WorldWideScience

Sample records for thermodynamic cycle points

  1. Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Knudsen, Thomas; Larsen, Ulrik; Haglind, Fredrik

    2014-01-01

    The Kalina split-cycle is a thermodynamic process for converting thermal energy into electrical power. It uses an ammonia–water mixture as a working fluid (like a conventional Kalina cycle) and has a varying ammonia concentration during the pre-heating and evaporation steps. This second feature results in an improved match between the heat source and working fluid temperature profiles, decreasing the entropy generation in the heat recovery system. The present work compares the thermodynamic performance of this power cycle with the conventional Kalina process, and investigates the impact of varying boundary conditions by conducting an exergy analysis. The design parameters of each configuration were determined by performing a multi-variable optimisation. The results indicate that the Kalina split-cycle with reheat presents an exergetic efficiency by 2.8% points higher than a reference Kalina cycle with reheat, and by 4.3% points without reheat. The cycle efficiency varies by 14% points for a variation of the exhaust gas temperature of 100 °C, and by 1% point for a cold water temperature variation of 30 °C. This analysis also pinpoints the large irreversibilities in the low-pressure turbine and condenser, and indicates a reduction of the exergy destruction by about 23% in the heat recovery system compared to the baseline cycle. - Highlights: • The thermodynamic performance of the Kalina split-cycle is assessed. • The Kalina split-cycle is compared to the Kalina cycle, with and without reheat. • An exergy analysis is performed to evaluate its thermodynamic performance. • The impact of varying boundary conditions is investigated. • The Kalina split-cycle displays high exergetic efficiency for low- and medium-temperature applications

  2. A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles

    International Nuclear Information System (INIS)

    Yari, Mortaza; Mahmoudi, S.M.S.

    2011-01-01

    This paper presents an investigation on the utilization of waste heat from a gas turbine-modular helium reactor (GT-MHR) using different arrangements of organic Rankine cycles (ORCs) for power production. The considered organic Rankine cycles were: simple organic Rankine cycle (SORC), ORC with internal heat exchanger (HORC) and regenerative organic Rankine cycle (RORC). The performances of the combined cycles were studied from the point of view of first and second-laws of thermodynamics. Individual models were developed for each component and the effects of some important parameters such as compressor pressure ratio, turbine inlet temperature, and evaporator and environment temperatures on the efficiencies and on the exergy destruction rate were studied. Finally the combined cycles were optimized thermodynamically using the EES (Engineering Equation Solver) software. Based on the identical operating conditions for the GT-MHR cycle, a comparison between the three combined cycles and a simple GT-MHR cycle is also were made. This comparison was also carried out from the point of view of economics. The GT-MHR/SORC combined cycle proved to be the best among all the cycles from the point of view of both thermodynamics and economics. The efficiency of this cycle was about 10% higher than that of GT-MHR alone. (orig.)

  3. Pyroelectric Energy Harvesting: With Thermodynamic-Based Cycles

    OpenAIRE

    Saber Mohammadi; Akram Khodayari

    2012-01-01

    This work deals with energy harvesting from temperature variations using ferroelectric materials as a microgenerator. The previous researches show that direct pyroelectric energy harvesting is not effective, whereas thermodynamic-based cycles give higher energy. Also, at different temperatures some thermodynamic cycles exhibit different behaviours. In this paper pyroelectric energy harvesting using Lenoir and Ericsson thermodynamic cycles has been studied numerically and the two cycles were c...

  4. Detonation Jet Engine. Part 1--Thermodynamic Cycle

    Science.gov (United States)

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…

  5. Thermodynamic Analysis of a Supercritical Mercury Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jr, A S

    1969-04-15

    An heat engine is considered which employs supercritical mercury as the working fluid and a magnetohydrodynamic (MHD) generator for thermal to electrical energy conversion. The main thrust of the paper is power cycle thermodynamics, where constraints are imposed by utilizing a MHD generator operating between supercritical, electrically conducting states of the working fluid; and, pump work is accomplished with liquid mercury. The temperature range is approximately 300 to 2200 K and system pressure is > 1,500 atm. Equilibrium and transport properties are carefully considered since these are known to vary radically in the vicinity of the critical point, which is found near the supercritical states of interest. A maximum gross plant efficiency is 20% with a regenerator effectiveness of 90% and greater, a cycle pressure ratio of two, and with highly efficient pump and generator. Certain specified cycle irreversibilities and others such as heat losses and heat exchanger pressure drops, which are not accounted for explicitly, reduce the gross plant efficiency to a few per cent. Experimental efforts aimed at practical application of the power cycle are discouraged by the marginal thermodynamic performance predicted by this study, unless such applications are insensitive to gross cycle efficiency.

  6. Thermodynamic Analysis of a Supercritical Mercury Power Cycle

    International Nuclear Information System (INIS)

    Roberts, A.S. Jr.

    1969-04-01

    An heat engine is considered which employs supercritical mercury as the working fluid and a magnetohydrodynamic (MHD) generator for thermal to electrical energy conversion. The main thrust of the paper is power cycle thermodynamics, where constraints are imposed by utilizing a MHD generator operating between supercritical, electrically conducting states of the working fluid; and, pump work is accomplished with liquid mercury. The temperature range is approximately 300 to 2200 K and system pressure is > 1,500 atm. Equilibrium and transport properties are carefully considered since these are known to vary radically in the vicinity of the critical point, which is found near the supercritical states of interest. A maximum gross plant efficiency is 20% with a regenerator effectiveness of 90% and greater, a cycle pressure ratio of two, and with highly efficient pump and generator. Certain specified cycle irreversibilities and others such as heat losses and heat exchanger pressure drops, which are not accounted for explicitly, reduce the gross plant efficiency to a few per cent. Experimental efforts aimed at practical application of the power cycle are discouraged by the marginal thermodynamic performance predicted by this study, unless such applications are insensitive to gross cycle efficiency

  7. Thermodynamic cycles of adsorption desalination system

    International Nuclear Information System (INIS)

    Wu, Jun W.; Hu, Eric J.; Biggs, Mark J.

    2012-01-01

    Highlights: ► Thermodynamic cycles of adsorption desalination (AD) system have been identified all possible evaporator temperature scenarios. ► Temperature of evaporator determines the cycle. ► Higher evaporator temperature leads to higher water production if no cooling is required. -- Abstract: The potential to use waste heat to co-generate cooling and fresh water from saline water using adsorption on silica is attracting increasing attention. A variety of different thermodynamic cycles of such an adsorption desalination (AD) system arise as the temperature of the saline water evaporator is varied relative to temperature of the water used to cool the adsorbent as it adsorbs the evaporated water. In this paper, all these possible thermodynamic cycles are enumerated and analysed to determine their relative performances in terms of specific energy consumption and fresh water productivity.

  8. Minimization of the LCA impact of thermodynamic cycles using a combined simulation-optimization approach

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, Robert; Cortes, Daniel [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007 Tarragona (Spain); Guillen-Gosalbez, Gonzalo [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007 Tarragona (Spain); Jimenez, Laureano [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007 Tarragona (Spain); Boer, Dieter [Departament d' Enginyeria Mecanica, Escola Tecnica Superior d' Enginyeria, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007, Tarragona (Spain)

    2012-12-15

    This work presents a computational approach for the simultaneous minimization of the total cost and environmental impact of thermodynamic cycles. Our method combines process simulation, multi-objective optimization and life cycle assessment (LCA) within a unified framework that identifies in a systematic manner optimal design and operating conditions according to several economic and LCA impacts. Our approach takes advantages of the complementary strengths of process simulation (in which mass, energy balances and thermodynamic calculations are implemented in an easy manner) and rigorous deterministic optimization tools. We demonstrate the capabilities of this strategy by means of two case studies in which we address the design of a 10 MW Rankine cycle modeled in Aspen Hysys, and a 90 kW ammonia-water absorption cooling cycle implemented in Aspen Plus. Numerical results show that it is possible to achieve environmental and cost savings using our rigorous approach. - Highlights: Black-Right-Pointing-Pointer Novel framework for the optimal design of thermdoynamic cycles. Black-Right-Pointing-Pointer Combined use of simulation and optimization tools. Black-Right-Pointing-Pointer Optimal design and operating conditions according to several economic and LCA impacts. Black-Right-Pointing-Pointer Design of a 10MW Rankine cycle in Aspen Hysys, and a 90kW absorption cycle in Aspen Plus.

  9. Efficiency of an air-cooled thermodynamic cycle

    International Nuclear Information System (INIS)

    Bezborodov, Yu.A.; Bubnov, V.P.; Nesterenko, V.B.

    1979-01-01

    The application of air, nitrogen, helium and the chemically reacting N 2 O 4 reversible 2NO 2 reversible 2NO + O 2 system as working agents and coolants for a low capacity nuclear power plant is investigated. The above system due to its physico-chemical and thermo-physical properties allows both a gaseous cycle and a cycle with condensation. The analysis has shown that a thermodynamic air-cooled cycle with the dissociating nitrogen tetroxide in the temperature range from 500 to 600 deg C has an advantage over cycles with air and nitrogen. To identify the chemical reaction kinetics in the thermodynamic processes, thermodynamic calculations of the gas-liquid cycle with N 2 O 4 both with simple and intermediate heat regeneration at different pressures over hot side were performed. At gas pressures lower than 12 - 15 atm, the cycle with a simple regeneration is more effective, and at pressure increase, the cycle with an intermediate regeneration is preferable

  10. Closed power cycles thermodynamic fundamentals and applications

    CERN Document Server

    Invernizzi, Costante Mario

    2013-01-01

    With the growing attention to the exploitation of renewable energies and heat recovery from industrial processes, the traditional steam and gas cycles are showing themselves often inadequate. The inadequacy is due to the great assortment of the required sizes power and of the large kind of heat sources. Closed Power Cycles: Thermodynamic Fundamentals and Applications offers an organized discussion about the strong interaction between working fluids, the thermodynamic behavior of the cycle using them and the technological design aspects of the machines. A precise treatment of thermal engines op

  11. Quantum thermodynamic cycles and quantum heat engines. II.

    Science.gov (United States)

    Quan, H T

    2009-04-01

    We study the quantum-mechanical generalization of force or pressure, and then we extend the classical thermodynamic isobaric process to quantum-mechanical systems. Based on these efforts, we are able to study the quantum version of thermodynamic cycles that consist of quantum isobaric processes, such as the quantum Brayton cycle and quantum Diesel cycle. We also consider the implementation of the quantum Brayton cycle and quantum Diesel cycle with some model systems, such as single particle in a one-dimensional box and single-mode radiation field in a cavity. These studies lay the microscopic (quantum-mechanical) foundation for Szilard-Zurek single-molecule engine.

  12. Effect of irreversible processes on the thermodynamic performance of open-cycle desiccant cooling cycles

    International Nuclear Information System (INIS)

    La, Dong; Li, Yong; Dai, Yanjun; Ge, Tianshu; Wang, Ruzhu

    2013-01-01

    Highlights: ► Effects of irreversible processes on the performance of desiccant cooling cycle are identified. ► The exergy destructions involved are classified by the properties of the individual processes. ► Appropriate indexes for thermodynamic evaluation are proposed based on thermodynamic analyses. - Abstract: Thermodynamic analyses of desiccant cooling cycle usually focus on the overall cycle performance in previous study. In this paper, the effects of the individual irreversible processes in each component on thermodynamic performance are analyzed in detail. The objective of this paper is to reveal the elemental features of the individual components, and to show their effects on the thermodynamic performance of the whole cycle in a fundamental way. Appropriate indexes for thermodynamic evaluation are derived based on the first and second law analyses. A generalized model independent of the connection of components is developed. The results indicate that as the effectiveness of the desiccant wheel increases, the cycle performance is increased principally due to the significant reduction in exergy carried out by exhaust air. The corresponding exergy destruction coefficient of the cycle with moderate performance desiccant wheel is decreased greatly to 3.9%, which is more than 50% lower than that of the cycle with low performance desiccant wheel. The effect of the heat source is similar. As the temperature of the heat source increases from 60 °C to 90 °C, the percentage of exergy destruction raised by exhaust air increases sharply from 5.3% to 21.8%. High heat exchanger effectiveness improves the cycle performance mainly by lowering the irreversibility of the heat exchanger, using less regeneration heat and pre-cooling the process air effectively

  13. Dependence of cycle optimal configuration for closed gas turbines on thermodynamic properties of working fluids

    International Nuclear Information System (INIS)

    Andryushchenko, A.I.; Dubinin, A.B.; Krylov, E.E.

    1988-01-01

    The problem of choice of working fluids for NPP closed gas turbines (CGT) is discussed. Thermostable in the working temperature range, chemically inert relatively to structural materials, fire- and explosion - proof substances, radiation-resistant and having satisfactory neutron-physical characteristics are used as the working fluids. Final choice of a gas as a working fluid is exercised based on technical and economic comparison of different variants at optimum thermodynamic cycle and parameters for each gas. The character and degree of the effect of thermodynamic properties of gases on configuration of reference cycles of regenerative CGT are determined. It is established that efficiency and optimum parameters in nodal points of the reference cycle are specified by the degree of removing the compression processes from the critical point. Practical importance of the obtained results presupposes the possibility of rapid estimation of the efficiency of using a gas without multiparametric optimization

  14. A brief review study of various thermodynamic cycles for high temperature power generation systems

    International Nuclear Information System (INIS)

    Yu, Si-Cong; Chen, Lin; Zhao, Yan; Li, Hong-Xu; Zhang, Xin-Rong

    2015-01-01

    Highlights: • Various high temperature power generation cycles for are reviewed and analyzed. • The operating temperature is higher than 700 K for high temperature power systems. • Thermodynamic cycle model study and working fluid choices are discussed. • Characteristics and future developments of high temperature cycles are presented and compared. - Abstract: This paper presents a review of the previous studies and papers about various thermodynamic cycles working for high temperature power generation procedures, in these cycles the highest temperature is not lower than 700 K. Thermodynamic cycles that working for power generation are divided into two broad categories, thermodynamic cycle model study and working fluid analysis. Thermodynamic cycle contains the simple cycle model and the complex cycle model, emphasis has been given on the complex thermodynamic cycles due to their high thermal efficiencies. Working fluids used for high temperature thermodynamic cycles is a dense gas rather than a liquid. A suitable thermodynamic cycle is crucial for effectively power generation especially under the condition of high temperature. The main purpose is to find out the characteristics of various thermodynamic cycles when they are working in the high temperature region for power generation. As this study shows, combined cycles with both renewable and nonrenewable energies as the heat source can show good performance

  15. A combined thermodynamic cycle based on methanol dissociation for IC (internal combustion) engine exhaust heat recovery

    International Nuclear Information System (INIS)

    Fu, Jianqin; Liu, Jingping; Xu, Zhengxin; Ren, Chengqin; Deng, Banglin

    2013-01-01

    In this paper, a novel approach for exhaust heat recovery was proposed to improve IC (internal combustion) engine fuel efficiency and also to achieve the goal for direct usage of methanol as IC engine fuel. An open organic Rankine cycle system using methanol as working medium is coupled to IC engine exhaust pipe for exhaust heat recovery. In the bottom cycle, the working medium first undergoes dissociation and expansion processes, and is then directed back to IC engine as fuel. As the external bottom cycle and the IC engine main cycle are combined together, this scheme forms a combined thermodynamic cycle. Then, this concept was applied to a turbocharged engine, and the corresponding simulation models were built for both of the external bottom cycle and the IC engine main cycle. On this basis, the energy saving potential of this combined cycle was estimated by parametric analyses. Compared to the methanol vapor engine, IC engine in-cylinder efficiency has an increase of 1.4–2.1 percentage points under full load conditions, while the external bottom cycle can increase the fuel efficiency by 3.9–5.2 percentage points at the working pressure of 30 bar. The maximum improvement to the IC engine global fuel efficiency reaches 6.8 percentage points. - Highlights: • A combined thermodynamic cycle using methanol as working medium for IC engine exhaust heat recovery is proposed. • The external bottom cycle of exhaust heat recovery and IC engine working cycle are combined together. • IC engine fuel efficiency could be improved from both in-cylinder working cycle and external bottom cycle. • The maximum improvement to the IC engine global fuel efficiency reaches 6.8 percentage points at full load

  16. Finite time thermodynamics of power and refrigeration cycles

    CERN Document Server

    Kaushik, Shubhash C; Kumar, Pramod

    2017-01-01

    This book addresses the concept and applications of Finite Time Thermodynamics to various thermal energy conversion systems including heat engines, heat pumps, and refrigeration and air-conditioning systems. The book is the first of its kind, presenting detailed analytical formulations for the design and optimisation of various power producing and cooling cycles including but not limited to: • Vapour power cycles • Gas power cycles • Vapour compression cycles • Vapour absorption cycles • Rankine cycle coupled refrigeration systems Further, the book addresses the thermoeconomic analysis for the optimisation of thermal cycles, an important field of study in the present age and which is characterised by multi-objective optimization regarding energy, ecology, the environment and economics. Lastly, the book provides the readers with key techniques associated with Finite Time Thermodynamics, allowing them to understand the relevance of irreversibilitie s associated with real processes and the scientific r...

  17. Performance comparison of different thermodynamic cycles for an innovative central receiver solar power plant

    Science.gov (United States)

    Reyes-Belmonte, Miguel A.; Sebastián, Andrés; González-Aguilar, José; Romero, Manuel

    2017-06-01

    The potential of using different thermodynamic cycles coupled to a solar tower central receiver that uses a novel heat transfer fluid is analyzed. The new fluid, named as DPS, is a dense suspension of solid particles aerated through a tubular receiver used to convert concentrated solar energy into thermal power. This novel fluid allows reaching high temperatures at the solar receiver what opens a wide range of possibilities for power cycle selection. This work has been focused into the assessment of power plant performance using conventional, but optimized cycles but also novel thermodynamic concepts. Cases studied are ranging from subcritical steam Rankine cycle; open regenerative Brayton air configurations at medium and high temperature; combined cycle; closed regenerative Brayton helium scheme and closed recompression supercritical carbon dioxide Brayton cycle. Power cycle diagrams and working conditions for design point are compared amongst the studied cases for a common reference thermal power of 57 MWth reaching the central cavity receiver. It has been found that Brayton air cycle working at high temperature or using supercritical carbon dioxide are the most promising solutions in terms of efficiency conversion for the power block of future generation by means of concentrated solar power plants.

  18. Thermodynamic cycle calculations for a pumped gaseous core fission reactor

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Van Dam, H.

    1991-01-01

    Finite and 'infinitesimal' thermodynamic cycle calculations have been performed for a 'solid piston' model of a pumped Gaseous Core Fission Reactor with dissociating reactor gas, consisting of Uranium, Carbon and Fluorine ('UCF'). In the finite cycle calculations the influence has been investigated of several parameters on the thermodynamics of the system, especially on the attainable direct (nuclear to electrical) energy conversion efficiency. In order to facilitate the investigation of the influence of dissociation, a model gas, 'Modelium', was developed, which approximates, in a simplified, analytical way, the dissociation behaviour of the 'real' reactor gas. Comparison of the finite cycle calculation results with those of a so-called infinitesimal Otto cycle calculation leads to the conclusion that the conversion efficiency of a finite cycle can be predicted, without actually performing the finite cycle calculation, with reasonable accuracy, from the so-called 'infinitesimal efficiency factor', which is determined only by the thermodynamic properties of the reactor gas used. (author)

  19. A point of view on Otto cycle approach specific for an undergraduate thermodynamics course in CMU

    Science.gov (United States)

    Memet, F.; Preda, A.

    2015-11-01

    This paper refers to the description of the way in which can be presented to future marine engineers the analyzis of the performance of an Otto cycle, in a manner which is beyond the classic approach of the course of thermodynamics in Constanta Maritime University. The conventional course of thermodynamics is dealing with the topic of performance analysis of the cycle of the internal combustion engine with isochoric combustion for the situation in which the working medium is treated as such a perfect gas. This type of approach is viable only when are considered relatively small temperature differences. But this is the situation when specific heats are seen as constant. Instead, the practical experience has shown that small temperature differences are not viable, resulting the need for variable specific heat evaluation. The presentation bellow is available for the adiabatic exponent written as a liniar function depending on temperature. In the section of this paper dedicated to methods and materials, the situation in which the specific heat is taken as constant is not neglected, additionaly being given the algorithm for variable specific heat.For the both cases it is given the way in which it is assessed the work output. The calculus is based on the cycle shown in temperature- entropy diagram, in which are also indicated the irreversible adiabatic compression and expansion. The experience achieved after understanding this theory will allow to future professionals to deal successfully with the design practice of internal combustion engines.

  20. Ideal thermodynamic processes of oscillatory-flow regenerative engines will go to ideal stirling cycle?

    Science.gov (United States)

    Luo, Ercang

    2012-06-01

    This paper analyzes the thermodynamic cycle of oscillating-flow regenerative machines. Unlike the classical analysis of thermodynamic textbooks, the assumptions for pistons' movement limitations are not needed and only ideal flowing and heat transfer should be maintained in our present analysis. Under such simple assumptions, the meso-scale thermodynamic cycles of each gas parcel in typical locations of a regenerator are analyzed. It is observed that the gas parcels in the regenerator undergo Lorentz cycle in different temperature levels, whereas the locus of all gas parcels inside the regenerator is the Ericson-like thermodynamic cycle. Based on this new finding, the author argued that ideal oscillating-flow machines without heat transfer and flowing losses is not the Stirling cycle. However, this new thermodynamic cycle can still achieve the same efficiency of the Carnot heat engine and can be considered a new reversible thermodynamic cycle under two constant-temperature heat sinks.

  1. Advanced adsorption cooling cum desalination cycle: A thermodynamic framework

    KAUST Repository

    Chakraborty, Anutosh; Thu, Kyaw; Ng, K. C.

    2011-01-01

    We have developed a thermodynamic framework to calculate adsorption cooling cum desalination cycle performances as a function of pore widths and pore volumes of highly porous adsorbents, which are formulated from the rigor of thermodynamic property

  2. Comparative thermodynamic performance of some Rankine/Brayton cycle configurations for a low-temperature energy application

    Science.gov (United States)

    Lansing, F. L.

    1977-01-01

    Various configurations combining solar-Rankine and fuel-Brayton cycles were analyzed in order to find the arrangement which has the highest thermal efficiency and the smallest fuel share. A numerical example is given to evaluate both the thermodynamic performance and the economic feasibility of each configuration. The solar-assisted regenerative Rankine cycle was found to be leading the candidates from both points of energy utilization and fuel conservation.

  3. Thermodynamic design of natural gas liquefaction cycles for offshore application

    Science.gov (United States)

    Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung

    2014-09-01

    A thermodynamic study is carried out for natural gas liquefaction cycles applicable to offshore floating plants, as partial efforts of an ongoing governmental project in Korea. For offshore liquefaction, the most suitable cycle may be different from the on-land LNG processes under operation, because compactness and simple operation are important as well as thermodynamic efficiency. As a turbine-based cycle, closed Claude cycle is proposed to use NG (natural gas) itself as refrigerant. The optimal condition for NG Claude cycle is determined with a process simulator (Aspen HYSYS), and the results are compared with fully-developed C3-MR (propane pre-cooled mixed refrigerant) JT cycles and various N2 (nitrogen) Brayton cycles in terms of efficiency and compactness. The newly proposed NG Claude cycle could be a good candidate for offshore LNG processes.

  4. Advanced adsorption cooling cum desalination cycle: A thermodynamic framework

    KAUST Repository

    Chakraborty, Anutosh

    2011-01-01

    We have developed a thermodynamic framework to calculate adsorption cooling cum desalination cycle performances as a function of pore widths and pore volumes of highly porous adsorbents, which are formulated from the rigor of thermodynamic property surfaces of adsorbent-adsorbate system and the adsorption interaction potential between them. Employing the proposed formulations, the coefficient of performance (COP) and overall performance ratio (OPR) of adsorption cycle are computed for various pore widths of solid adsorbents. These results are compared with experimental data for verifying the proposed thermodynamic formulations. It is found from the present analysis that the COP and OPR of adsorption cooling cum desalination cycle is influenced by (i) the physical characteristics of adsorbents, (ii) characteristics energy and (iii) the surface-structural heterogeneity factor of adsorbent-water system. The present study confirms that there exists a special type of adsorbents having optimal physical characteristics that allows us to obtain the best performance.

  5. A combined thermodynamic cycle used for waste heat recovery of internal combustion engine

    International Nuclear Information System (INIS)

    He, Maogang; Zhang, Xinxin; Zeng, Ke; Gao, Ke

    2011-01-01

    In this paper, we present a steady-state experiment, energy balance and exergy analysis of exhaust gas in order to improve the recovery of the waste heat of an internal combustion engine (ICE). Considering the different characteristics of the waste heat of exhaust gas, cooling water, and lubricant, a combined thermodynamic cycle for waste heat recovery of ICE is proposed. This combined thermodynamic cycle consists of two cycles: the organic Rankine cycle (ORC), for recovering the waste heat of lubricant and high-temperature exhaust gas, and the Kalina cycle, for recovering the waste heat of low-temperature cooling water. Based on Peng–Robinson (PR) equation of state (EOS), the thermodynamic parameters in the high-temperature ORC were calculated and determined via an in-house computer program. Suitable working fluids used in high-temperature ORC are proposed and the performance of this combined thermodynamic cycle is analyzed. Compared with the traditional cycle configuration, more waste heat can be recovered by the combined cycle introduced in this paper. -- Highlights: ► We study the energy balance of fuel in internal combustion engine. ► Heat recovery effect of exhaust gas is good when ICE is at a high-load condition. ► We propose a new combined thermodynamic cycle for waste heat of ICE. ► The combined cycle has a higher recovery efficiency than previous configurations.

  6. An integrated optimization for organic Rankine cycle based on entransy theory and thermodynamics

    International Nuclear Information System (INIS)

    Li, Tailu; Fu, Wencheng; Zhu, Jialing

    2014-01-01

    The organic Rankine cycle has been one of the essential heat-work conversion technologies nowadays. Lots of effectual optimization methods are focused on the promotion of the system efficiency, which are mainly relied on engineering experience and numerical simulations rather than theoretical analysis. A theoretical integrated optimization method was established based on the entransy theory and thermodynamics, with the ratio of the net power output to the ratio of the total thermal conductance to the thermal conductance in the condenser as the objective function. The system parameters besides the optimal pinch point temperature difference were obtained. The results show that the mass flow rate of the working fluid is inversely proportional to the evaporating temperature. An optimal evaporating temperature maximizes the net power output, and the maximal net power output corresponds to the maximal entransy loss and the change points of the heat source outlet temperature and the change rates for the entropy generation and the entransy dissipation. Moreover, the net power output and the total thermal conductance are inversely proportional to the pinch point temperature difference, contradicting with each other. Under the specified condition, the optimal operating parameters are ascertained, with the optimal pinch point temperature difference of 5 K. - Highlights: • We establish an integrated optimization model for organic Rankine cycle. • The model combines the entransy theory with thermodynamics. • The maximal net power output corresponds to the maximal entransy loss. • The pinch point temperature difference is optimized to be 5 K

  7. Gas turbine cooling modeling - Thermodynamic analysis and cycle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jordal, Kristin

    1999-02-01

    Considering that blade and vane cooling are a vital point in the studies of modern gas turbines, there are many ways to include cooling in gas turbine models. Thermodynamic methods for doing this are reviewed in this report, and, based on some of these methods, a number of model requirements are set up and a Cooled Gas Turbine Model (CGTM) for design-point calculations of cooled gas turbines is established. Thereafter, it is shown that it is possible to simulate existing gas turbines with the CGTM. Knowledge of at least one temperature in the hot part of the turbine (TET, TRIT or possibly TIT) is found to be vital for a complete heat balance over the turbine. The losses, which are caused by the mixing of coolant and main flow, are in the CGTM considered through a polytropic efficiency reduction factor S. Through the study of S, it can be demonstrated that there is more to gain from coolant reduction in a small and/or old turbine with poor aerodynamics, than there is to gain in a large, modern turbine, where the losses due to interaction between coolant and main flow are, relatively speaking, small. It is demonstrated, at the design point (TET=1360 deg C, {pi}=20) for the simple-cycle gas turbine, that heat exchanging between coolant and fuel proves to have a large positive impact on cycle efficiency, with an increase of 0.9 percentage points if all of the coolant passes through the heat exchanger. The corresponding improvement for humidified coolant is 0.8 percentage points. A design-point study for the HAT cycle shows that if all of the coolant is extracted after the humidification tower, there is a decrease in coolant requirements of 7.16 percentage points, from 19.58% to 12.52% of the compressed air, and an increase in thermal efficiency of 0.46 percentage points, from 53.46% to 53.92%. Furthermore, it is demonstrated with a TET-parameter variation, that the cooling of a simple-cycle gas turbine with humid air can have a positive effect on thermal efficiency

  8. Thermodynamic, economic and thermo-economic optimization of a new proposed organic Rankine cycle for energy production from geothermal resources

    International Nuclear Information System (INIS)

    Kazemi, Neda; Samadi, Fereshteh

    2016-01-01

    Highlights: • A new cycle was designed to improve basic organic Rankine cycle performance. • Peng Robinson equation of state was used to obtain properties of working fluids. • Operating parameters were optimized with three different objective functions. • Efficiency of new organic Rankine cycle is higher than other considered cycles. • Return on investment of new cycle for Iran is more than France and America. - Abstract: The main goal of this study is to propose and investigate a new organic Rankine cycle based on three considered configurations: basic organic Rankine cycle, regenerative organic Rankine cycle and two-stage evaporator organic Rankine cycle in order to increase electricity generation from geothermal sources. To analyze the considered cycles’ performance, thermodynamic (energy and exergy based on the first and second laws of thermodynamics) and economic (specific investment cost) models are investigated. Also, a comparison of cycles modeling results is carried out in optimum conditions according to different optimization which consist thermodynamic, economic and thermo-economic objective functions for maximizing exergy efficiency, minimizing specific investment cost and applying a multi-objective function in order to maximize exergy efficiency and minimize specific investment cost, respectively. Optimized operating parameters of cycles include evaporators and regenerative temperatures, pinch point temperature difference of evaporators and degree of superheat. Furthermore, Peng Robinson equation of state is used to obtain thermodynamic properties of isobutane and R123 which are selected as dry and isentropic working fluids, respectively. The results of optimization indicate that, thermal and exergy efficiencies increase and exergy destruction decrease especially in evaporators for both working fluids in new proposed organic Rankine cycle compared to the basic organic Rankine cycle. Moreover, the amount of specific investment cost in new

  9. Heat pipe thermodynamic cycle and its applications

    International Nuclear Information System (INIS)

    Kobayashi, Y.

    1985-01-01

    A new type of thermodynamic cycle originating from extended application of the heat pipe principle is proposed and its thermal cycle is discussed from the viewpoint of theoretical thermal efficiency and Coefficient of Performance. An idealized structure that will meet the basic function for thermal systems is also suggested. A significant advantage of these systems is their use with lowtemperature energy sources found in nature or heat rejected from industrial sites

  10. The realization and analysis of a new thermodynamic cycle for internal combustion engine

    Directory of Open Access Journals (Sweden)

    Dorić Jovan Ž.

    2011-01-01

    Full Text Available This paper presents description and thermodynamic analysis of a new thermodynamic cycle. Realization of this new cycle is possible to achieve with valveless internal combustion engine with more complete expansion. The main purpose of this new IC engine is to increase engines’ thermal efficiency. The engine was designed so that the thermodynamic changes of the working fluid are different than in conventional engines. Specific differences are reflected in a more complete expansion of the working fluid (the expansion stroke is larger than compression stroke, valveless gas flowing and complete discharge of residual combustion products from the combustion chamber. In this concept, the movement of the piston is different than in conventional piston mechanisms. The results obtained herein include the efficiency characteristics of irreversible reciprocating new engine cycle which is very similar to Miller cycle. The results show that with this thermodynamic cycle engine has higher efficiency than with the standard Otto cycle. In this article, the patent application material under number 2008/607 at the Intellectual Property Office of the Republic of Serbia was used.

  11. Thermodynamic performance optimization of a combined power/cooling cycle

    International Nuclear Information System (INIS)

    Pouraghaie, M.; Atashkari, K.; Besarati, S.M.; Nariman-zadeh, N.

    2010-01-01

    A combined thermal power and cooling cycle has already been proposed in which thermal energy is used to produce work and to generate a sub-ambient temperature stream that is suitable for cooling applications. The cycle uses ammonia-water mixture as working fluid and is a combination of a Rankine cycle and absorption cycle. The very high ammonia vapor concentration, exiting turbine under certain operating conditions, can provide power output as well as refrigeration. In this paper, the goal is to employ multi-objective algorithms for Pareto approach optimization of thermodynamic performance of the cycle. It has been carried out by varying the selected design variables, namely, turbine inlet pressure (P h ), superheater temperature (T superheat ) and condenser temperature (T condensor ). The important conflicting thermodynamic objective functions that have been considered in this study are turbine work (w T ), cooling capacity (q cool ) and thermal efficiency (η th ) of the cycle. It is shown that some interesting and important relationships among optimal objective functions and decision variables involved in the combined cycle can be discovered consequently. Such important relationships as useful optimal design principles would have not been obtained without the use of a multi-objective optimization approach.

  12. Thermodynamic Optimization of Supercritical CO{sub 2} Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Rhim, Dong-Ryul; Park, Sung-Ho; Kim, Su-Hyun; Yeom, Choong-Sub [Institute for Advanced Engineering, Yongin (Korea, Republic of)

    2015-05-15

    The supercritical CO{sub 2} Brayton cycle has been studied for nuclear applications, mainly for one of the alternative power conversion systems of the sodium cooled fast reactor, since 1960's. Although the supercritical CO{sub 2} Brayton cycle has not been expected to show higher efficiency at lower turbine inlet temperature over the conventional steam Rankine cycle, the higher density of supercritical CO{sub 2} like a liquid in the supercritical region could reduce turbo-machinery sizes, and the potential problem of sodium-water reaction with the sodium cooled fast reactor might be solved with the use of CO{sub 2} instead of water. The supercritical CO{sub 2} recompression Brayton cycle was proposed for the better thermodynamic efficiency than for the simple supercritical CO{sub 2} Brayton cycle. Thus this paper presents the efficiencies of the supercritical CO{sub 2} recompression Brayton cycle along with several decision variables for the thermodynamic optimization of the supercritical CO{sub 2} recompression Brayton cycle. The analytic results in this study show that the system efficiency reaches its maximum value at a compressor outlet pressure of 200 bars and a recycle fraction of 30 %, and the lower minimum temperature approach at the two heat exchangers shows higher system efficiency as expected.

  13. Heat exchangers for high-temperature thermodynamic cycles

    International Nuclear Information System (INIS)

    Fraas, A.P.

    1975-01-01

    The special requirements of heat exchangers for high temperature thermodynamic cycles are outlined and discussed with particular emphasis on cost and thermal stress problems. Typical approaches that have been taken to a comprehensive solution intended to meet all of the many boundary conditions are then considered by examining seven typical designs including liquid-to-liquid heat exchangers for nuclear plants, a heater for a closed cycle gas turbine coupled to a fluidized bed coal combustion chamber, steam generators for nuclear plants, a fossil fuel-fired potassium boiler, and a potassium condenser-steam generator. (auth)

  14. Heat recovery from Diesel engines: A thermodynamic comparison between Kalina and ORC cycles

    International Nuclear Information System (INIS)

    Bombarda, Paola; Invernizzi, Costante M.; Pietra, Claudio

    2010-01-01

    In the context of heat recovery for electric power generation, Kalina cycle (a thermodynamic cycle using as working fluid a mixture of water and ammonia) and Organic Rankine Cycle (ORC) represent two different eligible technologies. In this work a comparison between the thermodynamic performances of Kalina cycle and an ORC cycle, using hexamethyldisiloxane as working fluid, was conducted for the case of heat recovery from two Diesel engines, each one with an electrical power of 8900 kWe. The maximum net electric power that can be produced exploiting the heat source constituted by the exhaust gases mass flow (35 kg/s for both engines, at 346 deg. C) was calculated for the two thermodynamic cycles. Owing to the relatively low useful power, for the Kalina cycle a relatively simple plant layout was assumed. Supposing reasonable design parameters and a logarithmic mean temperature difference in the heat recovery exchanger of 50 deg. C, a net electric power of 1615 kW and of 1603 kW respectively for the Kalina and for the ORC cycle was calculated. Although the obtained useful powers are actually equal in value, the Kalina cycle requires a very high maximum pressure in order to obtain high thermodynamic performances (in our case, 100 bar against about 10 bar for the ORC cycle). So, the adoption of Kalina cycle, at least for low power level and medium-high temperature thermal sources, seems not to be justified because the gain in performance with respect to a properly optimized ORC is very small and must be obtained with a complicated plant scheme, large surface heat exchangers and particular high pressure resistant and no-corrosion materials.

  15. ThermoCycle: A Modelica library for the simulation of thermodynamic systems

    DEFF Research Database (Denmark)

    Quoilin, Sylvain; Desideri, Adriano; Wronski, Jorrit

    2014-01-01

    This paper presents the results of an on-going project to develop ThermoCycle, an open Modelica library for the simulation of low-capacity thermodynamic cycles and thermal systems. Special attention is paid to robustness and simulation speed since dynamic simulations are often limited by numerical...... constraints and failures, either during initialization or during integration. Furthermore, the use of complex equations of state (EOS) to compute thermodynamic properties significantly decreases the simulation speed. In this paper, the approach adopted in the library to overcome these challenges is presented...

  16. Low-temperature behaviour of an ideal Bose gas and some forbidden thermodynamic cycles

    International Nuclear Information System (INIS)

    Chen Jincan; Lin Bihong

    2003-01-01

    Based on the equation of state of an ideal Bose gas, the heat capacities at constant volume and constant pressure of the Bose system are derived and used to analyse the low-temperature behaviour of the Bose system. It is expounded that some important thermodynamic processes such as a constant pressure and an adiabatic process cannot be carried out from the region of T > T c to that of T c , where T c is the critical temperature of Bose-Einstein condensation of the Bose system. Consequently, some typical thermodynamic cycles such as the Carnot cycle, Brayton cycle, Otto cycle, Ericsson cycle, Diesel cycle and Atkinson cycle cannot be operated across the critical temperature T c of Bose-Einstein condensation of an ideal Bose gas

  17. Thermodynamic analysis of the heat regenerative cycle in porous medium engine

    International Nuclear Information System (INIS)

    Liu Hongsheng; Xie Maozhao; Wu Dan

    2009-01-01

    The advantages of homogeneous combustion in internal combustion engines are well known all over the world. Recent years, porous medium (PM) engine has been proposed as a new type engine based on the technique of combustion in porous medium, which can fulfils all requirements to perform homogeneous combustion. In this paper, working processes of a PM engine are briefly introduced and an ideal thermodynamic model of the PM heat regeneration cycle in PM engine is developed. An expression for the relation between net work output and thermal efficiency is derived for the cycle. In order to evaluate of the cycle, the influences of the expansion ratio, initial temperature and limited temperature on the net work and efficiency are discussed, and the availability terms of the cycle are analyzed. Comparing the PM heat regenerative cycle of the PM engine against Otto cycle and Diesel cycle shows that PM heat regenerative cycle can improve net work output greatly with little drop of efficiency. The aim of this paper is to predict the thermodynamic performance of PM heat regeneration cycle and provide a guide to further investigations of the PM engine

  18. Biological catalysis of the hydrological cycle: life's thermodynamic function

    Science.gov (United States)

    Michaelian, K.

    2011-01-01

    Darwinian theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living component of the biosphere on the surface of the Earth of greatest biomass, the plants and cyanobacteria, are involved in the transpiration of a vast amount of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its apparently life barren neighboring planets, Venus and Mars. The dissipation of sunlight into heat by organic molecules in the biosphere and its coupling to the water cycle (as well as other abiotic processes), is by far the greatest entropy producing process occurring on Earth. Life, from this perspective, can be viewed as performing an important thermodynamic function; acting as a dynamic catalyst by aiding irreversible abiotic process such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants of the plants and cyanobacteria, helping them to grow and to spread into initially inhospitable areas.

  19. Thermodynamic analysis of steam-injected advanced gas turbine cycles

    Science.gov (United States)

    Pandey, Devendra; Bade, Mukund H.

    2017-12-01

    This paper deals with thermodynamic analysis of steam-injected gas turbine (STIGT) cycle. To analyse the thermodynamic performance of steam-injected gas turbine (STIGT) cycles, a methodology based on pinch analysis is proposed. This graphical methodology is a systematic approach proposed for a selection of gas turbine with steam injection. The developed graphs are useful for selection of steam-injected gas turbine (STIGT) for optimal operation of it and helps designer to take appropriate decision. The selection of steam-injected gas turbine (STIGT) cycle can be done either at minimum steam ratio (ratio of mass flow rate of steam to air) with maximum efficiency or at maximum steam ratio with maximum net work conditions based on the objective of plants designer. Operating the steam injection based advanced gas turbine plant at minimum steam ratio improves efficiency, resulting in reduction of pollution caused by the emission of flue gases. On the other hand, operating plant at maximum steam ratio can result in maximum work output and hence higher available power.

  20. Alternative thermodynamic cycle for the Stirling machine

    Science.gov (United States)

    Romanelli, Alejandro

    2017-12-01

    We develop an alternative thermodynamic cycle for the Stirling machine, where the polytropic process plays a central role. Analytical expressions for pressure and temperatures of the working gas are obtained as a function of the volume and the parameter that characterizes the polytropic process. This approach achieves closer agreement with the experimental pressure-volume diagram and can be adapted to any type of Stirling engine.

  1. Indirect Determination of the Thermodynamic Temperature of a Gold Fixed-Point Cell

    Science.gov (United States)

    Battuello, M.; Girard, F.; Florio, M.

    2010-09-01

    Since the value T 90(Au) was fixed on the ITS-90, some determinations of the thermodynamic temperature of the gold point have been performed which form, with other renormalized results of previous measurements by radiation thermometry, the basis for the current best estimates of ( T - T 90)Au = 39.9 mK as elaborated by the CCT-WG4. Such a value, even if consistent with the behavior of T - T 90 differences at lower temperatures, is quite influenced by the low values of T Au as determined with few radiometric measurements. At INRIM, an independent indirect determination of the thermodynamic temperature of gold was performed by means of a radiation thermometry approach. A fixed-point technique was used to realize approximated thermodynamic scales from the Zn point up to the Cu point. A Si-based standard radiation thermometer working at 900 nm and 950 nm was used. The low uncertainty presently associated to the thermodynamic temperature of fixed points and the accuracy of INRIM realizations, allowed scales with an uncertainty lower than 0.03 K in terms of the thermodynamic temperature to be realized. A fixed-point cell filled with gold, 99.999 % in purity, was measured, and its freezing temperature was determined by both interpolation and extrapolation. An average T Au = 1337.395 K was found with a combined standard uncertainty of 23 mK. Such a value is 25 mK higher than the presently available value as derived by the CCT-WG4 value of ( T - T 90)Au = 39.9 mK.

  2. Property Uncertainty Analysis and Methods for Optimal Working Fluids of Thermodynamic Cycles

    DEFF Research Database (Denmark)

    Frutiger, Jerome

    in the context of an industrial organic Rankine cycle, used for the recovery of waste heat from an engine of a marine container ship. The study illustrates that the model structure is vital for the uncertainties of equations of state and suggests that uncertainty becomes a criterion (along with e.g. goodness......-of-fit or ease of use) for the selection of an equation of state for a specific application. Furthermore, two studies on the identification of suitable working fluids for thermodynamic cycles are presented. The first one selects and assesses working fluid candidates for an organic Rankine cycle system to recover......There is an increasing interest in recovering industrial waste heat at low tempera-tures (70-250◦C). Thermodynamic cycles, such as heat pumps or organic Rankine cycles, can recover this heat and transfer it to other process streams or convert it into electricity. The working fluid, circulating...

  3. Standard GAX versus hybrid GAX absorption refrigeration cycle: From the view point of thermoeconomics

    International Nuclear Information System (INIS)

    Mehr, A.S.; Zare, V.; Mahmoudi, S.M.S.

    2013-01-01

    Highlights: • The SGAX cycle is found to be thermoeconomically efficient compared to HGAX cycle. • The HGAX cycle has higher COP and exergy efficiency compared to SGAX cycle. • Minimum product cost is found 180.5 $/GJ and 159.1 $/GJ for HGAX and SGAX, respectively. - Abstract: The main goal of this research is to compare thermoeconomic performance of a GAX absorption cycle and a hybrid GAX absorption cycle in which a compressor is employed to raise the absorber pressure. In order to do this, the ammonia–water standard GAX (SGAX) and hybrid GAX (HGAX) absorption refrigeration cycles are investigated and optimized from the viewpoints of thermodynamics and economics. Parametric studies are carried out and with the help of genetic algorithm (GA), the cycles’ performance is optimized based on the COP and exergy efficiency as well as the cost of unit product. Results indicate that although, compared to the GAX cycle, the HGAX cycle demonstrates a better performance from the view points of both the first and second laws of thermodynamics, the unit product cost for the HGAX cycle is higher. At the optimum operating conditions, the cost of unit product for the HGAX cycle is calculated as 180.5 $/GJ while the corresponding value for the SGAX cycle is obtained as 159.1 $/GJ. Also, the exergoeconomic analyses unfold that the condenser has the lowest exergoeconomic factor, f, in both the systems. In addition, inspired from nature, a new graphical plot is proposed to illustrate the fuel cost, product cost, capital investment and operating and maintenance cost and cost rates associated with the exergy destruction and losses within the system’s components

  4. Thermodynamic Analysis of an Irreversible Maisotsenko Reciprocating Brayton Cycle

    Directory of Open Access Journals (Sweden)

    Fuli Zhu

    2018-03-01

    Full Text Available An irreversible Maisotsenko reciprocating Brayton cycle (MRBC model is established using the finite time thermodynamic (FTT theory and taking the heat transfer loss (HTL, piston friction loss (PFL, and internal irreversible losses (IILs into consideration in this paper. A calculation flowchart of the power output (P and efficiency (η of the cycle is provided, and the effects of the mass flow rate (MFR of the injection of water to the cycle and some other design parameters on the performance of cycle are analyzed by detailed numerical examples. Furthermore, the superiority of irreversible MRBC is verified as the cycle and is compared with the traditional irreversible reciprocating Brayton cycle (RBC. The results can provide certain theoretical guiding significance for the optimal design of practical Maisotsenko reciprocating gas turbine plants.

  5. An optimization method for gas refrigeration cycle based on the combination of both thermodynamics and entransy theory

    International Nuclear Information System (INIS)

    Chen, Qun; Xu, Yun-Chao; Hao, Jun-Hong

    2014-01-01

    Highlights: • An optimization method for practical thermodynamic cycle is developed. • The entransy-based heat transfer analysis and thermodynamic analysis are combined. • Theoretical relation between system requirements and design parameters is derived. • The optimization problem can be converted into conditional extremum problem. • The proposed method provides several useful optimization criteria. - Abstract: A thermodynamic cycle usually consists of heat transfer processes in heat exchangers and heat-work conversion processes in compressors, expanders and/or turbines. This paper presents a new optimization method for effective improvement of thermodynamic cycle performance with the combination of entransy theory and thermodynamics. The heat transfer processes in a gas refrigeration cycle are analyzed by entransy theory and the heat-work conversion processes are analyzed by thermodynamics. The combination of these two analysis yields a mathematical relation directly connecting system requirements, e.g. cooling capacity rate and power consumption rate, with design parameters, e.g. heat transfer area of each heat exchanger and heat capacity rate of each working fluid, without introducing any intermediate variable. Based on this relation together with the conditional extremum method, we theoretically derive an optimization equation group. Simultaneously solving this equation group offers the optimal structural and operating parameters for every single gas refrigeration cycle and furthermore provides several useful optimization criteria for all the cycles. Finally, a practical gas refrigeration cycle is taken as an example to show the application and validity of the newly proposed optimization method

  6. Indirect determination of the thermodynamic temperature of the copper point by a multi-fixed-point technique

    Science.gov (United States)

    Battuello, M.; Florio, M.; Girard, F.

    2010-06-01

    An indirect determination of the thermodynamic temperature of the fixed point of copper was made at INRIM by measuring four cells with a Si-based and an InGaAs-based precision radiation thermometer carrying approximated thermodynamic scales realized up to the Ag point. An average value TCu = 1357.840 K was found with a standard uncertainty of 0.047 K. A consequent (T - T90)Cu value of 70 mK can be derived which is 18 mK higher than, but consistent with, the presently available (T - T90)Cu as elaborated by the CCT-WG4.

  7. Thermodynamic analysis of a simple Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Javanshir, Alireza; Sarunac, Nenad

    2017-01-01

    Thermodynamic performance (thermal efficiency and net power output) of a simple subcritical and supercritical Organic Rankine Cycle (ORC) was analyzed over a range of operating conditions for a number of working fluids to determine the effect of operating parameters on cycle performance and select the best working fluid. The results show that for an ORC operating with a dry working fluid, thermal efficiency decreases with an increase in the turbine inlet temperature (TIT) due to the convergence of the isobaric lines with temperature. The results also show that efficiency of an ORC operating with isentropic working fluids is higher compared to the dry and wet fluids, and working fluids with higher specific heat capacity provide higher cycle net power output. New expressions for thermal efficiency of a subcritical and supercritical simple ORC are proposed. For a subcritical ORC without the superheat, thermal efficiency is expressed as a function of the Figure of Merit (FOM), while for the superheated subcritical ORC thermal efficiency is given in terms of the modified Jacob number. For the supercritical ORC, thermal efficiency is expressed as a function of dimensionless temperature. - Highlights: • Analyzing thermodynamic performance of ORC over a range of operating conditions. • Selecting the best working fluid suitable for a simple ORC. • Proposing new expressions for thermal efficiency of a simple ORC.

  8. Thermodynamic Modeling for Open Combined Regenerative Brayton and Inverse Brayton Cycles with Regeneration before the Inverse Cycle

    Directory of Open Access Journals (Sweden)

    Lingen Chen

    2012-01-01

    Full Text Available A thermodynamic model of an open combined regenerative Brayton and inverse Brayton cycles with regeneration before the inverse cycle is established in this paper by using thermodynamic optimization theory. The flow processes of the working fluid with the pressure drops and the size constraint of the real power plant are modeled. There are 13 flow resistances encountered by the working fluid stream for the cycle model. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining nine flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, regenerator inlet and outlet, combustion chamber inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle, and control the air flow rate, the net power output and the thermal efficiency. The analytical formulae about the power output, efficiency and other coefficients are derived with 13 pressure drop losses. It is found that the combined cycle with regenerator can reach higher thermal efficiency but smaller power output than those of the base combined cycle at small compressor inlet relative pressure drop of the top cycle.

  9. The exploitation of the physical exergy of liquid natural gas by closed power thermodynamic cycles. An overview

    International Nuclear Information System (INIS)

    Invernizzi, Costante M.; Iora, Paolo

    2016-01-01

    The world trade in LNG (liquefied natural gas) has tripled in the last 15 years and the forecasts are for its further rapid expansion. Although the cryogenic exergy of the LNG could be used in many industrial processes, it is recognized also as a source for power cycles. When using the low temperature capacity of LNG for power production, several thermodynamic cycles can be considered. This paper reports the state-of-the art of the most relevant solutions based on conventional and non-conventional thermodynamic closed cycles. Moreover, a novel metrics framework, suitable for a fairer comparison among the energy recovery performances of the different technologies is proposed. According to the defined indicators the compounds plants with gas turbine and closed Brayton cycles perform really better, with an almost full use of LNG available cold temperature and a fuel consumption with an efficiency better than that of the current combined cycles. The Rankine cycles with organic working fluids (pure fluids or non-azeotropic mixtures) using seawater or heat available at low temperature (for instance at 150 °C) also perform in a very satisfactory way. Real gas Brayton cycles and carbon dioxide condensation cycles work with very good thermal efficiency also at relatively low maximum temperatures (300 ÷ 600 °C) and could have peculiar applications. - Highlights: • A review of systems for the combined re-gasification of LNG and generation of power. • The considered systems are: closed Brayton cycles, condensation cycles, gas turbines. • Definition of new parameters for an energy assessment of the systems? performances. • A comparison among the various systems from the energy point of view.

  10. A Thermodynamic Point of View on Dark Energy Models

    Directory of Open Access Journals (Sweden)

    Vincenzo F. Cardone

    2017-07-01

    Full Text Available We present a conjugate analysis of two different dark energy models, namely the Barboza–Alcaniz parameterization and the phenomenologically-motivated Hobbit model, investigating both their agreement with observational data and their thermodynamical properties. We successfully fit a wide dataset including the Hubble diagram of Type Ia Supernovae, the Hubble rate expansion parameter as measured from cosmic chronometers, the baryon acoustic oscillations (BAO standard ruler data and the Planck distance priors. This analysis allows us to constrain the model parameters, thus pointing at the region of the wide parameters space, which is worth focusing on. As a novel step, we exploit the strong connection between gravity and thermodynamics to further check models’ viability by investigating their thermodynamical quantities. In particular, we study whether the cosmological scenario fulfills the generalized second law of thermodynamics, and moreover, we contrast the two models, asking whether the evolution of the total entropy is in agreement with the expectation for a closed system. As a general result, we discuss whether thermodynamic constraints can be a valid complementary way to both constrain dark energy models and differentiate among rival scenarios.

  11. Thermodynamic studies of a HAT cycle and its components

    International Nuclear Information System (INIS)

    Nyberg, Bjoern; Thern, Marcus

    2012-01-01

    Highlights: → Performance maps for HAT cycles with different complexity are shown. → A suggestion, where to extract cooling air for the turbine is presented. → The influence of the makeup water on total efficiency is shown. → The optimal pressure level for intercooling is described. -- Abstract: The electric power grid contains more and more renewable power production such as wind and solar power. The use of renewable power sources increases the fluctuations in the power grid which increase the demand for highly efficient, fast-starting power-producing units that can cope with sudden production losses. One of the more innovative power plant cycles, that have the potential of competing with conventional combined power plants in efficiency but has a higher availability and faster start up time, is the Evaporative Gas Turbine (EvGT) or Humid Air Turbine (HAT). A thermodynamic evaluation of different HAT cycle layouts has been done in this paper. Each layout is evaluated separately which makes it possible to study different components individual contribution to the efficiency and specific power. The thermodynamic evaluation also shows that it is important to look at different cool-flow extracting positions. The effect of water temperature entering the cycle, called make-up water, and where it is introduced into the cycle has been evaluated. The make-up water temperature also affects the optimal pressure level for intercooling and it is shown that an optimal position can be decided considering design parameters of the compressor and the water circuit.

  12. Numerical and experimental analyses of different magnetic thermodynamic cycles with an active magnetic regenerator

    International Nuclear Information System (INIS)

    Plaznik, Uroš; Tušek, Jaka; Kitanovski, Andrej; Poredoš, Alojz

    2013-01-01

    We have analyzed the influence of different magnetic thermodynamic cycles on the performance of a magnetic cooling device with an active magnetic regenerator (AMR) based on the Brayton, Ericsson and Hybrid Brayton–Ericsson cycles. Initially, a numerical simulation was performed using a 1D, time-dependent, numerical model. Then a comparison was made with respect to the cooling power and the COP for different temperature spans. We showed that applying the Ericsson or the Hybrid Brayton–Ericsson cycle with an AMR, instead of the standard Brayton cycle, can increase the efficiency of the selected cooling device. Yet, in the case of the Ericsson cycle, the cooling power was decreased compared to the Hybrid and especially compared to the Brayton cycle. Next, an experimental analysis was carried out using a linear-type magnetic cooling device. Again, the Brayton, Ericsson and Hybrid Brayton–Ericsson cycles with an AMR were compared with respect to the cooling power and the COP for different temperature spans. The results of the numerical simulation were confirmed. The Hybrid Brayton–Ericsson cycle with an AMR showed the best performance if a no-load temperature span was considered as a criterion. -- Highlights: • New thermodynamic cycles with an active magnetic regenerator (AMR) are presented. • Three different thermodynamic cycles with an AMR were analyzed. • Numerical and experimental analyses were carried out. • The best overall performance was achieved with the Hybrid Brayton–Ericsson cycle. • With this cycle the temperature span of test device was increased by almost 10%

  13. Thermodynamic performance comparison between ORC and Kalina cycles for multi-stream waste heat recovery

    International Nuclear Information System (INIS)

    Wang, Yufei; Tang, Qikui; Wang, Mengying; Feng, Xiao

    2017-01-01

    Highlights: • Comparison between ORC and Kalina cycles (KC) for multi-stream waste heat recovery. • Divide waste heat into straight, convex and concave based on its composite curve. • Use heat ratio and temperature of the most point to show the feature of waste heat. • KC is suitable for straight and most concave heat, while ORC for convex one. - Abstract: Organic Rankine cycle (ORC) and Kalina cycle are the main technologies to recover waste heat for power generation. Up to now, many works dealing with the thermodynamic performance comparison between ORC and Kalina cycles are available, but these studies considered for heat recovery from a single heat source or stream. In the process industry, there are multiple waste heat streams, forming a complex heat source profile. In this paper, based on the simulation model developed in the Aspen Hysys software, the two cycles are calculated and compared. According to the waste heat composite curve, the multi-stream waste heat is divided into three kinds, straight, convex, and concave waste heat. Two parameters, the ratio of the heat above and below the most salient/concave point (R) and the temperature of the most point, are used to roughly express the feature of waste heat. With the efficiency from waste heat (exergy) to power as energy performance indicator, the calculation results for waste heat with maximum supply temperature 180 °C show that for straight and concave waste heat with R not less than 0.2, Kalina cycle is better than ORC, while for convex waste heat, ORC is preferable. The work can provide a reference to choose a suitable technology to recover low temperature waste heat for power generation in the process industry.

  14. Thermodynamic analysis of absorption refrigeration cycles using the second law of thermodynamics method

    Energy Technology Data Exchange (ETDEWEB)

    Aphornratana, S; Eames, I W [Sheffield Univ. (United Kingdom). Dept. of Mechanical and Process Engineering

    1995-05-01

    The paper provides an easy to follow description of the second law (of thermodynamics) method as applied to a single-effect absorption refrigerator cycle. Results are presented in a novel graphical format, which aids insight and understanding of those factors that most affect the performance of absorption refrigerators, and which in turn provides strong indicators for the direction of future research. A novel method of calculating the entropy of lithium bromide solutions is offered. (author)

  15. Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Leigh R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This document was prepared to meet FCR&D level 3 milestone M3FT-14IN0304022, “Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems.” This work was carried out under the auspices of the Thermodynamics and Kinetics FCR&D work package. This document reports preliminary work in support of determining the thermodynamic parameters for the ALSEP process. The ALSEP process is a mixed extractant system comprised of a cation exchanger 2-ethylhexyl-phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and a neutral solvating extractant N,N,N’,N’-tetraoctyldiglycolamide (TODGA). The extractant combination produces complex organic phase chemistry that is challenging for traditional measurement techniques. To neutralize the complexity, temperature dependent solvent extraction experiments were conducted with neat TODGA and scaled down concentrations of the ALSEP formulation to determine the enthalpies of extraction for the two conditions. A full set of thermodynamic data for Eu, Am, and Cm extraction by TODGA from 3.0 M HNO3 is reported. These data are compared to previous extraction results from a 1.0 M HNO3 aqueous medium, and a short discussion of the mixed HEH[EHP]/TODGA system results is offered.

  16. HESS Opinions "Biological catalysis of the hydrological cycle: life's thermodynamic function"

    Science.gov (United States)

    Michaelian, K.

    2012-08-01

    Darwinian theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic, out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living components of the biosphere on the Earth's surface of greatest biomass, the plants and cyanobacteria, are involved in the transpiration of a vast amount of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its apparently life-barren neighboring planets, Venus and Mars. The dissipation of sunlight into heat by organic molecules in the biosphere, and its coupling to the water cycle (as well as other abiotic processes), is by far the greatest entropy-producing process occurring on Earth. Life, from this perspective, can be viewed as performing an important thermodynamic function, acting as a dynamic catalyst by aiding irreversible abiotic processes such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants of the plants and cyanobacteria, helping them to grow, and to spread into initially inhospitable areas.

  17. HESS Opinions "Biological catalysis of the hydrological cycle: life's thermodynamic function"

    Directory of Open Access Journals (Sweden)

    K. Michaelian

    2012-08-01

    Full Text Available Darwinian theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic, out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living components of the biosphere on the Earth's surface of greatest biomass, the plants and cyanobacteria, are involved in the transpiration of a vast amount of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its apparently life-barren neighboring planets, Venus and Mars. The dissipation of sunlight into heat by organic molecules in the biosphere, and its coupling to the water cycle (as well as other abiotic processes, is by far the greatest entropy-producing process occurring on Earth. Life, from this perspective, can be viewed as performing an important thermodynamic function, acting as a dynamic catalyst by aiding irreversible abiotic processes such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants of the plants and cyanobacteria, helping them to grow, and to spread into initially inhospitable areas.

  18. Potential Improvements of Supercritical Recompression CO2 Brayton Cycle Coupled with KALIMER-600 by Modifying Critical Point of CO2

    International Nuclear Information System (INIS)

    Jeong, Woo Seok; Lee, Jeong Ik; Jeong, Yong Hoon; No, Hee Cheon

    2010-01-01

    Most of the existing designs of a Sodium cooled Fast Reactor (SFR) have a Rankine cycle as an electric power generation cycle. This has the risk of a sodium water reaction. To prevent any hazards from a sodium water reaction, an indirect Brayton cycle using Supercritical Carbon dioxide (S-CO 2 ) as the working fluids for a SFR is an alternative approach to improve the current SFR design. The supercritical Brayton cycle is defined as a cycle with operating conditions above the critical point and the main compressor inlet condition located slightly above the critical point of working fluid. This is because the main advantage of the cycle comes from significantly decreased compressor work just above the critical point due to high density near boundary between supercritical state and subcritical state. For this reason, the minimum temperature and pressure of cycle are just above the CO 2 critical point. In other words, the critical point acts as a limitation of the lowest operating condition of the cycle. In general, lowering the minimum temperature of a thermodynamic cycle can increase the efficiency and the minimum temperature can be decreased by shifting the critical point of CO 2 as mixed with other gases. In this paper, potential enhancement of S-CO 2 cycle coupled with KALIMER-600, which has been developed at KAERI, was investigated using a developed cycle code with a gas mixture property program

  19. Ultimate refrigerating conditions, behavior turning and a thermodynamic analysis for absorption–compression hybrid refrigeration cycle

    International Nuclear Information System (INIS)

    Zheng Danxing; Meng Xuelin

    2012-01-01

    Highlights: ► Two novel fundamental concepts of the absorption refrigeration cycle were proposed. ► The interaction mechanism of compressor pressure increasing with other key-parameters was investigated. ► A set of optimal operating condition of hybrid refrigeration cycle was found. ► A simulation and investigation for R134a-DMF hybrid refrigeration cycle was performed. - Abstract: The absorption–compression hybrid refrigeration cycle has been considered as an effective approach to reduce the mechanical work consumption by using low-grade heat, such as solar energy. This work aims at studying the thermodynamic mechanism of the hybrid refrigeration cycle. Two fundamental concepts have been proposed, which are the ultimate refrigerating temperature (or the ultimate temperature lift) and the behavior turning. On the basis of that, the interaction mechanism of compressor pressure increasing with other key-parameters and the impact of compressor pressure increasing on the cycle performance have been investigated. The key-parameters include the concentration difference, the circulation ratio of working fluid, etc. The work points out that the hybrid refrigeration cycle performance varies with the change of compressor outlet pressure and depends on which one achieves dominance in the hybrid refrigeration cycle, the absorption sub-system or the compression sub-system. The behavior turning point during parameters changing corresponds to a maximum value of the heat powered coefficient of performance. In this case, the hybrid refrigeration cycle performance is optimal because the low-grade heat utilization is the most effective. In addition, to validate the theoretical analysis, a solar hybrid refrigeration cycle with R134a–DMF as working pair was simulated. The Peng–Robinson equation of state was adopted to calculate thermophysical properties when the reliability assessment of the prediction models on the available literature data of R134a–DMF system had been

  20. Second Law Of Thermodynamics Analysis Of Triple Cycle Power Plant

    Directory of Open Access Journals (Sweden)

    Matheus M. Dwinanto

    2012-11-01

    Full Text Available Triple cycle power plant with methane as a fuel has been analyzed on the basis of second law of thermodynamics.In this model, ideal Brayton cycle is selected as a topping cycle as it gives higher efficiency at lower pressure ratio comparedintercooler and reheat cycle. In trilple cycle the bottoming cycles are steam Rankine and organic Rankine cycle. Ammoniahas suitable working properties like critical temperature, boiling temperature, etc. Steam cycle consists of a deaerator andreheater. The bottoming ammonia cycle is a ideal Rankine cycle. Single pressure heat recovery steam and ammoniagenerators are selected for simplification of the analysis. The effects of pressure ratio and maximum temperature which aretaken as important parameters regarding the triple cycle are discussed on performance and exergetic losses. On the otherhand, the efficiency of the triple cycle can be raised, especially in the application of recovering low enthalpy content wasteheat. Therefore, by properly combining with a steam Rankine cycle, the ammonia Rankine cycle is expected to efficientlyutilize residual yet available energy to an optimal extent. The arrangement of multiple cycles is compared with combinedcycle having the same sink conditions. The parallel type of arrangement of bottoming cycle is selected due to increasedperformance.

  1. Thermodynamic performance analysis of a coupled transcritical and subcritical organic Rankine cycle system for waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xi Wu [Zhejiang Ocean University, Zhejian (China); Wang, Xiao Qiong; Li, You Rong; Wu, Chun Mei [Chongqing University, Chongqing (China)

    2015-07-15

    We present a novel coupled organic Rankine cycle (CORC) system driven by the low-grade waste heat, which couples a transcritical organic Rankine cycle with a subcritical organic Rankine cycle. Based on classical thermodynamic theory, a detailed performance analysis on the novel CORC system was performed. The results show that the pressure ratio of the expander is decreased in the CORC and the selection of the working fluids becomes more flexible and abundant. With the increase of the pinch point temperature difference of the internal heat exchanger, the net power output and thermal efficiency of the CORC all decrease. With the increase of the critical temperature of the working fluid, the system performance of the CORC is improved. The net power output and thermal efficiency of the CORC with isentropic working fluids are higher than those with dry working fluids.

  2. Evaporative gas turbine cycles. A thermodynamic evaluation of their potential

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, P M

    1993-03-01

    The report presents a systematic method of thermodynamically evaluating different gas turbine cycles, treating the working fluids as ideal gases (c{sub p}=c{sub p}(T)). All models used to simulate different components in the cycles are presented in the report in detail and then connected in a computer program fully developed by the author. The report focuses on the theme of evaporative gas turbine cycles, in which low level heat is used to evaporate water into the compressed air stream between the compressor and recuperator. This leads to efficiency levels close to a comparable combined cycle but without the steam bottoming cycle. A parametric analysis has been conducted with the aim of deciding the best configuration of an evaporative cycle both for an uncooled expander and for a cooled expander. The model proposed to simulate the cooled expander is a combination between two existing models. (121 refs., 35 figs.,).

  3. Thermodynamic and economic analysis and optimization of power cycles for a medium temperature geothermal resource

    International Nuclear Information System (INIS)

    Coskun, Ahmet; Bolatturk, Ali; Kanoglu, Mehmet

    2014-01-01

    Highlights: • We conduct the thermodynamic and economic analysis of various geothermal power cycles. • The optimization process was performed to minimize the exergy losses. • Kalina cycle is a new technology compared to flash and binary cycles. • It is shown that Kalina cycle presents a viable choice for both thermodynamically and economically. - Abstract: Geothermal power generation technologies are well established and there are numerous power plants operating worldwide. Turkey is rich in geothermal resources while most resources are not exploited for power production. In this study, we consider geothermal resources in Kutahya–Simav region having geothermal water at a temperature suitable for power generation. The study is aimed to yield the method of the most effective use of the geothermal resource and a rational thermodynamic and economic comparison of various cycles for a given resource. The cycles considered include double-flash, binary, combined flash/binary, and Kalina cycle. The selected cycles are optimized for the turbine inlet pressure that would generate maximum power output and energy and exergy efficiencies. The distribution of exergy in plant components and processes are shown using tables. Maximum first law efficiencies vary between 6.9% and 10.6% while the second law efficiencies vary between 38.5% and 59.3% depending on the cycle considered. The maximum power output, the first law, and the second law efficiencies are obtained for Kalina cycle followed by combined cycle and binary cycle. An economic analysis of four cycles considered indicates that the cost of producing a unit amount of electricity is 0.0116 $/kW h for double flash and Kalina cycles, 0.0165 $/kW h for combined cycle and 0.0202 $/kW h for binary cycle. Consequently, the payback period is 5.8 years for double flash and Kalina cycles while it is 8.3 years for combined cycle and 9 years for binary cycle

  4. Advanced gas turbine cycles a brief review of power generation thermodynamics

    CERN Document Server

    Horlock, JH

    2003-01-01

    Primarily this book describes the thermodynamics of gas turbine cycles. The search for high gas turbine efficiency has produced many variations on the simple ""open circuit"" plant, involving the use of heat exchangers, reheating and intercooling, water and steam injection, cogeneration and combined cycle plants. These are described fully in the text. A review of recent proposals for a number of novel gas turbine cycles is also included. In the past few years work has been directed towards developing gas turbines which produce less carbon dioxide, or plants from which the CO2 can be d

  5. Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines

    Science.gov (United States)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.

  6. Comparative analysis of thermodynamic performance and optimization of organic flash cycle (OFC) and organic Rankine cycle (ORC)

    International Nuclear Information System (INIS)

    Lee, Ho Yong; Park, Sang Hee; Kim, Kyoung Hoon

    2016-01-01

    A comparative thermodynamic performance and optimization analysis of basic organic flash cycle (OFCB), organic flash cycle with two-phase expander (OFCT), and organic Rankine cycle (ORC) activated by low-temperature sensible energy is carried out in the subcritical pressure regions. The three substances of R245fa, R123, and o-xylene are considered as the working fluids. Effects of cycle type, working fluid, and evaporation and source temperatures are systemically investigated on the system performance such as net power production, thermal and exergy efficiencies, and exergy destruction ratios at each component of the systems. Results show that the cycle type or working fluid which shows optimum performance depends on the source temperature, and organic flash cycle shows a potential for efficient recovery of low grade energy source.

  7. A low pressure thermodynamic cycle for electric power generation without mechanical compressor

    International Nuclear Information System (INIS)

    Proto, G.; Lenti, R.

    1996-01-01

    According to the 2 nd thermodynamic law there is no compulsion to have an expansion from high pressure level to atmospheric pressure, the only reason relying upon the minimization of the plant volumetry which is just one of the overall cost parameters. A thermodynamic cycle without rotating machinery does exist in avionic applications like the RAMJET, in which air flowing at supersonic speed is compressed in a convergent duct before being heated in the combustion chamber and then expanded to a much higher MACH number. The concept discussed here, however, is referred to a physical principle of different nature. In fact the inlet air flow is quasi static, while the propelling kinetic energy is the residual energy following the gas combustion, expansion, cooling in Supersonic Flow and ultimately its fluidic compression in a convergent duct. The concept theoretically relies upon the so called 'Simple T 0 change' transformation, according to which, in a Supersonic Flow at constant cross section and without mechanical dissipation, a decrease in the gas stagnation temperature (T 0 ) will turn into an increase of its stagnation pressure. The paper discusses the feasibility of such a process, focusing on a specific conceptual application to a subatmospheric pressure, high temperature Brayton cycle getting to the conclusion that, even with the materials technology limitations, there is the potential for significant improvement of the actual thermodynamic cycle efficiency. (author). 6 figs.,1 tab., 2 refs

  8. Thermodynamic and economic analysis on geothermal integrated combined-cycle power plants

    International Nuclear Information System (INIS)

    Bettocchi, R.; Cantore, G.; Negri di Montenegro, G.; Gadda, E.

    1992-01-01

    This paper considers geothermal integrated power plants obtained matching a geothermal plant with, a two pressure level combined plant. The purpose of the paper is the evaluation of thermodynamic and economic aspects on geothermal integrated combined-cycle power plant and a comparison with conventional solutions. The results show that the integrated combined plant power is greater than the sum of combined cycle and geothermal plant powers considered separately and that the integrated plant can offer economic benefits reaching the 16% of the total capital required

  9. Minimization of the LCA impact of thermodynamic cycles using a combined simulation-optimization approach

    International Nuclear Information System (INIS)

    Brunet, Robert; Cortés, Daniel; Guillén-Gosálbez, Gonzalo; Jiménez, Laureano; Boer, Dieter

    2012-01-01

    This work presents a computational approach for the simultaneous minimization of the total cost and environmental impact of thermodynamic cycles. Our method combines process simulation, multi-objective optimization and life cycle assessment (LCA) within a unified framework that identifies in a systematic manner optimal design and operating conditions according to several economic and LCA impacts. Our approach takes advantages of the complementary strengths of process simulation (in which mass, energy balances and thermodynamic calculations are implemented in an easy manner) and rigorous deterministic optimization tools. We demonstrate the capabilities of this strategy by means of two case studies in which we address the design of a 10 MW Rankine cycle modeled in Aspen Hysys, and a 90 kW ammonia-water absorption cooling cycle implemented in Aspen Plus. Numerical results show that it is possible to achieve environmental and cost savings using our rigorous approach. - Highlights: ► Novel framework for the optimal design of thermdoynamic cycles. ► Combined use of simulation and optimization tools. ► Optimal design and operating conditions according to several economic and LCA impacts. ► Design of a 10MW Rankine cycle in Aspen Hysys, and a 90kW absorption cycle in Aspen Plus.

  10. A study on different thermodynamic cycle schemes coupled with a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Qu, Xinhe; Yang, Xiaoyong; Wang, Jie

    2017-01-01

    Highlights: • The features of three different power generation schemes, including closed Brayton cycle, non-reheating combined cycle and reheating combined cycle, coupled with high temperature gas-cooled reactor (HTGR) were investigated and compared. • The effects and mechanism of reactor core outlet temperature, compression ratio and other key parameters over cycle characteristics were analyzed by the thermodynamic models.. • It is found that reheated combined cycle has the highest efficiency. Reactor outlet temperature and main steam parameters are key factors to improve the cycle’s performance. - Abstract: With gradual increase in reactor outlet temperature, the efficient power conversion technology has become one of developing trends of (very) high temperature gas-cooled reactors (HTGRs). In this paper, different cycle power generation schemes for HTGRs were systematically studied. Physical and mathematical models were established for these three cycle schemes: closed Brayton cycle, simple combined cycle, and reheated combined cycle. The effects and mechanism of key parameters such as reactor core outlet temperature, reactor core inlet temperature and compression ratio on the features of these cycles were analyzed. Then, optimization results were given with engineering restrictive conditions, including pinch point temperature differences. Results revealed that within the temperature range of HTGRs (700–900 °C), the reheated combined cycle had the highest efficiency, while the simple combined cycle had the lowest efficiency (900 °C). The efficiencies of the closed Brayton cycle, simple combined cycle and reheated combined cycle are 49.5%, 46.6% and 50.1%, respectively. These results provide insights on the different schemes of these cycles, and reveal the effects of key parameters on performance of these cycles. It could be helpful to understand and develop a combined cycle coupled with a high temperature reactor in the future.

  11. THERMODYNAMIC ANALYSIS AND SIMULATION OF A NEW COMBINED POWER AND REFRIGERATION CYCLE USING ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    Hossein Rezvantalab

    2011-01-01

    Full Text Available In this study, a new combined power and refrigeration cycle is proposed, which combines the Rankine and absorption refrigeration cycles. Using a binary ammonia-water mixture as the working fluid, this combined cycle produces both power and refrigeration output simultaneously by employing only one external heat source. In order to achieve the highest possible exergy efficiency, a secondary turbine is inserted to expand the hot weak solution leaving the boiler. Moreover, an artificial neural network (ANN is used to simulate the thermodynamic properties and the relationship between the input thermodynamic variables on the cycle performance. It is shown that turbine inlet pressure, as well as heat source and refrigeration temperatures have significant effects on the net power output, refrigeration output and exergy efficiency of the combined cycle. In addition, the results of ANN are in excellent agreement with the mathematical simulation and cover a wider range for evaluation of cycle performance.

  12. Investigating the effect of several thermodynamic parameters on exergy destruction in components of a tri-generation cycle

    International Nuclear Information System (INIS)

    Salehzadeh, A.; Khoshbakhti Saray, R.; JalaliVahid, D.

    2013-01-01

    Multiple energy generating cycles such as tri-generation cycles, which produce heat and cold in addition to power through burning of a primary fuel, have increasingly been used in recent decades. On the other hand, advanced exergy analysis of thermodynamic systems by splitting exergy destruction into endogenous and exogenous parts identifies internal irreversibilities of each of the components and the effect of these irreversibilities on the performance of other components. Therefore, main sources of exergy destruction in cycles can be highlighted and useful recommendations in order to improve the performance of thermodynamic cycles can be presented. In the present work, a tri-generation cycle with 100 MW power production, 70 MW heat and 9 MW cooling capacity is considered. For this tri-generation cycle, effects of various thermodynamic parameters on the amount of endogenous and exogenous exergy destructions, exergy loss and the amount of fuel consumption, are investigated. The results indicate that, increasing compressor pressure ratio, pre-heater outlet temperature and excess air leads to better combustion and lower exergy loss and fuel consumption. Increasing the mass flow rate of steam generator, while keeping the cycle outlet temperature constant and considering cooling capacity variable, lead to increase the first- and second-law efficiencies of the cycle. - Highlights: ► Advanced exergy analysis is used to analyze a tri-generation cycle. ► Increasing compressor pressure ratio leads to lower exergy loss and fuel consumption. ► Exergy loss is lowered by increasing pre-heater outlet temperature. ► Increasing the air flow rate of the cycle improves the performance of the cycle

  13. Thermodynamic analysis of a new dual evaporator CO2 transcritical refrigeration cycle

    Science.gov (United States)

    Abdellaoui, Ezzaalouni Yathreb; Kairouani, Lakdar Kairouani

    2017-03-01

    In this work, a new dual-evaporator CO2 transcritical refrigeration cycle with two ejectors is proposed. In this new system, we proposed to recover the lost energy of condensation coming off the gas cooler and operate the refrigeration cycle ejector free and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analysis. The simulation results for the modified cycle indicate more effective system performance improvement than the single ejector in the CO2 vapor compression cycle using ejector as an expander ranging up to 46%. The exergetic analysis for this system is made. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system.

  14. Thermodynamic analysis of a new dual evaporator CO2 transcritical refrigeration cycle

    Directory of Open Access Journals (Sweden)

    Abdellaoui Ezzaalouni Yathreb

    2017-03-01

    Full Text Available In this work, a new dual-evaporator CO2 transcritical refrigeration cycle with two ejectors is proposed. In this new system, we proposed to recover the lost energy of condensation coming off the gas cooler and operate the refrigeration cycle ejector free and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analysis. The simulation results for the modified cycle indicate more effective system performance improvement than the single ejector in the CO2 vapor compression cycle using ejector as an expander ranging up to 46%. The exergetic analysis for this system is made. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system.

  15. Thermodynamic modelling of a recompression CO_2 power cycle for low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Banik, Shubham; Ray, Satyaki; De, Sudipta

    2016-01-01

    Highlights: • Thermodynamic model for recompression T-CO_2 is developed. • Energetic and exergetic analysis compared with S-CO_2 and Reg. Brayton cycle. • Maximum efficiency of 13.6% is obtained for T-CO_2 cycle. • Optimum recompression ratio of 0.48 is obtained for minimum irreversibility. • Reg. Brayton has better efficiency, T-CO_2 offers minimum irreversibility. - Abstract: Due to the rising prices of conventional fossil fuels, increasing the overall thermal efficiency of a power plant is essential. One way of doing this is waste heat recovery. This recovery is most difficult for low temperature waste heat, below 240 °C, which also covers majority of the waste heat source. Carbon dioxide, with its low critical temperature and pressure, offers an advantage over ozone-depleting refrigerants used in Organic Rankine Cycles (ORCs) and hence is most suitable for the purpose. This paper introduces parametric optimization of a transcritical carbon dioxide (T-CO_2) power cycle which recompresses part of the total mass flow of working fluid before entering the precooler, thereby showing potential for higher cycle efficiency. Thermodynamic model for a recompression T-CO_2 power cycle has been developed with waste heat source of 2000 kW and at a temperature of 200 °C. Results obtained from this model are analysed to estimate effects on energetic and exergetic performances of the power cycle with varying pressure and mass recompression ratio. Higher pressure ratio always improves thermodynamic performance of the cycle – both energetic and exergetic. Higher recompression ratio also increases exergetic efficiency of the cycle. However, it increases energy efficiency, only if precooler inlet temperature remains constant. Maximum thermal efficiency of the T-CO_2 cycle with a recompression ratio of 0.26 has been found to be 13.6%. To minimize total irreversibility of the cycle, an optimum ratio of 0.48 was found to be suitable.

  16. Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine

    International Nuclear Information System (INIS)

    Dehghani Firoozabadi, M.; Shahbakhti, M.; Koch, C.R.; Jazayeri, S.A.

    2013-01-01

    Highlights: • First thermodynamic model in the literature to predict exhaust temperature in HCCI engines. • The model can be used for integrated control of HCCI combustion and exhaust temperature. • The model is experimentally validated at over 300 steady state and transient conditions. • Results show a good agreement between predicted and measured exhaust temperatures. • Sensitivity of exhaust gas temperature to variation of engine variables is shown. - Abstract: Model-based control of Homogenous Charge Compression Ignition (HCCI) engine exhaust temperature is a viable solution to optimize efficiency of both engine and the exhaust aftertreatment system. Low exhaust temperature in HCCI engines can limit the abatement of hydrocarbon (HC) and carbon monoxide (CO) emissions in an exhaust aftertreatment system. A physical–empirical model is described for control of exhaust temperature in HCCI engines. This model captures cycle-to-cycle dynamics affecting exhaust temperature and is based on thermodynamic relations and semi-empirical correlations. It incorporates intake and exhaust gas flow dynamics, residual gas mixing, and fuel burn rate and is validated with experimental data from a single cylinder engine at over 300 steady state and transient conditions. The validation results indicate a good agreement between predicted and measured exhaust gas temperature

  17. Improved Estimates of Thermodynamic Parameters

    Science.gov (United States)

    Lawson, D. D.

    1982-01-01

    Techniques refined for estimating heat of vaporization and other parameters from molecular structure. Using parabolic equation with three adjustable parameters, heat of vaporization can be used to estimate boiling point, and vice versa. Boiling points and vapor pressures for some nonpolar liquids were estimated by improved method and compared with previously reported values. Technique for estimating thermodynamic parameters should make it easier for engineers to choose among candidate heat-exchange fluids for thermochemical cycles.

  18. Optimum design and thermodynamic analysis of a gas turbine and ORC combined cycle with recuperators

    International Nuclear Information System (INIS)

    Cao, Yue; Gao, Yike; Zheng, Ya; Dai, Yiping

    2016-01-01

    Highlights: • A GT-ORC combined cycle with recuperators was designed. • The effect of the ORC turbine inlet pressure on the combined cycle was examined. • Toluene was a more suitable working fluid for the GT-ORC combined cycle. • The GT-ORC combined cycle performed better than the GT-Rankine combined cycle. • The sensitivity analysis to the ambient temperature was completed. - Abstract: Gas turbines are widely used in distributed power generation because of their high efficiency, low pollution and low operational cost. To further utilize the waste heat from gas turbines, an organic Rankine cycle (ORC) was proposed as the bottoming cycle for gas turbines in this paper. Two recuperators were coupled with the combined cycle to increase the thermal efficiency, and aromatics were chosen as the working fluid for the bottoming cycle. This paper focused on the optimum design and thermodynamic analysis of the gas turbine and ORC (GT-ORC) combined cycle. Results showed that the net power and thermal efficiency of the ORC increased with the ORC turbine inlet pressure and achieved optimum values at a specific pressure based on the optimum criteria. Furthermore, compared with the GT-Rankine combined cycle, the GT-ORC combined cycle had better thermodynamic performance. Toluene was a more suitable working fluid for the GT-ORC combined cycle. Moreover, ambient temperature sensitivity simulations concluded that the GT-ORC combined cycle had a maximum thermal efficiency and the combined cycle net power was mainly determined by the topping gas turbine cycle.

  19. Progress in Finite Time Thermodynamic Studies for Internal Combustion Engine Cycles

    Directory of Open Access Journals (Sweden)

    Yanlin Ge

    2016-04-01

    Full Text Available On the basis of introducing the origin and development of finite time thermodynamics (FTT, this paper reviews the progress in FTT optimization for internal combustion engine (ICE cycles from the following four aspects: the studies on the optimum performances of air standard endoreversible (with only the irreversibility of heat resistance and irreversible ICE cycles, including Otto, Diesel, Atkinson, Brayton, Dual, Miller, Porous Medium and Universal cycles with constant specific heats, variable specific heats, and variable specific ratio of the conventional and quantum working fluids (WFs; the studies on the optimum piston motion (OPM trajectories of ICE cycles, including Otto and Diesel cycles with Newtonian and other heat transfer laws; the studies on the performance limits of ICE cycles with non-uniform WF with Newtonian and other heat transfer laws; as well as the studies on the performance simulation of ICE cycles. In the studies, the optimization objectives include work, power, power density, efficiency, entropy generation rate, ecological function, and so on. The further direction for the studies is explored.

  20. Parametric-based thermodynamic analysis of organic Rankine cycle as bottoming cycle for combined-cycle power plant

    International Nuclear Information System (INIS)

    Qureshi, S.; Memon, A.G.; Abbasi, A.F.

    2017-01-01

    In Pakistan, the thermal efficiency of the power plants is low because of a huge share of fuel energy is dumped into the atmosphere as waste heat. The ORC (Organic Rankine Cycle) has been revealed as one of the promising technologies to recover waste heat to enhance the thermal efficiency of the power plant. In current work, ORC is proposed as a second bottoming cycle for existing CCPP (Combined Cycle Power Plant). In order to assess the efficiency of the plant, a thermodynamic model is developed in the ESS (Engineering Equation Solver) software. The developed model is used for parametric analysis to assess the effects of various operating parameters on the system performance. The analysis of results shows that the integration of ORC system with existing CCPP system enhances the overall power output in the range of 150.5-154.58 MW with 0.24-5% enhancement in the efficiency depending on the operating conditions. During the parametric analysis of ORC, it is observed that inlet pressure of the turbine shows a significant effect on the performance of the system as compared to other operating parameters. (author)

  1. Exergetical analysis of combustion, heat transfers, thermodynamical cycles and their applications

    International Nuclear Information System (INIS)

    Buchet, E.

    1983-11-01

    Exergetic analysis allowed to show up and evaluate irreversibilities in combustion, vapor exchanges and thermodynamic cycles, and also to justify processes often used to improve yields of thermal and energetic plants, and among them some more and more complex in cogeneration plants. This analysic method has been applied to thermal or nuclear steam power plant, to gas turbines and to cogeneration [fr

  2. The Carnot cycle and the teaching of thermodynamics: a historical approach

    Science.gov (United States)

    Laranjeiras, Cássio C.; Portela, Sebastião I. C.

    2016-09-01

    The Carnot cycle is a topic that is traditionally present in introductory physics courses dedicated to the teaching of thermodynamics, playing an essential role in introducing the concept of Entropy and the consequent formulation of the second Law. Its effective understanding and contribution to the development of thermodynamics is often hindered, however. Among other things, this is the result of a pragmatic approach, which usually limits itself to presenting the isotherms and adiabatic curves in a P-V diagram and is totally disconnected from the historical fundamentals of Heat Theory. The purpose of this paper is to reveal the potential of an approach to the subject that recovers the historical and social dimensions of scientific knowledge, and to promote reflections about the nature of science (NOS).

  3. Mathematical modeling of the complete thermodynamic cycle of a new Atkinson cycle gas engine

    International Nuclear Information System (INIS)

    Shojaeefard, Mohammad Hassan; Keshavarz, Mojtaba

    2015-01-01

    The Atkinson cycle provides the potential to increase the efficiency of SI engines using overexpansion concept. This also will suggest decrease in CO_2 generation by internal combustion engine. In this study a mathematical modeling of complete thermodynamic cycle of a new two-stroke Atkinson cycle SI engine will be presented. The mathematical modeling is carried out using two-zone combustion analysis in order to make the model predict exhaust emission so that its values could be compared with the values of conventional SI engine. The model also is validated against experimental tests in that increase in efficiency is achieved compared to conventional SI engines. - Highlights: • The complete cycle model for the rotary Atkinson engine was developed. • Comparing the results with experimental data shows good model validity. • The model needs further improvement for the scavenging phase. • There is 5% increment in thermal efficiency with new engine compared to conventional SI engines.

  4. Thermodynamic analysis of a combined-cycle solar thermal power plant with manganese oxide-based thermochemical energy storage

    Science.gov (United States)

    Lei, Qi; Bader, Roman; Kreider, Peter; Lovegrove, Keith; Lipiński, Wojciech

    2017-11-01

    We explore the thermodynamic efficiency of a solar-driven combined cycle power system with manganese oxide-based thermochemical energy storage system. Manganese oxide particles are reduced during the day in an oxygen-lean atmosphere obtained with a fluidized-bed reactor at temperatures in the range of 750-1600°C using concentrated solar energy. Reduced hot particles are stored and re-oxidized during night-time to achieve continuous power plant operation. The steady-state mass and energy conservation equations are solved for all system components to calculate the thermodynamic properties and mass flow rates at all state points in the system, taking into account component irreversibilities. The net power block and overall solar-to-electric energy conversion efficiencies, and the required storage volumes for solids and gases in the storage system are predicted. Preliminary results for a system with 100 MW nominal solar power input at a solar concentration ratio of 3000, designed for constant round-the-clock operation with 8 hours of on-sun and 16 hours of off-sun operation and with manganese oxide particles cycled between 750 and 1600°C yield a net power block efficiency of 60.0% and an overall energy conversion efficiency of 41.3%. Required storage tank sizes for the solids are estimated to be approx. 5-6 times smaller than those of state-of-the-art molten salt systems.

  5. Thermodynamic analysis of heat recovery steam generator in combined cycle power plant

    Directory of Open Access Journals (Sweden)

    Ravi Kumar Naradasu

    2007-01-01

    Full Text Available Combined cycle power plants play an important role in the present energy sector. The main challenge in designing a combined cycle power plant is proper utilization of gas turbine exhaust heat in the steam cycle in order to achieve optimum steam turbine output. Most of the combined cycle developers focused on the gas turbine output and neglected the role of the heat recovery steam generator which strongly affects the overall performance of the combined cycle power plant. The present paper is aimed at optimal utilization of the flue gas recovery heat with different heat recovery steam generator configurations of single pressure and dual pressure. The combined cycle efficiency with different heat recovery steam generator configurations have been analyzed parametrically by using first law and second law of thermodynamics. It is observed that in the dual cycle high pressure steam turbine pressure must be high and low pressure steam turbine pressure must be low for better heat recovery from heat recovery steam generator.

  6. Comparison of Optimal Thermodynamic Models of the Tricarboxylic Acid Cycle from Heterotrophs, Cyanobacteria, and Green Sulfur Bacteria.

    Science.gov (United States)

    Thomas, Dennis G; Jaramillo-Riveri, Sebastian; Baxter, Douglas J; Cannon, William R

    2014-12-26

    We have applied a new stochastic simulation approach to predict the metabolite levels, material flux, and thermodynamic profiles of the oxidative TCA cycles found in E. coli and Synechococcus sp. PCC 7002, and in the reductive TCA cycle typical of chemolithoautotrophs and phototrophic green sulfur bacteria such as Chlorobaculum tepidum. The simulation approach is based on modeling states using statistical thermodynamics and employs an assumption similar to that used in transition state theory. The ability to evaluate the thermodynamics of metabolic pathways allows one to understand the relationship between coupling of energy and material gradients in the environment and the self-organization of stable biological systems, and it is shown that each cycle operates in the direction expected due to its environmental niche. The simulations predict changes in metabolite levels and flux in response to changes in cofactor concentrations that would be hard to predict without an elaborate model based on the law of mass action. In fact, we show that a thermodynamically unfavorable reaction can still have flux in the forward direction when it is part of a reaction network. The ability to predict metabolite levels, energy flow, and material flux should be significant for understanding the dynamics of natural systems and for understanding principles for engineering organisms for production of specialty chemicals.

  7. Thermodynamic analysis of a Rankine cycle applied on a diesel truck engine using steam and organic medium

    International Nuclear Information System (INIS)

    Katsanos, C.O.; Hountalas, D.T.; Pariotis, E.G.

    2012-01-01

    Highlights: ► ORC improves bsfc from 10.7% to 8.4% as engine load increases from 25% to 100%. ► Increasing ORC high pressure increases thermodynamic efficiency and power output. ► Operating at high pressure the ORC is favorable for the engine cooling system. ► The low temperature values of the ORC favors heat extraction from the EGR gas. ► The impact of the exhaust gas heat exchanger on engine backpressure is limited. - Abstract: A theoretical study is conducted to investigate the potential improvement of the overall efficiency of a heavy-duty truck diesel engine equipped with a Rankine bottoming cycle for recovering heat from the exhaust gas. To this scope, a newly developed thermodynamic simulation model has been used, considering two different working media: water and the refrigerant R245ca. As revealed from the analysis, due to the variation of exhaust gas temperature with engine load it is necessary to modify the Rankine cycle parameters i.e. high pressure and superheated vapor temperature. For this reason, a new calculation procedure is applied for the estimation of the optimum Rankine cycle parameters at each operating condition. The calculation algorithm is conducted by taking certain design criteria into account, such as the exhaust gas heat exchanger size and its pinch point requirement. From the comparative evaluation between the two working media examined, using the optimum configuration of the cycle for each operating condition, it has been revealed that the brake specific fuel consumption improvement ranges from 10.2% (at 25% engine load) to 8.5% (at 100% engine load) for R245ca and 6.1% (at 25% engine load) to 7.5% (at 100% engine load) for water.

  8. The thermodynamics of pyrochemical processes for liquid metal reactor fuel cycles

    International Nuclear Information System (INIS)

    Johnson, I.

    1987-01-01

    The thermodynamic basis for pyrochemical processes for the recovery and purification of fuel for the liquid metal reactor fuel cycle is described. These processes involve the transport of the uranium and plutonium from one liquid alloy to another through a molten salt. The processes discussed use liquid alloys of cadmium, zinc, and magnesium and molten chloride salts. The oxidation-reduction steps are done either chemically by the use of an auxiliary redox couple or electrochemically by the use of an external electrical supply. The same basic thermodynamics apply to both the salt transport and the electrotransport processes. Large deviations from ideal solution behavior of the actinides and lanthanides in the liquid alloys have a major influence on the solubilities and the performance of both the salt transport and electrotransport processes. Separation of plutonium and uranium from each other and decontamination from the more noble fission product elements can be achieved using both transport processes. The thermodynamic analysis is used to make process design computations for different process conditions

  9. Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine

    Science.gov (United States)

    Braun, R.; Kusterer, K.; Sugimoto, T.; Tanimura, K.; Bohn, D.

    2013-12-01

    different working fluids and ORC conditions have been analyzed in order to evaluate the best configuration. The investigations have been performed by application of improved thermodynamic and process analysis tools, which consider the real gas behavior of the analyzed fluids. The results show that by combined operation of the solar thermal gas turbine and the ORC, the combined cycle efficiency is approximately 4%-points higher than in the solar-thermal gas turbine cycle.

  10. FINITE TIME THERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE ATKINSON CYCLE

    Directory of Open Access Journals (Sweden)

    Yanlin Ge

    2010-01-01

    Full Text Available Performance of an air-standard Atkinson cycle is analyzed by using finite-time thermodynamics. The irreversible cycle model which is more close to practice is founded. In this model, the non-linear relation between the specific heats of working fluid and its temperature, the friction loss computed according to the mean velocity of the piston, the internal irreversibility described by using the compression and expansion efficiencies, and heat transfer loss are considered. The relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, as well as the optimal relation between power output and the efficiency of the cycle are derived by detailed numerical examples. Moreover, the effects of internal irreversibility, heat transfer loss and friction loss on the cycle performance are analyzed. The results obtained in this paper may provide guidelines for the design of practical internal combustion engines.

  11. Models for optimum thermo-ecological criteria of actual thermal cycles

    Directory of Open Access Journals (Sweden)

    Açikkalp Emin

    2013-01-01

    Full Text Available In this study, the ecological optimization point of irreversible thermal cycles (refrigerator, heat pump and power cycles was investigated. The importance of ecological optimization is to propose a way to use fuels and energy source more efficiently because of an increasing energy need and environmental pollution. It provides this by maximizing obtained (or minimizing supplied work and minimizing entropy generation for irreversible (actual thermal cycles. In this research, ecological optimization was defined for all basic irreversible thermal cycles, by using the first and second laws of thermodynamics. Finally, the ecological optimization was defined in thermodynamic cycles and results were given to show the effects of the cycles’ ecological optimization point, efficiency, COP and power output (or input, and exergy destruction.

  12. Development of a novel rotary desiccant cooling cycle with isothermal dehumidification and regenerative evaporative cooling using thermodynamic analysis method

    International Nuclear Information System (INIS)

    La, D.; Li, Y.; Dai, Y.J.; Ge, T.S.; Wang, R.Z.

    2012-01-01

    A novel rotary desiccant cooling cycle is proposed and studied using thermodynamic analysis method. The proposed cycle integrates the technologies of isothermal dehumidification and regenerative evaporative cooling, which are beneficial for irreversibility reduction. Thermodynamic investigation on the basic rotary desiccant cooling cycle shows that the exergy efficiency of the basic cycle is only 8.6%. The processes of desiccant dehumidification and evaporative cooling, which are essentially the basis for rotary desiccant cooling, affect the exergy performance of the cycle greatly and account for about one third of the total exergy destruction. The proposed cycle has potential to improve rotary desiccant cooling technology. It is advantageous in terms of both heat source utilization rate and space cooling capacity. The exergy efficiency of the new cycle is enhanced significantly to 29.1%, which is about three times that of the ventilation cycle, and 60% higher than that of the two-stage rotary desiccant cooling cycle. Furthermore, the regeneration temperature is reduced from 80 °C to about 60 °C. The corresponding specific exergy of the supply air is increased by nearly 30% when compared with the conventional cycles. -- Highlights: ► A novel rotary desiccant cooling cycle is developed using thermodynamic analysis method. ► Isothermal dehumidification and regenerative evaporative cooling have been integrated. ► The cycle is advantageous in terms of both heat source utilization rate and space cooling capacity. ► Cascaded energy utilization is beneficial for cycle performance improvement. ► Upper limits, which will be helpful to practical design and optimization, are obtained.

  13. Multi-objective thermodynamic optimization of combined Brayton and inverse Brayton cycles using genetic algorithms

    International Nuclear Information System (INIS)

    Besarati, S.M.; Atashkari, K.; Jamali, A.; Hajiloo, A.; Nariman-zadeh, N.

    2010-01-01

    This paper presents a simultaneous optimization study of two outputs performance of a previously proposed combined Brayton and inverse Brayton cycles. It has been carried out by varying the upper cycle pressure ratio, the expansion pressure of the bottom cycle and using variable, above atmospheric, bottom cycle inlet pressure. Multi-objective genetic algorithms are used for Pareto approach optimization of the cycle outputs. The two important conflicting thermodynamic objectives that have been considered in this work are net specific work (w s ) and thermal efficiency (η th ). It is shown that some interesting features among optimal objective functions and decision variables involved in the Baryton and inverse Brayton cycles can be discovered consequently.

  14. Thermodynamic analysis of a refrigeration cycle using regenerative heat exchanger - suction/liquid line

    Energy Technology Data Exchange (ETDEWEB)

    Tebchirani, Tarik Linhares; Matos, Rudmar Serafim [Pos graduate Programme in Mechanical Engineering (PGMEC), Universidade Federal do Parana, Curitiba, PR (Brazil)], e-mails: tarik@utfpr.edu.br, rudmar@demec.ufpr.br

    2010-07-01

    This paper presents results from thermodynamic comparison of a conventional compression cycle and a steam cycle that uses a heat exchanger countercurrent (liquid line/suction line) in an air conditioning system split. The main objective is to study the relationship between the COP and the mass variation of refrigerant to the effectiveness of the heat exchanger. The papers presented in the literature discuss the matter in a theoretical way, are summarized in tables of rare loss statements without specification of methods. The methodology of work is based on testing of an air conditioner operating conventionally and also with the heat exchanger for the determination of values and parameters of interest. The tests were performed in a thermal chamber with temperature controlled and equipped with a data acquisition system for reading and storage results. The refrigerant was R22. Besides making possible an assessment of the feasibility of cost-benefit thermodynamics, it is suggested a different method for installing the equipment type split. (author)

  15. Thermodynamic analysis of an Organic Rankine Cycle (ORC) based on industrial data

    International Nuclear Information System (INIS)

    Tumen Ozdil, N. Filiz; Segmen, M. Rıdvan; Tantekin, Atakan

    2015-01-01

    In this study, thermodynamic analysis of an Organic Rankine Cycle (ORC) is presented in a local power plant that is located southern of Turkey. The system that is analyzed includes an evaporator, a turbine, a condenser, a pump and a generator as components. System components are analyzed separately using actual plant data and performance cycle. The relationship between pinch point and exergy efficiency is observed. As the pinch point temperature decreases, the exergy efficiency increases due to low exergy destruction rate. The energy and exergy efficiencies of the ORC are calculated as 9.96% and 47.22%, respectively for saturated liquid form which is the real condition. In order to show the effect of the water phase of the evaporator inlet, exergy destruction and exergy efficiencies of components and overall system are calculated for different water phases. The exergy efficiency of the ORC is calculated as 41.04% for water mixture form which has quality 0.3. On the other hand, it is found as 40.29% for water mixture form which has quality 0.7. Lastly, it is calculated as 39.95% for saturated vapor form. Moreover, exergy destruction rates of the system are 520.01 kW for saturated liquid form, 598.39 kW for water mixture form which has quality 0.3, 609.5 kW for water mixture form which has quality 0.7 and 614.63 kW for saturated vapor form. The analyses show that evaporator has important effect on the system efficiency in terms of exergy rate. The evaporator is investigated particularly in order to improve the performance of the overall system. - Highlights: • Energy and exergy analysis of an Organic Rankine Cycle (ORC). • The main reasons of the irreversibility in the ORC. • Determination of exergy efficiency for the different water phases in the evaporator inlet. • Determination of the effect of the ambient temperature on ORC efficiency.

  16. Thermodynamic performance of an auto-cascade ejector refrigeration cycle with mixed refrigerant R32 + R236fa

    International Nuclear Information System (INIS)

    Tan, Yingying; Wang, Lin; Liang, Kunfeng

    2015-01-01

    In this paper, an auto-cascade ejector refrigeration cycle (ACERC) is proposed to obtain lower refrigeration temperature based on conventional ejector refrigeration and auto-cascade refrigeration principle. The thermodynamic performance of ACERC is investigated theoretically. The zeotropic refrigerant mixture R32 + R236fa is used as its working fluid. A parametric analysis is conducted to evaluate the effects of some thermodynamic parameters on the cycle performance. The study shows that refrigerant mixture composition, condenser outlet temperature and evaporation pressure have effects on performance of ACERC. The theoretical results also indicate that the ACERC can achieve the lowest refrigeration temperature at the temperature level of −30 °C. The application of zeotropic refrigerant mixture auto-cascade refrigeration in the ejector refrigeration cycle can provide a new way to obtain lower refrigeration temperature utilizing low-grade thermal energy. - Highlights: • An auto-cascade ejector refrigerator with R32 + R236fa mixed refrigerant is proposed. • The cycle can obtain a refrigeration temperature at −30 °C temperature range. • The effects of some thermodynamic parameters on the cycle performance are evaluated

  17. Thermodynamic analysis of an organic rankine cycle using a tubular solar cavity receiver

    International Nuclear Information System (INIS)

    Loni, R.; Kasaeian, A.B.; Mahian, O.; Sahin, A.Z.

    2016-01-01

    Highlights: • A non-regenerative Organic Rankine Cycle has been analyzed. • R113, R601, R11, R141b, Ethanol and Methanol were used as the working fluid. • A parabolic dish concentrator with a square prismatic cavity receiver was used. • Thermal efficiency, second law efficiency, and net power output were analyzed. - Abstract: In this study, a non-regenerative Organic Rankine Cycle (ORC) has been thermodynamically analyzed under superheated conditions, constant evaporator pressure of 2.5 MPa, and condenser temperature of 300 K. R113, R601, R11, R141b, Ethanol and Methanol were employed as the working fluid. A parabolic dish concentrator with a square prismatic tubular cavity receiver was used as the heat source of the ORC system. The effects of the tube diameter, the cavity depth, and the solar irradiation on the thermodynamic performance of the selected working fluid were investigated. Some thermodynamic parameters were analyzed in this study. These thermodynamic parameters included the thermal efficiency, second law efficiency, total irreversibility, availability ratio, mass flow rate, and net power output. The results showed that, among the selected working fluids, methanol had the highest thermal efficiency, net power output, second law efficiency, and availability ratio in the range of turbine inlet temperature (TIT) considered. On the other hand, methanol had the smallest total irreversibility in the same range of TIT. The results showed also that mass flow rate and consequently the net power output increased for higher solar irradiation, smaller tube diameter, and for the case of cubical cavity receiver (i.e. cavity depth h equal to the receiver aperture side length a).

  18. Thermodynamics

    CERN Document Server

    Fermi, Enrico

    1956-01-01

    Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr

  19. Thermodynamic analysis of a combined-cycle solar thermal power plant with manganese oxide-based thermochemical energy storage

    Directory of Open Access Journals (Sweden)

    Lei Qi

    2017-01-01

    Full Text Available We explore the thermodynamic efficiency of a solar-driven combined cycle power system with manganese oxide-based thermochemical energy storage system. Manganese oxide particles are reduced during the day in an oxygen-lean atmosphere obtained with a fluidized-bed reactor at temperatures in the range of 750–1600°C using concentrated solar energy. Reduced hot particles are stored and re-oxidized during night-time to achieve continuous power plant operation. The steady-state mass and energy conservation equations are solved for all system components to calculate the thermodynamic properties and mass flow rates at all state points in the system, taking into account component irreversibilities. The net power block and overall solar-to-electric energy conversion efficiencies, and the required storage volumes for solids and gases in the storage system are predicted. Preliminary results for a system with 100 MW nominal solar power input at a solar concentration ratio of 3000, designed for constant round-the-clock operation with 8 hours of on-sun and 16 hours of off-sun operation and with manganese oxide particles cycled between 750 and 1600°C yield a net power block efficiency of 60.0% and an overall energy conversion efficiency of 41.3%. Required storage tank sizes for the solids are estimated to be approx. 5–6 times smaller than those of state-of-the-art molten salt systems.

  20. Thermodynamic analysis of single-stage and multi-stage adsorption refrigeration cycles with activated carbon–ammonia working pair

    International Nuclear Information System (INIS)

    Xu, S.Z.; Wang, L.W.; Wang, R.Z.

    2016-01-01

    Highlights: • Activated carbon–ammonia multi-stage adsorption refrigerator was analyzed. • COP, exergetic efficiency and entropy production of cycles were calculated. • Single-stage cycle usually has the advantages of simple structure and high COP. • Multi-stage cycles adapt to critical conditions better than single-stage cycle. • Boundary conditions for choosing optimal cycle were summarized as tables. - Abstract: Activated carbon–ammonia multi-stage adsorption refrigeration cycle was analyzed in this article, which realized deep-freezing for evaporating temperature under −18 °C with heating source temperature much lower than 100 °C. Cycle mathematical models for single, two and three-stage cycles were established on the basis of thorough thermodynamic analysis. According to simulation results of thermodynamic evaluation indicators such as COP (coefficient of performance), exergetic efficiency and cycle entropy production, multi-stage cycle adapts to high condensing temperature, low evaporating temperature and low heating source temperature well. Proposed cycle with selected working pair can theoretically work under very severe conditions, such as −25 °C evaporating temperature, 40 °C condensing temperature, and 70 °C heating source temperature, but under these working conditions it has the drawback of low cycle adsorption quantity. It was found that both COP and exergetic efficiency are of great reference value in the choice of cycle, whereas entropy production is not so useful for cycle stage selection. Finally, the application boundary conditions of single-stage, two-stage, and three-stage cycles were summarized as tables according to the simulation results, which provides reference for choosing optimal cycle under different conditions.

  1. Thermodynamic analyses and optimization of a recompression N2O Brayton power cycle

    International Nuclear Information System (INIS)

    Sarkar, Jahar

    2010-01-01

    Thermodynamic analyses and simultaneous optimizations of cycle pressure ratio and flow split fraction to get maximum efficiency of N 2 O recompression Brayton cycle have been performed to study the effects of various operating conditions and component performances. The energetic as well as exergetic performance comparison with its counterpart recompression CO 2 cycle is presented as well. Optimization shows that the optimum minimum cycle pressure is close to pseudo-critical pressure for supercritical cycle, whereas saturation pressure corresponding to minimum cycle temperature for condensation cycle. Results show that the maximum thermal efficiency increases with decrease in minimum cycle temperature and increase in both maximum cycle pressure and temperature. Influence of turbine performance on cycle efficiency is more compared to that of compressors, HTR (high temperature recuperator) and LTR (low temperature recuperator). Comparison shows that N 2 O gives better thermal efficiency (maximum deviation of 1.2%) as well as second law efficiency compared to CO 2 for studied operating conditions. Component wise irreversibility distribution shows the similar trends for both working fluids. Present study reveals that N 2 O is a potential option for the recompression power cycle.

  2. Thermodynamic Stability of Ice II and Its Hydrogen-Disordered Counterpart: Role of Zero-Point Energy.

    Science.gov (United States)

    Nakamura, Tatsuya; Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki

    2016-03-03

    We investigate why no hydrogen-disordered form of ice II has been found in nature despite the fact that most of hydrogen-ordered ices have hydrogen-disordered counterparts. The thermodynamic stability of a set of hydrogen-ordered ice II variants relative to ice II is evaluated theoretically. It is found that ice II is more stable than the disordered variants so generated as to satisfy the simple ice rule due to the lower zero-point energy as well as the pair interaction energy. The residual entropy of the disordered ice II phase gradually compensates the unfavorable free energy with increasing temperature. The crossover, however, occurs at a high temperature well above the melting point of ice III. Consequently, the hydrogen-disordered phase does not exist in nature. The thermodynamic stability of partially hydrogen-disordered ices is also scrutinized by examining the free-energy components of several variants obtained by systematic inversion of OH directions in ice II. The potential energy of one variant is lower than that of the ice II structure, but its Gibbs free energy is slightly higher than that of ice II due to the zero-point energy. The slight difference in the thermodynamic stability leaves the possibility of the partial hydrogen-disorder in real ice II.

  3. Magnetic refrigeration cycle analysis using selected thermodynamic property characterizations for gadolinium gallium garnet

    International Nuclear Information System (INIS)

    Murphy, R.W.

    1992-01-01

    Magneto-thermodynamic property characterizations were selected, adapted, and compared to material property data for gadolinium gallium garnet in the temperature range 4--40 K and magnetic field range 0--6 T. The most appropriate formulations were incorporated into a model in which methods similar to those previously developed for other materials and temperature ranges were used to make limitation and relative performance assessments of Carnot, ideal regenerative, and pseudo-constant field regenerative cycles. Analysis showed that although Carnot cycle limitations on available temperature lift for gadolinium gallium garnet are not as severe as those for materials previously examined, substantial improvements in cooling capacity/temperature lift combinations can be achieved using regenerative cycles within specified fields limits if significant loss mechanisms are mitigated

  4. Statistical thermodynamics -- A tool for understanding point defects in intermetallic compounds

    International Nuclear Information System (INIS)

    Ipser, H.; Krachler, R.

    1996-01-01

    The principles of the derivation of statistical-thermodynamic models to interpret the compositional variation of thermodynamic properties in non-stoichiometric intermetallic compounds are discussed. Two types of models are distinguished: the Bragg-Williams type, where the total energy of the crystal is taken as the sum of the interaction energies of all nearest-neighbor pairs of atoms, and the Wagner-Schottky type, where the internal energy, the volume, and the vibrational entropy of the crystal are assumed to be linear functions of the numbers of atoms or vacancies on the different sublattices. A Wagner-Schottky type model is used for the description of two examples with different crystal structures: for β'-FeAl (with B2-structure) defect concentrations and their variation with composition are derived from the results of measurements of the aluminum vapor pressure, the resulting values are compared with results of other independent experimental methods; for Rh 3 Te 4 (with an NiAs-derivative structure) the defect mechanism responsible for non-stoichiometry is worked out by application of a theoretical model to the results of tellurium vapor pressure measurements. In addition it is shown that the shape of the activity curve indicates a certain sequence of superstructures. In principle, there are no limitations to the application of statistical thermodynamics to experimental thermodynamic data as long as these are available with sufficient accuracy, and as long as it is ensured that the distribution of the point defects is truly random, i.e. that there are no aggregates of defects

  5. Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Kim, Kyung Chun

    2014-01-01

    Thermodynamic analysis of a combined cycle using a low grade heat source and LNG cold energy was carried out. The combined cycle consisted of an ammonia–water Rankine cycle with and without regeneration and a LNG Rankine cycle. A parametric study was conducted to examine the effects of the key parameters, such as ammonia mass fraction, turbine inlet pressure, condensation temperature. The effects of the ammonia mass fraction on the temperature distributions of the hot and cold streams in heat exchangers were also investigated. The characteristic diagram of the exergy efficiency and heat transfer capability was proposed to consider the system performance and expenditure of the heat exchangers simultaneously. The simulation showed that the system performance is influenced significantly by the parameters with the ammonia mass fraction having largest effect. The net work output of the ammonia–water cycle may have a peak value or increase monotonically with increasing ammonia mass fraction, which depends on turbine inlet pressure or condensation temperature. The exergy efficiency may decrease or increase or have a peak value with turbine inlet pressure depending on the ammonia mass fraction. - Highlights: • Thermodynamic analysis was performed for a combined cycle utilizing LNG cold energy. • Ammonia–water Rankine cycle and LNG Rankine cycle was combined. • A parametric study was conducted to examine the effects of the key parameters. • Characteristics of the exergy efficiency and heat transfer capability were proposed. • The system performance was influenced significantly by the ammonia mass fraction

  6. Thermodynamics of the CO2–Absorption/Desorption Section in the Integrated Gasifying Combined cycle — II. Analysis

    Directory of Open Access Journals (Sweden)

    Jaroslav KOZACZKA

    2012-06-01

    Full Text Available The thermodynamic analysis of the absorption/desorption section of the ICGC–cycle has been presented using the Second Law with special emphasis on the thermodynamic effectivity concept and usability for complex systems investigations. Essential problems have been discussed based on the classical bibliographical items on the subject. Numerical calculations have been accomplished using results obtained in the first part, which contained absorption and desorption modeling approach oriented onto thermodynamic analyzes. Additionally the special properties of dilute solutions, especially the CO2/water system, have been presented and the problem of the solute chemical concentration exergy change suggested.

  7. Analysis and optimization of three main organic Rankine cycle configurations using a set of working fluids with different thermodynamic behaviors

    Science.gov (United States)

    Hamdi, Basma; Mabrouk, Mohamed Tahar; Kairouani, Lakdar; Kheiri, Abdelhamid

    2017-06-01

    Different configurations of organic Rankine cycle (ORC) systems are potential thermodynamic concepts for power generation from low grade heat. The aim of this work is to investigate and optimize the performances of the three main ORC systems configurations: basic ORC, ORC with internal heat exchange (IHE) and regenerative ORC. The evaluation for those configurations was performed using seven working fluids with typical different thermodynamic behaviours (R245fa, R601a, R600a, R227ea, R134a, R1234ze and R1234yf). The optimization has been performed using a genetic algorithm under a comprehensive set of operative parameters such as the fluid evaporating temperature, the fraction of flow rate or the pressure at the steam extracting point in the turbine. Results show that there is no general best ORC configuration for all those fluids. However, there is a suitable configuration for each fluid. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  8. Land use impact evaluation in life cycle assessment based on ecosystem thermodynamics

    International Nuclear Information System (INIS)

    Wagendorp, Tim; Gulinck, Hubert; Coppin, Pol; Muys, Bart

    2006-01-01

    Life Cycle Assessment (LCA) studies of products with a major part of their life cycle in biological production systems (i.e. forestry and agriculture) are often incomplete because the assessment of the land use impact is not operational. Most method proposals include the quality of the land in a descriptive way using rank scores for an arbitrarily selected set of indicators. This paper first offers a theoretical framework for the selection of suitable indicators for land use impact assessment, based on ecosystem thermodynamics. According to recent theories on the thermodynamics of open systems, a goal function of ecosystems is to maximize the dissipation of exogenic exergy fluxes by maximizing the internal exergy storage under form of biomass, biodiversity and complex trophical networks. Human impact may decrease this ecosystem exergy level by simplification, i.e. decreasing biomass and destroying internal complexity. Within this theoretical framework, we then studied possibilities for assessing the land use impact in a more direct way by measuring the ecosystems' capacity to dissipate solar exergy. Measuring ecosystem thermal characteristics by using remote sensing techniques was considered a promising tool. Once operational, it could offer a quick and cheap alternative to quantify land use impacts in any terrestrial ecosystem of any size. Recommendations are given for further exploration of this method and for its integration into an ISO compatible LCA framework

  9. A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation

    International Nuclear Information System (INIS)

    Chan, C.W.; Ling-Chin, J.; Roskilly, A.P.

    2013-01-01

    A major cause of energy inefficiency is a result of the generation of waste heat and the lack of suitable technologies for cost-effective utilisation of low grade heat in particular. The market potential for surplus/waste heat from industrial processes in the UK is between 10 TWh and 40 TWh, representing a significant potential resource which has remained unexploited to date. This paper reviews selected technologies suitable for utilisation of waste heat energy, with specific focus on low grade heat, including: (i) chemical heat pumps, such as adsorption and absorption cycles for cooling and heating; (ii) thermodynamic cycles, such as the organic Rankine cycle (ORC), the supercritical Rankine cycle (SRC) and the trilateral cycle (TLC), to produce electricity, with further focus on expander and zeotropic mixtures, and (iii) thermal energy storage, including sensible and latent thermal energy storages and their corresponding media to improve the performance of low grade heat energy systems. - Highlights: ► The review of various thermal technologies for the utilisation of under exploited low grade heat. ► The analyses of the absorption and adsorption heat pumps possibly with performance enhancement additives. ► The analyses of thermal energy storage technologies (latent and sensible) for heat storage. ► The analyses of low temperature thermodynamic cycles to maximise power production.

  10. Thermodynamic performance optimization of the absorption-generation process in an absorption refrigeration cycle

    International Nuclear Information System (INIS)

    Chen, Yi; Han, Wei; Jin, Hongguang

    2016-01-01

    Highlights: • This paper proposes a new thermal compressor model with boost pressure ratio. • The proposed model is an effective way to optimize the absorption-generation process. • Boost pressure ratio is a key parameter in the proposed thermal compressor model. • The optimum boost pressure ratios for two typical refrigeration systems are obtained. - Abstract: The absorption refrigeration cycle is a basic cycle that establishes the systems for utilizing mid-low temperature heat sources. A new thermal compressor model with a key parameter of boost pressure ratio is proposed to optimize the absorption-generation process. The ultimate generation pressure and boost pressure ratio are used to represent the potential and operating conditions of the thermal compressor, respectively. Using the proposed thermal compressor model, the operation mechanism and requirements of the absorption refrigeration system and absorption-compression refrigeration system are elucidated. Furthermore, the two typical heat conversion systems are optimized based on the thermal compressor model. The optimum boost pressure ratios of the absorption refrigeration system and the absorption-compression refrigeration system are 0.5 and 0.75, respectively. For the absorption refrigeration system, the optimum generation temperature is 125.31 °C at the cooling water temperature of 30 °C, which is obtained by simple thermodynamic calculation. The optimized thermodynamic performance of the absorption-compression refrigeration system is 16.7% higher than that of the conventional absorption refrigeration system when the generation temperature is 100 °C. The thermal compressor model proposed in this paper is an effective method for simplifying the optimization of the thermodynamic systems involving an absorption-generation process.

  11. Thermodynamic analysis on theoretical models of cycle combined heat exchange process: The reversible heat exchange process

    International Nuclear Information System (INIS)

    Zhang, Chenghu; Li, Yaping

    2017-01-01

    Concept of reversible heat exchange process as the theoretical model of the cycle combined heat exchanger could be useful to determine thermodynamics characteristics and the limitation values in the isolated heat exchange system. In this study, the classification of the reversible heat exchange processes is presented, and with the numerical method, medium temperature variation tendency and the useful work production and usage in the whole process are investigated by the construction and solution of the mathematical descriptions. Various values of medium inlet temperatures and heat capacity ratio are considered to analyze the effects of process parameters on the outlet temperature lift/drop. The maximum process work transferred from the Carnot cycle region to the reverse cycle region is also researched. Moreover, influence of the separating point between different sub-processes on temperature variation profile and the process work production are analyzed. In addition, the heat-exchange-enhancement-factor is defined to study the enhancement effect of the application of the idealized process in the isolated heat exchange system, and the variation degree of this factor with process parameters change is obtained. The research results of this paper can be a theoretical guidance to construct the cycle combined heat exchange process in the practical system. - Highlights: • A theoretical model of Cycle combined heat exchange process is proposed. • The classification of reversible heat exchange process are presented. • Effects of Inlet temperatures and heat capacity ratio on process are analyzed. • Process work transmission through the whole process is studied. • Heat-exchange-enhancement-factor can be a criteria to express the application effect of the idealized process.

  12. Modeling the nonequilibrium effects in a nonquasi-equilibrium thermodynamic cycle based on steepest entropy ascent and an isothermal-isobaric ensemble

    International Nuclear Information System (INIS)

    Li, Guanchen; Spakovsky, Michael R. von

    2016-01-01

    Conventional first principle approaches for studying nonequilibrium or far-from-equilibrium processes depend on the mechanics of individual particles or quantum states. They also require many details of the mechanical features of a system to arrive at a macroscopic property. In contrast, thermodynamics provides an approach for determining macroscopic property values without going into these details, because the overall effect of particle dynamics results, for example, at stable equilibrium in an invariant pattern of the “Maxwellian distribution”, which in turn leads to macroscopic properties. However, such an approach is not generally applicable to a nonequilibrium process except in the near-equilibrium realm. To adequately address these drawbacks, steepest-entropy-ascent quantum thermodynamics (SEAQT) provides a first principle, thermodynamic-ensemble approach applicable to the entire nonequilibrium realm. Based on prior developments by the authors, this paper applies the SEAQT framework to modeling the nonquasi-equilibrium cycle, which a system with variable volume undergoes. Using the concept of hypoequilibrium state and nonequilibrium intensive properties, this framework provides a complete description of the nonequilibrium evolution in state of the system. Results presented here reveal how nonequilibrium effects influence the performance of the cycle. - Highlights: • First-principles nonequilibrium model of thermodynamic cycles. • Study of thermal efficiency losses due to nonequilibrium effects. • Study of systems undergoing nonquasi-equilibrium processes. • Study of the coupling of system relaxation and interaction with a reservoir.

  13. Applicability of the minimum entropy generation method for optimizing thermodynamic cycles

    Institute of Scientific and Technical Information of China (English)

    Cheng Xue-Tao; Liang Xin-Gang

    2013-01-01

    Entropy generation is often used as a figure of merit in thermodynamic cycle optimizations.In this paper,it is shown that the applicability of the minimum entropy generation method to optimizing output power is conditional.The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power when the total heat into the system of interest is not prescribed.For the cycles whose working medium is heated or cooled by streams with prescribed inlet temperatures and prescribed heat capacity flow rates,it is theoretically proved that both the minimum entropy generation rate and the minimum entropy generation number correspond to the maximum output power when the virtual entropy generation induced by dumping the used streams into the environment is considered.However,the minimum principle of entropy generation is not tenable in the case that the virtual entropy generation is not included,because the total heat into the system of interest is not fixed.An irreversible Carnot cycle and an irreversible Brayton cycle are analysed.The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power if the heat into the system of interest is not prescribed.

  14. Applicability of the minimum entropy generation method for optimizing thermodynamic cycles

    International Nuclear Information System (INIS)

    Cheng Xue-Tao; Liang Xin-Gang

    2013-01-01

    Entropy generation is often used as a figure of merit in thermodynamic cycle optimizations. In this paper, it is shown that the applicability of the minimum entropy generation method to optimizing output power is conditional. The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power when the total heat into the system of interest is not prescribed. For the cycles whose working medium is heated or cooled by streams with prescribed inlet temperatures and prescribed heat capacity flow rates, it is theoretically proved that both the minimum entropy generation rate and the minimum entropy generation number correspond to the maximum output power when the virtual entropy generation induced by dumping the used streams into the environment is considered. However, the minimum principle of entropy generation is not tenable in the case that the virtual entropy generation is not included, because the total heat into the system of interest is not fixed. An irreversible Carnot cycle and an irreversible Brayton cycle are analysed. The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power if the heat into the system of interest is not prescribed. (general)

  15. Experimental thermodynamics experimental thermodynamics of non-reacting fluids

    CERN Document Server

    Neindre, B Le

    2013-01-01

    Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids focuses on experimental methods and procedures in the study of thermophysical properties of fluids. The selection first offers information on methods used in measuring thermodynamic properties and tests, including physical quantities and symbols for physical quantities, thermodynamic definitions, and definition of activities and related quantities. The text also describes reference materials for thermometric fixed points, temperature measurement under pressures, and pressure measurements. The publicatio

  16. Thermodynamic analysis and optimization of an integrated Rankine power cycle and nano-fluid based parabolic trough solar collector

    International Nuclear Information System (INIS)

    Toghyani, Somayeh; Baniasadi, Ehsan; Afshari, Ebrahim

    2016-01-01

    Highlights: • The performance of an integrated nano-fluid based solar Rankine cycle is studied. • The effect of solar intensity, ambient temperature, and volume fraction is evaluated. • The concept of Finite Time Thermodynamics is applied. • It is shown that CuO/oil nano-fluid has the best performance from exergy perspective. - Abstract: In this paper, the performance of an integrated Rankine power cycle with parabolic trough solar system and a thermal storage system is simulated based on four different nano-fluids in the solar collector system, namely CuO, SiO_2, TiO_2 and Al_2O_3. The effects of solar intensity, dead state temperature, and volume fraction of different nano-particles on the performance of the integrated cycle are studied using second law of thermodynamics. Also, the genetic algorithm is applied to optimize the net output power of the solar Rankine cycle. The solar thermal energy is stored in a two-tank system to improve the overall performance of the system when sunlight is not available. The concept of Finite Time Thermodynamics is applied for analyzing the performance of the solar collector and thermal energy storage system. This study reveals that by increasing the volume fraction of nano-particles, the exergy efficiency of the system increases. At higher dead state temperatures, the overall exergy efficiency is increased, and higher solar irradiation leads to considerable increase of the output power of the system. It is shown that among the selected nano-fluids, CuO/oil has the best performance from exergy perspective.

  17. Cycles within micronets and at the gel point

    DEFF Research Database (Denmark)

    Armitage, David H.; Cameron, Colin; Fawcett, Allan H.

    2000-01-01

    three-dimensional space. Not only may cycles form in competition with branching growth, but if the statistics require it, segments of one cycle may be shared with those of any number of others, as Houwink indicated in 1935. After a small number of simple cycle-containing micronet molecules...... zero, when m≅24. The periodic boundaries of the model were not large enough to provide the exact behavior of the cycle number as m becomes larger, but an explosion is certainly indicated by k becoming negative. A resilient product is predicted at the gel point....

  18. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws

    International Nuclear Information System (INIS)

    Polettini, Matteo; Esposito, Massimiliano

    2014-01-01

    In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks “in a box”, whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a + b = s Y between the number of fundamental affinities a, that of broken conservation laws b and the number of chemostats s Y . We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction

  19. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws.

    Science.gov (United States)

    Polettini, Matteo; Esposito, Massimiliano

    2014-07-14

    In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a + b = s(Y) between the number of fundamental affinities a, that of broken conservation laws b and the number of chemostats s(Y). We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction.

  20. Investigation of thermodynamic cycle for generic 1200 MW{sub el} pressure channel reactor with nuclear steam superheat

    Energy Technology Data Exchange (ETDEWEB)

    Vincze, A.; Sidawi, K.; Abdullah, R.; Baldock, M.; Saltanov, E.; Pioro, I., E-mail: andrei.vincze@uoit.net, E-mail: khalil.sidawi@uoit.net, E-mail: rand.abdullah@uoit.net, E-mail: matthew.baldock@uoit.net, E-mail: eugene.saltanov@uoit.ca, E-mail: igor.pioro@uoit.ca [Univ. of Ontario Inst. of Tech., Oshawa, ON (Canada)

    2014-07-01

    Current Nuclear Power Plants (NPPs) play a significant role in energy production around the world. All NPPs operating today employ a Rankine steam cycle for the conversion of thermal power to electricity. This paper will examine the steam cycle arrangement an experimental pressure channel reactor using Nuclear Steam Superheat (NSS) and compare it to two advanced reactor designs, the Advanced CANDU Reactor 1000 (ACR-1000) and the Advanced Boiling Water Reactor (ABWR) designs. The thermodynamic cycle layout and thermal efficiencies of the three reactor types will be discussed. (author)

  1. Anammox revisited: thermodynamic considerations in early studies of the microbial nitrogen cycle.

    Science.gov (United States)

    Oren, Aharon

    2015-08-01

    This paper explores the early literature on the thermodynamics of processes in the microbial nitrogen cycle, evaluating parameters of transfer of energy which depends on the initial and final states of the system, the mechanism of the reactions involved and the rates of these reactions. Processes discussed include the anaerobic oxidation of ammonium (the anammox reaction), the use of inorganic nitrogen compounds as electron donors for anoxygenic photosynthesis, and the mechanism and bioenergetics of biological nitrogen fixation. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Thermodynamic analysis of a binary power cycle for different EGS geofluid temperatures

    International Nuclear Information System (INIS)

    Zhang Fuzen; Jiang Peixe

    2012-01-01

    Enhanced Geothermal Systems show promise for meeting growing energy demands. The Organic Rankine Cycle (ORC) can be used to convert low and medium-temperature geothermal energy to electricity, but the working fluid must be carefully selected for the ORC system design. This paper compares the system performance using R134a, isobutane, R245fa and isopentane for four typical geofluid temperatures below 200 °C. Three type (subcritical, superheated and transcritical) power generation cycles and two heat transfer control models (total heat control model and vaporization control model) are used for different EGS source temperatures and working fluids. This paper presents a basic analysis method to select the most suitable working fluid and to optimize the operating and design parameters for a given EGS resource based on the thermodynamics. - Highlights: ► We present a method to selecting working fluids for EGS resources. ► Working fluids with critical temperatures near geofluid temperature is priority. ► Operating conditions requiring use of total heat control model give good behave. ► Transcritical cycle is good choice.

  3. Thermodynamic Temperature of High-Temperature Fixed Points Traceable to Blackbody Radiation and Synchrotron Radiation

    Science.gov (United States)

    Wähmer, M.; Anhalt, K.; Hollandt, J.; Klein, R.; Taubert, R. D.; Thornagel, R.; Ulm, G.; Gavrilov, V.; Grigoryeva, I.; Khlevnoy, B.; Sapritsky, V.

    2017-10-01

    Absolute spectral radiometry is currently the only established primary thermometric method for the temperature range above 1300 K. Up to now, the ongoing improvements of high-temperature fixed points and their formal implementation into an improved temperature scale with the mise en pratique for the definition of the kelvin, rely solely on single-wavelength absolute radiometry traceable to the cryogenic radiometer. Two alternative primary thermometric methods, yielding comparable or possibly even smaller uncertainties, have been proposed in the literature. They use ratios of irradiances to determine the thermodynamic temperature traceable to blackbody radiation and synchrotron radiation. At PTB, a project has been established in cooperation with VNIIOFI to use, for the first time, all three methods simultaneously for the determination of the phase transition temperatures of high-temperature fixed points. For this, a dedicated four-wavelengths ratio filter radiometer was developed. With all three thermometric methods performed independently and in parallel, we aim to compare the potential and practical limitations of all three methods, disclose possibly undetected systematic effects of each method and thereby confirm or improve the previous measurements traceable to the cryogenic radiometer. This will give further and independent confidence in the thermodynamic temperature determination of the high-temperature fixed point's phase transitions.

  4. Bifurcations of heterodimensional cycles with two saddle points

    Energy Technology Data Exchange (ETDEWEB)

    Geng Fengjie [School of Information Technology, China University of Geosciences (Beijing), Beijing 100083 (China)], E-mail: gengfengjie_hbu@163.com; Zhu Deming [Department of Mathematics, East China Normal University, Shanghai 200062 (China)], E-mail: dmzhu@math.ecnu.edu.cn; Xu Yancong [Department of Mathematics, East China Normal University, Shanghai 200062 (China)], E-mail: yancongx@163.com

    2009-03-15

    The bifurcations of 2-point heterodimensional cycles are investigated in this paper. Under some generic conditions, we establish the existence of one homoclinic loop, one periodic orbit, two periodic orbits, one 2-fold periodic orbit, and the coexistence of one periodic orbit and heteroclinic loop. Some bifurcation patterns different to the case of non-heterodimensional heteroclinic cycles are revealed.

  5. Bifurcations of heterodimensional cycles with two saddle points

    International Nuclear Information System (INIS)

    Geng Fengjie; Zhu Deming; Xu Yancong

    2009-01-01

    The bifurcations of 2-point heterodimensional cycles are investigated in this paper. Under some generic conditions, we establish the existence of one homoclinic loop, one periodic orbit, two periodic orbits, one 2-fold periodic orbit, and the coexistence of one periodic orbit and heteroclinic loop. Some bifurcation patterns different to the case of non-heterodimensional heteroclinic cycles are revealed.

  6. Comprehensive performance analyses and optimization of the irreversible thermodynamic cycle engines (TCE) under maximum power (MP) and maximum power density (MPD) conditions

    International Nuclear Information System (INIS)

    Gonca, Guven; Sahin, Bahri; Ust, Yasin; Parlak, Adnan

    2015-01-01

    This paper presents comprehensive performance analyses and comparisons for air-standard irreversible thermodynamic cycle engines (TCE) based on the power output, power density, thermal efficiency, maximum dimensionless power output (MP), maximum dimensionless power density (MPD) and maximum thermal efficiency (MEF) criteria. Internal irreversibility of the cycles occurred during the irreversible-adiabatic processes is considered by using isentropic efficiencies of compression and expansion processes. The performances of the cycles are obtained by using engine design parameters such as isentropic temperature ratio of the compression process, pressure ratio, stroke ratio, cut-off ratio, Miller cycle ratio, exhaust temperature ratio, cycle temperature ratio and cycle pressure ratio. The effects of engine design parameters on the maximum and optimal performances are investigated. - Highlights: • Performance analyses are conducted for irreversible thermodynamic cycle engines. • Comprehensive computations are performed. • Maximum and optimum performances of the engines are shown. • The effects of design parameters on performance and power density are examined. • The results obtained may be guidelines to the engine designers

  7. Introduction to applied thermodynamics

    CERN Document Server

    Helsdon, R M; Walker, G E

    1965-01-01

    Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o

  8. Thermodynamic analysis and comparison between CO_2 transcritical power cycles and R245fa organic Rankine cycles for low grade heat to power energy conversion

    International Nuclear Information System (INIS)

    Li, L.; Ge, Y.T.; Luo, X.; Tassou, S.A.

    2016-01-01

    Highlights: • CO_2 is a promising working fluid to be applied in low-grade power generation systems. • Thermodynamic models of CO_2 transcritical power cycles (T-CO_2) and R245fa ORC were developed. • Energy and exergy analyses were carried out for T-CO_2 and R245fa ORC systems. • Optimal system designs are existed for both T-CO_2 and R245fa ORC systems. - Abstract: In this paper, a theoretical study is conducted to investigate and compare the performance of CO_2 transcritical power cycles (T-CO_2) and R245fa organic Rankine cycles (ORCs) using low-grade thermal energy to produce useful shaft or electrical power. Each power cycle consists of typical Rankine cycle components, such as a working fluid pump, gas generator or evaporator, turbine with electricity generator, air cooled condenser and recuperator (internal heat exchanger). The thermodynamic models of both cycles have been developed and are applied to calculate and compare the cycle thermal and exergy efficiencies at different operating conditions and control strategies. The simulation results show that the system performances for both cycles vary with different operating conditions. When the heat source (waste heat) temperature increases from 120 °C to 260 °C and heat sink (cooling air) temperature is reduced from 20 °C to 0 °C, both thermal efficiencies of R245fa ORC and T-CO_2 with recuperator can significantly increase. On the other hand, R245fa ORC and T-CO_2 exergy efficiencies increase with lower heat sink temperatures and generally decrease with higher heat source temperatures. In addition, with the same operating conditions and heat transfer assumptions, the thermal and exergy efficiencies of R245fa ORCs are both slightly higher than those of T-CO_2. However, the efficiencies of both cycles can be enhanced by installing a recuperator in each system at specified operating conditions. Ultimately, optimal operating states can be predicted, with particular focus on the working fluid expander

  9. Prediction of high-temperature point defect formation in TiO2 from combined ab initio and thermodynamic calculations

    International Nuclear Information System (INIS)

    He, J.; Behera, R.K.; Finnis, M.W.; Li, X.; Dickey, E.C.; Phillpot, S.R.; Sinnott, S.B.

    2007-01-01

    A computational approach that integrates ab initio electronic structure and thermodynamic calculations is used to determine point defect stability in rutile TiO 2 over a range of temperatures, oxygen partial pressures and stoichiometries. Both donors (titanium interstitials and oxygen vacancies) and acceptors (titanium vacancies) are predicted to have shallow defect transition levels in the electronic-structure calculations. The resulting defect formation energies for all possible charge states are then used in thermodynamic calculations to predict the influence of temperature and oxygen partial pressure on the relative stabilities of the point defects. Their ordering is found to be the same as temperature increases and oxygen partial pressure decreases: titanium vacancy → oxygen vacancy → titanium interstitial. The charges on these defects, however, are quite sensitive to the Fermi level. Finally, the combined formation energies of point defect complexes, including Schottky, Frenkel and anti-Frenkel defects, are predicted to limit the further formation of point defects

  10. Thermodynamic analysis and system design of a novel split cycle engine concept

    International Nuclear Information System (INIS)

    Dong, Guangyu; Morgan, Robert E.; Heikal, Morgan R.

    2016-01-01

    The split cycle engine is a new reciprocating internal combustion engine with a potential of a radical efficiency improvement. In this engine, the compression and combustion–expansion processes occur in different cylinders. In the compression cylinder, the charge air is compressed through a quasi-isothermal process by direct cooling of the air. The high pressure air is then heated in a recuperator using the waste heat of exhaust gas before induction to the combustion cylinder. The combustion process occurs during the expansion stroke, in a quasi-isobaric process. In this paper, a fundamental theoretical cycle analysis and one-dimensional engine simulation of the split cycle engine was undertaken. The results show that the thermal efficiency (η) is mainly decided by the CR (compression ratio) and ER (expansion ratio), the regeneration effectiveness (σ), and the temperature rising ratio (N). Based on the above analysis, a system optimization of the engine was conducted. The results showed that by increasing CR from 23 to 25, the combustion and recuperation processes could be improved. By increasing the expansion ratio to 26, the heat losses during the gas exchange stroke were further reduced. Furthermore, the coolant temperatures of the compression and expansion chambers can be controlled separately to reduce the wall heat transfer losses. Compared to a conventional engine, a 21% total efficiency improvement was achieved when the split cycle was applied. It was concluded that through the system optimization, a total thermal efficiency of 53% can be achieved on split cycle engine. - Highlights: • Fundamental mechanism of the split cycle engine is investigated. • The key affecting factors of the thermodynamic cycle efficiency are identified. • The practical efficiency of split cycle applying on diesel engine is analysed. • The design optimization on the split cycle engine concept is conducted.

  11. A comparative thermodynamic analysis of ORC and Kalina cycles for waste heat recovery: A case study for CGAM cogeneration system

    Directory of Open Access Journals (Sweden)

    Arash Nemati

    2017-03-01

    Full Text Available A thermodynamic modeling and optimization is carried out to compare the advantages and disadvantages of organic Rankine cycle (ORC and Kalina cycle (KC as a bottoming cycle for waste heat recovery from CGAM cogeneration system. Thermodynamic models for combined CGAM/ORC and CGAM/KC systems are performed and the effects of some decision variables on the energy and exergy efficiency and turbine size parameter of the combined systems are investigated. Solving simulation equations and optimization process have been done using direct search method by EES software. It is observed that at the optimum pressure ratio of air compressor, produced power of bottoming cycles has minimum values. Also, evaporator pressure optimizes the performance of cycle, but this optimum pressure level in ORC (11 bar is much lower than that of Kalina (46 bar. In addition, ORC's simpler configuration, higher net produced power and superheated turbine outlet flow, which leads to a reliable performance for turbine, are other advantages of ORC. Kalina turbine size parameter is lower than that of the ORC which is a positive aspect of Kalina cycle. However, by a comprehensive comparison between Kalina and ORC, it is concluded that the ORC has significant privileges for waste heat recovery in this case.

  12. Thermodynamic performance simulation and concise formulas for triple-pressure reheat HRSG of gas–steam combined cycle under off-design condition

    International Nuclear Information System (INIS)

    Zhang, Guoqiang; Zheng, Jiongzhi; Yang, Yongping; Liu, Wenyi

    2016-01-01

    Highlights: • An off-design performance simulation of triple-pressure reheat HRSG is executed. • The bottoming cycle characteristics of energy transfer/conversion are analyzed. • Concise formulas for the off-design performance of bottoming cycle are proposed. • The accuracy of the formulas is verified under different load control strategies. • The errors of the formulas are generally within 1% at a load of 100–50%. - Abstract: Concise semi-theoretical, semi-empirical formulas are developed in this study to predict the off-design performance of the bottoming cycle of the gas–steam turbine combined cycle. The formulas merely refer to the key thermodynamic design parameters (full load parameters) of the bottoming cycle and off-design gas turbine exhaust temperature and flow, which are convenient in determining the overall performance of the bottoming cycle. First, a triple-pressure reheat heat recovery steam generator (HRSG) is modeled, and thermodynamic analysis is performed. Second, concise semi-theoretical, semi-empirical performance prediction formulas for the bottoming cycle are proposed through a comprehensive analysis of the heat transfer characteristics of the HRSG and the energy conversion characteristics of the steam turbine under the off-design condition. The concise formulas are found to be effective, i.e., fast, simple, and precise in obtaining the thermodynamic parameters for bottoming cycle efficiency, HRSG heat transfer capacity, HRSG efficiency, steam turbine power output, and steam turbine efficiency under the off-design condition. Accuracy is verified by comparing the concise formulas’ calculation results with the simulation results and practical operation data under different load control strategies. The calculation errors are within 1.5% (mainly less than 1% for both simulation and actual operation data) under combined cycle load (gas turbine load) ranging from 50% to 100%. However, accuracy declines sharply when the turbine

  13. Correct thermodynamic forces in Tsallis thermodynamics: connection with Hill nanothermodynamics

    International Nuclear Information System (INIS)

    Garcia-Morales, Vladimir; Cervera, Javier; Pellicer, Julio

    2005-01-01

    The equivalence between Tsallis thermodynamics and Hill's nanothermodynamics is established. The correct thermodynamic forces in Tsallis thermodynamics are pointed out. Through this connection we also find a general expression for the entropic index q which we illustrate with two physical examples, allowing in both cases to relate q to the underlying dynamics of the Hamiltonian systems

  14. Non-Equilibrium Thermodynamics of Self-Replicating Protocells

    DEFF Research Database (Denmark)

    Fellermann, Harold; Corominas-Murtra, Bernat; Hansen, Per Lyngs

    2018-01-01

    We provide a non-equilibrium thermodynamic description of the life-cycle of a droplet based, chemically feasible, system of protocells. By coupling the protocells metabolic kinetics with its thermodynamics, we demonstrate how the system can be driven out of equilibrium to ensure protocell growth...... and replication. This coupling allows us to derive the equations of evolution and to rigorously demonstrate how growth and replication life-cycle can be understood as a non-equilibrium thermodynamic cycle. The process does not appeal to genetic information or inheritance, and is based only on non......-equilibrium physics considerations. Our non-equilibrium thermodynamic description of simple, yet realistic, processes of protocell growth and replication, represents an advance in our physical understanding of a central biological phenomenon both in connection to the origin of life and for modern biology....

  15. Thermodynamic of the associated cycle and application to the assembly of thermochemical iodine sulphur cycle and a nuclear engine for the hydrogen production

    International Nuclear Information System (INIS)

    Dumont, Y.

    2008-01-01

    This thesis is devoted to the design of an assembly of a hydrogen production process by the thermochemical iodine-sulphur cycle and a nuclear reactor. The suggested coupling network uses a power cycle which produces a work which is directly used for the heat pump running. The purpose of this thermodynamic cycle association is to recover the rejected energy at low temperature of a process to provide the energy needs of this same process at high temperature. This association is applied to the studied coupling. The construction of the energy distribution network is designed by the pinch analysis. In the case of a conventional coupling, the efficiency of hydrogen production is 22.0%. By integrating the associated cycles into the coupling, the efficiency of production is 42.6%. The exergetic efficiency, representative of the energy using quality, increases from 58.7% to 85.4%. (author) [fr

  16. Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle

    International Nuclear Information System (INIS)

    Zare, V.; Mahmoudi, S.M.S.; Yari, M.; Amidpour, M.

    2012-01-01

    The performance of an ammonia–water power/cooling cogeneration cycle is investigated and optimized paying more attention on the economic point of view. Thermodynamic and thermoeconomic models are developed in order to investigate the thermodynamic performance of the cycle and assess the unit cost of products. A parametric study is carried out and the cycle performance is optimized based on the thermal and exergy efficiencies as well as the sum of the unit costs of the system products. The results show that the sum of the unit cost of the cycle products obtained through thermoeconomic optimization is less than by around 18.6% and 25.9% compared to the cases when the cycle is optimized from the viewpoints of first and second laws of thermodynamics, respectively. It is also concluded that for each increase of $3/ton in unit cost of the steam as the heat source, the unit cost of the output power and cooling is increased by around $7.6/GJ and $15–19/GJ, respectively. -- Highlights: ► The theory of exergetic cost is applied to the case of ammonia–water power/cooling cycle. ► The cycle is optimized from the viewpoints of thermodynamics and economics. ► The economic optimization leads to a considerable reduction in the system product costs.

  17. Comparison of Optimal Thermodynamic Models of the Tricarboxylic Acid Cycle from Heterotrophs, Cyanobacteria, and Green Sulfur Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Dennis G.; Jaramillo Riveri, Sebastian I.; Baxter, Douglas J.; Cannon, William R.

    2014-12-15

    We have applied a new stochastic simulation approach to predict the metabolite levels, energy flow, and material flux in the different oxidative TCA cycles found in E. coli and Synechococcus sp. PCC 7002, and in the reductive TCA cycle typical of chemolithoautotrophs and phototrophic green sulfur bacteria such as Chlorobaculum tepidum. The simulation approach is based on equations of state and employs an assumption similar to that used in transition state theory. The ability to evaluate the thermodynamics of metabolic pathways allows one to understand the relationship between coupling of energy and material gradients in the environment and the selforganization of stable biological systems, and it is shown that each cycle operates in the direction expected due to its environmental niche. The simulations predict changes in metabolite levels and flux in response to changes in cofactor concentrations that would be hard to predict without an elaborate model based on the law of mass action. In fact, we show that a thermodynamically unfavorable reaction can still have flux in the forward direction when it is part of a reaction network. The ability to predict metabolite levels, energy flow and material flux should be significant for understanding the dynamics of natural systems and for understanding principles for engineering organisms for production of specialty chemicals, such as biofuels.

  18. Thermodynamics of diffusion under pressure and stress: Relation to point defect mechanisms

    International Nuclear Information System (INIS)

    Aziz, M.J.

    1997-01-01

    A thermodynamic formalism is developed for illuminating the predominant point defect mechanism of self- and impurity diffusion in silicon and is used to provide a rigorous basis for point defect-based interpretation of diffusion experiments in biaxially strained epitaxial layers in the Si endash Ge system. A specific combination of the hydrostatic and biaxial stress dependences of the diffusivity is ±1 times the atomic volume, depending upon whether the predominant mechanism involves vacancies or interstitials. Experimental results for Sb diffusion in biaxially strained Si endash Ge films and ab initio calculations of the activation volume for Sb diffusion by a vacancy mechanism are in quantitative agreement with no free parameters. Key parameters are identified that must be measured or calculated for a quantitative test of interstitial-based mechanisms. copyright 1997 American Institute of Physics

  19. Output power analyses for the thermodynamic cycles of thermal power plants

    International Nuclear Information System (INIS)

    Sun Chen; Cheng Xue-Tao; Liang Xin-Gang

    2014-01-01

    Thermal power plant is one of the important thermodynamic devices, which is very common in all kinds of power generation systems. In this paper, we use a new concept, entransy loss, as well as exergy destruction, to analyze the single reheating Rankine cycle unit and the single stage steam extraction regenerative Rankine cycle unit in power plants. This is the first time that the concept of entransy loss is applied to the analysis of the power plant Rankine cycles with reheating and steam extraction regeneration. In order to obtain the maximum output power, the operating conditions under variant vapor mass flow rates are optimized numerically, as well as the combustion temperatures and the off-design flow rates of the flue gas. The relationship between the output power and the exergy destruction rate and that between the output power and the entransy loss rate are discussed. It is found that both the minimum exergy destruction rate and the maximum entransy loss rate lead to the maximum output power when the combustion temperature and heat capacity flow rate of the flue gas are prescribed. Unlike the minimum exergy destruction rate, the maximum entransy loss rate is related to the maximum output power when the highest temperature and heat capacity flow rate of the flue gas are not prescribed. (general)

  20. Nonlinear Thermodynamic Analysis and Optimization of a Carnot Engine Cycle

    Directory of Open Access Journals (Sweden)

    Michel Feidt

    2016-06-01

    Full Text Available As part of the efforts to unify the various branches of Irreversible Thermodynamics, the proposed work reconsiders the approach of the Carnot engine taking into account the finite physical dimensions (heat transfer conductances and the finite speed of the piston. The models introduce the irreversibility of the engine by two methods involving different constraints. The first method introduces the irreversibility by a so-called irreversibility ratio in the entropy balance applied to the cycle, while in the second method it is emphasized by the entropy generation rate. Various forms of heat transfer laws are analyzed, but most of the results are given for the case of the linear law. Also, individual cases are studied and reported in order to provide a simple analytical form of the results. The engine model developed allowed a formal optimization using the calculus of variations.

  1. Noise temperature measurements for the determination of the thermodynamic temperature of the melting point of palladium

    Energy Technology Data Exchange (ETDEWEB)

    Edler, F.; Kuhne, M.; Tegeler, E. [Bundesanstalt Physikalisch-Technische, Berlin (Germany)

    2004-02-01

    The thermodynamic temperature of the melting point of palladium in air was measured by noise thermometric methods. The temperature measurement was based on noise comparison using a two-channel arrangement to eliminate parasitic noises of electronic components by cross correlation. Three miniature fixed points filled with pure palladium (purity: {approx}99.99%, mass: {approx}90 g) were used to realize the melts of the fixed point metal. The measured melting temperature of palladium in air amounted to 1552.95 deg C {+-} 0.21 K (k = 2). This temperature is 0.45 K lower than the temperature of the melting point of palladium measured by radiation thermometry. (authors)

  2. Thermodynamics and heat power

    CERN Document Server

    Granet, Irving

    2014-01-01

    Fundamental ConceptsIntroductionThermodynamic SystemsTemperatureForce and MassElementary Kinetic Theory of GasesPressureReviewKey TermsEquations Developed in This ChapterQuestionsProblemsWork, Energy, and HeatIntroductionWorkEnergyInternal EnergyPotential EnergyKinetic EnergyHeatFlow WorkNonflow WorkReviewKey TermsEquations Developed in This ChapterQuestionsProblemsFirst Law of ThermodynamicsIntroductionFirst Law of ThermodynamicsNonflow SystemSteady-Flow SystemApplications of First Law of ThermodynamicsReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Second Law of ThermodynamicsIntroductionReversibility-Second Law of ThermodynamicsThe Carnot CycleEntropyReviewKey TermsEquations Developed in This ChapterQuestionsProblemsProperties of Liquids and GasesIntroductionLiquids and VaporsThermodynamic Properties of SteamComputerized PropertiesThermodynamic DiagramsProcessesReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Ideal GasIntroductionBasic ConsiderationsSpecific Hea...

  3. Advanced classical thermodynamics

    International Nuclear Information System (INIS)

    Emanuel, G.

    1987-01-01

    The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided. 38 references

  4. Thermodynamic cycle analysis for capacitive deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.

    2009-01-01

    Capacitive deionization (CDI) is an ion removal technology based on temporarily storing ions in the polarization layers of two oppositely positioned electrodes. Here we present a thermodynamic model for the minimum work required for ion separation in the fully reversible case by describing the ionic

  5. Thermodynamic analysis and conceptual design for partial coal gasification air preheating coal-fired combined cycle

    Science.gov (United States)

    Xu, Yue; Wu, Yining; Deng, Shimin; Wei, Shirang

    2004-02-01

    The partial coal gasification air pre-heating coal-fired combined cycle (PGACC) is a cleaning coal power system, which integrates the coal gasification technology, circulating fluidized bed technology, and combined cycle technology. It has high efficiency and simple construction, and is a new selection of the cleaning coal power systems. A thermodynamic analysis of the PGACC is carried out. The effects of coal gasifying rate, pre-heating air temperature, and coal gas temperature on the performances of the power system are studied. In order to repower the power plant rated 100 MW by using the PGACC, a conceptual design is suggested. The computational results show that the PGACC is feasible for modernizing the old steam power plants and building the new cleaning power plants.

  6. The thermodynamic solar energy

    International Nuclear Information System (INIS)

    Rivoire, B.

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  7. Power cycles with ammonia-water mixtures as working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Thorin, Eva

    2000-05-01

    It is of great interest to improve the efficiency of power generating processes, i.e. to convert more of the energy in the heat source to power. This is favorable from an environmental point of view and can also be an economic advantage. To use an ammonia-water mixture instead of water as working fluid is a possible way to improve the efficiency of steam turbine processes. This thesis includes studies of power cycles with ammonia-water mixtures as working fluid utilizing different kinds of heat sources for power and heat generation. The thermophysical properties of the mixture are also studied. They play an important role in the calculations of the process performance and for the design of its components, such as heat exchangers. The studies concern thermodynamic simulations of processes in applications suitable for Swedish conditions. Available correlations for the thermophysical properties are compared and their influence on simulations and heat exchanger area predictions is investigated. Measurements of ammonia-water mixture viscosities using a vibrating wire viscometer are also described. The studies performed show that power cycles with ammonia-water mixtures as the working fluid are well suited for utilization of waste heat from industry and from gas engines. The ammonia-water power cycles can give up to 32 % more power in the industrial waste heat application and up to 54 % more power in the gas engine bottoming cycle application compared to a conventional Rankine steam cycle. However, ammonia-water power cycles in small direct-fired biomass-fueled cogeneration plants do not show better performance than a conventional Rankine steam cycle. When different correlations for the thermodynamic properties are used in simulations of a simple ammonia-water power cycle the difference in efficiency is not larger than 4 %, corresponding to about 1.3 percentage points. The differences in saturation properties between the correlations are, however, considerable at high

  8. Thermodynamic analysis of a combined gas turbine, ORC cycle and absorption refrigeration for a CCHP system

    International Nuclear Information System (INIS)

    Mohammadi, Amin; Kasaeian, Alibakhsh; Pourfayaz, Fathollah; Ahmadi, Mohammad Hossein

    2017-01-01

    Highlights: • Thermodynamic analysis of a hybrid CCHP system. • Sensitivity analysis is performed on the most important parameters of the system. • Pressure ratio and gas turbine inlet temperature are the most effective parameters. - Abstract: Hybrid power systems are gained more attention due to their better performance and higher efficiency. Widespread use of these systems improves environmental situation as they reduce the amount of fossil fuel consumption. In this paper a hybrid system composed of a gas turbine, an ORC cycle and an absorption refrigeration cycle is proposed as a combined cooling, heating and power system for residential usage. Thermodynamic analysis is applied on the system. Also a parametric analysis is carried out to investigate the effect of different parameters on the system performance and output cooling, heating and power. The results show that under design conditions, the proposed plant can produce 30 kW power, 8 kW cooling and almost 7.2 ton hot water with an efficiency of 67.6%. Moreover, parametric analysis shows that pressure ratio and gas turbine inlet temperature are the most important and influential parameters. After these two, ORC turbine inlet temperature is the most effective parameter as it can change both net output power and energy efficiency of the system.

  9. Thermoeconomic analysis of a solar enhanced energy storage concept based on thermodynamic cycles

    International Nuclear Information System (INIS)

    Henchoz, Samuel; Buchter, Florian; Favrat, Daniel; Morandin, Matteo; Mercangöz, Mehmet

    2012-01-01

    Large scale energy storage may play an increasingly important role in the power generation and distribution sector, especially when large shares of renewable energies will have to be integrated into the electrical grid. Pumped-hydro is the only large scale storage technology that has been widely used. However the spread of this technology is limited by geographic constraints. In the present work, a particular implementation of a storage concept based on thermodynamic cycles, invented by ABB Switzerland ltd. Corporate Research, has been analysed thermoeconomically. A variant using solar thermal collectors is presented. It benefits from the synergy between daily variations in solar irradiance and in electricity demand. This results in an effective increase of the electric energy storage efficiency. A steady state multi-objective optimization of a 50 MW plant was done; minimizing the investment costs and maximizing the energy storage efficiency. Several types of cold storage substances have been implemented in the formulation and two different types of solar collector were investigated. A storage efficiency of 57% at a cost of 1200 USD/kW was calculated for an optimized plant using solar energy. Finally, a computation of the behaviour of the plant along the year showed a yearly availability of 84.4%. -- Highlights: ► A variant of electric energy storage based on thermodynamic cycles is presented. ► It uses solar collectors to improve the energy storage efficiency. ► An optimization minimizing capital cost and maximizing energy storage efficiency, was carried out. ► Capital costs lie between 982 and 3192 USD/kW and efficiency between 43.8% and 84.4%.

  10. Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point

    International Nuclear Information System (INIS)

    Batigoec, Cigdem; Akbas, Halide; Boz, Mesut

    2011-01-01

    Highlights: → Non-ionic surfactants are used as emulsifier and solubilizate in such as textile, detergent and cosmetic. → Non-ionic surfactants occur phase separation at temperature as named the cloud point in solution. → Dimeric surfactants have attracted increasing attention due to their superior surface activity. → The positive values of ΔG cp 0 indicate that the process proceeds nonspontaneous. - Abstract: This study investigates the effects of gemini and conventional cationic surfactants on the cloud point (CP) of the non-ionic surfactant Triton X-100 (TX-100) in aqueous solutions. Instead of visual observation, a spectrophotometer was used for measurement of the cloud point temperatures. The thermodynamic parameters of these mixtures were calculated at different cationic surfactant concentrations. The gemini surfactants of the alkanediyl-α-ω-bis (alkyldimethylammonium) dibromide type, on the one hand, with different alkyl groups containing m carbon atoms and an ethanediyl spacer, referred to as 'm-2-m' (m = 10, 12, and 16) and, on the other hand, with -C 16 alkyl groups and different spacers containing s carbon atoms, referred to as '16-s-16' (s = 6 and 10) were synthesized, purified and characterized. Additions of the cationic surfactants to the TX-100 solution increased the cloud point temperature of the TX-100 solution. It was accepted that the solubility of non-ionic surfactant containing polyoxyethylene (POE) hydrophilic chain was a maximum at the cloud point so that the thermodynamic parameters were calculated at this temperature. The results showed that the standard Gibbs free energy (ΔG cp 0 ), the enthalpy (ΔH cp 0 ) and the entropy (ΔS cp 0 ) of the clouding phenomenon were found positive in all cases. The standard free energy (ΔG cp 0 ) increased with increasing hydrophobic alkyl chain for both gemini and conventional cationic surfactants; however, it decreased with increasing surfactant concentration.

  11. Energy-exergy analysis of compressor pressure ratio effects on thermodynamic performance of ammonia water combined cycle

    International Nuclear Information System (INIS)

    Mohtaram, Soheil; Chen, Wen; Zargar, T.; Lin, Ji

    2017-01-01

    Highlights: • Energy exergy analysis is conducted to find the effects of RP. • EES software is utilized to perform the detailed energy-exergy analyses. • Effects investigated through energy and exergy destruction, enthalpy, yields, etc. • Detailed results are reported showing the performance of gas and combined cycle. - Abstract: The purpose of this study is to investigate the effect of compressor pressure ratio (RP) on the thermodynamic performances of ammonia-water combined cycle through energy and exergy destruction, enthalpy temperature, yields, and flow velocity. The energy-exergy analysis is conducted on the ammonia water combined cycle and the Rankine cycle, respectively. Engineering Equation Solver (EES) software is utilized to perform the detailed analyses. Values and ratios regarding heat drop and exergy loss are presented in separate tables for different equipments. The results obtained by the energy-exergy analysis indicate that by increasing the pressure ratio compressor, exergy destruction of high-pressure compressors, intercooler, gas turbine and the special produced work of gas turbine cycle constantly increase and the exergy destruction of recuperator, in contrast, decreases continuously. In addition, the least amount of input fuel into the combined cycle is observed when the pressure ratio is no less than 7.5. Subsequently, the efficiency of the cycle in gas turbine and combined cycle is reduced because the fuel input into the combined cycle is increased.

  12. Thermodynamic performance evaluation of transcritical carbon dioxide refrigeration cycle integrated with thermoelectric subcooler and expander

    International Nuclear Information System (INIS)

    Dai, Baomin; Liu, Shengchun; Zhu, Kai; Sun, Zhili; Ma, Yitai

    2017-01-01

    New configurations of transcritical CO_2 refrigeration cycle combined with a thermoelectric (TE) subcooler and an expander (TES+EXP_H_M and TES+EXP_M_L) are proposed. The expander can operate between the high-pressure to the vessel pressure, or from vessel pressure to evaporation pressure. A power system is utilized to balance and supply power to thermoelectric subcooler and compressor. Thermodynamic performance optimizations and analyses are presented. Comparisons are carried out with the BASE, EXP_H_M, EXP_M_L, and TES cycles. The results show that the coefficient of performance (COP) improvement is more notable when the expander is installed between the liquid receiver and the evaporator. Maximum COP is obtained for the new cycles with a simultaneous optimization of discharge pressure and subcooling temperature. The new proposed TES+EXP_M_L cycle shows an excellent and steady performance than other cycles. It operates not only with the highest COP, but also the lowest discharge pressure. Under the working conditions of high gas cooler outlet temperature or low evaporation temperature, the merits of COP improvement and discharge pressure reduction are more prominent. The new cycle is more suitable for the hot regions where the CO_2 can not be sufficiently subcooled or the refrigerated space operates at low evaporation temperature. - Highlights: • New configurations of transcritical CO_2 refrigeration cycle are proposed. • New cycles are optimized and compared with other cycles. • The position of expander has an evident influence on the performance of CO_2 cycle. • TES+EXP_M_L cycle shows the highest COP and lowest discharge pressure. • The range of application for the TES+EXP_M_L cycle is recommended.

  13. A Thermodynamic Analysis of Two Competing Mid-Sized Oxyfuel Combustion Combined Cycles

    Directory of Open Access Journals (Sweden)

    Egill Thorbergsson

    2016-01-01

    Full Text Available A comparative analysis of two mid-sized oxyfuel combustion combined cycles is performed. The two cycles are the semiclosed oxyfuel combustion combined cycle (SCOC-CC and the Graz cycle. In addition, a reference cycle was established as the basis for the analysis of the oxyfuel combustion cycles. A parametric study was conducted where the pressure ratio and the turbine entry temperature were varied. The layout and the design of the SCOC-CC are considerably simpler than the Graz cycle while it achieves the same net efficiency as the Graz cycle. The fact that the efficiencies for the two cycles are close to identical differs from previously reported work. Earlier studies have reported around a 3% points advantage in efficiency for the Graz cycle, which is attributed to the use of a second bottoming cycle. This additional feature is omitted to make the two cycles more comparable in terms of complexity. The Graz cycle has substantially lower pressure ratio at the optimum efficiency and has much higher power density for the gas turbine than both the reference cycle and the SCOC-CC.

  14. Power by waste heat recovery from low temperature industrial flue gas by Organic Flash Cycle (OFC) and transcritical-CO_2 power cycle: A comparative study through combined thermodynamic and economic analysis

    International Nuclear Information System (INIS)

    Mondal, Subha; De, Sudipta

    2017-01-01

    Both Organic flash cycle and transcritical CO_2 power cycle (T-CO_2 power cycle) allow cooling of hot flue gas stream to an appreciably lower temperature due to the absence of pinch limitation. In the present study, a combined thermodynamic and economic comparison is conducted between a T-CO_2 power cycle and Organic flash cycles using R-245fa and R600 as the working fluids. It is observed that work output per kg of flue gas flow rate is slightly higher for the T-CO_2 power cycle if the flue gas is allowed to cool to the corresponding lowest possible temperature in the Heat Recovery Unit (HRU). It is also observed that with maximum possible cooling of flue gas, minimum bare module costs (BMCs) for each kW power output of OFCs are somewhat higher compared to that of T-CO_2 power cycle. Minimum BMCs for each kW output of OFCs can be reduced substantially by increasing terminal temperature difference at the low temperature end of the HRU. However, the increasing terminal temperature difference at the low temperature end of the HRU is having negligible effect on BMC ($/kW) of T-CO_2 power cycle. - Highlights: • Combined thermodynamic and economic analysis done for T-CO_2 power cycle and OFC. • With highest heat recovery, T-CO_2 cycle produces slightly higher work output/kg of flue gas. • With highest heat recovery, minimum bare module costs in $/kW is slightly higher for OFCs. • Work outputs/kg of flue gas of all cycles are almost equal for these minimum BMCs. • BMCs in $/kW for OFCs sharply decrease with larger flue gas exit temperature.

  15. Experimental opto-mechanics with levitated nanoparticles: towards quantum control and thermodynamic cycles (Presentation Recording)

    Science.gov (United States)

    Kiesel, Nikolai; Blaser, Florian; Delic, Uros; Grass, David; Dechant, Andreas; Lutz, Eric; Bathaee, Marzieh; Aspelmeyer, Markus

    2015-08-01

    Combining optical levitation and cavity optomechanics constitutes a promising approach to prepare and control the motional quantum state of massive objects (>10^9 amu). This, in turn, would represent a completely new type of light-matter interface and has, for example, been predicted to enable experimental tests of macrorealistic models or of non-Newtonian gravity at small length scales. Such ideas have triggered significant experimental efforts to realizing such novel systems. To this end, we have recently successfully demonstrated cavity-cooling of a levitated sub-micron silica particle in a classical regime at a pressure of approximately 1mbar. Access to higher vacuum of approx. 10^-6 mbar has been demonstrated using 3D-feedback cooling in optical tweezers without cavity-coupling. Here we will illustrate our strategy towards trapping, 3D-cooling and quantum control of nanoparticles in ultra-high vacuum using cavity-based feedback cooling methods and clean particle loading with hollow-core photonic crystal fibers. We will also discuss the current experimental progress both in 3D-cavity cooling and HCPCF-based transport of nanoparticles. As yet another application of cavity-controlled levitated nanoparticles we will show how to implement a thermodynamic Sterling cycle operating in the underdamped regime. We present optimized protocols with respect to efficiency at maximum power in this little explored regime. We also show that the excellent level of control in our system will allow reproducing all relevant features of such optimized protocols. In a next step, this will enable studies of thermodynamics cycles in a regime where the quantization of the mechanical motion becomes relevant.

  16. Superfluid thermodynamic cycle refrigerator

    Science.gov (United States)

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  17. Preliminary thermodynamic study for an efficient turbo-blower external combustion Rankine cycle

    Science.gov (United States)

    Romero Gómez, Manuel; Romero Gómez, Javier; Ferreiro Garcia, Ramón; Baaliña Insua, Álvaro

    2014-08-01

    This research paper presents a preliminary thermodynamic study of an innovative power plant operating under a Rankine cycle fed by an external combustion system with turbo-blower (TB). The power plant comprises an external combustion system for natural gas, where the combustion gases yield their thermal energy, through a heat exchanger, to a carbon dioxide Rankine cycle operating under supercritical conditions and with quasi-critical condensation. The TB exploits the energy from the pressurised exhaust gases for compressing the combustion air. The study is focused on the comparison of the combustion system's conventional technology with that of the proposed. An energy analysis is carried out and the effect of the flue gas pressure on the efficiency and on the heat transfer in the heat exchanger is studied. The coupling of the TB results in an increase in efficiency and of the convection coefficient of the flue gas with pressure, favouring a reduced volume of the heat exchanger. The proposed innovative system achieves increases in efficiency of around 12 % as well as a decrease in the heat exchanger volume of 3/5 compared with the conventional technology without TB.

  18. Thermodynamic analysis of a novel exhaust heat-driven non-adiabatic ejection-absorption refrigeration cycle using R290/oil mixture

    International Nuclear Information System (INIS)

    Li, Keqiao; Cai, Dehua; Liu, Yue; Jiang, Jingkai; Sun, Wei; He, Guogeng

    2017-01-01

    Graphical abstract: A novel air-cooled non-adiabatic ejection-absorption refrigeration cycle using R290/refrigeration oil has been thermodynamically analyzed. Influences of the ejector and the non-adiabatic absorber applications on the system performance and other system operation parameters have been investigated. The simulation results will be of great help to the miniaturization and practical application of the air-cooled absorption refrigeration system. - Highlights: • A novel air-cooled non-adiabatic ejection-absorption refrigeration cycle is proposed. • Influences of the ejector and the air-cooled non-adiabatic absorber applications on the system performance are investigated. • Variations of system performance and other system operation parameters are investigated. • R290/refrigeration oil mixture used as working pairs is analyzed. - Abstract: This paper thermodynamically analyzes a novel air-cooled non-adiabatic ejection-absorption refrigeration cycle with R290/oil mixture driven by exhaust heat. An ejector located at the upstream of the non-adiabatic absorber is employed to improve the cycle performance. Variations of COP, circulation ratio and component heat load of the system as a function of generating temperature, pressure ratio, absorption temperature, condensing temperature and evaporating temperature have been investigated in this work. The simulation results show that, compared with the conventional absorption refrigeration cycle, this non-adiabatic ejection-absorption refrigeration cycle has higher absorption efficiency, better performance, wider working condition range and lower total heat load and its COP can reach as high as 0.5297. The implementation of the ejector and the non-adiabatic absorber helps to realize the miniaturization and wider application of the absorption refrigeration system. In addition, R290/oil mixture is a kind of highly potential working pairs for absorption refrigeration.

  19. Critical review of the first-law efficiency in different power combined cycle architectures

    International Nuclear Information System (INIS)

    Iglesias Garcia, Steven; Ferreiro Garcia, Ramon; Carbia Carril, Jose; Iglesias Garcia, Denis

    2017-01-01

    Highlights: • The adiabatic expansion based TC can improve the energy efficiency of CCs. • A revolutionary TC can be a starting point to develop high-performance CCs. • A theoretical thermal efficiency of 83.7% was reached in a Nuclear Power Plant using a TC as bottoming cycle. - Abstract: This critical review explores the potential of an innovative trilateral thermodynamic cycle used to transform low-grade heat into mechanical work and compares its performance with relevant traditional thermodynamic cycles in combined cycles. The aim of this work is to show that combined cycles use traditional low efficiency power cycles in their bottoming cycle, and to evaluate theoretically the implementation of alternative power bottoming cycles. Different types of combined cycles have been reviewed, highlighting their relevant characteristics. The efficiencies of power plants using combined cycles are reviewed and compared. The relevance of researching thermodynamic cycles for combined cycle applications is that a vast amount of heat energy is available at negligible cost in the bottoming cycle of a combined cycle, with the drawback that existing thermal cycles cannot make efficient use of such available low temperature heat due to their low efficiency. The first-law efficiency is used as a parameter to compare and suggest improvements in the combined cycles (CCs) reviewed. The analysis shows that trilateral cycles using closed processes are by far the most efficient published thermal cycles for combined cycles to transform low-grade heat into mechanical work. An innovative trilateral bottoming cycle is proposed to show that the application of non-traditional power cycles can increase significantly the first-law efficiency of CCs. The highest first-law efficiencies achieved are: 85.55% in a CC using LNG cool, 73.82% for a transport vehicle CC, 74.40% in a marine CC, 83.07% in a CC for nuclear power plants, 73.82% in a CC using Brayton and Rankine cycles, 78.31% in a CC

  20. Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case

    International Nuclear Information System (INIS)

    Morandin, Matteo; Maréchal, François; Mercangöz, Mehmet; Buchter, Florian

    2012-01-01

    The interest in large scale electricity storage (ES) with discharging time longer than 1 h and nominal power greater than 1 MW, is increasing worldwide as the increasing share of renewable energy, typically solar and wind energy, imposes severe load management issues. Thermo-electrical energy storage (TEES) based on thermodynamic cycles is currently under investigation at ABB corporate research as an alternative solution to pump hydro and compressed air energy storage. TEES is based on the conversion of electricity into thermal energy during charge by means of a heat pump and on the conversion of thermal energy into electricity during discharge by means of a thermal engine. The synthesis and the thermodynamic optimization of a TEES system based on hot water, ice storage and transcritical CO 2 cycles, is discussed in two papers. In this first paper a methodology for the conceptual design of a TEES system based on the analysis of the thermal integration between charging and discharging cycles through Pinch Analysis tools is introduced. According to such methodology, the heat exchanger network and temperatures and volumes of storage tanks are not defined a priori but are determined after the cycle parameters are optimized. For this purpose a heuristic procedure based on the interpretation of the composite curves obtained by optimizing the thermal integration between the cycles was developed. Such heuristic rules were implemented in a code that allows finding automatically the complete system design for given values of the intensive parameters of the charging and discharging cycles only. A base case system configuration is introduced and the results of its thermodynamic optimization are discussed here. A maximum roundtrip efficiency of 60% was obtained for the base case configuration assuming turbomachinery and heat exchanger performances in line with indications from manufacturers. -- Highlights: ► Energy storage based on water, ice, and transcritical CO 2 cycles is

  1. Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR)

    International Nuclear Information System (INIS)

    Olumayegun, Olumide; Wang, Meihong; Kelsall, Greg

    2017-01-01

    Highlights: • Nitrogen closed Brayton cycle for small modular sodium-cooled fast reactor studied. • Thermodynamic modelling and analysis of closed Brayton cycle performed. • Two-shaft configuration proposed and performance compared to single shaft. • Preliminary design of heat exchangers and turbomachinery carried out. - Abstract: Sodium-cooled fast reactor (SFR) is considered the most promising of the Generation IV reactors for their near-term demonstration of power generation. Small modular SFRs (SM-SFRs) have less investment risk, can be deployed more quickly, are easier to operate and are more flexible in comparison to large nuclear reactor. Currently, SFRs use the proven Rankine steam cycle as the power conversion system. However, a key challenge is to prevent dangerous sodium-water reaction that could happen in SFR coupled to steam cycle. Nitrogen gas is inert and does not react with sodium. Hence, intercooled closed Brayton cycle (CBC) using nitrogen as working fluid and with a single shaft configuration has been one common power conversion system option for possible near-term demonstration of SFR. In this work, a new two shaft nitrogen CBC with parallel turbines was proposed to further simplify the design of the turbomachinery and reduce turbomachinery size without compromising the cycle efficiency. Furthermore, thermodynamic performance analysis and preliminary design of components were carried out in comparison with a reference single shaft nitrogen cycle. Mathematical models in Matlab were developed for steady state thermodynamic analysis of the cycles and for preliminary design of the heat exchangers, turbines and compressors. Studies were performed to investigate the impact of the recuperator minimum terminal temperature difference (TTD) on the overall cycle efficiency and recuperator size. The effect of turbomachinery efficiencies on the overall cycle efficiency was examined. The results showed that the cycle efficiency of the proposed

  2. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    Science.gov (United States)

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Thermodynamics II essentials

    CERN Document Server

    REA, The Editors of

    2013-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics II includes review of thermodynamic relations, power and refrigeration cycles, mixtures and solutions, chemical reactions, chemical equilibrium, and flow through nozzl

  4. Application of exergy analysis to the thermodynamical study of operation cycles of diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Zellat, M

    1987-01-01

    To simulate the operation cycle of a diesel engine a general methodology is proposed, called as exergy theory, based on the simultaneous application of the first and second principles of thermodynamics. This analysis accounts for the exergy losses in function of what can be recovered from the second principle and give a more fruitful representation than the pure energy analysis which takes into account only the first principle. The concept of a recovery power turbine RPT, linked to the driving shaft and declutchable is described. The yield increase in nominal power and at half-charge when the RPT is disconnected, is explained by exergy analysis.

  5. Thermodynamic analysis and multi-objective optimization of various ORC (organic Rankine cycle) configurations using zeotropic mixtures

    International Nuclear Information System (INIS)

    Sadeghi, Mohsen; Nemati, Arash; Ghavimi, Alireza; Yari, Mortaza

    2016-01-01

    In this paper, the performance of the ORC (organic Rankine cycle) powered by geothermal water, in three different configurations, including the simple ORC, PTORC (parallel two-stage ORC) and STORC (series two-stage ORC), using zeotrpoic working fluids is investigated from the viewpoints of the energy and exergy. In addition, considering the net power output and TSP (turbine size parameter) as the two objective functions, the multi-objective optimization with the aim of maximizing the first function and minimizing the second one, is performed to determine the optimal values of decision variables including evaporators 1 and 2 pressure, the pinch point temperature difference and the superheating degree. The results show that using zeotropic mixtures as the working fluid instead of a pure fluid such as R245fa, leads to 27.76%, 24.98% and 24.79% improvement in power generation in the simple ORC, PTORC and STORC, respectively and also lower values of TSP. Moreover, it is observed that STORC has the highest amount of net power output and R407A can be selected as the most appropriate working fluid. The optimization results demonstrate that at the final optimum point achieved by Pareto frontier, the values of the objective functions are gained 877 kW and 0.08218 m, respectively. - Highlights: • Three different configurations of ORC powered by geothermal water are analyzed. • The thermodynamic performance of these systems using zeotrpoic mixtures is investigated. • Multi-objective optimization is performed to obtain optimum performance. • The Pareto-frontier is used to automatically select the most promising solutions.

  6. Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector

    International Nuclear Information System (INIS)

    Bai, Tao; Yan, Gang; Yu, Jianlin

    2015-01-01

    In this paper, a modified dual-evaporator CO 2 transcritical refrigeration cycle with two-stage ejector (MDRC) is proposed. In MDRC, the two-stage ejector are employed to recover the expansion work from cycle throttling processes and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analyses. The simulation results for the modified cycle show that two-stage ejector exhibits more effective system performance improvement than the single ejector in CO 2 dual-temperature refrigeration cycle, and the improvements of the maximum system COP (coefficient of performance) and system exergy efficiency could reach 37.61% and 31.9% over those of the conventional dual-evaporator cycle under the given operating conditions. The exergetic analysis for each component at optimum discharge pressure indicates that the gas cooler, compressor, two-stage ejector and expansion valves contribute main portion to the total system exergy destruction, and the exergy destruction caused by the two-stage ejector could amount to 16.91% of the exergy input. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system. - Highlights: • Two-stage ejector is used in dual-evaporator CO 2 transcritical refrigeration cycle. • Energetic and exergetic methods are carried out to analyze the system performance. • The modified cycle could obtain dual-temperature refrigeration simultaneously. • Two-stage ejector could effectively improve system COP and exergy efficiency

  7. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  8. Relationship between potency and boiling point of general anesthetics: a thermodynamic consideration.

    Science.gov (United States)

    Dastmalchi, S; Barzegar-Jalali, M

    2000-07-20

    The most important group of nonspecific drugs is that of the general anesthetics. These nonspecific compounds vary greatly in structure, from noble gases such as Ar or Xe to complex steroids. Since the development of clinical anesthesia over a century ago, there has been a vast amount of research and speculation concerning the mechanism of action of general anesthetics. Despite these efforts, the exact mechanism remains unknown. Many theories of narcosis do not explain how unconsciousness is produced at a molecular level, but instead relate some physicochemical property of anesthetic agents to their anesthetic potencies. In this paper, we address some of those physicochemical properties, with more emphasis on correlating the anesthetic potency of volatile anesthetics to their boiling points based on thermodynamic principles.

  9. Estimation and Uncertainty Analysis of Flammability Properties for Computer-aided molecular design of working fluids for thermodynamic cycles

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    Computer Aided Molecular Design (CAMD) is an important tool to generate, test and evaluate promising chemical products. CAMD can be used in thermodynamic cycle for the design of pure component or mixture working fluids in order to improve the heat transfer capacity of the system. The safety......, there is no information about the reliability of the data. Furthermore, the global optimality of the GC parameters estimation is often not ensured....

  10. Simulating metabolism with statistical thermodynamics.

    Science.gov (United States)

    Cannon, William R

    2014-01-01

    New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed.

  11. Entransy loss in thermodynamic processes and its application

    International Nuclear Information System (INIS)

    Cheng, Xuetao; Liang, Xingang

    2012-01-01

    The entransy theory has been developed for heat transfer optimization. This paper extends it to optimize thermodynamic processes. The entransy balance equation of thermodynamic processes is introduced, with which the concept of entransy loss is developed. For the Carnot cycle and the irreversible thermodynamic processes where the working fluid is heated by the streams with prescribed inlet temperatures and specific capacity flow rates, we find that the maximum entransy loss leads to the maximum output work, which is the maximum principle of entransy loss in thermodynamic processes. However, the entropy generation cannot describe the change of the output work for the Carnot cycle. Therefore, the concept of entransy loss could describe the performance of thermodynamic processes. Then, the principle is used to optimize the thermodynamic processes of heat exchanger groups and the design of the irreversible Brayton cycle. For these problems, the operation parameters are optimized to get the maximum output work by calculating the maximum entransy loss when the entransy loss induced by dumping the used streams into the environment is considered. The analysis of the air conditioning system for room heating with heat–work conversion processes demonstrates the entransy loss has a direct relation with the input heat. -- Highlights: ► The entransy balance equation of thermodynamic processes is introduced. ► The concept of entransy loss is developed. ► The maximum entransy loss corresponds to the maximum output work. ► Examples show that entransy loss can be used to optimize heat–work conversion.

  12. Automated modelling of complex refrigeration cycles through topological structure analysis

    International Nuclear Information System (INIS)

    Belman-Flores, J.M.; Riesco-Avila, J.M.; Gallegos-Munoz, A.; Navarro-Esbri, J.; Aceves, S.M.

    2009-01-01

    We have developed a computational method for analysis of refrigeration cycles. The method is well suited for automated analysis of complex refrigeration systems. The refrigerator is specified through a description of flows representing thermodynamic sates at system locations; components that modify the thermodynamic state of a flow; and controls that specify flow characteristics at selected points in the diagram. A system of equations is then established for the refrigerator, based on mass, energy and momentum balances for each of the system components. Controls specify the values of certain system variables, thereby reducing the number of unknowns. It is found that the system of equations for the refrigerator may contain a number of redundant or duplicate equations, and therefore further equations are necessary for a full characterization. The number of additional equations is related to the number of loops in the cycle, and this is calculated by a matrix-based topological method. The methodology is demonstrated through an analysis of a two-stage refrigeration cycle.

  13. GESIT: a thermodynamic program for single cycle gas turbine plants with and without intercoolers

    Energy Technology Data Exchange (ETDEWEB)

    Heil, J

    1973-08-01

    A computer program for the thermodynamic modeling of singlecycle gas turbine plants is described. A high-temperature reactor is assumed as a heat source in the program, but the HTR can be replaced with another heat source without difficulty. Starting from a set of independent data, the program calculates efficiencies and mass flows. It indicates all values for a heat and power balance and prints out the temperatures and pressures for the different parts of the cycle. Besides this, the program is able to optimize the compression ratios for minimal power input. It also takes into account turbine rotor cooling (at the roots of the blades). Furthermore, the program is able to use either total pressure loss or specified losses in different parts of the cycle. The program GESlT can also handle systems with one or two intercoolers, or with no intercooler. GESIT gives all input and output values for the heat exchangers and turbo-machines. First the single-cycle gas turbine plant is described. After that the computational basis for the program and the program structure is explained. Instructions for data input are given so that the program can be immediately utilized. An example of input data together with the associated output is presented. (auth)

  14. Thermodynamics of hairy black holes in Lovelock gravity

    Science.gov (United States)

    Hennigar, Robie A.; Tjoa, Erickson; Mann, Robert B.

    2017-02-01

    We perform a thorough study of the thermodynamic properties of a class of Lovelock black holes with conformal scalar hair arising from coupling of a real scalar field to the dimensionally extended Euler densities. We study the linearized equations of motion of the theory and describe constraints under which the theory is free from ghosts/tachyons. We then consider, within the context of black hole chemistry, the thermodynamics of the hairy black holes in the Gauss-Bonnet and cubic Lovelock theories. We clarify the connection between isolated critical points and thermodynamic singularities, finding a one parameter family of these critical points which occur for well-defined thermodynamic parameters. We also report on a number of novel results, including `virtual triple points' and the first example of a `λ-line' — a line of second order phase transitions — in black hole thermodynamics.

  15. Direct comparasion of an engine working under Otto, Miller end Diesel cycles : thermodynamic analysis and real engine performance

    OpenAIRE

    Ribeiro, Bernardo Sousa; Martins, Jorge

    2007-01-01

    One of the ways to improve thermodynamic efficiency of Spark Ignition engines is by the optimisation of valve timing and lift and compression ratio. The throttleless engine and the Miller cycle engine are proven concepts for efficiency improvements of such engines. This paper reports on an engine with variable valve timing (VVT) and variable compression ratio (VCR) in order to fulfill such an enhancement of efficiency. Engine load is controlled by the valve opening per...

  16. Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Knudsen, Thomas; Larsen, Ulrik

    2014-01-01

    of varying boundary conditions by conducting an exergy analysis. The design parameters of each configuration were determined by performing a multi-variable optimisation. The results indicate that the Kalina split-cycle with reheat presents an exergetic efficiency by 2.8% points higher than a reference Kalina...... and condenser, and indicates a reduction of the exergy destruction by about 23% in the heat recovery system compared to the baseline cycle....

  17. Non-equilibrium thermodynamical description of rhythmic motion patterns of active systems: a canonical-dissipative approach.

    Science.gov (United States)

    Dotov, D G; Kim, S; Frank, T D

    2015-02-01

    We derive explicit expressions for the non-equilibrium thermodynamical variables of a canonical-dissipative limit cycle oscillator describing rhythmic motion patterns of active systems. These variables are statistical entropy, non-equilibrium internal energy, and non-equilibrium free energy. In particular, the expression for the non-equilibrium free energy is derived as a function of a suitable control parameter. The control parameter determines the Hopf bifurcation point of the deterministic active system and describes the effective pumping of the oscillator. In analogy to the equilibrium free energy of the Landau theory, it is shown that the non-equilibrium free energy decays as a function of the control parameter. In doing so, a similarity between certain equilibrium and non-equilibrium phase transitions is pointed out. Data from an experiment on human rhythmic movements is presented. Estimates for pumping intensity as well as the thermodynamical variables are reported. It is shown that in the experiment the non-equilibrium free energy decayed when pumping intensity was increased, which is consistent with the theory. Moreover, pumping intensities close to zero could be observed at relatively slow intended rhythmic movements. In view of the Hopf bifurcation underlying the limit cycle oscillator model, this observation suggests that the intended limit cycle movements were actually more similar to trajectories of a randomly perturbed stable focus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Optimization of the triple-pressure combined cycle power plant

    Directory of Open Access Journals (Sweden)

    Alus Muammer

    2012-01-01

    Full Text Available The aim of this work was to develop a new system for optimization of parameters for combined cycle power plants (CCGTs with triple-pressure heat recovery steam generator (HRSG. Thermodynamic and thermoeconomic optimizations were carried out. The objective of the thermodynamic optimization is to enhance the efficiency of the CCGTs and to maximize the power production in the steam cycle (steam turbine gross power. Improvement of the efficiency of the CCGT plants is achieved through optimization of the operating parameters: temperature difference between the gas and steam (pinch point P.P. and the steam pressure in the HRSG. The objective of the thermoeconomic optimization is to minimize the production costs per unit of the generated electricity. Defining the optimal P.P. was the first step in the optimization procedure. Then, through the developed optimization process, other optimal operating parameters (steam pressure and condenser pressure were identified. The developed system was demonstrated for the case of a 282 MW CCGT power plant with a typical design for commercial combined cycle power plants. The optimized combined cycle was compared with the regular CCGT plant.

  19. Computer code for single-point thermodynamic analysis of hydrogen/oxygen expander-cycle rocket engines

    Science.gov (United States)

    Glassman, Arthur J.; Jones, Scott M.

    1991-01-01

    This analysis and this computer code apply to full, split, and dual expander cycles. Heat regeneration from the turbine exhaust to the pump exhaust is allowed. The combustion process is modeled as one of chemical equilibrium in an infinite-area or a finite-area combustor. Gas composition in the nozzle may be either equilibrium or frozen during expansion. This report, which serves as a users guide for the computer code, describes the system, the analysis methodology, and the program input and output. Sample calculations are included to show effects of key variables such as nozzle area ratio and oxidizer-to-fuel mass ratio.

  20. Not all counterclockwise thermodynamic cycles are refrigerators

    Science.gov (United States)

    Dickerson, R. H.; Mottmann, J.

    2016-06-01

    Clockwise cycles on PV diagrams always represent heat engines. It is therefore tempting to assume that counterclockwise cycles always represent refrigerators. This common assumption is incorrect: most counterclockwise cycles cannot be refrigerators. This surprising result is explored here for quasi-static ideal gas cycles, and the necessary conditions for refrigeration cycles are clarified. Three logically self-consistent criteria can be used to determine if a counterclockwise cycle is a refrigerator. The most fundamental test compares the counterclockwise cycle with a correctly determined corresponding Carnot cycle. Other criteria we employ include a widely accepted description of the functional behavior of refrigerators, and a corollary to the second law that limits a refrigerator's coefficient of performance.

  1. Couplings between the seasonal cycles of surface thermodynamics and radiative fluxes in the semi-arid Sahel

    Science.gov (United States)

    Guichard, F.; Kergoat, L.; Mougin, E.; Timouk, F.; Bock, O.; Hiernaux, P.

    2009-04-01

    the total incoming radiation is limited to shorter time scales in Summer over this Central Sahelian location. However, observations also reveal astonishing radiative signatures of the monsoon on the surface incoming radiative flux. The incoming longwave flux does not reach its maximum during the monsoon season when the atmosphere is the most cloudy and humid, but earlier, prior to the onset of rainfall, as the dry and warmer atmosphere suddenly becomes moist. This feature points to the significance of the atmospheric cooling during the monsoon season and of the aerosol amounts in Spring. It also reveals that prior to the rainfall onset, the monsoon flow plays a major role on the diurnal cycle of the low-level temperature, due to its radiative properties. Conversely, the incoming solar radiation at the surface increases slightly from late Spring to the core monsoon season even though the atmosphere becomes moister and cloudier; this again involves the high aerosol optical thickness prevailing in late Spring and early Summer against a weaker shortwave forcing by monsoon clouds. The climatological combination of thermodynamic and radiative variations taking place during the monsoon eventually leads to a positive correlation between the equivalent potential temperature and Rnet. This correlation is, in turn, broadly consistent with an overall positive soil moisture rainfall feedback at this scale. Beyond these Sahelian-specific features, and in agreement with some previous studies, strong links are found between the atmospheric humidity and the net longwave flux, LWnet at the surface all year long, even across the much lower humidity ranges encountered in this region. They point to, and locally quantify the major control of water vapour and water-related processes on the surface-atmosphere thermal coupling as measured by LWnet. Namely, they are found to be more tightly coupled (LWnet closer to 0) when the atmosphere is moister and cloudier. Observational results such as

  2. Thermodynamic and economic studies of two new high efficient power-cooling cogeneration systems based on Kalina and absorption refrigeration cycles

    International Nuclear Information System (INIS)

    Rashidi, Jouan; Ifaei, Pouya; Esfahani, Iman Janghorban; Ataei, Abtin; Yoo, Chang Kyoo

    2016-01-01

    Highlights: • Proposing two new power and cooling cogeneration systems based on absorption chillers and Kalina cycles. • Model-based comparison through thermodynamic and economic standpoints. • Investigating sensitivity of system performance and costs to the key parameters. • Reducing total annual costs of the base system up to 8% by cogeneration. • Increasing thermal efficiency up to 4.9% despite of cooling generation. - Abstract: Two new power and cooling cogeneration systems based on Kalina cycle (KC) and absorption refrigeration cycle (AC) are proposed and studied from thermodynamic and economic viewpoints. The first proposed system, Kalina power-cooling cycle (KPCC), combines the refrigerant loop of the water-ammonia absorption chiller, consisting of an evaporator and two throttling valves with the KC. A portion of the KC mass flow enters the evaporator to generate cooling after being condensed in the KPCC system. KPCC is a flexible system adapting power and cooling cogeneration to the demand. The second proposed system, Kalina lithium bromide absorption chiller cycle (KLACC), consists of the KC and a single effect lithium bromide-water absorption chiller (AC_L_i_B_r_-_w_a_t_e_r). The KC subsystem discharges heat to the AC_L_i_B_r_-_w_a_t_e_r desorber before condensing in the condenser. The performance and economic aspects of both proposed systems are analyzed and compared with the stand alone KC. A parametric analysis is conducted to evaluate the sensitivity of efficiencies and the generated power and cooling quantities to the key operating variables. The results showed that, thermal efficiency and total annual costs decreased by 5.6% and 8% for KPCC system but increased 4.9% and 58% for KLACC system, respectively. Since the power-cooling efficiency of KLACC is 42% higher than KPCC it can be applied where the aim is cooling generation without considering economic aspects.

  3. Thermodynamic simulation of biomass gas steam reforming for a solid oxide fuel cell (SOFC system

    Directory of Open Access Journals (Sweden)

    A. Sordi

    2009-12-01

    Full Text Available This paper presents a methodology to simulate a small-scale fuel cell system for power generation using biomass gas as fuel. The methodology encompasses the thermodynamic and electrochemical aspects of a solid oxide fuel cell (SOFC, as well as solves the problem of chemical equilibrium in complex systems. In this case the complex system is the internal reforming of biomass gas to produce hydrogen. The fuel cell input variables are: operational voltage, cell power output, composition of the biomass gas reforming, thermodynamic efficiency, electrochemical efficiency, practical efficiency, the First and Second law efficiencies for the whole system. The chemical compositions, molar flows and temperatures are presented to each point of the system as well as the exergetic efficiency. For a molar water/carbon ratio of 2, the thermodynamic simulation of the biomass gas reforming indicates the maximum hydrogen production at a temperature of 1070 K, which can vary as a function of the biomass gas composition. The comparison with the efficiency of simple gas turbine cycle and regenerative gas turbine cycle shows the superiority of SOFC for the considered electrical power range.

  4. Study of thermodynamic properties of HFC refrigerant mixtures for Loretz-cycled niew generation air-conditioning equipment; Lorentz cycle ka shinsedai kucho kikiyo HFC kei kongo reibai no netsu rikigaku seishitsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, K; Sato, H [Keio University, Tokyo (Japan). Faculty of Science and Technology

    1997-02-01

    This paper describes thermodynamic properties of HFC refrigerant mixtures for Lorentz-cycled new generation air-conditioning equipment. Equipment has been completed for simultaneous measurement of density and vapor-liquid equilibrium property, accurate measurement of latent heat of vaporization, and accurate measurement of specific heat at constant pressure in liquid phase. Final adjustment and preliminary measurements are currently conducted. Through analytical investigation using actually measured data of thermodynamic properties of HFC refrigerant mixtures, five state equations were obtained, i.e., modified Peng-Robinson state equation which can reproduce the vapor-liquid equilibrium property of refrigerant mixtures, modified Patel-Teja state equation, Helmholtz function type state equation which is applicable in the whole fluid region of refrigerant mixtures, and so on. An evaluation test equipment has been fabricated as a trial for Lorentz-cycled air-conditioning equipments using HFC refrigerant mixtures, and demonstration test is conducted to confirm the validity. 9 refs., 5 figs.

  5. FY1995 study of thermodynamic properties of HFC refrigerant mixtures for Lorentz-cycled new generation air-conditioning equipments; 1995 nendo Lorentz cycle ka shinsedai kucho kikiyo HFC kei kongo reibai no netsurikigaku seishitsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    A hydrochlorofluorocarbon (HCFC) refrigerant, R-22, is currently being used almost exclusively as a refrigerant for conventional air-conditioning equipments. Since HCFCs are expected to be banned shortly, it is considered a crucial issue to support R and D of the air-conditioning system Lorentz-cycled with hydrofluorocarbon (HFC) refrigerants mixtures. In the present research project, therefore, it is aimed to reveal some of the essential thermodynamic properties of HFC refrigerant mixtures systematically. On the basis of a series of achievements for the last several years by the present research coordinator and his group regarding thermodynamic properties of single-component and blended HFC refrigerants, we have conducted following three major research programs rather systematically on which no challenges have ever been reported worldwide. Throughout a series of experimental as well as analytical researches performed so as to meet the objectives mentioned above, some novel knowledge and valuable outcomes could be obtained in the present study. (1) Precise measurements of vapor-liquid equilibrium properties with simultaneous determination of densities, latent heats of vaporization, and isobaric specific heat capacities in liquid phase. (2) Analytical studies to establish thermodynamic property modeling. (3) Feasibility study of evaluating the Lorentz-cycled performance. (NEDO)

  6. Thermodynamic analysis of a novel integrated solar combined cycle

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Yang, Yongping

    2014-01-01

    Highlights: • A novel ISCC scheme with two-stage DSG fields has been proposed and analyzed. • HRSG and steam turbine working parameters have been optimized to match the solar integration. • New scheme exhibits higher solar shares in the power output and solar-to-electricity efficiency. • Thermodynamic performances between new and reference systems have been investigated and compared. - Abstract: Integrated solar combined cycle (ISCC) systems have become more and more popular due to their high fuel and solar energy utilization efficiencies. Conventional ISCC systems with direct steam generation (DSG) have only one-stage solar input. A novel ISCC with DSG system has been proposed and analyzed in this paper. The new system consists two-stage solar input, which would significantly increase solar share in the total power output. Moreover, how and where solar energy is input into ISCC system would have impact on the solar and system overall efficiencies, which have been analyzed in the paper. It has been found that using solar heat to supply latent heat for vaporization of feedwater would be superior to that to be used for sensible heating purposes (e.g. Superheating steam). The study shows that: (1) producing both the high- and low-pressure saturated steam in the DSG trough collector could be an efficient way to improve process and system performance; (2) for a given live steam pressure, the optimum secondary and reheat steam conditions could be matched to reach the highest system thermal efficiency and net solar-to-electricity efficiency; (3) the net solar-to-electricity efficiency could reach up to 30% in the novel two-stage ISCC system, higher than that in the one-stage ISCC power plant; (4) compared with the conventional combined cycle gas turbine (CCGT) power system, lower stack temperature could be achieved, owing to the elimination of the approach-temperature-difference constraint, resulting in better thermal match in the heat recovery steam generator

  7. Thermodynamic analysis of chemical heat pumps

    International Nuclear Information System (INIS)

    Obermeier, Jonas; Müller, Karsten; Arlt, Wolfgang

    2015-01-01

    Thermal energy storages and heat pump units represent an important part of high efficient renewable energy systems. By using thermally driven, reversible chemical reactions a combination of thermal energy storage and heat pump can be realized. The influences of thermophysical properties of the involved components on the efficiency of a heat pump cycle is analysed and the relevance of the thermodynamic driving force is worked out. In general, the behaviour of energetic and exergetic efficiency is contrary. In a real cycle, higher enthalpies of reaction decrease the energetic efficiency but increase the exergetic efficiency. Higher enthalpies of reaction allow for lower offsets from equilibrium state for a default thermodynamic driving force of the reaction. - Highlights: • A comprehensive efficiency analysis of gas-solid heat pumps is proposed. • Link between thermodynamic driving force and equilibrium drop is shown. • Calculation of the equilibrium drop based on thermochemical properties. • Reaction equilibria of the decomposition reaction of salt hydrates. • Contrary behavior of energetic and exergetic efficiency

  8. Continuation of connecting orbits in 3d-ODEs' (i) point-to-cycle connections.

    NARCIS (Netherlands)

    Doedel, E.J.; Kooi, B.W.; van Voorn, G.A.K.; Kuznetzov, Y.A.

    2008-01-01

    We propose new methods for the numerical continuation of point-to-cycle connecting orbits in three-dimensional autonomous ODE's using projection boundary conditions. In our approach, the projection boundary conditions near the cycle are formulated using an eigenfunction of the associated adjoint

  9. Covariant Thermodynamics of Quantum Systems: Passivity, Semipassivity, and the Unruh Effect

    NARCIS (Netherlands)

    Kuckert, Bernd

    2001-01-01

    According to the Second Law of Thermodynamics, cycles applied to thermodynamic equilibrium states cannot perform any work (passivity property of thermodynamic equilibrium states). In the presence of matter this can hold only in the rest frame of the matter, as moving matter makes windmills and

  10. Bottoming micro-Rankine cycles for micro-gas turbines

    International Nuclear Information System (INIS)

    Invernizzi, Costante; Iora, Paolo; Silva, Paolo

    2007-01-01

    This paper investigates the possibility of enhancing the performances of micro-gas turbines through the addition of a bottoming organic Rankine cycle which recovers the thermal power of the exhaust gases typically available in the range of 250-300 o C. The ORC cycles are particularly suitable for the recovery of heat from sources at variable temperatures, and for the generation of medium to small electric power. With reference to a micro-gas turbine with a size of about 100 kWe, a combined configuration could increase the net electric power by about 1/3, yielding an increase of the electrical efficiency of up to 40%. A specific analysis of the characteristics of different classes of working fluids is carried out in order to define a procedure to select the most appropriate fluid, capable of satisfying both environmental (ozone depletion potential, global warming potential) and technical (flammability, toxicity, fluid critical temperature and molecular complexity) concerns. Afterwards, a thermodynamic analysis is performed to ascertain the most favourable cycle thermodynamic conditions, from the point of view of heat recovery. Furthermore, a preliminary design of the ORC turbine (number of stages, outer diameter and rotational speed) is carried out

  11. The thermodynamic solar energy; Le solaire thermodynamique

    Energy Technology Data Exchange (ETDEWEB)

    Rivoire, B. [Centre National de la Recherche Scientifique (CNRS-IMP), 66 - Perpignan (France)

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  12. The thermodynamic basis of entransy and entransy dissipation

    International Nuclear Information System (INIS)

    Xu, Mingtian

    2011-01-01

    In the present work, the entransy and entransy dissipation are defined from the thermodynamic point of view. It is shown that the entransy is a state variable and can be employed to describe the second law of thermodynamics. For heat conduction, a principle of minimum entransy dissipation is established based on the second law of thermodynamics in terms of entransy dissipation, which leads to the governing equation of the steady Fourier heat conduction without heat source. Furthermore, we derive the expressions of the entransy dissipation in duct flows and heat exchangers from the second law of thermodynamics, which paves the way for applications of the entransy dissipation theory in heat exchanger design. -- Highlights: → The concepts of entransy and entransy dissipation are defined from the thermodynamic point of view. → We find that the entransy is a new thermodynamic property. → The second law of thermodynamics can be described by the entransy and entransy dissipation. → The expressions of entransy dissipation in duct flows and heat exchangers are derived from the second law of thermodynamics.

  13. Performance of supercritical Brayton cycle using CO2-based binary mixture at varying critical points for SFR applications

    International Nuclear Information System (INIS)

    Jeong, Woo Seok; Jeong, Yong Hoon

    2013-01-01

    Highlights: • Supercritical CO 2 -based gas mixture Brayton cycles were investigated for a SFR. • The critical point of CO 2 is the lowest cycle operating limit of the S-CO 2 cycles. • Mixing additives with CO 2 changes the CO 2 critical point. • CO 2 –Xe and CO 2 –Kr cycles achieve higher cycle efficiencies than the S-CO 2 cycles. • CO 2 –H 2 S and CO 2 –cyclohexane cycles perform better at higher heat sink temperatures. -- Abstract: The supercritical carbon dioxide Brayton cycle (S-CO 2 cycle) has attracted much attention as an alternative to the Rankine cycle for sodium-cooled fast reactors (SFRs). The higher cycle efficiency of the S-CO 2 cycle results from the considerably decreased compressor work because the compressor behaves as a pump in the proximity of the CO 2 vapor–liquid critical point. In order to fully utilize this feature, the main compressor inlet condition should be controlled to be close to the critical point of CO 2 . This indicates that the critical point of CO 2 is a constraint on the minimum cycle condition for S-CO 2 cycles. Modifying the CO 2 critical point by mixing additive gases could be considered as a method of enhancing the performance and broadening the applicability of the S-CO 2 cycle. Due to the drastic fluctuations of the thermo-physical properties of fluids near the critical point, an in-house cycle analysis code using the NIST REFPROP database was implemented. Several gases were selected as potential additives considering their thermal stability and chemical interaction with sodium in the temperature range of interest and the availability of the mixture property database: xenon, krypton, hydrogen sulfide, and cyclohexane. The performances of the optimized CO 2 -containing binary mixture cycles with simple recuperated and recompression layouts were compared with the reference S-CO 2 , CO 2 –Ar, CO 2 –N 2 , and CO 2 –O 2 cycles. For the decreased critical temperatures, the CO 2 –Xe and CO 2

  14. Optimal design of compact organic Rankine cycle units for domestic solar applications

    DEFF Research Database (Denmark)

    Barbazza, Luca; Pierobon, Leonardo; Mirandola, Alberto

    2014-01-01

    criteria, i.e., compactness, high performance and safe operation, are targeted by adopting a multi-objective optimization approach modeled with the genetic algorithm. Design-point thermodynamic variables, e.g., evaporating pressure, the working fluid, minimum allowable temperature differences......Organic Rankine cycle turbogenerators are a promising technology to transform the solar radiation harvested by solar collectors into electric power. The present work aims at sizing a small-scale organic Rankine cycle unit by tailoring its design for domestic solar applications. Stringent design...

  15. Thermodynamic-behaviour model for air-cooled screw chillers with a variable set-point condensing temperature

    International Nuclear Information System (INIS)

    Chan, K.T.; Yu, F.W.

    2006-01-01

    This paper presents a thermodynamic model to evaluate the coefficient of performance (COP) of an air-cooled screw chiller under various operating conditions. The model accounts for the real process phenomena, including the capacity control of screw compressors and variations in the heat-transfer coefficients of an evaporator and a condenser at part load. It also contains an algorithm to determine how the condenser fans are staged in response to a set-point condensing temperature. The model parameters are identified, based on the performance data of chiller specifications. The chiller model is validated using a wide range of operating data of an air-cooled screw chiller. The difference between the measured and modelled COPs is within ±10% for 86% of the data points. The chiller's COP can increase by up to 115% when the set-point condensing temperature is adjusted, based on any given outdoor temperature. Having identified the variation in the chiller's COP, a suitable strategy is proposed for air-cooled screw chillers to operate at maximum efficiency as much as possible when they have to satisfy a building's cooling-load

  16. Forecasting Macedonian Business Cycle Turning Points Using Qual Var Model

    Directory of Open Access Journals (Sweden)

    Petrovska Magdalena

    2016-09-01

    Full Text Available This paper aims at assessing the usefulness of leading indicators in business cycle research and forecast. Initially we test the predictive power of the economic sentiment indicator (ESI within a static probit model as a leading indicator, commonly perceived to be able to provide a reliable summary of the current economic conditions. We further proceed analyzing how well an extended set of indicators performs in forecasting turning points of the Macedonian business cycle by employing the Qual VAR approach of Dueker (2005. In continuation, we evaluate the quality of the selected indicators in pseudo-out-of-sample context. The results show that the use of survey-based indicators as a complement to macroeconomic data work satisfactory well in capturing the business cycle developments in Macedonia.

  17. Investigation of thermodynamic performances for two solar-biomass hybrid combined cycle power generation systems

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Wang, Xiaohe; Lei, Jing; Jin, Hongguang

    2016-01-01

    Highlights: • Two solar-biomass hybrid combined cycle power generation systems are proposed. • The characters of the two proposed systems are compared. • The on-design and off-design properties of the system are numerically investigated. • The favorable performances of thermochemical hybrid routine are validated. - Abstract: Two solar-biomass hybrid combined cycle power generation systems are proposed in this work. The first system employs the thermochemical hybrid routine, in which the biomass gasification is driven by the concentrated solar energy, and the gasified syngas as a solar fuel is utilized in a combined cycle for generating power. The second system adopts the thermal integration concept, and the solar energy is directly used to heat the compressed air in the topping Brayton cycle. The thermodynamic performances of the developed systems are investigated under the on-design and off-design conditions. The advantages of the hybrid utilization technical mode are demonstrated. The solar energy can be converted and stored into the chemical fuel by the solar-biomass gasification, with the net solar-to-fuel efficiency of 61.23% and the net solar share of 19.01% under the specific gasification temperature of 1150 K. Meanwhile, the proposed system with the solar thermochemical routine shows more favorable behaviors, the annual system overall energy efficiency and the solar-to-electric efficiency reach to 29.36% and 18.49%, while the with thermal integration concept of 28.03% and 15.13%, respectively. The comparison work introduces a promising approach for the efficient utilization of the abundant solar and biomass resources in the western China, and realizes the mitigation of CO_2 emission.

  18. Elementary statistical thermodynamics a problems approach

    CERN Document Server

    Smith, Norman O

    1982-01-01

    This book is a sequel to my Chemical Thermodynamics: A Prob­ lems Approach published in 1967, which concerned classical thermodynamics almost exclusively. Most books on statistical thermodynamics now available are written either for the superior general chemistry student or for the specialist. The author has felt the need for a text which would bring the intermediate reader to the point where he could not only appreciate the roots of the subject but also have some facility in calculating thermodynamic quantities. Although statistical thermodynamics comprises an essential part of the college training of a chemist, its treatment in general physical chem­ istry texts is, of necessity, compressed to the point where the less competent student is unable to appreciate or comprehend its logic and beauty, and is reduced to memorizing a series of formulas. It has been my aim to fill this need by writing a logical account of the foundations and applications of the sub­ ject at a level which can be grasped by an under...

  19. Thermodynamic analysis of turbine blade cooling on the performance of gas turbine cycle

    International Nuclear Information System (INIS)

    Sarabchi, K.; Shokri, M.

    2002-01-01

    Turbine inlet temperature strongly affects gas turbine performance. Today blade cooling technologies facilitate the use of higher inlet temperatures. Of course blade cooling causes some thermodynamic penalties that destroys to some extent the positive effect of higher inlet temperatures. This research aims to model and evaluate the performance of gas turbine cycle with air cooled turbine. In this study internal and transpiration cooling methods has been investigated and the penalties as the result of gas flow friction, cooling air throttling, mixing of cooling air flow with hot gas flow, and irreversible heat transfer have been considered. In addition, it is attempted to consider any factor influencing actual conditions of system in the analysis. It is concluded that penalties due to blade cooling decrease as permissible temperature of the blade surface increases. Also it is observed that transpiration method leads to better performance of gas turbine comparing to internal cooling method

  20. Thermodynamic calculation of a district energy cycle

    International Nuclear Information System (INIS)

    Hoehlein, B.; Bauer, A.; Kraut, G.; Scherberich, F.D.

    1975-08-01

    This paper presents a calculation model for a nuclear district energy circuit. Such a circuit means the combination of a steam reforming plant with heat supply from a high-temperature nuclear reactor and a methanation plant with heat production for district heating or electricity production. The model comprises thermodynamic calculations for the endothermic methane reforming reaction as well as the exothermic CO-hydrogenation in adiabatic reactors and allows the optimization of the district energy circuit under consideration. (orig.) [de

  1. Extrinsic and intrinsic curvatures in thermodynamic geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Mansoori, Seyed Ali, E-mail: shossein@bu.edu [Department of Physics, Boston University, 590 Commonwealth Ave., Boston, MA 02215 (United States); Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Sharifian, Elham, E-mail: e.sharifian@ph.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-08-10

    We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner–Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.

  2. Extrinsic and intrinsic curvatures in thermodynamic geometry

    International Nuclear Information System (INIS)

    Hosseini Mansoori, Seyed Ali; Mirza, Behrouz; Sharifian, Elham

    2016-01-01

    We investigate the intrinsic and extrinsic curvatures of a certain hypersurface in thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner–Nordström-(A)de Sitter black hole (Phantom), the extrinsic curvature of a constant Q hypersurface has the same sign as the heat capacity around the phase transition points. The intrinsic curvature of the hypersurface can also be divergent at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN (J-zero hypersurface) and Kerr black holes (Q-zero hypersurface) ones [1]. This approach can easily be generalized to an arbitrary thermodynamic system.

  3. Thermodynamics of nuclear power systems

    International Nuclear Information System (INIS)

    Anno, J.

    1977-01-01

    The conversion of nuclear energy to useful work follows essentially the same course as the conversion of thermal energy from fossil fuel to work. The thermal energy released in the reactor core is first transferred to the primary coolant which then generally transfers its heat to a secondary fluid. The secondary fluid serves as the working fluid in a heat engine. The author briefly examines the thermodynamic principles governing the operation of such engines, the major thermodynamic cycles used, and their application to nuclear power plants. (Auth.)

  4. Utilization of waste heat from GT-MHR for power generation in organic Rankine cycles

    International Nuclear Information System (INIS)

    Yari, Mortaza; Mahmoudi, S.M.S.

    2010-01-01

    The gas turbine-modular helium reactor (GT-MHR) is currently being developed by an international consortium. In this power plant, circulating helium that has to be compressed in a single or two successive stages cools the reactor core. For thermodynamic reasons, these compression stages require pre-cooling of the helium to about 26 deg. C through the use of intercooler and pre-cooler in which water is used to cool the helium. Considerable thermal energy (∼300 MWth) is thus dissipated in these components. This thermal energy is then rejected to a heat sink. For different designs, the temperature ranges of the helium in the intercooler and pre-cooler could be about 100 and 150 deg. C, respectively. These are ideal energy sources to be used in an organic Rankine cycles for power generation. This study examines the performance of a gas-cooled nuclear power plant with closed Brayton cycle (CBC) combined with two organic Rankine cycles (ORC). More attention was paid to the irreversibilities generated in the combined cycle. Individual models are developed for each component through applications of the first and second laws of thermodynamics. The effects of the turbine inlet temperature, compressor pressure ratio, evaporator temperature and temperature difference in the evaporator on the first- and second-law efficiencies and on the exergy destruction rate of the combined cycle were studied. Finally the combined cycle was optimized thermodynamically using the EES (Engineering Equation Solver) software. Based on identical operating conditions, a comparison between the GT-MHR/ORC and a simple GT-MHR cycle is also made. It was found that both the first- and second-law efficiencies of GT-MHR/ORC cycle are about 3%-points higher than that of the simple GT-MHR cycle. Also, the exergy destruction rate for GT-MHR/ORC cycle is about 5% lower than that of the GT-MHR cycle.

  5. A mixed integer linear programming model for integrating thermodynamic cycles for waste heat exploitation in process sites

    International Nuclear Information System (INIS)

    Oluleye, Gbemi; Smith, Robin

    2016-01-01

    Highlights: • MILP model developed for integration of waste heat recovery technologies in process sites. • Five thermodynamic cycles considered for exploitation of industrial waste heat. • Temperature and quantity of multiple waste heat sources considered. • Interactions with the site utility system considered. • Industrial case study presented to illustrate application of the proposed methodology. - Abstract: Thermodynamic cycles such as organic Rankine cycles, absorption chillers, absorption heat pumps, absorption heat transformers, and mechanical heat pumps are able to utilize wasted thermal energy in process sites for the generation of electrical power, chilling and heat at a higher temperature. In this work, a novel systematic framework is presented for optimal integration of these technologies in process sites. The framework is also used to assess the best design approach for integrating waste heat recovery technologies in process sites, i.e. stand-alone integration or a systems-oriented integration. The developed framework allows for: (1) selection of one or more waste heat sources (taking into account the temperatures and thermal energy content), (2) selection of one or more technology options and working fluids, (3) selection of end-uses of recovered energy, (4) exploitation of interactions with the existing site utility system and (5) the potential for heat recovery via heat exchange is also explored. The methodology is applied to an industrial case study. Results indicate a systems-oriented design approach reduces waste heat by 24%; fuel consumption by 54% and CO_2 emissions by 53% with a 2 year payback, and stand-alone design approach reduces waste heat by 12%; fuel consumption by 29% and CO_2 emissions by 20.5% with a 4 year payback. Therefore, benefits from waste heat utilization increase when interactions between the existing site utility system and the waste heat recovery technologies are explored simultaneously. The case study also shows

  6. Thermodynamic analysis of PBMR plant

    International Nuclear Information System (INIS)

    Sen, S.; Kadiroglu, O.K.

    2002-01-01

    The thermodynamic analysis of a PBMR is presented for various pressures and temperatures values. The design parameters of the components of the power plant are calculated and an optimum cycle for the maximum thermal efficiency is sought for. (author)

  7. Stochastic control and the second law of thermodynamics

    Science.gov (United States)

    Brockett, R. W.; Willems, J. C.

    1979-01-01

    The second law of thermodynamics is studied from the point of view of stochastic control theory. We find that the feedback control laws which are of interest are those which depend only on average values, and not on sample path behavior. We are lead to a criterion which, when satisfied, permits one to assign a temperature to a stochastic system in such a way as to have Carnot cycles be the optimal trajectories of optimal control problems. Entropy is also defined and we are able to prove an equipartition of energy theorem using this definition of temperature. Our formulation allows one to treat irreversibility in a quite natural and completely precise way.

  8. Thermodynamics of an accelerated expanding universe

    International Nuclear Information System (INIS)

    Wang Bin; Gong Yungui; Abdalla, Elcio

    2006-01-01

    We investigate the laws of thermodynamics in an accelerating universe driven by dark energy with a time-dependent equation of state. In the case we consider that the physically relevant part of the Universe is that enveloped by the dynamical apparent horizon, we have shown that both the first law and second law of thermodynamics are satisfied. On the other hand, if the boundary of the Universe is considered to be the cosmological event horizon the thermodynamical description based on the definitions of boundary entropy and temperature breaks down. No parameter redefinition can rescue the thermodynamics laws from such a fate, rendering the cosmological event horizon unphysical from the point of view of the laws of thermodynamics

  9. Thermodynamics properties of lanthanide series near melting point-A pseudopotential approach

    Science.gov (United States)

    Suthar, P. H.; Gajjar, P. N.

    2018-04-01

    The present paper deals with computational study of thermodynamics properties for fifteen elements of lanthanide series. The Helmholtz free energy (F), Internal energy (E) and Entropy (S)have been computed using variational method based on the Gibbs-Bogoliubov (GB) along with Percus-Yevick hard sphere reference system and Gajjar's model potential. The local field correction function proposed by Taylor is applied to introduce the exchange and correlation effects in the study of thermodynamics of these metals. The present results in comparison with available theoretical and experimental are found to be in good agreement and confirm the ability of the model potential.

  10. The maximum temperature of a thermodynamic cycle effect on weight-dimensional characteristics of the NPP energy blocks with air cooling

    International Nuclear Information System (INIS)

    Bezborodov, Yu.A.; Bubnov, V.P.; Nesterenko, V.B.

    1982-01-01

    The cycle maximum temperature effect on the properties of individual apparatuses and total NPP energy blocks characteristics has been investigated. Air, nitrogen, helium and chemically reacting system N 2 O 4 +2NO+O 2 have been considered as coolants. The conducted investigations have shown that maximum temperature of thermodynamical cycle affects considerably both the weight-dimensional characteristics of individual elements of NPP and total characteristics of NPP energy block. Energy blocks of NPP with air cooling wherein dissociating nitrogen tetroxide is used as working body, have better indexes on the majority of characteristics in comparison with blocks with air, nitrogen and helium cooling. If technical restrictions are to be taken into account (thermal resistance of metals, coolant decomposition under high temperatures, etc.) then dissociating nitrogen tetroxide should be recommended as working body and maximum cycle temperature in the range from 500 up to 600 deg C

  11. Thermodynamics of nuclear power systems

    International Nuclear Information System (INIS)

    Anno, J.

    1983-01-01

    The conversion of nuclear energy to useful work follows essentially the same course as the conversion of thermal energy from fossil fuel to work. The thermal energy released in the reactor core is first transferred to the primary coolant which then generally transfers its heat to a secondary fluid. The secondary fluid serves as the working fluid in a heat engine. In this chapter the authors briefly examine the thermodynamic principles governing the operation of such engines, the major thermodynamic cycles used, and their application to nuclear power plants

  12. Thermodynamics of hairy black holes in Lovelock gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hennigar, Robie A. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 (Canada); Tjoa, Erickson [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences,Nanyang Technological University, Singapore, 637371 (Singapore); Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 (Canada); Mann, Robert B. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1 (Canada)

    2017-02-14

    We perform a thorough study of the thermodynamic properties of a class of Lovelock black holes with conformal scalar hair arising from coupling of a real scalar field to the dimensionally extended Euler densities. We study the linearized equations of motion of the theory and describe constraints under which the theory is free from ghosts/tachyons. We then consider, within the context of black hole chemistry, the thermodynamics of the hairy black holes in the Gauss-Bonnet and cubic Lovelock theories. We clarify the connection between isolated critical points and thermodynamic singularities, finding a one parameter family of these critical points which occur for well-defined thermodynamic parameters. We also report on a number of novel results, including ‘virtual triple points’ and the first example of a ‘λ-line’ — a line of second order phase transitions — in black hole thermodynamics.

  13. Thermodynamic analysis of a nuclear-hydrogen power system using H2/O2 direct combustion product as a working substance in the bottom cycle

    International Nuclear Information System (INIS)

    Chen, D.Z.; Yu, C.P.

    1990-01-01

    A combined thermodynamic cycle using nuclear and hydrogen energy as heat sources was investigated in this paper. The cycle is composed of top cycle using HTGR as energy source and helium as working medium and a bottom cycle with H 2 /O 2 direct combustion product as working substance. hydrogen and oxygen are thermochemically by splitting of water produced through a part of nuclear heat recovered from the top cycle. They may be delivered to the O 2 /H 2 users or used as fuels for the high temperature bottom Rankine steam cycle. The combined cycle not only uses the new energy sources instead of conventional fossil fuels but it possess the advantages of both helium and steam cycle. It has a high thermal efficiency, large unit capacity, many-sided usage and less pollution. It may represent a new type of combined cycles for future energy conversion and power generation. Using computer diagram, a variety of schemes were calculated and analyzed. The influence of some main parameters upon the cycle performance were also studied

  14. Solvation thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    1987-01-01

    This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen­ tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther­ modynamics alone. However, solvation is inherently a molecular pro­ cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 b...

  15. A parametric model for the global thermodynamic behavior of fluids in the critical region

    International Nuclear Information System (INIS)

    Luettmer-Strathmann, J.; Tang, S.; Sengers, J.V.

    1992-01-01

    The asymptotic thermodynamic behavior of fluids near the critical point is described by scaling laws with universal scaling functions that can be represented by parametric equations. In this paper, we derive a more general parametric model that incorporates the crossover from singular thermodynamic behavior near the critical point to regular classical thermodynamic behavior far away from the critical point. Using ethane as an example, we show that such a parametric crossover model yields an accurate representation of the thermodynamic properties of fluids in a large region around the critical point

  16. Utilisation de mélanges non-azéotropiques dans les cycles thermodynamiques à compression Use of Non-Azeotropic Mixtures in Thermodynamic Compression Cycles

    Directory of Open Access Journals (Sweden)

    Ambrosino J. L.

    2006-11-01

    Full Text Available L'utilisation de mélanges non-azéotropiques comme fluides frigorigènes présente différents avantages en ce qui concerne le fonctionnement des installations de réfrigération / conditionnement / chauffage mettant en oeuvre des cycles thermodynamiques à compression avec changement de phase. En outre, de tels mélanges représentent une alternative intéressante aux corps purs actuellement recherchés pour résoudre les problèmes d'environnement liés à la destruction de la couche d'ozone. Cet article analyse les connaissances acquises concernant la mise en oeuvre d'une telle solution. The use of non-azeotropic mixtures as refrigerants has various advantages concerning the operating of refrigeration / air-conditioning / heating installations implementing thermodynamic compression cycles with a phase change. Likewise, such mixtures represent an interesting alternative to pure components which are now being looked to as a solution to environmental problems linked to the destruction of the ozone layer. This article analyzes what is known about the implementation of such a solution.

  17. Applying the principles of thermoeconomics to the organic Rankine Cycle for low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Xiao, F.; Lilun, Q.; Changsun, S.

    1989-01-01

    In this paper, thermoeconomic principle is used to study the selection of working fluids and the option of the cycle parameters in the organic Rankine cycle of low temperature waste heat recovery. The parameter ξ, the product of the ratio of waste heat recovery and real cycle thermal efficiency, is suggested as a unified thermodynamic criterion for the selection of the working fluids. The mathematical expressions are developed to determine the optimal boiling temperature and the optimal pin point temperature difference in the heat recovery exchanger by way of thermoeconomic principle

  18. Nonequilibrium statistical mechanics and stochastic thermodynamics of small systems

    International Nuclear Information System (INIS)

    Tu Zhanchun

    2014-01-01

    Thermodynamics is an old subject. The research objects in conventional thermodynamics are macroscopic systems with huge number of particles. In recent 30 years, thermodynamics of small systems is a frontier topic in physics. Here we introduce nonequilibrium statistical mechanics and stochastic thermodynamics of small systems. As a case study, we construct a Canot-like cycle of a stochastic heat engine with a single particle controlled by a time-dependent harmonic potential. We find that the efficiency at maximum power is 1 - √T c /T h , where Tc and Th are the temperatures of cold bath and hot bath, respectively. (author)

  19. Thermodynamic power stations at low temperatures

    Science.gov (United States)

    Malherbe, J.; Ployart, R.; Alleau, T.; Bandelier, P.; Lauro, F.

    The development of low-temperature thermodynamic power stations using solar energy is considered, with special attention given to the choice of the thermodynamic cycle (Rankine), working fluids (frigorific halogen compounds), and heat exchangers. Thermomechanical conversion machines, such as ac motors and rotating volumetric motors are discussed. A system is recommended for the use of solar energy for irrigation and pumping in remote areas. Other applications include the production of cold of fresh water from brackish waters, and energy recovery from hot springs.

  20. Influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle

    International Nuclear Information System (INIS)

    Sanjay; Singh, Onkar; Prasad, B.N.

    2008-01-01

    A comparative study of the influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle power plant is presented. Seven schemes involving air and steam as coolants under open and closed loop cooling techniques have been studied. The open loop incorporates the internal convection, film and transpiration cooling techniques. Closed loop cooling includes only internal convection cooling. It has been found that closed loop steam cooling offers more specific work and consequently gives higher value of plant efficiency of about 60%, whereas open loop transpiration steam cooling, open loop steam internal convection cooling, transpiration air cooling, film steam cooling, film air, and internal convection air cooling have been found to yield lower values of plant efficiency in decreasing order as compared to closed loop steam cooling

  1. CANDU combined cycles featuring gas-turbine engines

    International Nuclear Information System (INIS)

    Vecchiarelli, J.; Choy, E.; Peryoga, Y.; Aryono, N.A.

    1998-01-01

    thermodynamic evaluation of various CANDU gas-turbine combined cycles. For the evaluation, a minimal number and size of gas-turbine engines were considered, specifically, 4x50 MWe (based on CANDU 6). With this set of gas turbines, it is calculated that a relatively high level of reliability of class IV power restoration can be attained. The results from the GateCycle analysis indicate that certain CANDU combined cycles can generate over 940 MWe (net) with an overall thermal efficiency of up to 37% (which is about 4 percentage points higher than that of the current CANDU 6). Hence, the proposed concept may significantly enhance the competitiveness of future CANDU plants. This is especially important in light of: (a) advancements in combined-cycle technology and (b) recent studies on the thermal coupling of gas turbines with future light water reactors. (author)

  2. Reactor physics and thermodynamics of a gaseous core fission reactor

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Van Dam, H.; Stekelenburg, A.J.C.; Hoogenboom, J.E.; Boersma-Klein, W.; Kistemaker, J.

    1990-01-01

    Neutron kinetics and thermodynamics of a Gaseous Core Fission Reactor with magnetical pumping are shown to have many unconventional aspects. Attention is focussed on the properties of the fuel gas, the stationary temperature distribution, the non-linear neutron kinetics and the energy balance in thermodynamical cycles

  3. Ab-initio modelling of thermodynamics and kinetics of point defects in indium oxide

    International Nuclear Information System (INIS)

    Agoston, Peter; Klein, Andreas; Albe, Karsten; Erhart, Paul

    2008-01-01

    The electrical and optical properties of indium oxide films strongly vary with the processing parameters. Especially the oxygen partial pressure and temperature determine properties like electrical conductivity, composition and transparency. Since this material owes its remarkable properties like the intrinsic n-type conductivity to its defect chemistry, it is important to understand both, the equilibrium defect thermodynamics and kinetics of the intrinsic point defects. In this contribution we present a defect model based on DFT total energy calculations using the GGA+U method. Further, the nudged elastic band method is employed in order to obtain a set of migration barriers for each defect species. Due to the complicated crystal structure of indium oxide a Kinetic Monte-Carlo algorithm was implemented, which allows to determine diffusion coefficients. The bulk tracer diffusion constant is predicted as a function of oxygen partial pressure, Fermi level and temperature for the pure material

  4. Thermodynamic analysis of a dual loop heat recovery system with trilateral cycle applied to exhaust gases of internal combustion engine for propulsion of the 6800 TEU container ship

    International Nuclear Information System (INIS)

    Choi, Byung Chul; Kim, Young Min

    2013-01-01

    A dual loop waste heat recovery power generation system that comprises an upper trilateral cycle and a lower organic Rankine cycle, in which discharged exhaust gas heat is recovered and re-used for propulsion power, was theoretically applied to an internal combustion engine for propulsion in a 6800 TEU container ship. The thermodynamic properties of this exhaust gas heat recovery system, which vary depending on the boundary temperature between the upper and lower cycles, were also investigated. The results confirmed that this dual loop exhaust gas heat recovery power generation system exhibited a maximum net output of 2069.8 kW, and a maximum system efficiency of 10.93% according to the first law of thermodynamics and a maximum system exergy efficiency of 58.77% according to the second law of thermodynamics. In this case, the energy and exergy efficiencies of the dual loop system were larger than those of the single loop trilateral cycle. Further, in the upper trilateral cycle, the volumetric expansion ratio of the turbine could be considerably reduced to an adequate level to be employed in the practical system. When this dual loop exhaust gas heat recovery power generation system was applied to the main engine of the container ship, which was actually in operation, a 2.824% improvement in propulsion efficiency was confirmed in comparison to the case of a base engine. This improvement in propulsion efficiency resulted in about 6.06% reduction in the specific fuel oil consumption and specific CO 2 emissions of the main engine during actual operation. - Highlights: • WHRS was theoretically applied to exhaust gas of a main engine for ship propulsion. • A dual loop EG-WHRS using water and R1234yf as working fluids has been suggested. • Limitation of single loop trilateral cycle was improved by the dual loop system. • The propulsion efficiency of 2.824% was improved by the dual loop EG-WHRS. • This resulted in about 6.06% reduction in the SFOC and specific CO

  5. Thermodynamic analysis of high-temperature regenerative organic Rankine cycles using siloxanes as working fluids

    International Nuclear Information System (INIS)

    Fernandez, F.J.; Prieto, M.M.; Suarez, I.

    2011-01-01

    A recent novel adjustment of the Span-Wagner equation of state for siloxanes, used as working fluids in high-temperature organic Rankine cycles, is applied in a mathematical model to solve cycles under several working conditions. The proposed scheme includes a thermo-oil intermediate heat circuit between the heat source and the organic Rankine cycle. Linear and cyclic siloxanes are assayed in saturated, superheated and supercritical cycles. The cycle includes an internal heat exchanger (regenerative cycle), although a non-regenerative scheme is also solved. In the first part of the study, a current of combustion gases cooled to close to their dew point temperature is taken as the reference heat source. In the second part, the outlet temperature of the heat source is varied over a wide range, determining appropriate fluids and schemes for each thermal level. Simple linear (MM, MDM) siloxanes in saturated regenerative schemes show good efficiencies and ensure thermal stability of the working fluid. -- Highlights: → Organic Rankine cycles with polymethylsiloxanes as working fluids were modelled. → The cycle scheme is regenerative and includes an intermediate heat transfer fluid. → The fluid properties were calculated by means of the Span-Wagner equation of state. → Vapour conditions to the expander and source thermal level were analysed. → Siloxanes MM, MDM and D 4 under saturated conditions were the best options.

  6. Investigation on the pinch point position in heat exchangers

    Science.gov (United States)

    Pan, Lisheng; Shi, Weixiu

    2016-06-01

    The pinch point is important for analyzing heat transfer in thermodynamic cycles. With the aim to reveal the importance of determining the accurate pinch point, the research on the pinch point position is carried out by theoretical method. The results show that the pinch point position depends on the parameters of the heat transfer fluids and the major fluid properties. In most cases, the pinch point locates at the bubble point for the evaporator and the dew point for the condenser. However, the pinch point shifts to the supercooled liquid state in the near critical conditions for the evaporator. Similarly, it shifts to the superheated vapor state with the condensing temperature approaching the critical temperature for the condenser. It even can shift to the working fluid entrance of the evaporator or the supercritical heater when the heat source fluid temperature is very high compared with the absorbing heat temperature. A wrong position for the pinch point may generate serious mistake. In brief, the pinch point should be founded by the iterative method in all conditions rather than taking for granted.

  7. Elimination of the induced malfunctions and use of dynamic prognosis in a thermodynamic diagnosis system of the thermal cycling; Eliminacao das malfuncoes induzidas e utilizacao do prognostico dinamico em sistemas de diagnostico termodinamico de ciclos termicos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.A.M.; Venturini, O.J.; Lora, E.E.S. [Universidade Federal de Itajuba (NEST/IEM/UNIFEI), MG (Brazil). Inst. de Engenharia Mecanica. Nucleo de Excelencia em Geracao Termeletrica e Distribuida], Emails: juliomendes@unifei.edu.br, osvaldo@unifei.edu.br, electo@unifei.edu.br

    2009-07-01

    The search for more efficient thermal cycles has led a growing complexity of these cycles and therefore increased the inter-relationships between the thermodynamic components. This complexity is further enhanced with the over time, due to the occurrence of both natural as early degradation in a more or less degree, of all plant components. Several methodologies have been proposed for creating system for diagnostic / prognostic with the objective to detect these degradations (defects) and quantify the gain that can be obtained in the performance indicators of thermal cycles (usually specific fuel consumption and power net) by the elimination of anomalies. Two points have been emphasized as the most difficult in the development of such systems: the distinction between the performance variation of the components due only to the point of operation outside of these project components, caused by the presence of abnormality in another component (induced malfunction) and a decrease in the performance due to the presence of anomalies in the component itself (intrinsic malfunction). The second difficulty is the quantification of the effects induced by the elimination of each of the present anomalies. This work makes use of the method of reconciliation and using individual models of each component to predict unusual behavior of the same design point. The comparison of data from the system plant information, relating to the current state and data from the models, is used to detect anomalies. The methodology is explained in detail and an application of it in a Rankine cycle is used to well understand, especially in parts for the elimination of induced malfunctions, and related to the induced changes by the elimination of each one of the anomalies.

  8. Nonequilibrium thermodynamics and energy efficiency in weight loss diets

    Directory of Open Access Journals (Sweden)

    Fine Eugene J

    2007-07-01

    Full Text Available Abstract Carbohydrate restriction as a strategy for control of obesity is based on two effects: a behavioral effect, spontaneous reduction in caloric intake and a metabolic effect, an apparent reduction in energy efficiency, greater weight loss per calorie consumed. Variable energy efficiency is established in many contexts (hormonal imbalance, weight regain and knock-out experiments in animal models, but in the area of the effect of macronutrient composition on weight loss, controversy remains. Resistance to the idea comes from a perception that variable weight loss on isocaloric diets would somehow violate the laws of thermodynamics, that is, only caloric intake is important ("a calorie is a calorie". Previous explanations of how the phenomenon occurs, based on equilibrium thermodynamics, emphasized the inefficiencies introduced by substrate cycling and requirements for increased gluconeogenesis. Living systems, however, are maintained far from equilibrium, and metabolism is controlled by the regulation of the rates of enzymatic reactions. The principles of nonequilibrium thermodynamics which emphasize kinetic fluxes as well as thermodynamic forces should therefore also be considered. Here we review the principles of nonequilibrium thermodynamics and provide an approach to the problem of maintenance and change in body mass by recasting the problem of TAG accumulation and breakdown in the adipocyte in the language of nonequilibrium thermodynamics. We describe adipocyte physiology in terms of cycling between an efficient storage mode and a dissipative mode. Experimentally, this is measured in the rate of fatty acid flux and fatty acid oxidation. Hormonal levels controlled by changes in dietary carbohydrate regulate the relative contributions of the efficient and dissipative parts of the cycle. While no experiment exists that measures all relevant variables, the model is supported by evidence in the literature that 1 dietary carbohydrate, via its

  9. Thermodynamic Analyses of Biomass Gasification Integrated Externally Fired, Post-Firing and Dual-Fuel Combined Cycles

    Directory of Open Access Journals (Sweden)

    Saeed Soltani

    2015-01-01

    Full Text Available In the present work, the results are reported of the energy and exergy analyses of three biomass-related processes for electricity generation: the biomass gasification integrated externally fired combined cycle, the biomass gasification integrated dual-fuel combined cycle, and the biomass gasification integrated post-firing combined cycle. The energy efficiency for the biomass gasification integrated post-firing combined cycle is 3% to 6% points higher than for the other cycles. Although the efficiency of the externally fired biomass combined cycle is the lowest, it has an advantage in that it only uses biomass. The energy and exergy efficiencies are maximized for the three configurations at particular values of compressor pressure ratios, and increase with gas turbine inlet temperature. As pressure ratio increases, the mass of air per mass of steam decreases for the biomass gasification integrated post-firing combined cycle, but the pressure ratio has little influence on the ratio of mass of air per mass of steam for the other cycles. The gas turbine exergy efficiency is the highest for the three configurations. The combustion chamber for the dual-fuel cycle exhibits the highest exergy efficiency and that for the post-firing cycle the lowest. Another benefit of the biomass gasification integrated externally fired combined cycle is that it exhibits the highest air preheater and heat recovery steam generator exergy efficiencies.

  10. A thermodynamic analysis of a transcritical cycle with refrigerant mixture R32/R290 for a small heat pump water heater

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jianlin; Xu, Zong; Tian, Gaolei [Department of Refrigeration and Cryogenic Engineering, School of Energy and Power Engineering, Xi' an Jiaotong University, West Xianning Road, No. 28, Xianning West Road, Xi' an Shaanxi 710049 (China)

    2010-12-15

    In this study, a thermodynamic analysis on the performance of a transcritical cycle using azeotropic refrigerant mixtures of R32/R290 with mass fraction of 70/30 has been performed. The main purpose of this study is to theoretically verify the possibility of applying the chosen refrigerant mixture in small heat pumps for high temperature water heating applications. Performance evaluation has been carried out for a simple azeotropic mixture R32/R290 transcritical cycle by varying evaporator temperature, outlet temperature of gas cooler and compressor discharge pressure. Furthermore, the effects of an internal heat exchanger on the transcritical R32/R290 cycle have been presented at different operating conditions. The results show that high heating coefficient of performance (COP{sub h}) and volumetric heating capacity can be achieved by using this transcritical cycle. It is desirable to apply the chosen refrigerant mixture R32/R290 in small heat pump water heater for high temperature water heating applications, which may produce hot water with temperature up to 90 C. (author)

  11. Families of optimal thermodynamic solutions for combined cycle gas turbine (CCGT) power plants

    International Nuclear Information System (INIS)

    Godoy, E.; Scenna, N.J.; Benz, S.J.

    2010-01-01

    Optimal designs of a CCGT power plant characterized by maximum second law efficiency values are determined for a wide range of power demands and different values of the available heat transfer area. These thermodynamic optimal solutions are found within a feasible operation region by means of a non-linear mathematical programming (NLP) model, where decision variables (i.e. transfer areas, power production, mass flow rates, temperatures and pressures) can vary freely. Technical relationships among them are used to systematize optimal values of design and operative variables of a CCGT power plant into optimal solution sets, named here as optimal solution families. From an operative and design point of view, the families of optimal solutions let knowing in advance optimal values of the CCGT variables when facing changes of power demand or adjusting the design to an available heat transfer area.

  12. Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle

    International Nuclear Information System (INIS)

    Kim, Min Seok; Ahn, Yoonhan; Kim, Beomjoo; Lee, Jeong Ik

    2016-01-01

    In this paper, a comparison of nine supercritical carbon dioxide (S-CO 2 ) bottoming power cycles in conjunction with a topping cycle of landfill gas (LFG) fired 5MWe gas turbine is presented. For the comparison purpose, a sensitivity study of the cycle design parameters for nine different cycles was conducted and each cycle thermodynamic performance is evaluated. In addition, the cycle performance evaluation dependency on the compressor inlet temperature variation is performed to investigate how S-CO 2 cycles sensitive to the heat sink temperature variation. Furthermore, the development of new S-CO 2 cycle layouts is reported and the suggested cycles' performances are compared to the existing cycle layouts. It was found that a recompression cycle is not suitable for the bottoming cycle application, but a partial heating cycle has relatively higher net produced work with a simple layout and small number of components. Although a dual heated and flow split cycle has the highest net produced work, it has disadvantages of having numerous components and complex process which requires more sophisticated operational strategies. This study identified that the recuperation process is much more important than the intercooling process to the S-CO 2 cycle design for increasing the thermal efficiency and the net produced work point of view. - Highlights: • Study of nine S-CO 2 power cycle layouts for a small scale landfill gas power generation application. • Development of new S-CO 2 cycle layouts. • Sensitivity analysis of S-CO 2 cycles to evaluate and compare nine cycles' performances.

  13. Unified geometric description of black hole thermodynamics

    International Nuclear Information System (INIS)

    Alvarez, Jose L.; Quevedo, Hernando; Sanchez, Alberto

    2008-01-01

    In the space of thermodynamic equilibrium states we introduce a Legendre invariant metric which contains all the information about the thermodynamics of black holes. The curvature of this thermodynamic metric becomes singular at those points where, according to the analysis of the heat capacities, phase transitions occur. This result is valid for the Kerr-Newman black hole and all its special cases and, therefore, provides a unified description of black hole phase transitions in terms of curvature singularities.

  14. Technical evaluation of thermodynamics processes; Avaliacao tecnica dos processos termodinamicos

    Energy Technology Data Exchange (ETDEWEB)

    Petracco, Fulvio Celso

    1986-05-01

    An evaluation of thermodynamic processes, energy losses the origin of energy losses on thermodynamic process, where are the points or sources of those losses and variation of process when compared in relation of thermodynamic performance are discussed. The concept of energy losses and its origin, energy and work capacity, performance rates and examples of thermodynamic efficiency are also debated 3 figs.

  15. Misuse of thermodynamic entropy in economics

    International Nuclear Information System (INIS)

    Kovalev, Andrey V.

    2016-01-01

    The direct relationship between thermodynamic entropy and economic scarcity is only valid for a thermodynamically isolated economy. References to the second law of thermodynamics in economics within the context of scarcity ignore the fact that the earth is not an isolated system. The earth interacts with external sources and sinks of entropy and the resulting total entropy fluctuates around a constant. Even if the mankind finally proves unable to recycle industrial waste and close the technological cycle, the economic disruption caused by the depletion of natural resources may happen while the total thermodynamic entropy of the ecosystem remains essentially at the present level, because the transfer of chemically refined products may not increase significantly the total entropy, but it may decrease their recyclability. The inutility of industrial waste is not connected with its entropy, which may be exemplified with the case of alumina production. The case also demonstrates that industrially generated entropy is discharged into surroundings without being accumulated in ‘thermodynamically unavailable matter’. Material entropy, as a measure of complexity and economic dispersal of resources, can be a recyclability metric, but it is not a thermodynamic parameter, and its growth is not equivalent to the growth of thermodynamic entropy. - Highlights: • Entropy cannot be used as a measure of economic scarcity. • There is no anthropogenic entropy separate from the entropy produced naturally. • Inutility of industrial waste is not connected with its thermodynamic entropy. • Industrially generated entropy may or may not be accumulated in industrial waste. • Recyclability is more important than thermodynamic entropy of a product.

  16. Absolute determination of the gelling point of gelatin under quasi-thermodynamic equilibrium.

    Science.gov (United States)

    Bellini, Franco; Alberini, Ivana; Ferreyra, María G; Rintoul, Ignacio

    2015-05-01

    Thermodynamic studies on phase transformation of biopolymers in solution are useful to understand their nature and to evaluate their technological potentials. Thermodynamic studies should be conducted avoiding time-related phenomena. This condition is not easily achieved in hydrophilic biopolymers. In this contribution, the simultaneous effects of pH, salt concentration, and cooling rate (Cr) on the folding from random coil to triple helical collagen-like structures of gelatin were systematically studied. The phase transformation temperature at the absolute invariant condition of Cr = 0 °C/min (T(T)Cr=0) ) is introduced as a conceptual parameter to study phase transformations in biopolymers under quasi-thermodynamic equilibrium and avoiding interferences coming from time-related phenomena. Experimental phase diagrams obtained at different Cr are presented. The T(T)(Cr=0) compared with pH and TT(Cr=0) compared with [NaCl] diagram allowed to explore the transformation process at Cr = 0 °C/min. The results were explained by electrostatic interactions between the biopolymers and its solvation milieu. © 2015 Institute of Food Technologists®

  17. Thermodynamic analysis of a gas turbine cycle equipped with a non-ideal adiabatic model for a double acting Stirling engine

    International Nuclear Information System (INIS)

    Korlu, Mahmood; Pirkandi, Jamasb; Maroufi, Arman

    2017-01-01

    Highlights: • A gas turbine cycle equipped with a double acting Stirling engine is proposed. • The hybrid cycle effects, efficiency and power outputs are investigated. • The energy dissipation, the net enthalpy loss and wall heat leakage are considered. • The hybrid cycle improves the efficiency from 23.6 to 38.8%. - Abstract: The aim of this study is to investigate the thermodynamic performance of a gas turbine cycle equipped with a double acting Stirling engine. A portion of gas turbine exhaust gases are allocated to providing the heat required for the Stirling engine. Employing this hybrid cycle improves gas turbine performance and power generation. The double acting Stirling engine is used in this study and the non-ideal adiabatic model is used to numerical solution. The regenerator’s net enthalpy loss, the regenerator’s wall heat leakage, the energy dissipation caused by pressure drops in heat exchangers and regenerator are the losses that were taken into account for the Stirling engine. The hybrid cycle, gas turbine governing equations and Stirling engine analyses are carried out using the Matlab software. The pressure ratio of the compressor, the inlet temperature of turbine, the porosity, length and diameter of the regenerator were chosen as essential parameters in this article. Also the hybrid cycle effects, efficiency and power outputs are investigated. The results show that the hybrid gas turbine and Stirling engine improves the efficiency from 23.6 to 38.8%.

  18. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    Directory of Open Access Journals (Sweden)

    Bing Hu

    2014-01-01

    Full Text Available To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker.

  19. Effects of ammonia concentration on the thermodynamic performances of ammonia–water based power cycles

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Han, Chul Ho; Kim, Kyoungjin

    2012-01-01

    The power generation systems using a binary working fluid such as ammonia–water mixture are proven to be the feasible method for utilizing a low-temperature waste heat source. In this work, ammonia–water based Rankine (AWR) regenerative Rankine (AWRR) power generation cycles are comparatively analyzed by investigating the effects of ammonia mass concentration in the working fluid on the thermodynamic performances of systems. Temperature distributions of fluid streams in the heat exchanging devices are closely examined at different levels of ammonia concentration and they might be the most important design consideration in optimizing the power systems using a binary working fluid. The analysis shows that the lower limit of workable ammonia concentration decreases with increasing turbine inlet pressure. Results also show that both the thermal and exergy efficiencies of AWRR system are generally better than those of AWR system, and can have peaks at the minimum allowable ammonia concentrations in the working range of system operation.

  20. Black hole chemistry: thermodynamics with Lambda

    International Nuclear Information System (INIS)

    Kubizňák, David; Mann, Robert B; Teo, Mae

    2017-01-01

    We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities; in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality—an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at extending the AdS/CFT dictionary in this setting, discuss the connections with horizon thermodynamics, applications to Lifshitz spacetimes, and outline possible future directions in this field. (topical review)

  1. Thermodynamic Analysis of Ionic Compounds: Synthetic Applications.

    Science.gov (United States)

    Yoder, Claude H.

    1986-01-01

    Shows how thermodynamic cycles can be used to understand trends in heats of formation and aqueous solubilities and, most importantly, how they may be used to choose synthetic routes to new ionic compounds. (JN)

  2. A strategy for the economic optimization of combined cycle gas turbine power plants by taking advantage of useful thermodynamic relationships

    International Nuclear Information System (INIS)

    Godoy, E.; Benz, S.J.; Scenna, N.J.

    2011-01-01

    Optimal combined cycle gas turbine power plants characterized by minimum specific annual cost values are here determined for wide ranges of market conditions as given by the relative weights of capital investment and operative costs, by means of a non-linear mathematical programming model. On the other hand, as the technical optimization allows identifying trends in the system behavior and unveiling optimization opportunities, selected functional relationships are obtained as the thermodynamic optimal values of the decision variables are systematically linked to the ratio between the total heat transfer area and the net power production (here named as specific transfer area). A strategy for simplifying the resolution of the rigorous economic optimization problem of power plants is proposed based on the economic optima distinctive characteristics which describe the behavior of the decision variables of the power plant on its optima. Such approach results in a novel mathematical formulation shaped as a system of non-linear equations and additional constraints that is able to easily provide accurate estimations of the optimal values of the power plant design and operative variables. Research highlights: → We achieve relationships between power plants' economic and thermodynamic optima. → We achieve functionalities among thermodynamic optimal values of decision variables. → The rigorous optimization problem is reduced to a non-linear equations system. → Accurate estimations of power plants' design and operative variables are obtained.

  3. Experimental and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of gasoline engine using swash-plate expander

    International Nuclear Information System (INIS)

    Galindo, J.; Ruiz, S.; Dolz, V.; Royo-Pascual, L.; Haller, R.; Nicolas, B.; Glavatskaya, Y.

    2015-01-01

    Highlights: • An experimental analysis of an ORC is presented and applied to a gasoline engine. • 28 Steady-state operating points have been tested to evaluate expander performance. • Optimum points have been used to analyze power balances and cycle efficiencies. - Abstract: This paper deals with the experimental testing of an Organic Rankine Cycle (ORC) integrate in a 2 liter turbocharged gasoline engine using ethanol as working fluid. The main components of the cycle are a boiler, a condenser, a pump and a swash-plate expander. Five engine operating points have been tested, they correspond to a nominal heat input into the boiler of 5, 12, 20, 25 and 30 kW. With the available bill of material based on prototypes, power balances and cycles efficiencies were estimated, obtaining a maximum improvement in the ICE mechanical power and an expander shaft power of 3.7% and 1.83 kW respectively. A total of 28 steady-state operating points were measured to evaluate performance of the swash-plate expander prototype. Operating parameters of the expander, such as expander speed and expansion ratio, were shifted. The objective of the tests is to master the system and understand physical parameters influence. The importance of each parameter was analyzed by fixing all the parameters, changing each time one specific value. In these sensitivity studies, maximum ideal and real Rankine efficiency value of 19% and 6% were obtained respectively

  4. Combined Brayton-JT cycles with refrigerants for natural gas liquefaction

    Science.gov (United States)

    Chang, Ho-Myung; Park, Jae Hoon; Lee, Sanggyu; Choe, Kun Hyung

    2012-06-01

    Thermodynamic cycles for natural gas liquefaction with single-component refrigerants are investigated under a governmental project in Korea, aiming at new processes to meet the requirements on high efficiency, large capacity, and simple equipment. Based upon the optimization theory recently published by the present authors, it is proposed to replace the methane-JT cycle in conventional cascade process with a nitrogen-Brayton cycle. A variety of systems to combine nitrogen-Brayton, ethane-JT and propane-JT cycles are simulated with Aspen HYSYS and quantitatively compared in terms of thermodynamic efficiency, flow rate of refrigerants, and estimated size of heat exchangers. A specific Brayton-JT cycle is suggested with detailed thermodynamic data for further process development. The suggested cycle is expected to be more efficient and simpler than the existing cascade process, while still taking advantage of easy and robust operation with single-component refrigerants.

  5. Calculation of melting points of oxides

    International Nuclear Information System (INIS)

    Bobkova, O.S.; Voskobojnikov, V.G.; Kozin, A.I.

    1975-01-01

    The correlation between the melting point and thermodynamic parameters characterizing the strength of oxides and compounds is given. Such thermodynamic paramters include the energy and antropy of atomization

  6. Ideal cycle analysis of a regenerative pulse detonation engine for power production

    Science.gov (United States)

    Bellini, Rafaela

    Over the last few decades, considerable research has been focused on pulse detonation engines (PDEs) as a promising replacement for existing propulsion systems with potential applications in aircraft ranging from the subsonic to the lower hypersonic regimes. On the other hand, very little attention has been given to applying detonation for electric power production. One method for assessing the performance of a PDE is through thermodynamic cycle analysis. Earlier works have adopted a thermodynamic cycle for the PDE that was based on the assumption that the detonation process could be approximated by a constant volume process, called the Humphrey cycle. The Fickett-Jacob cycle, which uses the one--dimensional Chapman--Jouguet (CJ) theory of detonation, has also been used to model the PDE cycle. However, an ideal PDE cycle must include a detonation based compression and heat release processes with a finite chemical reaction rate that is accounted for in the Zeldovich -- von Neumann -- Doring model of detonation where the shock is considered a discontinuous jump and is followed by a finite exothermic reaction zone. This work presents a thermodynamic cycle analysis for an ideal PDE cycle for power production. A code has been written that takes only one input value, namely the heat of reaction of a fuel-oxidizer mixture, based on which the program computes all the points on the ZND cycle (both p--v and T--s plots), including the von Neumann spike and the CJ point along with all the non-dimensionalized state properties at each point. In addition, the program computes the points on the Humphrey and Brayton cycles for the same input value. Thus, the thermal efficiencies of the various cycles can be calculated and compared. The heat release of combustion is presented in a generic form to make the program usable with a wide variety of fuels and oxidizers and also allows for its use in a system for the real time monitoring and control of a PDE in which the heat of reaction

  7. Thermodynamic analysis of hydrocarbon refrigerants-based ethylene BOG re-liquefaction system

    Science.gov (United States)

    Beladjine, Boumedienne M.; Ouadha, Ahmed; Addad, Yacine

    2016-09-01

    The present study aims to make a thermodynamic analysis of an ethylene cascade re-liquefaction system that consists of the following two subsystems: a liquefaction cycle using ethylene as the working fluid and a refrigeration cycle operating with a hydrocarbon refrigerant. The hydrocarbon refrigerants considered are propane (R290), butane (R600), isobutane (R600a), and propylene (R1270). A computer program written in FORTRAN is developed to compute parameters for characteristic points of the cycles and the system's performance, which is determined and analyzed using numerical solutions for the refrigerant condensation temperature, temperature in tank, and temperature difference in the cascade condenser. Results show that R600a gives the best performance, followed by (in order) R600, R290, and R1270. Furthermore, it is found that an increase in tank temperature improves system performance but that an increase in refrigerant condensation temperature causes deterioration. In addition, it is found that running the system at a low temperature difference in the cascade condenser is advantageous.

  8. NOx Direct Decomposition: Potentially Enhanced Thermodynamics and Kinetics on Chemically Modified Ferroelectric Surfaces

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2014-03-01

    NOx are regulated pollutants produced during automotive combustion. As part of an effort to design catalysts for NOx decomposition that operate in oxygen rich environment and permit greater fuel efficiency, we study chemistry of NOx on (001) ferroelectric surfaces. Changing the polarization at such surfaces modifies electronic properties and leads to switchable surface chemistry. Using first principles theory, our previous work has shown that addition of catalytic RuO2 monolayer on ferroelectric PbTiO3 surface makes direct decomposition of NO thermodynamically favorable for one polarization. Furthermore, the usual problem of blockage of catalytic sites by strong oxygen binding is overcome by flipping polarization that helps desorb the oxygen. We describe a thermodynamic cycle for direct NO decomposition followed by desorption of N2 and O2. We provide energy barriers and transition states for key steps of the cycle as well as describing their dependence on polarization direction. We end by pointing out how a switchable order parameter of substrate,in this case ferroelectric polarization, allows us to break away from some standard compromises for catalyst design(e.g. the Sabatier principle). This enlarges the set of potentially catalytic metals. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  9. The Second Law of Thermodynamics in a Quantum Heat Engine Model

    International Nuclear Information System (INIS)

    Zhang Ting; Cai Lifeng; Chen Pingxing; Li Chengzu

    2006-01-01

    The second law of thermodynamics has been proven by many facts in classical world. Is there any new property of it in quantum world? In this paper, we calculate the change of entropy in T.D. Kieu's model for quantum heat engine (QHE) and prove the broad validity of the second law of thermodynamics. It is shown that the entropy of the quantum heat engine neither decreases in a whole cycle, nor decreases in either stage of the cycle. The second law of thermodynamics still holds in this QHE model. Moreover, although the modified quantum heat engine is capable of extracting more work, its efficiency does not improve at all. It is neither beyond the efficiency of T.D. Kieu's initial model, nor greater than the reversible Carnot efficiency.

  10. The Thermodynamics of Internal Combustion Engines: Examples of Insights

    Directory of Open Access Journals (Sweden)

    Jerald A. Caton

    2018-05-01

    Full Text Available A major goal of the development of internal combustion (IC engines continues to be higher performance and efficiencies. A major aspect of achieving higher performance and efficiencies is based on fundamental thermodynamics. Both the first and second laws of thermodynamics provide strategies for and limits to the thermal efficiencies of engines. The current work provides three examples of the insights that thermodynamics provides to the performance and efficiencies of an IC engine. The first example evaluates low heat rejection engine concepts, and, based on thermodynamics, demonstrates the difficulty of this concept for increasing efficiencies. The second example compares and contrasts the thermodynamics associated with external and internal exhaust gas dilution. Finally, the third example starts with a discussion of the Otto cycle analysis and explains why this is an incorrect model for the IC engine. An important thermodynamic property that is responsible for many of the observed effects is specific heat.

  11. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    Science.gov (United States)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  12. Applied thermodynamics of the real gas with respect to the thermodynamic zeros of the entropy and internal energy

    International Nuclear Information System (INIS)

    Elsner, Albrecht

    2012-01-01

    Gibbs's work on the thermodynamic properties of substances presented a complete thermodynamic theory. The formulations of the entropy S and internal energy U as extensive quantities allow the zeros of the real gas to be given: S=0 at absolute zero (Nernst, Planck) and U=0 at the critical point. Consequently, every thermodynamic function is unique and absolutely specified. Interdependences among quantities such as temperature, vapor pressure, chemical potential, volume, entropy, internal energy, and heat capacity are likewise unique and numerically well defined. This is shown for the saturated fluid, water, in the region between absolute zero and the critical point. As a consequence of the calculation of the chemical potential, it follows that the free particle flow in an inhomogeneous system is essentially governed by the difference in chemical potential, and not through the difference in pressure, this effect being of importance for meteorology and oceanography.

  13. Replacement of CFCs in thermodynamical systems; Remplacement des CFC dans les systemes thermodynamiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Some chlorofluorocarbons (CFCs) are well-adapted to coldness production by vapour compression and thus are widely used in the storage of agriculture-food products from the production to the domestic consumer but also in air-conditioning systems and heat pumps. Atmospheric impacts of the use of CFCs (`ozone hole`) led the international community to adopt remedial measures which aim to prohibit the production of CFCs. These constraints led the users of refrigerating fluids to use substitution fluids and to develop new techniques of energy recovery and heat/coldness production. This workshop takes stock of this situation and of the problems encountered by the various actors involved in the replacement of CFCs in thermodynamical systems: evolutions of regulation, point of view of refrigerating fluid producers and of compressors and heat exchangers manufacturers, research studies on substitution fluids, recovery of CFCs and other refrigerating fluids, revival in the use of natural fluids (like ammonia), and use of new thermodynamical systems like compression/absorption (water/ammonia) cycles. (J.S.)

  14. Thermodynamical stability of the Bardeen black hole

    Energy Technology Data Exchange (ETDEWEB)

    Bretón, Nora [Dpto. de Física, Centro de Investigación y de Estudios Avanzados del I. P. N., Apdo. 14-740, D.F. (Mexico); Perez Bergliaffa, Santiago E. [Dpto. de Física, U. Estado do Rio de Janeiro (Brazil)

    2014-01-14

    We analyze the stability of the regular magnetic Bardeen black hole both thermodynamically and dynamically. For the thermodynamical analysis we consider a microcanonical ensemble and apply the turning point method. This method allows to decide a change in stability (or instability) of a system, requiring only the assumption of smoothness of the area functional. The dynamical stability is asserted using criteria based on the signs of the Lagrangian and its derivatives. It turns out from our analysis that the Bardeen black hole is both thermodynamically and dynamically stable.

  15. Introduction to the thermodynamics of solids

    International Nuclear Information System (INIS)

    Ericksen, J.L.

    1992-01-01

    This book addresses issues of thermodynamics associated with solids from a unique point of view. Professor Ericksen provides a perspective of thermodynamics which is based in material science and solid mechanics, and attempts to apply basic thermodynamics to a wide range of phenomena. The book is not written as a text-book, as it does not contain example problems or exercises, is directed primarily at researchers in solids. The author states that much of the book is controversial, and that many of his treatments of thermodynamics are not traditional. The author's assessment is accurate on both counts. However, there are several reasons to believe that many of the issues raised in the book are not so much controversial, but rather simply not well described, either by the author or by thermodynamicists, in general. The primary references for much of the thermodynamics in the book are historic in nature, and certainly worthy of consideration, but only a few current references are provided

  16. Thermodynamic Temperatures of High-Temperature Fixed Points: Uncertainties Due to Temperature Drop and Emissivity

    Science.gov (United States)

    Castro, P.; Machin, G.; Bloembergen, P.; Lowe, D.; Whittam, A.

    2014-07-01

    This study forms part of the European Metrology Research Programme project implementing the New Kelvin to assign thermodynamic temperatures to a selected set of high-temperature fixed points (HTFPs), Cu, Co-C, Pt-C, and Re-C. A realistic thermal model of these HTFPs, developed in finite volume software ANSYS FLUENT, was constructed to quantify the uncertainty associated with the temperature drop across the back wall of the cell. In addition, the widely applied software package, STEEP3 was used to investigate the influence of cell emissivity. The temperature drop, , relates to the temperature difference due to the net loss of heat from the aperture of the cavity between the back wall of the cavity, viewed by the thermometer, defining the radiance temperature, and the solid-liquid interface of the alloy, defining the transition temperature of the HTFP. The actual value of can be used either as a correction (with associated uncertainty) to thermodynamic temperature evaluations of HTFPs, or as an uncertainty contribution to the overall estimated uncertainty. In addition, the effect of a range of furnace temperature profiles on the temperature drop was calculated and found to be negligible for Cu, Co-C, and Pt-C and small only for Re-C. The effective isothermal emissivity is calculated over the wavelength range from 450 nm to 850 nm for different assumed values of surface emissivity. Even when furnace temperature profiles are taken into account, the estimated emissivities change only slightly from the effective isothermal emissivity of the bare cell. These emissivity calculations are used to estimate the uncertainty in the temperature assignment due to the uncertainty in the emissivity of the blackbody.

  17. Three-Cycle Problem in the Logistic Map and Sharkovskii's Theorem

    International Nuclear Information System (INIS)

    Lee, M.H.

    2011-01-01

    In the logistic map a 3-cycle does not appear until after the end of stable 2k cycles. An impetus for analytical studies of 3-cycles is provided by Sharkovskii's theorem, according to which the existence of a 3-cycle means the existence of all other cycles, hence chaos. It is a rigorous definition of chaos. We give a simple and direct proof of the existence of 3-cycles. The logistic map at fully developed chaos is shown to be isomorphic to the dynamics of a harmonic oscillator chain at the thermodynamic limit. Chaos in the logistic map is signified by a 3-cycle and in the harmonic oscillator chain by the thermodynamic limit. (author)

  18. Thermodynamic simulation of ammonia-water absorption refrigeration system

    Directory of Open Access Journals (Sweden)

    Sathyabhama A.

    2008-01-01

    Full Text Available The ammonia-water absorption refrigeration system is attracting increasing research interests, since the system can be powered by waste thermal energy, thus reducing demand on electricity supply. The development of this technology demands reliable and effective system simulations. In this work, a thermodynamic simulation of the cycle is carried out to investigate the effects of different operating variables on the performance of the cycle. A computer program in C language is written for the performance analysis of the cycle.

  19. Open cycle thermoacoustics

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Robert Stowers [Georgia Inst. of Technology, Atlanta, GA (United States)

    2000-01-01

    A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.

  20. Binding thermodynamics discriminates fragments from druglike compounds: a thermodynamic description of fragment-based drug discovery.

    Science.gov (United States)

    Williams, Glyn; Ferenczy, György G; Ulander, Johan; Keserű, György M

    2017-04-01

    Small is beautiful - reducing the size and complexity of chemical starting points for drug design allows better sampling of chemical space, reveals the most energetically important interactions within protein-binding sites and can lead to improvements in the physicochemical properties of the final drug. The impact of fragment-based drug discovery (FBDD) on recent drug discovery projects and our improved knowledge of the structural and thermodynamic details of ligand binding has prompted us to explore the relationships between ligand-binding thermodynamics and FBDD. Information on binding thermodynamics can give insights into the contributions to protein-ligand interactions and could therefore be used to prioritise compounds with a high degree of specificity in forming key interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Quantifying fluctuations in reversible enzymatic cycles and clocks

    Science.gov (United States)

    Wierenga, Harmen; ten Wolde, Pieter Rein; Becker, Nils B.

    2018-04-01

    Biochemical reactions are fundamentally noisy at a molecular scale. This limits the precision of reaction networks, but it also allows fluctuation measurements that may reveal the structure and dynamics of the underlying biochemical network. Here, we study nonequilibrium reaction cycles, such as the mechanochemical cycle of molecular motors, the phosphorylation cycle of circadian clock proteins, or the transition state cycle of enzymes. Fluctuations in such cycles may be measured using either of two classical definitions of the randomness parameter, which we show to be equivalent in general microscopically reversible cycles. We define a stochastic period for reversible cycles and present analytical solutions for its moments. Furthermore, we associate the two forms of the randomness parameter with the thermodynamic uncertainty relation, which sets limits on the timing precision of the cycle in terms of thermodynamic quantities. Our results should prove useful also for the study of temporal fluctuations in more general networks.

  2. New calculation method for thermodynamic properties of humid air in humid air turbine cycle – The general model and solutions for saturated humid air

    International Nuclear Information System (INIS)

    Wang, Zidong; Chen, Hanping; Weng, Shilie

    2013-01-01

    The article proposes a new calculation method for thermodynamic properties (i.e. specific enthalpy, specific entropy and specific volume) of humid air in humid air turbine cycle. The research pressure range is from 0.1 MPa to 5 MPa. The fundamental behaviors of dry air and water vapor in saturated humid air are explored in depth. The new model proposes and verifies the relationship between total gas mixture pressure and gas component pressures. This provides a good explanation of the fundamental behaviors of gas components in gas mixture from a new perspective. Another discovery is that the water vapor component pressure of saturated humid air equals P S , always smaller than its partial pressure (f·P S ) which was believed in the past researches. In the new model, “Local Gas Constant” describes the interaction between similar molecules. “Improvement Factor” is proposed for the first time by this article, and it quantitatively describes the magnitude of interaction between dissimilar molecules. They are combined to fully describe the real thermodynamic properties of humid air. The average error of Revised Dalton's Method is within 0.1% compared to experimentally-based data. - Highlights: • Our new model is suitable to calculate thermodynamic properties of humid air in HAT cycle. • Fundamental behaviors of dry air and water vapor in saturated humid air are explored in depth. • Local-Gas-Constant describes existing alone component and Improvement Factor describes interaction between different components. • The new model proposes and verifies the relationship between total gas mixture pressure and component pressures. • It solves saturated humid air thoroughly and deviates from experimental data less than 0.1%

  3. Systemic analysis of thermodynamic properties of lanthanide halides

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Badalov, A.; Marufi, V.K.

    1992-01-01

    System analysis of thermodynamic characteristics of lanthanide halides was carried out. A method making allowances for the influence of spin and orbital moments of momentum of the main states of lanthanide trivalent ions in their natural series was employed. Unknown in literature thermodynamic values were calculated and corrected for certain compounds. The character of lanthanide halide thermodynamic parameter change depending on ordinal number of the metals was ascertained. Pronouncement of tetrad-effect in series of compounds considered was pointed out

  4. Study on thermodynamic cycle of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Qu Xinhe; Yang Xiaoyong; Wang Jie

    2017-01-01

    The development trend of the (very) High temperature gas-cooled reactor is to gradually increase the reactor outlet temperature. The different power conversion units are required at the different reactor outlet temperature. In this paper, for the helium turbine direct cycle and the combined cycle of the power conversion unit of the High temperature gas-cooled reactor, the mathematic models are established, and three cycle plans are designed. The helium turbine direct cycle is a Brayton cycle with recuperator, precooler and intercooler. In the combined cycle plan 1, the topping cycle is a simple Brayton cycle without recuperator, precooler and intercooler, and the bottoming cycle is based on the steam parameters (540deg, 6 MPa) recommended by Siemens. In the combined cycle plan 2, the topping cycle also is a simple Brayton cycle, and the bottoming cycle which is a Rankine cycle with reheating cycle is based on the steam parameters of conventional subcritical thermal power generation (540degC, 18 MPa). The optimization results showed that the cycle efficiency of the combined cycle plan 2 is the highest, the second is the helium turbine direct cycle, and the combined cycle plan 2 is the lowest. When the reactor outlet temperature is 900degC and the pressure ratio is 2.02, the cycle efficiency of the combined cycle plan 2 can reach 49.7%. The helium turbine direct cycle has a reactor inlet temperature above 500degC due to the regenerating cycle, so it requires a cooling circuit for the internal wall of the reactor pressure vessel. When the reactor outlet temperature increases, the increase of the pressure ratio required by the helium turbine direct cycle increases may bring some difficulties to the design and manufacture of the magnetic bearings. For the combined cycle, the reactor inlet temperature can be controlled below than 370degC, so the reactor pressure vessel can use SA533 steel without cooling the internal wall of the reactor pressure vessel. The pressure

  5. Alternative ORC bottoming cycles FOR combined cycle power plants

    International Nuclear Information System (INIS)

    Chacartegui, R.; Sanchez, D.; Munoz, J.M.; Sanchez, T.

    2009-01-01

    In this work, low temperature Organic Rankine Cycles are studied as bottoming cycle in medium and large scale combined cycle power plants. The analysis aims to show the interest of using these alternative cycles with high efficiency heavy duty gas turbines, for example recuperative gas turbines with lower gas turbine exhaust temperatures than in conventional combined cycle gas turbines. The following organic fluids have been considered: R113, R245, isobutene, toluene, cyclohexane and isopentane. Competitive results have been obtained for toluene and cyclohexane ORC combined cycles, with reasonably high global efficiencies. The paper is structured in four main parts. A review of combined cycle and ORC cycle technologies is presented, followed by a thermodynamic analysis of combined cycles with commercial gas turbines and ORC low temperature bottoming cycles. Then, a parametric optimization of an ORC combined cycle plant is performed in order to achieve a better integration between these two technologies. Finally, some economic considerations related to the use of ORC in combined cycles are discussed.

  6. Exergoeconomic multi objective optimization and sensitivity analysis of a regenerative Brayton cycle

    International Nuclear Information System (INIS)

    Naserian, Mohammad Mahdi; Farahat, Said; Sarhaddi, Faramarz

    2016-01-01

    Highlights: • Finite time exergoeconomic multi objective optimization of a Brayton cycle. • Comparing the exergoeconomic and the ecological function optimization results. • Inserting the cost of fluid streams concept into finite-time thermodynamics. • Exergoeconomic sensitivity analysis of a regenerative Brayton cycle. • Suggesting the cycle performance curve drawing and utilization. - Abstract: In this study, the optimal performance of a regenerative Brayton cycle is sought through power maximization and then exergoeconomic optimization using finite-time thermodynamic concept and finite-size components. Optimizations are performed using genetic algorithm. In order to take into account the finite-time and finite-size concepts in current problem, a dimensionless mass-flow parameter is used deploying time variations. The decision variables for the optimum state (of multi objective exergoeconomic optimization) are compared to the maximum power state. One can see that the multi objective exergoeconomic optimization results in a better performance than that obtained with the maximum power state. The results demonstrate that system performance at optimum point of multi objective optimization yields 71% of the maximum power, but only with exergy destruction as 24% of the amount that is produced at the maximum power state and 67% lower total cost rate than that of the maximum power state. In order to assess the impact of the variation of the decision variables on the objective functions, sensitivity analysis is conducted. Finally, the cycle performance curve drawing according to exergoeconomic multi objective optimization results and its utilization, are suggested.

  7. Nuclear thermodynamics below particle threshold

    International Nuclear Information System (INIS)

    Schiller, A.; Agvaanluvsan, U.; Algin, E.; Bagheri, A.; Chankova, R.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Voinov, A.

    2005-01-01

    From a starting point of experimentally measured nuclear level densities, we discuss thermodynamical properties of nuclei below the particle emission threshold. Since nuclei are essentially mesoscopic systems, a straightforward generalization of macroscopic ensemble theory often yields unphysical results. A careful critique of traditional thermodynamical concepts reveals problems commonly encountered in mesoscopic systems. One of which is the fact that microcanonical and canonical ensemble theory yield different results, another concerns the introduction of temperature for small, closed systems. Finally, the concept of phase transitions is investigated for mesoscopic systems

  8. Thermodynamic performance analysis and optimization of DMC (Dual Miller Cycle) cogeneration system by considering exergetic performance coefficient and total exergy output criteria

    International Nuclear Information System (INIS)

    Ust, Yasin; Arslan, Feyyaz; Ozsari, Ibrahim; Cakir, Mehmet

    2015-01-01

    Miller cycle engines are one of the popular engine concepts that are available for improving performance, reducing fuel consumption and NO x emissions. There are many research studies that investigated the modification of existing conventional engines for operation on a Miller cycle. In this context, a comparative performance analysis and optimization based on exergetic performance criterion, total exergy output and exergy efficiency has been carried out for an irreversible Dual–Miller Cycle cogeneration system having finite-rate of heat transfer, heat leak and internal irreversibilities. The EPC (Exergetic Performance Coefficient) criterion defined as the ratio of total exergy output to the loss rate of availability. Performance analysis has been also extended to the Otto–Miller and Diesel-Miller cogeneration cycles which may be considered as two special cases of the Dual–Miller cycle. The effect of the design parameters such as compression ratio, pressure ratio, cut-off ratio, Miller cycle ratio, heat consumer temperature ratio, allocation ratio and the ratio of power to heat consumed have also been investigated. The results obtained from this paper will provide guidance for the design of Dual–Miller Cycle cogeneration system and can be used for selection of optimal design parameters. - Highlights: • A thermodynamic performance estimation tool for DM cogeneration cycle is presented. • Using the model two special cases OM and dM cogeneration cycles can be analyzed. • The effects of r M , ψ, χ 2 and R have been investigated. • The results evaluate exergy output and environmental aspects together.

  9. Phase equilibria and thermodynamic functions for Ag-Hg and Cu-Hg binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yajun, E-mail: yajunliu@gatech.edu [School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Wang, Guan [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Wang, Jiang [School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Chen, Yang [Mining, Metallurgy and Materials Research Department, General Research Institute for Nonferrous Metals, Beijing 100088 (China); Long, Zhaohui [School of Mechanical Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2012-11-10

    Highlights: Black-Right-Pointing-Pointer The thermodynamic properties of Ag-Hg and Cu-Hg are explored in order to facilitate dental materials design. Black-Right-Pointing-Pointer A self-consistent set of thermodynamic parameters is obtained. Black-Right-Pointing-Pointer The experimental information can be well reproduced by the optimized thermodynamic data. - Abstract: In order to facilitate the computational design of new amalgams for novel dental alloys, the phase equilibria, phase diagrams and thermodynamic functions for Ag-Hg and Cu-Hg binary systems are explored in this work, based on the CALPHAD framework and experimental characterizations. The Gibbs free energies of the solution phases as well as the stoichiometric phases are calculated, with the aid of enthalpies of mixing, activities, enthalpies of formation, and phase equilibrium data. The thermodynamic descriptions provided in this work enable the stabilities of each phase at various temperatures and compositions to be well described, which contribute to the establishment of a general database to design novel metallic dental materials.

  10. Thermodynamics of Gas Turbine Cycles with Analytic Derivatives in OpenMDAO

    Science.gov (United States)

    Gray, Justin; Chin, Jeffrey; Hearn, Tristan; Hendricks, Eric; Lavelle, Thomas; Martins, Joaquim R. R. A.

    2016-01-01

    A new equilibrium thermodynamics analysis tool was built based on the CEA method using the OpenMDAO framework. The new tool provides forward and adjoint analytic derivatives for use with gradient based optimization algorithms. The new tool was validated against the original CEA code to ensure an accurate analysis and the analytic derivatives were validated against finite-difference approximations. Performance comparisons between analytic and finite difference methods showed a significant speed advantage for the analytic methods. To further test the new analysis tool, a sample optimization was performed to find the optimal air-fuel equivalence ratio, , maximizing combustion temperature for a range of different pressures. Collectively, the results demonstrate the viability of the new tool to serve as the thermodynamic backbone for future work on a full propulsion modeling tool.

  11. Methods for thermodynamic evaluation of battery state of health

    Science.gov (United States)

    Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T

    2013-05-21

    Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.

  12. Thermodynamic Analysis of Supplementary-Fired Gas Turbine Cycles

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Henriksen, Ulrik Birk; Qvale, Einar Bjørn

    2002-01-01

    This paper presents an analysis of the possibilities for improving the efficiency of an indirectly biomass-fired gas turbine (IBFGT) by supplementary direct gas-firing. The supplementary firing may be based on natural gas, biogas, or pyrolysis gas. {The interest in this cycle arise from a recent...... demonstration of a two-stage gasification process through construction of several plants.} A preliminary analysis of the ideal recuperated Brayton cycle shows that for this cycle any supplementary firing will have a marginal efficiency of unity per extra unit of fuel. The same result is obtained...

  13. Thermodynamic design of 10 kW Brayton cryocooler for HTS cable

    Science.gov (United States)

    Chang, Ho-Myung; Park, C. W.; Yang, H. S.; Sohn, Song Ho; Lim, Ji Hyun; Oh, S. R.; Hwang, Si Dole

    2012-06-01

    Thermodynamic design of Brayton cryocooler is presented as part of an ongoing governmental project in Korea, aiming at 1 km HTS power cable in the transmission grid. The refrigeration requirement is 10 kW for continuously sub-cooling liquid nitrogen from 72 K to 65 K. An ideal Brayton cycle for this application is first investigated to examine the fundamental features. Then a practical cycle for a Brayton cryocooler is designed, taking into account the performance of compressor, expander, and heat exchangers. Commercial software (Aspen HYSYS) is used for simulating the refrigeration cycle with real fluid properties of refrigerant. Helium is selected as a refrigerant, as it is superior to neon in thermodynamic efficiency. The operating pressure and flow rate of refrigerant are decided with a constraint to avoid the freezing of liquid nitrogen

  14. Analysis of Maisotsenko open gas turbine bottoming cycle

    International Nuclear Information System (INIS)

    Saghafifar, Mohammad; Gadalla, Mohamed

    2015-01-01

    Maisotsenko gas turbine cycle (MGTC) is a recently proposed humid air turbine cycle. An air saturator is employed for air heating and humidification purposes in MGTC. In this paper, MGTC is integrated as the bottoming cycle to a topping simple gas turbine as Maisotsenko bottoming cycle (MBC). A thermodynamic optimization is performed to illustrate the advantages and disadvantages of MBC as compared with air bottoming cycle (ABC). Furthermore, detailed sensitivity analysis is reported to present the effect of different operating parameters on the proposed configurations' performance. Efficiency enhancement of 3.7% is reported which results in more than 2600 tonne of natural gas fuel savings per year. - Highlights: • Developed an accurate air saturator model. • Introduced Maisotsenko bottoming cycle (MBC) as a power generation cycle. • Performed Thermodynamic optimization for MBC and air bottoming cycle (ABC). • Performed detailed sensitivity analysis for MBC under different operating conditions. • MBC has higher efficiency and specific net work output as compared to ABC

  15. Thermodynamic Analysis of Supplementary-Fired Gas Turbine Cycles

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Henriksen, Ulrik Birk; Qvale, Einar Bjørn

    2003-01-01

    to result in a high marginal efficiency. The paper shows that depending on the application, this is not always the case. The interest in this cycle arises from a recent demonstration of the feasibility of a two-stage gasification process through construction of several plants. The gas from this process...... could be divided into two streams, one for primary and one for supplementary firing. A preliminary analysis of the ideal, recuperated Brayton cycle shows that for this cycle any supplementary firing will have a marginal efficiency of unity per extra unit of fuel. The same result is obtained...

  16. Micro gas turbine thermodynamic and economic analysis up to 500 kWe size

    International Nuclear Information System (INIS)

    Galanti, Leandro; Massardo, Aristide F.

    2011-01-01

    Highlights: → Thermoeconomic analysis and optimization of micro gas turbines up to 500 kWe. → Analysis carried out for both regenerative and intercooled regenerative cycles. → Focus on thermodynamic, geometric and cost parameters of the main MGT devices. → ICR cycle has an interesting reduction in capital and electricity costs, rising size. → Complete thermoeconomic investigation is essential to support thermodynamic analysis. -- Abstract: In this paper a thermoeconomic analysis and optimization of micro gas turbines (MGT) up to 500 kWe is presented. This analysis is strongly related to the need of minimizing specific capital cost, still high for MGT large market penetration, and optimizing MGT size to match market needs. The analysis was carried out for both existing regenerative MGT cycles and new inter-cooled regenerative cycles, using the Web-based ThermoEconomic Modular Program by the University of Genoa. The attention is mainly focused on the basis of thermodynamic, geometric and capital cost parameters of the main MGT devices (such as recuperator size, material and effectiveness, turbine inlet temperature, and compressor pressure ratio) and on economic scenario (fuel cost, cost of electricity, etc.) for different MGT size in the range 25-500 kWe.

  17. Thermodynamic analysis of an absorption refrigeration system used to cool down the intake air in an Internal Combustion Engine

    International Nuclear Information System (INIS)

    Novella, R.; Dolz, V.; Martín, J.; Royo-Pascual, L.

    2017-01-01

    Highlights: • Enough power in the exhaust gases is available to operate the absorption cycle. • Three engine operating points are presented in the article. • Improvement potential up to 4% is possible in the engine indicated efficiency. • Engine indicated efficiency benefit was experimentally confirmed by direct testing. - Abstract: This paper deals with the thermodynamic analysis of an absorption refrigeration cycle used to cool down the temperature of the intake air in an Internal Combustion Engine using as a heat source the exhaust gas of the engine. The solution of ammonia-water has been selected due to the stability for a wide range of operating temperatures and pressures and the low freezing point. The effects of operating temperatures, pressures, concentrations of strong and weak solutions in the absorption refrigeration cycle were examined to achieve proper heat rejection to the ambient. Potential of increasing Internal Combustion Engine efficiency and reduce pollutant emissions was estimated by means of theoretical models and experimental tests. In order to provide boundary conditions for the absorption refrigeration cycle and to simulate its effect on engine performance, a 0D thermodynamic model was used to reproduce the engine performance when the intake air is cooled. Furthermore, a detailed experimental work was carried out to validate the results in real engine operation. Theoretical results show how the absorption refrigeration system decreases the intake air flow temperature down to a temperature around 5 °C and even lower by using the bottoming waste heat energy available in the exhaust gases in a wide range of engine operating conditions. In addition, the theoretical analysis estimates the potential of the strategy for increasing the engine indicated efficiency in levels up to 4% also at the operating conditions under evaluation. Finally, this predicted benefit in engine indicated efficiency has been experimentally confirmed by direct

  18. Work extraction and thermodynamics for individual quantum systems

    Science.gov (United States)

    Skrzypczyk, Paul; Short, Anthony J.; Popescu, Sandu

    2014-06-01

    Thermodynamics is traditionally concerned with systems comprised of a large number of particles. Here we present a framework for extending thermodynamics to individual quantum systems, including explicitly a thermal bath and work-storage device (essentially a ‘weight’ that can be raised or lowered). We prove that the second law of thermodynamics holds in our framework, and gives a simple protocol to extract the optimal amount of work from the system, equal to its change in free energy. Our results apply to any quantum system in an arbitrary initial state, in particular including non-equilibrium situations. The optimal protocol is essentially reversible, similar to classical Carnot cycles, and indeed, we show that it can be used to construct a quantum Carnot engine.

  19. Reverse engineering of fluid selection for thermodynamic cycles with cubic equations of state, using a compression heat pump as example

    International Nuclear Information System (INIS)

    Roskosch, Dennis; Atakan, Burak

    2015-01-01

    Fluid selection for thermodynamic cycles like refrigeration cycles, heat pumps or organic Rankine cycles remains an actual topic. Generally the search for a working fluid is based on experimental approaches or on a not very systematic trial and error approach, far from being elegant. An alternative method may be a theory based reverse engineering approach, proposed and investigated here: The design process should start with an optimal process and with (abstract) properties of the fluid needed to fit into this optimal process, best described by some general equation of state and the corresponding fluid-describing parameters. These should be analyzed and optimized with respect to the defined model process, which also has to be optimized simultaneously. From this information real fluids can be selected or even synthesized which have fluid defining properties in the optimum regime like critical temperature or ideal gas capacities of heat, allowing to find new working fluids, not considered so far. The number and kind of the fluid-defining parameters is mainly based on the choice of the used EOS (equation of state). The property model used in the present work is based on the cubic Peng–Robinson equation, chosen due to its moderate numerical expense, sufficient accuracy as well as a general availability of the fluid-defining parameters for many compounds. The considered model-process works between the temperature levels of 273.15 and 333.15 K and can be used as heat pump for supplying buildings with heat, typically. The objective functions are the COP (coefficient of performance) and the VHC (volumetric heating capacity) as a function of critical pressure, critical temperature, acentric factor and two coefficients for the temperature-dependent isobaric ideal gas heat capacity. Also, the steam quality at the compressor entrance has to be regarded as a problem variable. The results give clear hints regarding optimal fluid parameters of the analyzed process and deepen

  20. Thermo- economical consideration of Regenerative organic Rankine cycle coupling with the absorption chiller systems incorporated in the trigeneration system

    International Nuclear Information System (INIS)

    Anvari, Simin; Taghavifar, Hadi; Parvishi, Alireza

    2017-01-01

    Highlights: • A new trigeneration cycle was studied from a new viewpoint of exergoeconomic and thermodynamic. • Organic Rankine and refrigeration cycles are used for recovery waste heat of cogeneration system. • Application of trigeneration cycles is advantageous in economical and thermodynamic aspects. - Abstract: In this paper, a combined cooling, heating and power cycle is proposed consisting of three sections of gas turbine and heat recovery steam generator cycle, Regenerative organic Rankine cycle, and absorption refrigeration cycle. This trigeneration cycle is subjected to a thorough thermodynamic and exergoeconomic analysis. The principal goal followed in the investigation is to address the thermodynamic and exergoeconomic of a trigeneration cycle from a new prospective such that the economic and thermodynamic viability of incorporating Regenerative organic Rankine cycle, and absorption refrigeration cycle to the gas turbine and heat recovery steam generator cycle is being investigated. Thus, the cost-effectiveness of the introduced method can be studied and further examined. The results indicate that adding Regenerative organic Rankine cycle to gas turbine and heat recovery steam generator cycle leads to 2.5% increase and the addition of absorption refrigeration cycle to the gas turbine and heat recovery steam generator/ Regenerative Organic Rankine cycle would cause 0.75% increase in the exergetic efficiency of the entire cycle. Furthermore, from total investment cost of the trigeneration cycle, only 5.5% and 0.45% results from Regenerative organic Rankine cycle and absorption refrigeration cycles, respectively.

  1. Some remarks about the thermodynamics of discrete finite Markov chains

    Energy Technology Data Exchange (ETDEWEB)

    Siboni, S. [Trento Univ. (Italy). Facolta` di Ingegneria, Dip. di Ingegneria dei Materiali

    1998-08-01

    The Author propose a simple way to define a Hamiltonian for aperiodic Markov chains and to apply these chains in a thermodynamical context. The basic thermodynamic functions are correspondingly calculated. A quite intriguing and nontrivial application to stochastic automata is also pointed out.

  2. Thermodynamics of the variable modified Chaplygin gas

    Energy Technology Data Exchange (ETDEWEB)

    Panigrahi, D. [Sree Chaitanya College, Habra 743268 (India); Chatterjee, S., E-mail: dibyendupanigrahi@yahoo.co.in, E-mail: chat_sujit1@yahoo.com [Relativity and Cosmology Research Centre, Jadavpur University, Kolkata – 700032 (India)

    2016-05-01

    A cosmological model with a new variant of Chaplygin gas obeying an equation of state (EoS), P = A ρ − B /ρ{sup α} where B = B {sub 0} a {sup n} is investigated in the context of its thermodynamical behaviour. Here B {sub 0} and n are constants and a is the scale factor. We show that the equation of state of this 'Variable Modified Chaplygin gas' (VMCG) can describe the current accelerated expansion of the universe. Following standard thermodynamical criteria we mainly discuss the classical thermodynamical stability of the model and find that the new parameter, n introduced in VMCG plays a crucial role in determining the stability considerations and should always be negative. We further observe that although the earlier model of Lu explains many of the current observational findings of different probes it fails the desirable tests of thermodynamical stability. We also note that for 0 n < our model points to a phantom type of expansion which, however, is found to be compatible with current SNe Ia observations and CMB anisotropy measurements. Further the third law of thermodynamics is obeyed in our case. Our model is very general in the sense that many of earlier works in this field may be obtained as a special case of our solution. An interesting point to note is that the model also apparently suggests a smooth transition from the big bang to the big rip in its whole evaluation process.

  3. Thermodynamic analysis and theoretical study of a continuous operation solar-powered adsorption refrigeration system

    International Nuclear Information System (INIS)

    Hassan, H.Z.; Mohamad, A.A.

    2013-01-01

    Due to the intermittent nature of the solar radiation, the day-long continuous production of cold is a challenge for solar-driven adsorption cooling systems. In the present study, a developed solar-powered adsorption cooling system is introduced. The proposed system is able to produce cold continuously along the 24-h of the day. The theoretical thermodynamic operating cycle of the system is based on adsorption at constant temperature. Both the cooling system operating procedure as well as the theoretical thermodynamic cycle are described and explained. Moreover, a steady state differential thermodynamic analysis is performed for all components and processes of the introduced system. The analysis is based on the energy conservation principle and the equilibrium dynamics of the adsorption and desorption processes. The Dubinin–Astakhov adsorption equilibrium equation is used in this analysis. Furthermore, the thermodynamic properties of the refrigerant are calculated from its equation of state. The case studied represents a water chiller which uses activated carbon–methanol as the working pair. The chiller is found to produce a daily mass of 2.63 kg cold water at 0 °C from water at 25 °C per kg of adsorbent. Moreover, the proposed system attains a cooling coefficient of performance of 0.66. - Highlights: • A new continuous operation solar-driven adsorption refrigeration system is introduced. • The theoretical thermodynamic cycle is presented and explained. • A complete thermodynamic analysis is performed for all components and processes of the system. • Activated carbon–methanol is used as the working pair in the case study

  4. From thermodynamics to the solutions in gravity theory

    International Nuclear Information System (INIS)

    Zhang, Hongsheng; Li, Xin-Zhou

    2014-01-01

    In a recent work, we present a new point of view to the relation of gravity and thermodynamics, in which we derive the Schwarzschild solution through thermodynamic considerations by the aid of the Misner–Sharp mass in an adiabatic system. In this Letter we continue to investigate the relation between gravity and thermodynamics for obtaining solutions via thermodynamics. We generalize our studies on gravi-thermodynamics in Einstein gravity to modified gravity theories. By using the first law with the assumption that the Misner–Sharp mass is the mass for an adiabatic system, we reproduce the Boulware–Deser–Cai solution in Gauss–Bonnet gravity. Using this gravi-thermodynamic thought, we obtain a NEW class of solution in F(R) gravity in an n-dimensional (n≥3) spacetime which permits three-type (n−2)-dimensional maximally symmetric subspace, as an extension of our recent three-dimensional black hole solution, and four-dimensional Clifton–Barrow solution in F(R) gravity

  5. From thermodynamics to the solutions in gravity theory

    Directory of Open Access Journals (Sweden)

    Hongsheng Zhang

    2014-10-01

    Full Text Available In a recent work, we present a new point of view to the relation of gravity and thermodynamics, in which we derive the Schwarzschild solution through thermodynamic considerations by the aid of the Misner–Sharp mass in an adiabatic system. In this Letter we continue to investigate the relation between gravity and thermodynamics for obtaining solutions via thermodynamics. We generalize our studies on gravi-thermodynamics in Einstein gravity to modified gravity theories. By using the first law with the assumption that the Misner–Sharp mass is the mass for an adiabatic system, we reproduce the Boulware–Deser–Cai solution in Gauss–Bonnet gravity. Using this gravi-thermodynamic thought, we obtain a NEW class of solution in F(R gravity in an n-dimensional (n≥3 spacetime which permits three-type (n−2-dimensional maximally symmetric subspace, as an extension of our recent three-dimensional black hole solution, and four-dimensional Clifton–Barrow solution in F(R gravity.

  6. Response of the dynamic and thermodynamic structure of the stratosphere to the solar cycle in the boreal winter

    Science.gov (United States)

    Shi, Chunhua; Gao, Yannan; Cai, Juan; Guo, Dong; Lu, Yan

    2018-04-01

    The response of the dynamic and thermodynamic structure of the stratosphere to the solar cycle in the boreal winter is investigated based on measurements of the solar cycle by the Spectral Irradiance Monitor onboard the SORCE satellite, monthly ERA-Interim Reanalysis data from the European Center for Medium-Range Weather Forecasts, the radiative transfer scheme of the Beijing Climate Center (BCC-RAD) and a multiple linear regression model. The results show that during periods of strong solar activity, the solar shortwave heating anomaly from the climatology in the tropical upper stratosphere triggers a local warm anomaly and strong westerly winds in mid-latitudes, which strengthens the upward propagation of planetary wave 1 but prevents that of wave 2. The enhanced westerly jet makes a slight adjustment to the propagation path of wave 1, but prevents wave 2 from propagating upward, decreases the dissipation of wave 2 in the extratropical upper stratosphere and hence weakens the Brewer-Dobson circulation. The adiabatic heating term in relation to the Brewer-Dobson circulation shows anomalous warming in the tropical lower stratosphere and anomalous cooling in the mid-latitude upper stratosphere.

  7. Nitrogen expander cycles for large capacity liquefaction of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun [Hong Ik University, Department of Mechanical Engineering, Seoul, 121-791 (Korea, Republic of); Choe, Kun Hyung [Korea Gas Corporation, Incheon, 406-130 (Korea, Republic of)

    2014-01-29

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  8. Nitrogen expander cycles for large capacity liquefaction of natural gas

    Science.gov (United States)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung

    2014-01-01

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  9. Nitrogen expander cycles for large capacity liquefaction of natural gas

    International Nuclear Information System (INIS)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung

    2014-01-01

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity

  10. Entropy and energy quantization: Planck thermodynamic calculation

    International Nuclear Information System (INIS)

    Mota e Albuquerque, Ivone Freire da.

    1988-01-01

    This dissertation analyses the origins and development of the concept of entropy and its meaning of the second Law of thermodynamics, as well as the thermodynamics derivation of the energy quantization. The probabilistic interpretation of that law and its implication in physics theory are evidenciated. Based on Clausius work (which follows Carnot's work), we analyse and expose in a original way the entropy concept. Research upon Boltzmann's work and his probabilistic interpretation of the second Law of thermodynamics is made. The discuss between the atomistic and the energeticist points of view, which were actual at that time are also commented. (author). 38 refs., 3 figs

  11. Mechanics and thermodynamics

    CERN Document Server

    Demtröder, Wolfgang

    2017-01-01

    This introduction to classical mechanics and thermodynamics provides an accessible and clear treatment of the fundamentals. Starting with particle mechanics and an early introduction to special relativity this textbooks enables the reader to understand the basics in mechanics. The text is written from the experimental physics point of view, giving numerous real life examples and applications of classical mechanics in technology. This highly motivating presentation deepens the knowledge in a very accessible way. The second part of the text gives a concise introduction to rotational motion, an expansion to rigid bodies, fluids and gases. Finally, an extensive chapter on thermodynamics and a short introduction to nonlinear dynamics with some instructive examples intensify the knowledge of more advanced topics. Numerous problems with detailed solutions are perfect for self study.

  12. Thermodynamics of charged Lovelock: AdS black holes

    International Nuclear Information System (INIS)

    Prasobh, C.B.; Suresh, Jishnu; Kuriakose, V.C.

    2016-01-01

    We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime. (orig.)

  13. Thermodynamics of charged Lovelock: AdS black holes

    Science.gov (United States)

    Prasobh, C. B.; Suresh, Jishnu; Kuriakose, V. C.

    2016-04-01

    We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime.

  14. A thermodynamic analysis of waste heat recovery from reciprocating engine power plants by means of Organic Rankine Cycles

    International Nuclear Information System (INIS)

    Uusitalo, Antti; Honkatukia, Juha; Turunen-Saaresti, Teemu; Larjola, Jaakko

    2014-01-01

    Organic Rankine Cycle (ORC) is a Rankine cycle using organic fluid as the working fluid instead of water and steam. The ORC process is a feasible choice in waste heat recovery applications producing electricity from relatively low-temperature waste heat sources or in applications having a rather low power output. Utilizing waste heat from a large high-efficiency reciprocating engine power plant with ORC processes is studied by means of computations. In addition to exhaust gas heat recovery, this study represents and discusses an idea of directly replacing the charge air cooler (CAC) of a large turbocharged engine with an ORC evaporator to utilize the charge air heat in additional power production. A thermodynamic analysis for ORCs was carried out with working fluids toluene, n-pentane, R245fa and cyclohexane. The effect of different ORC process parameters on the process performance are presented and analyzed in order to investigate the heat recovery potential from the exhaust gas and charge air. A simplified feasibility consideration is included by comparing the ratio of the theoretical heat transfer areas needed and the obtained power output from ORC processes. The greatest potential is related to the exhaust gas heat recovery, but in addition also the lower temperature waste heat streams could be utilized to boost the electrical power of the engine power plant. A case study for a large-scale gas-fired engine was carried out showing that the maximum power increase of 11.4% was obtained from the exhaust gas and 2.4% from the charge air heat. - Highlights: • Waste heat recovery potential of reciprocating engines was studied. • Thermodynamic optimization for ORCs was carried out with different fluids. • The utilization of exhaust gas and charge air heat is presented and discussed. • Simplified economic feasibility study was included in the analysis. • Power increase of 11.4% was obtained from exhaust gas and 2.4% from charge air

  15. Thermodynamic basis for evolution of apatite in calcified tissues (Invited)

    Science.gov (United States)

    Navrotsky, A.; Drouet, C.; Rollin-Martinet, S.; Champion, E.; Grossin, D.

    2013-12-01

    Bone remodeling and tooth enamel maturation are biological processes which alter the physico-chemical features of biominerals with time. However, although the ubiquity of bone remodeling is clear, why is well crystallized bone mineral systematically replaced by immature nanocrystalline inorganic material? In enamel, a clear evolution is also seen from the first mineral formed during the secretory stage to its mature well crystalline form, which then changes little in the adult tooth. This contribution provides the thermodynamic basis underlying these biological processes. We determined the energetics of biomimetic apatites corresponding to an increasing degree of maturation. Our data point out the progressive evolution of the enthalpy (ΔHf°) and free energy (ΔGf°) of formation toward more negative values upon maturation. Entropy contributions to ΔGf° values are small compared to enthalpy contributions. ΔHf° varies from -12058.9 × 12.2 to -12771.0 × 21.4 kJ/mol for maturation times increasing from 20 min to 3 weeks, approaching the value for stoichiometric hydroxyapatite, -13431.0 × 22.7 kJ/mol. Apatite thermodynamic stability increases as its composition moved toward stoichiometry. These findings imply diminishing aqueous solubility of calcium and phosphate ions as well as decreased surface reactivity. Such thermodynamically-driven maturation is favorable for enamel maturation since this biomineral must resist external aggressions such as contact with acids. In contrast, maintaining a metastable highly reactive and soluble form of apatite is essential to the effective participation of bone as a source of calcium and phosphate for homeostasis. Therefore our data strongly suggest that, far from being trivial, the intrinsic thermodynamic properties of apatite represent a critical driving force for continuous bone remodeling, in contrast to current views favoring a purely biologically driven cycle. These thermodynamic data may prove helpful in other domains

  16. Thermodynamic geometry of black holes in f(R) gravity

    International Nuclear Information System (INIS)

    Soroushfar, Saheb; Saffari, Reza; Kamvar, Negin

    2016-01-01

    In this paper, we consider three types (static, static charged, and rotating charged) of black holes in f(R) gravity. We study the thermodynamical behavior, stability conditions, and phase transition of these black holes. It is shown that the number and type of phase transition points are related to different parameters, which shows the dependency of the stability conditions to these parameters. Also, we extend our study to different thermodynamic geometry methods (Ruppeiner, Weinhold, and GTD). Next, we investigate the compatibility of curvature scalar of geothermodynamic methods with phase transition points of the above black holes. In addition, we point out the effect of different values of the spacetime parameters on the stability conditions of mentioned black holes. (orig.)

  17. Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics

    Energy Technology Data Exchange (ETDEWEB)

    Durmayaz, A. [Istanbul Technical University (Turkey). Department of Mechanical Engineering; Sogut, O.S. [Istanbul Technical University, Maslak (Turkey). Department of Naval Architecture and Ocean Engineering; Sahin, B. [Yildiz Technical University, Besiktas, Istanbul (Turkey). Department of Naval Architecture; Yavuz, H. [Istanbul Technical University, Maslak (Turkey). Institute of Energy

    2004-07-01

    The irreversibilities originating from finite-time and finite-size constraints are important in the real thermal system optimization. Since classical thermodynamic analysis based on thermodynamic equilibrium do not consider these constraints directly, it is necessary to consider the energy transfer between the system and its surroundings in the rate form. Finite-time thermodynamics provides a fundamental starting point for the optimization of real thermal systems including the fundamental concepts of heat transfer and fluid mechanics to classical thermodynamics. In this study, optimization studies of thermal systems, that consider various objective functions, based on finite-time thermodynamics and thermoeconomics are reviewed. (author)

  18. Development of a Stirling System Dynamic Model with Enhanced Thermodynamics

    Science.gov (United States)

    Regan, Timothy F.; Lewandowski, Edward J.

    2005-02-01

    The Stirling Convertor System Dynamic Model developed at NASA Glenn Research Center is a software model developed from first principles that includes the mechanical and mounting dynamics, the thermodynamics, the linear alternator, and the controller of a free-piston Stirling power convertor, along with the end user load. As such it represents the first detailed modeling tool for fully integrated Stirling convertor-based power systems. The thermodynamics of the model were originally a form of the isothermal Stirling cycle. In some situations it may be desirable to improve the accuracy of the Stirling cycle portion of the model. An option under consideration is to enhance the SDM thermodynamics by coupling the model with Gedeon Associates' Sage simulation code. The result will be a model that gives a more accurate prediction of the performance and dynamics of the free-piston Stirling convertor. A method of integrating the Sage simulation code with the System Dynamic Model is described. Results of SDM and Sage simulation are compared to test data. Model parameter estimation and model validation are discussed.

  19. A new approach toward geometrical concept of black hole thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, Seyed Hossein [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Panahiyan, Shahram; Panah, Behzad Eslam; Momennia, Mehrab [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)

    2015-10-15

    Motivated by the energy representation of Riemannian metric, in this paper we study different approaches toward the geometrical concept of black hole thermodynamics. We investigate thermodynamical Ricci scalar of Weinhold, Ruppeiner and Quevedo metrics and show that their number and location of divergences do not coincide with phase transition points arisen from heat capacity. Next, we introduce a new metric to solve these problems. We show that the denominator of the Ricci scalar of the new metric contains terms which coincide with different types of phase transitions. We elaborate the effectiveness of the new metric and shortcomings of the previous metrics with some examples. Furthermore, we find a characteristic behavior of the new thermodynamical Ricci scalar which enables one to distinguish two types of phase transitions. In addition, we generalize the new metric for the cases of more than two extensive parameters and show that in these cases the divergencies of thermodynamical Ricci scalar coincide with phase transition points of the heat capacity. (orig.)

  20. A new approach toward geometrical concept of black hole thermodynamics

    International Nuclear Information System (INIS)

    Hendi, Seyed Hossein; Panahiyan, Shahram; Panah, Behzad Eslam; Momennia, Mehrab

    2015-01-01

    Motivated by the energy representation of Riemannian metric, in this paper we study different approaches toward the geometrical concept of black hole thermodynamics. We investigate thermodynamical Ricci scalar of Weinhold, Ruppeiner and Quevedo metrics and show that their number and location of divergences do not coincide with phase transition points arisen from heat capacity. Next, we introduce a new metric to solve these problems. We show that the denominator of the Ricci scalar of the new metric contains terms which coincide with different types of phase transitions. We elaborate the effectiveness of the new metric and shortcomings of the previous metrics with some examples. Furthermore, we find a characteristic behavior of the new thermodynamical Ricci scalar which enables one to distinguish two types of phase transitions. In addition, we generalize the new metric for the cases of more than two extensive parameters and show that in these cases the divergencies of thermodynamical Ricci scalar coincide with phase transition points of the heat capacity. (orig.)

  1. On black hole thermodynamics with a momentum relaxation

    International Nuclear Information System (INIS)

    Park, Chanyong

    2016-01-01

    We investigate black hole thermodynamics involving a scalar hair which is dual to a momentum relaxation of the dual field theory. This black hole geometry is able to be classified by two parameters. One is a momentum relaxation and the other is a mass density of another matter localized at the center. Even though all parameters are continuous, there exists a specific point where its thermodynamic interpretation is not continuously connected to the one defined in the other parameter regime. The similar feature also appears in a topological AdS black hole. In this work, we show why such an unusual thermodynamic feature happens and provide a unified way to understand such an exotic black hole thermodynamically in the entire parameter range. (paper)

  2. Irreversible thermodynamic analysis and application for molecular heat engines

    Science.gov (United States)

    Lucia, Umberto; Açıkkalp, Emin

    2017-09-01

    Is there a link between the macroscopic approach to irreversibility and microscopic behaviour of the systems? Consumption of free energy keeps the system away from a stable equilibrium. Entropy generation results from the redistribution of energy, momentum, mass and charge. This concept represents the essence of the thermodynamic approach to irreversibility. Irreversibility is the result of the interaction between systems and their environment. The aim of this paper is to determine lost works in a molecular engine and compare results with macro (classical) heat engines. Firstly, irreversible thermodynamics are reviewed for macro and molecular cycles. Secondly, irreversible thermodynamics approaches are applied for a quantum heat engine with -1/2 spin system. Finally, lost works are determined for considered system and results show that macro and molecular heat engines obey same limitations. Moreover, a quantum thermodynamic approach is suggested in order to explain the results previously obtained from an atomic viewpoint.

  3. Quantum corrections to thermodynamics of quasitopological black holes

    Directory of Open Access Journals (Sweden)

    Sudhaker Upadhyay

    2017-12-01

    Full Text Available Based on the modification to area-law due to thermal fluctuation at small horizon radius, we investigate the thermodynamics of charged quasitopological and charged rotating quasitopological black holes. In particular, we derive the leading-order corrections to the Gibbs free energy, charge and total mass densities. In order to analyze the behavior of the thermal fluctuations on the thermodynamics of small black holes, we draw a comparative analysis between the first-order corrected and original thermodynamical quantities. We also examine the stability and bound points of such black holes under effect of leading-order corrections.

  4. A thermodynamic perspective on technologies in the Anthropocene : analyzing environmental sustainability

    NARCIS (Netherlands)

    Liao, Wenjie

    2012-01-01

    Technologies and sustainable development are interrelated from a thermodynamic perspective, with industrial ecology (IE) as a major point of access for studying the relationship in the Anthropocene. To offer insights into the potential offered by thermodynamics in the environmental sustainability

  5. New insight into regenerated air heat pump cycle

    International Nuclear Information System (INIS)

    Zhang, Chun-Lu; Yuan, Han; Cao, Xiang

    2015-01-01

    Regenerated air (reverse Brayton) cycle has unique potentials in heat pump applications compared to conventional vapor-compression cycles. To better understand the regenerated air heat pump cycle characteristics, a thermodynamic model with new equivalent parameters was developed in this paper. Equivalent temperature ratio and equivalent isentropic efficiency of expander were introduced to represent the effect of regenerator, which made the regenerated air cycle in the same mathematical expressions as the basic air cycle and created an easy way to prove some important features that regenerated air cycle inherits from the basic one. Moreover, we proved in theory that the regenerator does not always improve the air cycle efficiency. Larger temperature ratio and lower effectiveness of regenerator could make the regenerated air cycle even worse than the basic air cycle. Lastly, we found that only under certain conditions the cycle could get remarkable benefits from a well-sized regenerator. These results would enable further study of the regenerated air cycle from a different perspective. - Highlights: • A thermodynamic model for regenerated air heat pump cycle was developed. • Equivalent temperature ratio and equivalent expander efficiency were introduced. • We proved regenerated air cycle can make heating capacity in line with heating load. • We proved the regenerator does not always improve the air cycle efficiency.

  6. Assessment of thermodynamic parameters of plasma shock wave

    International Nuclear Information System (INIS)

    Vasileva, O V; Isaev, Yu N; Budko, A A; Filkov, A I

    2014-01-01

    The work is devoted to the solution of the one-dimensional equation of hydraulic gas dynamics for the coaxial magneto plasma accelerator by means of Lax-Wendroff modified algorithm with optimum choice of the regularization parameter artificial viscosity. Replacement of the differential equations containing private derivatives is made by finite difference method. Optimum parameter of regularization artificial viscosity is added using the exact known decision of Soda problem. The developed algorithm of thermodynamic parameter calculation in a braking point is proved. Thermodynamic parameters of a shock wave in front of the plasma piston of the coaxial magneto plasma accelerator are calculated on the basis of the offered algorithm. Unstable high-frequency fluctuations are smoothed using modeling and that allows narrowing the ambiguity area. Results of calculation of gas dynamic parameters in a point of braking coincide with literary data. The chart 3 shows the dynamics of change of speed and thermodynamic parameters of a shock wave such as pressure, density and temperature just before the plasma piston

  7. Glass formability in medium-sized molecular systems/pharmaceuticals. I. Thermodynamics vs. kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Wenkang; Li, Xiangqian; Chen, Zeming; Liu, Ying Dan; Wang, Li-Min, E-mail: simone.capaccioli@unipi.it, E-mail: Limin-Wang@ysu.edu.cn [State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Labardi, Massimiliano [CNR-IPCF, Sede Secondaria Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy); Capaccioli, Simone, E-mail: simone.capaccioli@unipi.it, E-mail: Limin-Wang@ysu.edu.cn [CNR-IPCF, Sede Secondaria Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy); Department of Physics, Pisa University, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Paluch, M. [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)

    2016-05-07

    Scrutinizing critical thermodynamic and kinetic factors for glass formation and the glass stability of materials would benefit the screening of the glass formers for the industry of glassy materials. The present work aims at elucidating the factors that contribute to the glass formation by investigating medium-sized molecules of pharmaceuticals. Glass transition related thermodynamics and kinetics are performed on the pharmaceuticals using calorimetric, dielectric, and viscosity measurements. The characteristic thermodynamic and kinetic parameters of glass transition are found to reproduce the relations established for small-molecule glass formers. The systematic comparison of the thermodynamic and kinetic contributions to glass formation reveals that the melting-point viscosity is the crucial quantity for the glass formation. Of more interest is the finding of a rough correlation between the melting-point viscosity and the entropy of fusion normalized by the number of beads of the pharmaceuticals, suggesting the thermodynamics can partly manifest its contribution to glass formation via kinetics.

  8. Glass formability in medium-sized molecular systems/pharmaceuticals. I. Thermodynamics vs. kinetics.

    Science.gov (United States)

    Tu, Wenkang; Li, Xiangqian; Chen, Zeming; Liu, Ying Dan; Labardi, Massimiliano; Capaccioli, Simone; Paluch, M; Wang, Li-Min

    2016-05-07

    Scrutinizing critical thermodynamic and kinetic factors for glass formation and the glass stability of materials would benefit the screening of the glass formers for the industry of glassy materials. The present work aims at elucidating the factors that contribute to the glass formation by investigating medium-sized molecules of pharmaceuticals. Glass transition related thermodynamics and kinetics are performed on the pharmaceuticals using calorimetric, dielectric, and viscosity measurements. The characteristic thermodynamic and kinetic parameters of glass transition are found to reproduce the relations established for small-molecule glass formers. The systematic comparison of the thermodynamic and kinetic contributions to glass formation reveals that the melting-point viscosity is the crucial quantity for the glass formation. Of more interest is the finding of a rough correlation between the melting-point viscosity and the entropy of fusion normalized by the number of beads of the pharmaceuticals, suggesting the thermodynamics can partly manifest its contribution to glass formation via kinetics.

  9. Thermodynamics of asymptotically safe theories

    DEFF Research Database (Denmark)

    Rischke, Dirk H.; Sannino, Francesco

    2015-01-01

    We investigate the thermodynamic properties of a novel class of gauge-Yukawa theories that have recently been shown to be completely asymptotically safe, because their short-distance behaviour is determined by the presence of an interacting fixed point. Not only do all the coupling constants freeze...

  10. Thermodynamics of freezing and melting

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas

    2016-01-01

    phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...

  11. Thermodynamic analysis and optimization of an irreversible Ericsson cryogenic refrigerator cycle

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad Hossein; Ahmadi, Mohammad Ali

    2015-01-01

    Highlights: • Thermodynamic modeling of Ericsson refrigeration is performed. • The latter is achieved using NSGA algorithm and thermodynamic analysis. • Different decision makers are utilized to determine optimum values of outcomes. - Abstract: Optimum ecological and thermal performance assessments of an Ericsson cryogenic refrigerator system are investigated in different optimization settings. To evaluate this goal, ecological and thermal approaches are proposed for the Ericsson cryogenic refrigerator, and three objective functions (input power, coefficient of performance and ecological objective function) are gained for the suggested system. Throughout the current research, an evolutionary algorithm (EA) and thermodynamic analysis are employed to specify optimum values of the input power, coefficient of performance and ecological objective function of an Ericsson cryogenic refrigerator system. Four setups are assessed for optimization of the Ericsson cryogenic refrigerator. Throughout the three scenarios, a conventional single-objective optimization has been utilized distinctly with each objective function, nonetheless of other objectives. Throughout the last setting, input power, coefficient of performance and ecological function objectives are optimized concurrently employing a non-dominated sorting genetic algorithm (GA) named the non-dominated sorting genetic algorithm (NSGA-II). As in multi-objective optimization, an assortment of optimum results named the Pareto optimum frontiers are gained rather than a single ultimate optimum result gained via conventional single-objective optimization. Thus, a process of decision making has been utilized for choosing an ultimate optimum result. Well-known decision-makers have been performed to specify optimized outcomes from the Pareto optimum results in the space of objectives. The outcomes gained from aforementioned optimization setups are discussed and compared employing an index of deviation presented in this

  12. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Hwang, Jeong Ui; Jang, Jong Jae; Jee, Jong Gi

    1987-01-01

    The contents of this book are thermodynamics on the law of thermodynamics, classical thermodynamics and molecule thermodynamics, basics of molecule thermodynamics, molecule and assembly partition function, molecule partition function, classical molecule partition function, thermodynamics function for ideal assembly in fixed system, thermodynamics function for ideal assembly in running system, Maxwell-Boltzmann's law of distribution, chemical equilibrium like calculation of equilibrium constant and theory of absolute reaction rate.

  13. Geometro-thermodynamics of tidal charged black holes

    International Nuclear Information System (INIS)

    Gergely, Laszlo Arpad; Pidokrajt, Narit; Winitzki, Sergei

    2011-01-01

    Tidal charged spherically symmetric vacuum brane black holes are characterized by their mass m and tidal charge q, an imprint of the five-dimensional Weyl curvature. For q>0 they are formally identical to the Reissner-Nordstroem black hole of general relativity. We study the thermodynamics and thermodynamic geometries of tidal charged black holes and discuss similarities and differences as compared to the Reissner-Nordstroe m black hole. As a similarity, we show that (for q>0) the heat capacity of the tidal charged black hole diverges on a set of measure zero of the parameter space, nevertheless both the regularity of the Ruppeiner metric and a Poincare stability analysis show no phase transition at those points. The thermodynamic state spaces being different indicates that the underlying statistical models could be different. We find that the q<0 parameter range, which enhances the localization of gravity on the brane, is thermodynamically preferred. Finally we constrain for the first time the possible range of the tidal charge from the thermodynamic limit on gravitational radiation efficiency at black hole mergers. (orig.)

  14. Thermodynamic performance assessment of an integrated geothermal powered supercritical regenerative organic Rankine cycle and parabolic trough solar collectors

    International Nuclear Information System (INIS)

    Cakici, Duygu Melek; Erdogan, Anil; Colpan, Can Ozgur

    2017-01-01

    In this study, the thermodynamic performance of an integrated geothermal powered supercritical regenerative organic Rankine cycle (ORC) and parabolic trough solar collectors (PTSC) is assessed. A thermal model based on the principles of thermodynamics (mass, energy, and exergy balances) and heat transfer is first developed for the components of this integrated system. This model gives the performance assessment parameters of the system such as the electrical and exergetic efficiencies, total exergy destruction and loss, productivity lack, fuel depletion ratio, and improvement potential rate. To validate this model, the data of an existing geothermal power plant based on a supercritical ORC and literature data for the PTSC are used. After validation, parametric studies are conducted to assess the effect of some of the important design and operating parameters on the performance of the system. As a result of these studies, it is found that the integration of ORC and PTSC systems increases the net power output but decreases the electrical and exergetic efficiencies of the integrated system. It is also shown that R134a is the most suitable working fluid type for this system; and the PTSCs and air cooled condenser are the main sources of the exergy destructions. - Highlights: • A geothermal power plant integrated with PTSC is investigated. • Different approaches for defining the exergetic efficiency are used. • The PTSCs and ACC are the main sources of the exergy destructions. • R134a gives the highest performance for any number of collectors studied.

  15. Effects of hysteresis and Brayton cycle constraints on magnetocaloric refrigerant performance

    Science.gov (United States)

    Brown, T. D.; Buffington, T.; Shamberger, P. J.

    2018-05-01

    Despite promising proofs of concept, system-level implementation of magnetic refrigeration has been critically limited by history-dependent refrigerant losses that interact with governing thermodynamic cycles to adversely impact refrigeration performance. Future development demands a more detailed understanding of how hysteresis limits performance, and of how different types of cycles can mitigate these limitations, but without the extreme cost of experimental realization. Here, the utility of Brayton cycles for magnetic refrigeration is investigated via direct simulation, using a combined thermodynamic-hysteresis modeling framework to compute the path-dependent magnetization and entropy of a model alloy for a variety of feasible Brayton cycles between 0-1.5 T and 0-5 T. By simultaneously varying the model alloy's hysteresis properties and applying extensions of the thermodynamic laws to non-equilibrium systems, heat transfers and efficiencies are quantified throughout the space of hystereses and Brayton cycles and then compared with a previous investigation using Ericsson cycles. It is found that (1) hysteresis losses remain a critical obstacle to magnetic refrigeration implementation, with efficiencies >80% in the model system requiring hysteresis refrigerant transformation temperatures at the relevant fields; (3) for a given hysteresis and field constraint, Brayton and Ericsson-type cycles generate similar efficiencies; for a given temperature span, Ericsson cycles lift more heat per cycle, with the difference decreasing with the refrigerant heat capacity outside the phase transformation region.

  16. Off-design performance of a chemical looping combustion (CLC) combined cycle: effects of ambient temperature

    Science.gov (United States)

    Chi, Jinling; Wang, Bo; Zhang, Shijie; Xiao, Yunhan

    2010-02-01

    The present work investigates the influence of ambient temperature on the steady-state off-design thermodynamic performance of a chemical looping combustion (CLC) combined cycle. A sensitivity analysis of the CLC reactor system was conducted, which shows that the parameters that influence the temperatures of the CLC reactors most are the flow rate and temperature of air entering the air reactor. For the ambient temperature variation, three off-design control strategies have been assumed and compared: 1) without any Inlet Guide Vane (IGV) control, 2) IGV control to maintain air reactor temperature and 3) IGV control to maintain constant fuel reactor temperature, aside from fuel flow rate adjusting. Results indicate that, compared with the conventional combined cycle, due to the requirement of pressure balance at outlet of the two CLC reactors, CLC combined cycle shows completely different off-design thermodynamic characteristics regardless of the control strategy adopted. For the first control strategy, temperatures of the two CLC reactors both rise obviously as ambient temperature increases. IGV control adopted by the second and the third strategy has the effect to maintain one of the two reactors' temperatures at design condition when ambient temperature is above design point. Compare with the second strategy, the third would induce more severe decrease of efficiency and output power of the CLC combined cycle.

  17. Performance research on modified KCS (Kalina cycle system) 11 without throttle valve

    International Nuclear Information System (INIS)

    He, Jiacheng; Liu, Chao; Xu, Xiaoxiao; Li, Yourong; Wu, Shuangying; Xu, Jinliang

    2014-01-01

    Two modified systems based on a KCS (Kalina cycle system) 11 with a two-phase expander to substitute a throttle valve are proposed. The two-phase expander is located between the regenerator and the absorber in the B-modified cycle and between the separator and the regenerator in the C-modified cycle. A thermodynamic performance analysis of both the original KCS 11 and the modified systems is carried out. The optimization of two key parameters (the concentration of working fluid and the temperature of cooling water) is also conducted. It is shown that the two modified cycles have different performance under the investigated conditions. Results also indicate that the C-modified cycle can obtain better thermodynamic effect than the B-modified cycle. The temperature of cooling water plays an important role in improving the system performance. When the cooling water temperature drops from 303 K to 278 K, the C-modified cycle thermal efficiency can be improved by 27%. - Highlights: • Throttling valve is replaced by a two-phase expander to recover the expansion work. • Thermodynamic performance of two modified cycle systems is very different. • The maximum increase of work output by C-modified cycle compared with KCS (Kalina cycle system) 11 is 9.4%. • The ranges of ammonia content of B-modified cycle are rather larger

  18. Investigation of the supercritical CO2 cycle: mapping of the thermodynamic potential for different applications; further understanding of the physical processes, in particular through simulations and analysis of experimental data

    International Nuclear Information System (INIS)

    Pham, Hong-Son

    2015-01-01

    The supercritical CO 2 (sc-CO 2 ) cycle has been gaining an increasing attention in the engineering world as an alternative to the Rankine steam cycle. Indeed, it provides high efficiency and allows for compact footprint and simple system layout. This study aims to contribute to the research and development on this cycle; the thermodynamic potential and the physical processes, in particular those related to the real gas behavior of the working fluid near its critical point, are considered. The first part of the thesis reports the mapping of the thermodynamic performance of the sc-CO 2 cycle in a 250 - 850 C TIT (Turbine Inlet Temperature) range, for different configurations. These data provide a preliminary guideline to the maximum performance and inter-linked constraints when coupling the cycle to a specific application. Following this generic study, the cycle has been investigated at TITs of 275 and 515 C for SMR (Small Modular Reactor) and SFR (Sodium-cooled Fast Reactor) applications, respectively, to encompass their specific requirements. The recompression cycle in condensing mode has been identified as the most interesting option in both cases. For the SFR, it achieves an attractive thermal efficiency of 45.7% while keeping the IHX (Intermediate Heat exchanger) inlet temperature below 330 C, as currently considered for this application. The study subsequently addresses the performance and operation of the sc-CO 2 compressor by means of CFD simulations. First, numerical results on a small scale compressor - implemented in a sc-CO 2 compression test loop - have been confronted with the experimental data, highlighting the implications of the measurement uncertainty on the reliability of the compressor performance. Nonetheless, a very good agreement has been achieved regarding the compressor inlet and outlet temperatures and pressures, supporting a first qualification of the CFD technique. Simulations on a real scale compressor - designed for the SMR application

  19. Black hole thermodynamical entropy

    International Nuclear Information System (INIS)

    Tsallis, Constantino; Cirto, Leonardo J.L.

    2013-01-01

    As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy S BG of a (3+1) black hole is proportional to its area L 2 (L being a characteristic linear length), and not to its volume L 3 . Similarly it exists the area law, so named because, for a wide class of strongly quantum-entangled d-dimensional systems, S BG is proportional to lnL if d=1, and to L d-1 if d>1, instead of being proportional to L d (d ≥ 1). These results violate the extensivity of the thermodynamical entropy of a d-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is not to be identified with the BG additive entropy but with appropriately generalized nonadditive entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle. (orig.)

  20. Methods and systems for thermodynamic evaluation of battery state of health

    Science.gov (United States)

    Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T

    2014-12-02

    Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.

  1. Energy systems. Tome 3: advanced cycles, low environmental impact innovative systems; Systeme energetiques, TOME 3: cycles avances, systemes innovants a faible impact environnemental

    Energy Technology Data Exchange (ETDEWEB)

    Gicquel, R

    2009-07-01

    This third tome about energy systems completes the two previous ones by showing up advanced thermodynamical cycles, in particular having a low environmental impact, and by dealing with two other questions linked with the study of systems with a changing regime operation: - the time management of energy, with the use of thermal and pneumatic storage systems and time simulation (schedule for instance) of systems (solar energy type in particular); - the technological dimensioning and non-nominal regime operation studies. Because this last topic is particularly complex, new functionalities have been implemented mainly by using the external classes mechanism, which allows the user to freely personalize his models. This tome is illustrated with about 50 examples of cycles modelled with Thermoptim software. Content: foreword; 1 - generic external classes; 2 - advanced gas turbine cycles; 3 - evaporation-concentration, mechanical steam compression, desalination, hot gas drying; 4 - cryogenic cycles; 5 - electrochemical converters; 6 - global warming, CO{sub 2} capture and sequestration; 7 - future nuclear reactors (coupled to Hirn and Brayton cycles); 8 - thermodynamic solar cycles; 10 - pneumatic and thermal storage; 11 - calculation of thermodynamic solar facilities; 12 - problem of technological dimensioning and non-nominal regime; 13 - exchangers modeling and parameterizing for the dimensioning and the non-nominal regime; 14 - modeling and parameterizing of volumetric compressors; 15 - modeling and parameterizing of turbo-compressors and turbines; 16 - identification methodology of component parameters; 17 - case studies. (J.S.)

  2. Thermodynamics of Horndeski black holes with non-minimal derivative coupling

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yan-Gang [Nankai University, School of Physics, Tianjin (China); Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany); Xu, Zhen-Ming [Nankai University, School of Physics, Tianjin (China)

    2016-11-15

    We explore thermodynamic properties of a new class of Horndeski black holes whose action contains a non-minimal kinetic coupling of a massless real scalar and the Einstein tensor. Our treatment is based on the well-accepted consideration, where the cosmological constant is dealt with as thermodynamic pressure and the mass of black holes as thermodynamic enthalpy. We resort to a newly introduced intensive thermodynamic variable, i.e., the coupling strength of the scalar and tensor whose dimension is length square, and thus yield both the generalized first law of thermodynamics and the generalized Smarr relation. Our result indicates that this class of Horndeski black holes presents rich thermodynamic behaviors and critical phenomena. Especially in the case of the presence of an electric field, these black holes undergo two phase transitions. Once the charge parameter exceeds its critical value, or the cosmological parameter does not exceed its critical value, no phase transitions happen and the black holes are stable. As a by-product, we point out, the coupling strength acts as the thermodynamic pressure in thermodynamics. (orig.)

  3. Thermodynamics of Horndeski black holes with non-minimal derivative coupling

    International Nuclear Information System (INIS)

    Miao, Yan-Gang; Xu, Zhen-Ming

    2016-01-01

    We explore thermodynamic properties of a new class of Horndeski black holes whose action contains a non-minimal kinetic coupling of a massless real scalar and the Einstein tensor. Our treatment is based on the well-accepted consideration, where the cosmological constant is dealt with as thermodynamic pressure and the mass of black holes as thermodynamic enthalpy. We resort to a newly introduced intensive thermodynamic variable, i.e., the coupling strength of the scalar and tensor whose dimension is length square, and thus yield both the generalized first law of thermodynamics and the generalized Smarr relation. Our result indicates that this class of Horndeski black holes presents rich thermodynamic behaviors and critical phenomena. Especially in the case of the presence of an electric field, these black holes undergo two phase transitions. Once the charge parameter exceeds its critical value, or the cosmological parameter does not exceed its critical value, no phase transitions happen and the black holes are stable. As a by-product, we point out, the coupling strength acts as the thermodynamic pressure in thermodynamics. (orig.)

  4. Thermodynamic Analysis and Optimization of a High Temperature Triple Absorption Heat Transformer

    Science.gov (United States)

    Khamooshi, Mehrdad; Yari, Mortaza; Egelioglu, Fuat; Salati, Hana

    2014-01-01

    First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair. A thermodynamic model was developed in EES (engineering equation solver) to estimate the performance of the system in terms of the most essential parameters. The assumed parameters are the temperature of the main components, weak and strong solutions, economizers' efficiencies, and bypass ratios. The whole cycle is optimized by EES software from the viewpoint of maximizing the COP via applying the direct search method. The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle. PMID:25136702

  5. Thermodynamic Analysis and Optimization of a High Temperature Triple Absorption Heat Transformer

    Directory of Open Access Journals (Sweden)

    Mehrdad Khamooshi

    2014-01-01

    Full Text Available First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair. A thermodynamic model was developed in EES (engineering equation solver to estimate the performance of the system in terms of the most essential parameters. The assumed parameters are the temperature of the main components, weak and strong solutions, economizers’ efficiencies, and bypass ratios. The whole cycle is optimized by EES software from the viewpoint of maximizing the COP via applying the direct search method. The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle.

  6. Towards a thermodynamics of active matter.

    Science.gov (United States)

    Takatori, S C; Brady, J F

    2015-03-01

    Self-propulsion allows living systems to display self-organization and unusual phase behavior. Unlike passive systems in thermal equilibrium, active matter systems are not constrained by conventional thermodynamic laws. A question arises, however, as to what extent, if any, can concepts from classical thermodynamics be applied to nonequilibrium systems like active matter. Here we use the new swim pressure perspective to develop a simple theory for predicting phase separation in active matter. Using purely mechanical arguments we generate a phase diagram with a spinodal and critical point, and define a nonequilibrium chemical potential to interpret the "binodal." We provide a generalization of thermodynamic concepts like the free energy and temperature for nonequilibrium active systems. Our theory agrees with existing simulation data both qualitatively and quantitatively and may provide a framework for understanding and predicting the behavior of nonequilibrium active systems.

  7. Finite Cycle Gibbs Measures on Permutations of

    Science.gov (United States)

    Armendáriz, Inés; Ferrari, Pablo A.; Groisman, Pablo; Leonardi, Florencia

    2015-03-01

    We consider Gibbs distributions on the set of permutations of associated to the Hamiltonian , where is a permutation and is a strictly convex potential. Call finite-cycle those permutations composed by finite cycles only. We give conditions on ensuring that for large enough temperature there exists a unique infinite volume ergodic Gibbs measure concentrating mass on finite-cycle permutations; this measure is equal to the thermodynamic limit of the specifications with identity boundary conditions. We construct as the unique invariant measure of a Markov process on the set of finite-cycle permutations that can be seen as a loss-network, a continuous-time birth and death process of cycles interacting by exclusion, an approach proposed by Fernández, Ferrari and Garcia. Define as the shift permutation . In the Gaussian case , we show that for each , given by is an ergodic Gibbs measure equal to the thermodynamic limit of the specifications with boundary conditions. For a general potential , we prove the existence of Gibbs measures when is bigger than some -dependent value.

  8. Thermodynamic assessment of a wind turbine based combined cycle

    International Nuclear Information System (INIS)

    Rabbani, M.; Dincer, I.; Naterer, G.F.

    2012-01-01

    Combined cycles use the exhaust gases released from a Gas Turbine (GT). Approximately 30–40% of the turbine shaft work is typically used to drive the Compressor. The present study analyzes a system that couples a Wind Turbine (WT) with a combined cycle. It demonstrates how a WT can be used to supply power to the Compressor in the GT cycle and pump fluid through a reheat Rankine cycle, in order to increase the overall power output. Three different configurations are discussed, namely high penetration, low penetration and wind power addition. In the case of a low electricity demand and high penetration configuration, extra wind power is used to compress air which can then be used in the low penetration configuration. During a high load demand, all the wind power is used to drive the pump and compressor and if required additional compressed air is supplied by a storage unit. The analysis shows that increasing the combustion temperature reduces the critical velocity and mass flow rate. Increases in wind speed reduce both energy and exergy efficiency of the overall system. -- Highlights: ► This study analyzes a system that couples a wind turbine with a combined power generation cycle. ► Surplus wind power is used to compress air, which is then stored and used at a later time. ► Increasing the pressure ratio will reduce the work ratio between the Rankine and Brayton cycles. ► A higher combustion temperature will increase the net work output, as well as the system energy and exergy efficiencies.

  9. Thermodynamic sensitivity analysis of a novel trigeneration thermodynamic cycle with two-phase expanders and two-phase compressors

    International Nuclear Information System (INIS)

    Briola, Stefano; Di Marco, Paolo; Gabbrielli, Roberto

    2017-01-01

    A novel Combined Cooling, Heating and Power (CCHP) cycle, operating with two-phase devices for the compression and expansion processes and a single-component wet working fluid, is proposed. A detailed sensitivity analysis of the novel CCHP cycle has been investigated in order to evaluate, in terms of energy performance indicators, its potentiality to serve typical trigenerative tertiary and industrial end-users with different fixed operating temperatures. In general, the novel CCHP cycle is characterized by higher energy performance indicators than a separated energy production system. The comparison between the novel CCHP cycle and several commercialized CCHP systems has been performed in the case studies related to tertiary and industrial end-users. The novel CCHP cycle shows a trigenerative capability in wide ranges of the end-users demands without surplus or deficit of the electric or thermal powers. Furthermore, the maximum allowable capital cost of the whole novel CCHP plant (BEPCC), that will assure the profitability of the investment, is calculated in the tertiary and industrial end-users case studies. For the tertiary end-user, the capital costs of the commercialized CCHP are between the minimum and maximum BEPCC values. On the contrary, for the industrial end-user, they are lower than the minimum and maximum BEPCC values. - Highlights: • Novel CCHP cycle with two-phase expanders and compressors has been conceived. • Novel CCHP cycle has higher performances than a separated energy production system. • Novel CCHP cycle satisfies the user demands in wide ranges without surplus/deficit. • Tertiary user: novel CCHP cycle is competitive against marketed CCHP systems. • Industrial user: novel CCHP cycle is not competitive against marketed CCHP systems.

  10. Universality of P−V criticality in horizon thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Devin; Kubizňák, David [Perimeter Institute,31 Caroline St. N., Waterloo, Ontario, N2L 2Y5 (Canada); Department of Physics and Astronomy, University of Waterloo,Waterloo, Ontario, N2L 3G1 (Canada); Mann, Robert B. [Department of Physics and Astronomy, University of Waterloo,Waterloo, Ontario, N2L 3G1 (Canada)

    2017-01-11

    We study P−V criticality of black holes in Lovelock gravities in the context of horizon thermodynamics. The corresponding first law of horizon thermodynamics emerges as one of the Einstein-Lovelock equations and assumes the universal (independent of matter content) form δE=TδS−PδV, where P is identified with the total pressure of all matter in the spacetime (including a cosmological constant Λ if present). We compare this approach to recent advances in extended phase space thermodynamics of asymptotically AdS black holes where the ‘standard’ first law of black hole thermodynamics is extended to include a pressure-volume term, where the pressure is entirely due to the (variable) cosmological constant. We show that both approaches are quite different in interpretation. Provided there is sufficient non-linearity in the gravitational sector, we find that horizon thermodynamics admits the same interesting black hole phase behaviour seen in the extended case, such as a Hawking-Page transition, Van der Waals like behaviour, and the presence of a triple point. We also formulate the Smarr formula in horizon thermodynamics and discuss the interpretation of the quantity E appearing in the horizon first law.

  11. Universality of P−V criticality in horizon thermodynamics

    International Nuclear Information System (INIS)

    Hansen, Devin; Kubizňák, David; Mann, Robert B.

    2017-01-01

    We study P−V criticality of black holes in Lovelock gravities in the context of horizon thermodynamics. The corresponding first law of horizon thermodynamics emerges as one of the Einstein-Lovelock equations and assumes the universal (independent of matter content) form δE=TδS−PδV, where P is identified with the total pressure of all matter in the spacetime (including a cosmological constant Λ if present). We compare this approach to recent advances in extended phase space thermodynamics of asymptotically AdS black holes where the ‘standard’ first law of black hole thermodynamics is extended to include a pressure-volume term, where the pressure is entirely due to the (variable) cosmological constant. We show that both approaches are quite different in interpretation. Provided there is sufficient non-linearity in the gravitational sector, we find that horizon thermodynamics admits the same interesting black hole phase behaviour seen in the extended case, such as a Hawking-Page transition, Van der Waals like behaviour, and the presence of a triple point. We also formulate the Smarr formula in horizon thermodynamics and discuss the interpretation of the quantity E appearing in the horizon first law.

  12. Thermodynamic analysis of solar assisted multi-functional trigeneration system

    Directory of Open Access Journals (Sweden)

    Önder KIZILKAN

    2016-02-01

    Full Text Available In this study, modelling and thermodynamic analysis of solar assisted trigeneration system was carried out. The required thermal energy for gas and vapor cycles were supplied from solar tower which is a new concept for gas cycle applications. Additionally, an absorption refrigeration cycle, vapor production process, drying process and water heating process were integrated to the system. Energy and exergy efficiencies of the trigeneration system were determined by the application of first and second law analyses. The results showed that the gas cycle efficiency was found to be 31%, vapor cycle efficiency was found to be 28% and coefficient of performance (COP values of the refrigeration system was found to be 0.77. Also the highest exergy destruction rate was found to be 4154 kW in solar tower.Keywords: Solar tower, Trigeneration, Gas cycle, Vapor cycle, Energy, Exergy

  13. Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network

    International Nuclear Information System (INIS)

    Wang Jiangfeng; Sun Zhixin; Dai Yiping; Ma Shaolin

    2010-01-01

    Supercritical CO 2 power cycle shows a high potential to recover low-grade waste heat due to its better temperature glide matching between heat source and working fluid in the heat recovery vapor generator (HRVG). Parametric analysis and exergy analysis are conducted to examine the effects of thermodynamic parameters on the cycle performance and exergy destruction in each component. The thermodynamic parameters of the supercritical CO 2 power cycle is optimized with exergy efficiency as an objective function by means of genetic algorithm (GA) under the given waste heat condition. An artificial neural network (ANN) with the multi-layer feed-forward network type and back-propagation training is used to achieve parametric optimization design rapidly. It is shown that the key thermodynamic parameters, such as turbine inlet pressure, turbine inlet temperature and environment temperature have significant effects on the performance of the supercritical CO 2 power cycle and exergy destruction in each component. It is also shown that the optimum thermodynamic parameters of supercritical CO 2 power cycle can be predicted with good accuracy using artificial neural network under variable waste heat conditions.

  14. The Hydrological Sensitivity to Global Warming and Solar Geoengineering Derived from Thermodynamic Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Kleidon, Alex; Kravitz, Benjamin S.; Renner, Maik

    2015-01-16

    We derive analytic expressions of the transient response of the hydrological cycle to surface warming from an extremely simple energy balance model in which turbulent heat fluxes are constrained by the thermodynamic limit of maximum power. For a given magnitude of steady-state temperature change, this approach predicts the transient response as well as the steady-state change in surface energy partitioning and the hydrologic cycle. We show that the transient behavior of the simple model as well as the steady state hydrological sensitivities to greenhouse warming and solar geoengineering are comparable to results from simulations using highly complex models. Many of the global-scale hydrological cycle changes can be understood from a surface energy balance perspective, and our thermodynamically-constrained approach provides a physically robust way of estimating global hydrological changes in response to altered radiative forcing.

  15. Assessing the Conceptual Understanding about Heat and Thermodynamics at Undergraduate Level

    Science.gov (United States)

    Kulkarni, Vasudeo Digambar; Tambade, Popat Savaleram

    2013-01-01

    In this study, a Thermodynamic Concept Test (TCT) was designed to assess student's conceptual understanding heat and thermodynamics at undergraduate level. The different statistical tests such as item difficulty index, item discrimination index, point biserial coefficient were used for assessing TCT. For each item of the test these indices were…

  16. Plasma arc cutting: Microstructural modifications of hafnium cathodes during first cycles

    Energy Technology Data Exchange (ETDEWEB)

    Rotundo, F., E-mail: fabio.rotundo@unibo.it [Dept. of Mechanical Engineering (DIEM), Alma Mater Studiorum, Universita di Bologna, Via Saragozza 8, 40123 Bologna (Italy); Martini, C.; Chiavari, C.; Ceschini, L. [Dept. of Metals Science, Electrochemistry and Chemical Techniques (SMETEC), Alma Mater Studiorum, Universita di Bologna, Viale Risorgimento 4, 40136 Bologna (Italy); Concetti, A.; Ghedini, E.; Colombo, V. [Dept. of Mechanical Engineering (DIEM), Alma Mater Studiorum, Universita di Bologna, Via Saragozza 8, 40123 Bologna (Italy); Dallavalle, S. [Cebora S.p.A., Via Andrea Costa 24, 40057 Cadriano di Granarolo (Italy)

    2012-06-15

    In the present work, the microstructural modifications of the Hf insert in plasma arc cutting (PAC) electrodes operating at 250 A were experimentally investigated during first cycles, in order to understand those phenomena occurring on and under the Hf emissive surface and involved in the electrode erosion process. Standard electrodes were subjected to an increasing number of cutting cycles (CCs) on mild steel plates in realistic operative conditions, with oxygen/air as plasma/shield gas. Microstructural analysis was performed for each electrode at different erosion stages by means of scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and Raman spectroscopy. Electrodes cross sections were also observed by means of optical microscopy (both in bright field and in reflected polarised light) after chemical etching. In the insert, three typical zones were found after cutting: monoclinic HfO{sub 2} layer; thermally-modified transition zone with O{sub 2}-Hf solid solution; unmodified Hf. The erosion cavity and the oxide layer thickness increase with the number of cutting cycles. Macrocracking was observed in the oxide layer, while microcracking and grain growth were detected in the remelted Hf. Moreover, detachment was found at the Hf/Cu interface. Based on thermodynamics and kinetics of the Hf high temperature oxidation, conclusions can be drawn on the erosion mechanism involved. - Highlights: Black-Right-Pointing-Pointer Hf microstructural modifications in cathodes after plasma arc cutting cycles investigated. Black-Right-Pointing-Pointer 3 zones identified after cutting: HfO{sub 2} layer; remelted zone with O{sub 2}-Hf solid solution; unmodified Hf. Black-Right-Pointing-Pointer Hf-based ejections both in arc-on and arc-off phases; erosion cavity deepens with cutting cycles. Black-Right-Pointing-Pointer Detachment at the Hf/Cu interfaces, worsening heat dissipation and oxidation/erosion phenomena. Black-Right-Pointing-Pointer The use

  17. Thermo-economic analysis of recuperated Maisotsenko bottoming cycle using triplex air saturator: Comparative analyses

    International Nuclear Information System (INIS)

    Saghafifar, Mohammad; Omar, Amr; Erfanmoghaddam, Sepehr; Gadalla, Mohamed

    2017-01-01

    Highlights: • Proposing recuperated Maisotsenko bottoming cycle (RMBC) as a new combined cycle. • Introducing triplex air saturator for waste heat recovery application. • Conducting thermodynamic optimization to maximize RMBC thermal efficiency. • Conducting thermo-economic optimization to minimize RMBC cost of electricity. - Abstract: A recently recommended combined cycle power plant is to employ another gas turbine cycle for waste heat recovery as an air bottoming cycle (ABC). There are some studies conducted to improve ABC’s thermodynamic performance utilizing commonly power augmentation methods such as steam/water injection. In particular, it is proposed to employ Maisotsenko gas turbine cycle as a bottoming cycle, i.e. Maisotsenko bottoming cycle (MBC). Due to the promising performance of the MBC configuration, it is decided to investigate a recuperated MBC (RMBC) configuration by recommending the triplex air saturator. In this way, the air saturator consists of three sections. The first section is an indirect evaporative cooler while the other two sections are responsible for heat recovery from the topping and bottoming cycle turbines exhaust. In this paper, thermodynamic and thermo-economic analyses are carried out to study the main merits and demerits of RMBC against MBC configuration. Thermodynamic optimization results indicate that the maximum achievable efficiency for MBC and RMBC incorporation in a simple gas turbine power plant are 39.40% and 44.73%, respectively. Finally, thermo-economic optimization shows that the optimum levelized cost of electricity for MBC and RMBC power plants are 62.922 US$/MWh and 58.154 US$/MWh, respectively.

  18. Point defects in solids

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The principal properties of point defects are studied: thermodynamics, electronic structure, interactions with etended defects, production by irradiation. Some measuring methods are presented: atomic diffusion, spectroscopic methods, diffuse scattering of neutron and X rays, positron annihilation, molecular dynamics. Then points defects in various materials are investigated: ionic crystals, oxides, semiconductor materials, metals, intermetallic compounds, carbides, nitrides [fr

  19. Efficiencies of subcritical and transcritical CO2 inverse cycles with and without an internal heat exchanger

    International Nuclear Information System (INIS)

    Zhang, F.Z.; Jiang, P.X.; Lin, Y.S.; Zhang, Y.W.

    2011-01-01

    An internal heat exchanger (IHX) is often used to improve the coefficient of performance (COP) of CO 2 inverse cycles. This paper presents a detailed analysis of the IHX's effect in CO 2 inverse cycles and finds suitable operating conditions for the IHX from a thermodynamic performance point of view. The results indicate that the COP is slightly reduced by an IHX in a CO 2 subcritical inverse cycle, so an IHX is not justified. However, for transcritical CO 2 inverse cycles, the compressor discharge pressures and CO 2 gas cooler outlet temperatures both have significant impacts on system performance. The analysis results for transcritical CO 2 inverse cycles show that a transition discharge pressure and a transition CO 2 gas cooler outlet temperature are objective existence above which the IHX improves the cycle performance. - Research highlights: → Find suitable operating conditions for the IHX. → Above transition CO2 gas cooler outlet temperature IHX improves cycle performance. → The IHX is not very useful for optimized space heating and refrigerating cycles.

  20. Thermodynamic modelling of fast dopant diffusion in Si

    Science.gov (United States)

    Saltas, V.; Chroneos, A.; Vallianatos, F.

    2018-04-01

    In the present study, nickel and copper fast diffusion in silicon is investigated in the framework of the cBΩ thermodynamic model, which connects point defect parameters with the bulk elastic and expansion properties. All the calculated point defect thermodynamic properties (activation Gibbs free energy, activation enthalpy, activation entropy, and activation volume) exhibit temperature dependence due to the non-linear anharmonic behavior of the isothermal bulk modulus of Si. Calculated activation enthalpies (0.15-0.16 eV for Ni and 0.17-0.19 eV for Cu) are in agreement with the reported experimental results. Small values of calculated activation volumes for both dopants (˜4% of the mean atomic volume) are consistent with the interstitial diffusion of Ni and Cu in Si.

  1. Nonequilibrium thermodynamics and maximum entropy production in the Earth system: applications and implications.

    Science.gov (United States)

    Kleidon, Axel

    2009-06-01

    The Earth system is maintained in a unique state far from thermodynamic equilibrium, as, for instance, reflected in the high concentration of reactive oxygen in the atmosphere. The myriad of processes that transform energy, that result in the motion of mass in the atmosphere, in oceans, and on land, processes that drive the global water, carbon, and other biogeochemical cycles, all have in common that they are irreversible in their nature. Entropy production is a general consequence of these processes and measures their degree of irreversibility. The proposed principle of maximum entropy production (MEP) states that systems are driven to steady states in which they produce entropy at the maximum possible rate given the prevailing constraints. In this review, the basics of nonequilibrium thermodynamics are described, as well as how these apply to Earth system processes. Applications of the MEP principle are discussed, ranging from the strength of the atmospheric circulation, the hydrological cycle, and biogeochemical cycles to the role that life plays in these processes. Nonequilibrium thermodynamics and the MEP principle have potentially wide-ranging implications for our understanding of Earth system functioning, how it has evolved in the past, and why it is habitable. Entropy production allows us to quantify an objective direction of Earth system change (closer to vs further away from thermodynamic equilibrium, or, equivalently, towards a state of MEP). When a maximum in entropy production is reached, MEP implies that the Earth system reacts to perturbations primarily with negative feedbacks. In conclusion, this nonequilibrium thermodynamic view of the Earth system shows great promise to establish a holistic description of the Earth as one system. This perspective is likely to allow us to better understand and predict its function as one entity, how it has evolved in the past, and how it is modified by human activities in the future.

  2. Thermodynamical description of stationary, asymptotically flat solutions with conical singularities

    International Nuclear Information System (INIS)

    Herdeiro, Carlos; Rebelo, Carmen; Radu, Eugen

    2010-01-01

    We examine the thermodynamical properties of a number of asymptotically flat, stationary (but not static) solutions having conical singularities, with both connected and nonconnected event horizons, using the thermodynamical description recently proposed in [C. Herdeiro, B. Kleihaus, J. Kunz, and E. Radu, Phys. Rev. D 81, 064013 (2010).]. The examples considered are the double-Kerr solution, the black ring rotating in either S 2 or S 1 , and the black Saturn, where the balance condition is not imposed for the latter two solutions. We show that not only the Bekenstein-Hawking area law is recovered from the thermodynamical description, but also the thermodynamical angular momentum is the Arnowitt-Deser-Misner angular momentum. We also analyze the thermodynamical stability and show that, for all these solutions, either the isothermal moment of inertia or the specific heat at constant angular momentum is negative, at any point in parameter space. Therefore, all these solutions are thermodynamically unstable in the grand canonical ensemble.

  3. Comparison of air-standard rectangular cycles with different specific heat models

    International Nuclear Information System (INIS)

    Wang, Chao; Chen, Lingen; Ge, Yanlin; Sun, Fengrui

    2016-01-01

    Highlights: • Air-standard rectangular cycle models are built and investigated. • Finite-time thermodynamics is applied. • Different dissipation models and variable specific heats models are adopted. • Performance characteristics of different cycle models are compared. - Abstract: In this paper, performance comparison of air-standard rectangular cycles with constant specific heat (SH), linear variable SH and non-linear variable SH are conducted by using finite time thermodynamics. The power output and efficiency of each cycle model and the characteristic curves of power output versus compression ratio, efficiency versus compression ratio, as well as power output versus efficiency are obtained by taking heat transfer loss (HTL) and friction loss (FL) into account. The influences of HTL, FL and SH on cycle performance are analyzed by detailed numerical examples.

  4. Dynamic and Thermodynamic Examination of a Two-Stroke Internal Combustion Engine

    OpenAIRE

    İPCİ, Duygu; KARABULUT, Halit

    2016-01-01

    In this study the combined dynamic and thermodynamic analysis of a two-stroke internal combustion engine was carried out. The variation of the heat, given to the working fluid during the heating process of the thermodynamic cycle, was modeled with the Gaussian function. The dynamic model of the piston driving mechanism was established by means of nine equations, five of them are motion equations and four of them are kinematic relations. Equations are solved by using a numerical method based o...

  5. The Misselhorn Cycle: Batch-Evaporation Process for Efficient Low-Temperature Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Moritz Gleinser

    2016-05-01

    Full Text Available The concept of the Misselhorn cycle is introduced as a power cycle that aims for efficient waste heat recovery of temperature sources below 100 °C. The basic idea shows advantages over a standard Organic Rankine Cycle (ORC in overall efficiency and utilization of the heat source. The main characteristic of this cycle is the use of at least three parallel batch evaporators instead of continuous heat exchangers. The operational phases of the evaporators are shifted so that there is always one vaporizer in discharge mode. A transient MATLAB® model (The MathWorks: Natick, MA, USA is used to simulate the achievable performance of the Misselhorn cycle. The calculations of the thermodynamic states of the system are based on the heat flux, the equations for energy conservation and the equations of state found in the NIST Standard Reference Database 23 (Reference Fluid Thermodynamic and Transport Properties - REFPROP, National Institute of Standards and Technology: Gaithersburg, MD, USA. In the isochoric batch evaporation, the pressure and the corresponding boiling temperature rise over time. With a gradually increasing boiling temperature, no pinch point limitation occurs. Furthermore, the heat source medium is passed through the evaporators in serial order to obtain a quasi-counter flow setup. It could be shown that these features offer the possibility to gain both high thermal efficiencies and an enhanced utilization of the heat source at the same time. A basic model with a fixed estimated heat transfer coefficient promises a possible system exergy efficiency of 44.4%, which is an increase of over 60% compared to a basic ORC with a system exergy efficiency of only 26.8%.

  6. Performance analysis of double organic Rankine cycle for discontinuous low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Wang Dongxiang; Ling Xiang; Peng Hao

    2012-01-01

    This research proposes a double organic Rankine cycle for discontinuous waste heat recovery. The optimal operation conditions of several working fluids have been calculated by a procedure employing MATLAB and REFPROP. The influence of outlet temperature of heat source on the net power output, thermal efficiency, power consumption, mass flow rate, expander outlet temperature, cycle irreversibility and exergy efficiency at a given pinch point temperature difference (PPTD) has been analyzed. Pinch point analysis has also been employed to obtain a thermodynamic understanding of the ORC performance. Of all the working fluids investigated, some performances between each working fluid are rather similar. For a fixed low temperature heat source, the optimal operation condition should be mainly determined by the heat carrier of the heat source, and working fluids have limited influence. Lower outlet temperature of heat source does not always mean more efficient energy use. Acetone exhibits the least exergy destruction, while R245fa possesses the maximal exergy efficiency at a fixed PPTD. Wet fluids exhibit lower thermal efficiency than the others with the increasing of PPTD at a fixed outlet temperature of heat source. Dry and isentropic fluids offer attractive performance. - Highlights: ► We propose a double organic Rankine cycle for discontinuous waste heat recovery. ► Performance of organic Rankine cycle (ORC) is analyzed by pinch point analysis. ► The heat carrier of the heat source determines ORC optimal operation condition. ► Design of ORC heat exchangers prefers lower pinch point temperature difference.

  7. Thermodynamic assessment of integrated biogas-based micro-power generation system

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Barzegaravval, Hasan; Wahid, Mazlan Abdul; Ganjehkaviri, Abdolsaeid; Sies, Mohsin Mohd

    2016-01-01

    Highlights: • A thermodynamic modelling of an integrated biogas-based micro-power generation system is reported. • The impact of design parameters on the thermodynamic performance of the system is evaluated. • High turbine inlet temperatures lead the system to the higher energy and exergy efficiency and higher power generation. • Enhancement of GT isentropic efficiency incurs negative effects on the performance of air preheater and heat exchanger. • The rate of power generation increases by the enhancement of steam turbine pressure in ORC. - Abstract: In this paper, a thermodynamic modelling of an integrated biogas (60%CH_4 + 40%CO_2) micro-power generation system for electricity generation is reported. This system involves a gas turbine cycle and organic Rankine cycle (ORC) where the wasted heat of gas turbine cycle is recovered by closed ORC. The net output power of the micro-power generation system is fixed at 1.4 MW includes 1 MW power generated by GT and 0.4 MW by ORC. Energy and exergy assessments and related parametric studies are carried out, and parameters that influence on energy and exergy efficiency are evaluated. The performance of the system with respect to variation of design parameters such as combustion air inlet temperature, turbine inlet temperature, compressor pressure ratio, gas turbine isentropic efficiency and compressor isentropic efficiency (from the top cycle) and steam turbine inlet pressure, and condenser pressure (from bottoming cycle) is evaluated. The results reveal that by the increase of gas turbine isentropic efficiency, the outlet temperature of gas turbine decreases which incurs negative impacts on the performance of air preheater and heat exchanger, however the energy and exergy efficiency increases in the whole system. By the increase of air compressor pressure ratio, the energy and exergy of the combined cycle decreases. The exergy efficiency of ORC alters by the variation of gas turbine parameters which can be

  8. Exergy analysis of helium liquefaction systems based on modified Claude cycle with two-expanders

    Science.gov (United States)

    Thomas, Rijo Jacob; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2011-06-01

    Large-scale helium liquefaction systems, being energy-intensive, demand judicious selection of process parameters. An effective tool for design and analysis of thermodynamic cycles for these systems is exergy analysis, which is used to study the behavior of a helium liquefaction system based on modified Claude cycle. Parametric evaluation using process simulator Aspen HYSYS® helps to identify the effects of cycle pressure ratio and expander flow fraction on the exergetic efficiency of the liquefaction cycle. The study computes the distribution of losses at different refrigeration stages of the cycle and helps in selecting optimum cycle pressures, operating temperature levels of expanders and mass flow rates through them. Results from the analysis may help evolving guidelines for designing appropriate thermodynamic cycles for practical helium liquefaction systems.

  9. Optimization of Brayton cycles for low-to-moderate grade thermal energy sources

    International Nuclear Information System (INIS)

    Rovira, Antonio; Muñoz-Antón, Javier; Montes, María José; Martínez-Val, José María

    2013-01-01

    Future electricity generation will involve low or moderate temperature technologies. In such a scenario, optimisation of thermodynamic cycles will be a key task. This work presents a systematic analysis to find the operating regime where Brayton cycles reach the highest efficiency, using real substances and given heat source and sink temperatures. Several configurations using fluids close to its critical point at the compressor inlet are considered. Irreversibility sources are carefully analysed, as well as the type of working fluid. The analysis is performed by means of a theoretical approach to obtain some trends, which are afterwards validated with real gases. Results show that the efficiency and the specific work improve if the compressor inlet is close to the critical point. Furthermore, these cycles are less sensitive to pressure drops and politropic efficiencies than those working with ideal gases. The above features are more evident when the ratio of heat source and heat sink temperatures is low. The selection of the gas becomes a fundamental issue in this quest. Critical temperature should be close to ambient temperature, low critical pressure is advisable and the R/c p factor measured at the ideal gas condition should be low to further enhance the efficiency. - Highlights: • Performance analysis of Brayton cycles with the compressor inlet close to the critical point. • Cycles are not very sensitive to pressure drops and isentropic efficiencies of the compressor. • Gas selection becomes important, regarding the critical pressure and temperature as well as the kind of fluid. • R/c p factor measured at the ideal gas condition should be as low as possible

  10. Study on the relationship between water exergy and enthalpy applicable to the energetic analysis of steam thermodynamic cycles; Estudo da relacao entre exergia e entalpia da agua, aplicavel a analise energetica e exergetica de ciclos termodinamicos a vapor

    Energy Technology Data Exchange (ETDEWEB)

    Llagostera, Jorge [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mail: llagost@fem.unicamp.br

    1995-07-01

    This paper presents a thermodynamic relation, defined to improve methodologies in Second Law Analysis of thermal systems. This relation is defined dividing the specific thermomechanical exergy by the specific enthalpy of a substance, adopting as reference a selected thermodynamic state. This relation is determined and analyzed for liquid water and steam in a range of temperatures (30 deg C - 700 deg C) and pressures (0.101325 MPa - 18.1 Mpa). The behavior of the proposed relation is compared against the exergy behavior as function of temperature and pressure. The proposed relation can be used to compare and evaluate thermodynamic states that have similar exergy content. It makes possible to identify the states presenting higher exergetic level per enthalpy unit. This concept can be useful in thermodynamic analysis and optimization of steam cycles and thermal processes. (author)

  11. A basic introduction to the thermodynamics of the Earth system far from equilibrium and maximum entropy production

    Science.gov (United States)

    Kleidon, A.

    2010-01-01

    The Earth system is remarkably different from its planetary neighbours in that it shows pronounced, strong global cycling of matter. These global cycles result in the maintenance of a unique thermodynamic state of the Earth's atmosphere which is far from thermodynamic equilibrium (TE). Here, I provide a simple introduction of the thermodynamic basis to understand why Earth system processes operate so far away from TE. I use a simple toy model to illustrate the application of non-equilibrium thermodynamics and to classify applications of the proposed principle of maximum entropy production (MEP) to such processes into three different cases of contrasting flexibility in the boundary conditions. I then provide a brief overview of the different processes within the Earth system that produce entropy, review actual examples of MEP in environmental and ecological systems, and discuss the role of interactions among dissipative processes in making boundary conditions more flexible. I close with a brief summary and conclusion. PMID:20368248

  12. A basic introduction to the thermodynamics of the Earth system far from equilibrium and maximum entropy production.

    Science.gov (United States)

    Kleidon, A

    2010-05-12

    The Earth system is remarkably different from its planetary neighbours in that it shows pronounced, strong global cycling of matter. These global cycles result in the maintenance of a unique thermodynamic state of the Earth's atmosphere which is far from thermodynamic equilibrium (TE). Here, I provide a simple introduction of the thermodynamic basis to understand why Earth system processes operate so far away from TE. I use a simple toy model to illustrate the application of non-equilibrium thermodynamics and to classify applications of the proposed principle of maximum entropy production (MEP) to such processes into three different cases of contrasting flexibility in the boundary conditions. I then provide a brief overview of the different processes within the Earth system that produce entropy, review actual examples of MEP in environmental and ecological systems, and discuss the role of interactions among dissipative processes in making boundary conditions more flexible. I close with a brief summary and conclusion.

  13. Improvement of supercritical CO2 Brayton cycle using binary gas mixture

    International Nuclear Information System (INIS)

    Jeong, Woo Seok

    2011-02-01

    A Sodium-cooled Fast Reactor (SFR) is one of the strongest candidates for the next generation nuclear reactor. However, the conventional design of a SFR concept with an indirect Rankine cycle is inevitably subjected to a sodium-water reaction. To prevent hazardous situation caused by sodium-water reaction, the SFR with Brayton cycle using Supercritical Carbon dioxide (S-CO 2 cycle) as a working fluid can be an alternative approach. The S-CO 2 Brayton cycle is more sensitive to the critical point of working fluids than other Brayton cycles. This is because compressor work significantly decreases at slightly above the critical point due to high density near the boundary between the supercritical state and the subcritical state. For this reason, the minimum temperature and pressure of cycle are just above the CO 2 critical point. The critical point acts as a limitation of the lowest operating condition of the cycle. In general, lowering the rejection temperature of a thermodynamic cycle increases the efficiency and thus, changing the critical point of CO 2 can result in an improvement of the total cycle efficiency with the same cycle layout. Modifying the critical point of the working fluid can be done by adding other gases to CO 2 . The direction and range of the CO 2 critical point variation depends on the mixed component and its amount. In particular, chemical reactivity of the gas mixture itself and the gas mixture with sodium at high temperatures are of interest. To modify the critical point of the working fluid, several gases were chosen as candidates by which chemical stability with sodium within the interested range of cycle operating condition was assured: CO 2 was mixed with N 2 , O 2 , He, Ar and Xe. To evaluate the effect of shifting the critical point and changes in the properties of the S-CO 2 Brayton cycle, a supercritical Brayton cycle analysis code connected with the REFPROP program from the NIST was developed. The developed code is for evaluating

  14. Ecosystem thermodynamics

    International Nuclear Information System (INIS)

    Gomez Palacio, German Rau

    1998-01-01

    Ecology is no more a descriptive and self-sufficient science. Many viewpoints are needed simultaneously to give a full coverage of such complex systems: ecosystems. These viewpoints come from physics, chemistry, and nuclear physics, without a new far from equilibrium thermodynamics and without new mathematical tools such as catastrophe theory, fractal theory, cybernetics and network theory, the development of ecosystem science would never have reached the point of today. Some ideas are presented about the importance that concept such as energy, entropy, exergy information and none equilibrium have in the analysis of processes taking place in ecosystems

  15. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2008-03-01

    This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics

  16. Thermodynamic and Quantum Thermodynamic Analyses of Brownian Movement

    OpenAIRE

    Gyftopoulos, Elias P.

    2006-01-01

    Thermodynamic and quantum thermodynamic analyses of Brownian movement of a solvent and a colloid passing through neutral thermodynamic equilibrium states only. It is shown that Brownian motors and E. coli do not represent Brownian movement.

  17. Thermodynamic analysis and optimization of IT-SOFC-based integrated coal gasification fuel cell power plants

    NARCIS (Netherlands)

    Romano, M.C.; Campanari, S.; Spallina, V.; Lozza, G.

    2011-01-01

    This work discusses the thermodynamic analysis of integrated gasification fuel cell plants, where a simple cycle gas turbine works in a hybrid cycle with a pressurized intermediate temperature–solid oxide fuel cell (SOFC), integrated with a coal gasification and syngas cleanup island and a bottoming

  18. EDWARDS' REFERENCE CYCLE FOR INTERNAL AND EXTERNAL COMBUSTION ENGINES

    OpenAIRE

    A. E. Piir

    2014-01-01

    Useful physical regularities of a reversible thermodynamic cycle for heat engines have been established in the paper. The engines are using fuel combustion products as a heat source, and the environment - as a heat sink that surpasses Carnot cycle according to efficiency factor.

  19. Carnot cycle for magnetic materials: The role of hysteresis

    International Nuclear Information System (INIS)

    Sasso, Carlo P.; Basso, Vittorio; LoBue, Martino; Bertotti, Giorgio

    2006-01-01

    The role of hysteresis in a refrigeration thermodynamic cycle involving ferromagnetic materials is discussed. A model allowing to calculate magnetization, entropy and entropy production in systems with hysteresis is used to compute a non-ideal Carnot cycle performed on a ferromagnetic material

  20. Conductivity and thermodynamic characteristic of superionic transition in strontium chloride

    International Nuclear Information System (INIS)

    Voronin, B.M.; Prisyazhnyj, V.D.

    1989-01-01

    Electric conductivity of strontium polycrystalline chloride in the wide temperature range including melting point is measured. Reciprocally caused anomalous behaviour of kinetic and thermodynamic properties, which relates to peculiarities of salt transition to a superionic state is established in the region of high temperatures. Thermodynamic functions corresponding to crystal anion sublattice disordering are determined and characterized. Comparative analysis of data on strontium chloride and other structural-like salts testifies about step-by-step washing-out character of superionic transition, and the depth of transition (the degree of disordering) reached at melting points relates regularly to relative sizes of cations and anions in the fluorite lattice

  1. Thermodynamic modelling of shape memory behaviour: some examples

    International Nuclear Information System (INIS)

    Stalmans, R.; Humbeeck, J. van; Delaey, L.

    1995-01-01

    This paper gives a general view of a recently developed thermodynamic model of the thermoelastic martensitic transformation. Unlike existing empirical, mathematical or thermodynamic models, this generalised thermodynamic model can be used to understand and describe quantitatively the overall thermomechanical behaviour of polycrystalline shape memory alloys. Important points of difference between this and previous thermodynamic models are that the contributions of the stored elastic energy and of the crystal defects are also included. In addition, the mathematical approach and the assumptions in this model are selected in such a way that the calculations yield close approximations of the real behaviour and that the final mathematical equations are relatively simple. Several illustrations indicate that this model, in contrast to other models, can be used to understand the shape memory behaviour of complex cases. As an example of quantitative calculations, it is shown that this modelling can be an effective tool in the ''design'' of multifunctional materials consisting of shape memory elements embedded in matrix materials. (orig.)

  2. Solving for the Fixed Points of 3-Cycle in the Logistic Map and Toward Realizing Chaos by the Theorems of Sharkovskii and Li—Yorke

    International Nuclear Information System (INIS)

    Howard, Lee M.

    2014-01-01

    Sharkovskii proved that, for continuous maps on intervals, the existence of 3-cycle implies the existence of all others. Li and Yorke proved that 3-cycle implies chaos. To establish a domain of uncountable cycles in the logistic map and to understand chaos in it, the fixed points of 3-cycle are obtained analytically by solving a sextic equation. At one parametric value, a fixed-point spectrum, resulted from the Sharkovskii limit, helps to realize chaos in the sense of Li and Yorke. (general)

  3. Thermodynamics and Kinetics of Advanced Separations Systems - FY 2010 Summary Report

    International Nuclear Information System (INIS)

    Martin, Leigh R.; Zalupski, Peter R.

    2010-01-01

    This report presents a summary of the work performed in the area of thermodynamics and kinetics of advanced separations systems under the Fuel Cycle Research and Development (FCR and D) program during FY 2010. Thermodynamic investigations into metal extraction dependencies on lactate and HDEHP have been performed. These metal distribution studies indicate a substantial deviation from the expected behavior at conditions that are typical of TALSPEAK process operational platform. These studies also identify that no thermodynamically stable mixed complexes exist in the aqueous solutions and increasing the complexity of the organic medium appears to influence the observed deviations. Following on from this, the first calorimetric measurement of the heat of extraction of americium across a liquid-liquid boundary was performed.

  4. Energy systems. Tome 3: advanced cycles, low environmental impact innovative systems

    International Nuclear Information System (INIS)

    Gicquel, R.

    2009-01-01

    This third tome about energy systems completes the two previous ones by showing up advanced thermodynamical cycles, in particular having a low environmental impact, and by dealing with two other questions linked with the study of systems with a changing regime operation: - the time management of energy, with the use of thermal and pneumatic storage systems and time simulation (schedule for instance) of systems (solar energy type in particular); - the technological dimensioning and non-nominal regime operation studies. Because this last topic is particularly complex, new functionalities have been implemented mainly by using the external classes mechanism, which allows the user to freely personalize his models. This tome is illustrated with about 50 examples of cycles modelled with Thermoptim software. Content: foreword; 1 - generic external classes; 2 - advanced gas turbine cycles; 3 - evaporation-concentration, mechanical steam compression, desalination, hot gas drying; 4 - cryogenic cycles; 5 - electrochemical converters; 6 - global warming, CO 2 capture and sequestration; 7 - future nuclear reactors (coupled to Hirn and Brayton cycles); 8 - thermodynamic solar cycles; 10 - pneumatic and thermal storage; 11 - calculation of thermodynamic solar facilities; 12 - problem of technological dimensioning and non-nominal regime; 13 - exchangers modeling and parameterizing for the dimensioning and the non-nominal regime; 14 - modeling and parameterizing of volumetric compressors; 15 - modeling and parameterizing of turbo-compressors and turbines; 16 - identification methodology of component parameters; 17 - case studies. (J.S.)

  5. Basic Thermodynamics

    International Nuclear Information System (INIS)

    Duthil, P

    2014-01-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered

  6. Basic Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Duthil, P [Orsay, IPN (France)

    2014-07-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered.

  7. Thermodynamic dissipation theory for the origin of life

    Science.gov (United States)

    Michaelian, K.

    2011-03-01

    Understanding the thermodynamic function of life may shed light on its origin. Life, as are all irreversible processes, is contingent on entropy production. Entropy production is a measure of the rate of the tendency of Nature to explore available microstates. The most important irreversible process generating entropy in the biosphere and, thus, facilitating this exploration, is the absorption and transformation of sunlight into heat. Here we hypothesize that life began, and persists today, as a catalyst for the absorption and dissipation of sunlight on the surface of Archean seas. The resulting heat could then be efficiently harvested by other irreversible processes such as the water cycle, hurricanes, and ocean and wind currents. RNA and DNA are the most efficient of all known molecules for absorbing the intense ultraviolet light that penetrated the dense early atmosphere and are remarkably rapid in transforming this light into heat in the presence of liquid water. From this perspective, the origin and evolution of life, inseparable from water and the water cycle, can be understood as resulting from the natural thermodynamic imperative of increasing the entropy production of the Earth in its interaction with its solar environment. A mechanism is proposed for the reproduction of RNA and DNA without the need for enzymes, promoted instead through UV light dissipation and diurnal temperature cycling of the Archean sea-surface.

  8. Life-Cycle Cost-Benefit (LCCB) Analysis of Bridges from a User and Social Point of View

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2009-01-01

    is to present and discuss some of these problems from a user and social point of view. A brief presentation of a preliminary study of the importance of including benefits in life-cycle cost-benefit analysis in management systems for bridges is shown. Benefits may be positive as well as negative from the user...... point of view. In the paper, negative benefits (user costs) are discussed in relation to the maintenance of concrete bridges. A limited number of excerpts from published reports that are related to the importance of estimating user costs when repairs of bridges are planned, and when optimized strategies......During the last two decades, important progress has been made in the life-cycle cost-benefit (LCCB) analysis of structures, especially offshore platforms, bridges and nuclear installations. Due to the large uncertainties related to the deterioration, maintenance, and benefits of such structures...

  9. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-04-01

    Full Text Available The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle and solar-to-fuel energy conversion efficiency (ηsolar−to−fuel attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar−to−fuel both increase with decreasing TH, due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore, the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance, in the case where TH = 2280 K, ηcycle = 24.4% and ηsolar−to−fuel = 29.5% (without heat recuperation, while ηcycle = 31.3% and ηsolar−to−fuel = 37.8% (with 40% heat recuperation.

  10. Thermodynamic design of hydrogen liquefaction systems with helium or neon Brayton refrigerator

    Science.gov (United States)

    Chang, Ho-Myung; Ryu, Ki Nam; Baik, Jong Hoon

    2018-04-01

    A thermodynamic study is carried out for the design of hydrogen liquefaction systems with helium (He) or neon (Ne) Brayton refrigerator. This effort is motivated by our immediate goal to develop a small-capacity (100 L/h) liquefier for domestic use in Korea. Eight different cycles are proposed and their thermodynamic performance is investigated in comparison with the existing liquefaction systems. The proposed cycles include the standard and modified versions of He Brayton refrigerators whose lowest temperature is below 20 K. The Brayton refrigerator is in direct thermal contact with the hydrogen flow at atmospheric pressure from ambient-temperature gas to cryogenic liquid. The Linde-Hampson system pre-cooled by a Ne Brayton refrigerator is also considered. Full cycle analysis is performed with the real properties of fluids to estimate the figure of merit (FOM) under an optimized operation condition. It is concluded that He Brayton refrigerators are feasible for this small-scale liquefaction, because a reasonably high efficiency can be achieved with simple and safe (low-pressure) operation. The complete cycles with He Brayton refrigerator are presented for the development of a prototype, including the ortho-to-para conversion.

  11. Thermodynamics and Kinetics of Advanced Separations Systems – FY 2010 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Leigh R. Martin; Peter R. Zalupski

    2010-09-01

    This report presents a summary of the work performed in the area of thermodynamics and kinetics of advanced separations systems under the Fuel Cycle Research and Development (FCR&D) program during FY 2010. Thermodynamic investigations into metal extraction dependencies on lactate and HDEHP have been performed. These metal distribution studies indicate a substantial deviation from the expected behavior at conditions that are typical of TALSPEAK process operational platform. These studies also identify that no thermodynamically stable mixed complexes exist in the aqueous solutions and increasing the complexity of the organic medium appears to influence the observed deviations. Following on from this, the first calorimetric measurement of the heat of extraction of americium across a liquid-liquid boundary was performed.

  12. Energy and exergy analysis of a closed Brayton cycle-based combined cycle for solar power tower plants

    International Nuclear Information System (INIS)

    Zare, V.; Hasanzadeh, M.

    2016-01-01

    Highlights: • A novel combined cycle is proposed for solar power tower plants. • The effects of solar subsystem and power cycle parameters are examined. • The proposed combined cycle yields exergy efficiencies of higher than 70%. • For the overall power plant exergy efficiencies of higher than 30% is achievable. - Abstract: Concentrating Solar Power (CSP) technology offers an interesting potential for future power generation and research on CSP systems of all types, particularly those with central receiver system (CRS) has been attracting a lot of attention recently. Today, these power plants cannot compete with the conventional power generation systems in terms of Levelized Cost of Electricity (LCOE) and if a competitive LCOE is to be reached, employing an efficient thermodynamic power cycle is deemed essential. In the present work, a novel combined cycle is proposed for power generation from solar power towers. The proposed system consists of a closed Brayton cycle, which uses helium as the working fluid, and two organic Rankine cycles which are employed to recover the waste heat of the Brayton cycle. The system is thermodynamically assessed from both the first and second law viewpoints. A parametric study is conducted to examine the effects of key operating parameters (including solar subsystem and power cycle parameters) on the overall power plant performance. The results indicate that exergy efficiencies of higher than 30% are achieved for the overall power plant. Also, according to the results, the power cycle proposed in this work has a better performance than the other investigated Rankine and supercritical CO_2 systems operating under similar conditions, for these types of solar power plants.

  13. Investigation of relation between singular points and number of limit cycles for a rotor-AMBs system

    International Nuclear Information System (INIS)

    Li, J.; Tian, Y.; Zhang, W.

    2009-01-01

    The relation between singular points and the number of limit cycles is investigated for a rotor-active magnetic bearings system with time-varying stiffness and single-degree-of-freedom. The averaged equation of the system is a perturbed polynomial Hamiltonian system of degree 5. The dynamic characteristics of the unperturbed system are first analyzed for a certain parameter group. The number of limit cycles and their configurations of the perturbed system under eight different parametric groups are obtained and the influence of eight control conditions on the number of limit cycles is studied. The results obtained here will play an important leading role in the study of the properties of nonlinear dynamics and control of the rotor-active magnetic bearings system with time-varying stiffness.

  14. Theoretical Understanding the Relations of Melting-point Determination Methods from Gibbs Thermodynamic Surface and Applications on Melting Curves of Lower Mantle Minerals

    Science.gov (United States)

    Yin, K.; Belonoshko, A. B.; Zhou, H.; Lu, X.

    2016-12-01

    The melting temperatures of materials in the interior of the Earth has significant implications in many areas of geophysics. The direct calculations of the melting point by atomic simulations would face substantial hysteresis problem. To overcome the hysteresis encountered in the atomic simulations there are a few different melting-point determination methods available nowadays, which are founded independently, such as the free energy method, the two-phase or coexistence method, and the Z method, etc. In this study, we provide a theoretical understanding the relations of these methods from a geometrical perspective based on a quantitative construction of the volume-entropy-energy thermodynamic surface, a model first proposed by J. Willard Gibbs in 1873. Then combining with an experimental data and/or a previous melting-point determination method, we apply this model to derive the high-pressure melting curves for several lower mantle minerals with less computational efforts relative to using previous methods only. Through this way, some polyatomic minerals at extreme pressures which are almost unsolvable before are calculated fully from first principles now.

  15. A new six stroke single cylinder diesel engine referring Rankine cycle

    International Nuclear Information System (INIS)

    Chen, Hao; Guo, Qi; Yang, Lu; Liu, Shenghua; Xie, Xuliang; Chen, Zhaoyang; Liu, Zengqiang

    2015-01-01

    Six stroke engine presented by Conklin and Szybist is an effective way to recover energy of exhaust gas by adding a partial exhaust stroke and steam expansion stroke. Characteristics of the engine are analyzed and its disadvantages are pointed out. A new six stroke diesel engine is presented here. It refers rankine cycle inside cylinder. Total exhaust gas is recompressed and at a relatively low back pressure in the fourth stroke water is injected to which maintains liquid phase until the piston moves to the TDC. At c′ 720 °CA (crank angle) the water becomes saturated. An ideal thermodynamics model of exhaust gas compression, water injection and expansion is constructed to investigate this modification. Properties at characteristic points are calculated to determine the increased indicated work. Results show that the work increases with the advance of water injection timing and the quality of water. The cycle is more efficient and the new engine has potential for saving energy. Moreover, it is forecasted that HC and PM emissions may reform with steam in reality and H 2 is produced which will react with NO X . - Highlights: • A new six stroke diesel engine is introduced and a new ideal cycle is constructed. • Increased indicated work of the cycle proves that the cycle is more efficient. • In reality steam may reform with HC and PM and produced H 2 may react with NO X emission. • The engine has the potential for energy saving and emission reducing

  16. Understanding Mn-Based Intercalation Cathodes from Thermodynamics and Kinetics

    Directory of Open Access Journals (Sweden)

    Yin Xie

    2017-07-01

    Full Text Available A series of Mn-based intercalation compounds have been applied as the cathode materials of Li-ion batteries, such as LiMn2O4, LiNi1−x−yCoxMnyO2, etc. With open structures, intercalation compounds exhibit a wide variety of thermodynamic and kinetic properties depending on their crystal structures, host chemistries, etc. Understanding these materials from thermodynamic and kinetic points of view can facilitate the exploration of cathodes with better electrochemical performances. This article reviews the current available thermodynamic and kinetic knowledge on Mn-based intercalation compounds, including the thermal stability, structural intrinsic features, involved redox couples, phase transformations as well as the electrical and ionic conductivity.

  17. The quantitative analysis of data for magnetization of ferromagnet. Extended thermodynamic approach

    International Nuclear Information System (INIS)

    Bodryakov, V.Yu.; Bashkatov, A.N.

    2005-01-01

    A quantitative analysis of M(H,T) data on magnetization of a gadolinium single crystal in the vicinity of Curie point is accomplished within the frameworks of extended thermodynamic approach. It is established that actually observed behavior of temperature dependences of thermodynamic coefficients for gadolinium even near Curie point is sharply different from that in Landau theory. A discrepancy revealed leads to conclusion that traditional concepts should be revised. The solution of extended equation of a ferromagnet magnetic state is found and criteria of its stability are shown [ru

  18. The generalized second law of thermodynamics in the accelerating universe

    International Nuclear Information System (INIS)

    Zhou Jia; Wang Bin; Gong Yungui; Abdalla, Elcio

    2007-01-01

    We show that in the accelerating universe the generalized second law of thermodynamics holds only in the case where the enveloping surface is the apparent horizon, but not in the case of the event horizon. The present analysis relies on the most recent SNe Ia events, being model independent. Our study might suggest that event horizon is not a physical boundary from the point of view of thermodynamics

  19. Multi-objective thermodynamic optimization of an irreversible regenerative Brayton cycle using evolutionary algorithm and decision making

    OpenAIRE

    Rajesh Kumar; S.C. Kaushik; Raj Kumar; Ranjana Hans

    2016-01-01

    Brayton heat engine model is developed in MATLAB simulink environment and thermodynamic optimization based on finite time thermodynamic analysis along with multiple criteria is implemented. The proposed work investigates optimal values of various decision variables that simultaneously optimize power output, thermal efficiency and ecological function using evolutionary algorithm based on NSGA-II. Pareto optimal frontier between triple and dual objectives is obtained and best optimal value is s...

  20. Non-equilibrium thermodynamics of radiation-induced processes in solids

    International Nuclear Information System (INIS)

    Yurov, V.M.; Eshchanov, A.N.; Kuketaev, A.T.; Sidorenya, Yu.S.

    2005-01-01

    In the paper an item about a defect system response in solids on external action (temperature, pressure, light, etc.) from the point of view of non-equilibrium statistical thermodynamics is considered

  1. Surface thermodynamics

    International Nuclear Information System (INIS)

    Garcia-Moliner, F.

    1975-01-01

    Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions

  2. Black Hole Thermodynamics in an Undergraduate Thermodynamics Course.

    Science.gov (United States)

    Parker, Barry R.; McLeod, Robert J.

    1980-01-01

    An analogy, which has been drawn between black hole physics and thermodynamics, is mathematically broadened in this article. Equations similar to the standard partial differential relations of thermodynamics are found for black holes. The results can be used to supplement an undergraduate thermodynamics course. (Author/SK)

  3. Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations

    Directory of Open Access Journals (Sweden)

    Jen-Tsung Hsiang

    2018-05-01

    Full Text Available Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir. For quantum thermodynamics at strong coupling, one needs to reexamine the meaning of the thermodynamic functions, the viability of the thermodynamic relations and the validity of the thermodynamic laws anew. After a brief motivation, this paper starts with a short overview of the quantum formulation based on Gelin & Thoss and Seifert. We then provide a quantum formulation of Jarzynski’s two representations. We show how to construct the operator thermodynamic potentials, the expectation values of which provide the familiar thermodynamic variables. Constructing the operator thermodynamic functions and verifying or modifying their relations is a necessary first step in the establishment of a viable thermodynamics theory for

  4. Thermodynamic tables to accompany Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2011-01-01

    This booklet is provided at no extra charge with new copies of Balmer's Modern Engineering Thermodynamics. It contains two appendices. Appendix C contains 40 thermodynamic tables, and Appendix D consists of 6 thermodynamic charts. These charts and tables are provided in a separate booklet to give instructors the flexibility of allowing students to bring the tables into exams. The booklet may be purchased separately if needed.

  5. On the thermodynamic stability of the generalized Chaplygin gas

    International Nuclear Information System (INIS)

    Santos, F.C.; Bedran, M.L.; Soares, V.

    2006-01-01

    The main purpose of this Letter is to discuss the temperature behavior and the thermodynamic stability of an exotic fluid known as generalized Chaplygin gas considering only general thermodynamics. This fluid is considered a perfect fluid which obeys an adiabatic equation of state like P=-A/ρ α , where P and ρ are respectively the pressure and energy density; the parameter A is a positive universal constant and α>0. It is remarked that if the energy density of the fluid is a function of volume only, the temperature of the fluid remains zero at any pressure or volume, violating the third law of thermodynamics. We have determined a scenario where its thermal equation of state depends on temperature only and the fluid presents thermodynamic stability during any expansion process. Such a scenario also reveals that the fluid cools down through the expansion without facing any critical point or phase transition

  6. LIFE CYCLE ASSESSMENT AND HAZARD ANALYSIS AND CRITICAL CONTROL POINTS TO THE PASTA PRODUCT

    Directory of Open Access Journals (Sweden)

    Yulexis Meneses Linares

    2016-10-01

    Full Text Available The objective of this work is to combine the Life Cycle Assessment (LCA and Hazard Analysis and Critical Control Points (HACCP methodologies for the determination of risks that the food production represents to the human health and the ecosystem. The environmental performance of the production of pastas in the “Marta Abreu” Pasta Factory of Cienfuegos is assessed, where the critical control points determined by the biological dangers (mushrooms and plagues and the physical dangers (wood, paper, thread and ferromagnetic particles were the raw materials: flour, semolina and its mixtures, and the disposition and extraction of them. Resources are the most affected damage category due to the consumption of fossil fuels.

  7. Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine

    International Nuclear Information System (INIS)

    Fajar, D M; Khotimah, S N; Khairurrijal

    2016-01-01

    A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine. (paper)

  8. Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine

    Science.gov (United States)

    Fajar, D. M.; Khotimah, S. N.; Khairurrijal

    2016-08-01

    A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine.

  9. Thermodynamic study of fluid in terms of equation of state containing physical parameters

    International Nuclear Information System (INIS)

    Khasare, S. B.

    2015-01-01

    We introduce a simple condition for one mole fluid by considering the thermodynamics of molecules pointing towards the effective potential for the cluster. Efforts are made to estimate new physical parameter f in liquid state using the equation of state containing only two physical parameters such as the hard sphere diameter and binding energy. The temperature dependence of the structural properties and the thermodynamic behavior of the clusters are studied. Computations based on f predict the variation of numbers of particles at the contact point of the molecular cavity (radial distribution function). From the thermodynamic profile of the fluid, the model results are discussed in terms of the cavity due to the closed surface along with suitable energy. The present calculation is based upon the sample thermodynamic data for n-hexanol, such as the ultrasonic wave, density, volume expansion coefficient, and ratio of specific heat in the liquid state, and it is consistent with the thermodynamic relations containing physical parameters such as size and energy. Since the data is restricted to n-hexanol, we avoid giving the physical meaning of f, which is the key parameter studied in the present work. (paper)

  10. A novel split cycle internal combustion engine with integral waste heat recovery

    International Nuclear Information System (INIS)

    Dong, Guangyu; Morgan, Robert; Heikal, Morgan

    2015-01-01

    Highlights: • A novel engine thermodynamic cycle is proposed. • Theoretical analysis is applied to identify the key parameters of the thermodynamic cycle. • The key stages of the split cycle are analysed via one-dimensional modelling work. • The effecting mechanism of the split cycle efficiency is analysed. - Abstract: To achieve a step improvement in engine efficiency, a novel split cycle engine concept is proposed. The engine has separate compression and combustion cylinders and waste heat is recovered between the two. Quasi-isothermal compression of the charge air is realised in the compression cylinder while isobaric combustion of the air/fuel mixture is achieved in the combustion cylinder. Exhaust heat recovery between the compression and combustion chamber enables highly efficient recovery of waste heat within the cycle. Based on cycle analysis and a one-dimensional engine model, the fundamentals and the performance of the split thermodynamic cycle is estimated. Compared to conventional engines, the compression work can be significantly reduced through the injection of a controlled quantity of water in the compression cylinder, lowering the gas temperature during compression. Thermal energy can then be effectively recovered from the engine exhaust in a recuperator between the cooled compressor cylinder discharge air and the exhaust gas. The resulting hot high pressure air is then injected into a combustor cylinder and mixed with fuel, where near isobaric combustion leads to a low combustion temperature and reduced heat transferred from the cylinder wall. Detailed cycle simulation indicates a 32% efficiency improvement can be expected compared to the conventional diesel engines.

  11. On the dynamical vs. thermodynamical performance of a β-type Stirling engine

    Science.gov (United States)

    Reséndiz-Antonio, Margarita; Santillán, Moisés

    2014-09-01

    In this work we present a simple mathematical model for a β-type Stirling engine. Despite its simplicity, the model considers all the engine’s relevant thermodynamic and mechanical aspects. The dynamic behavior of the model equation of motion is analyzed in order to obtain the sufficient conditions for engine cycling and to study the stability of the stationary regime. The performance of the engine’s thermodynamic part is also investigated. As a matter of fact, we found that it corresponds to a Carnot engine.

  12. Design Study for a Free-piston Vuilleumier Cycle Heat Pump

    Science.gov (United States)

    Matsue, Junji; Hoshino, Norimasa; Ikumi, Yonezou; Shirai, Hiroyuki

    Conceptual design for a free-piston Vuilleumier cycle heat pump machine was proposed. The machine was designed based upon the numerical results of a dynamic analysis method. The method included the effect of self excitation vibration with dissipation caused by the flow friction of an oscillating working gas flow and solid friction of seals. It was found that the design values of reciprocating masses and spring constants proposed in published papers related to this study were suitable for practical use. The fundamental effects of heat exchanger elements on dynamic behaviors of the machine were clarified. It has been pointed out that some improvements were required for thermodynamic analysis of heat exchangers and working spaces.

  13. A New Thermodynamics from Nuclei to Stars

    Directory of Open Access Journals (Sweden)

    Dieter H.E. Gross

    2004-03-01

    Full Text Available Abstract: Equilibrium statistics of Hamiltonian systems is correctly described by the microcanonical ensemble. Classically this is the manifold of all points in the N-body phase space with the given total energy. Due to Boltzmann's principle, eS=tr(δ(E-H, its geometrical size is related to the entropy S(E,N,.... This definition does not invoke any information theory, no thermodynamic limit, no extensivity, and no homogeneity assumption, as are needed in conventional (canonical thermo-statistics. Therefore, it describes the equilibrium statistics of extensive as well of non-extensive systems. Due to this fact it is the fundamental definition of any classical equilibrium statistics. It can address nuclei and astrophysical objects as well. All kind of phase transitions can be distinguished sharply and uniquely for even small systems. It is further shown that the second law is a natural consequence of the statistical nature of thermodynamics which describes all systems with the same -- redundant -- set of few control parameters simultaneously. It has nothing to do with the thermodynamic limit. It even works in systems which are by far than any thermodynamic "limit".

  14. Idealization of The Real Stirling Cycle

    Directory of Open Access Journals (Sweden)

    Červenka Libor

    2016-12-01

    Full Text Available The paper presents a potential idealization of the real Stirling cycle. This idealization is performed by modifying the piston movement corresponding to the ideal Stirling cycle. The focus is on the cycle thermodynamics with respect to the indicated efficiency and indicated power. A detailed 1-D simulation model of a Stirling engine is used as a tool for this assessment. The model includes real non-zero volumes of heater, regenerator, cooler and connecting pipe. The model is created in the GT Power commercial simulation software.

  15. Black-hole thermodynamics: Entropy, information and beyond

    Indian Academy of Sciences (India)

    We review some recent advances in black-hole thermodynamics including statistical mechanical origins of black-hole entropy and its leading order corrections from the view points of various quantum gravity theories. We then examine the problem of information loss and some possible approaches to its resolution. Finally ...

  16. Thermodynamics of the dead zone inner edge in protoplanetary disks

    International Nuclear Information System (INIS)

    Faure, Julien

    2014-01-01

    The dead zone, a quiescent region enclosed in the turbulent flow of a protoplanetary disk, seems to be a promising site for planet formation. Indeed, the development of a density maximum at the dead zone inner edge, that has the property to trap the infalling dust, is a natural outcome of the accretion mismatch at this interface. Moreover, the flow here may be unstable and organize itself into vortical structures that efficiently collect dust grains. The inner edge location is however loosely constrained. In particular, it depends on the thermodynamical prescriptions of the disk model that is considered. It has been recently proposed that the inner edge is not static and that the variations of young stars accretion luminosity are the signature of this interface displacements. This thesis address the question of the impact of the gas thermodynamics onto its dynamics around the dead zone inner edge. MHD simulations including the complex interplay between thermodynamical processes and the dynamics confirmed the dynamical behaviour of the inner edge. A first measure of the interface velocity has been realised. This result has been compared to the predictions of a mean field model. It revealed the crucial role of the energy transport by density waves excited at the interface. These simulations also exhibit a new intriguing phenomenon: vortices forming at the interface follow a cycle of formation-migration-destruction. This vortex cycle may compromise the formation of planetesimals at the inner edge. This thesis claims that thermodynamical processes are at the heart of how the region around the dead zone inner edge in protoplanetary disks works. (author) [fr

  17. Exergy analysis and parameter study on a novel auto-cascade Rankine cycle

    International Nuclear Information System (INIS)

    Bao, Junjiang; Zhao, Li

    2012-01-01

    A novel auto-cascade Rankine cycle (ARC) is proposed to reduce thermodynamics irreversibility and improve energy utilization. Like the Kalina cycle, the working fluid for the ARC is zeotropic mixture, which can improve the system efficiency due to the temperature slip that zeotropic mixtures exhibit during phase change. Unlike the Kalina cycle, two expanders are included in the ARC rather than a expander and a throttling valve in the Kalina cycle, which means more work can be obtained. Using the exhaust gas as the heat source and water as the heat sink, a program is written by Matlab 2010a to carry out exergy analysis and parameter study on the ARC. Results show that the R245fa mass fraction in the primary circuit exists an optimum value with respect to the minimum total cycle irreversibility. The largest exergy loss occurs in evaporator, followed by the superheater, condenser, regenerator and IHE (Internal heat exchanger). As the R245fa mass fraction increases, the exergy losses of different components vary diversely. With the evaporation pressure rises, the total cycle irreversibility decreases and work output increases. Separator temperature has a greater influence on the system performance than superheating temperature. Compared with ORC (organic Rankine cycle) and Kalina cycle in the literature, the ARC has proven to be thermodynamically better. -- Highlights: ► We have proposed a novel auto-cascade Rankine cycle (ARC) system. ► The zeotropic mixture Isopentane/R245fa is employed in this system. ► Exergy analysis and parameter study on the ARC are presented. ► Compared with ORC and Kalina cycle in the literature, the ARC has proven to be thermodynamically better.

  18. Extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1993-01-01

    Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...

  19. Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs)

    International Nuclear Information System (INIS)

    Vaja, Iacopo; Gambarotta, Agostino

    2010-01-01

    This paper describes a specific thermodynamic analysis in order to efficiently match a vapour cycle to that of a stationary Internal Combustion Engine (ICE). Three different working fluids are considered to represent the main classes of fluids, with reference to the shape of the vapour lines in the T-s diagram: overhanging, nearly isoentropic and bell shaped. First a parametric analysis is conducted in order to determine optimal evaporating pressures for each fluid. After which three different cycles setups are considered: a simple cycle with the use of only engine exhaust gases as a thermal source, a simple cycle with the use of exhaust gases and engine cooling water and a regenerated cycle. A second law analysis of the cycles is performed, with reference to the available heat sources. This is done in order to determine the best fluid and cycle configuration to be employed, the main parameters of the thermodynamic cycles and the overall efficiency of the combined power system. The analysis demonstrates that a 12% increase in the overall efficiency can be achieved with respect to the engine with no bottoming; nevertheless it has been observed that the Organic Rankine Cycles (ORCs) can recover only a small fraction of the heat released by the engine through the cooling water.

  20. Thermodynamic analysis of an open cycle solid desiccant cooling system using Artificial Neural Network

    International Nuclear Information System (INIS)

    Koronaki, I.P.; Rogdakis, E.; Kakatsiou, T.

    2012-01-01

    Highlights: ► A neural network model based on experimental data was developed. ► Description of the experimental setup. ► Prediction of the state conditions of air at the process and regeneration stream. ► Sensitivity Analysis performed on these predicted results. ► Predicted output values in line with correlation model based on data from industry. - Abstract: This paper examines the performance of an installed open cycle air-conditioning system with a silica gel desiccant wheel which uses a conventional heat pump and heat exchangers for the improvement of the outlet air of the system. A neural network model based on the training of a black box model with experimental data was developed as a method based on experimental results predicting the state conditions of air at the process and regeneration stream. The model development was followed by a Sensitivity Analysis performed on these predicted results. The key parameters were the thermodynamic condition of process and regeneration air streams, the sensible heat factor of the room, and the mass air flow ratio of the regeneration and process streams. The results of this analysis revealed that all investigated parameters influenced the performance of the desiccant unit. Predicted output values of the proposed Neural Network Model for Desiccant Systems are in line with results from other correlation models based on the interpolation of experimental data obtained from industrial air conditioning installations.

  1. A new frequency-domain criterion for elimination of limit cycles in fixed-point state-space digital filters using saturation arithmetic

    International Nuclear Information System (INIS)

    Singh, Vimal

    2007-01-01

    In [Singh V. Elimination of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic. IEEE Trans Circ Syst 1990;37(6):814-8], a frequency-domain criterion for the suppression of limit cycles in fixed-point state-space digital filters using saturation overflow arithmetic was presented. The passivity property owing to the presence of multiple saturation nonlinearities was exploited therein. In the present paper, a new notion of passivity, namely, that involving the state variables is considered, thereby arriving at an entirely new frequency-domain criterion for the suppression of limit cycles in such filters

  2. Holographic free energy and thermodynamic geometry

    Science.gov (United States)

    Ghorai, Debabrata; Gangopadhyay, Sunandan

    2016-12-01

    We obtain the free energy and thermodynamic geometry of holographic superconductors in 2+1 dimensions. The gravitational theory in the bulk dual to this 2+1-dimensional strongly coupled theory lives in the 3+1 dimensions and is that of a charged AdS black hole together with a massive charged scalar field. The matching method is applied to obtain the nature of the fields near the horizon using which the holographic free energy is computed through the gauge/gravity duality. The critical temperature is obtained for a set of values of the matching point of the near horizon and the boundary behaviour of the fields in the probe limit approximation which neglects the back reaction of the matter fields on the background spacetime geometry. The thermodynamic geometry is then computed from the free energy of the boundary theory. From the divergence of the thermodynamic scalar curvature, the critical temperature is obtained once again. We then compare this result for the critical temperature with that obtained from the matching method.

  3. Holographic free energy and thermodynamic geometry

    International Nuclear Information System (INIS)

    Ghorai, Debabrata; Gangopadhyay, Sunandan

    2016-01-01

    We obtain the free energy and thermodynamic geometry of holographic superconductors in 2 + 1 dimensions. The gravitational theory in the bulk dual to this 2 + 1-dimensional strongly coupled theory lives in the 3 + 1 dimensions and is that of a charged AdS black hole together with a massive charged scalar field. The matching method is applied to obtain the nature of the fields near the horizon using which the holographic free energy is computed through the gauge/gravity duality. The critical temperature is obtained for a set of values of the matching point of the near horizon and the boundary behaviour of the fields in the probe limit approximation which neglects the back reaction of the matter fields on the background spacetime geometry. The thermodynamic geometry is then computed from the free energy of the boundary theory. From the divergence of the thermodynamic scalar curvature, the critical temperature is obtained once again. We then compare this result for the critical temperature with that obtained from the matching method. (orig.)

  4. Holographic free energy and thermodynamic geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ghorai, Debabrata [S.N. Bose National Centre for Basic Sciences, Kolkata (India); Gangopadhyay, Sunandan [Indian Institute of Science Education and Research, Kolkata, Nadia (India); West Bengal State University, Department of Physics, Barasat (India); Inter University Centre for Astronomy and Astrophysics, Pune (India)

    2016-12-15

    We obtain the free energy and thermodynamic geometry of holographic superconductors in 2 + 1 dimensions. The gravitational theory in the bulk dual to this 2 + 1-dimensional strongly coupled theory lives in the 3 + 1 dimensions and is that of a charged AdS black hole together with a massive charged scalar field. The matching method is applied to obtain the nature of the fields near the horizon using which the holographic free energy is computed through the gauge/gravity duality. The critical temperature is obtained for a set of values of the matching point of the near horizon and the boundary behaviour of the fields in the probe limit approximation which neglects the back reaction of the matter fields on the background spacetime geometry. The thermodynamic geometry is then computed from the free energy of the boundary theory. From the divergence of the thermodynamic scalar curvature, the critical temperature is obtained once again. We then compare this result for the critical temperature with that obtained from the matching method. (orig.)

  5. Thermodynamic analysis of a milk pasteurization process assisted by geothermal energy

    International Nuclear Information System (INIS)

    Yildirim, Nurdan; Genc, Seda

    2015-01-01

    Renewable energy system is an important concern for sustainable development of the World. Thermodynamic analysis, especially exergy analysis is an intense tool to assess sustainability of the systems. Food processing industry is one of the energy intensive sectors where dairy industry consumes substantial amount of energy among other food industry segments. Therefore, in this study, thermodynamic analysis of a milk pasteurization process assisted by geothermal energy was studied. In the system, a water–ammonia VAC (vapor absorption cycle), a cooling section, a pasteurizer and a regenerator were used for milk pasteurization. Exergetic efficiencies of each component and the whole system were separately calculated. A parametric study was undertaken. In this regard, firstly the effect of the geothermal resource temperature on (i) the total exergy destruction of the absorption cycle and the whole system, (ii) the efficiency of the VAC, the whole system and COP (coefficient of performance) of the VAC, (iii) the flow rate of the pasteurized milk were investigated. Then, the effect of the geothermal resource flow rate on the pasteurization load was analyzed. The exergetic efficiency of the whole system was calculated as 56.81% with total exergy destruction rate of 13.66 kW. The exergetic results were also illustrated through the Grassmann diagram. - Highlights: • Geothermal energy assisted milk pasteurization system was studied thermodynamically. • The first study on exergetic analysis of a milk pasteurization process with VAC. • The thermodynamic properties of water–ammonia mixture were calculated by using EES. • Energetic and exergetic efficiency calculated as 71.05 and 56.81%, respectively.

  6. Thermodynamics, diffusion and the Kirkendall effect in solids

    CERN Document Server

    Paul, Aloke; Vuorinen, Vesa; Divinski, Sergiy V

    2014-01-01

    Covering both basic and advanced thermodynamic and phase  principles,  as well as providing stability diagrams relevant for diffusion studies, Thermodynamics, Diffusion and the Kirkendall Effect in Solids maximizes reader insights into Fick’s laws of diffusion, atomic mechanisms, interdiffusion, intrinsic diffusion, tracer diffusion and the Kirkendall effect. Recent advances in the area of interdiffusion will be introduced, while the many practical examples and large number of illustrations given will serve to aid researches working in this area in learning the practical evaluation of various diffusion parameters from experimental results. With a unique approach to the two main focal points in solid state transformations, energetics (thermodynamics) and kinetics (interdiffusion) are extensively studied and their combined use in practise is discussed. Recent developments in the area of Kirkendall effect, grain boundary diffusion and multicomponent diffusion are also covered extensively. This book will appe...

  7. Thermodynamics of complexity and pattern manipulation

    Science.gov (United States)

    Garner, Andrew J. P.; Thompson, Jayne; Vedral, Vlatko; Gu, Mile

    2017-04-01

    Many organisms capitalize on their ability to predict the environment to maximize available free energy and reinvest this energy to create new complex structures. This functionality relies on the manipulation of patterns—temporally ordered sequences of data. Here, we propose a framework to describe pattern manipulators—devices that convert thermodynamic work to patterns or vice versa—and use them to build a "pattern engine" that facilitates a thermodynamic cycle of pattern creation and consumption. We show that the least heat dissipation is achieved by the provably simplest devices, the ones that exhibit desired operational behavior while maintaining the least internal memory. We derive the ultimate limits of this heat dissipation and show that it is generally nonzero and connected with the pattern's intrinsic crypticity—a complexity theoretic quantity that captures the puzzling difference between the amount of information the pattern's past behavior reveals about its future and the amount one needs to communicate about this past to optimally predict the future.

  8. Evaluation of a combined cycle based on an HCCI (Homogenous Charge Compression Ignition) engine heat recovery employing two organic Rankine cycles

    International Nuclear Information System (INIS)

    Khaljani, M.; Saray, R. Khoshbakhti; Bahlouli, K.

    2016-01-01

    In this work, a combined power cycle which includes a HCCI (Homogenous Charge Compression Ignition) engine and two ORCs (Organic Rankine Cycles) is introduced. In the proposed cycle, the waste heats from the engine cooling water and exhaust gases are utilized to drive the ORCs. A parametric study is conducted to show the effects of decision parameters on the performance and on the total cost rate of cycle. Results of the parametric study reveal that increasing the pinch point temperature difference of evaporator and temperature of the condenser leads to reduction in both exergy efficiency and total cost rate of the bottoming cycle. There is a specific evaporator temperature where exergy efficiency is improved, but the total cost rate of the bottoming cycle is maximized. Also, a multi-objective optimization strategy is performed to achieve the best system design parameters from both thermodynamic and economic aspects. The exergy efficiency and the total cost rate of the system have been considered as objective functions. Optimization results indicate that the exergy efficiency of the cycle increases from 44.96% for the base case to 46.02%. Also, approximately1.3% reduction in the cost criteria is achieved. Results of the multi-objective optimization justify the results obtained through the parametric study and demonstrate that the design parameters of both ORCs have conflict effect on the objective functions. - Highlights: • Two Organic Rankine bottoming cycles are coupled with an HCCI Engine. • Exergetic and Exergo-economic analysis of the bottoming cycle are reported. • The system is optimized using multi-objective genetic algorithm. • Objective functions are exergy efficiency and total cost rate of the system. • The exergy efficiency of the cycle increases from 44.96% to 46.02%.

  9. The Thermodynamics of General and Local Anesthesia

    Science.gov (United States)

    Græsbøll, Kaare; Sasse-Middelhoff, Henrike; Heimburg, Thomas

    2014-05-01

    General anesthetics are known to cause depression of the freezing point of transitions in biomembranes. This is a consequence of ideal mixing of the anesthetic drugs in the membrane fluid phase and exclusion from the solid phase. Such a generic law provides physical justification of the famous Meyer-Overton rule. We show here that general anesthetics, barbiturates and local anesthetics all display the same effect on melting transitions. Their effect is reversed by hydrostatic pressure. Thus, the thermodynamic behavior of local anesthetics is very similar to that of general anesthetics. We present a detailed thermodynamic analysis of heat capacity profiles of membranes in the presence of anesthetics. This analysis is able to describe experimentally observed calorimetric profiles and permits prediction of the anesthetic features of arbitrary molecules. In addition, we discuss the thermodynamic origin of the cutoff-effect of long-chain alcohols and the additivity of the effect of general and local anesthetics.

  10. Fundamental aspects of plasma chemical physics Thermodynamics

    CERN Document Server

    Capitelli, Mario; D'Angola, Antonio

    2012-01-01

    Fundamental Aspects of Plasma Chemical Physics - Thermodynamics develops basic and advanced concepts of plasma thermodynamics from both classical and statistical points of view. After a refreshment of classical thermodynamics applied to the dissociation and ionization regimes, the book invites the reader to discover the role of electronic excitation in affecting the properties of plasmas, a topic often overlooked by the thermal plasma community. Particular attention is devoted to the problem of the divergence of the partition function of atomic species and the state-to-state approach for calculating the partition function of diatomic and polyatomic molecules. The limit of ideal gas approximation is also discussed, by introducing Debye-Huckel and virial corrections. Throughout the book, worked examples are given in order to clarify concepts and mathematical approaches. This book is a first of a series of three books to be published by the authors on fundamental aspects of plasma chemical physics.  The next bo...

  11. Going full circle: phase-transition thermodynamics of ionic liquids.

    Science.gov (United States)

    Preiss, Ulrich; Verevkin, Sergey P; Koslowski, Thorsten; Krossing, Ingo

    2011-05-27

    We present the full enthalpic phase transition cycle for ionic liquids (ILs) as examples of non-classical salts. The cycle was closed for the lattice, solvation, dissociation, and vaporization enthalpies of 30 different ILs, relying on as much experimental data as was available. High-quality dissociation enthalpies were calculated at the G3 MP2 level. From the cycle, we could establish, for the first time, the lattice and solvation enthalpies of ILs with imidazolium ions. For vaporization, lattice, and dissociation enthalpies, we also developed new prediction methods in the course of our investigations. Here, as only single-ion values need to be calculated and the tedious optimization of an ion pair can be circumvented, the computational time is short. For the vaporization enthalpy, a very simple approach was found, using a surface term and the calculated enthalpic correction to the total gas-phase energy. For the lattice enthalpy, the most important constituent proved to be the calculated conductor-like screening model (COSMO) solvation enthalpy in the ideal electric conductor. A similar model was developed for the dissociation enthalpy. According to our assessment, the typical error of the lattice enthalpy would be 9.4 kJ mol(-1), which is less than half the deviation we get when using the (optimized) Kapustinskii equation or the recent volume-based thermodynamics (VBT) theory. In contrast, the non-optimized VBT formula gives lattice enthalpies 20 to 140 kJ mol(-1) lower than the ones we assessed in the cycle, because of the insufficient description of dispersive interactions. Our findings show that quantum-chemical calculations can greatly improve the VBT approaches, which were parameterized for simple, inorganic salts with ideally point-shaped charges. In conclusion, we suggest the term "augmented VBT", or "aVBT", to describe this kind of theoretical approach. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Rotary Stirling-Cycle Engine And Generator

    Science.gov (United States)

    Chandler, Joseph A.

    1990-01-01

    Proposed electric-power generator comprises three motor generators coordinated by microprocessor and driven by rotary Stirling-cycle heat engine. Combination offers thermodynamic efficiency of Stirling cycle, relatively low vibration, and automatic adjustment of operating parameters to suit changing load on generator. Rotary Stirling cycle engine converts heat to power via compression and expansion of working gas between three pairs of rotary pistons on three concentric shafts in phased motion. Three motor/generators each connected to one of concentric shafts, can alternately move and be moved by pistons. Microprocessor coordinates their operation, including switching between motor and generator modes at appropriate times during each cycle.

  13. Specific features of the thermodynamics of superionic conductors

    International Nuclear Information System (INIS)

    Gurevich, Yu.Ya.; Kharkats, Yu.I.

    1982-01-01

    A review of theoretical and experimental investigations devoted to a study of thermodynamic aspects of the superionic conductivity phenomena for the recent decade is presented. A relation between a superionic conductivity and the disordering of one of the crystal sublattices, the phase transitions of the disordering caused by the point defects interaction, the mechanism of polymorphic transitions conjugated with a partial disordering are considered. The effect of an abrupt change of the ionic conductivity induced by electric field, the thermodynamics of the domain states in superionic conductors and the influence of pressure on phase transitions and ionic conductivity are analyzed

  14. Parametric Investigation and Thermoeconomic Optimization of a Combined Cycle for Recovering the Waste Heat from Nuclear Closed Brayton Cycle

    Directory of Open Access Journals (Sweden)

    Lihuang Luo

    2016-01-01

    Full Text Available A combined cycle that combines AWM cycle with a nuclear closed Brayton cycle is proposed to recover the waste heat rejected from the precooler of a nuclear closed Brayton cycle in this paper. The detailed thermodynamic and economic analyses are carried out for the combined cycle. The effects of several important parameters, such as the absorber pressure, the turbine inlet pressure, the turbine inlet temperature, the ammonia mass fraction, and the ambient temperature, are investigated. The combined cycle performance is also optimized based on a multiobjective function. Compared with the closed Brayton cycle, the optimized power output and overall efficiency of the combined cycle are higher by 2.41% and 2.43%, respectively. The optimized LEC of the combined cycle is 0.73% lower than that of the closed Brayton cycle.

  15. FUZZY THERMOECONOMIC APPROACH TO NANOFLUID SELECTION IN VAPOR COMPRESSION REFRIGERATION CYCLE

    Directory of Open Access Journals (Sweden)

    D. Kuleshov

    2014-06-01

    Full Text Available The working fluid selection in the vapour compression refrigeration cycles has been studied as a fuzzy thermoeconomic optimization problem. Three criteria: thermodynamic (COP Coefficient Of Performance, economic (LCC Life Cycle Cost, and ecologic (GWP – Global Warming Potential are chosen as target functions. The decision variables X as an information characteristics of desired refrigerant are presented by its critical parameters and normal boiling temperature. Local criteria are expressed via thermodynamic properties restored from information characteristics of refrigerant X, as well as life cycle costs are calculated by the standard economic relationships. GWP values are taken from the refrigerant database. Class of substances under consideration is presented by the natural refrigerant R600a embedded with nanostructured materials.

  16. Thermodynamic analysis of a pulse tube engine

    International Nuclear Information System (INIS)

    Moldenhauer, Stefan; Thess, André; Holtmann, Christoph; Fernández-Aballí, Carlos

    2013-01-01

    Highlights: ► Numerical model of the pulse tube engine process. ► Proof that the heat transfer in the pulse tube is out of phase with the gas velocity. ► Proof that a free piston operation is possible. ► Clarifying the thermodynamic working principle of the pulse tube engine. ► Studying the influence of design parameters on the engine performance. - Abstract: The pulse tube engine is an innovative simple heat engine based on the pulse tube process used in cryogenic cooling applications. The working principle involves the conversion of applied heat energy into mechanical power, thereby enabling it to be used for electrical power generation. Furthermore, this device offers an opportunity for its wide use in energy harvesting and waste heat recovery. A numerical model has been developed to study the thermodynamic cycle and thereby help to design an experimental engine. Using the object-oriented modeling language Modelica, the engine was divided into components on which the conservation equations for mass, momentum and energy were applied. These components were linked via exchanged mass and enthalpy. The resulting differential equations for the thermodynamic properties were integrated numerically. The model was validated using the measured performance of a pulse tube engine. The transient behavior of the pulse tube engine’s underlying thermodynamic properties could be evaluated and studied under different operating conditions. The model was used to explore the pulse tube engine process and investigate the influence of design parameters.

  17. Modelling and exergoeconomic-environmental analysis of combined cycle power generation system using flameless burner for steam generation

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Barzegaravval, Hasan; Ganjehkaviri, Abdolsaeid; Wahid, Mazlan Abdul; Mohd Jaafar, M.N.

    2017-01-01

    Highlights: • Using flameless burner as a supplementary firing system after gas turbine is modeled. • Thermodynamic, economic and environmental analyses of this model are performed. • Efficiency of the plant increases about 6% and CO_2 emission decreases up to 5.63% in this design. • Available exergy for work production in both gas cycle and steam cycle increases in this model. - Abstract: To have an optimum condition for the performance of a combined cycle power generation, using supplementary firing system after gas turbine was investigated by various researchers. Since the temperature of turbine exhaust is higher than auto-ignition temperature of the fuel in optimum condition, using flameless burner is modelled in this paper. Flameless burner is installed between gas turbine cycle and Rankine cycle of a combined cycle power plant which one end is connected to the outlet of gas turbine (as primary combustion oxidizer) and the other end opened to the heat recovery steam generator. Then, the exergoeconomic-environmental analysis of the proposed model is evaluated. Results demonstrate that efficiency of the combined cycle power plant increases about 6% and CO_2 emission reduces up to 5.63% in this proposed model. It is found that the variation in the cost is less than 1% due to the fact that a cost constraint is implemented to be equal or lower than the design point cost. Moreover, exergy of flow gases increases in all points except in heat recovery steam generator. Hence, available exergy for work production in both gas cycle and steam cycle will increase in new model.

  18. THERMODYNAMIC PARAMETERS OF LEAD SULFIDE CRYSTALS IN THE CUBIC PHASE

    Directory of Open Access Journals (Sweden)

    T. O. Parashchuk

    2016-07-01

    Full Text Available Geometric and thermodynamic parameters of cubic PbS crystals were obtained using the computer calculations of the thermodynamic parameters within density functional theory method DFT. Cluster models for the calculation based on the analysis of the crystal and electronic structure. Temperature dependence of energy ΔE and enthalpy ΔH, Gibbs free energy ΔG, heat capacity at constant pressure CP and constant volume CV, entropy ΔS were determined on the basis of ab initio calculations of the crystal structure of molecular clusters. Analytical expressions of temperature dependences of thermodynamic parameters which were approximated with quantum-chemical calculation points have been presented. Experimental results compared with theoretically calculated data.

  19. Thermodynamic performance evaluation of combustion gas turbine cogeneration system with reheat

    International Nuclear Information System (INIS)

    Khaliq, A.; Kaushik, S.C.

    2004-01-01

    This communication presents thermodynamic methodology for the performance evaluation of combustion gas turbine cogeneration system with reheat. The energetic and exergetic efficiencies have been defined. The effects of process steam pressure and pinch point temperature used in the design of heat recovery steam generator, and reheat on energetic and exergetic efficiencies have been investigated. From the results obtained in graphs it is observed that the power to heat ratio increases with an increase in pinch point, but the first-law efficiency and second-law efficiency decreases with an increase in pinch point. The power to heat ratio and second-law efficiency increases significantly with increase in process steam pressure, but the first-law efficiency decreases with the same. Results also show that inclusion of reheat, provide significant improvement in electrical power output, process heat production, fuel-utilization (energetic) efficiency and second-law (exergetic) efficiency. This methodology may be quite useful in the selection and comparison of combined energy production systems from thermodynamic performance point of view

  20. Perturbative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases.

    Science.gov (United States)

    Mohammadzadeh, Hosein; Adli, Fereshteh; Nouri, Sahereh

    2016-12-01

    We investigate perturbative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases. We show that the intrinsic statistical interaction of nonextensive Bose (Fermi) gas is attractive (repulsive) similar to the extensive case but the value of thermodynamic curvature is changed by a nonextensive parameter. In contrary to the extensive ideal classical gas, the nonextensive one may be divided to two different regimes. According to the deviation parameter of the system to the nonextensive case, one can find a special value of fugacity, z^{*}, where the sign of thermodynamic curvature is changed. Therefore, we argue that the nonextensive parameter induces an attractive (repulsive) statistical interaction for zz^{*}) for an ideal classical gas. Also, according to the singular point of thermodynamic curvature, we consider the condensation of nonextensive Boson gas.

  1. Thermodynamic modeling of the power plant based on the SOFC with internal steam reforming of methane

    International Nuclear Information System (INIS)

    Ivanov, Peter

    2007-01-01

    Mathematical model based on the thermodynamic modeling of gaseous mixtures is developed for SOFC with internal steam reforming of methane. Macroscopic porous-electrode theory, including non-linear kinetics and gas-phase diffusion, is used to calculate the reforming reaction and the concentration polarization. Provided the data concerning properties and costs of materials the model is fit for wide range of parametric analysis of thermodynamic cycles including SOFC

  2. Theoretical thermodynamic analysis of Rankine power cycle with thermal driven pump

    International Nuclear Information System (INIS)

    Lakew, Amlaku Abie; Bolland, Olav; Ladam, Yves

    2011-01-01

    Highlights: → The work is focused on theoretical aspects of thermal driven pump (TDP) Rankine cycle. → The mechanical pump is replaced by thermal driven pump. → Important parameters of thermal driven pump Rankine cycle are investigated. → TDP Rankine cycle produce more power but it requires additional low grade heat. - Abstract: A new approach to improve the performance of supercritical carbon dioxide Rankine cycle which uses low temperature heat source is presented. The mechanical pump in conventional supercritical carbon dioxide Rankine cycle is replaced by thermal driven pump. The concept of thermal driven pump is to increase the pressure of a fluid in a closed container by supplying heat. A low grade heat source is used to increase the pressure of the fluid instead of a mechanical pump, this increase the net power output and avoid the need for mechanical pump which requires regular maintenance and operational cost. The thermal driven pump considered is a shell and tube heat exchanger where the working fluid is contained in the tube, a tube diameter of 5 mm is chosen to reduce the heating time. The net power output of the Rankine cycle with thermal driven pump is compared to that of Rankine cycle with mechanical pump and it is observed that the net power output is higher when low grade thermal energy is used to pressurize the working fluid. The thermal driven pump consumes additional heat at low temperature (60 o C) to pressurize the working fluid.

  3. Combined heat and power considered as a virtual steam cycle heat pump

    International Nuclear Information System (INIS)

    Lowe, Robert

    2011-01-01

    The first aim of this paper is to shed light on the thermodynamic reasons for the practical pursuit of low temperature operation by engineers involved in the design and the operation of combined heat and power (CHP) and district heating (DH) systems. The paper shows that the steam cycle of a combined heat and power generator is thermodynamically equivalent to a conventional steam cycle generator plus an additional virtual steam cycle heat pump. This apparently novel conceptualisation leads directly to (i) the observed sensitivity of coefficient of performance of CHP to supply and return temperatures in associated DH systems, and (ii) the conclusion that the performance of CHP will tend to be significantly higher than real heat pumps operating at similar temperatures. The second aim, which is pursued more qualitatively, is to show that the thermodynamic performance advantages of CHP are consistent with the goal of deep, long-term decarbonisation of industrialised economies. As an example, estimates are presented, which suggest that CHP based on combined-cycle gas turbines with carbon capture and storage has the potential to reduce the carbon intensity of delivered heat by a factor of ∼30, compared with a base case of natural gas-fired condensing boilers. - Highlights: → Large-scale CHP systems are thermodynamically equivalent to virtual steam cycle heat pumps. → COPs of such virtual heat pumps are necessarily better than the Carnot limit for real heat pumps. → COPs can approach 9 for plant matched to district heating systems with flow temperatures of 90 deg. C. → CHP combined with CCGT and CCS can reduce the carbon intensity of delivered heat ∼30-fold.

  4. Thermodynamic efficiency analysis and cycle optimization of deeply precooled combined cycle engine in the air-breathing mode

    Science.gov (United States)

    Zhang, Jianqiang; Wang, Zhenguo; Li, Qinglian

    2017-09-01

    The efficiency calculation and cycle optimization were carried out for the Synergistic Air-Breathing Rocket Engine (SABRE) with deeply precooled combined cycle. A component-level model was developed for the engine, and exergy efficiency analysis based on the model was carried out. The methods to improve cycle efficiency have been proposed. The results indicate cycle efficiency of SABRE is between 29.7% and 41.7% along the flight trajectory, and most of the wasted exergy is occupied by the unburned hydrogen in exit gas. Exergy loss exists in each engine component, and the sum losses of main combustion chamber(CC), pre-burner(PB), precooler(PC) and 3# heat exchanger(HX3) are greater than 71.3% of the total loss. Equivalence ratio is the main influencing factor of cycle, and it can be regulated by adjusting parameters of helium loop. Increase the maximum helium outlet temperature of PC by 50 K, the total assumption of hydrogen will be saved by 4.8%, and the cycle efficiency is advanced by 3% averagely in the trajectory. Helium recirculation scheme introduces a helium recirculation loop to increase local helium flow rate of PC. It turns out the total assumption of hydrogen will be saved by 9%, that's about 1740 kg, and the cycle efficiency is advanced by 5.6% averagely.

  5. Gauss-Bonnet coupling constant as a free thermodynamical variable and the associated criticality

    International Nuclear Information System (INIS)

    Xu, Wei; Xu, Hao; Zhao, Liu

    2014-01-01

    The thermodynamic phase space of Gauss-Bonnet (GB) AdS black holes is extended, taking the inverse of the GB coupling constant as a new thermodynamic pressure P GB . We studied the critical behavior associated with P GB in the extended thermodynamic phase space at fixed cosmological constant and electric charge. The result shows that when the black holes are neutral, the associated critical points can only exist in five dimensional GB-AdS black holes with spherical topology, and the corresponding critical exponents are identical to those for the Van der Waals system. For charged GB-AdS black holes, it is shown that there can be only one critical point in five dimensions (for black holes with either spherical or hyperbolic topologies), which also requires the electric charge to be bounded within some appropriate range; while in d < 5 dimensions, there can be up to two different critical points at the same electric charge, and the phase transition can occur only at temperatures which are not in between the two critical values. (orig.)

  6. Incomplete nonextensive statistics and the zeroth law of thermodynamics

    International Nuclear Information System (INIS)

    Huang Zhi-Fu; Ou Cong-Jie; Chen Jin-Can

    2013-01-01

    On the basis of the entropy of incomplete statistics (IS) and the joint probability factorization condition, two controversial problems existing in IS are investigated: one is what expression of the internal energy is reasonable for a composite system and the other is whether the traditional zeroth law of thermodynamics is suitable for IS. Some new equivalent expressions of the internal energy of a composite system are derived through accurate mathematical calculation. Moreover, a self-consistent calculation is used to expound that the zeroth law of thermodynamics is also suitable for IS, but it cannot be proven theoretically. Finally, it is pointed out that the generalized zeroth law of thermodynamics for incomplete nonextensive statistics is unnecessary and the nonextensive assumptions for the composite internal energy will lead to mathematical contradiction. (general)

  7. Thermodynamic properties of potassium chloride aqueous solutions

    Science.gov (United States)

    Zezin, Denis; Driesner, Thomas

    2017-04-01

    Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.

  8. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  9. Calculation of the Aqueous Thermodynamic Properties of Citric Acid Cycle Intermediates and Precursors and the Estimation of High Temperature and Pressure Equation of State Parameters

    Directory of Open Access Journals (Sweden)

    Mitchell Schulte

    2009-06-01

    Full Text Available The citric acid cycle (CAC is the central pathway of energy transfer for many organisms, and understanding the origin of this pathway may provide insight into the origins of metabolism. In order to assess the thermodynamics of this key pathway for microorganisms that inhabit a wide variety of environments, especially those found in high temperature environments, we have calculated the properties and parameters for the revised Helgeson-Kirkham-Flowers equation of state for the major components of the CAC. While a significant amount of data is not available for many of the constituents of this fundamental pathway, methods exist that allow estimation of these missing data.

  10. Thermodynamic properties of alkali borosilicate gasses and metaborates

    International Nuclear Information System (INIS)

    Asano, Mitsuru

    1992-01-01

    Borosilicate glasses are the proposed solidifying material for storing high level radioactive wastes in deep underground strata. Those have low melting point, and can contain relatively large amount of high level radioactive wastes. When borosilicate glasses are used for this purpose, they must be sufficiently stable and highly reliable in the vitrification process, engineered storage and the disposal in deep underground strata. The main vaporizing components from borosilicate glasses are alkali elements and boron. In this report, as for the vaporizing behavior of alkali borosilicate glasses, the research on thermodynamic standpoint carried out by the authors is explained, and the thermodynamic properties of alkali metaborates of monomer and dimer which are the main evaporation gases are reported. The evaporation and the activity of alkali borosilicate glasses, the thermodynamic properties of alkali borosilicate glasses, gaseous alkali metaborates and alkali metaborate system solid solution and so on are described. (K.I.)

  11. Thermodynamic constitutive model for load-biased thermal cycling test of shape memory alloy

    International Nuclear Information System (INIS)

    Young, Sung; Nam, Tae-Hyun

    2013-01-01

    Graphical abstract: - Highlights: • Thermodynamic calculation model for martensitic transformation of shape memory alloy was proposed. • Evolution of the self-accommodation was considered independently by a rate-dependent kinetic equation. • Finite element calculation was conducted for B2–B19′ transformation of Ti–44.5Ni–5Cu–0.5 V (at.%). • Three-dimensional numerical results predict the macroscopic strain under bias loading accurately. - Abstract: This paper presents a three-dimensional calculation model for martensitic phase transformation of shape memory alloy. Constitutive model based on thermodynamic theory was provided. The average behavior was accounted for by considering the volume fraction of each martensitic variant in the material. Evolution of the volume fraction of each variant was determined by a rate-dependent kinetic equation. We assumed that nucleation rate is faster for the self-accommodation than for the stress-induced variants. Three-dimensional finite element analysis was conducted and the results were compared with the experimental data of Ti–44.5Ni–5Cu–0.5 V (at.%) alloy under bias loading

  12. Proposal of a combined heat and power plant hybridized with regeneration organic Rankine cycle: Energy-Exergy evaluation

    International Nuclear Information System (INIS)

    Anvari, Simin; Jafarmadar, Samad; Khalilarya, Shahram

    2016-01-01

    Highlights: • A new thermodynamic cogeneration system is proposed. • Energy and exergy analysis of the considered cycle were performed. • An enhancement of 2.6% in exergy efficiency compared to that of baseline cycle. - Abstract: Among Rankine cycles (simple, reheat and regeneration), regeneration organic Rankine cycle demonstrates higher efficiencies compared to other cases. Consequently, in the present work a regeneration organic Rankine cycle has been utilized to recuperate gas turbine’s heat using heat recovery steam generator. At first, this cogeneration system was subjected to energy and exergy analysis and the obtained results were compared with that of investigated cogeneration found in literature (a cogeneration system in which a reheat organic Rankine cycle for heat recuperation of gas turbine cycle was used with the aid of heat recovery steam generator). Results indicated that the first and second thermodynamic efficiencies in present cycle utilizing regeneration cycle instead of reheat cycle has increased 2.62% and 2.6%, respectively. In addition, the effect of thermodynamic parameters such as combustion chamber’s inlet temperature, gas turbine inlet temperature, evaporator and condenser temperature on the energetic and exergetic efficiencies of gas turbine-heat recovery steam generator cycle and gas turbine-heat recovery steam generator cycle with regeneration organic Rankine cycle was surveyed. Besides, parametric analysis shows that as gas turbine and combustion chamber inlet temperatures increase, energetic and exergetic efficiencies tend to increase. Moreover, once condenser and evaporator temperature raise, a slight decrement in energetic and exergetic efficiency is expected.

  13. Free Energy and Internal Combustion Engine Cycles

    OpenAIRE

    Harris, William D.

    2012-01-01

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  14. Thermodynamics of natural selection III: Landauer's principle in computation and chemistry.

    Science.gov (United States)

    Smith, Eric

    2008-05-21

    This is the third in a series of three papers devoted to energy flow and entropy changes in chemical and biological processes, and their relations to the thermodynamics of computation. The previous two papers have developed reversible chemical transformations as idealizations for studying physiology and natural selection, and derived bounds from the second law of thermodynamics, between information gain in an ensemble and the chemical work required to produce it. This paper concerns the explicit mapping of chemistry to computation, and particularly the Landauer decomposition of irreversible computations, in which reversible logical operations generating no heat are separated from heat-generating erasure steps which are logically irreversible but thermodynamically reversible. The Landauer arrangement of computation is shown to produce the same entropy-flow diagram as that of the chemical Carnot cycles used in the second paper of the series to idealize physiological cycles. The specific application of computation to data compression and error-correcting encoding also makes possible a Landauer analysis of the somewhat different problem of optimal molecular recognition, which has been considered as an information theory problem. It is shown here that bounds on maximum sequence discrimination from the enthalpy of complex formation, although derived from the same logical model as the Shannon theorem for channel capacity, arise from exactly the opposite model for erasure.

  15. MDCT evaluation of aortic root and aortic valve prior to TAVI. What is the optimal imaging time point in the cardiac cycle?

    Energy Technology Data Exchange (ETDEWEB)

    Jurencak, Tomas; Turek, Jakub; Nijssen, Estelle C. [Maastricht University Medical Center, Department of Radiology, P. Debyelaan 25, P.O. Box 5800, AZ, Maastricht (Netherlands); Kietselaer, Bastiaan L.J.H. [Maastricht University Medical Center, Department of Radiology, P. Debyelaan 25, P.O. Box 5800, AZ, Maastricht (Netherlands); Maastricht University Medical Center, CARIM School for Cardiovascular Diseases, Maastricht (Netherlands); Maastricht University Medical Center, Department of Cardiology, Maastricht (Netherlands); Mihl, Casper; Kok, Madeleine; Wildberger, Joachim E.; Das, Marco [Maastricht University Medical Center, Department of Radiology, P. Debyelaan 25, P.O. Box 5800, AZ, Maastricht (Netherlands); Maastricht University Medical Center, CARIM School for Cardiovascular Diseases, Maastricht (Netherlands); Ommen, Vincent G.V.A. van [Maastricht University Medical Center, Department of Cardiology, Maastricht (Netherlands); Garsse, Leen A.F.M. van [Maastricht University Medical Center, Department of Cardiothoracic Surgery, Maastricht (Netherlands)

    2015-07-15

    To determine the optimal imaging time point for transcatheter aortic valve implantation (TAVI) therapy planning by comprehensive evaluation of the aortic root. Multidetector-row CT (MDCT) examination with retrospective ECG gating was retrospectively performed in 64 consecutive patients referred for pre-TAVI assessment. Eighteen different parameters of the aortic root were evaluated at 11 different time points in the cardiac cycle. Time points at which maximal (or minimal) sizes were determined, and dimension differences to other time points were evaluated. Theoretical prosthesis sizing based on different measurements was compared. Largest dimensions were found between 10 and 20 % of the cardiac cycle for annular short diameter (10 %); mean diameter (10 %); effective diameter and circumference-derived diameter (20 %); distance from the annulus to right coronary artery ostium (10 %); aortic root at the left coronary artery level (20 %); aortic root at the widest portion of coronary sinuses (20 %); and right leaflet length (20 %). Prosthesis size selection differed depending on the chosen measurements in 25-75 % of cases. Significant changes in anatomical structures of the aortic root during the cardiac cycle are crucial for TAVI planning. Imaging in systole is mandatory to obtain maximal dimensions. (orig.)

  16. Monte Carlo simulations for thermodynamical properties calculations of plasmas at thermodynamical equilibrium. Applications to opacity and equation of state calculations

    International Nuclear Information System (INIS)

    Gilles, D.

    2005-01-01

    This report is devoted to illustrate the power of a Monte Carlo (MC) simulation code to study the thermodynamical properties of a plasma, composed of classical point particles at thermodynamical equilibrium. Such simulations can help us to manage successfully the challenge of taking into account 'exactly' all classical correlations between particles due to density effects, unlike analytical or semi-analytical approaches, often restricted to low dense plasmas. MC simulations results allow to cover, for laser or astrophysical applications, a wide range of thermodynamical conditions from more dense (and correlated) to less dense ones (where potentials are long ranged type). Therefore Yukawa potentials, with a Thomas-Fermi temperature- and density-dependent screening length, are used to describe the effective ion-ion potentials. In this report we present two MC codes ('PDE' and 'PUCE') and applications performed with these codes in different fields (spectroscopy, opacity, equation of state). Some examples of them are discussed and illustrated at the end of the report. (author)

  17. Thermodynamic consideration on the constitution of multi-thermochemical water splitting process

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki

    1976-03-01

    The multi-thermochemical water splitting cycle comprises individual chemical reactions which are generalized as hydrolysis, hydrogen generation, oxygen generation and regeneration of the circulating materials. The circulating agents are required for the constitution of the cycle, but the guiding principle of selecting them is not available yet. In the present report, thermodynamic properties, especially Gibbs free energies for formation, of the agents are examined as a function of temperature. Oxides, sulfo-oxides, chlorides, bromides and iodides are chosen as the compounds. The chemical reactions for hydrolysis, hydrogen generation and oxygen generation are reviewed in detail. The general formulas for the three step splitting cycle are represented with discussion. (auth.)

  18. Involvement of Thermodynamic Cycle Analysis in a Concurrent Approach to Reciprocating Engine Design

    Directory of Open Access Journals (Sweden)

    J. Macek

    2001-01-01

    Full Text Available A modularised approach to thermodynamic optimisation of new concepts of volumetric combustion engines concerning efficiency and emissions is outlined. Levels of primary analysis using a computerised general-change entropy diagram and detailed multizone, 1 to 3-D finite volume methods are distinguished. The use of inverse algorithms based on the same equations is taken into account.

  19. Hydrogen bond networks determine emergent mechanical and thermodynamic properties across a protein family

    Directory of Open Access Journals (Sweden)

    Dallakyan Sargis

    2008-08-01

    Full Text Available Abstract Background Gram-negative bacteria use periplasmic-binding proteins (bPBP to transport nutrients through the periplasm. Despite immense diversity within the recognized substrates, all members of the family share a common fold that includes two domains that are separated by a conserved hinge. The hinge allows the protein to cycle between open (apo and closed (ligated conformations. Conformational changes within the proteins depend on a complex interplay of mechanical and thermodynamic response, which is manifested as an increase in thermal stability and decrease of flexibility upon ligand binding. Results We use a distance constraint model (DCM to quantify the give and take between thermodynamic stability and mechanical flexibility across the bPBP family. Quantitative stability/flexibility relationships (QSFR are readily evaluated because the DCM links mechanical and thermodynamic properties. We have previously demonstrated that QSFR is moderately conserved across a mesophilic/thermophilic RNase H pair, whereas the observed variance indicated that different enthalpy-entropy mechanisms allow similar mechanical response at their respective melting temperatures. Our predictions of heat capacity and free energy show marked diversity across the bPBP family. While backbone flexibility metrics are mostly conserved, cooperativity correlation (long-range couplings also demonstrate considerable amount of variation. Upon ligand removal, heat capacity, melting point, and mechanical rigidity are, as expected, lowered. Nevertheless, significant differences are found in molecular cooperativity correlations that can be explained by the detailed nature of the hydrogen bond network. Conclusion Non-trivial mechanical and thermodynamic variation across the family is explained by differences within the underlying H-bond networks. The mechanism is simple; variation within the H-bond networks result in altered mechanical linkage properties that directly affect

  20. Rational extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1998-01-01

    Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high­ frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...

  1. Classical and statistical thermodynamics

    CERN Document Server

    Rizk, Hanna A

    2016-01-01

    This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.

  2. Is thermodynamics of the universe bounded by event horizon a Bekenstein system?

    International Nuclear Information System (INIS)

    Chakraborty, Subenoy

    2012-01-01

    In this brief communication, we have studied the validity of the first law of thermodynamics for the universe bounded by event horizon with two examples. The key point is the appropriate choice of the temperature on the event horizon. Finally, we have concluded that universe bounded by the event horizon may be a Bekenstein system and Einstein's equations and the first law of thermodynamics on the event horizons are equivalent.

  3. Is thermodynamics of the universe bounded by event horizon a Bekenstein system?

    OpenAIRE

    Chakraborty, Subenoy

    2012-01-01

    In this brief communication, we have studied the validity of the first law of thermodynamics for the universe bounded by event horizon with two examples. The key point is the appropriate choice of the temperature on the event horizon. Finally, we have concluded that universe bounded by the event horizon may be a Bekenstein system and the Einstein's equations and the first law of thermodynamics on the event horizons are equivalent.

  4. Investigations on the application of zeotropic fluid mixtures in the organic rankine cycle for the geothermal power generation; Untersuchung zum Einsatz von zeotropen Fluidgemischen im Organic Rankine Cycle fuer die geothermische Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Heberle, Florian

    2013-04-01

    The organic rankine cycle is a thermodynamic cycle process which uses an organic fluid working fluid instead of water in comparison to the commercial rankine process. The organic rankine cycle facilitates sufficiently high pressures at moderate temperatures. The organic rankine cycle significantly expands the technically possible and economically feasible ranges of application of such heat and power processes. The geothermal power is a very attractive field of application. Thermal water with a temperature of nearly 100 Celsius can be used for the power generation by means of the organic rankine cycle. Especially zeotropic mixtures are interesting as a working fluid. This is due to a non-isothermal phase change to a temperature glide which adapts very well to the temperature progress of the heat source. The author of the book under consideration reports on the application of different mixtures in the organic rankine cycle. The evaluation is based on a thermodynamic analysis and considers also toxicological, ecologic, technical as well as economic aspects.

  5. Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander

    International Nuclear Information System (INIS)

    Yang Junlan; Ma Yitai; Li Minxia; Guan Haiqing

    2005-01-01

    In this paper, a comparative study is performed for the transcritical carbon dioxide refrigeration cycles with a throttling valve and with an expander, based on the first and second laws of thermodynamics. The effects of evaporating temperature and outlet temperature of gas cooler on the optimal heat rejection pressure, the coefficients of performance (COP), the exergy losses, and the exergy efficiencies are investigated. In order to identify the amounts and locations of irreversibility within the two cycles, exergy analysis is employed to study the thermodynamics process in each component. It is found that in the throttling valve cycle, the largest exergy loss occurs in the throttling valve, about 38% of the total cycle irreversibility. In the expander cycle, the irreversibility mainly comes from the gas cooler and the compressor, approximately 38% and 35%, respectively. The COP and exergy efficiency of the expander cycle are on average 33% and 30% higher than those of the throttling valve cycle, respectively. It is also concluded that an optimal heat rejection pressure can be obtained for all the operating conditions to maximize the COP. The analysis results are of significance to provide theoretical basis for optimization design and operation control of the transcritical carbon dioxide cycle with an expander

  6. Thermodynamic properties of donor-acceptor complexes of tertiary amine with aryl ketones in hexane medium

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R. [Department of Physics, The New College, Chennai 600 014 (India); Jayakumar, S. [Department of Physics, R.K.M. Vivekananda College, Chennai 600 004 (India); Kannappan, V., E-mail: vkannappan@hotmail.com [Department of Chemistry, Presidency College, Chennai 600 005 (India)

    2012-05-20

    Highlights: Black-Right-Pointing-Pointer Ultrasonic scan is carried out on ternary systems of aromatic tertiary amine and three aryl ketones. Black-Right-Pointing-Pointer Formation of CT complexes is found between tertiary amine with aryl ketones. Black-Right-Pointing-Pointer Stability constant values are computed by ultrasonic and spectral methods are compared. Black-Right-Pointing-Pointer The trend in the 'K' suggests that substituents in ketones influence the stabilities of these complexes. Black-Right-Pointing-Pointer The thermodynamic parameters suggest CT interaction is exothermic and the complexes are thermodynamically stable. - The thermodynamic stability of complexes formed between N,N-dimethylaniline (DMANI) and three ketones, namely, acetophenone (ACP), 4-chloroactophenone (ClACP) and 4-methylacetophenone (MACP) in n-hexane is extensively investigated by spectral and ultrasonic methods. The ultrasound scan was carried out in the temperature range 208.15-313.15 K and at atmospheric pressure on solutions containing equimolar concentrations of components ranging from 0.025 to 0.2 M. The existence of solute-solute interactions has also been confirmed through electronic absorption spectra analyzed with Benesi-Hildebrand theory at 303.15 K. The stability constants of the donor-acceptor complexes determined both by spectroscopic and ultrasonic methods are comparable and follow similar trends. The trend in the formation constants is discussed with structures of the components. The thermodynamic behavior of the systems was explained through the computed values of the free energy ({Delta}G), enthalpy ({Delta}H) and entropy ({Delta}S) changes for complex formation are computed and discussed.

  7. Dynamics and thermodynamics of polymer glasses.

    Science.gov (United States)

    Cangialosi, D

    2014-04-16

    The fate of matter when decreasing the temperature at constant pressure is that of passing from gas to liquid and, subsequently, from liquid to crystal. However, a class of materials can exist in an amorphous phase below the melting temperature. On cooling such materials, a glass is formed; that is, a material with the rigidity of a solid but exhibiting no long-range order. The study of the thermodynamics and dynamics of glass-forming systems is the subject of continuous research. Within the wide variety of glass formers, an important sub-class is represented by glass forming polymers. The presence of chain connectivity and, in some cases, conformational disorder are unfavourable factors from the point of view of crystallization. Furthermore, many of them, such as amorphous thermoplastics, thermosets and rubbers, are widely employed in many applications. In this review, the peculiarities of the thermodynamics and dynamics of glass-forming polymers are discussed, with particular emphasis on those topics currently the subject of debate. In particular, the following aspects will be reviewed in the present work: (i) the connection between the pronounced slowing down of glassy dynamics on cooling towards the glass transition temperature (Tg) and the thermodynamics; and, (ii) the fate of the dynamics and thermodynamics below Tg. Both aspects are reviewed in light of the possible presence of a singularity at a finite temperature with diverging relaxation time and zero configurational entropy. In this context, the specificity of glass-forming polymers is emphasized.

  8. Thermodynamically self-consistent integral equations and the structure of liquid metals

    International Nuclear Information System (INIS)

    Pastore, G.; Kahl, G.

    1987-01-01

    We discuss the application of the new thermodynamically self-consistent integral equations for the determination of the structural properties of liquid metals. We present a detailed comparison of the structure (S(q) and g(r)) for models of liquid alkali metals as obtained from two thermodynamically self-consistent integral equations and some published exact computer simulation results; the range of states extends from the triple point to the expanded metal. The theories which only impose thermodynamic self-consistency without any fitting of external data show an excellent agreement with the simulation results, thus demonstrating that this new type of integral equation is definitely superior to the conventional ones (hypernetted chain, Percus-Yevick, mean spherical approximation, etc). (author)

  9. Thermodynamics, phase transition and quasinormal modes with Weyl corrections

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Subhash [The Institute of Mathematical Sciences,Chennai 600113 (India)

    2016-04-21

    We study charged black holes in D dimensional AdS space, in the presence of four derivative Weyl correction. We obtain the black hole solution perturbatively up to first as well as second order in the Weyl coupling, and show that first law of black hole thermodynamics is satisfied in all dimensions. We study its thermodynamic phase transition and then calculate the quasinormal frequencies of the massless scalar field perturbation. We find that, here too, the quasinormal frequencies capture the essence of black hole phase transition. Few subtleties near the second order critical point are discussed.

  10. High-temperature of thermodynamic properties of sodium

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, A. Jr.

    1977-01-01

    The set of high-temperature thermodynamic properties for sodium in the two-phase and subcooled-liquid regions which was previously recommended, has been modified to incorporate recent experimental data. In particular, replacement of the previously estimated critical constants with experimentally-determined values has resulted in substantial differences in the region of the critical point. The following thermodynamic properties were determined: pressure, density, enthalpy, entropy, internal energy, compressibility (adiabatic and isothermal), thermal expansion coefficient, thermal pressure coefficient, and specific heat (constant-pressure and constant-volume). These properties were determined for the saturated liquid, saturated vapor, subcooled liquid, and superheated vapor. The superheated vapor properties are limited to low pressures and more work is required to extend them to higher pressures. The supercritical region was not investigated.

  11. The thermodynamic characteristics of high efficiency, internal-combustion engines

    International Nuclear Information System (INIS)

    Caton, Jerald A.

    2012-01-01

    Highlights: ► The thermodynamics of an automotive engine are determined using a cycle simulation. ► The net indicated thermal efficiency increased from 37.0% to 53.9%. ► High compression ratio, lean mixtures and high EGR were the important features. ► Efficiency increased due to lower heat losses, and increased work conversion. ► The nitric oxides were essentially zero due to the low combustion temperatures. - Abstract: Recent advancements have demonstrated new combustion modes for internal combustion engines that exhibit low nitric oxide emissions and high thermal efficiencies. These new combustion modes involve various combinations of stratification, lean mixtures, high levels of EGR, multiple injections, variable valve timings, two fuels, and other such features. Although the exact combination of these features that provides the best design is not yet clear, the results (low emissions with high efficiencies) are of major interest. The current work is directed at determining some of the fundamental thermodynamic reasons for the relatively high efficiencies and to quantify these factors. Both the first and second laws are used in this assessment. An automotive engine (5.7 l) which included some of the features mentioned above (e.g., high compression ratios, lean mixtures, and high EGR) was evaluated using a thermodynamic cycle simulation. These features were examined for a moderate load (bmep = 900 kPa), moderate speed (2000 rpm) condition. By the use of lean operation, high EGR levels, high compression ratio and other features, the net indicated thermal efficiency increased from 37.0% to 53.9%. These increases are explained in a step-by-step fashion. The major reasons for these improvements include the higher compression ratio and the dilute charge (lean mixture, high EGR). The dilute charge resulted in lower temperatures which in turn resulted in lower heat loss. In addition, the lower temperatures resulted in higher ratios of the specific heats which

  12. Thermodynamics of random reaction networks.

    Science.gov (United States)

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  13. Potential improvements of supercritical recompression CO2 Brayton cycle by mixing other gases for power conversion system of a SFR

    International Nuclear Information System (INIS)

    Jeong, Woo Seok; Lee, Jeong Ik; Jeong, Yong Hoon

    2011-01-01

    Highlights: → S-CO 2 cycle could be enhanced by shifting the critical point of working fluids using gas mixture. → In-house cycle code was developed to analyze supercritical Brayton cycles with gas mixture. → Gas mixture candidates were selected through a screening process: CO 2 mixing with N 2 , O 2 , He, and Ar. → CO 2 -He binary mixture shows the highest cycle efficiency increase. → Lowering the critical temperature and critical pressure of the coolant has a positive effect on the total cycle efficiency. - Abstract: A sodium-cooled fast reactor (SFR) is one of the strongest candidates for the next generation nuclear reactor. However, the conventional design of a SFR concept with an indirect Rankine cycle is subjected to a possible sodium-water reaction. To prevent any hazards from sodium-water reaction, a SFR with the Brayton cycle using Supercritical Carbon dioxide (S-CO 2 ) as the working fluid can be an alternative approach to improve the current SFR design. However, the S-CO 2 Brayton cycle is more sensitive to the critical point of working fluids than other Brayton cycles. This is because compressor work is significantly decreased slightly above the critical point due to high density of CO 2 near the boundary between the supercritical state and the subcritical state. For this reason, the minimum temperature and pressure of cycle are just above the CO 2 critical point. In other words, the critical point acts as a limitation of the lowest operating condition of the cycle. In general, lowering the rejection temperature of a thermodynamic cycle can increase the efficiency. Therefore, changing the critical point of CO 2 can result in an improvement of the total cycle efficiency with the same cycle layout. A small amount of other gases can be added in order to change the critical point of CO 2 . The direction and range of the critical point variation of CO 2 depends on the mixed component and its amount. Several gases that show chemical stability with

  14. Phase equilibria for mixtures containing very many components. development and application of continuous thermodynamics for chemical process design

    International Nuclear Information System (INIS)

    Cotterman, R.L.; Bender, R.; Prausnitz, J.M.

    1984-01-01

    For some multicomponent mixtures, where detailed chemical analysis is not feasible, the compositio of the mixture may be described by a continuous distribution function of some convenient macroscopic property suc as normal boiling point or molecular weight. To attain a quantitative description of phase equilibria for such mixtures, this work has developed thermodynamic procedures for continuous systems; that procedure is called continuous thermodynamics. To illustrate, continuous thermodynamics is used to calculate dew points for natural-gas mixtures, solvent loss in a high-pressure absorber, and liquid-liquid phase equilibria in a polymer fractionation process. Continuous thermodynamics provides a rational method for calculating phase equilibria for those mixtures where complete chemical analysis is not available but where composition can be given by some statistical description. While continuous thermodynamics is only the logical limit of the well-known pseudo-component method, it is more efficient than that method because it is less arbitrary and it often requires less computer time

  15. Optimum operating conditions for a combined power and cooling thermodynamic cycle

    International Nuclear Information System (INIS)

    Sadrameli, S.M.; Goswami, D.Y.

    2007-01-01

    The combined production of thermal power and cooling with an ammonia-water based cycle proposed by Goswami is under intensive investigation. In the cycle under consideration, simultaneous cooling output is produced by expanding an ammonia-rich vapor in an expander to sub-ambient temperatures and subsequently heating the cool exhaust. When this mechanism for cooling production is considered in detail, it is apparent that the cooling comes at some expense to work production. To optimize this trade-off, a very specific coefficient-of-performance has been defined. In this paper, the simulation of the cycle was carried out in the process simulator ASPEN Plus. The optimum operating conditions have been found by using the Equation Oriented mode of the simulator and some of the results have been compared with the experimental data obtained from the cycle. The agreement between the two sets proves the accuracy of the optimization results

  16. Thermodynamic properties of a quasi-harmonic model for ferroelectric transitions

    International Nuclear Information System (INIS)

    Mkam Tchouobiap, S E; Mashiyama, H

    2011-01-01

    Within a framework of a quasi-harmonic model for quantum particles in a local potential of the double Morse type and within the mean-field approximation for interactions between particles, we investigate the thermodynamic properties of ferroelectric materials. A quantum thermodynamic treatment gives analytic expressions for the internal energy, the entropy, the specific heat, and the static susceptibility. The calculated thermodynamic characteristics are studied as a function of temperature and energy barrier, where it is shown that at the proper choice of the theory parameters, particularly the energy barrier, the model system exhibits characteristic features of either second-order tricritical or first-order phase transitions. Our results indicate that the barrier energy seems to be an important criterion for the character of the structural phase transition. The influence of quantum fluctuations manifested on zero-point energy on the phase transition and thermodynamic properties is analyzed and discussed. This leads to several quantum effects, including the existence of a saturation regime at low temperatures, where the order parameter saturates giving thermodynamic saturation of the calculated thermodynamic quantities. It is found that both quantum effects and energy barrier magnitude have an important influence on the thermodynamic properties of the ferroelectric materials and on driving the phase transition at low temperatures. Also, the analytical parameters' effect on the transition temperature is discussed, which seems to give a general insight into the structural phase transition and its nature.

  17. The interactions between IC engine thermodynamics and knock

    International Nuclear Information System (INIS)

    Caton, Jerald A.

    2017-01-01

    Highlights: • Importance of engine thermodynamics regarding knock was quantified. • Effects of compression ratio, engine speed and EGR on knock was reported. • Retarding combustion to avoid knock resulted in decreases of efficiency. - Abstract: The development of high efficiency spark-ignition internal combustion engines is often constrained by the occurrence of knock. Knock may result in engine damage, lower performance, and lower efficiency. The options for preventing knock often involve lower compression ratios, lower boost, retarded spark timing, and other design choices that are detrimental to engine performance and efficiency. Since knock is largely a function of the thermodynamic state of the unburned zone, the occurrence of knock is expected to be a strong function of the engine thermodynamics. The purpose of the current work is to couple a simple knock model with a comprehensive engine cycle simulation to determine the interactions between the engine thermodynamics and knock. This work has explored the effects of engine parameters such as compression ratio (4–12), engine speed (500–2500 rpm), inlet pressure (50–100 kPa), exhaust gas recirculation (0–25%), combustion duration and heat transfer on knock. In each case, the occurrence of knock is connected to the cylinder pressures and the gas temperatures of the unburned zone. For example for a compression ratio of 12, to avoid knock the brake thermal efficiency decreased from 36.5% to 34% due to retarding the combustion.

  18. Bounded energy exchange as an alternative to the third law of thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich, Matthias, E-mail: Heidrich_Matthias@web.de

    2016-10-15

    This paper introduces a postulate explicitly forbidding the extraction of an infinite amount of energy from a thermodynamic system. It also introduces the assumption that no measuring equipment is capable of detecting arbitrarily small energy exchanges. The Kelvin formulation of the second law is reinterpreted accordingly. Then statements related to both the unattainability version and the entropic version of the third law are derived. The value of any common thermodynamic potential of a one-component system at absolute zero of temperature is ascertained if some assumptions with regard to the state space can be made. The point of view is the phenomenological, macroscopic and non-statistical one of classical thermodynamics.

  19. Bounded energy exchange as an alternative to the third law of thermodynamics

    International Nuclear Information System (INIS)

    Heidrich, Matthias

    2016-01-01

    This paper introduces a postulate explicitly forbidding the extraction of an infinite amount of energy from a thermodynamic system. It also introduces the assumption that no measuring equipment is capable of detecting arbitrarily small energy exchanges. The Kelvin formulation of the second law is reinterpreted accordingly. Then statements related to both the unattainability version and the entropic version of the third law are derived. The value of any common thermodynamic potential of a one-component system at absolute zero of temperature is ascertained if some assumptions with regard to the state space can be made. The point of view is the phenomenological, macroscopic and non-statistical one of classical thermodynamics.

  20. Thermodynamics of the CSCl-H2O system at low temperatures

    International Nuclear Information System (INIS)

    Monnin, C.; Dubois, M.

    1999-01-01

    The interpretation of fluid-inclusion data requires knowledge of phase diagrams at low (subfreezing) temperatures. From the example of the CsCl-H 2 O system, we here investigate the possibility to build such diagrams from thermodynamic models of aqueous solutions parameterized at higher temperatures. Holmes and Mesmer (1983) have built a model for the thermodynamic properties of CsCl(aq) based on Pitzer's equation fit to thermodynamic data mainly at temperatures above 0 C along with a few freezing-point-depression data down to -8 C. We show how this model can be used along with the published water-ice equilibrium constant and thermodynamic data at 25 C for Cs + (aq), Cl - (aq) and CsCl(s), to predict with confidence the ice-liquid-vapor (ILV) and the salt-liquid-vapor (SLV) curves down to the eutectic temperature for the CsCl-H 2 O system. (orig.)

  1. Absorption Refrigeration Cycles with Ammonia-Ionic Liquid Working Pairs Studied by Molecular Simulation.

    Science.gov (United States)

    Becker, Tim M; Wang, Meng; Kabra, Abhishek; Jamali, Seyed Hossein; Ramdin, Mahinder; Dubbeldam, David; Infante Ferreira, Carlos A; Vlugt, Thijs J H

    2018-04-18

    For absorption refrigeration, it has been shown that ionic liquids have the potential to replace conventional working pairs. Due to the huge number of possibilities, conducting lab experiments to find the optimal ionic liquid is infeasible. Here, we provide a proof-of-principle study of an alternative computational approach. The required thermodynamic properties, i.e., solubility, heat capacity, and heat of absorption, are determined via molecular simulations. These properties are used in a model of the absorption refrigeration cycle to estimate the circulation ratio and the coefficient of performance. We selected two ionic liquids as absorbents: [emim][Tf 2 N], and [emim][SCN]. As refrigerant NH 3 was chosen due to its favorable operating range. The results are compared to the traditional approach in which parameters of a thermodynamic model are fitted to reproduce experimental data. The work shows that simulations can be used to predict the required thermodynamic properties to estimate the performance of absorption refrigeration cycles. However, high-quality force fields are required to accurately predict the cycle performance.

  2. Absorption Refrigeration Cycles with Ammonia–Ionic Liquid Working Pairs Studied by Molecular Simulation

    Science.gov (United States)

    2018-01-01

    For absorption refrigeration, it has been shown that ionic liquids have the potential to replace conventional working pairs. Due to the huge number of possibilities, conducting lab experiments to find the optimal ionic liquid is infeasible. Here, we provide a proof-of-principle study of an alternative computational approach. The required thermodynamic properties, i.e., solubility, heat capacity, and heat of absorption, are determined via molecular simulations. These properties are used in a model of the absorption refrigeration cycle to estimate the circulation ratio and the coefficient of performance. We selected two ionic liquids as absorbents: [emim][Tf2N], and [emim][SCN]. As refrigerant NH3 was chosen due to its favorable operating range. The results are compared to the traditional approach in which parameters of a thermodynamic model are fitted to reproduce experimental data. The work shows that simulations can be used to predict the required thermodynamic properties to estimate the performance of absorption refrigeration cycles. However, high-quality force fields are required to accurately predict the cycle performance. PMID:29749996

  3. Thermodynamic optimisation and analysis of four Kalina cycle layouts for high temperature applications

    International Nuclear Information System (INIS)

    Modi, Anish; Haglind, Fredrik

    2015-01-01

    The Kalina cycle has seen increased interest in the last few years as an efficient alternative to the conventional steam Rankine cycle. However, the available literature gives little information on the algorithms to solve or optimise this inherently complex cycle. This paper presents a detailed approach to solve and optimise a Kalina cycle for high temperature (a turbine inlet temperature of 500 °C) and high pressure (over 100 bar) applications using a computationally efficient solution algorithm. A central receiver solar thermal power plant with direct steam generation was considered as a case study. Four different layouts for the Kalina cycle based on the number and/or placement of the recuperators in the cycle were optimised and compared based on performance parameters such as the cycle efficiency and the cooling water requirement. The cycles were modelled in steady state and optimised with the maximisation of the cycle efficiency as the objective function. It is observed that the different cycle layouts result in different regions for the optimal value of the turbine inlet ammonia mass fraction. Out of the four compared layouts, the most complex layout KC1234 gives the highest efficiency. The cooling water requirement is closely related to the cycle efficiency, i.e., the better the efficiency, the lower is the cooling water requirement. - Highlights: • Detailed methodology for solving and optimising Kalina cycle for high temperature applications. • A central receiver solar thermal power plant with direct steam generation considered as a case study. • Four Kalina cycle layouts based on the placement of recuperators optimised and compared

  4. Thermodynamic model of a diesel engine to work with gas produced from biomass gasification

    International Nuclear Information System (INIS)

    Lesme Jaén, René; Silva Jardines, Fernando; Rodríguez Ortíz, Leandro Alexei; García Faure, Luis Gerónimo; Peralta Campos, Leonel Grave de; Oliva Ruiz, Luis; Iglesias Vaillant, Yunier

    2017-01-01

    The poor gas, obtained from the gasification of the biomass with air, has a high content of volatile substances, high stability to the ignition and can be used in internal combustion engines. In the present work the results of a thermodynamic model for a Diesel engine AshokLeyland, installed in 'El Brujo' sawmill of the Gran Piedra Baconao Forestry Company of Santiago de Cuba. From the composition and the combustion equation of the poor gas, the thermodynamic cycle calculation and the energy balance of the engine for different loads. Cycle parameters, fuel air ratio, CO2 emissions, engine power and performance were determined. As the main result of the work, the engine had an effective efficiency of 22.3%, consumed 3605.5 grams of fuel / KWh and emits 2055 grams of CO2 / kWh. (author)

  5. Thermodynamic analysis of an integrated solid oxide fuel cell cycle with a rankine cycle

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of solid oxide fuel cells (SOFC) on the top of a steam turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydro-carbons. The pre-treated fuel enters then into the anode side of the SOFC. The remaining fuels after the SOFC stacks enter a burner for further burning. The off-gases are then used to produce steam for a Rankine cycle in a heat recovery steam generator (HRSG). Different system setups are suggested. Cyclic efficiencies up to 67% are achieved which is considerably higher than the conventional combined cycles (CC). Both adiabatic steam reformer (ASR) and catalytic partial oxidation (CPO) fuel pre-reformer reactors are considered in this investigation.

  6. Thermodynamics and proton activities of protic ionic liquids with quantum cluster equilibrium theory

    Science.gov (United States)

    Ingenmey, Johannes; von Domaros, Michael; Perlt, Eva; Verevkin, Sergey P.; Kirchner, Barbara

    2018-05-01

    We applied the binary Quantum Cluster Equilibrium (bQCE) method to a number of alkylammonium-based protic ionic liquids in order to predict boiling points, vaporization enthalpies, and proton activities. The theory combines statistical thermodynamics of van-der-Waals-type clusters with ab initio quantum chemistry and yields the partition functions (and associated thermodynamic potentials) of binary mixtures over a wide range of thermodynamic phase points. Unlike conventional cluster approaches that are limited to the prediction of thermodynamic properties, dissociation reactions can be effortlessly included into the bQCE formalism, giving access to ionicities, as well. The method is open to quantum chemical methods at any level of theory, but combination with low-cost composite density functional theory methods and the proposed systematic approach to generate cluster sets provides a computationally inexpensive and mostly parameter-free way to predict such properties at good-to-excellent accuracy. Boiling points can be predicted within an accuracy of 50 K, reaching excellent accuracy for ethylammonium nitrate. Vaporization enthalpies are predicted within an accuracy of 20 kJ mol-1 and can be systematically interpreted on a molecular level. We present the first theoretical approach to predict proton activities in protic ionic liquids, with results fitting well into the experimentally observed correlation. Furthermore, enthalpies of vaporization were measured experimentally for some alkylammonium nitrates and an excellent linear correlation with vaporization enthalpies of their respective parent amines is observed.

  7. Thermodynamically accurate modeling of the catalytic cycle of photosynthetic oxygen evolution: a mathematical solution to asymmetric Markov chains.

    Science.gov (United States)

    Vinyard, David J; Zachary, Chase E; Ananyev, Gennady; Dismukes, G Charles

    2013-07-01

    Forty-three years ago, Kok and coworkers introduced a phenomenological model describing period-four oscillations in O2 flash yields during photosynthetic water oxidation (WOC), which had been first reported by Joliot and coworkers. The original two-parameter Kok model was subsequently extended in its level of complexity to better simulate diverse data sets, including intact cells and isolated PSII-WOCs, but at the expense of introducing physically unrealistic assumptions necessary to enable numerical solutions. To date, analytical solutions have been found only for symmetric Kok models (inefficiencies are equally probable for all intermediates, called "S-states"). However, it is widely accepted that S-state reaction steps are not identical and some are not reversible (by thermodynamic restraints) thereby causing asymmetric cycles. We have developed a mathematically more rigorous foundation that eliminates unphysical assumptions known to be in conflict with experiments and adopts a new experimental constraint on solutions. This new algorithm termed STEAMM for S-state Transition Eigenvalues of Asymmetric Markov Models enables solutions to models having fewer adjustable parameters and uses automated fitting to experimental data sets, yielding higher accuracy and precision than the classic Kok or extended Kok models. This new tool provides a general mathematical framework for analyzing damped oscillations arising from any cycle period using any appropriate Markov model, regardless of symmetry. We illustrate applications of STEAMM that better describe the intrinsic inefficiencies for photon-to-charge conversion within PSII-WOCs that are responsible for damped period-four and period-two oscillations of flash O2 yields across diverse species, while using simpler Markov models free from unrealistic assumptions. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Thermodynamic analysis of diesel engine coupled with ORC and absorption refrigeration cycle

    International Nuclear Information System (INIS)

    Salek, Farhad; Moghaddam, Alireza Naghavi; Naserian, Mohammad Mahdi

    2017-01-01

    Highlights: • Coupling ORC and Ammonia absorption cycles with diesel engine to recover energy. • By using designed bottoming system, recovered diesel engine energy is about 10%. • By using designed bottoming system, engine efficiency will grow about 4.65%. - Abstract: In this paper, Rankine cycle and Ammonia absorption cycle are coupled with Diesel engine to recover the energy of exhaust gases. The novelty of this paper is the use of ammonia absorption refrigeration cycle bottoming Rankine cycle which coupled with diesel engine to produce more power. Bottoming system converts engine exhaust thermal energy to cooling and mechanical energy. Energy transfer process has been done by two shell and tube heat exchangers. Simulation processes have been done by programming mathematic models of cycles in EES Program. Based on results, recovered energy varies with diesel engine load. For the particular load case of current research, the use of two heat exchangers causes 0.5% decrement of engine mechanical power. However, the recovered energy is about 10% of engine mechanical power.

  9. Technical And Economical FACTIBILITY To Apply A Combined Cycle

    International Nuclear Information System (INIS)

    Hernández Rangel, Elybe

    2017-01-01

    In the state of Falcon specifically in the peninsula of Paraguaná, there are two electric plants; GENEVAPCA and CADAFE. These companies are in charge of providing electrical power to the population, which is being affected by the increment of the population, plus the touristic development of the tax free zone. This reasons cause the systematic ration of the electrical power that as a consequence causes electrical interruptions for a long period of time. Due to this electrical plants can not cover the demand in its totality, there must be created alternative for usage of the electricity which would increment its production. The following thesis has an objective to analyze the technical and economical factibility to apply a combined cycle, with the purpose of increasing the electrical power supply and obtain a better thermodynamically performance. Such project was elaborated in four phases. The first phase contemplated the data collection related to the subject, obtaining important information to select the best option of the combined cycle. In the Second phase was executed the termination of the thermodynamically and energetically properties of the combined cycle, comparing the efficient of the simple cycle with the cycle mention before. As final phase, the project’s economical rentability was estimated for possible installation. (author)

  10. Life, hierarchy, and the thermodynamic machinery of planet Earth.

    Science.gov (United States)

    Kleidon, Axel

    2010-12-01

    Throughout Earth's history, life has increased greatly in abundance, complexity, and diversity. At the same time, it has substantially altered the Earth's environment, evolving some of its variables to states further and further away from thermodynamic equilibrium. For instance, concentrations in atmospheric oxygen have increased throughout Earth's history, resulting in an increased chemical disequilibrium in the atmosphere as well as an increased redox gradient between the atmosphere and the Earth's reducing crust. These trends seem to contradict the second law of thermodynamics, which states for isolated systems that gradients and free energy are dissipated over time, resulting in a state of thermodynamic equilibrium. This seeming contradiction is resolved by considering planet Earth as a coupled, hierarchical and evolving non-equilibrium thermodynamic system that has been substantially altered by the input of free energy generated by photosynthetic life. Here, I present this hierarchical thermodynamic theory of the Earth system. I first present simple considerations to show that thermodynamic variables are driven away from a state of thermodynamic equilibrium by the transfer of power from some other process and that the resulting state of disequilibrium reflects the past net work done on the variable. This is applied to the processes of planet Earth to characterize the generation and transfer of free energy and its dissipation, from radiative gradients to temperature and chemical potential gradients that result in chemical, kinetic, and potential free energy and associated dynamics of the climate system and geochemical cycles. The maximization of power transfer among the processes within this hierarchy yields thermodynamic efficiencies much lower than the Carnot efficiency of equilibrium thermodynamics and is closely related to the proposed principle of Maximum Entropy Production (MEP). The role of life is then discussed as a photochemical process that generates

  11. An improved model to evaluate thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines in open Joule–Brayton cycle

    International Nuclear Information System (INIS)

    Ferraro, Vittorio; Imineo, Francesco; Marinelli, Valerio

    2013-01-01

    An improved model to analyze the performance of solar plants operating with cylindrical parabolic collectors and atmospheric air as heat transfer fluid in an open Joule–Brayton cycle is presented. In the new model, the effect of the incident angle modifier is included, to take into account the variation of the optical efficiency with the incidence angle of the irradiance, and the effect of the reheating of the fluid also has been studied. The analysis was made for two operating modes of the plants: with variable air flow rate and constant inlet temperature to the turbine and with constant flow rate and variable inlet temperature to the turbine, with and without reheating of the fluid in the solar field. When reheating is used, the efficiency of the plant is increased. The obtained results show a good performance of this type of solar plant, in spite of its simplicity; it is able to compete well with other more complex plants operating with different heat transfer fluids. - Highlights: ► An improved model to calculate an innovative CPS solar plant is presented. ► The plant works with air in an open Joule–Brayton cycle. ► The reheating of the air increases the thermodynamic efficiency. ► The plant is very simple and competes well with other more complex solar plants

  12. Closed-cycle cooling systems for nuclear power plants

    International Nuclear Information System (INIS)

    Santini, Lorenzo

    2006-01-01

    The long experience in the field of closed-cycle cooling systems and high technological level of turbo machines and heat exchangers concurs to believe in the industrial realizability of nuclear systems of high thermodynamic efficiency and intrinsic safety [it

  13. Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery

    International Nuclear Information System (INIS)

    Li, You-Rong; Du, Mei-Tang; Wu, Chun-Mei; Wu, Shuang-Ying; Liu, Chao

    2014-01-01

    The performance of the ORC (organic Rankine cycle) systems using zeotropic mixtures as working fluids for recovering waste heat of flue gas from industrial boiler is examined on the basis of thermodynamics and thermo-economics under different operating conditions. In order to explore the potential of the mixtures as the working fluids in the ORC, the effects of various mixtures with different components and composition proportions on the system performance have been analyzed. The results show that the compositions of the mixtures have an important effect on the ORC system performance, which is associated with the temperature glide during the phase change of mixtures. From the point of thermodynamics, the performance of the ORC system is not always improved by employing the mixtures as the working fluids. The merit of the mixtures is related to the restrictive conditions of the ORC, different operating conditions results in different conclusions. At a fixed pinch point temperature difference, the small mean heat transfer temperature difference in heat exchangers will lead to a larger heat transfer area and the larger total cost of the ORC system. Compared with the ORC with pure working fluids, the ORC with the mixtures presents a poor economical performance. - Highlights: • Organic Rankine cycle system with the mixture working fluids for recovering waste heat is analyzed. • The performance of the mixture-fluid ORC is related to temperature glide in phase change of mixture working fluids. • The relative merit of the mixture working fluids depends on the restrictive operation conditions of the ORC. • The ORC with mixture working fluid presents a poor economical performance compared with the pure working fluid case

  14. Influence of precooling cooling air on the performance of a gas turbine combined cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ik Hwan; Kang, Do Won; Kang, Soo Young; Kim, Tong Seop [Inha Univ., Incheon (Korea, Republic of)

    2012-02-15

    Cooling of hot sections, especially the turbine nozzle and rotor blades, has a significant impact on gas turbine performance. In this study, the influence of precooling of the cooling air on the performance of gas turbines and their combined cycle plants was investigated. A state of the art F class gas turbine was selected, and its design performance was deliberately simulated using detailed component models including turbine blade cooling. Off design analysis was used to simulate changes in the operating conditions and performance of the gas turbines due to precooling of the cooling air. Thermodynamic and aerodynamic models were used to simulate the performance of the cooled nozzle and rotor blade. In the combined cycle plant, the heat rejected from the cooling air was recovered at the bottoming steam cycle to optimize the overall plant performance. With a 200K decrease of all cooling air stream, an almost 1.78% power upgrade due to increase in main gas flow and a 0.70 percent point efficiency decrease due to the fuel flow increase to maintain design turbine inlet temperature were predicted.

  15. Combined cycle power plant with integrated low temperature heat (LOTHECO)

    International Nuclear Information System (INIS)

    Kakaras, E.; Doukelis, A.; Leithner, R.; Aronis, N.

    2004-01-01

    The major driver to enhance the efficiency of the simple gas turbine cycle has been the increase in process conditions through advancements in materials and cooling methods. Thermodynamic cycle developments or cycle integration are among the possible ways to further enhance performance. The current paper presents the possibilities and advantages from the LOTHECO natural gas-fired combined cycle concept. In the LOTHECO cycle, low-temperature waste heat or solar heat is used for the evaporation of injected water droplets in the compressed air entering the gas turbine's combustion chamber. Following a description of this innovative cycle, its advantages are demonstrated by comparison between different gas turbine power generation systems for small and large-scale applications, including thermodynamic and economic analysis. A commercial gas turbine (ALSTOM GT10C) has been selected and computed with the heat mass balance program ENBIPRO. The results from the energy analysis are presented and the features of each concept are discussed. In addition, the exergy analysis provides information on the irreversibilities of each process and suggested improvements. Finally, the economic analysis reveals that the combined cycle plant with a heavy-duty gas turbine is the most efficient and economic way to produce electricity at base load. However, on a smaller scale, innovative designs, such as the LOTHECO concept, are required to reach the same level of performance at feasible costs

  16. Parametric analysis of the thermodynamic properties for a medium with strong interaction between particles

    International Nuclear Information System (INIS)

    Dubovitskii, V.A.; Pavlov, G.A.; Krasnikov, Yu.G.

    1996-01-01

    Thermodynamic analysis of media with strong interparticle (Coulomb) interaction is presented. A method for constructing isotherms is proposed for a medium described by a closed multicomponent thermodynamic model. The method is based on choosing an appropriate nondegenerate frame of reference in the extended space of thermodynamic variables and provides efficient thermodynamic calculations in a wide range of parameters, for an investigation of phase transitions of the first kind, and for determining both the number of phases and coexistence curves. A number of approximate thermodynamic models of hydrogen plasma are discussed. The approximation corresponding to the n5/2 law, in which the effects of particle attraction and repulsion are taken into account qualitatively, is studied. This approximation allows studies of thermodynamic properties of a substance for a wide range of parameters. In this approximation, for hydrogen at a constant temperature, various properties of the degree of ionization are revealed. In addition, the parameters of the second critical point are found under conditions corresponding to the Jovian interior

  17. Thermodynamics and economics

    International Nuclear Information System (INIS)

    Mansson, B.A.

    1990-01-01

    Economics, as the social science most concerned with the use and distribution of natural resources, must start to make use of the knowledge at hand in the natural sciences about such resources. In this, thermodynamics is an essential part. In a physicists terminology, human economic activity may be described as a dissipative system which flourishes by transforming and exchanging resources, goods and services. All this involves complex networks of flows of energy and materials. This implies that thermodynamics, the physical theory of energy and materials flows, must have implications for economics. On another level, thermodynamics has been recognized as a physical theory of value, with value concepts similar to those of economic theory. This paper discusses some general aspects of the significance of non-equilibrium thermodynamics for economics. The role of exergy, probably the most important of the physical measures of value, is elucidated. Two examples of integration of thermodynamics with economic theory are reviewed. First, a simple model of a steady-state production system is sued to illustrate the effects of thermodynamic process constraints. Second, the framework of a simple macroeconomic growth model is used to illustrate how some thermodynamic limitations may be integrated in macroeconomic theory

  18. Thermodynamic properties of water in the critical region

    International Nuclear Information System (INIS)

    Veloso, Marcelo A.

    2009-01-01

    The supercritical-water-cooled reactor (SCWR) is one of the nuclear reactor technologies selected for research and development under the Generation IV program. SCWRs offer the potential for high thermal efficiencies and considerable plant simplifications for improved economics. One of the main characteristics of critical water is the strong variations of its thermal-physical properties in the vicinity of the critical point. These large variations may result in an unusual heat transfer behavior. The 1967 IFC Formulation for Industrial Use, which until 1998 formed the basis of steam tables used in many areas of steam power industry throughout the world since the late 1960's, has been now replaced with the IAPWS IF-97 Formulation for the Thermodynamic Properties of Water and Steam for Industrial Use, adopted by the International Association for the Properties of Water and Steam (IAPWS) in 1997. An IAPWS release points out that this new formulation has some unsatisfactory features in the immediate vicinity of the critical point. In order to investigate this singular aspect, which is crucial to better understand the heat transfer mechanism in a SCWR system, predictions by the IAPWS-IF97 formulation will be compared with thermodynamic properties values predicted by an alternative crossover equation of state as well as with experimental data found in literature. (author)

  19. Thermodynamic equilibrium and heavy particles near a black hole

    Energy Technology Data Exchange (ETDEWEB)

    Zeldovich, Ya B [AN SSSR, Moscow

    1976-02-23

    The purpose of this letter is to point out, that thermodynamic equilibrium in general relativity corresponds to T(r)=Tsub(infinity)g/sub 00/sup(-1/2)=Tsub(infinity)..sqrt..(r/(r-rsub(g))). The last expression is written for a static non-rotating (Schwarzschild) black hole.

  20. Heat and thermodynamics

    CERN Document Server

    Saxena, A K

    2014-01-01

    Heat and thermodynamics aims to serve as a textbook for Physics, Chemistry and Engineering students. The book covers basic ideas of Heat and Thermodynamics, Kinetic Theory and Transport Phenomena, Real Gases, Liquafaction and Production and Measurement of very Low Temperatures, The First Law of Thermodynamics, The Second and Third Laws of Thermodynamics and Heat Engines and Black Body Radiation. KEY FEATURES Emphasis on concepts Contains 145 illustrations (drawings), 9 Tables and 48 solved examples At the end of chapter exercises and objective questions

  1. Start-up physics test predictions for Indian Point 3, cycle 7, utilized PHOENIX-P/ANC

    International Nuclear Information System (INIS)

    Powers, M.A.; Buechel, R.J.

    1989-01-01

    The Westinghouse Advanced In-Core Fuel Management System (PHOENIX-P/ANC) was utilized to predict start-up physics test parameters for Indian Point 3 (IP3) cycle 7. This core utilizes a low-leakage loading pattern implementing VANTAGE-5 fuel, which incorporates axial blankets and integral fuel burnable absorbers. Discrete part-length wet annular burnable absorbers (WABAs) are used in some feed assemblies as well. As a measure to reduce vessel fluence, certain peripheral twice-burned assemblies also contain fresh full-length WABAs. The New York Power Authority (NYPA) is using the Westinghouse code system since the methodology was licensed by the U.S. Nuclear Regulatory Commission and because of the user support supplied by Westinghouse. The IP3 cycle 7 PHOENIX-P/ANC model was developed as a joint effort by NYPA and Westinghouse as part of a technology transfer agreement. The PHOENIX-P/ANC model performed very well in start-up physics test predictions and is expected to agree well through cycle depletion. These results have given NYPA further incentive to use the Westinghouse methodology for core follow, loading pattern design determination, and in the safety analysis area

  2. Early history of extended irreversible thermodynamics (1953-1983): An exploration beyond local equilibrium and classical transport theory

    Science.gov (United States)

    Lebon, G.; Jou, D.

    2015-06-01

    This paper gives a historical account of the early years (1953-1983) of extended irreversible thermodynamics (EIT). The salient features of this formalism are to upgrade the thermodynamic fluxes of mass, momentum, energy, and others, to the status of independent variables, and to explore the consistency between generalized transport equations and a generalized version of the second law of thermodynamics. This requires going beyond classical irreversible thermodynamics by redefining entropy and entropy flux. EIT provides deeper foundations, closer relations with microscopic formalisms, a wider spectrum of applications, and a more exciting conceptual appeal to non-equilibrium thermodynamics. We first recall the historical contributions by Maxwell, Cattaneo, and Grad on generalized transport equations. A thermodynamic theory wide enough to cope with such transport equations was independently proposed between 1953 and 1983 by several authors, each emphasizing different kinds of problems. In 1983, the first international meeting on this theory took place in Bellaterra (Barcelona). It provided the opportunity for the various authors to meet together for the first time and to discuss the common points and the specific differences of their previous formulations. From then on, a large amount of applications and theoretical confirmations have emerged. From the historical point of view, the emergence of EIT has been an opportunity to revisit the foundations and to open new avenues in thermodynamics, one of the most classical and well consolidated physical theories.

  3. Thermodynamics of Bioreactions.

    Science.gov (United States)

    Held, Christoph; Sadowski, Gabriele

    2016-06-07

    Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.

  4. Thermodynamics of novel charged dilatonic BTZ black holes

    Science.gov (United States)

    Dehghani, M.

    2017-10-01

    In this paper, the three-dimensional Einstein-Maxwell theory in the presence of a dilatonic scalar field has been studied. It has been shown that the dilatonic potential must be considered as the linear combination of two Liouville-type potentials. Two new classes of charged dilatonic BTZ black holes, as the exact solutions to the coupled scalar, vector and tensor field equations, have been obtained and their properties have been studied. The conserved charge and mass of the new black holes have been calculated, making use of the Gauss's law and Abbott-Deser proposal, respectively. Through comparison of the thermodynamical extensive quantities (i.e. temperature and entropy) obtained from both, the geometrical and the thermodynamical methods, the validity of the first law of black hole thermodynamics has been confirmed for both of the new black holes we just obtained. A black hole thermal stability or phase transition analysis has been performed, making use of the canonical ensemble method. Regarding the black hole heat capacity, it has been found that for either of the new black hole solutions there are some specific ranges in such a way that the black holes with the horizon radius in these ranges are locally stable. The points of type one and type two phase transitions have been determined. The black holes, with the horizon radius equal to the transition points are unstable. They undergo type one or type two phase transitions to be stabilized.

  5. Supercritical CO2 Brayton cycle compression and control near the critical point

    International Nuclear Information System (INIS)

    Wright, S. A.; Fuller, R.; Noall, J.; Radel, R.; Vernon, M. E.; Pickard, P. S.

    2008-01-01

    This report describes the supercritical compression and control issues, the analysis, and the measured test results of a small-scale supercritical CO 2 (S-CO 2 ) compression test-loop. The test loop was developed by Sandia and is described in a companion paper in this conference. The results of these experiments will for the first time evaluate and experimentally demonstrate supercritical compression and the required compressor inlet control approaches on an appropriate scale in a series of test loops at Sandia National Laboratories. The Sandia effort is focused on the main compressor of a supercritical Brayton loop while a separate DOE Gen lV program focus is on studying similar behavior in re-compression Brayton cycles that have dual compressors. One of the main goals of this program is to develop and demonstrate the ability to design, operate, and control the supercritical compression process near the critical point due to highly non-linear behavior near this point. This Sandia supercritical test-loop uses a 50 kW radial compressor to pump supercritical CO 2 (S-CO 2 ) through an orifice and through a water-cooled gas-chiller. At the design point the compressor flow rate is 3.5 kg/s, the inlet pressure is 7, 690 kPa, the pressure ratio is 1.8, the inlet temperature is 305 K, and the shaft speed is 75, 000 rpm. The purpose of the loop is to study the compression and control issues near the critical point. To study compression we intend to compare the design code predictions for efficiency and change in enthalpy (or pressure ratio / head) of the radial compressor with the measured results from actual tests. In the tests the inlet flow, temperature, and pressure, will be varied around the critical point of CO 2 (Tc=304.2 K, and Pc=7.377 MPa). To study control, the test loop will use a variety of methods including inventory control, shaft speed control, and cooling water flow rate, and cooling water temperature control methods to set the compressor inlet temperature

  6. Thermodynamic Curvature and Phase Transitions from Black Hole with a Coulomb-Like Field

    International Nuclear Information System (INIS)

    Han Yiwen; Hong Yun; Bao Zhiqing

    2011-01-01

    In this paper, we first investigate the thermodynamic features of the black hole with a coulomb-like field. Moreover, we obtain the geometric description of the black hole thermodynamics. We find that for the black hole with a coulomb-like field the Weinhold geometry is flat, whereas its Ruppeiner geometry is curved. For the heat capacity and curvature calculation shows the Ruppeiner geometry has a transition point. (general)

  7. Brain activity and cognition: a connection from thermodynamics and information theory.

    Science.gov (United States)

    Collell, Guillem; Fauquet, Jordi

    2015-01-01

    The connection between brain and mind is an important scientific and philosophical question that we are still far from completely understanding. A crucial point to our work is noticing that thermodynamics provides a convenient framework to model brain activity, whereas cognition can be modeled in information-theoretical terms. In fact, several models have been proposed so far from both approaches. A second critical remark is the existence of deep theoretical connections between thermodynamics and information theory. In fact, some well-known authors claim that the laws of thermodynamics are nothing but principles in information theory. Unlike in physics or chemistry, a formalization of the relationship between information and energy is currently lacking in neuroscience. In this paper we propose a framework to connect physical brain and cognitive models by means of the theoretical connections between information theory and thermodynamics. Ultimately, this article aims at providing further insight on the formal relationship between cognition and neural activity.

  8. Brain activity and cognition: a connection from thermodynamics and information theory

    Science.gov (United States)

    Collell, Guillem; Fauquet, Jordi

    2015-01-01

    The connection between brain and mind is an important scientific and philosophical question that we are still far from completely understanding. A crucial point to our work is noticing that thermodynamics provides a convenient framework to model brain activity, whereas cognition can be modeled in information-theoretical terms. In fact, several models have been proposed so far from both approaches. A second critical remark is the existence of deep theoretical connections between thermodynamics and information theory. In fact, some well-known authors claim that the laws of thermodynamics are nothing but principles in information theory. Unlike in physics or chemistry, a formalization of the relationship between information and energy is currently lacking in neuroscience. In this paper we propose a framework to connect physical brain and cognitive models by means of the theoretical connections between information theory and thermodynamics. Ultimately, this article aims at providing further insight on the formal relationship between cognition and neural activity. PMID:26136709

  9. Design of thermodynamic experiments and analyses of thermodynamic relationships

    International Nuclear Information System (INIS)

    Oezer Arnas, A.

    2009-01-01

    In teaching of thermodynamics, a certain textbook is followed internationally whatever language it is written in. However, although some do a very good job, most are not correct and precise and furthermore NONE discuss at all the need for and importance of designing thermodynamic experiments although experimentation in engineering is considered to be the back bone of analyses, not pursued much these days, or numerical studies, so very predominant these days. Here some thermodynamic experiments along with physical interpretation of phenomena through simple mathematics will be discussed that are straightforward, meaningful and which can be performed by any undergraduate/graduate student. Another important topic for discussion is the fact that the thermodynamic state principle demands uniqueness of results. It has been found in literature that this fact is not well understood by those who attempt to apply it loosely and end up with questionable results. Thermodynamics is the fundamental science that clarifies all these issues if well understood, applied and interpreted. The attempt of this paper is to clarify these situations and offer alternative methods for analyses. (author)

  10. Comparative 4-E analysis of a bottoming pure NH3 and NH3-H2O mixture based power cycle for condenser waste heat recovery

    Science.gov (United States)

    Khankari, Goutam; Karmakar, Sujit

    2017-06-01

    This paper proposes a comparative performance analysis based on 4-E (Energy, Exergy, Environment, and Economic) of a bottoming pure Ammonia (NH3) based Organic Rankine Cycle (ORC) and Ammonia-water (NH3-H2O) based Kalina Cycle System 11(KCS 11) for additional power generation through condenser waste heat recovery integrated with a conventional 500MWe Subcritical coal-fired thermal power plant. A typical high-ash Indian coal is used for the analysis. The flow-sheet computer programme `Cycle Tempo' is used to simulate both the cycles for thermodynamic performance analysis at different plant operating conditions. Thermodynamic analysis is done by varying different NH3 mass fraction in KCS11 and at different turbine inlet pressure in both ORC and KCS11. Results show that the optimum operating pressure of ORC and KCS11 with NH3 mass fraction of 0.90 are about 15 bar and 11.70 bar, respectively and more than 14 bar of operating pressure, the plant performance of ORC integrated power plant is higher than the KCS11 integrated power plant and the result is observed reverse below this pressure. The energy and exergy efficiencies of ORC cycle are higher than the KCS11 by about 0.903 % point and 16.605 % points, respectively under similar saturation vapour temperature at turbine inlet for both the cycles. Similarly, plant energy and exergy efficiencies of ORC based combined cycle power plant are increased by 0.460 % point and 0.420 % point, respectively over KCS11 based combined cycle power plant. Moreover, the reduction of CO2 emission in ORC based combined cycle is about 3.23 t/hr which is about 1.5 times higher than the KCS11 based combined cycle power plant. Exergy destruction of the evaporator in ORC decreases with increase in operating pressure due to decrease in temperature difference of heat exchanging fluids. Exergy destruction rate in the evaporator of ORC is higher than KCS11 when the operating pressure of ORC reduces below 14 bar. This happens due to variable

  11. Stochastic Independence as a Resource for Small-Scale Thermodynamics

    Science.gov (United States)

    Lostaglio, Matteo; Mueller, Markus P.; Pastena, Michele

    It is well-known in thermodynamics that the creation of correlations costs work. It seems then a truism that if a thermodynamic transformation A --> B is impossible, so will be any transformation that in sending A to B also correlates among them some auxiliary systems C. Surprisingly, we show that this is not the case for non-equilibrium thermodynamics of microscopic systems. On the contrary, the creation of correlations greatly extends the set of accessible states, to the point that we can perform on individual systems and in a single shot any transformation that would otherwise be possible only if the number of systems involved was very large. We also show that one only ever needs to create a vanishingly small amount of correlations (as measured by mutual information) among a small number of auxiliary systems (never more than three). The many, severe constraints of microscopic thermodynamics are reduced to the sole requirement that the non-equilibrium free energy decreases in the transformation. This shows that, in principle, reliable extraction of work equal to the free energy of a system can be performed by microscopic engines.

  12. Stochastic Independence as a Resource in Small-Scale Thermodynamics

    Science.gov (United States)

    Lostaglio, Matteo; Müller, Markus P.; Pastena, Michele

    2015-10-01

    It is well known in thermodynamics that the creation of correlations costs work. It seems then a truism that if a thermodynamic transformation A →B is impossible, so will be any transformation that in sending A to B also correlates among them some auxiliary systems C . Surprisingly, we show that this is not the case for nonequilibrium thermodynamics of microscopic systems. On the contrary, the creation of correlations greatly extends the set of accessible states, to the point that we can perform on individual systems and in a single shot any transformation that would otherwise be possible only if the number of systems involved was very large. We also show that one only ever needs to create a vanishingly small amount of correlations (as measured by mutual information) among a small number of auxiliary systems (never more than three). The many, severe constraints of microscopic thermodynamics are reduced to the sole requirement that the nonequilibrium free energy decreases in the transformation. This shows that, in principle, reliable extraction of work equal to the free energy of a system can be performed by microscopic engines.

  13. Energy and thermodynamic considerations involving electromagnetic zero-point radiation

    International Nuclear Information System (INIS)

    Cole, Daniel C.

    1999-01-01

    There has been recent speculation and controversy regarding whether electromagnetic zero-point radiation might be the next candidate in the progression of plentiful energy sources, ranging, for example, from hydrodynamic, chemical, and nuclear energy sources. Certainly, however, extracting energy from the vacuum seems counter intuitive to most people. Here, these ideas are clarified, drawing on simple and common examples. Known properties of electromagnetic zero-point energy are qualitatively discussed. An outlook on the success of utilizing this energy source is then discussed

  14. An introduction to equilibrium thermodynamics

    CERN Document Server

    Morrill, Bernard; Hartnett, James P; Hughes, William F

    1973-01-01

    An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a

  15. Thermodynamics for scientists and engineers

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2011-02-01

    This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.

  16. Thermodynamic structure of the marine atmosphere over the region ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    course of observations the ship moved from an open ... Marine boundary layer; thermodynamic structure; saturation point; Bay of Bengal Monsoon Experiment; .... when the low-pressure area is close to the ship the pressure is low and as the system moves away, the .... over oceanic regions to characterize the differences.

  17. Methods of thermodynamics

    CERN Document Server

    Reiss, Howard

    1997-01-01

    Since there is no shortage of excellent general books on elementary thermodynamics, this book takes a different approach, focusing attention on the problem areas of understanding of concept and especially on the overwhelming but usually hidden role of ""constraints"" in thermodynamics, as well as on the lucid exposition of the significance, construction, and use (in the case of arbitrary systems) of the thermodynamic potential. It will be especially useful as an auxiliary text to be used along with any standard treatment.Unlike some texts, Methods of Thermodynamics does not use statistical m

  18. Performance analysis and comparison of an Atkinson cycle coupled to variable temperature heat reservoirs under maximum power and maximum power density conditions

    International Nuclear Information System (INIS)

    Wang, P.-Y.; Hou, S.-S.

    2005-01-01

    In this paper, performance analysis and comparison based on the maximum power and maximum power density conditions have been conducted for an Atkinson cycle coupled to variable temperature heat reservoirs. The Atkinson cycle is internally reversible but externally irreversible, since there is external irreversibility of heat transfer during the processes of constant volume heat addition and constant pressure heat rejection. This study is based purely on classical thermodynamic analysis methodology. It should be especially emphasized that all the results and conclusions are based on classical thermodynamics. The power density, defined as the ratio of power output to maximum specific volume in the cycle, is taken as the optimization objective because it considers the effects of engine size as related to investment cost. The results show that an engine design based on maximum power density with constant effectiveness of the hot and cold side heat exchangers or constant inlet temperature ratio of the heat reservoirs will have smaller size but higher efficiency, compression ratio, expansion ratio and maximum temperature than one based on maximum power. From the view points of engine size and thermal efficiency, an engine design based on maximum power density is better than one based on maximum power conditions. However, due to the higher compression ratio and maximum temperature in the cycle, an engine design based on maximum power density conditions requires tougher materials for engine construction than one based on maximum power conditions

  19. Thermodynamics of random reaction networks.

    Directory of Open Access Journals (Sweden)

    Jakob Fischer

    Full Text Available Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  20. International Business Cycle

    OpenAIRE

    Marek Lubiński

    2007-01-01

    Prime stylized facts of international business cycle theory refer to positive correlation in the cyclical components of important macroeconomic variables across countries. However a number of indicators of business cycle synchronization do not point to clear trends. It can be ascribed to the fact that different forces influence level of business cycle correlation. When investigating into the forces behind the commonness in aggregate fluctuations economic research seems to have pointed in two ...