    2012-01-01

    Introduction A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. Areas covered This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 – 2011 using the Science Citation Index and PUBMED and the keywords listed below. Expert opinion The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically-driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development towards an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. PMID:22458502

  13. Thermodynamic studies for drug design and screening.

    Science.gov (United States)

    Garbett, Nichola C; Chaires, Jonathan B

    2012-04-01

    A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 - 2011 using the Science Citation Index and PUBMED and the keywords listed below. The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development toward an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in the design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. © 2012 Informa UK, Ltd.

  14. Identification of two novel coccidian species shed by California sea lions (Zalophus californianus).

    Science.gov (United States)

    Carlson-Bremer, Daphne; Johnson, Christine K; Miller, Robin H; Gulland, Frances M D; Conrad, Patricia A; Wasmuth, James D; Colegrove, Kathleen M; Grigg, Michael E

    2012-04-01

    Routine fecal examination revealed novel coccidian oocysts in asymptomatic California sea lions (Zalophus californianus) in a rehabilitation facility. Coccidian oocysts were observed in fecal samples collected from 15 of 410 California sea lions admitted to The Marine Mammal Center between April 2007 and October 2009. Phylogenetic analysis using the full ITS-1 region, partial small subunit 18S rDNA sequence, and the Apicomplexa rpoB region identified 2 distinct sequence clades, referred to as Coccidia A and Coccidia B, and placed them in the Sarcocystidae, grouped with the tissue-cyst-forming coccidia. Both sequence clades resolved as individual taxa at ITS-1 and rpoB and were most closely related to Neospora caninum. Coccidia A was identified in 11 and Coccidia B in 4 of 12 sea lion oocyst samples successfully sequenced (3 of those sea lions were co-infected with both parasites). Shedding of Coccidia A oocysts was not associated with age class, sex, or stranding location, but yearlings represented the majority of shedders (8/15). This is the first study to use molecular phylogenetics to identify and describe coccidian parasites shed by a marine mammal.

  15. Thermodynamics of quasi-topological cosmology

    International Nuclear Information System (INIS)

    Dehghani, M.H.; Sheykhi, A.; Dehghani, R.

    2013-01-01

    In this Letter, we study thermodynamical properties of the apparent horizon in a universe governed by quasi-topological gravity. Our aim is twofold. First, by using the variational method we derive the general form of Friedmann equation in quasi-topological gravity. Then, by applying the first law of thermodynamics on the apparent horizon, after using the entropy expression associated with the black hole horizon in quasi-topological gravity, and replacing the horizon radius, r + , with the apparent horizon radius, r -tilde A , we derive the corresponding Friedmann equation in quasi-topological gravity. We find that these two different approaches yield the same result which shows the profound connection between the first law of thermodynamics and the gravitational field equations of quasi-topological gravity. We also study the validity of the generalized second law of thermodynamics in quasi-topological cosmology. We find that, with the assumption of the local equilibrium hypothesis, the generalized second law of thermodynamics is fulfilled for the universe enveloped by the apparent horizon for the late time cosmology

  16. Thermodynamic Study of Tl6SBr4 Compound and Some Regularities in Thermodynamic Properties of Thallium Chalcohalides

    Directory of Open Access Journals (Sweden)

    Dunya Mahammad Babanly

    2017-01-01

    Full Text Available The solid-phase diagram of the Tl-TlBr-S system was clarified and the fundamental thermodynamic properties of Tl6SBr4 compound were studied on the basis of electromotive force (EMF measurements of concentration cells relative to a thallium electrode. The EMF results were used to calculate the relative partial thermodynamic functions of thallium in alloys and the standard integral thermodynamic functions (-ΔfG0, -ΔfH0, and S0298 of Tl6SBr4 compound. All data regarding thermodynamic properties of thallium chalcogen-halides are generalized and comparatively analyzed. Consequently, certain regularities between thermodynamic functions of thallium chalcogen-halides and their binary constituents as well as degree of ionization (DI of chemical bonding were revealed.

  17. Extended Irreversible Thermodynamics

    CERN Document Server

    Jou, David

    2010-01-01

    This is the 4th edition of the highly acclaimed monograph on Extended Irreversible Thermodynamics, a theory that goes beyond the classical theory of irreversible processes. In contrast to the classical approach, the basic variables describing the system are complemented by non-equilibrium quantities. The claims made for extended thermodynamics are confirmed by the kinetic theory of gases and statistical mechanics. The book covers a wide spectrum of applications, and also contains a thorough discussion of the foundations and the scope of the current theories on non-equilibrium thermodynamics. For this new edition, the authors critically revised existing material while taking into account the most recent developments in fast moving fields such as heat transport in micro- and nanosystems or fast solidification fronts in materials sciences. Several fundamental chapters have been revisited emphasizing physics and applications over mathematical derivations. Also, fundamental questions on the definition of non-equil...

  18. Strongyle egg shedding consistency in horses on farms using selective therapy in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Martin Krarup; Haaning, Niels; Olsen, Susanne Nautrup

    2006-01-01

    Knowledge of horses that shed the same number of strongyle eggs over time can lead to the optimization of parasite control strategies. This study evaluated shedding of strongyle eggs in 424 horses on 10 farms whan a selective anthelmintic treatment regime was used over a 3-year period....

  19. INTERNAL STRUCTURE OF ASTEROIDS HAVING SURFACE SHEDDING DUE TO ROTATIONAL INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Hirabayashi, Masatoshi [Research Associate, Colorado Center for Astrodynamics Research, Aerospace Engineering Sciences, University of Colorado Boulder (United States); Sánchez, Diego Paul [Senior Research Associate, Colorado Center for Astrodynamics Research, Aerospace Engineering Sciences, University of Colorado Boulder (United States); Scheeres, Daniel J., E-mail: masatoshi.hirabayashi@colorado.edu [Richard Seebass Chair, Professor, Colorado Center for Astrodynamics Research, Aerospace Engineering Sciences, University of Colorado Boulder (United States)

    2015-07-20

    Surface shedding of an asteroid is a failure mode where surface materials fly off due to strong centrifugal forces beyond the critical spin period, while the internal structure does not deform significantly. This paper proposes a possible structure of an asteroid interior that leads to surface shedding due to rapid rotation rates. A rubble pile asteroid is modeled as a spheroid composed of a surface shell and a concentric internal core, the entire assembly called the test body. The test body is assumed to be uniformly rotating around a constant rotation axis. We also assume that while the bulk density and the friction angle are constant, the cohesion of the surface shell is different from that of the internal core. First, developing an analytical model based on limit analysis, we provide the upper and lower bounds for the actual surface shedding condition. Second, we use a Soft-sphere Discrete Element Method (SSDEM) to study dynamical deformation of the test body due to a quasi-static spin-up. In this paper we show the consistency of both approaches. Additionally, the SSDEM simulations show that the initial failure always occurs locally and not globally. In addition, as the core becomes larger, the size of lofted components becomes smaller. These results imply that if there is a strong core in a progenitor body, surface shedding is the most likely failure mode.

  20. INTERNAL STRUCTURE OF ASTEROIDS HAVING SURFACE SHEDDING DUE TO ROTATIONAL INSTABILITY

    International Nuclear Information System (INIS)

    Hirabayashi, Masatoshi; Sánchez, Diego Paul; Scheeres, Daniel J.

    2015-01-01

    Surface shedding of an asteroid is a failure mode where surface materials fly off due to strong centrifugal forces beyond the critical spin period, while the internal structure does not deform significantly. This paper proposes a possible structure of an asteroid interior that leads to surface shedding due to rapid rotation rates. A rubble pile asteroid is modeled as a spheroid composed of a surface shell and a concentric internal core, the entire assembly called the test body. The test body is assumed to be uniformly rotating around a constant rotation axis. We also assume that while the bulk density and the friction angle are constant, the cohesion of the surface shell is different from that of the internal core. First, developing an analytical model based on limit analysis, we provide the upper and lower bounds for the actual surface shedding condition. Second, we use a Soft-sphere Discrete Element Method (SSDEM) to study dynamical deformation of the test body due to a quasi-static spin-up. In this paper we show the consistency of both approaches. Additionally, the SSDEM simulations show that the initial failure always occurs locally and not globally. In addition, as the core becomes larger, the size of lofted components becomes smaller. These results imply that if there is a strong core in a progenitor body, surface shedding is the most likely failure mode

  1. Development of a thermodynamic data base for selected heavy metals

    International Nuclear Information System (INIS)

    Hageman, Sven; Scharge, Tina; Willms, Thomas

    2015-07-01

    The report on the development of a thermodynamic data base for selected heavy metals covers the description of experimental methods, the thermodynamic model for chromate, the thermodynamic model for dichromate, the thermodynamic model for manganese (II), the thermodynamic model for cobalt, the thermodynamic model for nickel, the thermodynamic model for copper (I), the thermodynamic model for copper(II), the thermodynamic model for mercury (0) and mercury (I), the thermodynamic model for mercury (III), the thermodynamic model for arsenate.

  2. Men with disabilities - A cross sectional survey of health promotion, social inclusion and participation at community Men's Sheds.

    Science.gov (United States)

    Wilson, Nathan J; Cordier, Reinie; Parsons, Richard; Vaz, Sharmila; Buchanan, Angus

    2016-01-01

    The intersections between chronicity, disability and social inequality are well understood. Novel ways to counter the social determinants of health and disability are needed. Men's Sheds are a community space where men can participate in a range of shared activities and potentially experience a health and social benefits. This cross-sectional survey was conducted to inform future research by determining who attended Men's Sheds and the range of health, social, community, and educational activities undertaken there. This paper explores the membership of people with disabilities (PWD) at Men's Sheds and the factors that predict their membership. An online survey link was sent to all known Men's Sheds internationally in 2012. Data were analyzed using descriptive and inferential (univariate and multivariate) statistics. 32.2% of international sheds and 29% of Australian sheds specifically targeted the inclusion of PWD. 80% of these sheds have significantly more members with disabilities than sheds who do no target PWD. Factors associated with greater membership of PWD included the provision of transport, social outings and promoting occupational skills. PWD are being encouraged to join and are joining Men's Sheds. This is significant as the value of participation and inclusion toward better health and wellbeing is well known. Men's Sheds offer a community space where the social determinants of chronicity and disability can potentially be countered. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface

    Science.gov (United States)

    Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben

    2018-04-01

    We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface. We elucidate the role of initial aqueous concentration in determining the direction of hydrate growth at the interface, in agreement with experimental observations. Our model also reveals two stages of hydrate growth at an interface—controlled by a crossover in how methane is supplied from the gas and liquid phases—which could explain the persistence of gas conduits in hydrate-bearing sediments and other nonequilibrium phenomena commonly observed in natural methane hydrate systems.

  4. Influence of On-farm pig Salmonella status on Salmonella Shedding at Slaughter.

    Science.gov (United States)

    Casanova-Higes, A; Andrés-Barranco, S; Mainar-Jaime, R C

    2017-08-01

    The risk of Salmonella shedding among pigs at slaughter with regard to their previous on-farm Salmonella status was assessed in a group of pigs from a farm from NE of Spain. A total of 202 pigs that had been serologically monitored monthly during the fattening period and from which mesenteric lymph nodes (MLN) and faecal (SFEC) samples were collected at slaughter for Salmonella isolation were included. A repeated-measures anova was used to assess the relationship between mean OD% values during the fattening period and sampling time and bacteriology on MLN and SFEC. Pigs were also grouped into four groups, that is pigs seronegative during the fattening period and Salmonella negative in MLN (group A; n = 69); pigs seronegative during the fattening period but Salmonella positive in MLN (B; n = 36); pigs seropositive at least once and Salmonella positive in MLN (C; n = 50); and pigs seropositive at least once but Salmonella negative in (D; n = 47). Pigs shedding at slaughter seroconverted much earlier and showed much higher mean OD% values than non-shedders pigs. The proportion of Salmonella shedders in groups A and D was high and similar (26.1% and 29.8%, respectively), but significantly lower than that for groups B and C. The odds of shedding Salmonella for groups B and C were 4.8 (95% CI = 1.5-15.5) and 20.9 (3.7-118) times higher, respectively, when compared to A. It was concluded that a large proportion of Salmonella seronegative pigs may shed Salmonella at slaughter, which would be likely associated to previous exposure with contaminated environments (i.e. transport and lairage). For pigs already infected at farm, the likelihood of shedding Salmonella was much higher and may depend on whether the bacterium has colonized the MLN or not. The odds of shedding Salmonella spp. were always much higher for pigs in which Salmonella was isolated from MLN. © 2016 Blackwell Verlag GmbH.

  5. Rotavirus shedding following administration of RV3-BB human neonatal rotavirus vaccine.

    Science.gov (United States)

    Cowley, Daniel; Boniface, Karen; Bogdanovic-Sakran, Nada; Kirkwood, Carl D; Bines, Julie E

    2017-08-03

    The RV3-BB human neonatal rotavirus vaccine aims to provide protection from severe rotavirus disease from birth. A phase IIa safety and immunogenicity trial was undertaken in Dunedin, New Zealand between January 2012 and April 2014. Healthy, full-term (≥ 36 weeks gestation) babies, who were 0-5 d old were randomly assigned (1:1:1) to receive 3 doses of oral RV3-BB vaccine with the first dose given at 0-5 d after birth (neonatal schedule), or the first dose given at about 8 weeks after birth (infant schedule), or to receive placebo (placebo schedule). Vaccine take (serum immune response or stool shedding of vaccine virus after any dose) was detected after 3 doses of RV3-BB vaccine in >90% of participants when the first dose was administered in the neonatal and infant schedules. The aim of the current study was to characterize RV3-BB shedding and virus replication following administration of RV3-BB in a neonatal and infant vaccination schedule. Shedding was defined as detection of rotavirus by VP6 reverse transcription polymerase chain reaction (RT-PCR) in stool on days 3-7 after administration of RV3-BB. Shedding of rotavirus was highest following vaccination at 8 weeks of age in both neonatal and infant schedules (19/30 and 17/27, respectively). Rotavirus was detected in stool on days 3-7, after at least one dose of RV3-BB, in 70% (21/30) of neonate, 78% (21/27) of infant and 3% (1/32) placebo participants. In participants who shed RV3-BB, rotavirus was detectable in stool on day 1 following RV3-BB administration and remained positive until day 4-5 after administration. The distinct pattern of RV3-BB stool viral load demonstrated using a NSP3 quantitative qRT-PCR in participants who shed RV3-BB, suggests that detection of RV3-BB at day 3-7 was the result of replication rather than passage through the gastrointestinal tract.

  6. Thermodynamic origin of nonimaging optics

    Science.gov (United States)

    Jiang, Lun; Winston, Roland

    2016-10-01

    Nonimaging optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence, in this paper, a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for the designs of thermal and even photovoltaic systems. This way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory, while "optics" in the conventional sense recedes into the background. Much of the paper is pedagogical and retrospective. Some of the development of flowline designs will be introduced at the end and the connection between the thermodynamics and flowline design will be graphically presented. We will conclude with some speculative directions of where the ideas might lead.

  7. Thermodynamic efficiency of solar concentrators.

    Science.gov (United States)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2010-04-26

    The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency.

  8. Branch-cut singularities in thermodynamics of Fermi liquid systems.

    Science.gov (United States)

    Shekhter, Arkady; Finkel'stein, Alexander M

    2006-10-24

    The recently measured spin susceptibility of the two-dimensional electron gas exhibits a strong dependence on temperature, which is incompatible with the standard Fermi liquid phenomenology. In this article, we show that the observed temperature behavior is inherent to ballistic two-dimensional electrons. Besides the single-particle and collective excitations, the thermodynamics of Fermi liquid systems includes effects of the branch-cut singularities originating from the edges of the continuum of pairs of quasiparticles. As a result of the rescattering induced by interactions, the branch-cut singularities generate nonanalyticities in the thermodynamic potential that reveal themselves in anomalous temperature dependences. Calculation of the spin susceptibility in such a situation requires a nonperturbative treatment of the interactions. As in high-energy physics, a mixture of the collective excitations and pairs of quasiparticles can effectively be described by a pole in the complex momentum plane. This analysis provides a natural explanation for the observed temperature dependence of the spin susceptibility, both in sign and in magnitude.

  9. Comparison of Coxiella burnetii shedding in milk of dairy bovine, caprine, and ovine herds.

    Science.gov (United States)

    Rodolakis, A; Berri, M; Héchard, C; Caudron, C; Souriau, A; Bodier, C C; Blanchard, B; Camuset, P; Devillechaise, P; Natorp, J C; Vadet, J P; Arricau-Bouvery, N

    2007-12-01

    The shedding of Coxiella burnetii in bovine, caprine, and ovine milk was measured using PCR, in 3 herds for each species, the bulk tank milk samples of which were positive at the time of their selection. Milk samples of 95 cows, 120 goats, and 90 ewes were sampled over 16 wk, as was the bulk tank milk. The shedding of C. burnetii in vaginal mucus and feces was checked at the beginning of the experiment and 2 mo later. The clinical signs in the selected herds as well as the duration and the shedding routes differed among the 3 species. The cows were asymptomatic and shed C. burnetii almost exclusively in milk. In one of the caprine herds, abortions due to C. burnetii were reported. The goats excreted the bacteria mainly in milk. In contrast, the ewes, which came from flocks with abortions due to Q fever (C. burnetii infection), shed the bacteria mostly in feces and in vaginal mucus. This could explain why human outbreaks of Q fever are more often related to ovine flocks than to bovine herds. These excretions did not seem more frequent when the samples were taken close to parturition. The samples were taken from 0 to 421 d after parturition in bovine herds and from 5 to 119 d and 11 to 238 d after parturition in the caprine and ovine herds, respectively. The shedding in milk was sometimes intermittent, and several animals shed the bacteria but were negative by ELISA: 80% of the ewes were seronegative, underscoring the lack of sensitivity of the ELISA tests available for veterinary diagnosis. The detection of antibodies in milk seems more sensitive than it is in serum.

  10. Neural net based determination of generator-shedding requirements in electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Electrical Engineering Inst. ' Nikola Tesla' , Belgrade (Yugoslavia); Sobajic, D J; Pao, Y -H [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Electrical Engineering and Applied Physics Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Computer Engineering and Science AI WARE Inc., Cleveland, OH (United States)

    1992-09-01

    This paper presents an application of artificial neural networks (ANN) in support of a decision-making process by power system operators directed towards the fast stabilisation of multi-machine systems. The proposed approach considers generator shedding as the most effective discrete supplementary control for improving the dynamic performance of faulted power systems and preventing instabilities. The sensitivity of the transient energy function (TEF) with respect to changes in the amount of dropped generation is used during the training phase of ANNs to assess the critical amount of generator shedding required to prevent the loss of synchronism. The learning capabilities of neural nets are used to establish complex mappings between fault information and the amount of generation to be shed, suggesting it as the control signal to the power system operator. (author)

  11. The thermodynamic solar energy

    International Nuclear Information System (INIS)

    Rivoire, B.

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  12. Quasiparticles and thermodynamical consistency

    International Nuclear Information System (INIS)

    Shanenko, A.A.; Biro, T.S.; Toneev, V.D.

    2003-01-01

    A brief and simple introduction into the problem of the thermodynamical consistency is given. The thermodynamical consistency relations, which should be taken into account under constructing a quasiparticle model, are found in a general manner from the finite-temperature extension of the Hellmann-Feynman theorem. Restrictions following from these relations are illustrated by simple physical examples. (author)

  13. Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics.

    Science.gov (United States)

    Grüner, Stefan; Neeb, Manuel; Barandun, Luzi Jakob; Sielaff, Frank; Hohn, Christoph; Kojima, Shun; Steinmetzer, Torsten; Diederich, François; Klebe, Gerhard

    2014-09-01

    The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Chemical Equilibrium as Balance of the Thermodynamic Forces

    OpenAIRE

    Zilbergleyt, B.

    2004-01-01

    The article sets forth comprehensive basics of thermodynamics of chemical equilibrium as balance of the thermodynamic forces. Based on the linear equations of irreversible thermodynamics, De Donder definition of the thermodynamic force, and Le Chatelier's principle, new thermodynamics of chemical equilibrium offers an explicit account for multiple chemical interactions within the system. Basic relations between energetic characteristics of chemical transformations and reaction extents are bas...

  15. Thermodynamic light on black holes

    International Nuclear Information System (INIS)

    Davies, P.

    1977-01-01

    The existence of black holes and their relevance to our understanding of the nature of space and time are considered, with especial reference to the application of thermodynamic arguments which can reveal their energy-transfer processes in a new light. The application of thermodynamics to strongly gravitating systems promises some fascinating new insights into the nature of gravity. Situations can occur during gravitational collapse in which existing physics breaks down. Under these circumstances, the application of universal thermodynamical principles might be our only guide. (U.K.)

  16. Multiplicity distributions in a thermodynamical model of hadron production in e+e- collisions

    International Nuclear Information System (INIS)

    Becattini, F.; Giovannini, A.; Lupia, S.

    1996-01-01

    Predictions of a thermodynamical model of hadron production for multiplicity distributions in e + e - annihilations at LEP and PEP-PETRA centre of mass energies are shown. The production process is described as a two-step process in which primary hadrons emitted from the thermal source decay into final observable particles. The final charged track multiplicity distributions turn out to be of negative binomial type and are in quite good agreement with experimental observations. The average number of clans calculated from fitted negative binomial coincides with the average number of primary hadrons predicted by the thermodynamical model, suggesting that clans should be identified with primary hadrons. (orig.)

  17. Thermodynamics in f(G,T Gravity

    Directory of Open Access Journals (Sweden)

    M. Sharif

    2018-01-01

    Full Text Available This paper explores the nonequilibrium behavior of thermodynamics at the apparent horizon of isotropic and homogeneous universe model in f(G,T gravity (G and T represent the Gauss-Bonnet invariant and trace of the energy-momentum tensor, resp.. We construct the corresponding field equations and analyze the first as well as generalized second law of thermodynamics in this scenario. It is found that an auxiliary term corresponding to entropy production appears due to the nonequilibrium picture of thermodynamics in first law. The universal condition for the validity of generalized second law of thermodynamics is also obtained. Finally, we check the validity of generalized second law of thermodynamics for the reconstructed f(G,T models (de Sitter and power-law solutions. We conclude that this law holds for suitable choices of free parameters.

  18. Thermodynamic parameters for polyether adducts with neutral molecules

    International Nuclear Information System (INIS)

    Spencer, J.N.; Zafar, A.I.; Ganunis, T.F.

    1992-01-01

    Using calorimetry, thermodynamic parameters for the interaction of neutral molecules with polyether adducts are determined. When compared to its analogous acyclic ether, no macrocyclic effect is observed for 12-crown-4. The ether's collective oxygen atoms' action determines interaction with acetonitrile and malononitrile, with dimethyltin dichloride having a specific oxygen-binding site. 14 refs., 1 tab

  19. Discrete nature of thermodynamics in confined ideal Fermi gases

    International Nuclear Information System (INIS)

    Aydin, Alhun; Sisman, Altug

    2014-01-01

    Intrinsic discrete nature in thermodynamic properties of Fermi gases appears under strongly confined and degenerate conditions. For a rectangular confinement domain, thermodynamic properties of an ideal Fermi gas are expressed in their exact summation forms. For 1D, 2D and 3D nano domains, variations of both number of particles and internal energy per particle with chemical potential are examined. It is shown that their relation with chemical potential exhibits a discrete nature which allows them to take only some definite values. Furthermore, quasi-irregular oscillatory-like sharp peaks are observed in heat capacity. New nano devices can be developed based on these behaviors. - Highlights: • “Discrete behaviors” appear in thermodynamic properties of ideal Fermi gases at nano scale. • Variations of particle number and internal energy with chemical potential have stepwise behavior. • There are oscillations and peaks in the variation of heat capacity with domain size and particle number. • Fermi line and Fermi surface at nano scale are not continuous but “discrete”. • Heat capacity oscillations can be used for excess thermal energy storage at nano scale

  20. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia.

    Science.gov (United States)

    Glavatskiy, K S

    2015-10-28

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.

  1. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia

    International Nuclear Information System (INIS)

    Glavatskiy, K. S.

    2015-01-01

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval

  2. Thermodynamic structure of the marine atmosphere over the region ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    course of observations the ship moved from an open ... Marine boundary layer; thermodynamic structure; saturation point; Bay of Bengal Monsoon Experiment; .... when the low-pressure area is close to the ship the pressure is low and as the system moves away, the .... over oceanic regions to characterize the differences.

  3. Faecal shedding of antimicrobial-resistant Clostridium difficile strains by dogs.

    Science.gov (United States)

    Álvarez-Pérez, S; Blanco, J L; Peláez, T; Lanzarot, M P; Harmanus, C; Kuijper, E; García, M E

    2015-03-01

    To longitudinally assess the shedding of antimicrobial resistant Clostridium difficile strains by clinically healthy dogs raised at breeding facilities. 18 puppies from three different litters (#1, 2 and 3) were sampled weekly from parturition to day 20-55 postpartum. Faecal samples from the mothers of litters #2 and 3 were also available for analysis. Bacterial isolates were ribotyped, tested for in vitro antimicrobial susceptibility and further characterised. C. difficile was recovered from all sampled animals of litters #1 and 2, and a third of puppies from litter #3, but marked differences in C. difficile recovery were detected in different age groups (0-100%). Recovered PCR ribotypes included 056 (22 isolates), 010 (6 isolates), 078 and 213 (2 isolates each), and 009 and 020 (1 isolate each). Different ribotypes were shed by four individual animals. Regardless of their origin and ribotype, all isolates demonstrated full resistance to levofloxacin. Additionally, all but one isolate (belonging to ribotype 078) were resistant to ertapenem, and all ribotype 010 isolates displayed high-level resistance to clindamycin, clarithromycin and erythromycin. A single ribotype 078 isolate showed metronidazole heteroresistance. Healthy dogs can shed antimicrobial-resistant C. difficile strains. © 2014 British Small Animal Veterinary Association.

  4. Stability of black holes based on horizon thermodynamics

    Directory of Open Access Journals (Sweden)

    Meng-Sen Ma

    2015-12-01

    Full Text Available On the basis of horizon thermodynamics we study the thermodynamic stability of black holes constructed in general relativity and Gauss–Bonnet gravity. In the framework of horizon thermodynamics there are only five thermodynamic variables E, P, V, T, S. It is not necessary to consider concrete matter fields, which may contribute to the pressure of black hole thermodynamic system. In non-vacuum cases, we can derive the equation of state, P=P(V,T. According to the requirements of stable equilibrium in conventional thermodynamics, we start from these thermodynamic variables to calculate the heat capacity at constant pressure and Gibbs free energy and analyze the local and global thermodynamic stability of black holes. It is shown that P>0 is the necessary condition for black holes in general relativity to be thermodynamically stable, however this condition cannot be satisfied by many black holes in general relativity. For black hole in Gauss–Bonnet gravity negative pressure can be feasible, but only local stable black hole exists in this case.

  5. Thermodynamic properties of solid deuterium in premelting region

    International Nuclear Information System (INIS)

    Udovichenko, B.G.; Esel'son, V.B.; Manzhelij, V.G.

    1984-01-01

    Thermal expansion and isothermal compressibility of solid normal deuterium are measured near the melting line under pressures up to 500 atm. The earlier measurement method is improved to operate in a wider range of working pressures. The effects are discussed which are produced by zero trranslational oscillations in the thermodynamic properties of deuterium. The change in the molar volume in the range from T=0 to the melting temperature is considered as a quantum characteristic of the crystal. The molar volumes of solid deuterium observed at the melting line at moderate P are compared and specified. At P=O and T=0 the molar volume of o-D 2 is found to be V 00 =(20.03+-0.07) cm 3 /mole which follows from the thermodynamic experiment

  6. Thermodynamical string fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Nadine [Theoretical Particle Physics, Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, Lund, SE-223 62 (Sweden); School of Physics and Astronomy, Monash University,Wellington Road, Clayton, VIC-3800 (Australia); Sjöstrand, Torbjörn [Theoretical Particle Physics, Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, Lund, SE-223 62 (Sweden)

    2017-01-31

    The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from the LHC. While some improvements can be noted, it turns out to be nontrivial to obtain effects as big as required, and further work is called for.

  7. Dark matter influence on black objects thermodynamics

    Science.gov (United States)

    Rogatko, Marek; Wojnar, Aneta

    2018-05-01

    Physical process version of the first law of black hole thermodynamics in Einstein-Maxwell dark matter gravity was derived. The dark matter sector is mimicked by the additional U(1)-gauge field coupled to the ordinary Maxwell one. By considering any cross section of the black hole event horizon to the future of the bifurcation surface, the equilibrium state version of the first law of black hole mechanics was achieved. The considerations were generalized to the case of Einstein-Yang-Mills dark matter gravity theory. The main conclusion is that the influence of dark matter is crucial in the formation process of black objects. This fact may constitute the explanation of the recent observations of the enormous mass of the super luminous quasars formed in a relatively short time after Big Bang. We also pay attention to the compact binaries thermodynamics, when dark matter sector enters the game.

  8. Thermodynamic study of selected monoterpenes

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Fulem, Michal; Růžička, K.; Červinka, C.; Rocha, M.A.A.; Santos, L.M.N.B.F.; Schröder, B.

    2013-01-01

    Roč. 60, MAY (2013), 117-125 ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : monoterpenes * pinene * vapor pressure * heat capacity * vaporization and sublimation enthalpy * ideal - gas thermodynamic Subject RIV: BJ - Thermodynamics Impact factor: 2.423, year: 2013

  9. Thermodynamic Calculations for Systems Biocatalysis

    DEFF Research Database (Denmark)

    Abu, Rohana; Gundersen, Maria T.; Woodley, John M.

    2015-01-01

    the transamination of a pro-chiral ketone into a chiral amine (interesting in many pharmaceutical applications). Here, the products are often less energetically stable than the reactants, meaning that the reaction may be thermodynamically unfavourable. As in nature, such thermodynamically-challenged reactions can...... on the basis of kinetics. However, many of the most interesting non-natural chemical reactions which could potentially be catalysed by enzymes, are thermodynamically unfavourable and are thus limited by the equilibrium position of the reaction. A good example is the enzyme ω-transaminase, which catalyses...... be altered by coupling with other reactions. For instance, in the case of ω-transaminase, such a coupling could be with alanine dehydrogenase. Herein, the aim of this work is to identify thermodynamic bottlenecks within a multi-enzyme process, using group contribution method to calculate the Gibbs free...

  10. Thermodynamics II essentials

    CERN Document Server

    REA, The Editors of

    2013-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics II includes review of thermodynamic relations, power and refrigeration cycles, mixtures and solutions, chemical reactions, chemical equilibrium, and flow through nozzl

  11. Concise chemical thermodynamics

    CERN Document Server

    Peters, APH

    2010-01-01

    EnergyThe Realm of ThermodynamicsEnergy BookkeepingNature's Driving ForcesSetting the Scene: Basic IdeasSystem and SurroundingsFunctions of StateMechanical Work and Expanding GasesThe Absolute Temperature Scale Forms of Energy and Their Interconversion Forms of Renewable Energy Solar Energy Wind Energy Hydroelectric Power Geothermal Energy Biomass Energy References ProblemsThe First Law of Thermodynamics Statement of the First Law Reversible Expansion of an Ideal GasConstant-Volume ProcessesConstant-Pressure ProcessesA New Function: EnthalpyRelationship between ?H and ?UUses and Conventions of

  12. Microcanonical ensemble extensive thermodynamics of Tsallis statistics

    International Nuclear Information System (INIS)

    Parvan, A.S.

    2005-01-01

    The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics.The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ = 1/q - 1 in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z bar = 1/(q - 1)N = const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit

  13. Microcanonical ensemble extensive thermodynamics of Tsallis statistics

    International Nuclear Information System (INIS)

    Parvan, A.S.

    2006-01-01

    The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics. The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ=1/(q-1) in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z-bar =1/(q-1)N=const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit

  14. Thermodynamic metrics and optimal paths.

    Science.gov (United States)

    Sivak, David A; Crooks, Gavin E

    2012-05-11

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  15. Statistical Thermodynamics of Disperse Systems

    DEFF Research Database (Denmark)

    Shapiro, Alexander

    1996-01-01

    Principles of statistical physics are applied for the description of thermodynamic equilibrium in disperse systems. The cells of disperse systems are shown to possess a number of non-standard thermodynamic parameters. A random distribution of these parameters in the system is determined....... On the basis of this distribution, it is established that the disperse system has an additional degree of freedom called the macro-entropy. A large set of bounded ideal disperse systems allows exact evaluation of thermodynamic characteristics. The theory developed is applied to the description of equilibrium...

  16. Practical chemical thermodynamics for geoscientists

    CERN Document Server

    Fegley, Bruce, Jr

    2012-01-01

    Practical Chemical Thermodynamics for Geoscientists covers classical chemical thermodynamics and focuses on applications to practical problems in the geosciences, environmental sciences, and planetary sciences. This book will provide a strong theoretical foundation for students, while also proving beneficial for earth and planetary scientists seeking a review of thermodynamic principles and their application to a specific problem. Strong theoretical foundation and emphasis on applications Numerous worked examples in each chapter Brief historical summaries and biographies of key thermodynamicists-including their fundamental research and discoveries Extensive references to relevant literature.

  17. Toxoplasma gondii: A study of oocyst re-shedding in domestic cats.

    Science.gov (United States)

    Zulpo, Dauton Luiz; Sammi, Ana Sue; Dos Santos, Joeleni Rosa; Sasse, João Pedro; Martins, Thais Agostinho; Minutti, Ana Flávia; Cardim, Sérgio Tosi; de Barros, Luiz Daniel; Navarro, Italmar Teodorico; Garcia, João Luis

    2018-01-15

    The aim of the present study was to evaluate the re-shedding of T. gondii oocysts in cats fed tissue cysts of homologous and heterologous strains 12, 24 and 36 months after the first infection. Thirteen cats were used in the present study and were divided into four groups: G1 (n=2), G2 (n=3), G3 (n=5), and G4 (n=3). G1, G3 and G4 cats were infected with brain cysts of ME49 and G2 with TgDoveBr8, both genotype II strains of T. gondii. The G1 and G2 cats were re-infected after twelve months with brain cysts of VEG strain (genotype III), and G3 cats were re-infected with TgDoveBr1 (genotype II). The G3 cats were re-infected a third time after 24 months from the second infection, and the G4 cats were re-infected 36 months after the initial infection with cysts of the VEG strain. The cats' feces were evaluated using fecal flotation and genotyped with PCR-RFLP. The serological responses for IgM, IgA and IgG were determined by ELISA. All cats shed oocysts after the initial infection. Only one G1 cat shed oocysts when re-infected after twelve months with the VEG strain. No G2 cats excreted oocysts after the second infection with VEG. G3 cats, when re-infected after twelve months with the TgDoveBr1 strain, did not shed oocysts. However, when challenged after a third time with the VEG strain, three out of four cats shed oocysts. In the G4 group, when re-infected after thirty-six months with the VEG strain, two out of three cats shed oocysts. All oocyst samples were genotyped and characterized as the same genotype from the inoculum. Protection against oocyst re-excretion occurred in 90%, 25%, and 33.4% of cats after 12, 24, and 36 months from the initial infection, respectively. Therefore, the environmental contamination by oocysts from re-infected adult cats is only 30% lower than from kittens. In conclusion, the excretion of T. gondii oocysts was higher in experimentally re-infected cats throughout the years, especially when a heterologous strain was used. Copyright © 2017

  18. Evidence against roles for phorbol binding protein Munc13-1, ADAM adaptor Eve-1, or vesicle trafficking phosphoproteins Munc18 or NSF as phospho-state-sensitive modulators of phorbol/PKC-activated Alzheimer APP ectodomain shedding

    Directory of Open Access Journals (Sweden)

    Lovestone Simon

    2007-12-01

    Full Text Available Abstract Background Shedding of the Alzheimer amyloid precursor protein (APP ectodomain can be accelerated by phorbol esters, compounds that act via protein kinase C (PKC or through unconventional phorbol-binding proteins such as Munc13-1. We have previously demonstrated that application of phorbol esters or purified PKC potentiates budding of APP-bearing secretory vesicles at the trans-Golgi network (TGN and toward the plasma membrane where APP becomes a substrate for enzymes responsible for shedding, known collectively as α-secretase(s. However, molecular identification of the presumptive "phospho-state-sensitive modulators of ectodomain shedding" (PMES responsible for regulated shedding has been challenging. Here, we examined the effects on APP ectodomain shedding of four phorbol-sensitive proteins involved in regulation of vesicular membrane trafficking of APP: Munc13-1, Munc18, NSF, and Eve-1. Results Overexpression of either phorbol-sensitive wildtype Munc13-1 or phorbol-insensitive Munc13-1 H567K resulted in increased basal APP ectodomain shedding. However, in contrast to the report of Roßner et al (2004, phorbol ester-dependent APP ectodomain shedding from cells overexpressing APP and Munc13-1 wildtype was indistinguishable from that observed following application of phorbol to cells overexpressing APP and Munc13-1 H567K mutant. This pattern of similar effects on basal and stimulated APP shedding was also observed for Munc18 and NSF. Eve-1, an ADAM adaptor protein reported to be essential for PKC-regulated shedding of pro-EGF, was found to play no obvious role in regulated shedding of sAPPα. Conclusion Our results indicate that, in the HEK293 system, Munc13-1, Munc18, NSF, and EVE-1 fail to meet essential criteria for identity as PMES for APP.

  19. Evidence against roles for phorbol binding protein Munc13-1, ADAM adaptor Eve-1, or vesicle trafficking phosphoproteins Munc18 or NSF as phospho-state-sensitive modulators of phorbol/PKC-activated Alzheimer APP ectodomain shedding.

    Science.gov (United States)

    Ikin, Annat F; Causevic, Mirsada; Pedrini, Steve; Benson, Lyndsey S; Buxbaum, Joseph D; Suzuki, Toshiharu; Lovestone, Simon; Higashiyama, Shigeki; Mustelin, Tomas; Burgoyne, Robert D; Gandy, Sam

    2007-12-09

    Shedding of the Alzheimer amyloid precursor protein (APP) ectodomain can be accelerated by phorbol esters, compounds that act via protein kinase C (PKC) or through unconventional phorbol-binding proteins such as Munc13-1. We have previously demonstrated that application of phorbol esters or purified PKC potentiates budding of APP-bearing secretory vesicles at the trans-Golgi network (TGN) and toward the plasma membrane where APP becomes a substrate for enzymes responsible for shedding, known collectively as alpha-secretase(s). However, molecular identification of the presumptive "phospho-state-sensitive modulators of ectodomain shedding" (PMES) responsible for regulated shedding has been challenging. Here, we examined the effects on APP ectodomain shedding of four phorbol-sensitive proteins involved in regulation of vesicular membrane trafficking of APP: Munc13-1, Munc18, NSF, and Eve-1. Overexpression of either phorbol-sensitive wildtype Munc13-1 or phorbol-insensitive Munc13-1 H567K resulted in increased basal APP ectodomain shedding. However, in contrast to the report of Rossner et al (2004), phorbol ester-dependent APP ectodomain shedding from cells overexpressing APP and Munc13-1 wildtype was indistinguishable from that observed following application of phorbol to cells overexpressing APP and Munc13-1 H567K mutant. This pattern of similar effects on basal and stimulated APP shedding was also observed for Munc18 and NSF. Eve-1, an ADAM adaptor protein reported to be essential for PKC-regulated shedding of pro-EGF, was found to play no obvious role in regulated shedding of sAPPalpha. Our results indicate that, in the HEK293 system, Munc13-1, Munc18, NSF, and EVE-1 fail to meet essential criteria for identity as PMES for APP.

  20. Syndecan-4 shedding impairs macrovascular angiogenesis in diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ran; Xie, Jun; Wu, Han; Li, Guannan; Chen, Jianzhou; Chen, Qinhua; Wang, Lian; Xu, Biao, E-mail: xubiao@medmail.com.cn

    2016-05-20

    Purpose: Syndecan-4 (synd4) is a ubiquitous heparan sulfate proteoglycan cell surface receptor that modulates cell proliferation, migration, mechanotransduction, and endocytosis. The extracellular domain of synd4 sheds heavily in acute inflammation, but the shedding of synd4 in chronic inflammation, such as diabetes mellitus (DM), is still undefined. We investigated the alterations of synd4 endothelial expression in DM and the influence of impaired synd4 signaling on angiogenesis in human umbilical vein endothelial cells (HUVECs), diabetic rats, synd4 null mice, and db/db mice. Material and methods: HUVECs were incubated with advanced glycation end products (AGEs). Western blot analysis was used to determine synd4 protein expression and ELISA was used to detect soluble synd4 fragments. The concentration of synd4 in the aortic endothelia of diabetic rats was detected by immunohistochemical staining. Aortic ring assays were performed to study the process of angiogenesis in the diabetic rats and in synd4 null and db/db mice. Recombinant adenoviruses containing the synd4 gene or null were constructed to enhance synd4 aortic expression in db/db mice. Results: Western blot analysis showed decreased expression of the synd4 extracellular domain in HUVECs, and ELISA detected increased soluble fragments of synd4 in the media. Synd4 endothelial expression in the aortas of diabetic rats was decreased. Aortic ring assay indicated impaired angiogenesis in synd4 null and db/db mice, which was partially reversed by synd4 overexpression in db/db mice. Conclusion: Synd4 shedding from vascular endothelial cells played an important role in the diabetes-related impairment of angiogenesis. -- Highlights: •Synd4 shedding from endothelial cells is accelerated under the stimulation of AGEs. •Extracellular domain of synd4 is diminished in the endothelium of DM rats. •Aortic rings of synd4 null mice showed impaired angiogenesis. •Overexpression of synd4 partly rescues macrovascular

  1. Kinetics of viral shedding provide insights into the epidemiology of viral hemorrhagic septicemia in Pacific herring

    Science.gov (United States)

    Hershberger, Paul K.; Gregg, Jacob L.; Winton, James R.; Grady, Courtney; Collins, Rachael

    2010-01-01

    Losses from infectious diseases are an important component of natural mortality among marine fish species, but factors controlling the ecology of these diseases and their potential responses to anthropogenic changes are poorly understood. We used viral hemorrhagic septicemia virus (VHSV) and a laboratory stock of Pacific herring Clupea pallasii to investigate the kinetics of viral shedding and its effect on disease transmission and host mortality. Outbreaks of acute disease, accompanied by mortality and viral shedding, were initiated after waterborne exposure of herring to concentrations of VHSV as low as 101 plaque-forming units (pfu) ml–1. Shed virus in flow-through tanks was first detected 4 to 5 d post-exposure, peaked after 6 to 10 d, and was no longer detected after 16 d. Shedding rates, calculated from density, flow and waterborne virus titer reached 1.8 to 5.0 × 108 pfu fish–1 d–1. Onset of viral shedding was dose-dependent and preceded initial mortality by 2 d. At 21 d, cumulative mortality in treatment groups ranged from 81 to 100% and was dependent not on challenge dose, but on the kinetics and level of viral shedding by infected fish in the tank. Possible consequences of the viral shedding and disease kinetics are discussed in the context of epizootic initiation and perpetuation among populations of wild Pacific herring.

  2. Thermodynamics and kinetics of the glass transition: A generic geometric approach

    International Nuclear Information System (INIS)

    Gutzow, I.; Ilieva, D.; Babalievski, F.; Yamakov, V.

    2000-01-01

    A generic phenomenological theory of the glass transition is developed in the framework of a quasilinear formulation of the thermodynamics of irreversible processes. Starting from one of the basic principles of this science in its approximate form given by de Donder's equation, after a change of variables the temperature dependence of the structural parameter ξ(T), the thermodynamic potentials ΔG(tilde sign)(T), the thermodynamic functions and the time of molecular relaxation τ of vitrifying systems is constructed. In doing so, a new effect in the ΔG(tilde sign)(T) course is observed. The analysis of the higher derivatives of the thermodynamic potential, and especially the nullification of the second derivative of the configurational specific heats ΔC(tilde sign) p (T) of the vitrifying liquid defines glass transition temperature T(tilde sign) g and leads directly to the basic dependence of glass transition kinetics: the Frenkel-Kobeko-Reiner equation. The conditions guaranteeing the fulfillment of this equation specify the temperature dependence of the activation energy U(T,ξ(tilde sign)) for viscous flow and give a natural differentiation of glass formers into fragile and strong liquids. The effect of thermal prehistory on the temperature dependence of both thermodynamic functions and kinetic coefficients is established by an appropriate separation of de Donder's equation. (c) 2000 American Institute of Physics

  3. Effect of genital herpes on cervicovaginal HIV shedding in women co-infected with HIV AND HSV-2 in Tanzania.

    Science.gov (United States)

    Todd, Jim; Riedner, Gabriele; Maboko, Leonard; Hoelscher, Michael; Weiss, Helen A; Lyamuya, Eligius; Mabey, David; Rusizoka, Mary; Belec, Laurent; Hayes, Richard

    2013-01-01

    To compare the presence and quantity of cervicovaginal HIV among HIV seropositive women with clinical herpes, subclinical HSV-2 infection and without HSV-2 infection respectively; to evaluate the association between cervicovaginal HIV and HSV shedding; and identify factors associated with quantity of cervicovaginal HIV. Four groups of HIV seropositive adult female barworkers were identified and examined at three-monthly intervals between October 2000 and March 2003 in Mbeya, Tanzania: (1) 57 women at 70 clinic visits with clinical genital herpes; (2) 39 of the same women at 46 clinic visits when asymptomatic; (3) 55 HSV-2 seropositive women at 60 clinic visits who were never observed with herpetic lesions; (4) 18 HSV-2 seronegative women at 45 clinic visits. Associations of genital HIV shedding with HIV plasma viral load (PVL), herpetic lesions, HSV shedding and other factors were examined. Prevalence of detectable genital HIV RNA varied from 73% in HSV-2 seronegative women to 94% in women with herpetic lesions (geometric means 1634 vs 3339 copies/ml, p = 0.03). In paired specimens from HSV-2 positive women, genital HIV viral shedding was similar during symptomatic and asymptomatic visits. On multivariate regression, genital HIV RNA (log10 copies/mL) was closely associated with HIV PVL (β = 0.51 per log10 copies/ml increase, 95%CI:0.41-0.60, pgenital HIV than the presence of herpetic lesions. These data support a role of HSV-2 infection in enhancing HIV transmissibility.

  4. Contact Geometry of Mesoscopic Thermodynamics and Dynamics

    Directory of Open Access Journals (Sweden)

    Miroslav Grmela

    2014-03-01

    Full Text Available The time evolution during which macroscopic systems reach thermodynamic equilibrium states proceeds as a continuous sequence of contact structure preserving transformations maximizing the entropy. This viewpoint of mesoscopic thermodynamics and dynamics provides a unified setting for the classical equilibrium and nonequilibrium thermodynamics, kinetic theory, and statistical mechanics. One of the illustrations presented in the paper is a new version of extended nonequilibrium thermodynamics with fluxes as extra state variables.

  5. Bovine coronavirus in naturally and experimentally exposed calves; viral shedding and the potential for transmission.

    Science.gov (United States)

    Oma, Veslemøy Sunniva; Tråvén, Madeleine; Alenius, Stefan; Myrmel, Mette; Stokstad, Maria

    2016-06-13

    Bovine coronavirus (BCoV) is a widely distributed pathogen, causing disease and economic losses in the cattle industry worldwide. Prevention of virus spread is impeded by a lack of basic knowledge concerning viral shedding and transmission potential in individual animals. The aims of the study were to investigate the duration and quantity of BCoV shedding in feces and nasal secretions related to clinical signs, the presence of virus in blood and tissues and to test the hypothesis that seropositive calves are not infectious to naïve in-contact calves three weeks after BCoV infection. A live animal experiment was conducted, with direct contact between animal groups for 24 h as challenge procedure. Four naïve calves were commingled with a group of six naturally infected calves and sequentially euthanized. Two naïve sentinel calves were commingled with the experimentally exposed group three weeks after exposure. Nasal swabs, feces, blood and tissue samples were analyzed for viral RNA by RT-qPCR, and virus isolation was performed on nasal swabs. Serum was analyzed for BCoV antibodies. The calves showed mild general signs, and the most prominent signs were from the respiratory system. The overall clinical score corresponded well with the shedding of viral RNA the first three weeks after challenge. General depression and cough were the signs that correlated best with shedding of BCoV RNA, while peak respiratory rate and peak rectal temperature appeared more than a week later than the peak shedding. Nasal shedding preceded fecal shedding, and the calves had detectable amounts of viral RNA intermittently in feces through day 35 and in nasal secretions through day 28, however virus isolation was unsuccessful from day six and day 18 from the two calves investigated. Viral RNA was not detected in blood, but was found in lymphatic tissue through day 42 after challenge. Although the calves were shedding BCoV RNA 21 days after infection the sentinel animals were not infected

  6. eQuilibrator--the biochemical thermodynamics calculator.

    Science.gov (United States)

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.

  7. Horizon thermodynamics in fourth-order gravity

    Directory of Open Access Journals (Sweden)

    Meng-Sen Ma

    2017-03-01

    Full Text Available In the framework of horizon thermodynamics, the field equations of Einstein gravity and some other second-order gravities can be rewritten as the thermodynamic identity: dE=TdS−PdV. However, in order to construct the horizon thermodynamics in higher-order gravity, we have to simplify the field equations firstly. In this paper, we study the fourth-order gravity and convert it to second-order gravity via a so-called “Legendre transformation” at the cost of introducing two other fields besides the metric field. With this simplified theory, we implement the conventional procedure in the construction of the horizon thermodynamics in 3 and 4 dimensional spacetime. We find that the field equations in the fourth-order gravity can also be written as the thermodynamic identity. Moreover, we can use this approach to derive the same black hole mass as that by other methods.

  8. eQuilibrator—the biochemical thermodynamics calculator

    Science.gov (United States)

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use. PMID:22064852

  9. Applied thermodynamics: A new frontier for biotechnology

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2006-01-01

    The scientific career of one of the most outstanding scientists in molecular thermodynamics, Professor John M. Prausnitz at Berkeley, reflects the change in the agenda of molecular thermodynamics, from hydrocarbon chemistry to biotechnology. To make thermodynamics a frontier for biotechnology...

  10. Life’s a Gas: A Thermodynamic Theory of Biological Evolution

    Directory of Open Access Journals (Sweden)

    Keith R. Skene

    2015-07-01

    Full Text Available This paper outlines a thermodynamic theory of biological evolution. Beginning with a brief summary of the parallel histories of the modern evolutionary synthesis and thermodynamics, we use four physical laws and processes (the first and second laws of thermodynamics, diffusion and the maximum entropy production principle to frame the theory. Given that open systems such as ecosystems will move towards maximizing dispersal of energy, we expect biological diversity to increase towards a level, Dmax, representing maximum entropic production (Smax. Based on this theory, we develop a mathematical model to predict diversity over the last 500 million years. This model combines diversification, post-extinction recovery and likelihood of discovery of the fossil record. We compare the output of this model with that of the observed fossil record. The model predicts that life diffuses into available energetic space (ecospace towards a dynamic equilibrium, driven by increasing entropy within the genetic material. This dynamic equilibrium is punctured by extinction events, which are followed by restoration of Dmax through diffusion into available ecospace. Finally we compare and contrast our thermodynamic theory with the MES in relation to a number of important characteristics of evolution (progress, evolutionary tempo, form versus function, biosphere architecture, competition and fitness.

  11. Flavobacterium psychrophilum, invasion into and shedding by rainbow trout Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Madetoja, J.; Nyman, P.; Wiklund, T.

    2000-01-01

    The infection route of Flavobacterium psychrophilum into rainbow trout Oncorhynchus mykiss was studied using bath and cohabitation challenges as well as oral challenge with live feed as a vector. Additionally, the number of bacterial cells shed by infected fish into the surrounding water...... is discussed as an important invasion route for F. psychrophilum into the fish. The shedding rate of F. psychrophiIlun by infected fish was associated with water temperature and the mortality of the infected fish. High numbers of F. psychrophilum cells were released into the water by dead rainbow trout during...

  12. A Bankruptcy Problem Approach to Load-shedding in Multiagent-based Microgrid Operation

    OpenAIRE

    Kim, Hak-Man; Kinoshita, Tetsuo; Lim, Yujin; Kim, Tai-Hoon

    2010-01-01

    A microgrid is composed of distributed power generation systems (DGs), distributed energy storage devices (DSs), and loads. To maintain a specific frequency in the islanded mode as an important requirement,  the control of DGs’ output and charge action of DSs are used in supply surplus conditions and load-shedding and discharge action of DSs are used in supply shortage conditions. Recently, multiagent systems for autonomous microgrid operation have been studied. Especially, load-shedding, whi...

  13. Proteomic Analysis of Leptospira interrogans Shed in Urine of Chronically Infected Hosts▿

    OpenAIRE

    Monahan, Avril M.; Callanan, John J.; Nally, Jarlath E.

    2008-01-01

    Leptospirosis is a global zoonotic disease. The causative agent, pathogenic Leptospira species, survives in the renal tubules of chronically infected hosts, from where leptospires are shed via urine into the environment. Infection of new hosts can present as an array of acute and chronic disease processes reflecting variations in host-pathogen interactions. The present study was designed to reproduce the carrier phase of infection in Rattus norvegicus, thus facilitating shedding of leptospire...

  14. Chemical Thermodynamics and Information Theory with Applications

    CERN Document Server

    Graham, Daniel J

    2011-01-01

    Thermodynamics and information touch theory every facet of chemistry. However, the physical chemistry curriculum digested by students worldwide is still heavily skewed toward heat/work principles established more than a century ago. Rectifying this situation, Chemical Thermodynamics and Information Theory with Applications explores applications drawn from the intersection of thermodynamics and information theory--two mature and far-reaching fields. In an approach that intertwines information science and chemistry, this book covers: The informational aspects of thermodynamic state equations The

  15. Thermodynamic aspects of grain refinement of Al-Si alloys using Ti and B

    Energy Technology Data Exchange (ETDEWEB)

    Groebner, Joachim [Technical University of Clausthal, Institute of Metallurgy, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany); Mirkovic, Djordje [Technical University of Clausthal, Institute of Metallurgy, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany); Schmid-Fetzer, Rainer [Technical University of Clausthal, Institute of Metallurgy, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany)]. E-mail: schmid-fetzer@tu-clausthal.de

    2005-03-25

    A thermodynamic assessment of ternary Al-Si-Ti phases was performed. Published datasets for the other subsystems were checked and adapted. Based on that, a consistent thermodynamic description of quaternary Al-Si-Ti-B alloys was generated. This was applied in a calculation of Al-Si-Ti-B phase diagram sections for practically relevant temperatures and compositions of Al-Si alloys from Al-rich to typical Al-Si foundry alloys. These stable and metastable phase diagrams could be correlated to many detailed aspects of possible reactions observed or suggested in experimental studies of grain refining. Understanding the mechanisms of grain refining of Al wrought alloys and Al-Si foundry alloys using titanium and boron requires a fundamental knowledge of both thermodynamic and kinetic aspects of this complex process. This work focuses exclusively on the thermodynamic aspects and the phase diagrams, which were not available for the quaternary alloys and partly incomplete and inconsistent for the ternary subsystems.

  16. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1962-01-01

    The first session of the symposium discussed in general the thermodynamic properties of actinides, including thorium, uranium and Plutonium which provide reactor fuel. The second session was devoted to applications of thermodynamic theory to the study of nuclear materials, while the experimental techniques for the determination of thermodynamic data were examined at the next session. The thermodynamic properties of alloys were considered at a separate session, and another session was concerned with solids other than alloys. Vaporization processes, which are of special interest in the development of high-temperature reactors, were discussed at a separate session. The discussions on the methods of developing the data and ascertaining their accuracy were especially useful in highlighting the importance of determining whether any given data are reliable before they can be put to practical application. Many alloys and refractory materials (i. e. materials which evaporate only at very high temperatures) are of great importance in nuclear technology, and some of these substances are extremely complex in their chemical composition. For example, until recently the phase composition of the oxides of thorium, uranium and plutonium had been only very imperfectly understood, and the same was true of the carbides of these elements. Recent developments in experimental techniques have made it possible to investigate the phase composition of these complex materials as well as the chemical species of these materials in the gaseous phase. Recent developments in measuring techniques, such as fluorine bomb calorimetry and Knudsen effusion technique, have greatly increased the accuracy of thermodynamic data

  17. Co-occurrence of Trichomonas vaginalis and bacterial vaginosis and vaginal shedding of HIV-1 RNA.

    Science.gov (United States)

    Fastring, Danielle R; Amedee, Angela; Gatski, Megan; Clark, Rebecca A; Mena, Leandro A; Levison, Judy; Schmidt, Norine; Rice, Janet; Gustat, Jeanette; Kissinger, Patricia

    2014-03-01

    Trichomonas vaginalis (TV) and bacterial vaginosis (BV) are independently associated with increased risk of vaginal shedding in HIV-positive women. Because these 2 conditions commonly co-occur, this study was undertaken to examine the association between TV/BV co-occurrence and vaginal shedding of HIV-1 RNA. HIV-positive women attending outpatient HIV clinics in 3 urban US cities underwent a clinical examination; were screened for TV, BV, Neisseria gonorrhoeae, Chlamydia trachomatis, and vulvovaginal candidiasis; and completed a behavioral survey. Women shedding HIV-1 RNA vaginally (≥50 copies/mL) were compared with women who had an undetectable (women who were TV positive and BV positive or had co-occurrence of TV/BV had higher odds of shedding vaginally when compared with women who did not have these conditions. In this sample of 373 HIV-positive women, 43.1% (n = 161) had co-occurrence of TV/BV and 33.2% (n = 124) were shedding HIV-1 RNA vaginally. The odds of shedding HIV vaginally in the presence of TV alone or BV alone and when TV/BV co-occurred were 4.07 (95% confidence interval [CI], 1.78-9.37), 5.65 (95% CI, 2.64-12.01), and 18.63 (95% CI, 6.71-51.72), respectively, when compared with women with no diagnosis of TV or BV, and after adjusting for age, antiretroviral therapy status, and plasma viral load. T. vaginalis and BV were independently and synergistically related to vaginal shedding of HIV-1 RNA. Screening and prompt treatment of these 2 conditions among HIV-positive women are important not only clinically but for HIV prevention, as well.

  18. Application of thermodynamics to silicate crystalline solutions

    Science.gov (United States)

    Saxena, S. K.

    1972-01-01

    A review of thermodynamic relations is presented, describing Guggenheim's regular solution models, the simple mixture, the zeroth approximation, and the quasi-chemical model. The possibilities of retrieving useful thermodynamic quantities from phase equilibrium studies are discussed. Such quantities include the activity-composition relations and the free energy of mixing in crystalline solutions. Theory and results of the study of partitioning of elements in coexisting minerals are briefly reviewed. A thermodynamic study of the intercrystalline and intracrystalline ion exchange relations gives useful information on the thermodynamic behavior of the crystalline solutions involved. Such information is necessary for the solution of most petrogenic problems and for geothermometry. Thermodynamic quantities for tungstates (CaWO4-SrWO4) are calculated.

  19. An introduction to thermodynamics and statistical mechanics

    CERN Document Server

    Saxena, A K

    2016-01-01

    An Introduction to Thermodynamics and Statistical Mechanics aims to serve as a text book for undergraduate hons.and postgraduate students of physics. The book covers First Law of Thermodynamics, Entropy and Second Law ofThermodynamics, Thermodynamic Relations, The Statistical Basis of Thermodynamics, Microcanonical Ensemble,Classical Statistical and Canonical Distribution, Grand Canonical Ensemble, Quantum Statistical Mechanics, PhaseTransitions, Fluctuations, Irreversible Processes and Transport Phenomena (Diffusion).SALIENT FEATURES:iC* Offers students a conceptual development of the subjectiC* Review questions at the end of chapters.NEW TO THE SECOND EDITIONiC* PVT SurfacesiC* Real Heat EnginesiC* Van der Waals Models (Qualitative Considerations)iC* Cluster ExpansioniC* Brownian Motion (Einstein's Theory)

  20. A Network Thermodynamic Approach to Compartmental Analysis

    Science.gov (United States)

    Mikulecky, D. C.; Huf, E. G.; Thomas, S. R.

    1979-01-01

    We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc. PMID:262387

  1. Introduction to the thermodynamics of solids

    International Nuclear Information System (INIS)

    Ericksen, J.L.

    1992-01-01

    This book addresses issues of thermodynamics associated with solids from a unique point of view. Professor Ericksen provides a perspective of thermodynamics which is based in material science and solid mechanics, and attempts to apply basic thermodynamics to a wide range of phenomena. The book is not written as a text-book, as it does not contain example problems or exercises, is directed primarily at researchers in solids. The author states that much of the book is controversial, and that many of his treatments of thermodynamics are not traditional. The author's assessment is accurate on both counts. However, there are several reasons to believe that many of the issues raised in the book are not so much controversial, but rather simply not well described, either by the author or by thermodynamicists, in general. The primary references for much of the thermodynamics in the book are historic in nature, and certainly worthy of consideration, but only a few current references are provided

  2. Thermodynamic limit and decoherence: rigorous results

    Energy Technology Data Exchange (ETDEWEB)

    Frasca, Marco [Via Erasmo Gattamelata 3, 00176 Rome (Italy)

    2007-05-15

    Time evolution operator in quantum mechanics can be changed into a statistical operator by a Wick rotation. This strict relation between statistical mechanics and quantum evolution can reveal deep results when the thermodynamic limit is considered. These results translate in a set of theorems proving that these effects can be effectively at work producing an emerging classical world without recurring to any external entity that in some cases cannot be properly defined. For a many-body system it has been recently shown that Gaussian decay of the coherence is the rule with a duration of recurrence more and more small as the number of particles increases. This effect has been observed experimentally. More generally, a theorem about coherence of bulk matter can be proved. All this takes us to the conclusion that a well defined boundary for the quantum to classical world does exist and that can be drawn by the thermodynamic limit, extending in this way the deep link between statistical mechanics and quantum evolution to a high degree.

  3. Inhibition of TGF-β Signaling in SHED Enhances Endothelial Differentiation.

    Science.gov (United States)

    Xu, J G; Gong, T; Wang, Y Y; Zou, T; Heng, B C; Yang, Y Q; Zhang, C F

    2018-02-01

    Low efficiency of deriving endothelial cells (ECs) from adult stem cells hampers their utilization in tissue engineering studies. The purpose of this study was to investigate whether suppression of transforming growth factor beta (TGF-β) signaling could enhance the differentiation efficiency of dental pulp-derived stem cells into ECs. We initially used vascular endothelial growth factor A (VEGF-A) to stimulate 2 dental pulp-derived stem cells (dental pulp stem cells and stem cells from human exfoliated deciduous teeth [SHED]) and compared their differentiation capacity into ECs. We further evaluated whether the vascular endothelial growth factor receptor I (VEGF-RI)-specific ligand placental growth factor-1 (PlGF-1) could mediate endothelial differentiation. Finally, we investigated whether the TGF-β signaling inhibitor SB-431542 could enhance the inductive effect of VEGF-A on endothelial differentiation, as well as the underlying mechanisms involved. ECs differentiated from dental pulp-derived stem cells exhibited the typical phenotypes of primary ECs, with SHED possessing a higher endothelial differentiation potential than dental pulp stem cells. VEGFR1-specific ligand-PLGF exerted a negligible effect on SHED-ECs differentiation. Compared with VEGF-A alone, the combination of VEGF-A and SB-431542 significantly enhanced the endothelial differentiation of SHED. The presence of SB-431542 inhibited the phosphorylation of Suppressor of Mothers Against Decapentaplegic 2/3 (SMAD2/3), allowing for VEGF-A-dependent phosphorylation and upregulation of VEGFR2. Our results indicate that the combination of VEGF-A and SB-431542 could enhance the differentiation of dental pulp-derived stem cells into endothelial cells, and this process is mediated through enhancement of VEGF-A-VEGFR2 signaling and concomitant inhibition of TGF-β-SMAD2/3 signaling.

  4. Hard sphere colloidal dispersions: Mechanical relaxation pertaining to thermodynamic forces

    NARCIS (Netherlands)

    Mellema, J.; de Kruif, C.G.; Blom, C.; Vrij, A.

    1987-01-01

    The complex viscosity of sterically stabilized (hard) silica spheres in cyclohexane has been measured between 80 Hz and 170 kHz with torsion pendulums and a nickel tube resonator. The observed relaxation behaviour can be attributed to the interplay of hydrodynamic and thermodynamic forces. The

  5. Thermodynamic optimization of power plants

    NARCIS (Netherlands)

    Haseli, Y.

    2011-01-01

    Thermodynamic Optimization of Power Plants aims to establish and illustrate comparative multi-criteria optimization of various models and configurations of power plants. It intends to show what optimization objectives one may define on the basis of the thermodynamic laws, and how they can be applied

  6. Once Daily Valacyclovir for Reducing Viral Shedding in Subjects Newly Diagnosed with Genital Herpes

    Directory of Open Access Journals (Sweden)

    Mark G. Martens

    2009-01-01

    Results. 52 subjects had at least one PCR measurement in both treatment periods and comprised the primary efficacy population. Valacyclovir significantly reduced HSV-2 shedding during all days compared to placebo (mean 2.9% versus 13.5% of all days (P<.01, a 78% reduction. Valacyclovir significantly reduced subclinical HSV-2 shedding during all days compared to placebo (mean 2.4% versus 11.0% of all days (P<.01, a 78% reduction. However, 79% of subjects had no GH recurrences while receiving valacyclovir compared to 52% of subjects receiving placebo (P<.01. Conclusion. In this study, the frequency of total and subclinical HSV-2 shedding was greater than reported in earlier studies involving subjects with a history of symptomatic genital recurrences. Our study is the first to demonstrate a significant reduction in viral shedding with valacyclovir 1 g daily compared to placebo in a population of subjects newly diagnosed with HSV-2 infection.

  7. Thermodynamic analysis of biochemical systems

    International Nuclear Information System (INIS)

    Yuan, Y.; Fan, L.T.; Shieh, J.H.

    1989-01-01

    Introduction of the concepts of the availability (or exergy), datum level materials, and the dead state has been regarded as some of the most significant recent developments in classical thermodynamics. Not only the available energy balance but also the material and energy balances of a biological system may be established in reference to the datum level materials in the dead state or environment. In this paper these concepts are illustrated with two examples of fermentation and are shown to be useful in identifying sources of thermodynamic inefficiency, thereby leading naturally to the rational definition of thermodynamic efficiency of a biochemical process

  8. Modelling of phase diagrams and thermodynamic properties using Calphad method – Development of thermodynamic databases

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Aleš

    2013-01-01

    Roč. 66, JAN (2013), s. 3-13 ISSN 0927-0256 R&D Projects: GA MŠk(CZ) OC08053 Institutional support: RVO:68081723 Keywords : Calphad method * phase diagram modelling * thermodynamic database development Subject RIV: BJ - Thermodynamics Impact factor: 1.879, year: 2013

  9. Shedding of a low pathogenic avian influenza virus in a common synanthropic mammal--the cottontail rabbit.

    Directory of Open Access Journals (Sweden)

    J Jeffrey Root

    Full Text Available BACKGROUND: Cottontails (Sylvilagus spp. are common mammals throughout much of the U.S. and are often found in peridomestic settings, potentially interacting with livestock and poultry operations. If these animals are susceptible to avian influenza virus (AIV infections and shed the virus in sufficient quantities they may pose a risk for movement of avian influenza viruses between wildlife and domestic animals in certain situations. METHODOLOGY/PRINCIPAL FINDINGS: To assess the viral shedding potential of AIV in cottontails, we nasally inoculated fourteen cottontails with a low pathogenic AIV (H4N6. All inoculated cottontails shed relatively large quantities of viral RNA both nasally (≤ 10(6.94 PCR EID50 equivalents/mL and orally (≤ 10(5.09 PCR EID50 equivalents/mL. However, oral shedding tended to decline more quickly than did nasal shedding. No animals showed any obvious signs of disease throughout the study. Evidence of a serological response was found in all infected rabbits at 22 days post infection in convalescent sera. CONCLUSIONS/SIGNIFICANCE: To our knowledge, cottontails have not been previously assessed for AIV shedding. However, it was obvious that they shed AIV RNA extensively via the nasal and oral routes. This is significant, as cottontails are widely distributed throughout the U.S. and elsewhere. These mammals are often found in highly peridomestic situations, such as farms, parks, and suburban neighborhoods, often becoming habituated to human activities. Thus, if infected these mammals could easily transport AIVs short distances.

  10. Difference rule-a new thermodynamic principle: prediction of standard thermodynamic data for inorganic solvates.

    Science.gov (United States)

    Jenkins, H Donald Brooke; Glasser, Leslie

    2004-12-08

    We present a quite general thermodynamic "difference" rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding solid parent (unsolvated) salt: [P[n-solvate] - P[parent

  11. Toward thermodynamic consistency of quasiparticle picture

    International Nuclear Information System (INIS)

    Biro, T.S.; Toneev, V.D.; Shanenko, A.A.

    2003-01-01

    The purpose of the present article is to call attention to some realistic quasiparticle-based description of quark/gluon matter and its consistent implementation in thermodynamics. A simple and transparent representation of the thermodynamic consistency conditions is given. This representation allows one to review critically and systemize available phenomenological approaches to the deconfinement problem with respect to their thermodynamic consistency. Particular attention is paid to the development of a method for treating the string screening in the dense matter of unbound color charges. The proposed method yields an integrable effective pair potential that can be incorporated into the mean-field picture. The results of its application are in reasonable agreement with lattice data on the QCD thermodynamics

  12. Making thermodynamic functions of nanosystems intensive

    International Nuclear Information System (INIS)

    Nassimi, A M; Parsafar, G A

    2007-01-01

    The potential energy of interaction among particles in many systems is proportional to r -α . In systems for which α< d, we encounter nonextensive (nonintensive) thermodynamic functions, where d is the space dimension. A scaling parameter, N-tilde, has been introduced to make the nonextensive (nonintensive) thermodynamic functions of such systems extensive (intensive). Our simulation results show that this parameter is not capable of making the thermodynamic functions of a nanosystem extensive (intensive). Here we have presented a theoretical justification for N-tilde. Then we have generalized this scaling parameter to be capable of making the nonextensive (nonintensive) thermodynamic functions of nanosystems extensive (intensive). This generalized parameter is proportional to the potential energy per particle at zero temperature

  13. Structure and thermodynamics of molten salts

    International Nuclear Information System (INIS)

    Papatheodorou, G.N.

    1983-01-01

    This chapter investigates single-component molten salts and multicomponent salt mixtures. Molten salts provide an important testing ground for theories of liquids, solutions, and plasmas. Topics considered include molten salts as liquids (the pair potential, the radial distribution function, methods of characterization), single salts (structure, thermodynamic correlations), and salt mixtures (the thermodynamics of mixing; spectroscopy and structure). Neutron and X-ray scattering techniques are used to determine the structure of molten metal halide salts. The corresponding-states theory is used to obtain thermodynamic correlations on single salts. Structural information on salt mixtures is obtained by using vibrational (Raman) and electronic absorption spectroscopy. Charge-symmetrical systems and charge-unsymmetrical systems are used to examine the thermodynamics of salt mixtures

  14. Black hole thermodynamics with conical defects

    Energy Technology Data Exchange (ETDEWEB)

    Appels, Michael [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Gregory, Ruth [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Perimeter Institute,31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada); Kubiznák, David [Perimeter Institute,31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada)

    2017-05-22

    Recently we have shown https://www.doi.org/10.1103/PhysRevLett.117.131303 how to formulate a thermodynamic first law for a single (charged) accelerated black hole in AdS space by fixing the conical deficit angles present in the spacetime. Here we show how to generalise this result, formulating thermodynamics for black holes with varying conical deficits. We derive a new potential for the varying tension defects: the thermodynamic length, both for accelerating and static black holes. We discuss possible physical processes in which the tension of a string ending on a black hole might vary, and also map out the thermodynamic phase space of accelerating black holes and explore their critical phenomena.

  15. The shedding activity of ADAM17 is sequestered in lipid rafts

    International Nuclear Information System (INIS)

    Tellier, Edwige; Canault, Matthias; Rebsomen, Laure; Bonardo, Bernadette; Juhan-Vague, Irene; Nalbone, Gilles; Peiretti, Franck

    2006-01-01

    The tumor necrosis factor-alpha (TNF) converting enzyme (ADAM17) is a metalloprotease-disintegrin responsible for the cleavage of several biologically active transmembrane proteins. However, the substrate specificity of ADAM17 and the regulation of its shedding activity are still poorly understood. Here, we report that during its transport through the Golgi apparatus, ADAM17 is included in cholesterol-rich membrane microdomains (lipid rafts) where its prodomain is cleaved by furin. Consequently, ADAM17 shedding activity is sequestered in lipid rafts, which is confirmed by the fact that metalloproteinase inhibition increases the proportion of ADAM17 substrates (TNF and its receptors TNFR1 and TNFR2) in lipid rafts. Membrane cholesterol depletion increases the ADAM17-dependent shedding of these substrates demonstrating the importance of lipid rafts in the control of this process. Furthermore, ADAM17 substrates are present in different proportions in lipid rafts, suggesting that the entry of each of these substrates in these particular membrane microdomains is specifically regulated. Our data support the idea that one of the mechanisms regulating ADAM17 substrate cleavage involves protein partitioning in lipid rafts

  16. Shedding of Japanese Encephalitis Virus in Oral Fluid of Infected Swine.

    Science.gov (United States)

    Lyons, Amy C; Huang, Yan-Jang S; Park, So Lee; Ayers, Victoria B; Hettenbach, Susan M; Higgs, Stephen; McVey, D Scott; Noronha, Leela; Hsu, Wei-Wen; Vanlandingham, Dana L

    2018-05-09

    Japanese encephalitis virus (JEV) is a zoonotic mosquito-borne flavivirus endemic in the Asia-Pacific region. Maintenance of JEV in nature involves enzootic transmission by competent Culex mosquitoes among susceptible avian and swine species. Historically, JEV has been regarded as one of the most important arthropod-borne viruses in Southeast Asia. Oronasal shedding of JEV from infected amplification hosts was not recognized until the recent discovery of vector-free transmission of JEV among domestic pigs. In this study, oral shedding of JEV was characterized in domestic pigs and miniature swine representing the feral phenotype. A rope-based sampling method followed by the detection of viral RNA using RT-qPCR allowed the collection and detection of JEV in oral fluid samples collected from intradermally challenged animals. The results suggest that the shedding of JEV in oral fluid can be readily detected by molecular diagnostic assays at the acute phase of infection. It also demonstrates the feasibility of this technique for the diagnosis and surveillance of JEV in swine species.

  17. Mathematical Modeling Predicts that Increased HSV-2 Shedding in HIV-1 Infected Persons Is Due to Poor Immunologic Control in Ganglia and Genital Mucosa.

    Directory of Open Access Journals (Sweden)

    Joshua T Schiffer

    Full Text Available A signature feature of HIV infection is poor control of herpes virus infections, which reactivate from latency and cause opportunistic infections. While the general mechanism underlying this observation is deficient CD4+T-cell function, it is unknown whether increased severity of herpes virus infections is due primarily to poor immune control in latent or lytic sites of infection, or whether CD4+ immunodeficiency leads to more critical downstream deficits in humoral or cell-mediated immunologic responses. Here we compare genital shedding patterns of herpes simplex virus-2 (HSV-2 in 98 HIV infected and 98 HIV uninfected men matched on length of infection, HSV-1 serostatus and nationality. We demonstrate that high copy HSV-2 shedding is more frequent in HIV positive men, particularly in participants with CD4+ T-cell count <200/μL. Genital shedding is more frequent due to higher rate of shedding episodes, as well as a higher proportion of prolonged shedding episodes. Peak episode viral load was not found to differ between HIV infected and uninfected participants regardless of CD4+ T-cell count. We simulate a mathematical model which recapitulates these findings and identifies that rate of HSV-2 release from neural tissue increases, duration of mucosal cytolytic immune protection decreases, and cell-free viral lifespan increases in HIV infected participants. These results suggest that increased HSV-2 shedding in HIV infected persons may be caused by impaired immune function in both latent and lytic tissue compartments, with deficits in clearance of HSV-2 infected cells and extracellular virus.

  18. Evaluation of a menstrual cup to collect shed endometrium for in vitro studies.

    Science.gov (United States)

    Koks, C A; Dunselman, G A; de Goeij, A F; Arends, J W; Evers, J L

    1997-09-01

    To evaluate whether a menstrual cup is a suitable instrument to collect antegradely shed endometrium for in vitro studies. A prospective, descriptive, cell biological and immunohistochemical study. Tertiary care university medical center. Nine female volunteers with regular cycles. Menstrual effluent was collected with a menstrual cup. Experience with the menstrual cup was described. Cytospin specimens, frozen sections, and cultures were prepared from the obtained menstrual tissue. The acceptability of the menstrual cup. The presence and viability of endometrial tissue was evaluated using immunohistochemical staining and culture outcome. All women except one described the menstrual cup as acceptable. Menstrual effluent contained single cells, clumps of cells, and glandlike structures. After 5 days of culture, the endometrial tissue appeared to be viable. Immunohistochemistry showed positive staining for vimentin in most cytospin specimens, in all cryostat specimens, and in 10 of 17 cultures. Cytokeratin 18 stained most cytospin specimens, all cryostat specimens, and 10 of 17 cultures. Positive staining for BW495/36 was observed in most cytospin specimens, all cryostat specimens, and 11 of 17 cultures. A menstrual cup in an acceptable instrument to collect antegradely shed menstrual tissue. Menstruum contains viable endometrial tissue that can be used for in vitro studies of endometrium and endometriosis.

  19. The thermodynamic basis of entransy and entransy dissipation

    International Nuclear Information System (INIS)

    Xu, Mingtian

    2011-01-01

    In the present work, the entransy and entransy dissipation are defined from the thermodynamic point of view. It is shown that the entransy is a state variable and can be employed to describe the second law of thermodynamics. For heat conduction, a principle of minimum entransy dissipation is established based on the second law of thermodynamics in terms of entransy dissipation, which leads to the governing equation of the steady Fourier heat conduction without heat source. Furthermore, we derive the expressions of the entransy dissipation in duct flows and heat exchangers from the second law of thermodynamics, which paves the way for applications of the entransy dissipation theory in heat exchanger design. -- Highlights: → The concepts of entransy and entransy dissipation are defined from the thermodynamic point of view. → We find that the entransy is a new thermodynamic property. → The second law of thermodynamics can be described by the entransy and entransy dissipation. → The expressions of entransy dissipation in duct flows and heat exchangers are derived from the second law of thermodynamics.

  20. Shedding of the immunodominant P20 surface antigen of Eimeria bovis sporozoites.

    OpenAIRE

    Speer, C A; Whitmire, W M

    1989-01-01

    P20 is an immunodominant surface antigen of Eimeria bovis sporozoites. As parasites underwent merogony within cultured bovine monocytes and Madin-Darby bovine kidney (MDBK) cells, P20 appeared to be shed gradually by meronts and was absent in type 1 and 2 first-generation merozoites. Meronts of E. bovis appeared to shed P20 into the parasitophorous vacuole of bovine monocytes, whereas MDBK cells evidently released P20 into the culture medium or destroyed its antigenic determinant.

  1. The quantitative analysis of data for magnetization of ferromagnet. Extended thermodynamic approach

    International Nuclear Information System (INIS)

    Bodryakov, V.Yu.; Bashkatov, A.N.

    2005-01-01

    A quantitative analysis of M(H,T) data on magnetization of a gadolinium single crystal in the vicinity of Curie point is accomplished within the frameworks of extended thermodynamic approach. It is established that actually observed behavior of temperature dependences of thermodynamic coefficients for gadolinium even near Curie point is sharply different from that in Landau theory. A discrepancy revealed leads to conclusion that traditional concepts should be revised. The solution of extended equation of a ferromagnet magnetic state is found and criteria of its stability are shown [ru

  2. The Role of Shed PrPc in the Neuropathogenesis of HIV Infection.

    Science.gov (United States)

    Megra, Bezawit W; Eugenin, Eliseo A; Berman, Joan W

    2017-07-01

    HIV-1 enters the CNS soon after peripheral infection and causes chronic neuroinflammation and neuronal damage that leads to cognitive impairment in 40-70% of HIV-infected people. The nonpathogenic cellular isoform of the human prion protein (PrP c ) is an adhesion molecule constitutively expressed in the CNS. Previously, our laboratory showed that shed PrP c (sPrP c ) is increased in the cerebrospinal fluid of HIV-infected people with cognitive deficits as compared with infected people with no impairment. In this article, we demonstrate that CCL2 and TNF-α, inflammatory mediators that are elevated in the CNS of HIV-infected people, increase shedding of PrP c from human astrocytes by increasing the active form of the metalloprotease ADAM10. We show that the consequence of this shedding can be the production of inflammatory mediators, because treatment of astrocytes with rPrP c increased secretion of CCL2, CXCL-12, and IL-8. Supernatants from rPrP c -treated astrocytes containing factors produced in response to this treatment, but not rPrP c by itself, cause increased chemotaxis of both uninfected and HIV-infected human monocytes, suggesting a role for sPrP c in monocyte recruitment into the brain. Furthermore, we examined whether PrP c participates in glutamate uptake and found that rPrP c decreased uptake of this metabolite in astrocytes, which could lead to neurotoxicity and neuronal loss. Collectively, our data characterize mediators involved in PrP c shedding and the effect of this sPrP c on monocyte chemotaxis and glutamate uptake from astrocytes. We propose that shedding of PrP c could be a potential target for therapeutics to limit the cognitive impairment characteristic of neuroAIDS. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. [Thermodynamics of the origin of life, evolution and aging].

    Science.gov (United States)

    Gladyshev, G P

    2014-01-01

    Briefly discusses the history of the search of thermodynamic approach to explain the origin of life, evolution and aging of living beings. The origin of life is the result of requirement by the quasi-equilibrium hierarchical thermodynamics, in particular, the supramolecular thermodynamics. The evolution and aging of living beings is accompanied with changes of chemical and supramolecular compositions of living bodies, as well as with changes in the composition and structure of all hierarchies of the living world. The thermodynamic principle of substance stability predicts the existence of a single genetic code in our universe. The thermodynamic theory optimizes physiology and medicine and recommends antiaging diets and medicines. Hierarchical thermodynamics forms the design diversity of culture and art. The thermodynamic theory of origin of life, evolution and aging is the development of Clausius-Gibbs thermodynamics. Hierarchical thermodynamics is the mirror of Darwin-Wallace's-theory.

  4. Thermodynamics of negative absolute pressures

    International Nuclear Information System (INIS)

    Lukacs, B.; Martinas, K.

    1984-03-01

    The authors show that the possibility of negative absolute pressure can be incorporated into the axiomatic thermodynamics, analogously to the negative absolute temperature. There are examples for such systems (GUT, QCD) processing negative absolute pressure in such domains where it can be expected from thermodynamical considerations. (author)

  5. The N domain of somatic angiotensin-converting enzyme negatively regulates ectodomain shedding and catalytic activity

    OpenAIRE

    Woodman, Zenda L.; Schwager, Sylva L. U.; Redelinghuys, Pierre; Carmona, Adriana K.; Ehlers, Mario R. W.; Sturrock, Edward D.

    2005-01-01

    sACE (somatic angiotensin-converting enzyme) consists of two homologous, N and C domains, whereas the testis isoenzyme [tACE (testis ACE)] consists of a single C domain. Both isoenzymes are shed from the cell surface by a sheddase activity, although sACE is shed much less efficiently than tACE. We hypothesize that the N domain of sACE plays a regulatory role, by occluding a recognition motif on the C domain required for ectodomain shedding and by influencing the catalytic efficiency. To test ...

  6. Thermodynamic efficiency of nonimaging concentrators

    Science.gov (United States)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2009-08-01

    The purpose of a nonimaging concentrator is to transfer maximal flux from the phase space of a source to that of a target. A concentrator's performance can be expressed relative to a thermodynamic reference. We discuss consequences of Fermat's principle of geometrical optics. We review étendue dilution and optical loss mechanisms associated with nonimaging concentrators, especially for the photovoltaic (PV) role. We introduce the concept of optical thermodynamic efficiency which is a performance metric combining the first and second laws of thermodynamics. The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. Examples are provided to illustrate the use of this new metric. In particular we discuss concentrating PV systems for solar power applications.

  7. One Antimatter— Two Possible Thermodynamics

    Directory of Open Access Journals (Sweden)

    Alexander Y. Klimenko

    2014-02-01

    Full Text Available Conventional thermodynamics, which is formulated for our world populated by radiation and matter, can be extended to describe physical properties of antimatter in two mutually exclusive ways: CP-invariant or CPT-invariant. Here we refer to invariance of physical laws under charge (C, parity (P and time reversal (T transformations. While in quantum field theory CPT invariance is a theorem confirmed by experiments, the symmetry principles applied to macroscopic phenomena or to the whole of the Universe represent only hypotheses. Since both versions of thermodynamics are different only in their treatment of antimatter, but are the same in describing our world dominated by matter, making a clear experimentally justified choice between CP invariance and CPT invariance in context of thermodynamics is not possible at present. This work investigates the comparative properties of the CP- and CPT-invariant extensions of thermodynamics (focusing on the latter, which is less conventional than the former and examines conditions under which these extensions can be experimentally tested.

  8. Hepatocyte growth factor inhibitor-2 prevents shedding of matritpase

    DEFF Research Database (Denmark)

    Larsen, Brian R; Steffensen, Simon D; Nielsen, Nis V L

    2013-01-01

    Hepatocyte growth factor activator inhibitor-2 (HAI-2) is an inhibitor of many proteases in vitro, including the membrane-bound serine protease, matriptase. Studies of knock-out mice have shown that HAI-2 is essential for placental development only in mice expressing matriptase, suggesting that HAI......-2 is important for regulation of matriptase. Previous studies have shown that recombinant expression of matriptase was unsuccessful unless co-expressed with another HAI, HAI-1. In the present study we show that when human matriptase is recombinantly expressed alone in the canine cell line MDCK......, then human matriptase mRNA can be detected and the human matriptase ectodomain is shed to the media, suggesting that matriptase expressed alone is rapidly transported through the secretory pathway and shed. Whereas matriptase expressed together with HAI-1 or HAI-2 accumulates on the plasma membrane where...

  9. Thermodynamics of Growth, Non-Equilibrium Thermodynamics of Bacterial Growth : The Phenomenological and the Mosaic Approach

    NARCIS (Netherlands)

    Westerhoff, Hans V.; Lolkema, Juke S.; Otto, Roel; Hellingwerf, K

    1982-01-01

    Microbial growth is analyzed in terms of mosaic and phenomenological non-equilibrium thermodynamics. It turns out that already existing parameters devised to measure bacterial growth, such as YATP, µ, and Qsubstrate, have as thermodynamic equivalents flow ratio, output flow and input flow. With this

  10. Domestic sheep show average Coxiella burnetii seropositivity generations after a sheep-associated human Q fever outbreak and lack detectable shedding by placental, vaginal, and fecal routes

    Science.gov (United States)

    Oliveira, Ryan D.; Mousel, Michelle R.; Pabilonia, Kristy L.; Highland, Margaret A.; Taylor, J. Bret; Knowles, Donald P.

    2017-01-01

    Coxiella burnetii is a globally distributed zoonotic bacterial pathogen that causes abortions in ruminant livestock. In humans, an influenza-like illness results with the potential for hospitalization, chronic infection, abortion, and fatal endocarditis. Ruminant livestock, particularly small ruminants, are hypothesized to be the primary transmission source to humans. A recent Netherlands outbreak from 2007–2010 traced to dairy goats resulted in over 4,100 human cases with estimated costs of more than 300 million euros. Smaller human Q fever outbreaks of small ruminant origin have occurred in the United States, and characterizing shedding is important to understand the risk of future outbreaks. In this study, we assessed bacterial shedding and seroprevalence in 100 sheep from an Idaho location associated with a 1984 human Q fever outbreak. We observed 5% seropositivity, which was not significantly different from the national average of 2.7% for the U.S. (P>0.05). Furthermore, C. burnetii was not detected by quantitative PCR from placentas, vaginal swabs, or fecal samples. Specifically, a three-target quantitative PCR of placenta identified 0.0% shedding (exact 95% confidence interval: 0.0%-2.9%). While presence of seropositive individuals demonstrates some historical C. burnetii exposure, the placental sample confidence interval suggests 2016 shedding events were rare or absent. The location maintained the flock with little or no depopulation in 1984 and without C. burnetii vaccination during or since 1984. It is not clear how a zero-shedding rate was achieved in these sheep beyond natural immunity, and more work is required to discover and assess possible factors that may contribute towards achieving zero-shedding status. We provide the first U.S. sheep placental C. burnetii shedding update in over 60 years and demonstrate potential for C. burnetii shedding to reach undetectable levels after an outbreak event even in the absence of targeted interventions, such

  11. Domestic sheep show average Coxiella burnetii seropositivity generations after a sheep-associated human Q fever outbreak and lack detectable shedding by placental, vaginal, and fecal routes.

    Directory of Open Access Journals (Sweden)

    Ryan D Oliveira

    Full Text Available Coxiella burnetii is a globally distributed zoonotic bacterial pathogen that causes abortions in ruminant livestock. In humans, an influenza-like illness results with the potential for hospitalization, chronic infection, abortion, and fatal endocarditis. Ruminant livestock, particularly small ruminants, are hypothesized to be the primary transmission source to humans. A recent Netherlands outbreak from 2007-2010 traced to dairy goats resulted in over 4,100 human cases with estimated costs of more than 300 million euros. Smaller human Q fever outbreaks of small ruminant origin have occurred in the United States, and characterizing shedding is important to understand the risk of future outbreaks. In this study, we assessed bacterial shedding and seroprevalence in 100 sheep from an Idaho location associated with a 1984 human Q fever outbreak. We observed 5% seropositivity, which was not significantly different from the national average of 2.7% for the U.S. (P>0.05. Furthermore, C. burnetii was not detected by quantitative PCR from placentas, vaginal swabs, or fecal samples. Specifically, a three-target quantitative PCR of placenta identified 0.0% shedding (exact 95% confidence interval: 0.0%-2.9%. While presence of seropositive individuals demonstrates some historical C. burnetii exposure, the placental sample confidence interval suggests 2016 shedding events were rare or absent. The location maintained the flock with little or no depopulation in 1984 and without C. burnetii vaccination during or since 1984. It is not clear how a zero-shedding rate was achieved in these sheep beyond natural immunity, and more work is required to discover and assess possible factors that may contribute towards achieving zero-shedding status. We provide the first U.S. sheep placental C. burnetii shedding update in over 60 years and demonstrate potential for C. burnetii shedding to reach undetectable levels after an outbreak event even in the absence of targeted

  12. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Selection of thermodynamic data of molybdenum

    International Nuclear Information System (INIS)

    Kitamura, Akira; Kirishima, Akira; Saito, Takumi; Shibutani, Sanae; Tochiyama, Osamu

    2010-06-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level radioactive and TRU wastes, the selection of the thermodynamic data on the inorganic compounds and complexes of molybdenum were carried out. We focused to select thermodynamic data of aqueous species and compounds which could form under repository conditions for the disposal of radioactive wastes, i.e. relatively low concentration of molybdenum and from near neutral through alkaline conditions. Selection of thermodynamic data was based on the guidelines by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA). Extensive literature survey was performed and all the obtained articles were carefully reviewed to select the thermodynamic data for molybdenum. Thermodynamic data at 25degC and zero ionic strength were determined from accepted thermodynamic data which were considered to be reliable. We especially paid attention to select formation constant of molybdate ion (MoO 4 2- ) with hydrogen ion (H + ) in detail. This is the first report in showing selection of thermodynamic data for molybdenum with detailed reviewing process. (author)

  13. Vortex Shedding in the Wake Induced by a Real Elephant Seal Whisker

    Science.gov (United States)

    Turk, Jodi; Omilion, Alexis; Zhang, Wei; Kim, Jeong-Jae; Kim, Jeong-Ju; Choi, Woo-Rak; Lee, Sang-Joon

    2017-11-01

    Biomimicry has been adopted to create innovative solutions in a vast range of applications. One such application is the design of seal-whisker-inspired flow sensors for autonomous underwater vehicles (AUVs). In dark, cramped, and unstable terrain AUVs are not able to maneuver using visual and sonar-based navigation. Hence, it is critical to use underwater flow sensors to accurately detect minute disturbances in the surroundings. Certain seal whiskers exhibit a unique undulating three-dimensional morphology that can reduce vortex induced vibrations (VIVs) if the major axis of the whisker cross-section is aligned to the inflow. This allows the seal to precisely track prey fish upstream using solely their whiskers. The current study aims to understand the effect of a real seal whisker's morphology on the vortex shedding behavior. Despite extensive studies of wake induced by scaled whisker-like models, the vortex shedding in the wake of a real seal whisker is not well understood. A series of experiments are conducted with a high-speed Particle Imaging Velocimetry (PIV) system in a water channel to examine the vortex shedding downstream from a smooth whisker and an undulating whisker at a Reynolds number of a few hundred. Results of the vortex shedding induced by real seal whiskers can provide insights on developing high-sensitivity underwater flow sensors for AUVs and other whisker-inspired structures.

  14. Evaluation of the shedding of Sarcocystis falcatula sporocysts in experimentally infected Virginia opossums (Didelphis virginiana).

    Science.gov (United States)

    Porter, R A; Ginn, P E; Dame, J B; Greiner, E C

    2001-02-26

    Five Virginia opossums (Didelphis virginiana) were fed muscles of brown-headed cowbirds (Molothrus ater) containing sarcocysts of Sarcocystis falcatula. Shedding of sporocysts was confirmed in all five opossums by fecal flotation. Counts were conducted daily for 2 weeks and then biweekly until the animals were euthanized and necropsied. The average prepatent period was 9.8 (7-16) days. The number of sporocysts shed varied greatly between the opossums with maximum mean shedding occurring at 71.6 (26-112) days post-infection (DPI). Average sporocyst production was 1480 sporocysts/gram of feces (SPG). Maximum output was 37,000 SPG. Average fecal yield in captivity was 17.5g of feces/day. Opossums shed 25,900 sporocysts/day (average) and a maximum of 647,500 sporocysts/day. All opossums shed sporocysts until time of euthanasia (46-200 DPI). Histologically, numerous sporocysts were present in the lamina propria at necropsy, primarily in the proximal half of the small intestine. Sporocysts were generally in clusters within the lamina propria of the luminal two-thirds of the villi. Sporocysts were found less frequently in the epithelium. No evidence of ongoing gametogony or other development was evident.

  15. THERMODYNAMIC STUDIES ON THE CHARGE-TRANSFER ...

    African Journals Online (AJOL)

    ... technique was employed to investigate thermodynamic parameters associated with the interaction ... KEY WORDS: Amitriptyline , chloranilic acid, thermodynamic parameters. Global Jnl Pure & Applied Sciences Vol.10(1) 2004: 147-153 ...

  16. Thermodynamics for engineers

    CERN Document Server

    Wong, Kaufui Vincent

    2011-01-01

    Praise for the First Edition from Students: "It is a great thermodynamics text…I loved it!-Mathew Walters "The book is comprehensive and easy to understand. I love the real world examples and problems, they make you feel like you are learning something very practical."-Craig Paxton"I would recommend the book to friends."-Faure J. Malo-Molina"The clear diction, as well as informative illustrations and diagrams, help convey the material clearly to the reader."-Paul C. Start"An inspiring and effective tool for any aspiring scientist or engineer. Definitely the best book on Classical Thermodynamics out."-Seth Marini.

  17. Thermodynamic equilibrium-air correlations for flowfield applications

    Science.gov (United States)

    Zoby, E. V.; Moss, J. N.

    1981-01-01

    Equilibrium-air thermodynamic correlations have been developed for flowfield calculation procedures. A comparison between the postshock results computed by the correlation equations and detailed chemistry calculations is very good. The thermodynamic correlations are incorporated in an approximate inviscid flowfield code with a convective heating capability for the purpose of defining the thermodynamic environment through the shock layer. Comparisons of heating rates computed by the approximate code and a viscous-shock-layer method are good. In addition to presenting the thermodynamic correlations, the impact of several viscosity models on the convective heat transfer is demonstrated.

  18. Chemical thermodynamics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Keszei, Ernoe [Budapest Univ. (Hungary). Dept. of Physical Chemistry

    2012-07-01

    Eminently suitable as a required textbook comprising complete material for or an undergraduate chemistry major course in chemical thermodynamics. Clearly explains details of formal derivations that students can easily follow and so master applied mathematical operations. Offers problems and solutions at the end of each chapter for self-test and self- or group study. This course-derived undergraduate textbook provides a concise explanation of the key concepts and calculations of chemical thermodynamics. Instead of the usual 'classical' introduction, this text adopts a straightforward postulatory approach that introduces thermodynamic potentials such as entropy and energy more directly and transparently. Structured around several features to assist students' understanding, Chemical Thermodynamics: - Develops applications and methods for the ready treatment of equilibria on a sound quantitative basis. - Requires minimal background in calculus to understand the text and presents formal derivations to the student in a detailed but understandable way. - Offers end-of-chapter problems (and answers) for self-testing and review and reinforcement, of use for self- or group study. This book is suitable as essential reading for courses in a bachelor and master chemistry program and is also valuable as a reference or textbook for students of physics, biochemistry and materials science.

  19. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Selection of thermodynamic data of selenium

    International Nuclear Information System (INIS)

    Doi, Reisuke; Kitamura, Akira; Yui, Mikazu

    2010-02-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level and TRU radioactive wastes, the selection of the thermodynamic data on the inorganic compounds and complexes of selenium was carried out. Selection of thermodynamic data of selenium was based on a thermodynamic database of selenium published by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA). The remarks of a thermodynamic database by OECD/NEA found by the authors were noted in this report and then thermodynamic data was reviewed after surveying latest literatures. Some thermodynamic values of iron selenides were not selected by the OECD/NEA due to low reliability. But they were important for the performance assessment of geological disposal of radioactive wastes, so we selected them as a tentative value with specifying reliability and needs of the value to be determined. (author)

  20. Towards thermodynamical consistency of quasiparticle picture

    International Nuclear Information System (INIS)

    Biro, T.S.; Shanenko, A.A.; Toneev, V.D.; Research Inst. for Particle and Nuclear Physics, Hungarian Academy of Sciences, Budapest

    2003-01-01

    The purpose of the present article is to call attention to some realistic quasi-particle-based description of the quark/gluon matter and its consistent implementation in thermodynamics. A simple and transparent representation of the thermodynamical consistency conditions is given. This representation allows one to review critically and systemize available phenomenological approaches to the deconfinement problem with respect to their thermodynamical consistency. A particular attention is paid to the development of a method for treating the string screening in the dense matter of unbound color charges. The proposed method yields an integrable effective pair potential, which can be incorporated into the mean-field picture. The results of its application are in reasonable agreement with lattice data on the QCD thermodynamics [ru

  1. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  2. Thermal physics kinetic theory and thermodynamics

    CERN Document Server

    Singh, Devraj; Yadav, Raja Ram

    2016-01-01

    THERMAL PHYSICS: Kinetic Theory and Thermodynamics is designed for undergraduate course in Thermal Physics and Thermodynamics. The book provides thorough understanding of the fundamental principles of the concepts in Thermal Physics. The book begins with kinetic theory, then moves on liquefaction, transport phenomena, the zeroth, first, second and third laws, thermodynamics relations and thermal conduction. The book concluded with radiation phenomenon. KEY FEATURES: * Include exercises * Short Answer Type Questions * Long Answer Type Questions * Numerical Problems * Multiple Choice Questions

  3. On thermodynamic limits of entropy densities

    NARCIS (Netherlands)

    Moriya, H; Van Enter, A

    We give some sufficient conditions which guarantee that the entropy density in the thermodynamic limit is equal to the thermodynamic limit of the entropy densities of finite-volume (local) Gibbs states.

  4. Limits of predictions in thermodynamic systems: a review

    Science.gov (United States)

    Marsland, Robert, III; England, Jeremy

    2018-01-01

    The past twenty years have seen a resurgence of interest in nonequilibrium thermodynamics, thanks to advances in the theory of stochastic processes and in their thermodynamic interpretation. Fluctuation theorems provide fundamental constraints on the dynamics of systems arbitrarily far from thermal equilibrium. Thermodynamic uncertainty relations bound the dissipative cost of precision in a wide variety of processes. Concepts of excess work and excess heat provide the basis for a complete thermodynamics of nonequilibrium steady states, including generalized Clausius relations and thermodynamic potentials. But these general results carry their own limitations: fluctuation theorems involve exponential averages that can depend sensitively on unobservably rare trajectories; steady-state thermodynamics makes use of a dual dynamics that lacks any direct physical interpretation. This review aims to present these central results of contemporary nonequilibrium thermodynamics in such a way that the power of each claim for making physical predictions can be clearly assessed, using examples from current topics in soft matter and biophysics.

  5. Non-equilibrium thermodynamics in cells.

    Science.gov (United States)

    Jülicher, Frank; Grill, Stephan W; Salbreux, Guillaume

    2018-03-15

    We review the general hydrodynamic theory of active soft materials that is motivated in partic- ular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we iden- tify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues. © 2018 IOP Publishing Ltd.

  6. Some aspects of plasma thermodynamics

    International Nuclear Information System (INIS)

    Gorgoraki, V.I.

    1986-01-01

    The objective reasons which have inhibited the development of a plasma-thermodynamics theory are discussed and the authors formulate the fundamental principles which can be the basis of a common plasma-thermodynamics theory. Two kinds of thermodynamic equilibrium plasmas are discussed, an isothermal plasma and a nonisothermal plasma. An isothermal plasma is a high-temperature plasma; the Saha-Eggert equation describes its behavior. A nonisothermal plasma is a low-temperature plasma, and the reactions taking place therein are purely plasma-chemical. The ionization equilibrium and the composition of such a plasma can be found with the aid of the equations presented in this paper

  7. Fundamental functions in equilibrium thermodynamics

    NARCIS (Netherlands)

    Horst, H.J. ter

    In the standard presentations of the principles of Gibbsian equilibrium thermodynamics one can find several gaps in the logic. For a subject that is as widely used as equilibrium thermodynamics, it is of interest to clear up such questions of mathematical rigor. In this paper it is shown that using

  8. Singularity-free interpretation of the thermodynamics of supercooled water

    International Nuclear Information System (INIS)

    Sastry, S.; Debenedetti, P.G.; Sciortino, F.; Stanley, H.E.

    1996-01-01

    The pronounced increases in isothermal compressibility, isobaric heat capacity, and in the magnitude of the thermal expansion coefficient of liquid water upon supercooling have been interpreted either in terms of a continuous, retracing spinodal curve bounding the superheated, stretched, and supercooled states of liquid water, or in terms of a metastable, low-temperature critical point. Common to these two scenarios is the existence of singularities associated with diverging density fluctuations at low temperature. We show that the increase in compressibility upon lowering the temperature of a liquid that expands on cooling, like water, is not contingent on any singular behavior, but rather is a thermodynamic necessity. We perform a thermodynamic analysis for an anomalous liquid (i.e., one that expands when cooled) in the absence of a retracing spinodal and show that one may in general expect a locus of compressibility extrema in the anomalous regime. Our analysis suggests that the simplest interpretation of the behavior of supercooled water consistent with experimental observations is free of singularities. We then develop a waterlike lattice model that exhibits no singular behavior, while capturing qualitative aspects of the thermodynamics of water. copyright 1996 The American Physical Society

  9. Elementary statistical thermodynamics a problems approach

    CERN Document Server

    Smith, Norman O

    1982-01-01

    This book is a sequel to my Chemical Thermodynamics: A Prob­ lems Approach published in 1967, which concerned classical thermodynamics almost exclusively. Most books on statistical thermodynamics now available are written either for the superior general chemistry student or for the specialist. The author has felt the need for a text which would bring the intermediate reader to the point where he could not only appreciate the roots of the subject but also have some facility in calculating thermodynamic quantities. Although statistical thermodynamics comprises an essential part of the college training of a chemist, its treatment in general physical chem­ istry texts is, of necessity, compressed to the point where the less competent student is unable to appreciate or comprehend its logic and beauty, and is reduced to memorizing a series of formulas. It has been my aim to fill this need by writing a logical account of the foundations and applications of the sub­ ject at a level which can be grasped by an under...

  10. Thermodynamic data-base for metal fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho and others

    2001-05-01

    This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project.

  11. Thermodynamics of Inozemtsev's elliptic spin chain

    International Nuclear Information System (INIS)

    Klabbers, Rob

    2016-01-01

    We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.

  12. Thermodynamic data-base for metal fluorides

    International Nuclear Information System (INIS)

    Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho and others

    2001-05-01

    This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project

  13. Optima and bounds for irreversible thermodynamic processes

    International Nuclear Information System (INIS)

    Hoffmann, K.H.

    1990-01-01

    In this paper bounds and optima for irreversible thermodynamic processes and their application in different fields are discussed. The tools of finite time thermodynamics are presented and especially optimal control theory is introduced. These methods are applied to heat engines, including models of the Diesel engine and a light-driven engine. Further bounds for irreversible processes are introduced, discussing work deficiency and its relation to thermodynamic length. Moreover the problem of dissipation in systems composed of several subsystems is studied. Finally, the methods of finite time thermodynamics are applied to thermodynamic processes described on a more microscopic level. The process used as an example is simulated annealing. It is shown how optimal control theory is applied to find the optimal cooling schedule for this important stochastic optimization method

  14. Thermodynamic properties and equilibrium constant of chemical reaction in nanosystem: An theoretical and experimental study

    International Nuclear Information System (INIS)

    Du, Jianping; Zhao, Ruihua; Xue, Yongqiang

    2012-01-01

    Highlights: ► There is an obvious influence of the size on thermodynamic properties for the reaction referring nano-reactants. ► Gibbs function, enthalpy, entropy and equilibrium constant are dependent on the reactant size. ► There is an approximate linear relation between them. - Abstract: The theoretical relations of thermodynamic properties, the equilibrium constant and reactant size in nanosystem are described. The effects of size on thermodynamic properties and the equilibrium constant were studied using nanosize zinc oxide and sodium bisulfate solution as a reaction system. The experimental results indicated that the molar Gibbs free energy, the molar enthalpy and the molar entropy of the reaction decrease, but the equilibrium constant increases with decreasing reactant size. Linear trends were observed between the reciprocal of size for nano-reactant and thermodynamic variable, which are consistent with the theoretical relations.

  15. Quantum thermodynamics. Emergence of thermodynamic behavior within composite quantum systems. 2. ed.

    International Nuclear Information System (INIS)

    Gemmer, Jochen; Michel, M.; Mahler, Guenter

    2009-01-01

    This introductory text treats thermodynamics as an incomplete description of quantum systems with many degrees of freedom. Its main goal is to show that the approach to equilibrium -with equilibrium characterized by maximum ignorance about the open system of interest- neither requires that many particles nor is the precise way of partitioning, relevant for the salient features of equilibrium and equilibration. Furthermore, the text depicts that it is indeed quantum effects that are at work in bringing about thermodynamic behavior of modest-sized open systems, thus making Von Neumann's concept of entropy appear much more widely useful than sometimes feared, far beyond truly macroscopic systems in equilibrium. This significantly revised and expanded second edition pays more attention to the growing number of applications, especially non-equilibrium phenomena and thermodynamic processes of the nano-domain. In addition, to improve readability and reduce unneeded technical details, a large portion of this book has been thoroughly rewritten. (orig.)

  16. Thermodynamic aspects of an LNG tank in fire and experimental validation

    Science.gov (United States)

    Hulsbosch-Dam, Corina; Atli-Veltin, Bilim; Kamperveen, Jerry; Velthuis, Han; Reinders, Johan; Spruijt, Mark; Vredeveldt, Lex

    Mechanical behaviour of a Liquefied Natural Gas (LNG) tank and the thermodynamic behaviour of its containment under extreme heat load - for instance when subjected to external fire source as might occur during an accident - are extremely important when addressing safety concerns. In a scenario where external fire is present and consequent release of LNG from pressure relief valves (PRV) has occurred, escalation of the fire might occur causing difficulty for the fire response teams to approach the tank or to secure the perimeter. If the duration of the tank exposure to fire is known, the PRV opening time can be estimated based on the thermodynamic calculations. In this paper, such an accidental scenario is considered, relevant thermodynamic equations are derived and presented. Moreover, an experiment is performed with liquid nitrogen and the results are compared to the analytical ones. The analytical results match very well with the experimental observations. The resulting analytical models are suitable to be applied to other cryogenic liquids.

  17. Thermodynamic aspects of an LNG tank in fire and experimental validation

    Directory of Open Access Journals (Sweden)

    Hulsbosch-Dam Corina

    2017-01-01

    Full Text Available Mechanical behaviour of a Liquefied Natural Gas (LNG tank and the thermodynamic behaviour of its containment under extreme heat load – for instance when subjected to external fire source as might occur during an accident - are extremely important when addressing safety concerns. In a scenario where external fire is present and consequent release of LNG from pressure relief valves (PRV has occurred, escalation of the fire might occur causing difficulty for the fire response teams to approach the tank or to secure the perimeter. If the duration of the tank exposure to fire is known, the PRV opening time can be estimated based on the thermodynamic calculations. In this paper, such an accidental scenario is considered, relevant thermodynamic equations are derived and presented. Moreover, an experiment is performed with liquid nitrogen and the results are compared to the analytical ones. The analytical results match very well with the experimental observations. The resulting analytical models are suitable to be applied to other cryogenic liquids.

  18. Casimir effect and thermodynamics of horizon instabilities

    International Nuclear Information System (INIS)

    Hartnoll, Sean A.

    2004-01-01

    We propose a dual thermodynamic description of a classical instability of generalized black hole spacetimes. From a thermodynamic perspective, the instability is due to negative compressibility in regions where the Casimir pressure is large. The argument indicates how the correspondence between thermodynamic and classical instability for horizons may be extended to cases without translational invariance

  19. Thermodynamic properties of water solvating biomolecular surfaces

    Science.gov (United States)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  20. Thermodynamic fingerprints of ligand binding to human telomeric G-quadruplexes.

    Science.gov (United States)

    Bončina, Matjaž; Podlipnik, Črtomir; Piantanida, Ivo; Eilmes, Julita; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Lah, Jurij

    2015-12-02

    Thermodynamic studies of ligand binding to human telomere (ht) DNA quadruplexes, as a rule, neglect the involvement of various ht-DNA conformations in the binding process. Therefore, the thermodynamic driving forces and the mechanisms of ht-DNA G-quadruplex-ligand recognition remain poorly understood. In this work we characterize thermodynamically and structurally binding of netropsin (Net), dibenzotetraaza[14]annulene derivatives (DP77, DP78), cationic porphyrin (TMPyP4) and two bisquinolinium ligands (Phen-DC3, 360A-Br) to the ht-DNA fragment (Tel22) AGGG(TTAGGG)3 using isothermal titration calorimetry, CD and fluorescence spectroscopy, gel electrophoresis and molecular modeling. By global thermodynamic analysis of experimental data we show that the driving forces characterized by contributions of specific interactions, changes in solvation and conformation differ significantly for binding of ligands with low quadruplex selectivity over duplexes (Net, DP77, DP78, TMPyP4; KTel22 ≈ KdsDNA). These contributions are in accordance with the observed structural features (changes) and suggest that upon binding Net, DP77, DP78 and TMPyP4 select hybrid-1 and/or hybrid-2 conformation while Phen-DC3 and 360A-Br induce the transition of hybrid-1 and hybrid-2 to the structure with characteristics of antiparallel or hybrid-3 type conformation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Black hole thermodynamics from a variational principle: asymptotically conical backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    An, Ok Song [SISSA and INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste (Italy); Department of Physics, Kim Il Sung University,Ryongnam Dong, TaeSong District, Pyongyang, D.P.R. (Korea, Republic of); ICTP,Strada Costiera 11, 34014 Trieste (Italy); Cvetič, Mirjam [Department of Physics and Astronomy, University of Pennsylvania,209 S 33rd St, Philadelphia, PA 19104 (United States); Center for Applied Mathematics and Theoretical Physics, University of Maribor,Mladinska 3, SI2000 Maribor (Slovenia); Papadimitriou, Ioannis [SISSA and INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste (Italy)

    2016-03-14

    The variational problem of gravity theories is directly related to black hole thermodynamics. For asymptotically locally AdS backgrounds it is known that holographic renormalization results in a variational principle in terms of equivalence classes of boundary data under the local asymptotic symmetries of the theory, which automatically leads to finite conserved charges satisfying the first law of thermodynamics. We show that this connection holds well beyond asymptotically AdS black holes. In particular, we formulate the variational problem for N=2 STU supergravity in four dimensions with boundary conditions corresponding to those obeyed by the so called ‘subtracted geometries’. We show that such boundary conditions can be imposed covariantly in terms of a set of asymptotic second class constraints, and we derive the appropriate boundary terms that render the variational problem well posed in two different duality frames of the STU model. This allows us to define finite conserved charges associated with any asymptotic Killing vector and to demonstrate that these charges satisfy the Smarr formula and the first law of thermodynamics. Moreover, by uplifting the theory to five dimensions and then reducing on a 2-sphere, we provide a precise map between the thermodynamic observables of the subtracted geometries and those of the BTZ black hole. Surface terms play a crucial role in this identification.

  2. Comparison of analytical charge-form and equilibrium thermodynamic speciation of certain radionuclides

    International Nuclear Information System (INIS)

    Jenne, E.A.; Cowan, C.E.; Robertson, D.E.

    1984-01-01

    Calculating trace element speciation with a thermodynamic model is often challenged on the basis that the existing thermodynamic data are not sufficiently reliable. Water quality data and corresponding analytical charge-form speciation analysis were available for radionuclides occurring in a low-level radioactive groundwater. This offered an opportunity for comparing the results of an equilibrium thermodynamic model with the results of analytical charge-form speciation. The charge-form speciation was determined using the Battelle Large Volume Water Sampler, which contains consecutive layers of cation resin, anion resin and activated aluminum oxide for retention of cationic, anionic and non-ionic dissolved chemical species, respectively. The thermodynamic speciation of Cs, Cr, Fe, I, Mn, Mo, Na, and Zn was calculated using the MINTEQ geochemical model. Ce, Co, Tc, Np, Pm, and Sb were speciated by hand calculation. Excellent agreement between the analytically determined charge-form and the thermodynamic speciation was observed for 54 Mn, 144 Ce, 131 I, 24 Na, 137 Cs, 99 Mo, 99 Tc, 151 Pm, 239 Np. Organic complexation by natural and/or synthetic organics in the waters may be important in the speciation of 65 An, 60 Co, 131 I, 59 Fe and possibly 51 Cr. Both 124 Sb and 125 Sb appeared to be in redox disequilibria with the groundwater. 29 references, 2 tables

  3. Laminar vortex shedding behind a cooled circular cylinder

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Wang, A. B.; Tu, W.Y.

    2014-01-01

    Roč. 55, č. 2 (2014), s. 1-12 ISSN 0723-4864 R&D Projects: GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : vortex shedding * cooled circular cylinder * thermal effect Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts Impact factor: 1.670, year: 2014 http://link.springer.com/journal/348/55/2/page/1

  4. Quantum thermodynamics of general quantum processes.

    Science.gov (United States)

    Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John

    2015-03-01

    Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics.

  5. The thermodynamic-buffer enzymes.

    Science.gov (United States)

    Stucki, J W

    1980-08-01

    Oxidative phosphorylation operates at optimal efficiency if and only if the condition of conductance matching L33/L11 = square root 1-q2 is fulfilled. In this relation L11 is the phenomenological conductance of phosphorylation, L33 the phenomenological conductance of the load, i.e. the irreversible ATP-utilizing processes in the cell, and q the degree of coupling of oxidative phosphorylation driven by respiration. Since during short time intervals L11 and q are constant whereas L33 fluctuates in the cell, oxidative phosphorylation would only rarely operate at optimal efficiency due to violation of conductance matching. This paper demonstrates that the reversible ATP-utilizing reaction catalyzed by adenylate kinase can effectively compensate deviations from conductance matching in the presence of a fluctuating L33 and hence allows oxidative phosphorylation to operate at optimal efficiency in the cell. Since the adenylate kinase reaction was found to buffer a thermodynamic potential, i.e. the phosphate potential, this finding was generalized to the concept of thermodynamic buffering. The thermodynamic buffering ability of the adenylate kinase reaction was demonstrated by experiments with incubated rat-liver mitochondria. Considerations of changes introduced in the entropy production by the adenylate kinase reaction allowed to establish the theoretical framework for thermodynamic buffering. The ability of thermodynamic buffering to compensate deviations from conductance matching in the presence of fluctuating loads was demonstrated by computer simulations. The possibility of other reversible ATP-utilizing reactions, like the ones catalyzed by creatine kinase and arginine kinase, to contribute to thermodynamic buffering is discussed. Finally, the comparison of the theoretically calculated steady-stae cytosolic adenine nucleotide concentrations with experimental data from perfused livers demonstrated that in livers from fed rats conductance matching is fulfilled on a

  6. Surface dependency in thermodynamics of ideal gases

    International Nuclear Information System (INIS)

    Sisman, Altug

    2004-01-01

    The Casimir-like size effect rises in ideal gases confined in a finite domain due to the wave character of atoms. By considering this effect, thermodynamic properties of an ideal gas confined in spherical and cylindrical geometries are derived and compared with those in rectangular geometry. It is seen that an ideal gas exhibits an unavoidable quantum surface free energy and surface over volume ratio becomes a control variable on thermodynamic state functions in microscale. Thermodynamics turns into non-extensive thermodynamics and geometry difference becomes a driving force since the surface over volume ratio depends on the geometry

  7. Mass transport thermodynamics in nonisothermal molecular liquid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Semen N [Institute for Biochemical Physics, Russian Academy of Sciences, Moscow (Russian Federation); Schimpf, M E [Department of Chemistry and Biochemistry, Boise State University, Boise, ID (United States)

    2009-10-31

    Mass transport in a nonisothermal binary molecular mixture is systematically discussed in terms of nonequilibrium thermodynamics, which for the first time allows a consistent and unambiguous description of the process. The thermodynamic and hydrodynamic approaches are compared, revealing that nonequilibrium thermodynamics and physicochemical hydrodynamics yield essentially the same results for molecular systems. The applicability limits for the proposed version of the thermodynamic approach are determined for large particles. (methodological notes)

  8. Cometary models - excitation of molecules at radio wavelengths and thermodynamics of the coma

    International Nuclear Information System (INIS)

    Crovisier, J.

    1987-01-01

    Models for molecular excitation under physical conditions of cometary atmospheres are obviously a requisite for interpreting radio spectroscopic observations of comets. A review of such models is presented. The prevailing excitation mechanism for the rotational lines of parent molecules is pumping of the fundamental vibrational bands by the solar infrared radiation field, followed by spontaneous decay; the molecular rotational population is then at fluorescence equilibrium. Another competing mechanism in the inner coma is thermal excitation by collisions. Its evaluation needs the knowledge of the coma kinetic temperature law, which up to now can only be achieved by modeling the coma thermodynamics. A review of cometary thermodynamical models is also given here, and the relations between such models and cometary molecular observations are discussed. 50 references

  9. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2010-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. This book is divided into three parts. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. In the third part, the multi-electron system is discussed theoretically, as a quantum-mechanical example, for the superconducting state in metallic crystals. Throughout the book, the role played by the lattice is emphasized and examined in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on meso...

  10. Thermodynamic evaluation of the Cu-Mg-Zr system

    International Nuclear Information System (INIS)

    Haemaelaeinen, M.; Zeng, K.

    1999-01-01

    The thermodynamic evaluation of the Cu-Mg-Zr system is presented in this paper. A literature survey was carried out first based on the most recent literature, which was scanned from the THERMET literature database. The evaluation of the thermodynamic parameters was carried out using Thermo-Calc (version H) software. The evaluation of the Cu-Mg-Zr system was carried out using the most recent experimental data from the literature and a set of DTA measurements. DTA measurements were done using alumina (Al 2 O 3 ) crucibles under helium atmosphere with the niobium (Nb) reference crucible. The evaluated Cu-Mg-Zr phase diagram fitted well with experimental data with the liquidus data in a limited range of composition. There were two miscibility gaps observe in the system. New τ phase was detected using the X-ray and microscopic analysis and the data was used in this evaluation. (orig.)

  11. Spacetime thermodynamics in the presence of torsion

    Science.gov (United States)

    Dey, Ramit; Liberati, Stefano; Pranzetti, Daniele

    2017-12-01

    It was shown by Jacobson in 1995 that the Einstein equation can be derived as a local constitutive equation for an equilibrium spacetime thermodynamics. With the aim to understand if such thermodynamical description is an intrinsic property of gravitation, many attempts have been made so far to generalize this treatment to a broader class of gravitational theories. Here we consider the case of the Einstein-Cartan theory as a prototype of theories with nonpropagating torsion. In doing so, we study the properties of Killing horizons in the presence of torsion, establish the notion of local causal horizon in Riemann-Cartan spacetimes, and derive the generalized Raychaudhuri equation for these kinds of geometries. Then, starting with the entropy that can be associated to these local causal horizons, we derive the Einstein-Cartan equation by implementing the Clausius equation. We outline two ways of proceeding with the derivation depending on whether we take torsion as a geometric field or as a matter field. In both cases we need to add internal entropy production terms to the Clausius equation as the shear and twist cannot be taken to be 0 a priori for our setup. This fact implies the necessity of a nonequilibrium thermodynamics treatment for the local causal horizon. Furthermore, it implies that a nonzero twist at the horizon in general contributes to the Hartle-Hawking tidal heating for black holes with possible implications for future observations.

  12. Thermodynamic theory of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W. [King' s Coll., London (UK). Dept. of Mathematics

    1977-04-21

    The thermodynamic theory underlying black hole processes is developed in detail and applied to model systems. It is found that Kerr-Newman black holes undergo a phase transition at a = 0.68M or Q = 0.86M, where the heat capacity has an infinite discontinuity. Above the transition values the specific heat is positive, permitting isothermal equilibrium with a surrounding heat bath. Simple processes and stability criteria for various black hole situations are investigated. The limits for entropically favoured black hole formation are found. The Nernst conditions for the third law of thermodynamics are not satisfied fully for black holes. There is no obvious thermodynamic reason why a black hole may not be cooled down below absolute zero and converted into a naked singularity. Quantum energy-momentum tensor calculations for uncharged black holes are extended to the Reissner-Nordstrom case, and found to be fully consistent with the thermodynamic picture for Q < M. For Q < M the model predicts that 'naked' collapse also produces radiation, with such intensity that the collapsing matter is entirely evaporated away before a naked singularity can form.

  13. Faecal shedding of canine parvovirus after modified-live vaccination in healthy adult dogs.

    Science.gov (United States)

    Freisl, M; Speck, S; Truyen, U; Reese, S; Proksch, A-L; Hartmann, K

    2017-01-01

    Since little is known about the persistence and faecal shedding of canine parvovirus (CPV) in dogs after modified-live vaccination, diagnostic tests for CPV can be difficult to interpret in the post-vaccination period. The primary aim of this study was to determine the incidence, duration and extent of CPV vaccine virus shedding in adult dogs and to investigate related factors, including the presence of protective antibodies, increase in anti-CPV antibody titres and development of any gastrointestinal side-effects. A secondary objective was to assess prevalence of CPV field virus shedding in clinically healthy dogs due to subclinical infections. One hundred adult, healthy privately owned dogs were vaccinated with a commercial CPV-2 modified-live vaccine (MLV). Faeces were tested for the presence of CPV DNA on days 0 (prior to vaccination), 3, 7, 14, 21 and 28 by quantitative real-time PCR. Pre- and post-vaccination serum titres were determined by haemagglutination inhibition on days 0, 7 and 28. Transient excretion of CPV DNA was detected in 2.0% of dogs before vaccination. About one quarter of dogs (23.0%) shed CPV DNA during the post-vaccination period, but field and vaccine virus differentiation by VP2 gene sequencing was only successful in few samples. Faecal CPV excretion occurred despite protective serum antibody titres. Post-vaccination CPV shedding was not related to adequate antibody response after vaccination or to the occurrence of gastrointestinal side-effects. Despite individual differences, CPV DNA was detectable for up to 28 days after vaccination, although the faecal CPV DNA load in these clinically healthy dogs was very low. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Role of Protein Kinase C in Endothelin Converting Enzyme-1 trafficking and shedding from endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuruppu, Sanjaya, E-mail: Sanjaya.Kuruppu@med.monash.edu.au [Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Vic. 3800 (Australia); Tochon-Danguy, Natalie; Ian Smith, A. [Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Vic. 3800 (Australia)

    2010-07-23

    Research highlights: {yields} PKC activation increases the trafficking of ECE-1 to the cell surface. {yields} This in turn leads to an increase in the amount of ECE-1 shed. {yields} Only the catalytically active C-terminal region is shed from the cell surface. -- Abstract: This study aimed to determine the consequences of Protein Kinase C (PKC) mediated Endothelin Converting Enzyme-1 (ECE-1) phosphorylation and its relationship to ECE-1 expression and shedding. The proteins on the surface of EA.hy926 cells were labelled with EZ-Link NHS-SS-Biotin both prior to (control) and following stimulation by 2 {mu}M phorbol 12-myristate 13-acetate (PMA) which activates PKC. The biotinylated proteins were isolated using neutravidin beads, resolved by gel electrophoresis and analysed by western blotting using anti-ECE-1 antibodies. Significant increase in ECE-1 expression at the cell surface was observed following stimulation by PMA, compared to unstimulated control cells (170 {+-} 32.3% of control, n = 5). The ECE-1 activity (expressed as {mu}M substrate cleaved/min) was determined by monitoring the cleavage of a quenched fluorescent substrate. The specificity of cleavage was confirmed using the ECE-1 inhibitor (CGS35066). The stimulation of cells by PMA (1 {mu}M, 6 h) significantly increased the ECE-1 activity (0.28 {+-} 0.02; n = 3) compared to the control (0.07 {+-} 0.02; n = 3). This increase was prevented by prior incubation with the PKC inhibitor bisindolymaleimide (BIM; 2 {mu}M for 1 h; 0.10 {+-} 0.01; n = 3). Treatment with PMA also increased the activity of ECE-1 in the media (0.18 {+-} 0.01; n = 3) compared to control (0.08 {+-} 0.01; n = 3). In addition, this study confirmed by western immunoblotting that only the extracellular region of ECE-1 is released from the cell surface. These data indicate for the first time that PKC activation induces the trafficking and shedding of ECE to and from the cell surface, respectively.

  15. Multi-pressure boiler thermodynamics analysis code

    International Nuclear Information System (INIS)

    Lorenzoni, G.

    1992-01-01

    A new method and the relative FORTRAN program for the thermodynamics design analysis of a multipressure boiler are reported. This method permits the thermodynamics design optimization with regard to total exergy production and a preliminary costs

  16. Canonical operator formulation of nonequilibrium thermodynamics

    International Nuclear Information System (INIS)

    Mehrafarin, M.

    1992-09-01

    A novel formulation of nonequilibrium thermodynamics is proposed which emphasises the fundamental role played by the Boltzmann constant k in fluctuations. The equivalence of this and the stochastic formulation is demonstrated. The k → 0 limit of this theory yields the classical deterministic description of nonequilibrium thermodynamics. The new formulation possesses unique features which bear two important results namely the thermodynamic uncertainty principle and the quantisation of entropy production rate. Such a theory becomes indispensable whenever fluctuations play a significant role. (author). 7 refs

  17. Thermodynamic analysis of elastic-plastic deformation

    International Nuclear Information System (INIS)

    Lubarda, V.

    1981-01-01

    The complete set of constitutive equations which fully describes the behaviour of material in elastic-plastic deformation is derived on the basis of thermodynamic analysis of the deformation process. The analysis is done after the matrix decomposition of the deformation gradient is introduced into the structure of thermodynamics with internal state variables. The free energy function, is decomposed. Derive the expressions for the stress response, entropy and heat flux, and establish the evolution equation. Finally, we establish the thermodynamic restrictions of the deformation process. (Author) [pt

  18. Thermodynamic laws apply to brain function.

    Science.gov (United States)

    Salerian, Alen J

    2010-02-01

    Thermodynamic laws and complex system dynamics govern brain function. Thus, any change in brain homeostasis by an alteration in brain temperature, neurotransmission or content may cause region-specific brain dysfunction. This is the premise for the Salerian Theory of Brain built upon a new paradigm for neuropsychiatric disorders: the governing influence of neuroanatomy, neurophysiology, thermodynamic laws. The principles of region-specific brain function thermodynamics are reviewed. The clinical and supporting evidence including the paradoxical effects of various agents that alter brain homeostasis is demonstrated.

  19. Shedding and serological patterns of dairy cows following abortions associated with Coxiella burnetii DNA detection.

    Science.gov (United States)

    Guatteo, R; Joly, A; Beaudeau, F

    2012-03-23

    To describe both shedding and serological patterns following abortions detected as being associated with Coxiella burnetii (Cb), 24 cows experiencing an abortion due to Cb were followed over a one month period. Samples taken on the day of abortion (D0) were followed 3-fold by weekly samplings from day 14 (D14) to D28 after the abortion. Milk and vaginal mucus were collected at each weekly sampling and tested using real-time PCR while blood samples were collected 2-fold on D21 and D28 and tested using ELISA. We found a very short duration of C. burnetii shedding in vaginal mucus after abortion, highlighting the need to collect samples as rapidly as possible following an abortion to avoid false negative results. In contrast with previous results, concomitancy of vaginal and mucus shedding was frequent, especially for cows shedding a high bacterial load on DO leading to the hypothesis that the clinical onset of the infection influences the modalities of Cb shedding. Lastly, serological results indicating a lack of sensitivity to detect Cb shedder cows (especially for cows for which Ct values were high) suggest that ELISA is not a useful tool to diagnose abortions at the individual level. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. The Theory of Thermodynamic Systems with Internal Variables of State: Necessary and Sufficient Conditions for Compliance with the Second Law of Thermodynamics

    Science.gov (United States)

    Shnip, A. I.

    2018-01-01

    Based on the entropy-free thermodynamic approach, a generalized theory of thermodynamic systems with internal variables of state is being developed. For the case of nonlinear thermodynamic systems with internal variables of state and linear relaxation, the necessary and sufficient conditions have been proved for fulfillment of the second law of thermodynamics in entropy-free formulation which, according to the basic theorem of the theory, are also necessary and sufficient for the existence of a thermodynamic potential. Moreover, relations of correspondence between thermodynamic systems with memory and systems with internal variables of state have been established, as well as some useful relations in the spaces of states of both types of systems.

  1. Thermodynamics and proton activities of protic ionic liquids with quantum cluster equilibrium theory

    Science.gov (United States)

    Ingenmey, Johannes; von Domaros, Michael; Perlt, Eva; Verevkin, Sergey P.; Kirchner, Barbara

    2018-05-01

    We applied the binary Quantum Cluster Equilibrium (bQCE) method to a number of alkylammonium-based protic ionic liquids in order to predict boiling points, vaporization enthalpies, and proton activities. The theory combines statistical thermodynamics of van-der-Waals-type clusters with ab initio quantum chemistry and yields the partition functions (and associated thermodynamic potentials) of binary mixtures over a wide range of thermodynamic phase points. Unlike conventional cluster approaches that are limited to the prediction of thermodynamic properties, dissociation reactions can be effortlessly included into the bQCE formalism, giving access to ionicities, as well. The method is open to quantum chemical methods at any level of theory, but combination with low-cost composite density functional theory methods and the proposed systematic approach to generate cluster sets provides a computationally inexpensive and mostly parameter-free way to predict such properties at good-to-excellent accuracy. Boiling points can be predicted within an accuracy of 50 K, reaching excellent accuracy for ethylammonium nitrate. Vaporization enthalpies are predicted within an accuracy of 20 kJ mol-1 and can be systematically interpreted on a molecular level. We present the first theoretical approach to predict proton activities in protic ionic liquids, with results fitting well into the experimentally observed correlation. Furthermore, enthalpies of vaporization were measured experimentally for some alkylammonium nitrates and an excellent linear correlation with vaporization enthalpies of their respective parent amines is observed.

  2. Ch. 33 Modeling: Computational Thermodynamics

    International Nuclear Information System (INIS)

    Besmann, Theodore M.

    2012-01-01

    This chapter considers methods and techniques for computational modeling for nuclear materials with a focus on fuels. The basic concepts for chemical thermodynamics are described and various current models for complex crystalline and liquid phases are illustrated. Also included are descriptions of available databases for use in chemical thermodynamic studies and commercial codes for performing complex equilibrium calculations.

  3. Thermodynamics of urban population flows.

    Science.gov (United States)

    Hernando, A; Plastino, A

    2012-12-01

    Orderliness, reflected via mathematical laws, is encountered in different frameworks involving social groups. Here we show that a thermodynamics can be constructed that macroscopically describes urban population flows. Microscopic dynamic equations and simulations with random walkers underlie the macroscopic approach. Our results might be regarded, via suitable analogies, as a step towards building an explicit social thermodynamics.

  4. Black hole thermodynamical entropy

    International Nuclear Information System (INIS)

    Tsallis, Constantino; Cirto, Leonardo J.L.

    2013-01-01

    As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy S BG of a (3+1) black hole is proportional to its area L 2 (L being a characteristic linear length), and not to its volume L 3 . Similarly it exists the area law, so named because, for a wide class of strongly quantum-entangled d-dimensional systems, S BG is proportional to lnL if d=1, and to L d-1 if d>1, instead of being proportional to L d (d ≥ 1). These results violate the extensivity of the thermodynamical entropy of a d-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is not to be identified with the BG additive entropy but with appropriately generalized nonadditive entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle. (orig.)

  5. Observational homogeneity of the Universe

    International Nuclear Information System (INIS)

    Bonnor, W.B.; Ellis, G.F.R.

    1986-01-01

    A new approach to observational homogeneity is presented. The observation that stars and galaxies in distant regions appear similar to those nearby may be taken to imply that matter has had a similar thermodynamic history in widely separated parts of the Universe (the Postulate of Uniform Thermal Histories, or PUTH). The supposition is now made that similar thermodynamic histories imply similar dynamical histories. Then the distant apparent similarity is evidence for spatial homogeneity of the Universe. General Relativity is used to test this idea, taking a perfect fluid model and implementing PUTH by the condition that the density and entropy per baryon shall be the same function of the proper time along all galaxy world-lines. (author)

  6. Thermodynamic DFT analysis of natural gas.

    Science.gov (United States)

    Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C

    2017-08-01

    Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.

  7. Thermodynamic Database for Zirconium Alloys

    International Nuclear Information System (INIS)

    Jerlerud Perez, Rosa

    2003-05-01

    For many decades zirconium alloys have been commonly used in the nuclear power industry as fuel cladding material. Besides their good corrosion resistance and acceptable mechanical properties the main reason of using these alloys is the low neutron absorption. Zirconium alloys are exposed to a very severe environment during the nuclear fission process and there is a demand for better design of this material. To meet this requirement a thermodynamic database is developed to support material designers. In this thesis some aspects about the development of a thermodynamic database for zirconium alloys are presented. A thermodynamic database represents an important facility in applying thermodynamic equilibrium calculations for a given material providing: 1) relevant information about the thermodynamic properties of the alloys e.g. enthalpies, activities, heat capacity, and 2) significant information for the manufacturing process e.g. heat treatment temperature. The basic information in the database is first the unary data, i.e. pure elements; those are taken from the compilation of the Scientific Group Thermodata Europe (SGTE) and then the binary and ternary systems. All phases present in those binary and ternary systems are described by means of the Gibbs energy dependence on composition and temperature. Many of those binary systems have been taken from published or unpublished works and others have been assessed in the present work. All the calculations have been made using Thermo C alc software and the representation of the Gibbs energy obtained by applying Calphad technique

  8. Statistical thermodynamics of alloys

    International Nuclear Information System (INIS)

    Gokcen, N.A.

    1986-01-01

    This book presents information on the following topics: consequences of laws of thermodynamics; Helmholtz and Gibbs energies; analytical forms of excess partial molar properties; single-component and multicomponent equilibria; phase rules and diagrams; lever rule; fermions, bosons, and Boltzons; approximate equations; enthalpy and heat capacity; Pd-H system; hydrogen-metal systems; limitations of Wagner model; energy of electrons and hols; dopants in semiconductors; derived thermodynamic properties; simple equivalent circuit; calculation procedure; multicompoent diagrams re; Engel-Brewer theories; p-n junctions; and solar cells

  9. On thermodynamics of methane+carbonaceous materials adsorption

    KAUST Repository

    Rahman, Kazi Afzalur

    2012-01-01

    This study presents the theoretical frameworks for the thermodynamic quantities namely the heat of adsorption, specific heat capacity, entropy, and enthalpy for the adsorption of methane onto various carbonaceous materials. The proposed theoretical frameworks are developed from the rigor of thermodynamic property surfaces of a single component adsorbate-adsorbent system and by incorporating the micropore filling theory approach, where the effect of adsorbed phase volume is considered. The abovementioned thermodynamic properties are quantitatively evaluated from the experimental uptake data for methane adsorption onto activated carbons such as Maxsorb III at temperatures ranging from 120 to 350 K and pressures up to 25 bar. Employing the proposed thermodynamic approaches, this paper shows the thermodynamic maps of the charge and discharge processes of adsorbed natural gas (ANG) storage system for understanding the behaviors of natural gas in ANG vessel. © 2011 Elsevier Ltd. All rights reserved.

  10. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Selection of thermodynamic data of cobalt and nickel

    International Nuclear Information System (INIS)

    Kitamura, Akira; Yui, Mikazu; Kirishima, Akira; Saito, Takumi; Shibutani, Sanae; Tochiyama, Osamu

    2009-11-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level and TRU wastes, the selection of the thermodynamic data on the inorganic compounds and complexes of cobalt and nickel have been carried out. For cobalt, extensive literature survey has been performed and all the obtained literatures have been carefully reviewed to select the thermodynamic data. Selection of thermodynamic data of nickel has been based on a thermodynamic database published by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA), which has been carefully reviewed by the authors, and then thermodynamic data have been selected after surveying latest literatures. Based on the similarity of chemical properties between cobalt and nickel, complementary thermodynamic data of nickel and cobalt species expected under the geological disposal condition have been selected to complete the thermodynamic data set for the performance assessment of geological disposal of radioactive wastes. (author)

  11. Multiplicity distributions in a thermodynamical model of hadron production in e{sup +}e{sup -} collisions

    Energy Technology Data Exchange (ETDEWEB)

    Becattini, F. [Florence Univ. (Italy)]|[Istituto Nazionale di Fisica Nucleare, Florence (Italy); Giovannini, A. [Turin Univ. (Italy). Ist. di Fisica Teorica]|[Istituto Nazionale di Fisica Nucleare, Turin (Italy); Lupia, S. [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut

    1996-10-01

    Predictions of a thermodynamical model of hadron production for multiplicity distributions in e{sup +}e{sup -} annihilations at LEP and PEP-PETRA centre of mass energies are shown. The production process is described as a two-step process in which primary hadrons emitted from the thermal source decay into final observable particles. The final charged track multiplicity distributions turn out to be of negative binomial type and are in quite good agreement with experimental observations. The average number of clans calculated from fitted negative binomial coincides with the average number of primary hadrons predicted by the thermodynamical model, suggesting that clans should be identified with primary hadrons. (orig.)

  12. Introduction to physics mechanics, hydrodynamics thermodynamics

    CERN Document Server

    Frauenfelder, P

    2013-01-01

    Introduction of Physics: Mechanics , Hydrodynamics, Thermodynamics covers the principles of matter and its motion through space and time, as well as the related concepts of energy and force. This book is composed of eleven chapters, and begins with an introduction to the basic principles of mechanics, hydrodynamics, and thermodynamics. The subsequent chapters deal with the statics of rigid bodies and the dynamics of particles and rigid bodies. These topics are followed by discussions on elasticity, mechanics of fluids, the basic concept of thermodynamic, kinetic theory, and crystal structure o

  13. The effect of anisotropy on the thermodynamics of the interacting holographic dark energy model

    Science.gov (United States)

    Hossienkhani, H.; Jafari, A.; Fayaz, V.; Ramezani, A. H.

    2018-02-01

    By considering a holographic model for the dark energy in an anisotropic universe, the thermodynamics of a scheme of dark matter and dark energy interaction has been investigated. The results suggest that when holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium, therefore the interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. Also the relation between the interaction term of the dark components and this thermal fluctuation has been obtained. Additionally, for a cosmological interaction as a free function, the anisotropy effects on the generalized second law of thermodynamics have been studied. By using the latest observational data on the holographic dark energy models as the unification of dark matter and dark energy, the observational constraints have been probed. To do this, we focus on observational determinations of the Hubble expansion rate H( z). Finally, we evaluate the anisotropy effects (although low) on various topics, such as the evolution of the statefinder diagnostic, the distance modulus and the spherical collapse from the holographic dark energy model and compare them with the results of the holographic dark energy of the Friedmann-Robertson-Walker and Λ CDM models.

  14. Association between nasal shedding and fever that influenza A (H3N2) induces in dogs.

    Science.gov (United States)

    Song, Daesub; Moon, Hyoungjoon; Jung, Kwonil; Yeom, Minjoo; Kim, Hyekwon; Han, Sangyoon; An, Dongjun; Oh, Jinsik; Kim, Jongman; Park, Bongkyun; Kang, Bokyu

    2011-01-05

    Avian origin canine influenza virus was reported in Korea. The dog to dog contact transmission of the avian origin canine influenza virus (CIV) H3N2 and CIV H3N8 was shown by experimental contact transmission. This study was focused on viral excretion and fever in order to elucidate the epidemiological associations which might be helpful to control the disease transmissions in CIV outbreak in dogs. An influenza seronegative 10-week-old Beagle dog was experimentally inoculated with the canine influenza virus A/canine/01/2007, subtype H3N2. Eight hours after inoculation, the infected dog was cohoused with seven uninfected Beagle dogs. Clinical signs including fever were recorded for 14 days post inoculation. The infected dog and four of seven contact dogs in the study showed clinical signs (sneezing, nasal discharge and coughing) during the study. Viral shedding occurred in all of the animals tested and began on 1 to 6 DPI in dogs with clinical signs. Elevated body temperatures above 39.5 °C (geometric mean temperature of 39.86 °C ± 0.49) were observed in all symptomatic dogs. The mean viral titer during fever was 2.99 log EID₅₀/ml, which was significantly higher than the viral titer detected in the non fever. The data show that contact dogs with a canine influenza infected dog shed different levels of virus in their nasal excretions and demonstrate that clinical signs, including fever, significantly correlate with the viral shedding.

  15. Association between nasal shedding and fever that influenza A (H3N2 induces in dogs

    Directory of Open Access Journals (Sweden)

    Oh Jinsik

    2011-01-01

    Full Text Available Abstract Background Avian origin canine influenza virus was reported in Korea. The dog to dog contact transmission of the avian origin canine influenza virus (CIV H3N2 and CIV H3N8 was shown by experimental contact transmission. This study was focused on viral excretion and fever in order to elucidate the epidemiological associations which might be helpful to control the disease transmissions in CIV outbreak in dogs. Methods An influenza seronegative 10-week-old Beagle dog was experimentally inoculated with the canine influenza virus A/canine/01/2007, subtype H3N2. Eight hours after inoculation, the infected dog was cohoused with seven uninfected Beagle dogs. Clinical signs including fever were recorded for 14 days post inoculation. Results The infected dog and four of seven contact dogs in the study showed clinical signs (sneezing, nasal discharge and coughing during the study. Viral shedding occurred in all of the animals tested and began on 1 to 6 DPI in dogs with clinical signs. Elevated body temperatures above 39.5°C (geometric mean temperature of 39.86°C±0.49 were observed in all symptomatic dogs. The mean viral titer during fever was 2.99 log EID50/ml, which was significantly higher than the viral titer detected in the non fever. Conclusions The data show that contact dogs with a canine influenza infected dog shed different levels of virus in their nasal excretions and demonstrate that clinical signs, including fever, significantly correlate with the viral shedding.

  16. Pyroelectric Energy Harvesting: With Thermodynamic-Based Cycles

    OpenAIRE

    Saber Mohammadi; Akram Khodayari

    2012-01-01

    This work deals with energy harvesting from temperature variations using ferroelectric materials as a microgenerator. The previous researches show that direct pyroelectric energy harvesting is not effective, whereas thermodynamic-based cycles give higher energy. Also, at different temperatures some thermodynamic cycles exhibit different behaviours. In this paper pyroelectric energy harvesting using Lenoir and Ericsson thermodynamic cycles has been studied numerically and the two cycles were c...

  17. The discovery of thermodynamics

    Science.gov (United States)

    Weinberger, Peter

    2013-07-01

    Based on the idea that a scientific journal is also an "agora" (Greek: market place) for the exchange of ideas and scientific concepts, the history of thermodynamics between 1800 and 1910 as documented in the Philosophical Magazine Archives is uncovered. Famous scientists such as Joule, Thomson (Lord Kelvin), Clausius, Maxwell or Boltzmann shared this forum. Not always in the most friendly manner. It is interesting to find out, how difficult it was to describe in a scientific (mathematical) language a phenomenon like "heat", to see, how long it took to arrive at one of the fundamental principles in physics: entropy. Scientific progress started from the simple rule of Boyle and Mariotte dating from the late eighteenth century and arrived in the twentieth century with the concept of probabilities. Thermodynamics was the driving intellectual force behind the industrial revolution, behind the enormous social changes caused by this revolution. The history of thermodynamics is a fascinating story, which also gives insights into the mechanism that seem to govern science.

  18. Statistical thermodynamics of alloys

    CERN Document Server

    Gokcen, N A

    1986-01-01

    This book is intended for scientists, researchers, and graduate students interested in solutions in general, and solutions of metals in particular. Readers are assumed to have a good background in thermodynamics, presented in such books as those cited at the end of Chapter 1, "Thermo­ dynamic Background." The contents of the book are limited to the solutions of metals + metals, and metals + metalloids, but the results are also appli­ cable to numerous other types of solutions encountered by metallurgists, materials scientists, geologists, ceramists, and chemists. Attempts have been made to cover each topic in depth with numerical examples whenever necessary. Chapter 2 presents phase equilibria and phase diagrams as related to the thermodynamics of solutions. The emphasis is on the binary diagrams since the ternary diagrams can be understood in terms of the binary diagrams coupled with the phase rule, and the Gibbs energies of mixing. The cal­ culation of thermodynamic properties from the phase diagrams is ...

  19. Thermodynamics in the Suppressed Phase of the Madden-Julian Oscillation Using a Multiplatform Strategy

    Science.gov (United States)

    Roberts, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne; Taylor, Patrick

    2014-01-01

    The Madden-Julian Oscillation (MJO) represents a prominent mode of intraseasonal tropical variability. It is manifest by coherent large-scale changes in atmospheric circulation, convection, and thermodynamic processes. Preconditioning of the environment prior to the active phase of the MJO has been noted, but the balance of theorized mechanisms to accomplish this process remains unresolved. Further, there is a lack of consensus on the means by which primary initiation of an MJO event occurs. Observational and modeling efforts have recently been undertaken to advance our understanding of the physical underpinnings governing MJO development. However these intensive studies are often limited in space and/or time and are potentially subject to model deficiencies. Satellite observations, especially those providing vertical resolution of temperature and moisture, provide an opportunity to expand our knowledge of processes critical to MJO initiation and preconditioning. This work will provide an analysis of suppressed phase thermodynamics with an emphasis on the use of a complementary suite of satellite observations including AIRS/AMSU-A profiles, CERES radiative fluxes, and cloud properties observed by MODIS. Emphasis of this work will regard the distribution of cloud regimes, their radiative-convective effects, and their relationship to moist static energy during the recharge and suppressed stages of MJO initiation and eastward propagation. The analyses will make use of cloud regimes from MODIS observations to provide a compositing technique that enables the identification of systematic connections between different cloud regimes and the larger scale environment. Within these cloud regimes, the relationship between the associated cloud-radiative effects observed by CERES, vertically-resolved and vertically-integrated thermodynamics using AIRS/AMSU-A observations, and atmospheric boundary layer fluxes will be demonstrated.

  20. International thermodynamic tables of the fluid state propylene (propene)

    CERN Document Server

    Angus, S; De Reuck, K M

    2013-01-01

    International Thermodynamic Tables of the Fluid State - 7 Propylene (Propene) is a compilation of internationally agreed values of the equilibrium thermodynamic properties of propylene. This book is composed of three chapters, and begins with the presentation of experimental result of thermodynamic studies compared with the equations used to generate the tables. The succeeding chapter deals with correlating equations for thermodynamic property determination of propylene. The last chapter provides the tabulations of the propylene's thermodynamic properties and constants. This book will prove

  1. New methods of thermodynamics; Nouvelles methodes en thermodynamique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This day, organized by the SFT French Society of Thermology, took stock on the new methods in the domain of the thermodynamics. Eight papers have been presented during this day: new developments of the thermodynamics in finite time; the optimal efficiency of energy converters; a version of non-equilibrium thermodynamics with entropy and information as positive and negative thermal change; the role of thermodynamics in process integration; application of the thermodynamics to critical nuclear accidents; the entropic analysis help in the case of charge and discharge state of an energy storage process; fluid flow threw a stable state in the urban hydraulic; a computer code for phase diagram prediction. (A.L.B.)

  2. Modern Thermodynamics Based on the Extended Carnot Theorem

    CERN Document Server

    Wang, Jitao

    2012-01-01

    "Modern Thermodynamics- Based on the Extended Carnot Theorem" provides comprehensive definitions and mathematical expressions of both classical and modern thermodynamics. The goal is to develop the fundamental theory on an extended Carnot theorem without incorporating any extraneous assumptions. In particular, it offers a fundamental thermodynamic and calculational methodology for the synthesis of low-pressure diamonds. It also discusses many "abnormal phenomena", such as spiral reactions, cyclic reactions, chemical oscillations, low-pressure carat-size diamond growth, biological systems, and more. The book is intended for chemists and physicists working in thermodynamics, chemical thermodynamics, phase diagrams, biochemistry and complex systems, as well as graduate students in these fields. Jitao Wang is a professor emeritus at Fudan University, Shanghai, China.

  3. A thermodynamic evaluation of the Fe-Nb system

    International Nuclear Information System (INIS)

    Srikanth, S.; Petric, A.

    1994-01-01

    An optimised set of thermodynamic functions consistent with the phase diagram was derived for the Fe-Nb system from information on phase equilibria and thermodynamic data available in the literature. The thermodynamic properties of the intermediate ε (Fe 2 Nb) phase were described using the sublattice model. A Redlich-Kister equation was used to describe the excess thermodynamic functions of the liquid, bcc and fcc phases. For the μ phase, the enthalpy of formation was estimated from Miedema's model. The interaction coefficients were evaluated using an optimisation procedure employing a conjugate gradient method. The phase diagram and the thermodynamic functions calculated from the evaluated parameters are in good agreement with experimental data. (orig.)

  4. Thermodynamic calculations in ternary titanium–aluminium–manganese system

    Directory of Open Access Journals (Sweden)

    ANA I. KOSTOV

    2008-04-01

    Full Text Available Thermodynamic calculations in the ternary Ti–Al–Mn system are shown in this paper. The thermodynamic calculations were performed using the FactSage thermochemical software and database, with the aim of determining thermodynamic properties, such as activities, coefficient of activities, partial and integral values of the enthalpies and Gibbs energies of mixing and excess energies at two different temperatures: 2000 and 2100 K. Bearing in mind that no experimental data for the Ti–Al–Mn ternary system have been obtained or reported. The obtained results represent a good base for further thermodynamic analysis and may be useful as a comparison with some future critical experimental results and thermodynamic optimization of this system.

  5. Th1 cytokine-induced syndecan-4 shedding by airway smooth muscle cells is dependent on mitogen-activated protein kinases.

    Science.gov (United States)

    Tan, Xiahui; Khalil, Najwa; Tesarik, Candice; Vanapalli, Karunasri; Yaputra, Viki; Alkhouri, Hatem; Oliver, Brian G G; Armour, Carol L; Hughes, J Margaret

    2012-04-01

    In asthma, airway smooth muscle (ASM) chemokine secretion can induce mast cell recruitment into the airways. The functions of the mast cell chemoattractant CXCL10, and other chemokines, are regulated by binding to heparan sulphates such as syndecan-4. This study is the first demonstration that airway smooth muscle cells (ASMC) from people with and without asthma express and shed syndecan-4 under basal conditions. Syndecan-4 shedding was enhanced by stimulation for 24 h with the Th1 cytokines interleukin-1β (IL-1β) or tumor necrosis factor-α (TNF-α), but not interferon-γ (IFNγ), nor the Th2 cytokines IL-4 and IL-13. ASMC stimulation with IL-1β, TNF-α, and IFNγ (cytomix) induced the highest level of syndecan-4 shedding. Nonasthmatic and asthmatic ASM cell-associated syndecan-4 protein expression was also increased by TNF-α or cytomix at 4-8 h, with the highest levels detected in cytomix-stimulated asthmatic cells. Cell-associated syndecan-4 levels were decreased by 24 h, whereas shedding remained elevated at 24 h, consistent with newly synthesized syndecan-4 being shed. Inhibition of ASMC matrix metalloproteinase-2 did not prevent syndecan-4 shedding, whereas inhibition of ERK MAPK activation reduced shedding from cytomix-stimulated ASMC. Although ERK inhibition had no effect on syndecan-4 mRNA levels stimulated by cytomix, it did cause an increase in cell-associated syndecan-4 levels, consistent with the shedding being inhibited. In conclusion, ASMC produce and shed syndecan-4 and although this is increased by the Th1 cytokines, the MAPK ERK only regulates shedding. ASMC syndecan-4 production during Th1 inflammatory conditions may regulate chemokine activity and mast cell recruitment to the ASM in asthma.

  6. Development of Thermodynamic Conceptual Evaluation

    Science.gov (United States)

    Talaeb, P.; Wattanakasiwich, P.

    2010-07-01

    This research aims to develop a test for assessing student understanding of fundamental principles in thermodynamics. Misconceptions found from previous physics education research were used to develop the test. Its topics include heat and temperature, the zeroth and the first law of thermodynamics, and the thermodynamics processes. The content validity was analyzed by three physics experts. Then the test was administered to freshmen, sophomores and juniors majored in physics in order to determine item difficulties and item discrimination of the test. A few items were eliminated from the test. Finally, the test will be administered to students taking Physics I course in order to evaluate the effectiveness of Interactive Lecture Demonstrations that will be used for the first time at Chiang Mai University.

  7. Statistical thermodynamics of clustered populations.

    Science.gov (United States)

    Matsoukas, Themis

    2014-08-01

    We present a thermodynamic theory for a generic population of M individuals distributed into N groups (clusters). We construct the ensemble of all distributions with fixed M and N, introduce a selection functional that embodies the physics that governs the population, and obtain the distribution that emerges in the scaling limit as the most probable among all distributions consistent with the given physics. We develop the thermodynamics of the ensemble and establish a rigorous mapping to regular thermodynamics. We treat the emergence of a so-called giant component as a formal phase transition and show that the criteria for its emergence are entirely analogous to the equilibrium conditions in molecular systems. We demonstrate the theory by an analytic model and confirm the predictions by Monte Carlo simulation.

  8. Thermodynamic assessment of the Cu–Fe–Ni system

    International Nuclear Information System (INIS)

    Dreval, Liya A.; Turchanin, Mikhail A.; Agraval, Pavel G.

    2014-01-01

    Highlights: • The thermodynamic description of the Cu–Fe–Ni system has been updated. • The new experimental data have been used to refine thermodynamic model of the system. • The four-sublattice model has been adopted to predict the equilibria involving the ordered L1 2 phase. • A significant improvement in comparison with the previous assessments has been achieved. • The liquidus and solidus projections have been presented. -- Abstract: The thermodynamic description of the Cu–Fe–Ni system has been updated considering the newly available experimental data, as well as compatibility of the present modeling with those used for the Cu and Fe systems. All of the experimental data available in the literature have been critically reviewed, and the inconsistent information has been excluded. The thermodynamic parameters have been evaluated in order to properly describe the thermodynamic properties of the liquid phase and miscibility gap in the solid state. A significant improvement in comparison with the previous thermodynamic descriptions has been achieved. Additionally, for the ordered L1 2 phase the four-sublattice model has been adopted to predict the ternary phase equilibria involving this phase. A set of thermodynamic parameters for the phases is given

  9. Thermodynamical properties of dark energy with the equation of state ω=ω0+ω1z

    International Nuclear Information System (INIS)

    Zhang Yongping; Yi Zelong; Zhang Tongjie; Liu Wenbiao

    2008-01-01

    The thermodynamical properties of dark energy are usually investigated with the equation of state ω=ω 0 +ω 1 z. Recent observations show that our Universe is accelerating, and the apparent horizon and the event horizon vary with redshift z. Because definitions of the temperature and entropy of a black hole are used to describe the two horizons of the Universe, we examine the thermodynamical properties of the Universe, which is enveloped by the apparent horizon and the event horizon, respectively. We show that the first and the second laws of thermodynamics inside the apparent horizon in any redshift are satisfied, while they are broken down inside the event horizon in some redshifts. Therefore, the apparent horizon for the Universe may be the boundary of thermodynamical equilibrium for the Universe like the event horizon for a black hole

  10. Size- and shape-dependent surface thermodynamic properties of nanocrystals

    Science.gov (United States)

    Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang

    2018-05-01

    As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.

  11. Modern thermodynamics from heat engines to dissipative structures

    CERN Document Server

    Kondepudi, Dilip

    2014-01-01

    Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition presents a comprehensive introduction to 20th century thermodynamics that can be applied to both equilibrium and non-equilibrium systems, unifying what was traditionally divided into 'thermodynamics' and 'kinetics' into one theory of irreversible processes. This comprehensive text, suitable for introductory as well as advanced courses on thermodynamics, has been widely used by chemists, physicists, engineers and geologists.  Fully revised and expanded, this new edition includes the following updates and featur

  12. In Vitro Evaluation and Mechanism Analysis of the Fiber Shedding Property of Textile Pile Debridement Materials

    Directory of Open Access Journals (Sweden)

    Yijun Fu

    2016-04-01

    Full Text Available Fiber shedding is a critical problem in biomedical textile debridement materials, which leads to infection and impairs wound healing. In this work, single fiber pull-out test was proposed as an in vitro evaluation for the fiber shedding property of a textile pile debridement material. Samples with different structural design (pile densities, numbers of ground yarns and coating times were prepared and estimated under this testing method. Results show that single fiber pull-out test offers an appropriate in vitro evaluation for the fiber shedding property of textile pile debridement materials. Pull-out force for samples without back-coating exhibited a slight escalating trend with the supplement in pile density and number of ground yarn plies, while back-coating process significantly raised the single fiber pull-out force. For fiber shedding mechanism analysis, typical pull-out behavior and failure modes of the single fiber pull-out test were analyzed in detail. Three failure modes were found in this study, i.e., fiber slippage, coating point rupture and fiber breakage. In summary, to obtain samples with desirable fiber shedding property, fabric structural design, preparation process and raw materials selection should be taken into full consideration.

  13. Mechanics, Waves and Thermodynamics

    Science.gov (United States)

    Ranjan Jain, Sudhir

    2016-05-01

    Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.

  14. Thermodynamics of Fluids Under Flow Second Edition

    CERN Document Server

    Jou, David; Criado-Sancho, Manuel

    2011-01-01

    This is the second edition of the book “Thermodynamics of Fluids under Flow,” which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vázquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vázquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer ble...

  15. Thermodynamics of micellization from heat-capacity measurements.

    Science.gov (United States)

    Šarac, Bojan; Bešter-Rogač, Marija; Lah, Jurij

    2014-06-23

    Differential scanning calorimetry (DSC), the most important technique for studying the thermodynamics of structural transitions of biological macromolecules, is seldom used in quantitative thermodynamic studies of surfactant micellization/demicellization. The reason for this could be ascribed to an insufficient understanding of the temperature dependence of the heat capacity of surfactant solutions (DSC data) in terms of thermodynamics, which leads to problems with the design of experiments and interpretation of the output signals. We address these issues by careful design of DSC experiments performed with solutions of ionic and nonionic surfactants at various surfactant concentrations, and individual and global mass-action model analysis of the obtained DSC data. Our approach leads to reliable thermodynamic parameters of micellization for all types of surfactants, comparable with those obtained by using isothermal titration calorimetry (ITC). In summary, we demonstrate that DSC can be successfully used as an independent method to obtain temperature-dependent thermodynamic parameters for micellization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. International thermodynamic tables of the fluid state helium-4

    CERN Document Server

    de Reuck, K M; McCarty, R D

    2013-01-01

    International Thermodynamic Tables of the Fluid State Helium-4 presents the IUPAC Thermodynamic Tables for the thermodynamic properties of helium. The IUPAC Thermodynamic Tables Project has therefore encouraged the critical analysis of the available thermodynamic measurements for helium and their synthesis into tables. This book is divided into three chapters. The first chapter discusses the experimental results and compares with the equations used to generate the tables. These equations are supplemented by a vapor pressure equation, which represents the 1958 He-4 scale of temperature that is

  17. Irreversible thermodynamics of Poisson processes with reaction.

    Science.gov (United States)

    Méndez, V; Fort, J

    1999-11-01

    A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics.

  18. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.

    Science.gov (United States)

    Junicke, H; van Loosdrecht, M C M; Kleerebezem, R

    2016-01-01

    Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer during syntrophic butyrate conversion in non-defined methanogenic communities. Despite the rather low energy content of butyrate, results demonstrate unequal energy sharing between the butyrate-utilizing species (17 %), the hydrogenotrophic methanogens (9-10 %), and the acetoclastic methanogens (73-74 %). As a key finding, the energy disproportion resulted in different growth strategies of the syntrophic partners. Compared to the butyrate-utilizing partner, the hydrogenotrophic methanogens compensated their lower biomass yield per mole of electrons transferred with a 2-fold higher biomass-specific electron transfer rate. Apart from these thermodynamic control mechanisms, experiments revealed a ten times lower hydrogen inhibition constant on butyrate conversion than proposed by the Anaerobic Digestion Model No. 1, suggesting a much stronger inhibitory effect of hydrogen on anaerobic butyrate conversion. At hydrogen partial pressures exceeding 40 Pa and at bicarbonate limited conditions, a shift from methanogenesis to reduced product formation was observed which indicates an important role of the hydrogen partial pressure in redirecting electron fluxes towards reduced products such as butanol. The findings of this study demonstrate that a careful consideration of thermodynamics and kinetics is required to advance our current understanding of flux regulation in energy-limited syntrophic ecosystems.

  19. From thermodynamics to the solutions in gravity theory

    International Nuclear Information System (INIS)

    Zhang, Hongsheng; Li, Xin-Zhou

    2014-01-01

    In a recent work, we present a new point of view to the relation of gravity and thermodynamics, in which we derive the Schwarzschild solution through thermodynamic considerations by the aid of the Misner–Sharp mass in an adiabatic system. In this Letter we continue to investigate the relation between gravity and thermodynamics for obtaining solutions via thermodynamics. We generalize our studies on gravi-thermodynamics in Einstein gravity to modified gravity theories. By using the first law with the assumption that the Misner–Sharp mass is the mass for an adiabatic system, we reproduce the Boulware–Deser–Cai solution in Gauss–Bonnet gravity. Using this gravi-thermodynamic thought, we obtain a NEW class of solution in F(R) gravity in an n-dimensional (n≥3) spacetime which permits three-type (n−2)-dimensional maximally symmetric subspace, as an extension of our recent three-dimensional black hole solution, and four-dimensional Clifton–Barrow solution in F(R) gravity

  20. From thermodynamics to the solutions in gravity theory

    Directory of Open Access Journals (Sweden)

    Hongsheng Zhang

    2014-10-01

    Full Text Available In a recent work, we present a new point of view to the relation of gravity and thermodynamics, in which we derive the Schwarzschild solution through thermodynamic considerations by the aid of the Misner–Sharp mass in an adiabatic system. In this Letter we continue to investigate the relation between gravity and thermodynamics for obtaining solutions via thermodynamics. We generalize our studies on gravi-thermodynamics in Einstein gravity to modified gravity theories. By using the first law with the assumption that the Misner–Sharp mass is the mass for an adiabatic system, we reproduce the Boulware–Deser–Cai solution in Gauss–Bonnet gravity. Using this gravi-thermodynamic thought, we obtain a NEW class of solution in F(R gravity in an n-dimensional (n≥3 spacetime which permits three-type (n−2-dimensional maximally symmetric subspace, as an extension of our recent three-dimensional black hole solution, and four-dimensional Clifton–Barrow solution in F(R gravity.

  1. Prospective cohort study showing persistent HSV-2 shedding in women with genital herpes 2 years after acquisition.

    Science.gov (United States)

    Ramchandani, Meena; Selke, Stacy; Magaret, Amalia; Barnum, Gail; Huang, Meei-Li Wu; Corey, Lawrence; Wald, Anna

    2017-11-25

    Herpes simplex virus type 2 (HSV-2) is a prevalent infection with great variability in clinical and virological manifestations among individuals. This prospective cohort study aims to evaluate the natural history of HSV-2 reactivation in the genital area in the same group of women over time. Eighteen immunocompetent HSV-2 seropositive women were evaluated for viral shedding for 70 consecutive days within a median of 8 months (range 1-24 months) of HSV-2 acquisition and again approximately 2.5 years later from the original study. Participants obtained daily swabs of genital secretions for HSV PCR and recorded genital symptoms. The viral shedding rate was 29% during the initial study and 19% in the follow-up study (32% reduction, P=0.019). Subclinical shedding rate also decreased from 24% to 13% (37% reduction, P=0.032), as did the rate of days with genital lesions from 22% to 15% (33% reduction, P=0.24). The mean copy number during viral shedding remained unchanged over time at 4.8 log 10 c/mL (SD=2.0 and 1.6 during each study, respectively, P=0.33). Women with high viral shedding rates in the past were likely to continue to have high shedding rates (r=0.63, P=0.005). Despite some reduction, high viral shedding rates persist in women with genital HSV-2 greater than 2 years after acquisition. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Afterglow Observations Shed New Light on the Nature of X-ray Flashes

    Energy Technology Data Exchange (ETDEWEB)

    Granot, J

    2005-02-17

    X-ray flashes (XRFs) and X-ray rich gamma-ray bursts (XRGRBs) share many observational characteristics with long duration ({approx}> 2 s) GRBs, but the reason for which the spectral energy distribution of their prompt emission peaks at lower photon energies, E{sub p}, is still a subject of debate. Although many different models have been invoked in order to explain the lower values of E{sub p}, their implications for the afterglow emission were not considered in most cases, mainly because observations of XRF afterglows have become available only recently. Here we examine the predictions of the various XRF models for the afterglow emission, and test them against the observations of XRF 030723 and XRGRB 041006, the events with the best monitored afterglow light curves in their respective class. We show that most existing XRF models are hard to reconcile with the observed afterglow light curves, which are very flat at early times. Such light curves are, however, naturally produced by a roughly uniform jet with relatively sharp edges that is viewed off-axis (i.e. from outside of the jet aperture). This type of model self consistently accommodates both the observed prompt emission and the afterglow light curves of XRGRB 041006 and XRF 030723, implying viewing angles {theta}{sub obs} from the jet axis of ({theta}{sub obs}-{theta}{sub 0}) {approx} 0.15 {theta}{sub 0} and ({theta}{sub obs}-{theta}{sub 0}) {approx} {theta}{sub 0}, respectively, where {theta}{sub 0} {approx} 3{sup o} is the half-opening angle of the jet. This suggests that GRBs, XRGRBs and XRFs are intrinsically similar relativistic jets viewed from different angles. It is then natural to identify GRBs with {gamma}({theta}{sub obs} - {theta}{sub 0}) {approx}< 1, XRGRBs with 1 {approx}< ({theta}{sub obs} - {theta}{sub 0}) {approx}< a few, and XRFs with {gamma}({theta}{sub obs} - {theta}{sub 0}) {approx}> a few, where {gamma} is the Lorentz factor of the outflow near the edge of the jet from which most of the

  3. Simulating metabolism with statistical thermodynamics.

    Science.gov (United States)

    Cannon, William R

    2014-01-01

    New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed.

  4. Thermodynamic stability and kinetic dissolution of perovskite in natural waters

    International Nuclear Information System (INIS)

    Nesbitt, H.W.; Bancroft, G.M.; Fyfe, W.S.; Karkhanis, S.; Melling, P.; Nishijima, A.

    1981-01-01

    Ringwood and coworkers have recently proposed using titanates and zirconates as hosts for nuclear waste in the Synroc B process. Three minerals are used as hosts: perovskite (CaTiO 3 ), Ba-hollandite (BaAl 2 Ti 6 O 16 ), and zirconolite (CaZrTi 2 O 7 ). The Synroc philosophy relies heavily on geological and geochemical observations in selecting stable host minerals. Although it has been recognized that the Synroc minerals are not thermodynamically compatible with siliceous rocks, the minerals are considered to be thermodynamically stable in the presence of water, and it has been reported that these minerals are kinetically stable under high-temperature (up to 900 0 C) hydrothermal conditions. Detailed thermodynamic calculations and leach tests have been performed which demonstrate: first, that perovskite is thermodynamically unstable in all known natural waters; and second, that pervoskite leaches at a significant rate even at 100 0 C. Hydrothermal leach tests have been made on natural and synthetic perovskite and perovskite analogues between 100 0 C and 300 0 C. Weight losses and solution concentrations were monitored. The results reported previously in the literature also show that perovskite is kinetically unstable in the presence of common silicates. Our results show that perovskite may be no more stable than siliceous glasses, such as rhyolite, which have been studied previously. Geologic evidence from common alkaline rocks also indicates that hollandite and zirconolite probably will not survive in common rock matrices

  5. Avian bornavirus in free-ranging waterfowl: prevalence of antibodies and cloacal shedding of viral RNA.

    Science.gov (United States)

    Delnatte, Pauline; Nagy, Éva; Ojkic, Davor; Leishman, David; Crawshaw, Graham; Elias, Kyle; Smith, Dale A

    2014-07-01

    We surveyed free-ranging Canada Geese (Branta canadensis), Trumpeter Swans (Cygnus buccinator), Mute Swans (Cygnus olor), and Mallards (Anas platyrhynchos) to estimate the prevalence of antibodies to avian bornavirus (ABV) and of cloacal shedding of ABV RNA in southern Ontario, Canada. Blood samples and cloacal swabs were collected from 206 free-ranging Canada Geese, 135 Trumpeter Swans, 75 Mute Swans, and 208 Mallards at 10 main capture sites between October 2010 and May 2012. Sera were assessed for antibodies against ABV by enzyme-linked immunosorbent assay and swabs were evaluated for ABV RNA using real-time reverse-transcription PCR. Serum antibodies were detected in birds from all four species and at each sampling site. Thirteen percent of the geese caught on the Toronto Zoo site shed ABV RNA in feces compared with 0% in geese sampled at three other locations. The proportions of shedders among Mute Swans, Trumpeter Swans, and Mallards were 9%, 0%, and 0%, respectively. Birds that were shedding viral RNA were more likely to have antibodies against ABV and to have higher antibody levels than those that were not, although many birds with antibodies were not shedding. We confirmed that exposure to, or infection with, ABV is widespread in asymptomatic free-ranging waterfowl in Canada; however, the correlation between cloacal shedding, presence of antibodies, and presence of disease is not fully understood.

  6. Effect of perforation on flow past a conic cylinder at Re = 100: vortex-shedding pattern and force history

    Science.gov (United States)

    Lin, L. M.; Zhong, X. F.; Wu, Y. X.

    2017-09-01

    The flow past a circular-section cylinder with a conic shroud perforated with four holes at the peak was simulated numerically at Re=100 , considering two factors, viz. the angle of attack and the diameter of the holes. The effects of the perforated conic shroud on the vortex shedding pattern in the near wake was mainly investigated, as well as the time history of the drag and lift forces. In the investigated parameter space, three flow regimes were generally identified, corresponding to weak, moderate, and strong disturbance effects. In regime I, the wake can mainly be described by alternately shedding Kármán or Kármán-like vortices. In regime II, the spanwise vortices are obviously disturbed along the span due to the appearance of additional vorticity components and their interactions with the spanwise vortices, but still shed in synchronization along the spanwise direction. In regime III, the typical Kármán vortices partially or totally disappear, and some new vortex shedding patterns appear, such as Ω -type, obliquely shedding, and crossed spanwise vortices with opposite sign. Corresponding to these complex vortex shedding patterns in the near wake, the fluid forces no longer oscillate regularly at a single vortex shedding frequency, but rather with a lower modulation frequency and multiple amplitudes. An overview of these flow regimes is presented.

  7. Thermodynamic behaviour of ruthenium at high temperatures

    International Nuclear Information System (INIS)

    Garisto, F.

    1988-01-01

    Thermodynamic equilibrium calculations are used to determine the chemical speciation of ruthenium under postulated reactor accident conditions. The speciation of ruthenium is determined for various values of temperature, pressure, oxygen partial pressure and ruthenium concentration. The importance of these variables, in particular the oxygen partial pressure, in determining the volatility of ruthenium is clearly demonstrated in this report. Reliable thermodynamic data are required to determine the behaviour of ruthenium using equilibrium calculations. Therefore, it was necessary to compile a thermodynamic database for the ruthenium species that can be formed under reactor accident conditions. The origin of the thermodynamic data for the ruthenium species included in our calculations is discussed in detail in Appendix A. 23 refs

  8. Thermodynamic properties of some gallium-based binary alloys

    International Nuclear Information System (INIS)

    Awe, O.E.; Odusote, Y.A.; Akinlade, O.; Hussain, L.A.

    2008-01-01

    We have studied the concentration dependence of the free energy of mixing, concentration-concentration fluctuations in the long-wavelength limit, the chemical short-range order parameter, the enthalpy and entropy of mixing of Ga-Zn, Ga-Mg and Al-Ga binary alloys at different temperatures using a quasi-chemical approximation for compound forming binary alloys and that for simple regular alloys. From the study of the thermodynamic quantities, we observed that thermodynamic properties of Ga-Zn and Al-Ga exhibit positive deviations from Raoultian behaviour, while Ga-Mg exhibits negative deviation. Hence, this study reveals that both Ga-Zn and Al-Ga are segregating systems, while chemical order exists in Ga-Mg alloy in the whole concentration range. Furthermore, our investigation indicate that Al-Ga binary alloy have a tendency to exhibit ideal mixture behaviour in the concentration range 0≤c Al ≤0.30 and 0.7≤c Al ≤1

  9. Thermodynamic and kinetic characterization of hydroxyethylamine β-secretase-1 inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Kalyani; Regnstrom, Karin; Morishige, Winse; Barbour, Robin; Probst, Gary; Xu, Ying-Zi; Artis, Dean R.; Yao, Nanhua; Beroza, Paul; Bova, Michael P., E-mail: mpbova2001@yahoo.com

    2013-11-15

    Highlights: •Kinetic and thermodynamic characterization of 10 hydroxyethylamine BACE-1 inhibitors. •Equilibrium binding of inhibitors was enthalpy driven for BACE-1. •Negative entropy of binding was observed towards BACE-1, but not Cathepsin-D. •Structural analysis demonstrates ligand binding induces a major conformational change. •Structural analysis and SPR analysis corroborate induced fit and negative entropy of binding. -- Abstract: Alzheimer’s disease (AD) is a devastating neurodegenerative disease affecting millions of people. β-Secretase-1 (BACE-1), an enzyme involved in the processing of the amyloid precursor protein (APP) to form Aβ, is a well validated target for AD. Herein, the authors characterize 10 randomly selected hydroxyethylamine (HEA) BACE-1 inhibitors in terms of their association and dissociation rate constants and thermodynamics of binding using surface plasmon resonance (SPR). Rate constants of association (k{sub a}) measured at 25 °C ranged from a low of 2.42 × 10{sup 4} M{sup −1} s{sup −1} to the highest value of 8.3 × 10{sup 5} M{sup −1} s{sup −1}. Rate constants of dissociation (k{sub d}) ranged from 1.09 × 10{sup −4} s{sup −1} (corresponding to a residence time of close to three hours), to the fastest of 0.028 s{sup −1}. Three compounds were selected for further thermodynamic analysis where it was shown that equilibrium binding was enthalpy driven while unfavorable entropy of binding was observed. Structural analysis revealed that upon ligand binding, the BACE-1flap folds down over the bound ligand causing an induced fit. The maximal difference between alpha carbon positions in the open and closed conformations of the flap was over 5 Å. Thus the negative entropy of binding determined using SPR analysis was consistent with an induced fit observed by structural analysis.

  10. Binding thermodynamics discriminates fragments from druglike compounds: a thermodynamic description of fragment-based drug discovery.

    Science.gov (United States)

    Williams, Glyn; Ferenczy, György G; Ulander, Johan; Keserű, György M

    2017-04-01

    Small is beautiful - reducing the size and complexity of chemical starting points for drug design allows better sampling of chemical space, reveals the most energetically important interactions within protein-binding sites and can lead to improvements in the physicochemical properties of the final drug. The impact of fragment-based drug discovery (FBDD) on recent drug discovery projects and our improved knowledge of the structural and thermodynamic details of ligand binding has prompted us to explore the relationships between ligand-binding thermodynamics and FBDD. Information on binding thermodynamics can give insights into the contributions to protein-ligand interactions and could therefore be used to prioritise compounds with a high degree of specificity in forming key interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Understanding the edge effect in wetting: a thermodynamic approach.

    Science.gov (United States)

    Fang, Guoping; Amirfazli, A

    2012-06-26

    Edge effect is known to hinder spreading of a sessile drop. However, the underlying thermodynamic mechanisms responsible for the edge effect still is not well-understood. In this study, a free energy model has been developed to investigate the energetic state of drops on a single pillar (from upright frustum to inverted frustum geometries). An analysis of drop free energy levels before and after crossing the edge allows us to understand the thermodynamic origin of the edge effect. In particular, four wetting cases for a drop on a single pillar with different edge angles have been determined by understanding the characteristics of FE plots. A wetting map describing the four wetting cases is given in terms of edge angle and intrinsic contact angle. The results show that the free energy barrier observed near the edge plays an important role in determining the drop states, i.e., (1) stable or metastable drop states at the pillar's edge, and (2) drop collapse by liquid spilling over the edge completely or staying at an intermediate sidewall position of the pillar. This thermodynamic model presents an energetic framework to describe the functioning of the so-called "re-entrant" structures. Results show good consistency with the literature and expand the current understanding of Gibbs' inequality condition.

  12. Duration of growth depression and pathogen shedding in experimentally reproduced poult enteritis syndrome.

    Science.gov (United States)

    Jindal, Naresh; Patnayak, Devi P; Ziegler, Andre F; Lago, Alfonso; Goyal, Sagar M

    2009-12-01

    An experimental study was conducted to determine the duration of growth depression and virus shedding in turkey poults after oral inoculation with intestinal contents from birds affected with poult enteritis syndrome (PES). Poults at day 14 of age were divided into four groups (groups A, B, C, and D) of 40 poults each and inoculated orally with unfiltered supernatant, filtered supernatant, sediment suspended in phosphate-buffered saline (PBS), or PBS alone (control), respectively. The poults were observed daily for clinical signs, and their growth response, pathology, and pathogen shedding were examined at 10, 20, 30, 40, and 50 days postinoculation (DPI). Body weights of eight poults in each group were recorded at each of these intervals followed by euthanasia. Dullness, depression, and diarrhea were observed in birds inoculated with supernatant or sediment suspension. All three treatments significantly reduced body weight gain of poults compared with the control group; average weight loss was 14%. Gross pathologic changes consisted of pale distended intestines with watery contents and distended ceca with frothy and watery contents. Astrovirus and rotavirus were detected in the inoculum by reverse transcription (RT)-PCR, whereas Salmonella was identified on bacterial isolation. Both viruses were detected in treated poults by RT-PCR for up to 10 and 40 DPI, respectively. Of the three treatments, sediment suspension caused maximal decrease in weight gain as well as greatest pathologic lesions followed by unfiltered supernatant and filtered supernatant. These findings suggest a role for bacteria in increasing the severity of PES. Lower weight gain in treated poults (compared with controls) at 9 wk of age also indicates that PES-affected poults may not reach normal weight at marketing, leading to economic losses for the producer.

  13. Modern thermodynamics. Based on the extended Carnot theorem

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jitao [Fudan Univ., Shanghai (China). Microelectronics Dept.

    2011-07-01

    ''Modern Thermodynamics- Based on the Extended Carnot Theorem'' provides comprehensive definitions and mathematical expressions of both classical and modern thermodynamics. The goal is to develop the fundamental theory on an extended Carnot theorem without incorporating any extraneous assumptions. In particular, it offers a fundamental thermodynamic and calculational methodology for the synthesis of low-pressure diamonds. It also discusses many ''abnormal phenomena'', such as spiral reactions, cyclic reactions, chemical oscillations, low-pressure carat-size diamond growth, biological systems, and more. The book is intended for chemists and physicists working in thermodynamics, chemical thermodynamics, phase diagrams, biochemistry and complex systems, as well as graduate students in these fields. Jitao Wang is a professor emeritus at Fudan University, Shanghai, China. (orig.)

  14. Thermodynamic properties of uranium--mercury system

    International Nuclear Information System (INIS)

    Lee, T.S.

    1979-01-01

    The EMF values in the fused salt cells of the type U(α)/KCl--LiCl--BaCl 2 eutectic, UCl 3 /U--Hg alloy, for the different two-phase alloys in the uranium--mercury system have been measured and the thermodynamic properties of this system have been calculated. These calculated values are in good agreement with values based on mercury vapor pressure measurements made by previous investigators. The inconsistency of the thermodynamic properties with the phase diagram determined by Frost are also confirmed. A tentative phase diagram based on the thermodynamic properties measured in this work was constructed

  15. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part II: The Laws of Thermodynamics.

    Science.gov (United States)

    Smith, Brent

    2002-01-01

    Describes the laws of thermodynamics as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of ideal gas. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (YDS)

  16. A transient thermodynamic model for track formation in amorphous semi-conductors: a possible mechanism

    International Nuclear Information System (INIS)

    Dufour, C.; Toulemonde, M.; Paumier, E.; Lesellier de Chezelles, B.; Delignon, V.

    1991-01-01

    Latent tracks have been observed in amorphous semi-conductors after heavy ion irradiation in the electronic stopping power regime. A transient thermodynamic model is developed including energy diffusion on the electron gas and on the atomic lattice and energy exchange between these two systems. A set of two non linear differential equations is solved numerically in cylindrical geometry in order to predict the radii of the latent tracks observed in amorphous germanium and silicon. A good agreement is obtained for the two materials using the same set of input parameters for the energy diffusion on the electronic system and the same coupling constant for the energy exchange between electron and lattice atoms despite the large differences in the macroscopic lattice thermodynamical parameters of the two materials

  17. Thermodynamics of manganese oxides: Sodium, potassium, and calcium birnessite and cryptomelane

    Science.gov (United States)

    Birkner, Nancy; Navrotsky, Alexandra

    2017-01-01

    Manganese oxides with layer and tunnel structures occur widely in nature and inspire technological applications. Having variable compositions, these structures often are found as small particles (nanophases). This study explores, using experimental thermochemistry, the role of composition, oxidation state, structure, and surface energy in the their thermodynamic stability. The measured surface energies of cryptomelane, sodium birnessite, potassium birnessite and calcium birnessite are all significantly lower than those of binary manganese oxides (Mn3O4, Mn2O3, and MnO2), consistent with added stabilization of the layer and tunnel structures at the nanoscale. Surface energies generally decrease with decreasing average manganese oxidation state. A stabilizing enthalpy contribution arises from increasing counter-cation content. The formation of cryptomelane from birnessite in contact with aqueous solution is favored by the removal of ions from the layered phase. At large surface area, surface-energy differences make cryptomelane formation thermodynamically less favorable than birnessite formation. In contrast, at small to moderate surface areas, bulk thermodynamics and the energetics of the aqueous phase drive cryptomelane formation from birnessite, perhaps aided by oxidation-state differences. Transformation among birnessite phases of increasing surface area favors compositions with lower surface energy. These quantitative thermodynamic findings explain and support qualitative observations of phase-transformation patterns gathered from natural and synthetic manganese oxides. PMID:28130549

  18. Warming to ecocide a thermodynamic diagnosis

    CERN Document Server

    Sangster, Alan J

    2011-01-01

    Suggests a route to avoiding runaway climate change by reinstating the greenhouse thermostat to its full operational capacity Addresses mankind's contribution to climate change from a thermodynamic perspective Describes and illustrates the power of thermodynamics to furnish insights into the thermal behaviour of complex physical systems

  19. Thermodynamic modeling of the Co-Fe-O system

    DEFF Research Database (Denmark)

    Zhang, Weiwei; Chen, Ming

    2013-01-01

    As a part of the research project aimed at developing a thermodynamic database of the La-Sr-Co-Fe-O system for applications in Solid Oxide Fuel Cells (SOFCs), the Co-Fe-O subsystem was thermodynamically re-modeled in the present work using the CALPHAD methodology. The solid phases were described...... using the Compound Energy Formalism (CEF) and the ionized liquid was modeled with the ionic two-sublattice model based on CEF. A set of self-consistent thermodynamic parameters was obtained eventually. Calculated phase diagrams and thermodynamic properties are presented and compared with experimental...

  20. Non-Equilibrium Thermodynamics in Multiphase Flows

    CERN Document Server

    Mauri, Roberto

    2013-01-01

    Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...

  1. Simulated pressure denaturation thermodynamics of ubiquitin.

    Science.gov (United States)

    Ploetz, Elizabeth A; Smith, Paul E

    2017-12-01

    Simulations of protein thermodynamics are generally difficult to perform and provide limited information. It is desirable to increase the degree of detail provided by simulation and thereby the potential insight into the thermodynamic properties of proteins. In this study, we outline how to analyze simulation trajectories to decompose conformation-specific, parameter free, thermodynamically defined protein volumes into residue-based contributions. The total volumes are obtained using established methods from Fluctuation Solution Theory, while the volume decomposition is new and is performed using a simple proximity method. Native and fully extended ubiquitin are used as the test conformations. Changes in the protein volumes are then followed as a function of pressure, allowing for conformation-specific protein compressibility values to also be obtained. Residue volume and compressibility values indicate significant contributions to protein denaturation thermodynamics from nonpolar and coil residues, together with a general negative compressibility exhibited by acidic residues. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Vortex shedding induced by a solitary wave propagating over a submerged vertical plate

    International Nuclear Information System (INIS)

    Lin Chang; Ho, T.-C.; Chang, S.-C.; Hsieh, S.-C.; Chang, K.-A.

    2005-01-01

    Experimental study was conducted on the vortex shedding process induced by the interaction between a solitary wave and a submerged vertical plate. Particle image velocimetry (PIV) was used for quantitative velocity measurement while a particle tracing technique was used for qualitative flow visualization. Vortices are generated at the tip of each side of the plate. The largest vortices at each side of the plate eventually grow to the size of the water depth. Although the fluid motion under the solitary wave is only translatory, vortices are shed in both the upstream and downstream directions due to the interaction of the generated vortices as well as the vortices with the plate and the bottom. The process can be divided into four phases: the formation of a separated shear layer, the generation and shedding of vortices, the formation of a vertical jet, and the impingement of the jet onto the free surface. Similarity velocity profiles were found both in the separated shear layer and in the vertical jet

  3. A garment for use in the operating theatre: the effect upon bacterial shedding.

    Science.gov (United States)

    Dankert, J; Zijlstra, J B; Lubberding, H

    1979-02-01

    In operating theatres the air is mainly contaminated with bacteria shed from the human skin. The emission of bacteria can be prevented by wearing clothing of impervious material, while normal cotton clothing does not decrease the shedding of bacteria. In this study shedding of viable bacteria from 20 test-persons wearing an operating theatre suit, composed of 65% polyester and 35% cotton (Diolen), was investigated in a test-chamber and compared with that when normal clothing was worn. The use of this operating-theatre suit resulted in a significant reduction (50--75%) in the number of bacteria-carrying particles in the air of the test-chamber and in an operating room when everyone present wore this suit. A combination of the suit with knee-high boots showed a further reduction in the dispersal of colony forming units. The dispersion from female subjects wearing an operating-theatre frock was significantly higher than when wearing an operating-theatre suit.

  4. Bioengineering thermodynamics of biological cells.

    Science.gov (United States)

    Lucia, Umberto

    2015-12-01

    Cells are open complex thermodynamic systems. They can be also regarded as complex engines that execute a series of chemical reactions. Energy transformations, thermo-electro-chemical processes and transports phenomena can occur across the cells membranes. Moreover, cells can also actively modify their behaviours in relation to changes in their environment. Different thermo-electro-biochemical behaviours occur between health and disease states. But, all the living systems waste heat, which is no more than the result of their internal irreversibility. This heat is dissipated into the environment. But, this wasted heat represent also a sort of information, which outflows from the cell toward its environment, completely accessible to any observer. The analysis of irreversibility related to this wasted heat can represent a new approach to study the behaviour of the cells themselves and to control their behaviours. So, this approach allows us to consider the living systems as black boxes and analyze only the inflows and outflows and their changes in relation to the modification of the environment. Therefore, information on the systems can be obtained by analyzing the changes in the cell heat wasted in relation to external perturbations. The bioengineering thermodynamics bases are summarized and used to analyse possible controls of the calls behaviours based on the control of the ions fluxes across the cells membranes.

  5. Current Concepts for Genital Herpes Simplex Virus Infection: Diagnostics and Pathogenesis of Genital Tract Shedding

    Science.gov (United States)

    Corey, Lawrence

    2015-01-01

    SUMMARY Herpes simplex virus 2 (HSV-2) is a DNA virus that is efficiently transmitted through intimate genital tract contact and causes persistent infection that cannot be eliminated. HSV-2 may cause frequent, symptomatic self-limited genital ulcers, but in most persons infection is subclinical. However, recent studies have demonstrated that the virus is frequently shed from genital surfaces even in the absence of signs or symptoms of clinical disease and that the virus can be transmitted during these periods of shedding. Furthermore, HSV-2 shedding is detected throughout the genital tract and may be associated with genital tract inflammation, which likely contributes to increased risk of HIV acquisition. This review focuses on HSV diagnostics, as well as what we have learned about the importance of frequent genital HSV shedding for (i) HSV transmission and (ii) genital tract inflammation, as well as (iii) the impact of HSV-2 infection on HIV acquisition and transmission. We conclude with discussion of future areas of research to push the field forward. PMID:26561565

  6. Current Concepts for Genital Herpes Simplex Virus Infection: Diagnostics and Pathogenesis of Genital Tract Shedding.

    Science.gov (United States)

    Johnston, Christine; Corey, Lawrence

    2016-01-01

    Herpes simplex virus 2 (HSV-2) is a DNA virus that is efficiently transmitted through intimate genital tract contact and causes persistent infection that cannot be eliminated. HSV-2 may cause frequent, symptomatic self-limited genital ulcers, but in most persons infection is subclinical. However, recent studies have demonstrated that the virus is frequently shed from genital surfaces even in the absence of signs or symptoms of clinical disease and that the virus can be transmitted during these periods of shedding. Furthermore, HSV-2 shedding is detected throughout the genital tract and may be associated with genital tract inflammation, which likely contributes to increased risk of HIV acquisition. This review focuses on HSV diagnostics, as well as what we have learned about the importance of frequent genital HSV shedding for (i) HSV transmission and (ii) genital tract inflammation, as well as (iii) the impact of HSV-2 infection on HIV acquisition and transmission. We conclude with discussion of future areas of research to push the field forward. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Speeds of Propagation in Classical and Relativistic Extended Thermodynamics

    Directory of Open Access Journals (Sweden)

    Müller Ingo

    1999-01-01

    Full Text Available The Navier-Stokes-Fourier theory of viscous, heat-conducting fluids provides parabolic equations and thus predicts infinite pulse speeds. Naturally this feature has disqualified the theory for relativistic thermodynamics which must insist on finite speeds and, moreover, on speeds smaller than $c$. The attempts at a remedy have proved heuristically important for a new systematic type of thermodynamics: Extended thermodynamics. That new theory has symmetric hyperbolic field equations and thus it provides finite pulse speeds. Extended thermodynamics is a whole hierarchy of theories with an increasing number of fields when gradients and rates of thermodynamic processes become steeper and faster. The first stage in this hierarchy is the 14-field theory which may already be a useful tool for the relativist in many applications. The 14 fields -- and further fields -- are conveniently chosen from the moments of the kinetic theory of gases. The hierarchy is complete only when the number of fields tends to infinity. In that case the pulse speed of non-relativistic extended thermodynamics tends to infinity while the pulse speed of relativistic extended thermodynamics tends to $c$, the speed of light. In extended thermodynamics symmetric hyperbolicity -- and finite speeds -- are implied by the concavity of the entropy density. This is still true in relativistic thermodynamics for a privileged entropy density which is the entropy density of the rest frame for non-degenerate gases.

  8. Phase equilibria and thermodynamics of the Fe–Al–C system: Critical evaluation, experiment and thermodynamic optimization

    International Nuclear Information System (INIS)

    Phan, Anh Thu; Paek, Min-Kyu; Kang, Youn-Bae

    2014-01-01

    In order to provide an efficient tool to design alloy chemistry and processing conditions for high-strength, lightweight steel, an investigation of the Fe–Al–C ternary system was carried out by experimental phase diagram measurement and a CALPHAD thermodynamic analysis. Discrepancies between previously available experimental results and thermodynamic calculations were identified. The Fe–Al sub-binary system was re-optimized in order to obtain an accurate description of the liquid phase, while Gibbs energies of solid phases were mainly taken from a previous thermodynamic modeling. Phase equilibria among face-centered cubic (fcc)/body-centered cubic (bcc)/graphite/κ-carbide/liquid phases in the Fe–Al–C system in the temperature range from 1000 to 1400 °C were obtained by chemical equilibration followed by quenching, and subsequent composition analysis using electron probe microanalysis/inductively coupled plasma spectroscopy. By merging the revised Fe–Al binary description with existing Fe–C and Al–C binary descriptions, a complete thermodynamic description of the Fe–Al–C system was obtained in the present study. The modified quasi-chemical model in the pair approximation was used to model the liquid phase, while solid solutions were modeled using compound energy formalism. A2/B2 order/disorder transition in the bcc phase was taken into account. Compared with previously known experiments/thermodynamic modeling, a better agreement was obtained in the present study, regarding the stable region of fcc and the solidification thermal peak of a ternary alloy near the liquidus temperature. The obtained thermodynamic description also reproduced various types of experimental data in the Fe–Al–C system such as isothermal sections, vertical sections, liquidus projection, etc. The solidification of various steel grades was predicted and discussed

  9. Statistical thermodynamics

    CERN Document Server

    Schrödinger, Erwin

    1952-01-01

    Nobel Laureate's brilliant attempt to develop a simple, unified standard method of dealing with all cases of statistical thermodynamics - classical, quantum, Bose-Einstein, Fermi-Dirac, and more.The work also includes discussions of Nernst theorem, Planck's oscillator, fluctuations, the n-particle problem, problem of radiation, much more.

  10. Some consideration on the thermodynamics of the universe

    International Nuclear Information System (INIS)

    Hoenl, H.

    1977-01-01

    It is shown that the thermodynamics of the universe display certain features that are foreign to classical thermodynamics, the discrepancy having its origin in the cosmic expansion of the universe. This is apparent, for example, in the outstanding fact that in the early stages of the universe (some 10 5 or 10 6 years after the Big Bang) the distribution of matter was essentially homogeneous and, owing to the extremely high density and temperature, was in thermodynamic equilibrium. However, in its present state, after the formation of the celestial bodies, (the inhomogeneous phase of the universe), it has moved far away from thermodynamic equilibrium. It is stated that to prove entropy conservation during the homogeneous phase of the universe, one only needs the most general thermodynamical-statistical principles. (U,K)

  11. Model of the thermodynamic properties and structure of the non-stoichiometric plutonium and cerium oxides

    International Nuclear Information System (INIS)

    Manes, L.; Mari, C.; Ray, I.

    1979-01-01

    The tetrahedral defect consisting of one oxygen vacancy bonded to two reduced cations - is an important concept, which, as shown in the present work, can explain both the thermodynamic properties and the structures of the phases of the PuO 2 -x and CeO 2 -x systems. Based on this concept a statistical thermodynamic model has been developed and this model is described along with some preliminary calculations. A relatively good agreement with experimental thermodynamic data was obtained in this calculation. Using the exclusion principle, defect complexes each containing one tetrahedral defect are derived and it is shown that a systematic packing of these gives a good description both of the non-stoichiometric and the ordered phases observed for these oxide systems. (orig.) [de

  12. Unified geometric description of black hole thermodynamics

    International Nuclear Information System (INIS)

    Alvarez, Jose L.; Quevedo, Hernando; Sanchez, Alberto

    2008-01-01

    In the space of thermodynamic equilibrium states we introduce a Legendre invariant metric which contains all the information about the thermodynamics of black holes. The curvature of this thermodynamic metric becomes singular at those points where, according to the analysis of the heat capacities, phase transitions occur. This result is valid for the Kerr-Newman black hole and all its special cases and, therefore, provides a unified description of black hole phase transitions in terms of curvature singularities.

  13. Quantum thermodynamics: a nonequilibrium Green's function approach.

    Science.gov (United States)

    Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael

    2015-02-27

    We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.

  14. Quantum thermodynamics of nanoscale steady states far from equilibrium

    Science.gov (United States)

    Taniguchi, Nobuhiko

    2018-04-01

    We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.

  15. A dynamical systems analysis of the kinematics of time-periodic vortex shedding past a circular cylinder

    Science.gov (United States)

    Ottino, Julio M.

    1991-01-01

    Computer flow simulation aided by dynamical systems analysis is used to investigate the kinematics of time-periodic vortex shedding past a two-dimensional circular cylinder in the context of the following general questions: (1) Is a dynamical systems viewpoint useful in the understanding of this and similar problems involving time-periodic shedding behind bluff bodies; and (2) Is it indeed possible, by adopting such a point of view, to complement previous analyses or to understand kinematical aspects of the vortex shedding process that somehow remained hidden in previous approaches. We argue that the answers to these questions are positive. Results are described.

  16. Thermodynamics in Gliomas: Interactions between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma

    Directory of Open Access Journals (Sweden)

    Alexandre Vallée

    2017-05-01

    Full Text Available Gliomas cells are the site of numerous metabolic and thermodynamics abnormalities with an increasing entropy rate which is characteristic of irreversible processes driven by changes in Gibbs energy, heat production, intracellular acidity, membrane potential gradient, and ionic conductance. We focus our review on the opposing interactions observed in glioma between the canonical WNT/beta-catenin pathway and PPAR gamma and their metabolic and thermodynamic implications. In gliomas, WNT/beta-catenin pathway is upregulated while PPAR gamma is downregulated. Upregulation of WNT/beta-catenin signaling induces changes in key metabolic enzyme that modify their thermodynamics behavior. This leads to activation pyruvate dehydrogenase kinase 1(PDK-1 and monocarboxylate lactate transporter 1 (MCT-1. Consequently, phosphorylation of PDK-1 inhibits pyruvate dehydrogenase complex (PDH. Thus, a large part of pyruvate cannot be converted into acetyl-CoA in mitochondria and in TCA (tricarboxylic acid cycle. This leads to aerobic glycolysis despite the availability of oxygen, named Warburg effect. Cytoplasmic pyruvate is, in major part, converted into lactate. The WNT/beta-catenin pathway induces also the transcription of genes involved in cell proliferation, cell invasiveness, nucleotide synthesis, tumor growth, and angiogenesis, such as c-Myc, cyclin D1, PDK. In addition, in gliomas cells, PPAR gamma is downregulated, leading to a decrease in insulin sensitivity and an increase in neuroinflammation. Moreover, PPAR gamma contributes to regulate some key circadian genes. Abnormalities in the regulation of circadian rhythms and dysregulation in circadian clock genes are observed in gliomas. Circadian rhythms are dissipative structures, which play a key role in far-from-equilibrium thermodynamics through their interactions with WNT/beta-catenin pathway and PPAR gamma. In gliomas, metabolism, thermodynamics, and circadian rhythms are tightly interrelated.

  17. Stochastic and Macroscopic Thermodynamics of Strongly Coupled Systems

    Directory of Open Access Journals (Sweden)

    Christopher Jarzynski

    2017-01-01

    Full Text Available We develop a thermodynamic framework that describes a classical system of interest S that is strongly coupled to its thermal environment E. Within this framework, seven key thermodynamic quantities—internal energy, entropy, volume, enthalpy, Gibbs free energy, heat, and work—are defined microscopically. These quantities obey thermodynamic relations including both the first and second law, and they satisfy nonequilibrium fluctuation theorems. We additionally impose a macroscopic consistency condition: When S is large, the quantities defined within our framework scale up to their macroscopic counterparts. By satisfying this condition, we demonstrate that a unifying framework can be developed, which encompasses both stochastic thermodynamics at one end, and macroscopic thermodynamics at the other. A central element in our approach is a thermodynamic definition of the volume of the system of interest, which converges to the usual geometric definition when S is large. We also sketch an alternative framework that satisfies the same consistency conditions. The dynamics of the system and environment are modeled using Hamilton’s equations in the full phase space.

  18. Thermodynamics

    International Nuclear Information System (INIS)

    Zanchini, E.

    1988-01-01

    The definition of energy, in thermodynamics, is dependent by starting operative definitions of the basic concepts of physics on which it rests, such as those of isolated systems, ambient of a system, separable system and set of separable states. Then the definition of energy is rigorously extended to open systems. The extension gives a clear physical meaning to the concept of energy difference between two states with arbitrary different compositions

  19. Molecular epidemiology of Avian Rotaviruses Group A and D shed by different bird species in Nigeria.

    Science.gov (United States)

    Pauly, Maude; Oni, Oluwole O; Sausy, Aurélie; Owoade, Ademola A; Adeyefa, Christopher A O; Muller, Claude P; Hübschen, Judith M; Snoeck, Chantal J

    2017-06-12

    Avian rotaviruses (RVs) cause gastrointestinal diseases of birds worldwide. However, prevalence, diversity, epidemiology and phylogeny of RVs remain largely under-investigated in Africa. Fecal samples from 349 birds (158 symptomatic, 107 asymptomatic and 84 birds without recorded health status) were screened by reverse transcription PCR to detect RV groups A and D (RVA and RVD). Partial gene sequences of VP4, VP6, VP7 and NSP4 for RVA, and of VP6 and VP7 for RVD were obtained and analyzed to infer phylogenetic relationship. Fisher's exact test and logistic regression were applied to identify factors potentially influencing virus shedding in chickens. A high prevalence of RVA (36.1%; 126/349) and RVD (31.8%; 111/349) shedding was revealed in birds. In chickens, RV shedding was age-dependent and highest RVD shedding rates were found in commercial farms. No negative health effect could be shown, and RVA and RVD shedding was significantly more likely in asymptomatic chickens: RVA/RVD were detected in 51.9/48.1% of the asymptomatic chickens, compared to 18.9/29.7% of the symptomatic chickens (p epidemiology, diversity and classification of avian RVA and RVD in Nigeria. We show that cross-species transmission of host permissive RV strains occurs when different bird species are mixed.

  20. Thermodynamic extremal principles for irreversible processes in materials science

    Czech Academy of Sciences Publication Activity Database

    Fischer, F. D.; Svoboda, Jiří; Petryk, H.

    2014-01-01

    Roč. 67, APR (2014), s. 1-20 ISSN 1359-6454 Institutional support: RVO:68081723 Keywords : Non- equilibrium * Thermodynamics * Entropy * Onsager's principle * Thermodynamic extremal principles Subject RIV: BJ - Thermodynamics Impact factor: 4.465, year: 2014